Conserved Dynamic Mechanism of Allosteric Response to L-arg in Divergent Bacterial Arginine Repressors

Hexameric arginine repressor, ArgR, is the feedback regulator of bacterial L-arginine regulons, and sensor of L-arg that controls transcription of genes for its synthesis and catabolism. Although ArgR function, as well as its secondary, tertiary, and quaternary structures, is essentially the same in...

Full description

Saved in:
Bibliographic Details
Published inMolecules (Basel, Switzerland) Vol. 25; no. 9; p. 2247
Main Authors Pandey, Saurabh Kumar, Melichercik, Milan, Řeha, David, Ettrich, Rüdiger H., Carey, Jannette
Format Journal Article
LanguageEnglish
Published Switzerland MDPI 10.05.2020
MDPI AG
Subjects
Online AccessGet full text
ISSN1420-3049
1420-3049
DOI10.3390/molecules25092247

Cover

Loading…
Abstract Hexameric arginine repressor, ArgR, is the feedback regulator of bacterial L-arginine regulons, and sensor of L-arg that controls transcription of genes for its synthesis and catabolism. Although ArgR function, as well as its secondary, tertiary, and quaternary structures, is essentially the same in E. coli and B. subtilis, the two proteins differ significantly in sequence, including residues implicated in the response to L-arg. Molecular dynamics simulations are used here to evaluate the behavior of intact B. subtilis ArgR with and without L-arg, and are compared with prior MD results for a domain fragment of E. coli ArgR. Relative to its crystal structure, B. subtilis ArgR in absence of L-arg undergoes a large-scale rotational shift of its trimeric subassemblies that is very similar to that observed in the E. coli protein, but the residues driving rotation have distinct secondary and tertiary structural locations, and a key residue that drives rotation in E. coli is missing in B. subtilis. The similarity of trimer rotation despite different driving residues suggests that a rotational shift between trimers is integral to ArgR function. This conclusion is supported by phylogenetic analysis of distant ArgR homologs reported here that indicates at least three major groups characterized by distinct sequence motifs but predicted to undergo a common rotational transition. The dynamic consequences of L-arg binding for transcriptional activation of intact ArgR are evaluated here for the first time in two-microsecond simulations of B. subtilis ArgR. L-arg binding to intact B. subtilis ArgR causes a significant further shift in the angle of rotation between trimers that causes the N-terminal DNA-binding domains lose their interactions with the C-terminal domains, and is likely the first step toward adopting DNA-binding-competent conformations. The results aid interpretation of crystal structures of ArgR and ArgR-DNA complexes.
AbstractList Hexameric arginine repressor, ArgR, is the feedback regulator of bacterial L-arginine regulons, and sensor of L-arg that controls transcription of genes for its synthesis and catabolism. Although ArgR function, as well as its secondary, tertiary, and quaternary structures, is essentially the same in and , the two proteins differ significantly in sequence, including residues implicated in the response to L-arg. Molecular dynamics simulations are used here to evaluate the behavior of intact ArgR with and without L-arg, and are compared with prior MD results for a domain fragment of ArgR. Relative to its crystal structure, ArgR in absence of L-arg undergoes a large-scale rotational shift of its trimeric subassemblies that is very similar to that observed in the protein, but the residues driving rotation have distinct secondary and tertiary structural locations, and a key residue that drives rotation in is missing in . The similarity of trimer rotation despite different driving residues suggests that a rotational shift between trimers is integral to ArgR function. This conclusion is supported by phylogenetic analysis of distant ArgR homologs reported here that indicates at least three major groups characterized by distinct sequence motifs but predicted to undergo a common rotational transition. The dynamic consequences of L-arg binding for transcriptional activation of intact ArgR are evaluated here for the first time in two-microsecond simulations of ArgR. L-arg binding to intact ArgR causes a significant further shift in the angle of rotation between trimers that causes the N-terminal DNA-binding domains lose their interactions with the C-terminal domains, and is likely the first step toward adopting DNA-binding-competent conformations. The results aid interpretation of crystal structures of ArgR and ArgR-DNA complexes.
Hexameric arginine repressor, ArgR, is the feedback regulator of bacterial L-arginine regulons, and sensor of L-arg that controls transcription of genes for its synthesis and catabolism. Although ArgR function, as well as its secondary, tertiary, and quaternary structures, is essentially the same in E. coli and B. subtilis, the two proteins differ significantly in sequence, including residues implicated in the response to L-arg. Molecular dynamics simulations are used here to evaluate the behavior of intact B. subtilis ArgR with and without L-arg, and are compared with prior MD results for a domain fragment of E. coli ArgR. Relative to its crystal structure, B. subtilis ArgR in absence of L-arg undergoes a large-scale rotational shift of its trimeric subassemblies that is very similar to that observed in the E. coli protein, but the residues driving rotation have distinct secondary and tertiary structural locations, and a key residue that drives rotation in E. coli is missing in B. subtilis. The similarity of trimer rotation despite different driving residues suggests that a rotational shift between trimers is integral to ArgR function. This conclusion is supported by phylogenetic analysis of distant ArgR homologs reported here that indicates at least three major groups characterized by distinct sequence motifs but predicted to undergo a common rotational transition. The dynamic consequences of L-arg binding for transcriptional activation of intact ArgR are evaluated here for the first time in two-microsecond simulations of B. subtilis ArgR. L-arg binding to intact B. subtilis ArgR causes a significant further shift in the angle of rotation between trimers that causes the N-terminal DNA-binding domains lose their interactions with the C-terminal domains, and is likely the first step toward adopting DNA-binding-competent conformations. The results aid interpretation of crystal structures of ArgR and ArgR-DNA complexes.Hexameric arginine repressor, ArgR, is the feedback regulator of bacterial L-arginine regulons, and sensor of L-arg that controls transcription of genes for its synthesis and catabolism. Although ArgR function, as well as its secondary, tertiary, and quaternary structures, is essentially the same in E. coli and B. subtilis, the two proteins differ significantly in sequence, including residues implicated in the response to L-arg. Molecular dynamics simulations are used here to evaluate the behavior of intact B. subtilis ArgR with and without L-arg, and are compared with prior MD results for a domain fragment of E. coli ArgR. Relative to its crystal structure, B. subtilis ArgR in absence of L-arg undergoes a large-scale rotational shift of its trimeric subassemblies that is very similar to that observed in the E. coli protein, but the residues driving rotation have distinct secondary and tertiary structural locations, and a key residue that drives rotation in E. coli is missing in B. subtilis. The similarity of trimer rotation despite different driving residues suggests that a rotational shift between trimers is integral to ArgR function. This conclusion is supported by phylogenetic analysis of distant ArgR homologs reported here that indicates at least three major groups characterized by distinct sequence motifs but predicted to undergo a common rotational transition. The dynamic consequences of L-arg binding for transcriptional activation of intact ArgR are evaluated here for the first time in two-microsecond simulations of B. subtilis ArgR. L-arg binding to intact B. subtilis ArgR causes a significant further shift in the angle of rotation between trimers that causes the N-terminal DNA-binding domains lose their interactions with the C-terminal domains, and is likely the first step toward adopting DNA-binding-competent conformations. The results aid interpretation of crystal structures of ArgR and ArgR-DNA complexes.
Hexameric arginine repressor, ArgR, is the feedback regulator of bacterial L-arginine regulons, and sensor of L-arg that controls transcription of genes for its synthesis and catabolism. Although ArgR function, as well as its secondary, tertiary, and quaternary structures, is essentially the same in E. coli and B. subtilis, the two proteins differ significantly in sequence, including residues implicated in the response to L-arg. Molecular dynamics simulations are used here to evaluate the behavior of intact B. subtilis ArgR with and without L-arg, and are compared with prior MD results for a domain fragment of E. coli ArgR. Relative to its crystal structure, B. subtilis ArgR in absence of L-arg undergoes a large-scale rotational shift of its trimeric subassemblies that is very similar to that observed in the E. coli protein, but the residues driving rotation have distinct secondary and tertiary structural locations, and a key residue that drives rotation in E. coli is missing in B. subtilis. The similarity of trimer rotation despite different driving residues suggests that a rotational shift between trimers is integral to ArgR function. This conclusion is supported by phylogenetic analysis of distant ArgR homologs reported here that indicates at least three major groups characterized by distinct sequence motifs but predicted to undergo a common rotational transition. The dynamic consequences of L-arg binding for transcriptional activation of intact ArgR are evaluated here for the first time in two-microsecond simulations of B. subtilis ArgR. L-arg binding to intact B. subtilis ArgR causes a significant further shift in the angle of rotation between trimers that causes the N-terminal DNA-binding domains lose their interactions with the C-terminal domains, and is likely the first step toward adopting DNA-binding-competent conformations. The results aid interpretation of crystal structures of ArgR and ArgR-DNA complexes.
Hexameric arginine repressor, ArgR, is the feedback regulator of bacterial L-arginine regulons, and sensor of L-arg that controls transcription of genes for its synthesis and catabolism. Although ArgR function, as well as its secondary, tertiary, and quaternary structures, is essentially the same in E. coli and B. subtilis , the two proteins differ significantly in sequence, including residues implicated in the response to L-arg. Molecular dynamics simulations are used here to evaluate the behavior of intact B. subtilis ArgR with and without L-arg, and are compared with prior MD results for a domain fragment of E. coli ArgR. Relative to its crystal structure, B. subtilis ArgR in absence of L-arg undergoes a large-scale rotational shift of its trimeric subassemblies that is very similar to that observed in the E. coli protein, but the residues driving rotation have distinct secondary and tertiary structural locations, and a key residue that drives rotation in E. coli is missing in B. subtilis . The similarity of trimer rotation despite different driving residues suggests that a rotational shift between trimers is integral to ArgR function. This conclusion is supported by phylogenetic analysis of distant ArgR homologs reported here that indicates at least three major groups characterized by distinct sequence motifs but predicted to undergo a common rotational transition. The dynamic consequences of L-arg binding for transcriptional activation of intact ArgR are evaluated here for the first time in two-microsecond simulations of B. subtilis ArgR. L-arg binding to intact B. subtilis ArgR causes a significant further shift in the angle of rotation between trimers that causes the N-terminal DNA-binding domains lose their interactions with the C-terminal domains, and is likely the first step toward adopting DNA-binding-competent conformations. The results aid interpretation of crystal structures of ArgR and ArgR-DNA complexes.
Author Řeha, David
Pandey, Saurabh Kumar
Ettrich, Rüdiger H.
Carey, Jannette
Melichercik, Milan
AuthorAffiliation 3 Faculty of Sciences, University of South Bohemia, 37005 Ceske Budejovice, Czechia
4 College of Biomedical Sciences, Larkin University, Miami, FL 33169, USA
5 Department of Cellular Biology & Pharmacology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA
2 Department of Nuclear Physics and Biophysics, Faculty of Mathematics, Physics, and Informatics, Comenius University in Bratislava, 84248 Bratislava, Slovakia
6 Department of Chemistry, Princeton University, Princeton, NJ 08544, USA
1 Center for Nanobiology and Structural Biology, Institute of Microbiology, Czech Academy of Sciences, 37333 Nove Hrady, Czechia; pandey@nh.cas.cz (S.K.P.); mmelichercik@fmph.uniba.sk (M.M.); reha@nh.cas.cz (D.Ř.)
AuthorAffiliation_xml – name: 3 Faculty of Sciences, University of South Bohemia, 37005 Ceske Budejovice, Czechia
– name: 6 Department of Chemistry, Princeton University, Princeton, NJ 08544, USA
– name: 4 College of Biomedical Sciences, Larkin University, Miami, FL 33169, USA
– name: 5 Department of Cellular Biology & Pharmacology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA
– name: 2 Department of Nuclear Physics and Biophysics, Faculty of Mathematics, Physics, and Informatics, Comenius University in Bratislava, 84248 Bratislava, Slovakia
– name: 1 Center for Nanobiology and Structural Biology, Institute of Microbiology, Czech Academy of Sciences, 37333 Nove Hrady, Czechia; pandey@nh.cas.cz (S.K.P.); mmelichercik@fmph.uniba.sk (M.M.); reha@nh.cas.cz (D.Ř.)
Author_xml – sequence: 1
  givenname: Saurabh Kumar
  surname: Pandey
  fullname: Pandey, Saurabh Kumar
– sequence: 2
  givenname: Milan
  surname: Melichercik
  fullname: Melichercik, Milan
– sequence: 3
  givenname: David
  orcidid: 0000-0002-9500-0569
  surname: Řeha
  fullname: Řeha, David
– sequence: 4
  givenname: Rüdiger H.
  orcidid: 0000-0001-8624-7706
  surname: Ettrich
  fullname: Ettrich, Rüdiger H.
– sequence: 5
  givenname: Jannette
  surname: Carey
  fullname: Carey, Jannette
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32397647$$D View this record in MEDLINE/PubMed
BookMark eNp1kluLFDEQhYOsuBf9Ab5IHn1pza2TzoswznpZGBFEn0Mmqe7Nkk7GpGdg_73dzq7sKj5VUTnnO4Sqc3SScgKEXlLyhnNN3o45gttHqKwlmjGhnqAzKhhpOBH65EF_is5rvSGEUUHbZ-iUM66VFOoM9eucKpQDeHx5m-wYHP4C7tqmUEece7yKMdcJyjz_BnW3iPGU8aaxZcAh4ctwgDJAmvB76xadjXhVhpBCgtmxK1BrLvU5etrbWOHFXb1APz5--L7-3Gy-frparzaNE7KdGi575juntpxqcKxnDiTRXSutpKRlc8tUq4FoTR3xkvYUKKNbyZRXW-89v0BXR67P9sbsShhtuTXZBvN7kMtgbJmCi2AUF0JRyzrPQHgQnZOSQKcdFyBtt7DeHVm7_XYE7-ZPFhsfQR-_pHBthnwwiolOtXIGvL4DlPxzD3UyY6gOYrQJ8r4aJggTgkqqZ-mrh1l_Qu4XNQvUUeBKrrVAb1yY7BTyEh2iocQsJ2H-OYnZSf9y3sP_7_kF7ku9Og
CitedBy_id crossref_primary_10_1007_s00253_022_12109_4
crossref_primary_10_2174_1573394719666230911113126
crossref_primary_10_3389_frbis_2024_1359979
crossref_primary_10_3390_ijms23010562
Cites_doi 10.1107/S1744309107049391
10.1016/0009-2614(93)89366-P
10.1006/jmbi.1995.0607
10.1016/j.jmb.2004.11.031
10.1063/1.470117
10.1002/prot.10104
10.1002/prot.21123
10.1107/S0907444901021692
10.1038/nsb1097-819
10.1093/protein/7.10.1239
10.1021/ma50003a019
10.1038/335321a0
10.1063/1.1401821
10.1002/prot.22711
10.1111/j.1365-2958.1989.tb00099.x
10.1128/mr.58.4.631-640.1994
10.1007/978-3-319-15976-8_1
10.1046/j.1365-2958.1997.4301791.x
10.1002/1096-987X(200009)21:12<1049::AID-JCC3>3.0.CO;2-F
10.1038/366178a0
10.1016/S0022-2836(64)80200-X
10.1046/j.1365-2958.1997.4781845.x
10.1007/s00894-014-2478-z
10.1111/j.1365-2958.1994.tb00454.x
10.1016/0378-1119(92)90485-8
10.1007/s00894-014-2330-5
10.1046/j.1365-2958.1997.5441907.x
10.1002/(SICI)1097-0282(1997)44:2<181::AID-BIP5>3.0.CO;2-R
10.1016/j.jmb.2010.03.065
10.1016/j.jmb.2009.02.053
10.1016/j.softx.2015.06.001
10.1002/0471250953.bi0507s24
10.1038/8229
10.1107/S0907444908021513
10.1093/molbev/msw046
10.1038/msb.2011.75
10.1002/prot.20921
10.1063/1.2408420
10.1063/1.448118
10.1371/journal.pcbi.1000801
10.1006/jmbi.2001.4941
10.1006/jmbi.1999.2790
10.1063/1.481505
10.1006/jmbi.1996.0093
10.1016/0263-7855(96)00018-5
10.1021/j100142a004
ContentType Journal Article
Copyright 2020 by the authors. 2020
Copyright_xml – notice: 2020 by the authors. 2020
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOA
DOI 10.3390/molecules25092247
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic
CrossRef


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1420-3049
ExternalDocumentID oai_doaj_org_article_734471a28d2e4de48c660e89c34e6a8d
PMC7248756
32397647
10_3390_molecules25092247
Genre Journal Article
GrantInformation_xml – fundername: Agentúra na Podporu Výskumu a Vývoja
  grantid: APVV-16-0600
– fundername: National Science Foundation
  grantid: DBI16-59726
– fundername: Grantová Agentura České Republiky
  grantid: 13-21053S
– fundername: Ministerstvo Školství, Mládeže a Tělovýchovy
  grantid: LM2010005
– fundername: Ministerstvo Školství, Mládeže a Tělovýchovy
  grantid: LM2015055
– fundername: MoA between the Institute of Microbiology, Czech Academy of Sciences, and the College of Biomedical Sciences, Larkin University.
  grantid: 2018
– fundername: National Science Foundation
  grantid: DBI13-58737
GroupedDBID ---
0R~
123
2WC
53G
5VS
7X7
88E
8FE
8FG
8FH
8FI
8FJ
A8Z
AADQD
AAFWJ
AAHBH
AAYXX
ABDBF
ABUWG
ACGFO
ACIWK
ACPRK
ACUHS
AEGXH
AENEX
AFKRA
AFPKN
AFRAH
AFZYC
AIAGR
ALIPV
ALMA_UNASSIGNED_HOLDINGS
BENPR
BPHCQ
BVXVI
CCPQU
CITATION
CS3
D1I
DIK
DU5
E3Z
EBD
EMOBN
ESX
FYUFA
GROUPED_DOAJ
GX1
HH5
HMCUK
HYE
HZ~
I09
IHR
KQ8
LK8
M1P
MODMG
O-U
O9-
OK1
P2P
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
RPM
SV3
TR2
TUS
UKHRP
~8M
CGR
CUY
CVF
ECM
EIF
NPM
PJZUB
PPXIY
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c465t-36f2d8c7b319ec2f2ce609856a610520982759e0991c0d61f1e121b627d7bddd3
IEDL.DBID DOA
ISSN 1420-3049
IngestDate Wed Aug 27 01:06:39 EDT 2025
Thu Aug 21 18:30:45 EDT 2025
Fri Jul 11 12:12:11 EDT 2025
Mon Jul 21 05:48:49 EDT 2025
Tue Jul 01 01:16:45 EDT 2025
Thu Apr 24 22:57:55 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 9
Keywords salt bridges
entropy
global motion
molecular evolution
ligand binding
Language English
License https://creativecommons.org/licenses/by/4.0
Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c465t-36f2d8c7b319ec2f2ce609856a610520982759e0991c0d61f1e121b627d7bddd3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
These authors contributed equally to this work.
ORCID 0000-0001-8624-7706
0000-0002-9500-0569
OpenAccessLink https://doaj.org/article/734471a28d2e4de48c660e89c34e6a8d
PMID 32397647
PQID 2402441619
PQPubID 23479
ParticipantIDs doaj_primary_oai_doaj_org_article_734471a28d2e4de48c660e89c34e6a8d
pubmedcentral_primary_oai_pubmedcentral_nih_gov_7248756
proquest_miscellaneous_2402441619
pubmed_primary_32397647
crossref_citationtrail_10_3390_molecules25092247
crossref_primary_10_3390_molecules25092247
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20200510
PublicationDateYYYYMMDD 2020-05-10
PublicationDate_xml – month: 5
  year: 2020
  text: 20200510
  day: 10
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
PublicationTitle Molecules (Basel, Switzerland)
PublicationTitleAlternate Molecules
PublicationYear 2020
Publisher MDPI
MDPI AG
Publisher_xml – name: MDPI
– name: MDPI AG
References Krieger (ref_30) 2002; 47
Essman (ref_40) 1995; 103
Komeiji (ref_20) 1994; 7
Schlitter (ref_46) 1993; 215
Maas (ref_2) 1994; 58
Cherney (ref_7) 2008; 64
Sunnerhagen (ref_9) 1997; 4
ref_13
Karplus (ref_45) 1981; 14
ref_33
Hsin (ref_48) 2008; 24
Jin (ref_25) 2005; 346
Smith (ref_6) 1989; 3
Bayly (ref_32) 1993; 97
Miller (ref_17) 1997; 26
Ghosh (ref_3) 1996; 256
Horn (ref_34) 2014; 20
Cherney (ref_11) 2009; 388
Holtham (ref_18) 1999; 289
Abraham (ref_36) 2015; 1
Dennis (ref_5) 2002; 58
Grandori (ref_21) 1995; 254
Piana (ref_39) 2010; 78
Serra (ref_27) 2016; 33
Tian (ref_8) 1994; 13
Dion (ref_15) 1997; 25
Pandey (ref_14) 2014; 20
ref_43
Cherney (ref_12) 2010; 399
Berendsen (ref_42) 1984; 81
Storbakk (ref_19) 1992; 117
Szwajkajzer (ref_26) 1997; 44
Hornak (ref_38) 2006; 65
Lawson (ref_24) 1993; 366
Szwajkajzer (ref_22) 2001; 312
Ni (ref_4) 1999; 6
Markidis (ref_35) 2015; Volume 8759
Andricioaei (ref_47) 2001; 115
Sievers (ref_28) 2011; 7
Garnett (ref_10) 2007; 63
Otwinowski (ref_23) 1988; 335
Konagurthu (ref_29) 2006; 64
Wang (ref_37) 2000; 21
Humphrey (ref_44) 1996; 14
Chen (ref_16) 1997; 24
Bussi (ref_41) 2007; 126
Maas (ref_1) 1964; 8
Mahoney (ref_31) 2000; 112
References_xml – volume: 63
  start-page: 918
  year: 2007
  ident: ref_10
  article-title: Structure of the C-terminal effector-binding domain of AhrC bound to its corepressor L-arginine
  publication-title: Acta. Cryst. F
  doi: 10.1107/S1744309107049391
– volume: 215
  start-page: 617
  year: 1993
  ident: ref_46
  article-title: Estimation of absolute and relative entropies of macromolecules using the covariance matrix
  publication-title: Chem. Phys. Lett.
  doi: 10.1016/0009-2614(93)89366-P
– volume: 254
  start-page: 150
  year: 1995
  ident: ref_21
  article-title: The DNA-binding domain of the hexameric arginine repressor
  publication-title: J. Mol. Biol.
  doi: 10.1006/jmbi.1995.0607
– volume: 346
  start-page: 43
  year: 2005
  ident: ref_25
  article-title: Asymmetric allosteric activation of the symmetric ArgR hexamer
  publication-title: J. Mol. Biol.
  doi: 10.1016/j.jmb.2004.11.031
– volume: 103
  start-page: 8577
  year: 1995
  ident: ref_40
  article-title: A smooth particle mesh Ewald method
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.470117
– volume: 47
  start-page: 393
  year: 2002
  ident: ref_30
  article-title: Increasing the precision of comparative models with YASARA NOVA: A self-parameterizing force field
  publication-title: Proteins
  doi: 10.1002/prot.10104
– volume: 65
  start-page: 712
  year: 2006
  ident: ref_38
  article-title: Comparison of multiple Amber force fields and development of improved protein backbone parameters
  publication-title: Proteins
  doi: 10.1002/prot.21123
– volume: 58
  start-page: 421
  year: 2002
  ident: ref_5
  article-title: The structure of AhrC, the arginine repressor/activator protein from Bacillus subtilis
  publication-title: Acta. Cryst. D
  doi: 10.1107/S0907444901021692
– volume: 4
  start-page: 819
  year: 1997
  ident: ref_9
  article-title: Solution structure of the DNA-binding domain and model for the complex of multifunctional, hexameric arginine repressor with DNA
  publication-title: Nat. Str. Biol.
  doi: 10.1038/nsb1097-819
– volume: 7
  start-page: 1239
  year: 1994
  ident: ref_20
  article-title: Glycine 85 of the trp-repressor of E. coli is important in forming the hydrophobic tryptophan binding pocket: Experimental and computational approaches
  publication-title: Prot. Eng.
  doi: 10.1093/protein/7.10.1239
– volume: 14
  start-page: 325
  year: 1981
  ident: ref_45
  article-title: Method for estimating the configurational entropy of macromolecules
  publication-title: Macromolecules
  doi: 10.1021/ma50003a019
– volume: 335
  start-page: 321
  year: 1988
  ident: ref_23
  article-title: Crystal structure of trp repressor/operator complex at atomic resolution
  publication-title: Nature
  doi: 10.1038/335321a0
– volume: 115
  start-page: 6289
  year: 2001
  ident: ref_47
  article-title: On the calculation of entropy from covariance matrices of the atomic fluctuations
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1401821
– volume: 78
  start-page: 1950
  year: 2010
  ident: ref_39
  article-title: Improved side-chain torsion potentials for the Amber ff99SB protein force field
  publication-title: Proteins
  doi: 10.1002/prot.22711
– volume: 3
  start-page: 23
  year: 1989
  ident: ref_6
  article-title: Sequences required for regulation of arginine biosynthesis promoters are conserved between Bacillus subtilis and Escherichia coli
  publication-title: Mol. Microbiol.
  doi: 10.1111/j.1365-2958.1989.tb00099.x
– volume: 58
  start-page: 631
  year: 1994
  ident: ref_2
  article-title: The arginine repressor of Escherichia coli
  publication-title: Microbiol. Rev.
  doi: 10.1128/mr.58.4.631-640.1994
– volume: Volume 8759
  start-page: 3
  year: 2015
  ident: ref_35
  article-title: Tackling exascale software challenges in molecular dynamics simulations with GROMACS
  publication-title: Solving Software Challenges for Exascale
  doi: 10.1007/978-3-319-15976-8_1
– volume: 24
  start-page: 1143
  year: 1997
  ident: ref_16
  article-title: DNA binding of E. coli arginine repressor mutants altered in oligomeric state
  publication-title: Mol. Microbiol.
  doi: 10.1046/j.1365-2958.1997.4301791.x
– volume: 21
  start-page: 1049
  year: 2000
  ident: ref_37
  article-title: How well does a restrained electrostatic potential (RESP) model perform in calculating conformational energies of organic and biological molecules?
  publication-title: J. Comput. Chem.
  doi: 10.1002/1096-987X(200009)21:12<1049::AID-JCC3>3.0.CO;2-F
– volume: 366
  start-page: 178
  year: 1993
  ident: ref_24
  article-title: Tandem binding in crystals of a trp repressor/operator half-site complex
  publication-title: Nature
  doi: 10.1038/366178a0
– volume: 8
  start-page: 365
  year: 1964
  ident: ref_1
  article-title: Studies on the mechanism of repression of arginine biosynthesis in Escherichia coli. II. Dominance of repressibility in diploids
  publication-title: J. Mol. Biol.
  doi: 10.1016/S0022-2836(64)80200-X
– volume: 25
  start-page: 385
  year: 1997
  ident: ref_15
  article-title: The highly thermostable arginine repressor from Bacillus stearothermophilus: Gene cloning and repressor-operator interactions
  publication-title: Mol. Microbiol.
  doi: 10.1046/j.1365-2958.1997.4781845.x
– volume: 20
  start-page: 2478
  year: 2014
  ident: ref_34
  article-title: A consistent force field parameter set for zwitterionic amino acid residues
  publication-title: J. Mol. Model.
  doi: 10.1007/s00894-014-2478-z
– volume: 13
  start-page: 599
  year: 1994
  ident: ref_8
  article-title: Mutational analysis of the arginine repressor of E. coli
  publication-title: Mol. Microbiol.
  doi: 10.1111/j.1365-2958.1994.tb00454.x
– volume: 117
  start-page: 23
  year: 1992
  ident: ref_19
  article-title: Intragenic complementation between E. coli trp repressors with different defects in the tryptophan binding pocket
  publication-title: Gene
  doi: 10.1016/0378-1119(92)90485-8
– volume: 20
  start-page: 2330
  year: 2014
  ident: ref_14
  article-title: Binding-competent states for L-arginine in E. coli arginine repressor apoprotein
  publication-title: J. Mol. Model.
  doi: 10.1007/s00894-014-2330-5
– volume: 26
  start-page: 37
  year: 1997
  ident: ref_17
  article-title: Operator interactions by the Bacillus subtilis arginine repressor/activator, AhrC: Novel positioning and DNA mediated assembly of a transcriptional activator at catabolic sites
  publication-title: Mol. Microbiol.
  doi: 10.1046/j.1365-2958.1997.5441907.x
– volume: 44
  start-page: 181
  year: 1997
  ident: ref_26
  article-title: Molecular and biological constraints on ligand-binding affinity and specificity
  publication-title: Biopolymers
  doi: 10.1002/(SICI)1097-0282(1997)44:2<181::AID-BIP5>3.0.CO;2-R
– ident: ref_33
– volume: 399
  start-page: 240
  year: 2010
  ident: ref_12
  article-title: Crystal structure of the intermediate complex of the arginine repressor from Mycobacterium tuberculosis bound with its DNA operator reveals detailed mechanism of arginine repression
  publication-title: J. Mol. Biol.
  doi: 10.1016/j.jmb.2010.03.065
– volume: 388
  start-page: 85
  year: 2009
  ident: ref_11
  article-title: The structure of the arginine repressor from Mycobacterium tuberculosis bound with its DNA operator and co-repressor, L-arginine
  publication-title: J. Mol. Biol.
  doi: 10.1016/j.jmb.2009.02.053
– volume: 1
  start-page: 19
  year: 2015
  ident: ref_36
  article-title: GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers
  publication-title: SoftwareX
  doi: 10.1016/j.softx.2015.06.001
– volume: 24
  start-page: 5.7.1
  year: 2008
  ident: ref_48
  article-title: Using VMD: An introductory tutorial
  publication-title: Curr. Protoc. Bioinf.
  doi: 10.1002/0471250953.bi0507s24
– volume: 6
  start-page: 427
  year: 1999
  ident: ref_4
  article-title: Structure of the arginine repressor from Bacillus stearothermophilus
  publication-title: Nat. Struct. Biol.
  doi: 10.1038/8229
– volume: 64
  start-page: 950
  year: 2008
  ident: ref_7
  article-title: Structure of the C-domain of the arginine repressor protein from Mycobacterium tuberculosis
  publication-title: Acta. Cryst. D
  doi: 10.1107/S0907444908021513
– volume: 33
  start-page: 1635
  year: 2016
  ident: ref_27
  article-title: ETE 3: Reconstruction, analysis, and visualization of phylogenomic data
  publication-title: Mol. Biol. Evol.
  doi: 10.1093/molbev/msw046
– volume: 7
  start-page: 539
  year: 2011
  ident: ref_28
  article-title: Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega
  publication-title: Mol. Syst. Biol.
  doi: 10.1038/msb.2011.75
– volume: 64
  start-page: 559
  year: 2006
  ident: ref_29
  article-title: MUSTANG: A multiple structural alignment algorithm
  publication-title: Proteins
  doi: 10.1002/prot.20921
– volume: 126
  start-page: 014101
  year: 2007
  ident: ref_41
  article-title: Canonical sampling through velocity rescaling
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.2408420
– volume: 81
  start-page: 3684
  year: 1984
  ident: ref_42
  article-title: Molecular dynamics with coupling to an external bath
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.448118
– ident: ref_13
  doi: 10.1371/journal.pcbi.1000801
– volume: 312
  start-page: 949
  year: 2001
  ident: ref_22
  article-title: Quantitative analysis of DNA binding by E. coli arginine repressor
  publication-title: J. Mol. Biol.
  doi: 10.1006/jmbi.2001.4941
– ident: ref_43
– volume: 289
  start-page: 707
  year: 1999
  ident: ref_18
  article-title: Probing activation of the prokaryotic arginine transcriptional regulator using chimeric proteins
  publication-title: J. Mol. Biol.
  doi: 10.1006/jmbi.1999.2790
– volume: 112
  start-page: 8910
  year: 2000
  ident: ref_31
  article-title: A five-site model for liquid water and the reproduction of the density anomaly by rigid, nonpolarizable potential functions
  publication-title: J. Chem. Phy.
  doi: 10.1063/1.481505
– volume: 256
  start-page: 377
  year: 1996
  ident: ref_3
  article-title: Structure of the oligomerization and L-arginine binding domain of the arginine repressor of Escherichia coli
  publication-title: J. Mol. Biol.
  doi: 10.1006/jmbi.1996.0093
– volume: 14
  start-page: 33
  year: 1996
  ident: ref_44
  article-title: VMD—Visual molecular dynamics
  publication-title: J. Mol. Graph.
  doi: 10.1016/0263-7855(96)00018-5
– volume: 97
  start-page: 10269
  year: 1993
  ident: ref_32
  article-title: A well-behaved electrostatic potential based method using charge restraints for deriving atomic charges: The RESP model
  publication-title: J. Phys. Chem.
  doi: 10.1021/j100142a004
SSID ssj0021415
Score 2.300156
Snippet Hexameric arginine repressor, ArgR, is the feedback regulator of bacterial L-arginine regulons, and sensor of L-arg that controls transcription of genes for...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 2247
SubjectTerms Allosteric Regulation
Amino Acid Sequence
Arginine - chemistry
Arginine - metabolism
Bacillus subtilis - chemistry
Bacillus subtilis - genetics
Bacillus subtilis - metabolism
Bacterial Proteins - chemistry
Bacterial Proteins - genetics
Bacterial Proteins - metabolism
Entropy
Escherichia coli - chemistry
Escherichia coli - genetics
Escherichia coli - metabolism
global motion
Hydrogen Bonding
ligand binding
Molecular Dynamics Simulation
molecular evolution
Phylogeny
Protein Binding
Protein Conformation, alpha-Helical
Protein Conformation, beta-Strand
Protein Domains
Regulon - genetics
Repressor Proteins - chemistry
Repressor Proteins - genetics
Repressor Proteins - metabolism
salt bridges
Sequence Alignment
Title Conserved Dynamic Mechanism of Allosteric Response to L-arg in Divergent Bacterial Arginine Repressors
URI https://www.ncbi.nlm.nih.gov/pubmed/32397647
https://www.proquest.com/docview/2402441619
https://pubmed.ncbi.nlm.nih.gov/PMC7248756
https://doaj.org/article/734471a28d2e4de48c660e89c34e6a8d
Volume 25
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3fb9MwELZgPMAL4jfdoDIST0jRYsexncd1W5kQm9DEpL5FdnzeKnUJarv_n7s4rVZA8MJLHhJbOfnOvvvku-8Y-5jH3Hv0a5n0RmXKySJzJcQMRO6Mw60Z-kLh8wt9dqW-zMrZvVZflBOW6IHTwh0aoqQTTlqcpAIo22idg62aQoF2NtDpiz5vA6YGqCXQL6U7zAJB_eFtajULK3T4FTots-OFerL-P0WYvyZK3vM802fs6RAy8qMk6nP2ANoX7PHxplPbSxap6yZlLgZ-khrM83Ogit756pZ3kR8tFlTKgScev0wpscDXHf-aueU1n7f8hHIzqMSKTxJ3c_-3a2odATijT5XtlqtX7Gp6-v34LBv6J2SN0uU6K3SUwTbG4zaDRkbZgM4rW2qHMROlv1hpygowRhRNHrSIAoQUXksTjA8hFK_ZXtu18JZxh7jKQW4r70ulhXa-yL0RoYo2Rl_5Ecs361k3A7k49bhY1AgySAX1byoYsU_bKT8Ss8bfBk9ISduBRIrdv0BTqQdTqf9lKiP2YaPiGjVENyOuhe5uVdMVkyKoV43Ym6Ty7a8KSSEbiWB2jGFHlt0v7fymJ-o2kuCg3v8fwh-wJ5Kgfk8c-47trZd38B7jobUfs4dmZvBpp5_H7NHk9OLb5bjfDj8Be7gPpA
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Conserved+Dynamic+Mechanism+of+Allosteric+Response+to+L-arg+in+Divergent+Bacterial+Arginine+Repressors&rft.jtitle=Molecules+%28Basel%2C+Switzerland%29&rft.au=Pandey%2C+Saurabh+Kumar&rft.au=Melichercik%2C+Milan&rft.au=%C5%98eha%2C+David&rft.au=Ettrich%2C+R%C3%BCdiger+H.&rft.date=2020-05-10&rft.pub=MDPI&rft.eissn=1420-3049&rft.volume=25&rft.issue=9&rft_id=info:doi/10.3390%2Fmolecules25092247&rft_id=info%3Apmid%2F32397647&rft.externalDocID=PMC7248756
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1420-3049&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1420-3049&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1420-3049&client=summon