Modifications of cellulose-based biomaterials for biomedical applications
Cellulose is one of the most abundant organic compounds in nature and is available from diverse sources. Cellulose features tunable properties, making it a promising substrate for biomaterial development. In this review, we highlight advances in the physical processes and chemical modifications of c...
Saved in:
Published in | Frontiers in bioengineering and biotechnology Vol. 10; p. 993711 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
Frontiers Media S.A
03.11.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Cellulose is one of the most abundant organic compounds in nature and is available from diverse sources. Cellulose features tunable properties, making it a promising substrate for biomaterial development. In this review, we highlight advances in the physical processes and chemical modifications of cellulose that enhance its properties for use as a biomaterial. Three cellulosic products are discussed, including nanofibrillated, nanocrystalline, and bacterial cellulose, with a focus on how each may serve as a platform for the development of advanced cellulose-based biomaterials for Biomedical applications. In addition to associating mechanical and chemical properties of cellulosic materials to specific applications, a prospectus is offered for the future development of cellulose-based biomaterials for biomedicine. |
---|---|
AbstractList | Cellulose is one of the most abundant organic compounds in nature and is available from diverse sources. Cellulose features tunable properties, making it a promising substrate for biomaterial development. In this review, we highlight advances in the physical processes and chemical modifications of cellulose that enhance its properties for use as a biomaterial. Three cellulosic products are discussed, including nanofibrillated, nanocrystalline, and bacterial cellulose, with a focus on how each may serve as a platform for the development of advanced cellulose-based biomaterials for Biomedical applications. In addition to associating mechanical and chemical properties of cellulosic materials to specific applications, a prospectus is offered for the future development of cellulose-based biomaterials for biomedicine. Cellulose is one of the most abundant organic compounds in nature and is available from diverse sources. Cellulose features tunable properties, making it a promising substrate for biomaterial development. In this review, we highlight advances in the physical processes and chemical modifications of cellulose that enhance its properties for use as a biomaterial. Three cellulosic products are discussed, including nanofibrillated, nanocrystalline, and bacterial cellulose, with a focus on how each may serve as a platform for the development of advanced cellulose-based biomaterials for Biomedical applications. In addition to associating mechanical and chemical properties of cellulosic materials to specific applications, a prospectus is offered for the future development of cellulose-based biomaterials for biomedicine.Cellulose is one of the most abundant organic compounds in nature and is available from diverse sources. Cellulose features tunable properties, making it a promising substrate for biomaterial development. In this review, we highlight advances in the physical processes and chemical modifications of cellulose that enhance its properties for use as a biomaterial. Three cellulosic products are discussed, including nanofibrillated, nanocrystalline, and bacterial cellulose, with a focus on how each may serve as a platform for the development of advanced cellulose-based biomaterials for Biomedical applications. In addition to associating mechanical and chemical properties of cellulosic materials to specific applications, a prospectus is offered for the future development of cellulose-based biomaterials for biomedicine. |
Author | Fatema, Nour Ceballos, Ruben Michael Fan, Chenguang |
AuthorAffiliation | 2 Department of Biological Sciences , University of Arkansas , Fayetteville , AR , United States 1 Cell and Molecular Biology Program , University of Arkansas , Fayetteville , AR , United States 3 Department of Chemistry and Biochemistry , University of Arkansas , Fayetteville , AR , United States |
AuthorAffiliation_xml | – name: 2 Department of Biological Sciences , University of Arkansas , Fayetteville , AR , United States – name: 1 Cell and Molecular Biology Program , University of Arkansas , Fayetteville , AR , United States – name: 3 Department of Chemistry and Biochemistry , University of Arkansas , Fayetteville , AR , United States |
Author_xml | – sequence: 1 givenname: Nour surname: Fatema fullname: Fatema, Nour – sequence: 2 givenname: Ruben Michael surname: Ceballos fullname: Ceballos, Ruben Michael – sequence: 3 givenname: Chenguang surname: Fan fullname: Fan, Chenguang |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/36406218$$D View this record in MEDLINE/PubMed |
BookMark | eNp1UUtvEzEQtlARLaU_gAvaI5cNa3s9ti9IqOIRqYgLnK1ZP4orZx3sDVL_PU7SoBaJi22Nv8fMfC_J2ZxnT8hrOqw4V_pdmGL2KzYwttKaS0qfkQvGNPQjVeLs0fucXNV6NwwDZUIKxV6Qcw7jAIyqC7L-ml0M0eIS81y7HDrrU9qlXH0_YfWuazYbXHyJmGoXcjkUvGuU1OF2m07cV-R5aBB_9XBfkh-fPn6__tLffPu8vv5w09sRxNJzFRj4SYbAwYGEAIFJtEJRy6wYGQc7KQp-BGtxf4DlkxKetyEdnxi_JOujrst4Z7YlbrDcm4zRHAq53BosS7TJGyaZAieF0ziO2gmFlCJKYIxq69A3rfdHre1uajNZPy8F0xPRpz9z_Glu82-jAbTQtAm8fRAo-dfO18VsYt1vEGefd7V1wNWogQNv0DePvf6anLJoAHkE2JJrLT4YG5fDbpt1TIYOZh-8OQRv9sGbY_CNSf9hnsT_z_kDjQ6y4w |
CitedBy_id | crossref_primary_10_3389_fbioe_2023_1172133 crossref_primary_10_1007_s00253_023_12918_1 crossref_primary_10_1016_j_carpta_2024_100536 crossref_primary_10_1007_s10570_024_05796_x crossref_primary_10_3390_polym15204046 crossref_primary_10_1007_s10800_023_02023_6 crossref_primary_10_1039_D4RA01412J crossref_primary_10_3390_f14102018 crossref_primary_10_1039_D2MA01056A crossref_primary_10_1039_D4BM00376D crossref_primary_10_1002_advs_202408021 crossref_primary_10_1002_pi_6708 crossref_primary_10_1007_s10570_025_06457_3 crossref_primary_10_1016_j_ijbiomac_2024_138905 crossref_primary_10_1016_j_ijbiomac_2023_124557 crossref_primary_10_1007_s10570_024_06037_x crossref_primary_10_1039_D4MA00456F crossref_primary_10_3390_gels10020109 crossref_primary_10_1039_D3RA04193J crossref_primary_10_1038_s41598_023_48850_7 crossref_primary_10_1016_j_indcrop_2024_118078 crossref_primary_10_1016_j_indcrop_2023_117142 crossref_primary_10_1016_j_jece_2024_113835 crossref_primary_10_1016_j_carbpol_2024_122479 crossref_primary_10_1016_j_ijbiomac_2024_134695 crossref_primary_10_1016_j_ijbiomac_2024_135473 crossref_primary_10_1016_j_cattod_2023_114495 crossref_primary_10_1002_biot_202300150 |
Cites_doi | 10.1039/d1tb02848k 10.1039/c3cs60204d 10.1002/admi.201701219 10.1177/0885328213486527 10.1016/B978-0-323-42865-1.00008-8 10.1016/j.carbpol.2010.12.052 10.1016/j.ijbiomac.2019.03.240 10.1007/s10570-016-0986-y 10.1021/bm070304e 10.1039/c0jm00565g 10.1016/j.carbpol.2013.03.003 10.1021/acs.biomac.5b00129 10.1016/j.carpta.2021.100067 10.3390/molecules26041030 10.1016/j.biortech.2021.126203 10.1016/j.scitotenv.2020.137116 10.1002/adma.202000717 10.1016/j.msec.2015.01.024 10.1039/c5ra26704h 10.1177/20417314211028574 10.1016/j.msec.2020.111152 10.1021/acsami.5b07294 10.1016/j.biomaterials.2005.07.025 10.1016/j.carbpol.2012.08.057 10.1007/s10924-012-0508-4 10.1016/0142-9612(82)90041-2 10.1016/j.carbpol.2021.118668 10.1002/app.41719 10.1016/j.carbpol.2013.08.061 10.1016/j.carbpol.2013.08.050 10.1016/j.bcab.2019.101332 10.3389/fbioe.2019.00045 10.1016/B978-0-12-818431-8.00007-6 10.1016/j.jconrel.2013.07.032 10.1021/acs.chemrev.6b00225 10.1016/j.jconrel.2016.07.053 10.1155/2015/925757 10.1016/j.carbpol.2016.06.011 10.1016/s0032-3861(02)00051-4 10.1016/j.carbpol.2014.02.014 10.1515/hf.2005.016 10.1016/j.polymer.2020.122620 10.1002/jbm.820150504 10.1039/c5tb01144b 10.1002/anie.201001273 10.1016/j.apmt.2018.01.004 10.1016/j.carbpol.2016.05.072 10.1016/j.eurpolymj.2014.07.025 10.5339/gcsp.2013.38 10.1016/j.actbio.2009.09.019 10.1016/j.carbpol.2011.03.011 10.1016/j.ijbiomac.2017.05.171 10.1080/10717544.2020.1831104 10.1016/j.msec.2009.10.006 10.3233/bme-130871 10.1007/s11095-008-9616-1 10.3390/ma3063714 10.1002/bab.1148 10.1007/s10570-011-9497-z 10.1016/j.ijbiomac.2016.01.115 10.1039/c0cs00108b 10.1016/j.arabjc.2018.12.003 10.1016/j.chemosphere.2021.132529 10.1016/j.actbio.2012.12.022 10.1021/bm200718s 10.1039/b806789a 10.3389/fbioe.2020.557885 10.1186/s40643-021-00377-3 10.3390/app10010065 10.1002/jbm.b.32724 10.1038/s41427-018-0103-9 10.1039/c0nr00583e 10.1016/j.msec.2015.08.012 10.1021/am4005072 10.1201/9781315154299 10.1021/bm101103p 10.1007/s10856-015-5577-1 10.3389/fbioe.2018.00086 10.1021/bm1013469 |
ContentType | Journal Article |
Copyright | Copyright © 2022 Fatema, Ceballos and Fan. Copyright © 2022 Fatema, Ceballos and Fan. 2022 Fatema, Ceballos and Fan |
Copyright_xml | – notice: Copyright © 2022 Fatema, Ceballos and Fan. – notice: Copyright © 2022 Fatema, Ceballos and Fan. 2022 Fatema, Ceballos and Fan |
DBID | AAYXX CITATION NPM 7X8 5PM DOA |
DOI | 10.3389/fbioe.2022.993711 |
DatabaseName | CrossRef PubMed MEDLINE - Academic PubMed Central (Full Participant titles) Open Access Journals (DOAJ) |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | CrossRef MEDLINE - Academic PubMed |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
DocumentTitleAlternate | Fatema et al |
EISSN | 2296-4185 |
ExternalDocumentID | oai_doaj_org_article_27286d75d9a449d58a11aa762219cdae PMC9669591 36406218 10_3389_fbioe_2022_993711 |
Genre | Journal Article Review |
GrantInformation_xml | – fundername: NIGMS NIH HHS grantid: P20 GM139768 – fundername: NIGMS NIH HHS grantid: R15 GM140433 – fundername: ; grantid: R15GM140433 P20GM139768 – fundername: ; grantid: 1818346 |
GroupedDBID | 53G 5VS 9T4 AAFWJ AAYXX ACGFS ACXDI ADBBV ADRAZ AFPKN ALMA_UNASSIGNED_HOLDINGS AOIJS BAWUL BCNDV CITATION DIK GROUPED_DOAJ GX1 HYE KQ8 M48 M~E OK1 PGMZT RPM IPNFZ NPM RIG 7X8 5PM |
ID | FETCH-LOGICAL-c465t-38f26eb7ff36d676f6f27ac581c2c54236cb816e46cca46cc6c3b85e3993d3b23 |
IEDL.DBID | M48 |
ISSN | 2296-4185 |
IngestDate | Wed Aug 27 01:13:33 EDT 2025 Thu Aug 21 18:39:04 EDT 2025 Fri Jul 11 16:25:05 EDT 2025 Thu Apr 03 07:03:31 EDT 2025 Thu Apr 24 23:06:46 EDT 2025 Tue Jul 01 03:36:15 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | nanocellulose biomedicine biomaterial cellulose hydrogel |
Language | English |
License | Copyright © 2022 Fatema, Ceballos and Fan. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c465t-38f26eb7ff36d676f6f27ac581c2c54236cb816e46cca46cc6c3b85e3993d3b23 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 This article was submitted to Biomaterials, a section of the journal Frontiers in Bioengineering and Biotechnology Reviewed by: Jennifer Patterson, Instituto IMDEA Materiales, Spain Edited by: Yunbing Wang, Sichuan University, China |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.3389/fbioe.2022.993711 |
PMID | 36406218 |
PQID | 2738496363 |
PQPubID | 23479 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_27286d75d9a449d58a11aa762219cdae pubmedcentral_primary_oai_pubmedcentral_nih_gov_9669591 proquest_miscellaneous_2738496363 pubmed_primary_36406218 crossref_citationtrail_10_3389_fbioe_2022_993711 crossref_primary_10_3389_fbioe_2022_993711 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-11-03 |
PublicationDateYYYYMMDD | 2022-11-03 |
PublicationDate_xml | – month: 11 year: 2022 text: 2022-11-03 day: 03 |
PublicationDecade | 2020 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland |
PublicationTitle | Frontiers in bioengineering and biotechnology |
PublicationTitleAlternate | Front Bioeng Biotechnol |
PublicationYear | 2022 |
Publisher | Frontiers Media S.A |
Publisher_xml | – name: Frontiers Media S.A |
References | Du (B20) 2014; 99 Gousse (B26) 2002; 43 Silva (B79) 2014; 106 Agarwal (B1) 2019 Wang (B70) 2013; 172 Yang (B74) 2021; 33 Tsai (B63) 2006; 27 Zhu (B78) 2016; 116 Liu (B43) 2012 Zhou (B77) 2013; 5 Isogai (B36) 2011; 3 Tarrahi (B60) 2022; 288 Lin (B42) 2014; 59 Xie (B72) 2021; 26 Rescignano (B52) 2014; 99 Sureshkumar (B58) 2010; 20 Xie (B73) 2016; 151 Klemm (B38) 2011; 50 Vallejo (B67) 2021; 8 He (B32) 2016; 151 Ullah (B65); 23 Mohite (B45) 2014; 61 Singh (B55) 1981; 15 Vatankhah (B68) 2014; 28 Eyholzer (B22) 2012; 20 Guan (B27) 2020; 27 Kose (B39) 2011; 12 Horue (B35) 2020; 116 Kuzmenko (B41) 2016; 58 Andresen (B2) 2007; 8 Chen (B13) 2015; 7 da Silva (B16) 2016; 86 Mali (B44) 2022; 275 deBoer (B17) 2015; 26 Chiaoprakobkij (B15) 2011; 85 Aris (B3) 2019; 21 Weng (B71) 2021; 12 Besbes (B5) 2011; 84 Wang (B80) 2010; 30 Chakraborty (B9) 2005; 59 Fink (B24) 2010; 6 Torgbo (B61) 2018; 11 Chalal (B10) 2014; 24 Hein (B33) 2008; 25 Picheth (B50) 2017; 104 Chen (B14) 2011; 18 Kumar (B40) 2020; 716 Cavicchioli (B7) 2015; 4 Hakkarainen (B30) 2016; 244 Habibi (B28) 2014; 43 Saravanan (B53) 2022; 344 Okeyoshi (B48) 2018; 5 Tornello (B62) 2016; 5 Yoshino (B75) 2013; 9 Savoji (B54) 2018; 6 Jorfi (B37) 2015; 132 Dinca (B19) 2020; 13 Hasani (B31) 2008; 4 Uetani (B64) 2011; 12 Zhang (B76) 2015; 49 Ullah (B66); 6 Hickey (B34) 2019; 7 Siqueira (B56) 2013; 91 Chen (B12) 2019; 11 El-Sherbiny (B21) 2013; 2013 Goncalves (B25) 2015; 16 Wahid (B69) 2019; 132 Orlando (B49) 2020; 8 Chen (B11) 2013; 95 Bala (B4) 1982; 3 Rees (B51) 2015; 7 Dharmalingam (B18) 2020; 202 Sood (B57) 2021; 2 Tang (B59) 2015; 3 Moon (B47) 2011; 40 Hackett (B29) 2010; 3 Bhaladhare (B6) 2022; 10 Ceballos (B8) 2017 Feese (B23) 2011; 12 Moohan (B46) 2020; 10 |
References_xml | – volume: 10 start-page: 1923 year: 2022 ident: B6 article-title: Cellulose: A fascinating biopolymer for hydrogel synthesis publication-title: J. Mat. Chem. B doi: 10.1039/d1tb02848k – volume: 43 start-page: 1519 year: 2014 ident: B28 article-title: Key advances in the chemical modification of nanocelluloses publication-title: Chem. Soc. Rev. doi: 10.1039/c3cs60204d – volume: 5 start-page: 1701219 year: 2018 ident: B48 article-title: Formation of polysaccharide membranes by splitting of evaporative air-LC interface publication-title: Adv. Mat. Interfaces doi: 10.1002/admi.201701219 – volume: 28 start-page: 909 year: 2014 ident: B68 article-title: Development of nanofibrous cellulose acetate/gelatin skin substitutes for variety wound treatment applications publication-title: J. Biomater. Appl. doi: 10.1177/0885328213486527 – volume: 5 start-page: 201 year: 2016 ident: B62 article-title: Micro/nanofiber-based scaffolds for soft tissue engineering applications: Potential and current challenges publication-title: Nanobiomaterials soft tissue Eng. doi: 10.1016/B978-0-323-42865-1.00008-8 – volume: 84 start-page: 975 year: 2011 ident: B5 article-title: Nanofibrillated cellulose from TEMPO-oxidized eucalyptus fibres: Effect of the carboxyl content publication-title: Carbohydr. Polym. doi: 10.1016/j.carbpol.2010.12.052 – volume: 132 start-page: 692 year: 2019 ident: B69 article-title: A facile construction of bacterial cellulose/ZnO nanocomposite films and their photocatalytic and antibacterial properties publication-title: Int. J. Biol. Macromol. doi: 10.1016/j.ijbiomac.2019.03.240 – volume: 23 start-page: 2291 ident: B65 article-title: Applications of bacterial cellulose in food, cosmetics and drug delivery publication-title: Cellulose doi: 10.1007/s10570-016-0986-y – volume: 8 start-page: 2149 year: 2007 ident: B2 article-title: Nonleaching antimicrobial films prepared from surface-modified microfibrillated cellulose publication-title: Biomacromolecules doi: 10.1021/bm070304e – volume: 20 start-page: 6948 year: 2010 ident: B58 article-title: Magnetic antimicrobial nanocomposite based on bacterial cellulose and silver nanoparticles publication-title: J. Mat. Chem. doi: 10.1039/c0jm00565g – volume: 95 start-page: 332 year: 2013 ident: B11 article-title: Improved process for the production of cellulose sulfate using sulfuric acid/ethanol solution publication-title: Carbohydr. Polym. doi: 10.1016/j.carbpol.2013.03.003 – volume: 16 start-page: 1341 year: 2015 ident: B25 article-title: Bacterial cellulose as a support for the growth of retinal pigment epithelium publication-title: Biomacromolecules doi: 10.1021/acs.biomac.5b00129 – volume: 2 start-page: 100067 year: 2021 ident: B57 article-title: Recent advances in polysaccharides based biomaterials for drug delivery and tissue engineering applications publication-title: Carbohydr. Polym. Technol. Appl. doi: 10.1016/j.carpta.2021.100067 – volume: 26 start-page: 1030 year: 2021 ident: B72 article-title: TEMPO-oxidized cellulose beads as potential pH-responsive carriers for site-specific drug delivery in the gastrointestinal tract publication-title: Molecules doi: 10.3390/molecules26041030 – volume: 4 start-page: 1626 year: 2015 ident: B7 article-title: Characterization and cytotoxic, genotoxic and mutagenic evaluations of bacterial cellulose membranes incorporated with ciprofloxacin: A potential material for use as therapeutic contact lens publication-title: World J. Pharm. Pharm. Sci. – volume: 344 start-page: 126203 year: 2022 ident: B53 article-title: Recent advances and sustainable development of biofuels production from lignocellulosic biomass publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2021.126203 – volume: 716 start-page: 137116 year: 2020 ident: B40 article-title: Algae as potential feedstock for the production of biofuels and value-added products: Opportunities and challenges publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2020.137116 – volume: 33 start-page: 2000717 year: 2021 ident: B74 article-title: Recent progress on cellulose-based ionic compounds for biomaterials publication-title: Adv. Mat. doi: 10.1002/adma.202000717 – volume: 49 start-page: 463 year: 2015 ident: B76 article-title: Incorporation of poly(ethylene glycol) grafted cellulose nanocrystals in poly(lactic acid) electrospun nanocomposite fibers as potential scaffolds for bone tissue engineering publication-title: Mater. Sci. Eng. C doi: 10.1016/j.msec.2015.01.024 – volume: 6 start-page: 22424 ident: B66 article-title: In situ synthesis of a bio-cellulose/titanium dioxide nanocomposite by using a cell-free system publication-title: RSC Adv. doi: 10.1039/c5ra26704h – volume: 12 start-page: 204173142110285 year: 2021 ident: B71 article-title: 3D bioprinting for skin tissue engineering: Current status and perspectives publication-title: J. Tissue Eng. doi: 10.1177/20417314211028574 – volume: 116 start-page: 111152 year: 2020 ident: B35 article-title: Antimicrobial activities of bacterial cellulose - silver montmorillonite nanocomposites for wound healing publication-title: Mater. Sci. Eng. C doi: 10.1016/j.msec.2020.111152 – volume: 7 start-page: 24715 year: 2015 ident: B13 article-title: Cellulose nanocrystals-bioactive glass hybrid coating as bone substitutes by electrophoretic Co-deposition: In situ control of mineralization of bioactive glass and enhancement of osteoblastic performance publication-title: ACS Appl. Mat. Interfaces doi: 10.1021/acsami.5b07294 – volume: 27 start-page: 519 year: 2006 ident: B63 article-title: Matrix inclusion within synthetic hydrogel guidance channels improves specific supraspinal and local axonal regeneration after complete spinal cord transection publication-title: Biomaterials doi: 10.1016/j.biomaterials.2005.07.025 – volume: 91 start-page: 711 year: 2013 ident: B56 article-title: Thermal and mechanical properties of bio-nanocomposites reinforced by Luffa cylindrica cellulose nanocrystals publication-title: Carbohydr. Polym. doi: 10.1016/j.carbpol.2012.08.057 – volume: 20 start-page: 1052 year: 2012 ident: B22 article-title: Dispersion and reinforcing potential of carboxymethylated nanofibrillated cellulose powders modified with 1-hexanol in extruded poly(lactic acid) (PLA) composites publication-title: J. Polym. Environ. doi: 10.1007/s10924-012-0508-4 – volume: 3 start-page: 97 year: 1982 ident: B4 article-title: p-Amino salicylic acid — oxidized cellulose system: a model for long term drug delivery publication-title: Biomaterials doi: 10.1016/0142-9612(82)90041-2 – volume: 275 start-page: 118668 year: 2022 ident: B44 article-title: Cellulose nanocrystals: Fundamentals and biomedical applications publication-title: Carbohydr. Polym. doi: 10.1016/j.carbpol.2021.118668 – volume: 132 start-page: 19 year: 2015 ident: B37 article-title: Recent advances in nanocellulose for biomedical applications publication-title: J. Appl. Polym. Sci. doi: 10.1002/app.41719 – volume: 99 start-page: 47 year: 2014 ident: B52 article-title: PVA bio-nanocomposites: A new take-off using cellulose nanocrystals and plga nanoparticles publication-title: Carbohydr. Polym. doi: 10.1016/j.carbpol.2013.08.061 – volume: 99 start-page: 483 year: 2014 ident: B20 article-title: Comparative evaluation of chitosan, cellulose acetate, and polyethersulfone nanofiber scaffolds for neural differentiation publication-title: Carbohydr. Polym. doi: 10.1016/j.carbpol.2013.08.050 – volume: 21 start-page: 101332 year: 2019 ident: B3 article-title: Interaction of silver sulfadiazine with bacterial cellulose via ex-situ modification method as an alternative diabetic wound healing publication-title: Biocatal. Agric. Biotechnol. doi: 10.1016/j.bcab.2019.101332 – volume: 7 start-page: 45 year: 2019 ident: B34 article-title: Cellulose biomaterials for tissue engineering publication-title: Front. Bioeng. Biotechnol. doi: 10.3389/fbioe.2019.00045 – start-page: 215 volume-title: Materials for biomedical engineering year: 2019 ident: B1 article-title: Chapter 6 - surface-modified cellulose in biomedical engineering doi: 10.1016/B978-0-12-818431-8.00007-6 – volume: 172 start-page: 1 year: 2013 ident: B70 article-title: Bioengineered sequential growth factor delivery stimulates brain tissue regeneration after stroke publication-title: J. Control. Release doi: 10.1016/j.jconrel.2013.07.032 – volume: 116 start-page: 9305 year: 2016 ident: B78 article-title: Wood-derived materials for green electronics, biological devices, and energy applications publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.6b00225 – volume: 244 start-page: 292 year: 2016 ident: B30 article-title: Nanofibrillar cellulose wound dressing in skin graft donor site treatment publication-title: J. Control. Release doi: 10.1016/j.jconrel.2016.07.053 – volume: 7 start-page: 1 year: 2015 ident: B51 article-title: 3D bioprinting of carboxymethylated-periodate oxidized nanocellulose constructs for wound dressing applications publication-title: Biomed Res. Int. doi: 10.1155/2015/925757 – volume: 151 start-page: 725 year: 2016 ident: B73 article-title: Isolation and characterization of cellulose nanofibers from bamboo using microwave liquefaction combined with chemical treatment and ultrasonication publication-title: Carbohydr. Polym. doi: 10.1016/j.carbpol.2016.06.011 – volume: 43 start-page: 2645 year: 2002 ident: B26 article-title: Stable suspensions of partially silylated cellulose whiskers dispersed in organic solvents publication-title: Polymer doi: 10.1016/s0032-3861(02)00051-4 – volume: 106 start-page: 264 year: 2014 ident: B79 article-title: Bacterial cellulose membranes as transdermal delivery systems for diclofenac: In vitro dissolution and permeation studies publication-title: Carbohydr. Polym. doi: 10.1016/j.carbpol.2014.02.014 – volume: 59 start-page: 102 year: 2005 ident: B9 article-title: Cellulose microfibrils: A novel method of preparation using high shear refining and cryocrushing publication-title: Holzforschung doi: 10.1515/hf.2005.016 – volume: 202 start-page: 122620 year: 2020 ident: B18 article-title: Functionalization of cellulose-based nanocomposite hydrogel films with zinc oxide complex and grapefruit seed extract for potential applications in treating chronic wounds publication-title: Polymer doi: 10.1016/j.polymer.2020.122620 – volume: 15 start-page: 655 year: 1981 ident: B55 article-title: AN insulin delivery system from oxidized cellulose publication-title: J. Biomed. Mat. Res. doi: 10.1002/jbm.820150504 – volume: 3 start-page: 8537 year: 2015 ident: B59 article-title: Potential of PVA-doped bacterial nano-cellulose tubular composites for artificial blood vessels publication-title: J. Mat. Chem. B doi: 10.1039/c5tb01144b – volume: 50 start-page: 5438 year: 2011 ident: B38 article-title: Nanocelluloses: A new family of nature-based materials publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201001273 – volume: 11 start-page: 34 year: 2018 ident: B61 article-title: Bacterial cellulose-based scaffold materials for bone tissue engineering publication-title: Appl. Mater. Today doi: 10.1016/j.apmt.2018.01.004 – volume: 151 start-page: 295 year: 2016 ident: B32 article-title: Isolation and prebiotic activity of water-soluble polysaccharides fractions from the bamboo shoots (Phyllostachys praecox) publication-title: Carbohydr. Polym. doi: 10.1016/j.carbpol.2016.05.072 – volume: 59 start-page: 302 year: 2014 ident: B42 article-title: Nanocellulose in biomedicine: Current status and future prospect publication-title: Eur. Polym. J. doi: 10.1016/j.eurpolymj.2014.07.025 – volume: 2013 start-page: 38 year: 2013 ident: B21 article-title: Hydrogel scaffolds for tissue engineering: Progress and challenges publication-title: Glob. Cardiol. Sci. Pract. doi: 10.5339/gcsp.2013.38 – volume: 6 start-page: 1125 year: 2010 ident: B24 article-title: Real-time measurements of coagulation on bacterial cellulose and conventional vascular graft materials publication-title: Acta Biomater. doi: 10.1016/j.actbio.2009.09.019 – volume: 85 start-page: 548 year: 2011 ident: B15 article-title: Characterization and biocompatibility of bacterial cellulose/alginate composite sponges with human keratinocytes and gingival fibroblasts publication-title: Carbohydr. Polym. doi: 10.1016/j.carbpol.2011.03.011 – volume: 104 start-page: 97 year: 2017 ident: B50 article-title: Bacterial cellulose in biomedical applications: A review publication-title: Int. J. Biol. Macromol. doi: 10.1016/j.ijbiomac.2017.05.171 – volume: 27 start-page: 1438 year: 2020 ident: B27 article-title: Engineered biomaterial strategies for controlling growth factors in tissue engineering publication-title: Drug Deliv. doi: 10.1080/10717544.2020.1831104 – volume: 30 start-page: 214 year: 2010 ident: B80 article-title: Preparation and in vitro characterization of BC/PVA hydrogel composite for its potential use as artificial cornea biomaterial publication-title: Mater. Sci. Eng. C doi: 10.1016/j.msec.2009.10.006 – volume: 24 start-page: 799 year: 2014 ident: B10 article-title: Biomimetic growth of bone-like apatite via simulated body fluid on hydroxyethyl cellulose/polyvinyl alcohol electrospun nanofibers publication-title: Biomed. Mat. Eng. doi: 10.3233/bme-130871 – volume: 25 start-page: 2216 year: 2008 ident: B33 article-title: Click chemistry, a powerful tool for pharmaceutical sciences publication-title: Pharm. Res. doi: 10.1007/s11095-008-9616-1 – volume: 3 start-page: 3714 year: 2010 ident: B29 article-title: Electrospun biocomposite polycaprolactone/collagen tubes as scaffolds for neural stem cell differentiation publication-title: Materials doi: 10.3390/ma3063714 – volume: 61 start-page: 101 year: 2014 ident: B45 article-title: A novel biomaterial: Bacterial cellulose and its new era applications publication-title: Biotechnol. Appl. Biochem. doi: 10.1002/bab.1148 – volume: 18 start-page: 433 year: 2011 ident: B14 article-title: Isolation and characterization of cellulose nanofibers from four plant cellulose fibers using a chemical-ultrasonic process publication-title: Cellulose doi: 10.1007/s10570-011-9497-z – volume: 86 start-page: 599 year: 2016 ident: B16 article-title: Hydrophilicity improvement of mercerized bacterial cellulose films by polyethylene glycol graft publication-title: Int. J. Biol. Macromol. doi: 10.1016/j.ijbiomac.2016.01.115 – volume: 40 start-page: 3941 year: 2011 ident: B47 article-title: Cellulose nanomaterials review: Structure, properties and nanocomposites publication-title: Chem. Soc. Rev. doi: 10.1039/c0cs00108b – volume: 13 start-page: 3521 year: 2020 ident: B19 article-title: Biocompatible pure ZnO nanoparticles-3D bacterial cellulose biointerfaces with antibacterial properties publication-title: Arabian J. Chem. doi: 10.1016/j.arabjc.2018.12.003 – volume: 288 start-page: 132529 year: 2022 ident: B60 article-title: The latest achievements in plant cellulose-based biomaterials for tissue engineering focusing on skin repair publication-title: Chemosphere doi: 10.1016/j.chemosphere.2021.132529 – volume: 9 start-page: 6116 year: 2013 ident: B75 article-title: Applicability of bacterial cellulose as an alternative to paper points in endodontic treatment publication-title: Acta Biomater. doi: 10.1016/j.actbio.2012.12.022 – volume: 12 start-page: 3528 year: 2011 ident: B23 article-title: Photobactericidal porphyrin-cellulose nanocrystals: Synthesis, characterization, and antimicrobial properties publication-title: Biomacromolecules doi: 10.1021/bm200718s – volume: 4 start-page: 2238 year: 2008 ident: B31 article-title: Cationic surface functionalization of cellulose nanocrystals publication-title: Soft Matter doi: 10.1039/b806789a – volume: 8 start-page: 557885 year: 2020 ident: B49 article-title: Chemical modification of bacterial cellulose for the development of an antibacterial wound dressing publication-title: Front. Bioeng. Biotechnol. doi: 10.3389/fbioe.2020.557885 – volume: 8 start-page: 25 year: 2021 ident: B67 article-title: Recovery and evaluation of cellulose from agroindustrial residues of corn, grape, pomegranate, strawberry-tree fruit and fava publication-title: Bioresour. Bioprocess. doi: 10.1186/s40643-021-00377-3 – volume: 10 start-page: 65 year: 2020 ident: B46 article-title: Cellulose nanofibers and other biopolymers for biomedical applications. A review publication-title: Appl. Sci. (Basel). doi: 10.3390/app10010065 – start-page: 1556 year: 2012 ident: B43 article-title: Antimicrobial electrospun nanofibers of cellulose acetate and polyester urethane composite for wound dressing publication-title: J. Biomed. Mat. Res. doi: 10.1002/jbm.b.32724 – volume: 11 start-page: 3 year: 2019 ident: B12 article-title: An injectable self-healing coordinative hydrogel with antibacterial and angiogenic properties for diabetic skin wound repair publication-title: NPG Asia Mat. doi: 10.1038/s41427-018-0103-9 – volume: 3 start-page: 71 year: 2011 ident: B36 article-title: TEMPO-oxidized cellulose nanofibers publication-title: Nanoscale doi: 10.1039/c0nr00583e – volume: 58 start-page: 14 year: 2016 ident: B41 article-title: Enhanced growth of neural networks on conductive cellulose-derived nanofibrous scaffolds publication-title: Mater. Sci. Eng. C doi: 10.1016/j.msec.2015.08.012 – volume: 5 start-page: 3847 year: 2013 ident: B77 article-title: Electrospun bio-nanocomposite scaffolds for bone tissue engineering by cellulose nanocrystals reinforcing maleic anhydride grafted PLA publication-title: ACS Appl. Mat. Interfaces doi: 10.1021/am4005072 – volume-title: Bioethanol and natural resources: Substrates, chemistry and engineered systems year: 2017 ident: B8 doi: 10.1201/9781315154299 – volume: 12 start-page: 348 year: 2011 ident: B64 article-title: Nanofibrillation of wood pulp using a high-speed blender publication-title: Biomacromolecules doi: 10.1021/bm101103p – volume: 26 start-page: 9 year: 2015 ident: B17 article-title: Design and construction of a silver(I)-loaded cellulose-based wound dressing: Trackable and sustained release of silver for controlled therapeutic delivery to wound sites publication-title: J. Mater. Science-Materials Med. doi: 10.1007/s10856-015-5577-1 – volume: 6 start-page: 86 year: 2018 ident: B54 article-title: Skin tissue substitutes and biomaterial risk assessment and testing publication-title: Front. Bioeng. Biotechnol. doi: 10.3389/fbioe.2018.00086 – volume: 12 start-page: 716 year: 2011 ident: B39 article-title: Nanocellulose" as a single nanofiber prepared from pellicle secreted by gluconacetobacter xylinus using aqueous counter collision publication-title: Biomacromolecules doi: 10.1021/bm1013469 |
SSID | ssj0001257582 |
Score | 2.3808322 |
SecondaryResourceType | review_article |
Snippet | Cellulose is one of the most abundant organic compounds in nature and is available from diverse sources. Cellulose features tunable properties, making it a... |
SourceID | doaj pubmedcentral proquest pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 993711 |
SubjectTerms | Bioengineering and Biotechnology biomaterial biomedicine cellulose hydrogel nanocellulose |
SummonAdditionalLinks | – databaseName: Open Access Journals (DOAJ) dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA7iSQ_i2_qigiehuknzaI4qigp6UvAW8iouSCvu7v93ptlduiJ6kdIe2oSGmUnmmyTzhZBT5agOStMigHMrOFWucDq6Am5A41x71VEKPT7Juxf-8Cpee0d94Z6wRA-cBHfBFKtkUCJoy7kOorKUWgtdGLqaDzbi6As-rxdMpdkVgCEVS8uYEIXpi9oNW6TFZOwcXTKlC46o4-v_CWR-3yvZcz6362Rtihrzy9TaDbIUm02y2uMS3CL3j23AbT9pBi5v6xzn5Cfv7SgW6KpCjpn2dpwsLgesmqfUe9RS3l_H3iYvtzfP13fF9JyEwnMpxkVZ1UxGp-q6lEEqWcuaKetFRT3zAvCS9K6iMnIJ6sKH9KWrRERsEkrHyh2y3LRN3CM5h8oQYAgbQw29e-Akp94FJ_EKQmRkMBOa8VMScTzL4t1AMIFyNp2cDcrZJDln5Gxe5SMxaPxW-Ao1MS-I5NfdCzAJMzUJ85dJZORkpkcDnQWlbZvYTkYG85A4DDmyzMhu0uv8V6UEbAOAJyNqQeMLbVn80gzfOkJuCBm10HT_Pxp_QFZQHl26Y3lIlsefk3gEuGfsjjsT_wJ66gHs priority: 102 providerName: Directory of Open Access Journals |
Title | Modifications of cellulose-based biomaterials for biomedical applications |
URI | https://www.ncbi.nlm.nih.gov/pubmed/36406218 https://www.proquest.com/docview/2738496363 https://pubmed.ncbi.nlm.nih.gov/PMC9669591 https://doaj.org/article/27286d75d9a449d58a11aa762219cdae |
Volume | 10 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1La9wwEBYhvaSH0jRJ6zYJDvRUcBrJeliHEpLSkAa2py7kJvRyG1jsdh-Q_vvMSN5ltyyFYmzwQ7Y8o9F8I2lmCHmvHNVBaVoFUG4Vp8pVTkdXwQ5onGuvUkih0Td5O-Z39-J-hyzTWw0EnG017TCf1Hg6OX_8_ecSBP4TWpygbz-27qHHiJeMnaO2RU_fZ6CYFCY0GA1oPw-5ADZJ6aMY01ixRuR5zu1v2dBUKaD_NhT692LKNe1085K8GGBleZXbwT7Zid0r8nwt2OAB-TrqA64LykN0Zd-WOGi_mPSzWKEuCyW64tt5bpIlgNky--YjG8v1ie5DMr758v3zbTUkUqg8l2Je1U3LZHSqbWsZpJKtbJmyXjTUMy8AUEnvGiojl8BPPEhfu0ZEBC-hdqw-Irtd38U3pORQGCwQYWNoQfwvnOTUu-AkbkGIglwsiWb8EGUck11MDFgbSGeT6GyQzibTuSAfVkV-5RAb_3r4GjmxehCjY6cL_fSHGYTNMMUaGZQI2nKug2gspdZCtw_dsw82FuRsyUcD0oTUtl3sFzODjkoc-iRZF-R15uvqU7UE8AOIqCBqg-Mbddm80z38TBG7wabUQtO3__On78geniW_x_qY7M6ni3gCAGjuTtPAwWlq3E8AfwSM |
linkProvider | Scholars Portal |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Modifications+of+cellulose-based+biomaterials+for+biomedical+applications&rft.jtitle=Frontiers+in+bioengineering+and+biotechnology&rft.au=Fatema%2C+Nour&rft.au=Ceballos%2C+Ruben+Michael&rft.au=Fan%2C+Chenguang&rft.date=2022-11-03&rft.issn=2296-4185&rft.eissn=2296-4185&rft.volume=10&rft_id=info:doi/10.3389%2Ffbioe.2022.993711&rft.externalDBID=n%2Fa&rft.externalDocID=10_3389_fbioe_2022_993711 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2296-4185&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2296-4185&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2296-4185&client=summon |