Predicting the behavior of a grid-connected photovoltaic system from measurements of solar radiation and ambient temperature

► A model to predict in a reliable way the behavior of a GCPV system is presented. ► Radiation and temperature behavior were shaped with probability density functions. ► This probability density functions were made from real measurements. ► This model was verified for comparing their behavior with r...

Full description

Saved in:
Bibliographic Details
Published inApplied energy Vol. 104; pp. 527 - 537
Main Authors Hernandez, J., Gordillo, G., Vallejo, W.
Format Journal Article
LanguageEnglish
Published Kidlington Elsevier Ltd 01.04.2013
Elsevier
Subjects
Online AccessGet full text
ISSN0306-2619
1872-9118
DOI10.1016/j.apenergy.2012.10.022

Cover

Abstract ► A model to predict in a reliable way the behavior of a GCPV system is presented. ► Radiation and temperature behavior were shaped with probability density functions. ► This probability density functions were made from real measurements. ► This model was verified for comparing their behavior with real measurements. ► It can be used in any electrical systems language which have programming routines. This paper presents a methodology to predict in a statistically reliable way the behavior of a grid-connected photovoltaic system. The methodology developed can be implemented either in common programming software or through an off-the-shelf simulation of electrical systems. Initially, the atmospheric parameters that influence the behavior of PV generators (radiation and temperature) are characterized in a probabilistic manner. In parallel, a model compound by various PV generator components is defined: the modules (and their electrical and physical characteristics), their connection to form the generator, and the inverter type. This model was verified for comparing their behavior with output measured on a real installed system of 3.6kWp. The solar resource characterized and the photovoltaic system model are integrated in a non-deterministic approach using the stochastic Monte Carlo method, developed in the programming language DPL of the electrical-systems simulation software DIGSILENT®. It is done to estimate the steady-state electrical parameters describing the influence of the grid-connected photovoltaic system. Specifically, we estimated the nominal peak power of the PV generator to minimize network losses, subject to constraints on nodes voltages and conductor currents.
AbstractList This paper presents a methodology to predict in a statistically reliable way the behavior of a grid-connected photovoltaic system. The methodology developed can be implemented either in common programming software or through an off-the-shelf simulation of electrical systems. Initially, the atmospheric parameters that influence the behavior of PV generators (radiation and temperature) are characterized in a probabilistic manner. In parallel, a model compound by various PV generator components is defined: the modules (and their electrical and physical characteristics), their connection to form the generator, and the inverter type. This model was verified for comparing their behavior with output measured on a real installed system of 3.6kWp. The solar resource characterized and the photovoltaic system model are integrated in a non-deterministic approach using the stochastic Monte Carlo method, developed in the programming language DPL of the electrical-systems simulation software DIGSILENT®. It is done to estimate the steady-state electrical parameters describing the influence of the grid-connected photovoltaic system. Specifically, we estimated the nominal peak power of the PV generator to minimize network losses, subject to constraints on nodes voltages and conductor currents.
► A model to predict in a reliable way the behavior of a GCPV system is presented. ► Radiation and temperature behavior were shaped with probability density functions. ► This probability density functions were made from real measurements. ► This model was verified for comparing their behavior with real measurements. ► It can be used in any electrical systems language which have programming routines. This paper presents a methodology to predict in a statistically reliable way the behavior of a grid-connected photovoltaic system. The methodology developed can be implemented either in common programming software or through an off-the-shelf simulation of electrical systems. Initially, the atmospheric parameters that influence the behavior of PV generators (radiation and temperature) are characterized in a probabilistic manner. In parallel, a model compound by various PV generator components is defined: the modules (and their electrical and physical characteristics), their connection to form the generator, and the inverter type. This model was verified for comparing their behavior with output measured on a real installed system of 3.6kWp. The solar resource characterized and the photovoltaic system model are integrated in a non-deterministic approach using the stochastic Monte Carlo method, developed in the programming language DPL of the electrical-systems simulation software DIGSILENT®. It is done to estimate the steady-state electrical parameters describing the influence of the grid-connected photovoltaic system. Specifically, we estimated the nominal peak power of the PV generator to minimize network losses, subject to constraints on nodes voltages and conductor currents.
This paper presents a methodology to predict in a statistically reliable way the behavior of a grid-connected photovoltaic system. The methodology developed can be implemented either in common programming software or through an off-the-shelf simulation of electrical systems. Initially, the atmospheric parameters that influence the behavior of PV generators (radiation and temperature) are characterized in a probabilistic manner. In parallel, a model compound by various PV generator components is defined: the modules (and their electrical and physical characteristics), their connection to form the generator, and the inverter type. This model was verified for comparing their behavior with output measured on a real installed system of 3.6 kWp. The solar resource characterized and the photovoltaic system model are integrated in a non-deterministic approach using the stochastic Monte Carlo method, developed in the programming language DPL of the electrical-systems simulation software DIGSILENTARG. It is done to estimate the steady-state electrical parameters describing the influence of the grid-connected photovoltaic system. Specifically, we estimated the nominal peak power of the PV generator to minimize network losses, subject to constraints on nodes voltages and conductor currents.
Author Gordillo, G.
Hernandez, J.
Vallejo, W.
Author_xml – sequence: 1
  givenname: J.
  surname: Hernandez
  fullname: Hernandez, J.
  email: jahernandezmo@unal.edu.co
  organization: LIFAE, Universidad Distrital Francisco José de Caldas, Bogotá, Colombia
– sequence: 2
  givenname: G.
  surname: Gordillo
  fullname: Gordillo, G.
  organization: Grupo de Materiales Semiconductores y Energía Solar, Universidad Nacional de Colombia, Bogotá, Colombia
– sequence: 3
  givenname: W.
  surname: Vallejo
  fullname: Vallejo, W.
  organization: Grupo de Fotoquímica y fotobiologia, Programa de Química, Facultad de Ciencias, Universidad del Atlántico
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27078289$$DView record in Pascal Francis
BookMark eNqFkk2L2zAQhk3ZQrPb_oVWl0IvTiXZlmTooWXpFyy00O5ZjOVRomBLqaQEAvvjKze7l15yEoyedwbmmevqygePVfWa0TWjTLzfrWGPHuPmtOaU8VJcU86fVSumJK97xtRVtaINFTUXrH9RXae0o5RyxumqevgZcXQmO78heYtkwC0cXYgkWAJkE91Ym-A9mowj2W9DDscwZXCGpFPKOBMbw0xmhHSIOKPPaUmmMEEkEUYH2QVPwI8E5sGVf1JCe4yQC_-yem5hSvjq8b2p7r98_n37rb778fX77ae72rSiy3UjYFSDMGisGqRohaLtyDsuGta0wCRtDW0HQDBgTN8ry2RjRcvUYKGXfdvcVO_Offcx_Dlgynp2yeA0gcdwSJqXddCmZ1JcRJmQrJOSUX4Z7aholOhbWdC3jygkA5ON4I1Leh_dDPGkuaRScdUX7sOZMzGkFNFq4_K_FeYIbtKM6kW53ukn5XpRvtSL8hIX_8WfJlwMvjkHLQQNxXrS978KIJbFKNqpQnw8E1g8HR1GnUzRacrxxHIcegzu0pC_B3DXDQ
CODEN APENDX
CitedBy_id crossref_primary_10_15446_dyna_v82n192_48580
crossref_primary_10_1016_j_enconman_2013_12_041
crossref_primary_10_1016_j_rser_2014_05_056
crossref_primary_10_1016_j_solener_2024_113044
crossref_primary_10_1016_j_solener_2014_02_014
crossref_primary_10_1016_j_enconman_2020_113386
crossref_primary_10_1016_j_energy_2015_06_038
crossref_primary_10_1016_j_renene_2014_11_065
crossref_primary_10_1016_j_rser_2017_06_023
crossref_primary_10_1016_j_enconman_2014_05_008
crossref_primary_10_1016_j_rser_2017_08_070
crossref_primary_10_1063_1_4935376
crossref_primary_10_1016_j_solener_2014_07_024
crossref_primary_10_1155_2017_5812394
crossref_primary_10_1016_j_applthermaleng_2019_03_038
crossref_primary_10_1016_j_apenergy_2015_08_096
crossref_primary_10_1016_j_egypro_2015_12_179
crossref_primary_10_1016_j_rser_2015_12_325
crossref_primary_10_1016_j_rser_2016_12_029
crossref_primary_10_1007_s12145_020_00511_3
crossref_primary_10_1016_j_clet_2022_100460
Cites_doi 10.1016/j.energy.2010.06.021
10.1080/01621459.1954.10501232
10.1016/0022-3697(88)90207-7
10.1109/TEC.1987.4765894
10.1109/SIMUL.2009.34
10.1109/APCCAS.2006.342435
10.1016/j.enconman.2005.11.012
10.1016/j.renene.2004.03.010
10.1109/PECON.2010.5697642
10.1109/TEC.2005.845454
10.1109/APCCAS.2006.342175
10.1016/j.renene.2006.01.005
10.1109/ICIT.2008.4608553
10.1049/iet-rpg.2009.0134
10.1214/aoms/1177729437
10.1049/iet-rpg:20060009
10.1109/60.17910
10.1109/UPEC.2006.367717
ContentType Journal Article
Copyright 2012 Elsevier Ltd
2014 INIST-CNRS
Copyright_xml – notice: 2012 Elsevier Ltd
– notice: 2014 INIST-CNRS
DBID FBQ
AAYXX
CITATION
IQODW
7SP
7TA
8FD
F28
FR3
JG9
L7M
7S9
L.6
DOI 10.1016/j.apenergy.2012.10.022
DatabaseName AGRIS
CrossRef
Pascal-Francis
Electronics & Communications Abstracts
Materials Business File
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
Materials Research Database
Technology Research Database
Electronics & Communications Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Materials Business File
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA

Materials Research Database
Materials Research Database

Database_xml – sequence: 1
  dbid: FBQ
  name: AGRIS
  url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Environmental Sciences
Applied Sciences
EISSN 1872-9118
EndPage 537
ExternalDocumentID 27078289
10_1016_j_apenergy_2012_10_022
US201600008058
S0306261912007283
GroupedDBID --K
--M
.~1
0R~
1B1
1~.
1~5
23M
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAHCO
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARJD
AAXUO
AAYOK
ABEFU
ABFNM
ABJNI
ABMAC
ABTAH
ABXDB
ABYKQ
ACDAQ
ACGFS
ACNNM
ACRLP
ADBBV
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHIDL
AHJVU
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BELTK
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
JARJE
JJJVA
KOM
LY6
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SAC
SDF
SDG
SES
SEW
SPC
SPCBC
SSR
SST
SSZ
T5K
TN5
WUQ
ZY4
~02
~G-
ABPIF
ABPTK
FBQ
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
EFKBS
IQODW
7SP
7TA
8FD
F28
FR3
JG9
L7M
7S9
L.6
ID FETCH-LOGICAL-c465t-36ad8b6cecf8b7646804d25263134a1704c04baeacacc998f173f6418bfa97943
IEDL.DBID AIKHN
ISSN 0306-2619
IngestDate Fri Sep 05 05:14:41 EDT 2025
Fri Sep 05 14:29:25 EDT 2025
Fri Sep 05 06:13:51 EDT 2025
Mon Jul 21 09:16:16 EDT 2025
Tue Jul 01 03:05:18 EDT 2025
Thu Apr 24 22:58:40 EDT 2025
Wed Dec 27 19:06:06 EST 2023
Fri Feb 23 02:36:56 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Grid-connected PV systems
Radiation and ambient temperature analysis
Monte Carlo method
Electric energy transportation
Electrical network
Photovoltaic system
Connection
Solar radiation
Room temperature
Photovoltaic cell
Language English
License https://www.elsevier.com/tdm/userlicense/1.0
CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c465t-36ad8b6cecf8b7646804d25263134a1704c04baeacacc998f173f6418bfa97943
Notes http://dx.doi.org/10.1016/j.apenergy.2012.10.022
ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
PQID 1506386947
PQPubID 23500
PageCount 11
ParticipantIDs proquest_miscellaneous_2000039176
proquest_miscellaneous_1671577102
proquest_miscellaneous_1506386947
pascalfrancis_primary_27078289
crossref_citationtrail_10_1016_j_apenergy_2012_10_022
crossref_primary_10_1016_j_apenergy_2012_10_022
fao_agris_US201600008058
elsevier_sciencedirect_doi_10_1016_j_apenergy_2012_10_022
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2013-04-01
PublicationDateYYYYMMDD 2013-04-01
PublicationDate_xml – month: 04
  year: 2013
  text: 2013-04-01
  day: 01
PublicationDecade 2010
PublicationPlace Kidlington
PublicationPlace_xml – name: Kidlington
PublicationTitle Applied energy
PublicationYear 2013
Publisher Elsevier Ltd
Elsevier
Publisher_xml – name: Elsevier Ltd
– name: Elsevier
References Jewell, Ramakumar (b0020) 1987; 2
Samarski AA. Introducción a los métodos numéricos. Editorial Mir. Moscú; 1986. p. 270–320.
Kern, Gulachenski, Kerm (b0025) Jun. 1989; 4
Syafii, Khalid MN, Mamdouh A. Grid-connected photovoltaic models for three-phase load flow analysis. In: IEEE international conference on power and energy (PECon2010), November 29–December 1 2010. p. 544–8.
Paatero, Lund (b0090) 2007; 32
Anderson, Darling (b0095) 1954; 49
Alonso García, Balenzategui (b0045) 2004; 29
Srisaen N, Sangswang A. Effects of PV grid-connected system location on a distribution system. In: IEEE Asia Pacific conference on circuits and systems; 2006. p. 852–5.
Green (b0050) 1982
DIgSILENT GmbH. Powerfactory 14.0 user’s manual. Heinrich-Hertz-Strasse 9, Germany; 2011. p. 1–76.
Thomson, Infield (b0015) 2007; 1
Torres MA. Ph.D. Probabilidad, Variables Aleatorias, Confiabilidad y procesos Estocasticos. Notas de Clase, Universidad de los Andes; 2002. p. 1–40.
Sritakaew P. Reliability improvement of a distribution system using PV grid connected system with tie switch. In: IEEE Asia Pacific conference on circuits and systems; 2006. p. 1354–7.
Ayompe, Duffy a, McCormack b, Conlon (b0065) 2010; 35
Delfino, Procopio, Rossi, Ronda (b0085) 2010; 5
Feil B, Kucherenko S, Shah N. Comparison of Monte Carlo and Quasi Monte Carlo Sampling Methods in High Dimensional Model Representation. In: 1st International Conference on Advances in System, Simulation; 2009. p. 12–17.
Markvart, Castañer (b0040) 2003
Anderson, Darling (b0100) 1952; 23
De Vos (b0105) 1988; 49
Forero, Hernández, Gordillo (b0035) 2006; 47
Djarallah M, Azoui B. Grid connected interactive photovoltaic power flowanalysis: a technique for system operation comprehension and sizing. In: 41st international universities power, engineering conference; 2006. p. 69–73.
Achim Woyte, Thong, Belmas, Nijs (b0030) 2006; 21
Wang Yi-Bo, Wu Chun-Sheng, Liao Hua, Xu Hong-Hua. Steady-state model and power flow analysis of grid-connected photovoltaic power system. In: 2008 IEEE international conference on industrial, technology; 2008. p. 1–6.
Thomson (10.1016/j.apenergy.2012.10.022_b0015) 2007; 1
Achim Woyte (10.1016/j.apenergy.2012.10.022_b0030) 2006; 21
10.1016/j.apenergy.2012.10.022_b0005
10.1016/j.apenergy.2012.10.022_b0115
Ayompe (10.1016/j.apenergy.2012.10.022_b0065) 2010; 35
Anderson (10.1016/j.apenergy.2012.10.022_b0100) 1952; 23
10.1016/j.apenergy.2012.10.022_b0060
10.1016/j.apenergy.2012.10.022_b0070
Forero (10.1016/j.apenergy.2012.10.022_b0035) 2006; 47
Markvart (10.1016/j.apenergy.2012.10.022_b0040) 2003
10.1016/j.apenergy.2012.10.022_b0080
Alonso García (10.1016/j.apenergy.2012.10.022_b0045) 2004; 29
De Vos (10.1016/j.apenergy.2012.10.022_b0105) 1988; 49
Paatero (10.1016/j.apenergy.2012.10.022_b0090) 2007; 32
Jewell (10.1016/j.apenergy.2012.10.022_b0020) 1987; 2
Kern (10.1016/j.apenergy.2012.10.022_b0025) 1989; 4
Delfino (10.1016/j.apenergy.2012.10.022_b0085) 2010; 5
10.1016/j.apenergy.2012.10.022_b0055
10.1016/j.apenergy.2012.10.022_b0110
10.1016/j.apenergy.2012.10.022_b0010
Green (10.1016/j.apenergy.2012.10.022_b0050) 1982
10.1016/j.apenergy.2012.10.022_b0075
Anderson (10.1016/j.apenergy.2012.10.022_b0095) 1954; 49
References_xml – reference: Sritakaew P. Reliability improvement of a distribution system using PV grid connected system with tie switch. In: IEEE Asia Pacific conference on circuits and systems; 2006. p. 1354–7.
– volume: 5
  start-page: 329
  year: 2010
  end-page: 340
  ident: b0085
  article-title: Integration of large-size photovoltaic systems into the distribution grids: a
  publication-title: IET Renew Power Gener
– reference: Torres MA. Ph.D. Probabilidad, Variables Aleatorias, Confiabilidad y procesos Estocasticos. Notas de Clase, Universidad de los Andes; 2002. p. 1–40.
– volume: 23
  start-page: 193
  year: 1952
  end-page: 212
  ident: b0100
  article-title: Asymptotic theory of certain goodness of fit criteria based on stochastic processes
  publication-title: Ann Math Stat
– volume: 1
  start-page: 33
  year: 2007
  end-page: 40
  ident: b0015
  article-title: Impact of widespread photovoltaics generation on distribution system
  publication-title: IET J Renew Power Generation
– volume: 32
  start-page: 216
  year: 2007
  end-page: 234
  ident: b0090
  article-title: Effects of large-scale photovoltaic power integration on electricity distribution networks
  publication-title: Renew Energy
– volume: 47
  start-page: 2329
  year: 2006
  end-page: 2336
  ident: b0035
  article-title: Development of a monitoring system for a PV solar plant
  publication-title: Energy Convers Manage
– reference: Wang Yi-Bo, Wu Chun-Sheng, Liao Hua, Xu Hong-Hua. Steady-state model and power flow analysis of grid-connected photovoltaic power system. In: 2008 IEEE international conference on industrial, technology; 2008. p. 1–6.
– volume: 29
  start-page: 1997
  year: 2004
  end-page: 2010
  ident: b0045
  article-title: Estimation of photovoltaic module yearly temperature and performance based on nominal operation cell temperature calculations
  publication-title: Renew Energy
– reference: Syafii, Khalid MN, Mamdouh A. Grid-connected photovoltaic models for three-phase load flow analysis. In: IEEE international conference on power and energy (PECon2010), November 29–December 1 2010. p. 544–8.
– volume: 4
  start-page: 184
  year: Jun. 1989
  end-page: 190
  ident: b0025
  article-title: Clouds effects on distributed photovoltaic generation: slow transients at the gardner, Massachusetts photovoltaic experiment
  publication-title: IEEE Trans Energy Convers
– year: 2003
  ident: b0040
  article-title: Practical handbook of photovoltaics: fundamentals and applications
– reference: Samarski AA. Introducción a los métodos numéricos. Editorial Mir. Moscú; 1986. p. 270–320.
– volume: 49
  start-page: 765
  year: 1954
  end-page: 769
  ident: b0095
  article-title: A test of Goodness of Fit
  publication-title: J Am Stat Assoc
– reference: Djarallah M, Azoui B. Grid connected interactive photovoltaic power flowanalysis: a technique for system operation comprehension and sizing. In: 41st international universities power, engineering conference; 2006. p. 69–73.
– volume: 35
  start-page: 4086
  year: 2010
  end-page: 4091
  ident: b0065
  article-title: Validated real-time energy models for small-scale grid-connected PV-systems
  publication-title: Energy
– volume: 49
  start-page: 725
  year: 1988
  end-page: 730
  ident: b0105
  article-title: Thermodynamics of radiation energy conversion in one and in three physical dimensions
  publication-title: J Phys Chem Solids
– reference: Srisaen N, Sangswang A. Effects of PV grid-connected system location on a distribution system. In: IEEE Asia Pacific conference on circuits and systems; 2006. p. 852–5.
– volume: 21
  start-page: 202
  year: 2006
  end-page: 209
  ident: b0030
  article-title: Voltage fluctuations on distribution level introduced by photovoltaic systems
  publication-title: IEEE Trans Energy Convers
– reference: Feil B, Kucherenko S, Shah N. Comparison of Monte Carlo and Quasi Monte Carlo Sampling Methods in High Dimensional Model Representation. In: 1st International Conference on Advances in System, Simulation; 2009. p. 12–17.
– volume: 2
  start-page: 570
  year: 1987
  end-page: 576
  ident: b0020
  article-title: The effects of moving clouds on electric utilities with dispersed photovoltaic generation
  publication-title: IEEE Trans Energy Convers
– reference: DIgSILENT GmbH. Powerfactory 14.0 user’s manual. Heinrich-Hertz-Strasse 9, Germany; 2011. p. 1–76.
– year: 1982
  ident: b0050
  article-title: Solar cells: operating principles, technology and system applications
– ident: 10.1016/j.apenergy.2012.10.022_b0055
– volume: 35
  start-page: 4086
  year: 2010
  ident: 10.1016/j.apenergy.2012.10.022_b0065
  article-title: Validated real-time energy models for small-scale grid-connected PV-systems
  publication-title: Energy
  doi: 10.1016/j.energy.2010.06.021
– volume: 49
  start-page: 765
  year: 1954
  ident: 10.1016/j.apenergy.2012.10.022_b0095
  article-title: A test of Goodness of Fit
  publication-title: J Am Stat Assoc
  doi: 10.1080/01621459.1954.10501232
– volume: 49
  start-page: 725
  issue: 6
  year: 1988
  ident: 10.1016/j.apenergy.2012.10.022_b0105
  article-title: Thermodynamics of radiation energy conversion in one and in three physical dimensions
  publication-title: J Phys Chem Solids
  doi: 10.1016/0022-3697(88)90207-7
– volume: 2
  start-page: 570
  issue: 12
  year: 1987
  ident: 10.1016/j.apenergy.2012.10.022_b0020
  article-title: The effects of moving clouds on electric utilities with dispersed photovoltaic generation
  publication-title: IEEE Trans Energy Convers
  doi: 10.1109/TEC.1987.4765894
– ident: 10.1016/j.apenergy.2012.10.022_b0115
  doi: 10.1109/SIMUL.2009.34
– ident: 10.1016/j.apenergy.2012.10.022_b0010
  doi: 10.1109/APCCAS.2006.342435
– ident: 10.1016/j.apenergy.2012.10.022_b0060
– volume: 47
  start-page: 2329
  issue: 15–16
  year: 2006
  ident: 10.1016/j.apenergy.2012.10.022_b0035
  article-title: Development of a monitoring system for a PV solar plant
  publication-title: Energy Convers Manage
  doi: 10.1016/j.enconman.2005.11.012
– volume: 29
  start-page: 1997
  issue: 12
  year: 2004
  ident: 10.1016/j.apenergy.2012.10.022_b0045
  article-title: Estimation of photovoltaic module yearly temperature and performance based on nominal operation cell temperature calculations
  publication-title: Renew Energy
  doi: 10.1016/j.renene.2004.03.010
– year: 1982
  ident: 10.1016/j.apenergy.2012.10.022_b0050
– ident: 10.1016/j.apenergy.2012.10.022_b0070
  doi: 10.1109/PECON.2010.5697642
– volume: 21
  start-page: 202
  issue: 1
  year: 2006
  ident: 10.1016/j.apenergy.2012.10.022_b0030
  article-title: Voltage fluctuations on distribution level introduced by photovoltaic systems
  publication-title: IEEE Trans Energy Convers
  doi: 10.1109/TEC.2005.845454
– ident: 10.1016/j.apenergy.2012.10.022_b0005
  doi: 10.1109/APCCAS.2006.342175
– year: 2003
  ident: 10.1016/j.apenergy.2012.10.022_b0040
– volume: 32
  start-page: 216
  issue: 2
  year: 2007
  ident: 10.1016/j.apenergy.2012.10.022_b0090
  article-title: Effects of large-scale photovoltaic power integration on electricity distribution networks
  publication-title: Renew Energy
  doi: 10.1016/j.renene.2006.01.005
– ident: 10.1016/j.apenergy.2012.10.022_b0110
– ident: 10.1016/j.apenergy.2012.10.022_b0080
  doi: 10.1109/ICIT.2008.4608553
– volume: 5
  start-page: 329
  year: 2010
  ident: 10.1016/j.apenergy.2012.10.022_b0085
  article-title: Integration of large-size photovoltaic systems into the distribution grids: a p–q chart approach to assess reactive support capability
  publication-title: IET Renew Power Gener
  doi: 10.1049/iet-rpg.2009.0134
– volume: 23
  start-page: 193
  year: 1952
  ident: 10.1016/j.apenergy.2012.10.022_b0100
  article-title: Asymptotic theory of certain goodness of fit criteria based on stochastic processes
  publication-title: Ann Math Stat
  doi: 10.1214/aoms/1177729437
– volume: 1
  start-page: 33
  issue: 3
  year: 2007
  ident: 10.1016/j.apenergy.2012.10.022_b0015
  article-title: Impact of widespread photovoltaics generation on distribution system
  publication-title: IET J Renew Power Generation
  doi: 10.1049/iet-rpg:20060009
– volume: 4
  start-page: 184
  issue: 2
  year: 1989
  ident: 10.1016/j.apenergy.2012.10.022_b0025
  article-title: Clouds effects on distributed photovoltaic generation: slow transients at the gardner, Massachusetts photovoltaic experiment
  publication-title: IEEE Trans Energy Convers
  doi: 10.1109/60.17910
– ident: 10.1016/j.apenergy.2012.10.022_b0075
  doi: 10.1109/UPEC.2006.367717
SSID ssj0002120
Score 2.2040493
Snippet ► A model to predict in a reliable way the behavior of a GCPV system is presented. ► Radiation and temperature behavior were shaped with probability density...
This paper presents a methodology to predict in a statistically reliable way the behavior of a grid-connected photovoltaic system. The methodology developed...
SourceID proquest
pascalfrancis
crossref
fao
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 527
SubjectTerms ambient temperature
Applied sciences
Computer programs
Computer simulation
computer software
electric power
electrical properties
Energy
Equipments, installations and applications
Exact sciences and technology
Generators
Grid-connected PV systems
Mathematical models
Methodology
Monte Carlo method
Natural energy
Photovoltaic cells
Photovoltaic conversion
prediction
Radiation and ambient temperature analysis
Software
Solar cells
solar collectors
Solar energy
Solar radiation
Title Predicting the behavior of a grid-connected photovoltaic system from measurements of solar radiation and ambient temperature
URI https://dx.doi.org/10.1016/j.apenergy.2012.10.022
https://www.proquest.com/docview/1506386947
https://www.proquest.com/docview/1671577102
https://www.proquest.com/docview/2000039176
Volume 104
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fb9MwED6t3Qs8IBhMKz8qI_GaNnYcx36cpk0FxIQ0Ku3Nsp0YOrGkaro3xN-OL3G6TWjsgVfrLnJ89vls3_cdwIfUFKlTpUnC2SNPeMnTRCrHE6ZYab1TXgnEO385F4sl_3SZX-7ByYCFwbTK6Pt7n95569gyj6M5X69W8wuMdjH-p3jdFnbJEeyzTIl8DPvHHz8vzncOmUV2xiCfoMIdoPDVzKyrDmSHWV5sholejD20R428aTB50rRh_Hxf-OIvH95tTGfP4VmMKMlx3-kXsFfVB_D0Ds_gARye3sLZgmhcz-1L-PV1gw81mPpMQiRIBtA-aTwx5PtmVSYOM2FciEvJ-kezbYI325qVIz0DNEF0Crm-vWdsUbPF4zLZIOsBmp2YuiTm2iLykiAVVuRxfgXLs9NvJ4sk1mNIHBf5NsmEKaUVrnJe2kJwIVNespyJjGbc0CLlLuXWBFdunAvHOE-LzAtOpfVGIRHdIYzrpq6OgDhfOeqstZJW3DAvKVbQCp_y0tgq9RPIBwtoF8nKsWbGTz1kpV3pwXIaLYftwXITmO_01j1dx6MaajCwvjfxdNhTHtU9CjNCm2COVi8vGLL1dTF4LicwvTdNdr1hHUWhVBN4P8wbHVY0PtOYumpuWo2cj5kUihf_kBEFzQuMDh-WQRAW8v8X4vV__OMbeMK6CiCYrPQWxtvNTfUuxGFbO4XR7DedxtX2B561NM0
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NT9wwEB0BPbQ9oJYWsaWlrtSrdxPHcewjQqBtC6gSrMTNsp24XVSS1SbcEL8dTz5YUEU59BqNIydjj8f2e28AvkYmi5zKDQ17j5TynEdUKscpUyy33imvBPKdT07FdMa_X6QXa3AwcGEQVtnH_i6mt9G6fzLp_-ZkMZ9PzjDbxfw_xuO2sEquwwueJhni-sa3K5wH67UZgzVF8wc04cuxWRQtxQ4xXmyMMC_Gnlqh1r2pEDpp6vD3fFf24q8I3i5LR29gs88nyX7X5bewVpRb8PqByuAWbB-uyGzBtJ_N9Tu4-bnEaxoEPpOQB5KBsk8qTwz5tZzn1CEOxoWslCx-V00VYllj5o50-s8EuSnkanXKWGPLGjfLZImaB-h0YsqcmCuLvEuCQli9ivN7mB0dnh9MaV-NgTou0oYmwuTSClc4L20muJARz1nKRBIn3MRZxF3ErQmB3DgXNnE-zhIveCytNwpl6LZho6zKYgeI84WLnbVWxgU3zMsY62eFV3lpbBH5EaSDB7TrpcqxYsYfPWDSLvXgOY2ew-fBcyOY3LdbdGIdz7ZQg4P1o2Gnw4rybNudMCK0Ce6o9eyMoVZfm4GncgR7j4bJfW9YK1Ao1Qi-DONGh_mMlzSmLKrrWqPiYyKF4tk_bEQWpxnmhk_bIAUL1f8z8eE_vvEzvJyenxzr42-nP3bhFWtrgSBs6SNsNMvr4lPIyBq71864O0jRNZg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Predicting+the+behavior+of+a+grid-connected+photovoltaic+system+from+measurements+of+solar+radiation+and+ambient+temperature&rft.jtitle=Applied+energy&rft.au=Hernandez%2C+J&rft.au=Gordillo%2C+G&rft.au=Vallejo%2C+W&rft.date=2013-04-01&rft.issn=0306-2619&rft.volume=104&rft.spage=527&rft.epage=537&rft_id=info:doi/10.1016%2Fj.apenergy.2012.10.022&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0306-2619&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0306-2619&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0306-2619&client=summon