Diverse Roles of NETosis in the Pathogenesis of Lupus
NETosis is a form of neutrophil cell death during which extracellular fibrillary structures composed of cytosolic and granule proteins assembled on scaffolds of decondensed chromatin, called neutrophil extracellular traps (NETs), are released. NETs normally contribute to host immune defense. Accumul...
Saved in:
Published in | Frontiers in immunology Vol. 13; p. 895216 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
Frontiers Media S.A
24.05.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | NETosis is a form of neutrophil cell death during which extracellular fibrillary structures composed of cytosolic and granule proteins assembled on scaffolds of decondensed chromatin, called neutrophil extracellular traps (NETs), are released. NETs normally contribute to host immune defense. Accumulating evidence implicates aberrant NET production and/or reduced NET clearance, along with alterations of molecules involved in NETosis pathway, in humans and animals with lupus. The extruded nuclear antigens released by NET are a source of autoantigens, which can contribute to the breakdown of self-tolerance in lupus. Excessive NET can also promote the production of pro-inflammatory cytokine interferon-α, elicit direct cytotoxic effect on various renal cells, and cause capillary necrosis and podocyte loss. Additionally, NET can induce endothelial-to-mesenchymal transdifferentiation, which can promote activated myofibroblasts leading to extracellular matrix production. Thus, aberrant NETosis can play diverse roles, including autoantibody production, inflammation, and tissue damage, at different stages of lupus pathogenesis. Evidence suggests that treatments currently used in lupus may reduce NETosis, suggesting a potential utility of targeting NETosis to treat lupus. In fact, several approaches are being experimented to therapeutically target pathways of NETosis. Future studies should precisely delineate distinct roles of NETosis at different stages of lupus pathogenesis in humans, which would offer a rational basis for NETosis-targeting treatments in the clinic. |
---|---|
AbstractList | NETosis is a form of neutrophil cell death during which extracellular fibrillary structures composed of cytosolic and granule proteins assembled on scaffolds of decondensed chromatin, called neutrophil extracellular traps (NETs), are released. NETs normally contribute to host immune defense. Accumulating evidence implicates aberrant NET production and/or reduced NET clearance, along with alterations of molecules involved in NETosis pathway, in humans and animals with lupus. The extruded nuclear antigens released by NET are a source of autoantigens, which can contribute to the breakdown of self-tolerance in lupus. Excessive NET can also promote the production of pro-inflammatory cytokine interferon-α, elicit direct cytotoxic effect on various renal cells, and cause capillary necrosis and podocyte loss. Additionally, NET can induce endothelial-to-mesenchymal transdifferentiation, which can promote activated myofibroblasts leading to extracellular matrix production. Thus, aberrant NETosis can play diverse roles, including autoantibody production, inflammation, and tissue damage, at different stages of lupus pathogenesis. Evidence suggests that treatments currently used in lupus may reduce NETosis, suggesting a potential utility of targeting NETosis to treat lupus. In fact, several approaches are being experimented to therapeutically target pathways of NETosis. Future studies should precisely delineate distinct roles of NETosis at different stages of lupus pathogenesis in humans, which would offer a rational basis for NETosis-targeting treatments in the clinic. NETosis is a form of neutrophil cell death during which extracellular fibrillary structures composed of cytosolic and granule proteins assembled on scaffolds of decondensed chromatin, called neutrophil extracellular traps (NETs), are released. NETs normally contribute to host immune defense. Accumulating evidence implicates aberrant NET production and/or reduced NET clearance, along with alterations of molecules involved in NETosis pathway, in humans and animals with lupus. The extruded nuclear antigens released by NET are a source of autoantigens, which can contribute to the breakdown of self-tolerance in lupus. Excessive NET can also promote the production of pro-inflammatory cytokine interferon-α, elicit direct cytotoxic effect on various renal cells, and cause capillary necrosis and podocyte loss. Additionally, NET can induce endothelial-to-mesenchymal transdifferentiation, which can promote activated myofibroblasts leading to extracellular matrix production. Thus, aberrant NETosis can play diverse roles, including autoantibody production, inflammation, and tissue damage, at different stages of lupus pathogenesis. Evidence suggests that treatments currently used in lupus may reduce NETosis, suggesting a potential utility of targeting NETosis to treat lupus. In fact, several approaches are being experimented to therapeutically target pathways of NETosis. Future studies should precisely delineate distinct roles of NETosis at different stages of lupus pathogenesis in humans, which would offer a rational basis for NETosis-targeting treatments in the clinic.NETosis is a form of neutrophil cell death during which extracellular fibrillary structures composed of cytosolic and granule proteins assembled on scaffolds of decondensed chromatin, called neutrophil extracellular traps (NETs), are released. NETs normally contribute to host immune defense. Accumulating evidence implicates aberrant NET production and/or reduced NET clearance, along with alterations of molecules involved in NETosis pathway, in humans and animals with lupus. The extruded nuclear antigens released by NET are a source of autoantigens, which can contribute to the breakdown of self-tolerance in lupus. Excessive NET can also promote the production of pro-inflammatory cytokine interferon-α, elicit direct cytotoxic effect on various renal cells, and cause capillary necrosis and podocyte loss. Additionally, NET can induce endothelial-to-mesenchymal transdifferentiation, which can promote activated myofibroblasts leading to extracellular matrix production. Thus, aberrant NETosis can play diverse roles, including autoantibody production, inflammation, and tissue damage, at different stages of lupus pathogenesis. Evidence suggests that treatments currently used in lupus may reduce NETosis, suggesting a potential utility of targeting NETosis to treat lupus. In fact, several approaches are being experimented to therapeutically target pathways of NETosis. Future studies should precisely delineate distinct roles of NETosis at different stages of lupus pathogenesis in humans, which would offer a rational basis for NETosis-targeting treatments in the clinic. |
Author | Lai, Yupeng Wang, Meiying Ishikawa, Tatsuya Nallapothula, Dhiraj Singh, Ram Raj |
AuthorAffiliation | 4 Molecular Toxicology Interdepartmental Program, David Geffen School of Medicine at UCLA , Los Angeles, CA , United States 1 Autoimmunity and Tolerance Laboratory, Division of Rheumatology, Department of Medicine, David Geffen School of Medicine at University of California Los Angeles (UCLA) , Los Angeles, CA , United States 2 Department of Rheumatology and Immunology, Shenzhen Second People’s Hospital, The First Affiliated Hospital of Shenzhen University , Shenzhen , China 3 Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at UCLA , Los Angeles, CA , United States 5 Jonsson Comprehensive Cancer Center, David Geffen School of Medicine at UCLA , Los Angeles, CA , United States |
AuthorAffiliation_xml | – name: 1 Autoimmunity and Tolerance Laboratory, Division of Rheumatology, Department of Medicine, David Geffen School of Medicine at University of California Los Angeles (UCLA) , Los Angeles, CA , United States – name: 5 Jonsson Comprehensive Cancer Center, David Geffen School of Medicine at UCLA , Los Angeles, CA , United States – name: 4 Molecular Toxicology Interdepartmental Program, David Geffen School of Medicine at UCLA , Los Angeles, CA , United States – name: 2 Department of Rheumatology and Immunology, Shenzhen Second People’s Hospital, The First Affiliated Hospital of Shenzhen University , Shenzhen , China – name: 3 Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at UCLA , Los Angeles, CA , United States |
Author_xml | – sequence: 1 givenname: Meiying surname: Wang fullname: Wang, Meiying – sequence: 2 givenname: Tatsuya surname: Ishikawa fullname: Ishikawa, Tatsuya – sequence: 3 givenname: Yupeng surname: Lai fullname: Lai, Yupeng – sequence: 4 givenname: Dhiraj surname: Nallapothula fullname: Nallapothula, Dhiraj – sequence: 5 givenname: Ram Raj surname: Singh fullname: Singh, Ram Raj |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35686129$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kUFv1DAQhS1UREvpD-CCcuSyW9tjO_EFCZUClVaAUDlbE3uy6yqJlzipxL8n6baorYQvtmbe-57k95od9aknxt4Kvgao7HkTu25aSy7lurJaCvOCnQhj1AqkVEeP3sfsLOcbPh9lAUC_YsegTWWEtCdMf4q3NGQqfqaWcpGa4tvldcoxF7Evxh0VP3DcpS31tMzm9WbaT_kNe9lgm-ns_j5lvz5fXl98XW2-f7m6-LhZeWX0uIIAFkuhkHxFQAHIi1rJYHnQFKQFlKoOGg0B140l402JHOuKKlUqFeCUXR24IeGN2w-xw-GPSxjd3SANW4fDGH1LjpdWCKCqqRqjSm0sguEKEawJqkaYWR8OrP1UdxQ89eOA7RPo000fd26bbp0VJbd6Aby_Bwzp90R5dF3MntoWe0pTdtLMsRw08Fn67nHWv5CHf58F5UHgh5TzQI3zccQxpiU6tk5wt5Ts7kp2S8nuUPLsFM-cD_D_e_4Cgl2qPg |
CitedBy_id | crossref_primary_10_26442_00403660_2024_05_202699 crossref_primary_10_1111_acer_70019 crossref_primary_10_31083_j_fbl2712333 crossref_primary_10_1038_s41584_023_00948_y crossref_primary_10_3389_fimmu_2023_1253667 crossref_primary_10_3389_fimmu_2023_1185727 crossref_primary_10_3390_biomedicines12010138 crossref_primary_10_1073_pnas_2406954122 crossref_primary_10_3390_pharmaceutics14101988 crossref_primary_10_3389_fimmu_2023_1204777 crossref_primary_10_1111_imr_13154 crossref_primary_10_3390_ijms242015370 crossref_primary_10_47360_1995_4484_2023_513_530 crossref_primary_10_3389_fimmu_2023_1150828 crossref_primary_10_1097_RHU_0000000000002209 crossref_primary_10_1002_2211_5463_13499 crossref_primary_10_1177_09612033231169896 crossref_primary_10_3390_ijms241713581 |
Cites_doi | 10.1681/ASN.2014070673 10.1002/cyto.a.23767 10.3389/fcell.2021.718586 10.1016/j.bbadis.2020.165664 10.1172/jci.insight.124729 10.1038/nm.4027 10.1084/jem.20151876 10.1016/j.cell.2016.05.034 10.1002/art.37893 10.1002/eji.201847875 10.1016/j.it.2005.08.013 10.1136/annrheumdis-2017-212617 10.1128/IAI.00096-14 10.1371/journal.ppat.1004593 10.1126/scitranslmed.3001201 10.1172/jci137866 10.1161/ATVBAHA.121.315928 10.1038/nrmicro1710 10.1038/nchembio.496 10.1016/B978-1-4377-1893-5.00019-4 10.7554/eLife.24437 10.1191/096120399678847380 10.1136/annrheumdis-2018-213181 10.1080/03009742.2018.1488273 10.1161/atvbaha.117.309002 10.1002/art.39818 10.1172/jci.insight.92920 10.1073/pnas.0909927107 10.1016/j.immuni.2012.08.014 10.4049/jimmunol.1102404 10.1371/journal.pone.0032366 10.1371/journal.ppat.1000639 10.1038/nri.2017.105 10.1016/j.autrev.2010.05.015 10.1093/ckj/sft048 10.1186/s13075-018-1749-y 10.1136/annrheumdis-2014-205365 10.1038/ni.2194 10.1172/jci.insight.138385 10.1002/cyto.a.23169 10.1016/j.jaut.2018.03.003 10.1126/scitranslmed.3001180 10.1186/ar4264 10.3390/cells11020191 10.3389/fimmu.2018.00558 10.3389/fimmu.2021.669162 10.1039/d0fo00578a 10.1016/j.cca.2016.05.029 10.1038/nrneph.2016.71 10.3389/fimmu.2016.00484 10.1182/blood-2012-03-416156 10.1046/j.1365-2249.2003.02267.x 10.3390/immuno2010007 10.1038/nm.1959 10.1016/j.vetimm.2017.10.002 10.3389/fimmu.2017.00081 10.1126/science.1092385 10.1016/j.ekir.2018.11.005 10.1038/417182a 10.1136/annrheumdis-2018-eular.1607 10.1002/art.41047 10.1186/1476-9255-10-12 10.4049/jimmunol.1100450 10.4049/jimmunol.1700778 10.3389/fimmu.2017.01136 10.1172/jci.insight.92926 10.1126/scitranslmed.3004801 10.1136/lupus-2020-000387 |
ContentType | Journal Article |
Copyright | Copyright © 2022 Wang, Ishikawa, Lai, Nallapothula and Singh. Copyright © 2022 Wang, Ishikawa, Lai, Nallapothula and Singh 2022 Wang, Ishikawa, Lai, Nallapothula and Singh |
Copyright_xml | – notice: Copyright © 2022 Wang, Ishikawa, Lai, Nallapothula and Singh. – notice: Copyright © 2022 Wang, Ishikawa, Lai, Nallapothula and Singh 2022 Wang, Ishikawa, Lai, Nallapothula and Singh |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM DOA |
DOI | 10.3389/fimmu.2022.895216 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | CrossRef MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1664-3224 |
ExternalDocumentID | oai_doaj_org_article_079113e8f8f647569a3604aa396d4ba3 PMC9170953 35686129 10_3389_fimmu_2022_895216 |
Genre | Research Support, Non-U.S. Gov't Systematic Review Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NIAID NIH HHS grantid: R01 AI080778 – fundername: NIAMS NIH HHS grantid: R01 AR050797 – fundername: NIAMS NIH HHS grantid: R01 AR056465 – fundername: ; grantid: No. JCYJ20190809095811254 , JCYJ20200109140412476 – fundername: ; grantid: R01 AR050797, R01 AI080778, R01 AR056465 |
GroupedDBID | 53G 5VS 9T4 AAFWJ AAKDD AAYXX ACGFO ACGFS ACXDI ADBBV ADRAZ AENEX AFPKN ALMA_UNASSIGNED_HOLDINGS AOIJS BAWUL BCNDV CITATION DIK EBS EMOBN GROUPED_DOAJ GX1 HYE KQ8 M48 M~E OK1 PGMZT RNS RPM CGR CUY CVF ECM EIF IAO IEA IHR IHW IPNFZ NPM RIG 7X8 5PM |
ID | FETCH-LOGICAL-c465t-3d39a714aec8e3ed3ec1b42d90d5ed293a24bd5a6e305f9e6c67a0ab8e84744d3 |
IEDL.DBID | M48 |
ISSN | 1664-3224 |
IngestDate | Wed Aug 27 01:26:33 EDT 2025 Thu Aug 21 14:18:10 EDT 2025 Fri Jul 11 10:50:42 EDT 2025 Wed Feb 19 01:28:18 EST 2025 Tue Jul 01 03:44:16 EDT 2025 Thu Apr 24 23:03:19 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | nephritis clinical implications pathogenesis systemic lupus erythematosus NETosis autoantibody self-tolerance autoantigen |
Language | English |
License | Copyright © 2022 Wang, Ishikawa, Lai, Nallapothula and Singh. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c465t-3d39a714aec8e3ed3ec1b42d90d5ed293a24bd5a6e305f9e6c67a0ab8e84744d3 |
Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Undefined-1 ObjectType-Feature-3 content type line 23 Edited by: Fotios Koumpouras, Yale University, United States Reviewed by: Trine N. Jorgensen, Case Western Reserve University, United States; Kim Maree O’Sullivan, Monash University, Australia This article was submitted to Autoimmune and Autoinflammatory Disorders, a section of the journal Frontiers in Immunology |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.3389/fimmu.2022.895216 |
PMID | 35686129 |
PQID | 2675603530 |
PQPubID | 23479 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_079113e8f8f647569a3604aa396d4ba3 pubmedcentral_primary_oai_pubmedcentral_nih_gov_9170953 proquest_miscellaneous_2675603530 pubmed_primary_35686129 crossref_citationtrail_10_3389_fimmu_2022_895216 crossref_primary_10_3389_fimmu_2022_895216 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-05-24 |
PublicationDateYYYYMMDD | 2022-05-24 |
PublicationDate_xml | – month: 05 year: 2022 text: 2022-05-24 day: 24 |
PublicationDecade | 2020 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland |
PublicationTitle | Frontiers in immunology |
PublicationTitleAlternate | Front Immunol |
PublicationYear | 2022 |
Publisher | Frontiers Media S.A |
Publisher_xml | – name: Frontiers Media S.A |
References | Liao (B43) 2018; 20 Hakkim (B39) 2010; 107 Knight (B23) 2015; 74 Saisorn (B25) 2021; 12 Sisirak (B27) 2016; 166 Garcia (B57) 2013; 65 Leffler (B38) 2012; 188 Puga (B13) 2011; 13 Barrera-Vargas (B41) 2018; 77 Tokuhiro (B48) 2021; 9 Saffarzadeh (B21) 2012; 7 Hair (B63) 2018; 9 Villanueva (B31) 2011; 187 van Dam (B36) 2019; 71 Kumar (B22) 2015; 26 Garcia-Romo (B14) 2011; 3 Ali (B64) 2021; 6 Pisitkun (B62) 2012; 37 Delgado-Rizo (B16) 2017; 8 Hanayama (B29) 2002; 417 Lelliott (B67) 2019; 95 Gray (B56) 2013; 10 Pieterse (B5) 2016; 7 Lande (B15) 2011; 3 Leffler (B40) 2013; 15 Campbell (B53) 2012; 4 Vorobjeva (B11) 2020; 1866 Abdulahad (B18) 2010; 9 Yoshida (B33) 2013; 6 Kienhofer (B55) 2017; 2 Papayannopoulos (B7) 2018; 18 Caielli (B51) 2016; 213 Massarenti (B35) 2019; 48 Kenny (B26) 2019; 49 Singh (B2) 2005; 26 Wilber (B28) 2003; 134 Masuda (B4) 2016; 459 Brinkmann (B6) 2007; 5 Kessenbrock (B32) 2009; 15 de la Visitacion (B60) 2020; 11 Fortner (B46) 2020; 7 Gupta (B19) 2016; 12 Sangaletti (B42) 2012; 120 Li (B10) 2017 Gestermann (B17) 2018; 200 Singh (B1) 2013 Haidar Ahmad (B30) 2002; 2 van Dam (B20) 2019; 4 Urban (B49) 2009; 5 Rohm (B52) 2014; 82 Kenny (B8) 2017; 6 Pieterse (B47) 2017; 37 Halverson (B12) 2015; 11 Liu (B24) 2018; 3 Patino-Trives (B34) 2021; 41 Lood (B45) 2016; 22 Singhal (B68) 2022; 11 Furumoto (B44) 2017; 69 Rother (B37) 2017; 8 Davis (B58) 1999; 8 Frangou (B61) 2019; 78 Masuda (B66) 2017; 91 Hakkim (B9) 2011; 7 Sule (B65) 2021; 131 Kraaij (B50) 2018; 91 Gordon (B54) 2017; 2 Brinkmann (B3) 2004; 303 Chirivi (B59) 2018; 77 |
References_xml | – volume: 26 year: 2015 ident: B22 article-title: Neutrophil Extracellular Trap-Related Extracellular Histones Cause Vascular Necrosis in Severe GN publication-title: J Am Soc Nephrol doi: 10.1681/ASN.2014070673 – volume: 95 year: 2019 ident: B67 article-title: Rapid Quantification of NETs in Vitro and in Whole Blood Samples by Imaging Flow Cytometry publication-title: Cytometry A doi: 10.1002/cyto.a.23767 – volume: 9 year: 2021 ident: B48 article-title: Oxidized Phospholipids and Neutrophil Elastase Coordinately Play Critical Roles in Net Formation publication-title: Front Cell Dev Biol doi: 10.3389/fcell.2021.718586 – volume: 1866 year: 2020 ident: B11 article-title: Mitochondrial Permeability Transition Pore Is Involved in Oxidative Burst and Netosis of Human Neutrophils publication-title: Biochim Biophys Acta Mol Basis Dis doi: 10.1016/j.bbadis.2020.165664 – volume: 3 year: 2018 ident: B24 article-title: Peptidylarginine Deiminases 2 and 4 Modulate Innate and Adaptive Immune Responses in TLR-7-Dependent Lupus publication-title: JCI Insight doi: 10.1172/jci.insight.124729 – volume: 22 year: 2016 ident: B45 article-title: Neutrophil Extracellular Traps Enriched in Oxidized Mitochondrial DNA Are Interferogenic and Contribute to Lupus-Like Disease publication-title: Nat Med doi: 10.1038/nm.4027 – volume: 213 start-page: 697 year: 2016 ident: B51 article-title: Oxidized Mitochondrial Nucleoids Released by Neutrophils Drive Type I Interferon Production in Human Lupus publication-title: J Exp Med doi: 10.1084/jem.20151876 – volume: 166 start-page: 88 year: 2016 ident: B27 article-title: Digestion of Chromatin in Apoptotic Cell Microparticles Prevents Autoimmunity publication-title: Cell doi: 10.1016/j.cell.2016.05.034 – volume: 65 year: 2013 ident: B57 article-title: Attention Deficit and Hyperactivity Disorder Scores Are Elevated and Respond to N-Acetylcysteine Treatment in Patients With Systemic Lupus Erythematosus publication-title: Arthritis Rheum doi: 10.1002/art.37893 – volume: 49 year: 2019 ident: B26 article-title: Dnase1-Deficient Mice Spontaneously Develop a Systemic Lupus Erythematosus-Like Disease publication-title: Eur J Immunol doi: 10.1002/eji.201847875 – volume: 26 year: 2005 ident: B2 article-title: SLE: Translating Lessons From Model Systems to Human Disease publication-title: Trends Immunol doi: 10.1016/j.it.2005.08.013 – volume: 77 year: 2018 ident: B41 article-title: Differential Ubiquitination in NETs Regulates Macrophage Responses in Systemic Lupus Erythematosus publication-title: Ann Rheum Dis doi: 10.1136/annrheumdis-2017-212617 – volume: 82 year: 2014 ident: B52 article-title: Nadph Oxidase Promotes Neutrophil Extracellular Trap Formation in Pulmonary Aspergillosis publication-title: Infect Immun doi: 10.1128/IAI.00096-14 – volume: 11 year: 2015 ident: B12 article-title: DNA Is an Antimicrobial Component of Neutrophil Extracellular Traps publication-title: PloS Pathog doi: 10.1371/journal.ppat.1004593 – volume: 3 start-page: 73ra20 year: 2011 ident: B14 article-title: Netting Neutrophils Are Major Inducers of Type I IFN Production in Pediatric Systemic Lupus Erythematosus publication-title: Sci Transl Med doi: 10.1126/scitranslmed.3001201 – volume: 131 year: 2021 ident: B65 article-title: Endoplasmic Reticulum Stress Sensor Ire1α Propels Neutrophil Hyperactivity in Lupus publication-title: J Clin Invest doi: 10.1172/jci137866 – volume: 41 year: 2021 ident: B34 article-title: Anti-dsDNA Antibodies Increase the Cardiovascular Risk in Systemic Lupus Erythematosus Promoting a Distinctive Immune and Vascular Activation publication-title: Arteriosc Thromb Vasc Biol doi: 10.1161/ATVBAHA.121.315928 – volume: 5 year: 2007 ident: B6 article-title: Beneficial Suicide: Why Neutrophils Die to Make Nets publication-title: Nat Rev Microbiol doi: 10.1038/nrmicro1710 – volume: 7 year: 2011 ident: B9 article-title: Activation of the RAF-MEK-ERK Pathway Is Required for Neutrophil Extracellular Trap Formation publication-title: Nat Chem Biol doi: 10.1038/nchembio.496 – volume-title: Dubois' Lupus Erythematosus and Related Syndromes year: 2013 ident: B1 article-title: Immune Tolerance Defects in Lupus doi: 10.1016/B978-1-4377-1893-5.00019-4 – volume: 6 year: 2017 ident: B8 article-title: Diverse Stimuli Engage Different Neutrophil Extracellular Trap Pathways publication-title: Elife doi: 10.7554/eLife.24437 – volume: 8 start-page: 68 year: 1999 ident: B58 article-title: (Rhdnase) in Patients With Lupus Nephritis publication-title: Lupus doi: 10.1191/096120399678847380 – volume: 78 year: 2019 ident: B61 article-title: Redd1/Autophagy Pathway Promotes Thromboinflammation and Fibrosis in Human Systemic Lupus Erythematosus (Sle) Through NETs Decorated With Tissue Factor (TF) and Interleukin-17a (IL-17a) publication-title: Ann Rheum Dis doi: 10.1136/annrheumdis-2018-213181 – volume: 48 year: 2019 ident: B35 article-title: Peptidylarginine Deiminase-4 Gene Polymorphisms Are Associated With Systemic Lupus Erythematosus and Lupus Nephritis publication-title: Scand J Rheumatol doi: 10.1080/03009742.2018.1488273 – volume: 37 year: 2017 ident: B47 article-title: Neutrophil Extracellular Traps Drive Endothelial-To-Mesenchymal Transition publication-title: Arteriosc Thromb Vasc Biol doi: 10.1161/atvbaha.117.309002 – volume: 69 year: 2017 ident: B44 article-title: Tofacitinib Ameliorates Murine Lupus and Its Associated Vascular Dysfunction publication-title: Arthritis Rheumatol doi: 10.1002/art.39818 – volume: 2 year: 2017 ident: B55 article-title: Experimental Lupus Is Aggravated in Mouse Strains With Impaired Induction of Neutrophil Extracellular Traps publication-title: JCI Insight doi: 10.1172/jci.insight.92920 – volume: 107 year: 2010 ident: B39 article-title: Impairment of Neutrophil Extracellular Trap Degradation Is Associated With Lupus Nephritis publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.0909927107 – volume: 37 year: 2012 ident: B62 article-title: Interleukin-17 Cytokines Are Critical in Development of Fatal Lupus Glomerulonephritis publication-title: Immunity doi: 10.1016/j.immuni.2012.08.014 – volume: 188 year: 2012 ident: B38 article-title: Neutrophil Extracellular Traps That Are Not Degraded in Systemic Lupus Erythematosus Activate Complement Exacerbating the Disease publication-title: J Immunol doi: 10.4049/jimmunol.1102404 – volume: 7 year: 2012 ident: B21 article-title: Neutrophil Extracellular Traps Directly Induce Epithelial and Endothelial Cell Death: A Predominant Role of Histones publication-title: PloS One doi: 10.1371/journal.pone.0032366 – volume: 5 year: 2009 ident: B49 article-title: Neutrophil Extracellular Traps Contain Calprotectin, a Cytosolic Protein Complex Involved in Host Defense Against Candida Albicans publication-title: PloS Pathog doi: 10.1371/journal.ppat.1000639 – volume: 18 year: 2018 ident: B7 article-title: Neutrophil Extracellular Traps in Immunity and Disease publication-title: Nat Rev Immunol doi: 10.1038/nri.2017.105 – volume: 9 year: 2010 ident: B18 article-title: HMGB1 in Systemic Lupus Erythematosus: Its Role in Cutaneous Lesions Development publication-title: Autoimmun Rev doi: 10.1016/j.autrev.2010.05.015 – volume: 6 year: 2013 ident: B33 article-title: Neutrophil Extracellular Trap Components in Fibrinoid Necrosis of the Kidney With Myeloperoxidase-ANCA-Associated Vasculitis publication-title: Clin Kidney J doi: 10.1093/ckj/sft048 – volume: 20 start-page: 254 year: 2018 ident: B43 article-title: Polydatin Effectively Attenuates Disease Activity in Lupus-Prone Mouse Models by Blocking ROS-Mediated NET Formation publication-title: Arthritis Res Ther doi: 10.1186/s13075-018-1749-y – volume: 74 year: 2015 ident: B23 article-title: Peptidylarginine Deiminase Inhibition Disrupts Net Formation and Protects Against Kidney, Skin and Vascular Disease in Lupus-Prone MRL/lpr Mice publication-title: Ann Rheum Dis doi: 10.1136/annrheumdis-2014-205365 – volume: 13 year: 2011 ident: B13 article-title: B Cell-Helper Neutrophils Stimulate the Diversification and Production of Immunoglobulin in the Marginal Zone of the Spleen publication-title: Nat Immunol doi: 10.1038/ni.2194 – volume: 6 year: 2021 ident: B64 article-title: Antineutrophil Properties of Natural Gingerols in Models of Lupus publication-title: JCI Insight doi: 10.1172/jci.insight.138385 – volume: 91 year: 2017 ident: B66 article-title: Measurement of Net Formation in Vitro and in Vivo by Flow Cytometry publication-title: Cytometry A doi: 10.1002/cyto.a.23169 – volume: 91 start-page: 45 year: 2018 ident: B50 article-title: The Net-Effect of Combining Rituximab With Belimumab in Severe Systemic Lupus Erythematosus publication-title: J Autoimmun doi: 10.1016/j.jaut.2018.03.003 – volume: 3 start-page: 73ra19 year: 2011 ident: B15 article-title: Neutrophils Activate Plasmacytoid Dendritic Cells by Releasing Self-DNA-Peptide Complexes in Systemic Lupus Erythematosus publication-title: Sci Transl Med doi: 10.1126/scitranslmed.3001180 – volume: 15 start-page: R84 year: 2013 ident: B40 article-title: Degradation of Neutrophil Extracellular Traps Co-Varies With Disease Activity in Patients With Systemic Lupus Erythematosus publication-title: Arthritis Res Ther doi: 10.1186/ar4264 – volume: 11 year: 2022 ident: B68 article-title: An Imaging and Computational Algorithm for Efficient Identification and Quantification of Neutrophil Extracellular Traps publication-title: Cells doi: 10.3390/cells11020191 – volume: 9 year: 2018 ident: B63 article-title: Inhibition of Immune Complex Complement Activation and Neutrophil Extracellular Trap Formation by Peptide Inhibitor of Complement C1 publication-title: Front Immunol doi: 10.3389/fimmu.2018.00558 – volume: 12 year: 2021 ident: B25 article-title: Acute Kidney Injury Induced Lupus Exacerbation Through the Enhanced Neutrophil Extracellular Traps (and Apoptosis) in Fcgr2b Deficient Lupus Mice With Renal Ischemia Reperfusion Injury publication-title: Front Immunol doi: 10.3389/fimmu.2021.669162 – volume: 11 year: 2020 ident: B60 article-title: Lactobacillus Fermentum Cect5716 Prevents Renal Damage in the NZBWF1 Mouse Model of Systemic Lupus Erythematosus publication-title: Food Funct doi: 10.1039/d0fo00578a – volume: 459 start-page: 89 year: 2016 ident: B4 article-title: Netosis Markers: Quest for Specific, Objective, and Quantitative Markers publication-title: Clin Chim Acta doi: 10.1016/j.cca.2016.05.029 – volume: 12 year: 2016 ident: B19 article-title: The Role of Neutrophils and NETosis in Autoimmune and Renal Diseases publication-title: Nat Rev Nephrol doi: 10.1038/nrneph.2016.71 – volume: 7 year: 2016 ident: B5 article-title: Neutrophils Discriminate Between Lipopolysaccharides of Different Bacterial Sources and Selectively Release Neutrophil Extracellular Traps publication-title: Front Immunol doi: 10.3389/fimmu.2016.00484 – volume: 120 year: 2012 ident: B42 article-title: Neutrophil Extracellular Traps Mediate Transfer of Cytoplasmic Neutrophil Antigens to Myeloid Dendritic Cells Toward ANCA Induction and Associated Autoimmunity publication-title: Blood doi: 10.1182/blood-2012-03-416156 – volume: 134 start-page: 46 year: 2003 ident: B28 article-title: Dnase1l3 Deficiency in Lupus-Prone MRL and NZB/W F1 Mice publication-title: Clin Exp Immunol doi: 10.1046/j.1365-2249.2003.02267.x – volume: 2 start-page: 85 year: 2002 ident: B30 article-title: Polymorphonuclear Neutrophils in Rheumatoid Arthritis and Systemic Lupus Erythematosus: More Complicated Than Anticipated publication-title: Immuno doi: 10.3390/immuno2010007 – volume: 15 year: 2009 ident: B32 article-title: Netting Neutrophils in Autoimmune Small-Vessel Vasculitis publication-title: Nat Med doi: 10.1038/nm.1959 – start-page: 29 year: 2017 ident: B10 article-title: Lipopolysaccharide-Induced Neutrophil Extracellular Trap Formation in Canine Neutrophils Is Dependent on Histone H3 Citrullination by Peptidylarginine Deiminase publication-title: Vet Immunol Immunopathol doi: 10.1016/j.vetimm.2017.10.002 – volume: 8 year: 2017 ident: B16 article-title: Neutrophil Extracellular Traps and Its Implications in Inflammation: An Overview publication-title: Front Immunol doi: 10.3389/fimmu.2017.00081 – volume: 303 year: 2004 ident: B3 article-title: Neutrophil Extracellular Traps Kill Bacteria publication-title: Sci (New York NY) doi: 10.1126/science.1092385 – volume: 4 start-page: 196 year: 2019 ident: B20 article-title: Clinical Implications of Excessive Neutrophil Extracellular Trap Formation in Renal Autoimmune Diseases publication-title: Kidney Int Rep doi: 10.1016/j.ekir.2018.11.005 – volume: 417 year: 2002 ident: B29 article-title: Identification of a Factor That Links Apoptotic Cells to Phagocytes publication-title: Nature doi: 10.1038/417182a – volume: 77 start-page: 205 year: 2018 ident: B59 article-title: Op0318 Netosis-Inhibiting T-Acpa Therapy for Use in Different NET-Driven Human Autoimmune Diseases publication-title: Ann Rheum Dis doi: 10.1136/annrheumdis-2018-eular.1607 – volume: 71 year: 2019 ident: B36 article-title: Intrinsically Distinct Role of Neutrophil Extracellular Trap Formation in Antineutrophil Cytoplasmic Antibody-Associated Vasculitis Compared to Systemic Lupus Erythematosus publication-title: Arthritis Rheumatol (Hoboken NJ) doi: 10.1002/art.41047 – volume: 10 year: 2013 ident: B56 article-title: Activation of Conventional Protein Kinase C (PKC) Is Critical in the Generation of Human Neutrophil Extracellular Traps publication-title: J Inflamm (Lond) doi: 10.1186/1476-9255-10-12 – volume: 187 year: 2011 ident: B31 article-title: Netting Neutrophils Induce Endothelial Damage, Infiltrate Tissues, and Expose Immunostimulatory Molecules in Systemic Lupus Erythematosus publication-title: J Immunol doi: 10.4049/jimmunol.1100450 – volume: 200 year: 2018 ident: B17 article-title: Netting Neutrophils Activate Autoreactive B Cells in Lupus publication-title: J Immunol doi: 10.4049/jimmunol.1700778 – volume: 8 year: 2017 ident: B37 article-title: Acetylated Histones in Apoptotic Microparticles Drive the Formation of Neutrophil Extracellular Traps in Active Lupus Nephritis publication-title: Front Immunol doi: 10.3389/fimmu.2017.01136 – volume: 2 year: 2017 ident: B54 article-title: Lupus and Proliferative Nephritis Are PAD4 Independent in Murine Models publication-title: JCI Insight doi: 10.1172/jci.insight.92926 – volume: 4 start-page: 157ra41 year: 2012 ident: B53 article-title: Nadph Oxidase Inhibits the Pathogenesis of Systemic Lupus Erythematosus publication-title: Sci Transl Med doi: 10.1126/scitranslmed.3004801 – volume: 7 year: 2020 ident: B46 article-title: Targeting Mitochondrial Oxidative Stress With Mitoq Reduces Net Formation and Kidney Disease in Lupus-Prone MRL-lpr Mice publication-title: Lupus Sci Med doi: 10.1136/lupus-2020-000387 |
SSID | ssj0000493335 |
Score | 2.4314985 |
SecondaryResourceType | review_article |
Snippet | NETosis is a form of neutrophil cell death during which extracellular fibrillary structures composed of cytosolic and granule proteins assembled on scaffolds... |
SourceID | doaj pubmedcentral proquest pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 895216 |
SubjectTerms | Animals autoantibody autoantigen Autoantigens Cell Death Extracellular Traps Immunology Inflammation NETosis Neutrophils pathogenesis self-tolerance systemic lupus erythematosus |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Na9wwEBVlodBLSJu2cb9woaeCu4oljaxjmw-W0oZSEtibkKxx4tK1Q3d96L_vyNosu6U0l-CbLWP5jeX3Bg1vGHsHpqpBIBaudLqQWkPhkPvCA3iOnBgQ447u13OYXcrPczXfavUVa8KSPXACbso1LUeBVVM1ILUC4wRw6ZwwEKR3o88ncd5WMvUj6V4hhErbmJSFmWnTLhYD5YNl-aEyxFmwQ0SjX_-_RObftZJb5HO2z_bWqjH_mGb7mD3A7gl7mPpI_j5g6mSsrsD8e7RnyvsmPz-96JftMm-7nBRe_o10Xn8Vf2vtePnLcDMsn7LLs9OL41mx7odQ1BLUqhBBGKePpMO6QoFBYH3kZRkMDwoD8bYrpQ_KAdIibgxCDdpx5yskCpIyiGds0vUdHrI8iEY3zkS_v4oO71UIlDxANPAjwdhkjN-CY-u1WXjsWfHTUtIQ8bQjnjbiaROeGXu_ueUmOWX8b_CniPhmYDS5Hk9Q6O069Pau0Gfs7W28LC2KuNPhOuyHpS0pDaJ3UYJn7HmK3-ZRQkFFss5kTO9Edmcuu1e69no03qbUNtrzvbiPyb9kjyIesRChlK_YZPVrwNekb1b-zfgp_wHfZfaF priority: 102 providerName: Directory of Open Access Journals |
Title | Diverse Roles of NETosis in the Pathogenesis of Lupus |
URI | https://www.ncbi.nlm.nih.gov/pubmed/35686129 https://www.proquest.com/docview/2675603530 https://pubmed.ncbi.nlm.nih.gov/PMC9170953 https://doaj.org/article/079113e8f8f647569a3604aa396d4ba3 |
Volume | 13 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1La9wwEB7SlJZcSp-J-wgu9FRw6rVe1qGUPpKG0oRSsrA3IVnj1CWxk_Uamn_fke1dumVbDD5Ykm3NSP6-scQ3AK-kzgvJEBObWZVwpWRiMXWJk9KlmBICYljRPTmVx1P-ZSZmW7BMbzUasN0Y2oV8UtP5xcGv65t3NOHfhoiT8PZNWV1edhTqZdlBrgmO5C24TcCkQkKDk5Ht_xzIMGNMDGubm1vuwF0mZE6wr9eAqtfz30RC_95L-Qc4Hd2HeyOrjN8Pw-ABbGH9EO4MeSZvHoH41O--wPh7kG-KmzI-PTxr2qqNqzomBhh_Ix7YnIfPXtUXf-2uuvYxTI8Ozz4eJ2O-hKTgUiwS5pm2asItFjky9AyLieOZ16kX6AnXbcadF1YiTfJSoyyksql1ORJEce7ZE9iumxr3IPasVKXVQQ8wp8M54T0FFzII_BGhLCNIl8YxxSgmHnJaXBgKKoJpTW9aE0xrBtNG8HrV5GpQ0vhf5Q_B4quKQQS7v9DMz804p0yq6EvNMC_zUnIlpLZMptxapqXnzrIIXi79ZWjShJUQW2PTtSajMIn6Ilgawe7gv9Wjlv6PQK15du1d1kvq6kcvzE2hb5Dve_rPez6DndDJsPsg489hezHv8AWRmoXb738G0PnzbLLfD9vfBgP0rQ |
linkProvider | Scholars Portal |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Diverse+Roles+of+NETosis+in+the+Pathogenesis+of+Lupus&rft.jtitle=Frontiers+in+immunology&rft.au=Wang%2C+Meiying&rft.au=Ishikawa%2C+Tatsuya&rft.au=Lai%2C+Yupeng&rft.au=Nallapothula%2C+Dhiraj&rft.date=2022-05-24&rft.eissn=1664-3224&rft.volume=13&rft.spage=895216&rft_id=info:doi/10.3389%2Ffimmu.2022.895216&rft_id=info%3Apmid%2F35686129&rft.externalDocID=35686129 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1664-3224&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1664-3224&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1664-3224&client=summon |