The Bio-Synthesis of Three Metal Oxide Nanoparticles (ZnO, MnO2, and MgO) and Their Antibacterial Activity Against the Bacterial Leaf Blight Pathogen
Xanthomonas oryzae pv. oryzae ( Xoo ) is the most infectious pathogen of rice, which causes bacterial leaf blight (BLB) disease. However, the accumulation of chemical or antibiotic resistance of Xoo necessitate the development of its alternative control. In this study, we biologically synthesize thr...
Saved in:
Published in | Frontiers in microbiology Vol. 11; p. 588326 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
Frontiers Media S.A
04.12.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Xanthomonas oryzae
pv.
oryzae
(
Xoo
) is the most infectious pathogen of rice, which causes bacterial leaf blight (BLB) disease. However, the accumulation of chemical or antibiotic resistance of
Xoo
necessitate the development of its alternative control. In this study, we biologically synthesize three metal oxide nanoparticles (ZnO, MnO
2
, and MgO) using rhizophytic bacteria
Paenibacillus polymyxa
strain Sx3 as reducing agent. The biosynthesis of nanoparticles was confirmed and characterized by using UV-vis spectroscopy, XRD, FTIR, EDS, SEM, and TEM analysis. The UV Vis reflectance of the nanoparticle had peaks at 385, 230, and 230 nm with an average crystallite particle size 62.8, 18.8, and 10.9 nm for ZnO, MnO
2
, and MgO, respectively. Biogenic ZnO, MnO
2
, and MgO nanoparticles showed substantial significant inhibition effects against
Xoo
strain GZ 0006 at a concentration of 16.0 μg/ml, for which the antagonized area was 17, 13, and 13 mm and the biofilm formation was decreased by 74.5, 74.4, and 80.2%, respectively. Moreover, the underlining mechanism of nanoparticles was inferred to be in relation to the reactive oxygen species based on their antibacterial efficiency and the deformity in the cell wall phenomenon. Overall, an attractive and eco-friendly biogenic ZnO, MnO
2
, and MgO nanoparticles were successfully produced. Altogether, the results suggest that the nanoparticles had an excellent antibacterial efficacy against BLB disease in rice plants, together with the increase in growth parameter and rice biomass. In conclusion, the synthesized nanoparticles could serve as an alternative safe measure in combatting the antibiotic-resistant of Xoo. |
---|---|
AbstractList | Xanthomonas oryzae pv. oryzae (Xoo) is the most infectious pathogen of rice, which causes bacterial leaf blight (BLB) disease. However, the accumulation of chemical or antibiotic resistance of Xoo necessitate the development of its alternative control. In this study, we biologically synthesize three metal oxide nanoparticles (ZnO, MnO2, and MgO) using rhizophytic bacteria Paenibacillus polymyxa strain Sx3 as reducing agent. The biosynthesis of nanoparticles was confirmed and characterized by using UV-vis spectroscopy, XRD, FTIR, EDS, SEM, and TEM analysis. The UV Vis reflectance of the nanoparticle had peaks at 385, 230, and 230 nm with an average crystallite particle size 62.8, 18.8, and 10.9 nm for ZnO, MnO2, and MgO, respectively. Biogenic ZnO, MnO2, and MgO nanoparticles showed substantial significant inhibition effects against Xoo strain GZ 0006 at a concentration of 16.0 μg/ml, for which the antagonized area was 17, 13, and 13 mm and the biofilm formation was decreased by 74.5, 74.4, and 80.2%, respectively. Moreover, the underlining mechanism of nanoparticles was inferred to be in relation to the reactive oxygen species based on their antibacterial efficiency and the deformity in the cell wall phenomenon. Overall, an attractive and eco-friendly biogenic ZnO, MnO2, and MgO nanoparticles were successfully produced. Altogether, the results suggest that the nanoparticles had an excellent antibacterial efficacy against BLB disease in rice plants, together with the increase in growth parameter and rice biomass. In conclusion, the synthesized nanoparticles could serve as an alternative safe measure in combatting the antibiotic-resistant of Xoo.Xanthomonas oryzae pv. oryzae (Xoo) is the most infectious pathogen of rice, which causes bacterial leaf blight (BLB) disease. However, the accumulation of chemical or antibiotic resistance of Xoo necessitate the development of its alternative control. In this study, we biologically synthesize three metal oxide nanoparticles (ZnO, MnO2, and MgO) using rhizophytic bacteria Paenibacillus polymyxa strain Sx3 as reducing agent. The biosynthesis of nanoparticles was confirmed and characterized by using UV-vis spectroscopy, XRD, FTIR, EDS, SEM, and TEM analysis. The UV Vis reflectance of the nanoparticle had peaks at 385, 230, and 230 nm with an average crystallite particle size 62.8, 18.8, and 10.9 nm for ZnO, MnO2, and MgO, respectively. Biogenic ZnO, MnO2, and MgO nanoparticles showed substantial significant inhibition effects against Xoo strain GZ 0006 at a concentration of 16.0 μg/ml, for which the antagonized area was 17, 13, and 13 mm and the biofilm formation was decreased by 74.5, 74.4, and 80.2%, respectively. Moreover, the underlining mechanism of nanoparticles was inferred to be in relation to the reactive oxygen species based on their antibacterial efficiency and the deformity in the cell wall phenomenon. Overall, an attractive and eco-friendly biogenic ZnO, MnO2, and MgO nanoparticles were successfully produced. Altogether, the results suggest that the nanoparticles had an excellent antibacterial efficacy against BLB disease in rice plants, together with the increase in growth parameter and rice biomass. In conclusion, the synthesized nanoparticles could serve as an alternative safe measure in combatting the antibiotic-resistant of Xoo. Xanthomonas oryzae pv. oryzae ( Xoo ) is the most infectious pathogen of rice, which causes bacterial leaf blight (BLB) disease. However, the accumulation of chemical or antibiotic resistance of Xoo necessitate the development of its alternative control. In this study, we biologically synthesize three metal oxide nanoparticles (ZnO, MnO 2 , and MgO) using rhizophytic bacteria Paenibacillus polymyxa strain Sx3 as reducing agent. The biosynthesis of nanoparticles was confirmed and characterized by using UV-vis spectroscopy, XRD, FTIR, EDS, SEM, and TEM analysis. The UV Vis reflectance of the nanoparticle had peaks at 385, 230, and 230 nm with an average crystallite particle size 62.8, 18.8, and 10.9 nm for ZnO, MnO 2 , and MgO, respectively. Biogenic ZnO, MnO 2 , and MgO nanoparticles showed substantial significant inhibition effects against Xoo strain GZ 0006 at a concentration of 16.0 μg/ml, for which the antagonized area was 17, 13, and 13 mm and the biofilm formation was decreased by 74.5, 74.4, and 80.2%, respectively. Moreover, the underlining mechanism of nanoparticles was inferred to be in relation to the reactive oxygen species based on their antibacterial efficiency and the deformity in the cell wall phenomenon. Overall, an attractive and eco-friendly biogenic ZnO, MnO 2 , and MgO nanoparticles were successfully produced. Altogether, the results suggest that the nanoparticles had an excellent antibacterial efficacy against BLB disease in rice plants, together with the increase in growth parameter and rice biomass. In conclusion, the synthesized nanoparticles could serve as an alternative safe measure in combatting the antibiotic-resistant of Xoo. pv. ( ) is the most infectious pathogen of rice, which causes bacterial leaf blight (BLB) disease. However, the accumulation of chemical or antibiotic resistance of necessitate the development of its alternative control. In this study, we biologically synthesize three metal oxide nanoparticles (ZnO, MnO , and MgO) using rhizophytic bacteria strain Sx3 as reducing agent. The biosynthesis of nanoparticles was confirmed and characterized by using UV-vis spectroscopy, XRD, FTIR, EDS, SEM, and TEM analysis. The UV Vis reflectance of the nanoparticle had peaks at 385, 230, and 230 nm with an average crystallite particle size 62.8, 18.8, and 10.9 nm for ZnO, MnO , and MgO, respectively. Biogenic ZnO, MnO , and MgO nanoparticles showed substantial significant inhibition effects against strain GZ 0006 at a concentration of 16.0 μg/ml, for which the antagonized area was 17, 13, and 13 mm and the biofilm formation was decreased by 74.5, 74.4, and 80.2%, respectively. Moreover, the underlining mechanism of nanoparticles was inferred to be in relation to the reactive oxygen species based on their antibacterial efficiency and the deformity in the cell wall phenomenon. Overall, an attractive and eco-friendly biogenic ZnO, MnO , and MgO nanoparticles were successfully produced. Altogether, the results suggest that the nanoparticles had an excellent antibacterial efficacy against BLB disease in rice plants, together with the increase in growth parameter and rice biomass. In conclusion, the synthesized nanoparticles could serve as an alternative safe measure in combatting the antibiotic-resistant of Xoo. Xanthomonas oryzae pv. oryzae (Xoo) is the most infectious pathogen of rice, which causes bacterial leaf blight (BLB) disease. However, the accumulation of chemical or antibiotic resistance of Xoo necessitate the development of its alternative control. In this study, we biologically synthesize three metal oxide nanoparticles (ZnO, MnO2, and MgO) using rhizophytic bacteria Paenibacillus polymyxa strain Sx3 as reducing agent. The biosynthesis of nanoparticles was confirmed and characterized by using UV-vis spectroscopy, XRD, FTIR, EDS, SEM, and TEM analysis. The UV Vis reflectance of the nanoparticle had peaks at 385, 230, and 230 nm with an average crystallite particle size 62.8, 18.8, and 10.9 nm for ZnO, MnO2, and MgO, respectively. Biogenic ZnO, MnO2, and MgO nanoparticles showed substantial significant inhibition effects against Xoo strain GZ 0006 at a concentration of 16.0 μg/ml, for which the antagonized area was 17, 13, and 13 mm and the biofilm formation was decreased by 74.5, 74.4, and 80.2%, respectively. Moreover, the underlining mechanism of nanoparticles was inferred to be in relation to the reactive oxygen species based on their antibacterial efficiency and the deformity in the cell wall phenomenon. Overall, an attractive and eco-friendly biogenic ZnO, MnO2, and MgO nanoparticles were successfully produced. Altogether, the results suggest that the nanoparticles had an excellent antibacterial efficacy against BLB disease in rice plants, together with the increase in growth parameter and rice biomass. In conclusion, the synthesized nanoparticles could serve as an alternative safe measure in combatting the antibiotic-resistant of Xoo. |
Author | Li, Bin Ahmed, Temoor Yan, Chengqi Ogunyemi, Solabomi Olaitan Abdallah, Yasmine Zhang, Muchen Chen, Jianping Ali, Md. Arshad Qiu, Wen Yang, Yong |
AuthorAffiliation | 1 State Key Laboratory of Rice Biology, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University , Hangzhou , China 4 Institute of Plant Virology, Ningbo University , Ningbo , China 3 Department of Plant Pathology, Faculty of Agriculture, Minia University , Minya , Egypt 2 Department of Crop Protection, Federal University of Agriculture Abeokuta , Abeokuta , Nigeria 5 State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences , Hangzhou , China |
AuthorAffiliation_xml | – name: 2 Department of Crop Protection, Federal University of Agriculture Abeokuta , Abeokuta , Nigeria – name: 1 State Key Laboratory of Rice Biology, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University , Hangzhou , China – name: 5 State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences , Hangzhou , China – name: 3 Department of Plant Pathology, Faculty of Agriculture, Minia University , Minya , Egypt – name: 4 Institute of Plant Virology, Ningbo University , Ningbo , China |
Author_xml | – sequence: 1 givenname: Solabomi Olaitan surname: Ogunyemi fullname: Ogunyemi, Solabomi Olaitan – sequence: 2 givenname: Muchen surname: Zhang fullname: Zhang, Muchen – sequence: 3 givenname: Yasmine surname: Abdallah fullname: Abdallah, Yasmine – sequence: 4 givenname: Temoor surname: Ahmed fullname: Ahmed, Temoor – sequence: 5 givenname: Wen surname: Qiu fullname: Qiu, Wen – sequence: 6 givenname: Md. Arshad surname: Ali fullname: Ali, Md. Arshad – sequence: 7 givenname: Chengqi surname: Yan fullname: Yan, Chengqi – sequence: 8 givenname: Yong surname: Yang fullname: Yang, Yong – sequence: 9 givenname: Jianping surname: Chen fullname: Chen, Jianping – sequence: 10 givenname: Bin surname: Li fullname: Li, Bin |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33343527$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kstu3CAUhq0qVXNpHqCbimUqxVMMxpdNpUnUS6SZulJnUXWDDhhsIg9MgYk6D5L3refSUdJF2XDE-c_3g_jPkxPrrEqSNxmeUFrV7_XSSDEhmOAJqypKihfJWVYUeUox-XHypD5NLkO4x-PKRzHGr5JTSmlOGSnPksdFr9CNcen3jY29CiYgp9Gi90qhuYowoOa3aRX6CtatwEcjBxXQ1U_bXKO5bcg1Atuiede82xUjzXg0tdEIkFF5MwKmMpoHEzdo2oGxIaK4tTy2Zwo0uhlM10f0DWLvOmVfJy81DEFdHvaLZPHp4-L2SzprPt_dTmepzAsWU0oxYFVVkJeilgRwxgir60prmWEmVcEqAhmQIhPQtqxlQolW66LUDCrK6EVyt8e2Du75ypsl-A13YPjuwPmOH57MBaEaZ6QmguC8FbVoCZEllaISGsbmyPqwZ63WYqlaqWz0MDyDPu9Y0_POPfCyzIuClSPg6gDw7tdahciXJkg1DGCVWwdO8jJjNMfFVvr2qdfR5O-3joJsL5DeheCVPkoyzLfp4bv08G16-D4940z5z4w0EaJx2-ua4T-TfwDE6MuO |
CitedBy_id | crossref_primary_10_1002_cben_202200056 crossref_primary_10_1007_s13369_024_08709_z crossref_primary_10_3390_plants11182392 crossref_primary_10_1016_j_bcab_2023_102781 crossref_primary_10_1088_1742_6596_2133_1_012004 crossref_primary_10_1007_s44297_023_00006_9 crossref_primary_10_1016_j_jece_2021_106093 crossref_primary_10_3390_toxics10040172 crossref_primary_10_5423_PPJ_OA_10_2023_0145 crossref_primary_10_1016_j_mtsust_2022_100203 crossref_primary_10_3390_microorganisms11020378 crossref_primary_10_1016_j_inoche_2022_109312 crossref_primary_10_3390_life14121690 crossref_primary_10_3390_biom11060886 crossref_primary_10_1016_j_envres_2025_121002 crossref_primary_10_1002_ps_7857 crossref_primary_10_1002_ps_7218 crossref_primary_10_3390_plants11212892 crossref_primary_10_1039_D4NJ04053H crossref_primary_10_3389_fchem_2023_1235437 crossref_primary_10_3390_ijms26062492 crossref_primary_10_1038_s41598_024_85005_8 crossref_primary_10_3389_fmicb_2022_935193 crossref_primary_10_1038_s41598_023_28749_z crossref_primary_10_3390_jof9060611 crossref_primary_10_1080_10408398_2022_2046543 crossref_primary_10_3390_agronomy14092175 crossref_primary_10_1186_s11671_024_04063_z crossref_primary_10_1016_j_heliyon_2024_e40735 crossref_primary_10_3390_nano11040884 crossref_primary_10_1007_s00344_024_11262_6 crossref_primary_10_1007_s11947_024_03660_1 crossref_primary_10_1007_s11356_022_21925_0 crossref_primary_10_1016_j_plana_2023_100033 crossref_primary_10_1186_s40538_024_00534_8 crossref_primary_10_1039_D4RA02006E crossref_primary_10_1007_s42161_024_01723_y crossref_primary_10_1016_j_inoche_2023_111353 crossref_primary_10_1016_j_plana_2023_100027 crossref_primary_10_1016_j_apmt_2024_102335 crossref_primary_10_1039_D4EN00174E crossref_primary_10_3390_v14081770 crossref_primary_10_1007_s10876_024_02705_x crossref_primary_10_1038_s41598_024_51398_9 crossref_primary_10_3389_fmicb_2021_700707 crossref_primary_10_1016_j_hazadv_2024_100401 crossref_primary_10_1039_D5EN00055F crossref_primary_10_1002_app_54945 crossref_primary_10_15407_frg2023_04_314 crossref_primary_10_1002_smll_202205687 crossref_primary_10_1021_acs_jafc_3c07350 crossref_primary_10_1016_j_bcab_2024_103293 crossref_primary_10_1016_j_jtumed_2022_10_006 crossref_primary_10_1016_j_stress_2023_100253 crossref_primary_10_2174_1389557523666221212114416 crossref_primary_10_1007_s00284_021_02737_w crossref_primary_10_1007_s12298_022_01251_y crossref_primary_10_1093_micmic_ozad067_006 crossref_primary_10_3390_molecules30051164 crossref_primary_10_1186_s12934_025_02648_6 crossref_primary_10_3389_fmicb_2022_1034779 crossref_primary_10_1007_s10895_023_03560_1 crossref_primary_10_1007_s12010_024_05102_2 crossref_primary_10_1007_s00284_023_03455_1 crossref_primary_10_1080_07388551_2021_2007842 crossref_primary_10_3390_coatings11111385 crossref_primary_10_1016_j_heliyon_2024_e37939 crossref_primary_10_1016_j_jenvman_2024_123420 crossref_primary_10_1007_s43621_025_00855_0 crossref_primary_10_2174_1389201023666220608113924 crossref_primary_10_1039_D4NR01354A crossref_primary_10_3389_fmicb_2023_1193206 crossref_primary_10_1016_j_chemosphere_2022_137301 crossref_primary_10_3390_plants12040815 crossref_primary_10_1016_j_envpol_2021_117785 crossref_primary_10_3389_fmicb_2021_792737 crossref_primary_10_1016_j_matchemphys_2025_130517 crossref_primary_10_1016_j_fpsl_2023_101213 crossref_primary_10_1002_smll_202207136 crossref_primary_10_3389_fbioe_2021_788574 crossref_primary_10_3390_toxics10100553 crossref_primary_10_1186_s41938_021_00475_6 crossref_primary_10_1039_D4EN00548A crossref_primary_10_3390_antiox11061064 crossref_primary_10_1039_D2NR03944C crossref_primary_10_1007_s12223_024_01147_2 crossref_primary_10_1007_s40684_024_00647_3 crossref_primary_10_1016_j_chemosphere_2023_139312 crossref_primary_10_1016_j_pestbp_2023_105447 crossref_primary_10_1016_j_pestbp_2023_105722 crossref_primary_10_1007_s11033_023_08914_3 crossref_primary_10_3389_fmicb_2021_718963 crossref_primary_10_1186_s40543_024_00446_0 crossref_primary_10_1016_j_jma_2024_06_014 |
Cites_doi | 10.1007/978-3-319-44890-9_23 10.3389/fmicb.2018.00790 10.1007/s12668-015-0185-6 10.1016/j.colsurfb.2018.11.009 10.1111/lam.13117 10.1007/s42161-018-0188-6 10.2903/sp.efsa.2014.EN-621 10.3390/molecules25204795 10.1002/elan.200403216 10.1016/j.micpath.2018.11.017 10.1016/j.foodcont.2018.05.008 10.1016/s1872-2067(11)60431-2 10.1080/21691401.2016.1192040 10.1007/s13204-018-0852-3 10.1007/s12010-011-9245-8 10.1021/la026772l 10.1021/la0202374 10.1007/s00284-006-0485-8 10.1080/21691401.2019.1622552 10.5012/bkcs.2009.30.11.2567 10.1016/j.nano.2009.07.002 10.3389/fmicb.2017.01895 10.1016/j.ecoenv.2015.03.039 10.1016/j.btre.2014.10.009 10.1016/j.aquatox.2014.10.014 10.1007/s12010-014-0831-4 10.1038/nprot.2007.521 10.2110/pec.85.35.0001 10.1016/j.colsurfb.2008.02.018 10.1021/cm981122h 10.1016/j.colsurfb.2009.09.005 10.1016/j.cej.2010.07.006 10.1111/j.1574-6968.2007.01012.x 10.1049/iet-nbt.2014.0051 10.1007/s11051-011-0595-5 10.1080/21691401.2018.1557671 10.1016/j.watres.2006.08.004 10.1007/s11356-016-8170-3 10.1080/21691401.2016.1241793 10.1046/j.1472-765X.2003.01348.x 10.1007/s11270-015-2738-2 10.1007/s10529-014-1579-1 10.1155/2011/546074 10.1007/s00253-015-6559-4 10.1007/s40003-014-0113-y 10.20546/ijcmas.2017.603.117 10.1038/srep24312 10.1166/jbns.2015.1296 10.1007/s10646-015-1505-x 10.1049/iet-nbt.2012.0041 10.1016/j.carbpol.2016.07.070 10.1016/j.nantod.2015.04.002 10.1016/s1413-8670(11)70197-0 10.1039/c9ra04246f 10.1016/j.jbiotec.2010.06.012 10.1016/j.bbagen.2013.10.001 10.1016/j.jtusci.2016.09.004 10.1099/00207713-40-3-309 10.1002/adfm.200500029 10.1155/2019/5620989 10.1016/j.ceramint.2009.09.026 10.1016/j.actbio.2010.03.030 10.1016/j.cej.2009.12.035 10.1590/0104-6632.20140313s00002813 10.1016/s0168-1605(01)00609-2 10.1016/j.saa.2007.11.012 10.1128/jb.01406-07 10.2147/ijn.s52306 10.1073/pnas.060030097 10.3390/ma9110944 10.3389/fpls.2015.01243 |
ContentType | Journal Article |
Copyright | Copyright © 2020 Ogunyemi, Zhang, Abdallah, Ahmed, Qiu, Ali, Yan, Yang, Chen and Li. Copyright © 2020 Ogunyemi, Zhang, Abdallah, Ahmed, Qiu, Ali, Yan, Yang, Chen and Li. 2020 Ogunyemi, Zhang, Abdallah, Ahmed, Qiu, Ali, Yan, Yang, Chen and Li |
Copyright_xml | – notice: Copyright © 2020 Ogunyemi, Zhang, Abdallah, Ahmed, Qiu, Ali, Yan, Yang, Chen and Li. – notice: Copyright © 2020 Ogunyemi, Zhang, Abdallah, Ahmed, Qiu, Ali, Yan, Yang, Chen and Li. 2020 Ogunyemi, Zhang, Abdallah, Ahmed, Qiu, Ali, Yan, Yang, Chen and Li |
DBID | AAYXX CITATION NPM 7X8 5PM DOA |
DOI | 10.3389/fmicb.2020.588326 |
DatabaseName | CrossRef PubMed MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic CrossRef PubMed |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1664-302X |
ExternalDocumentID | oai_doaj_org_article_b23f01292b204db9bd22c73cb8bfab23 PMC7746657 33343527 10_3389_fmicb_2020_588326 |
Genre | Journal Article |
GrantInformation_xml | – fundername: NIEHS NIH HHS grantid: 27306C2006 – fundername: National Natural Science Foundation of China |
GroupedDBID | 53G 5VS 9T4 AAFWJ AAKDD AAYXX ACGFO ACGFS ACXDI ADBBV ADRAZ AENEX AFPKN ALMA_UNASSIGNED_HOLDINGS AOIJS BAWUL BCNDV CITATION DIK ECGQY GROUPED_DOAJ GX1 HYE KQ8 M48 M~E O5R O5S OK1 PGMZT RNS RPM IPNFZ NPM RIG 7X8 5PM |
ID | FETCH-LOGICAL-c465t-330a0e88a47b9c2a01525998ffc105ce6582a1a261badd5d5bebdff67f5a8353 |
IEDL.DBID | M48 |
ISSN | 1664-302X |
IngestDate | Wed Aug 27 01:25:50 EDT 2025 Thu Aug 21 14:01:53 EDT 2025 Thu Jul 10 18:26:21 EDT 2025 Mon Jul 21 05:59:50 EDT 2025 Tue Jul 01 01:12:46 EDT 2025 Thu Apr 24 22:56:33 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Xanthomonas oryzae pv. oryzae antibacterial nanoparticles Paenibacillus polymyxa biosynthesis |
Language | English |
License | Copyright © 2020 Ogunyemi, Zhang, Abdallah, Ahmed, Qiu, Ali, Yan, Yang, Chen and Li. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c465t-330a0e88a47b9c2a01525998ffc105ce6582a1a261badd5d5bebdff67f5a8353 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 Edited by: Marco Scortichini, Council for Agricultural and Economics Research (CREA), Italy These authors have contributed equally to this work Reviewed by: Randy Ortiz-Castro, National Council of Science and Technology (CONACYT), Mexico; Sang-Wook Han, Chung-Ang University, South Korea This article was submitted to Microbe and Virus Interactions with Plants, a section of the journal Frontiers in Microbiology |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.3389/fmicb.2020.588326 |
PMID | 33343527 |
PQID | 2471534067 |
PQPubID | 23479 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_b23f01292b204db9bd22c73cb8bfab23 pubmedcentral_primary_oai_pubmedcentral_nih_gov_7746657 proquest_miscellaneous_2471534067 pubmed_primary_33343527 crossref_primary_10_3389_fmicb_2020_588326 crossref_citationtrail_10_3389_fmicb_2020_588326 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-12-04 |
PublicationDateYYYYMMDD | 2020-12-04 |
PublicationDate_xml | – month: 12 year: 2020 text: 2020-12-04 day: 04 |
PublicationDecade | 2020 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland |
PublicationTitle | Frontiers in microbiology |
PublicationTitleAlternate | Front Microbiol |
PublicationYear | 2020 |
Publisher | Frontiers Media S.A |
Publisher_xml | – name: Frontiers Media S.A |
References | Abdallah (B1) 2020; 25 Rashid (B59) 2000; 97 Padman (B51) 2014; 36 Duffy (B15) 2018; 92 Fouad (B16) 2017; 45 Ogunyemi (B47); 101 Hameed (B17) 2016; 6 Castro (B10) 2013; 7 Cullity (B12) 1978 Divyapriya (B14) 2014; 3 Kumari (B32) 2017; 24 Adams (B4) 2006; 40 Chen (B11) 2003; 37 Ogunyemi (B46); 47 Zabrieski (B78) 2015; 24 Rajabairavi (B56) 2017; 189 Ahmad (B5) 2003; 19 Bastrzyk (B7) 2019; 174 Salunkhe (B62) 2011; 165 Kalimuthu (B29) 2008; 65 Salunke (B61) 2015; 99 Kiran (B31) 2010; 148 Ogunyemi (B48); 126 Sneha (B66) 2010; 162 Swings (B69) 1990; 40 Sharma (B64) 2017; 11 Li (B38) 2015; 158 Yang (B76) 2007; 54 Juibari (B28) 2015; 5 Bao (B6) 2010; 6 Thakkar (B72) 2010; 6 Raliya (B57) 2015; 5 Tang (B70) 2014; 31 Wang (B74) 2016; 6 Abdallah (B3); 68 Jonit (B27) 2016; 4 Le Ouay (B35) 2015; 10 Yasmin (B77) 2017; 8 Samanta (B63) 2014; 6 Polowezyk (B55) 2016; 9 De Yoreo (B13) 2015; 349 Jin (B25) 2011; 13 Sharma (B65) 2017; 6 Kauffman (B30) 1973; 56 Lee (B36) 2008; 190 Tarafdar (B71) 2014; 3 Lakshmi (B34) 2012; 3 Borase (B8) 2014; 173 Abdallah (B2); 2019 Ogunyemi (B49); 47 Mirzaei (B42) 2012; 33 Moon (B44) 2015; 9 Omid (B50) 2014; 1840 Sundrarajan (B68) 2012; 7 Pandian (B52) 2015; 121 Peters (B53) 2014; 11 Hirota (B20) 2010; 36 Liu (B39) 2016; 227 Makhluf (B40) 2005; 15 Hassan (B18) 2011; 15 Stoimenov (B67) 2002; 18 Wiegand (B75) 2008; 3 Mie (B41) 2014; 9 Cai (B9) 2018; 9 Jones (B26) 2008; 279 Philip (B54) 2008; 71 Ilk (B22) 2016; 45 Kwon (B33) 2009; 30 Li (B37) 2016; 152 Helander (B19) 2001; 71 Zhou (B79) 1999; 11 Janeiro (B23) 2005; 17 Udayasoorian (B73) 2011; 6 Rathore (B60) 2015; 9 Ibrahim (B21) 2019; 9 Jha (B24) 2010; 75 Montero (B43) 2010; 161 Mourato (B45) 2011; 2011 Rangarajan (B58) 2018; 8 |
References_xml | – volume: 189 start-page: 245 year: 2017 ident: B56 article-title: Biosynthesis of novel zinc oxide nanoparticles (ZnO NPs) using endophytic bacteria Sphingobacterium thalpophilum. publication-title: In J. Ebenezar. Recent Trends Mater. Sci. Appl. doi: 10.1007/978-3-319-44890-9_23 – volume: 9 year: 2018 ident: B9 article-title: Magnesium oxide nanoparticles: effective agricultural antibacterial agent against Ralstonia solanacearum. publication-title: Front. Microbiol. doi: 10.3389/fmicb.2018.00790 – volume: 56 start-page: 537 year: 1973 ident: B30 article-title: An improved technique for evaluating resistance of rice varieties to Xanthomonas oryzae. publication-title: Plant Dis. Report. – volume: 5 start-page: 233 year: 2015 ident: B28 article-title: Investigation of a hot-spring extremophilic Ureibacillus thermosphaericus strain Thermo-BF for extracellular biosynthesis of functionalized Gold nanoparticles. publication-title: Bionanoscience doi: 10.1007/s12668-015-0185-6 – volume: 7 start-page: 983 year: 2012 ident: B68 article-title: A comparative study on antibacterial properties of mgo nanoparticles prepared under different calcination temperature. publication-title: Dig. J. Nanomater. Bios. – volume: 174 start-page: 145 year: 2019 ident: B7 article-title: Effect of a lipopeptide biosurfactant on the precipitation of calcium carbonate. publication-title: Colloids Surf. B Biointerfaces doi: 10.1016/j.colsurfb.2018.11.009 – volume: 68 start-page: 423 ident: B3 article-title: Plant growth promotion and suppression of bacterial leaf blight in rice by Paenibacillus polymyxa Sx3. publication-title: Lett. Appl. Microbiol. doi: 10.1111/lam.13117 – volume: 101 start-page: 263 ident: B47 article-title: Identification and characterization of five new OP2-related Myoviridae bacteriophages infecting different strains of Xanthomonas oryzae pv. oryzae. publication-title: J. Plant Pathol. doi: 10.1007/s42161-018-0188-6 – volume: 11 year: 2014 ident: B53 article-title: Inventory of nanotechnology applications in the agricultural, feed and food sector. publication-title: EFSA doi: 10.2903/sp.efsa.2014.EN-621 – volume: 25 year: 2020 ident: B1 article-title: Bioinspired green synthesis of chitosan and zinc oxide nanoparticles with strong antibacterial activity against rice pathogen Xanthomonas oryzae pv. oryzae. publication-title: Molecules doi: 10.3390/molecules25204795 – volume: 17 start-page: 1059 year: 2005 ident: B23 article-title: Chrysin and (+/-)-taxifolin electrochemical oxidation mechanisms. publication-title: Electroanal doi: 10.1002/elan.200403216 – volume: 126 start-page: 343 ident: B48 article-title: Role of type IV secretion system genes in virulence of rice bacterial brown stripe pathogen Acidovorax oryzae strain RS-2. publication-title: Microb. Pathog doi: 10.1016/j.micpath.2018.11.017 – volume: 92 start-page: 293 year: 2018 ident: B15 article-title: Investigation into the antibacterial activity of silver, zinc oxide and copper oxide nanoparticles against poultry-relevant isolates of Salmonella and Campylobacter. publication-title: Food Control doi: 10.1016/j.foodcont.2018.05.008 – volume: 33 start-page: 1502 year: 2012 ident: B42 article-title: Microwave assisted sol-gel synthesis of MgO nanoparticles and their catalytic activity in the synthesis of Hantzsch 1,4-Dihydropyridines. publication-title: Chin. J. Catal doi: 10.1016/s1872-2067(11)60431-2 – volume: 45 start-page: 907 year: 2016 ident: B22 article-title: Kaempferol loaded lecithin/chitosan nanoparticles: Preparation, characterization, and their potential applications as a sustainable antifungal agent. publication-title: Artif. Cells Nanomed. Biotechnol. doi: 10.1080/21691401.2016.1192040 – volume: 8 start-page: 1809 year: 2018 ident: B58 article-title: Bacillus lipopeptides: powerful capping and dispersing agents of silver nanoparticles. publication-title: Appl. Nanosci. doi: 10.1007/s13204-018-0852-3 – volume: 165 start-page: 221 year: 2011 ident: B62 article-title: Studies on silver accumulation and nanoparticle synthesis by Cochliobolus lunatus. publication-title: Appl. Biochem. Biotechnol doi: 10.1007/s12010-011-9245-8 – volume: 19 start-page: 3550 year: 2003 ident: B5 article-title: Extracellular biosynthesis of monodisperse gold nanoparticles by a novel extremophilic actinomycete, Thermomonospora sp. publication-title: Langmuir doi: 10.1021/la026772l – volume: 18 start-page: 6679 year: 2002 ident: B67 article-title: Metal oxide nanoparticles as bactericidal agents. publication-title: Langmuir doi: 10.1021/la0202374 – volume: 54 start-page: 307 year: 2007 ident: B76 article-title: Zinc uptake regulator (zur) gene involved in zinc homeostasis and virulence of Xoo in rice. publication-title: Curr. Microbiol doi: 10.1007/s00284-006-0485-8 – volume: 47 start-page: 2230 ident: B49 article-title: Biosynthesis and characterization of magnesium oxide and manganese dioxide nanoparticles using Matricaria chamomilla L. extract and its inhibitory effect on Acidovorax oryzae strain RS-2. publication-title: Artif. Cells Nanomed. Biotechnol doi: 10.1080/21691401.2019.1622552 – volume: 30 start-page: 2567 year: 2009 ident: B33 article-title: Infra-red study of surface carbonation on polycrystalline magnesium hydroxide. publication-title: Bull. Korean Chem. Soc doi: 10.5012/bkcs.2009.30.11.2567 – volume: 6 start-page: 257 year: 2010 ident: B72 article-title: Biological synthesis of metallic nanoparticles. publication-title: Nanomed. Nanotechnol. Biol. Med doi: 10.1016/j.nano.2009.07.002 – volume: 8 year: 2017 ident: B77 article-title: Biocontrol of bacterial leaf blight of rice and profiling of secondary metabolites produced by rhizospheric Pseudomonas aeruginosa BRp3. publication-title: Front. Microbiol. doi: 10.3389/fmicb.2017.01895 – volume: 121 start-page: 211 year: 2015 ident: B52 article-title: Synthesis of silver nanoparticle and its application. publication-title: Ecotoxicol. Environ. Saf doi: 10.1016/j.ecoenv.2015.03.039 – volume: 5 start-page: 22 year: 2015 ident: B57 article-title: TiO2 nanoparticle biosynthesis and its physiological effect on mung bean (Vigna radiata L.). publication-title: Biotechnol. Rep. doi: 10.1016/j.btre.2014.10.009 – volume: 158 start-page: 1 year: 2015 ident: B38 article-title: Toxicity of nano-TiO2 on algae and the site of reactive oxygen species production. publication-title: Aquat. Toxicol doi: 10.1016/j.aquatox.2014.10.014 – volume: 173 start-page: 1 year: 2014 ident: B8 article-title: Plant extract: a promising biomatrix for ecofriendly, controlled synthesis of silver nanoparticles. publication-title: Appl. Biochem. Biotechnol doi: 10.1007/s12010-014-0831-4 – volume: 3 start-page: 163 year: 2008 ident: B75 article-title: Agar and broth dilution methods to determine the minimal inhibitory concentration (MIC) of antimicrobial substances. publication-title: Nat. Protoc doi: 10.1038/nprot.2007.521 – volume: 349 start-page: 1 year: 2015 ident: B13 article-title: Crystallization by particle attachment in synthetic, biogenic and geologic environments. publication-title: Science doi: 10.2110/pec.85.35.0001 – volume: 65 start-page: 150 year: 2008 ident: B29 article-title: Biosynthesis of silver nanocrystals by Bacillus licheniformis. publication-title: Colloids Surf. B Biointerfaces doi: 10.1016/j.colsurfb.2008.02.018 – volume: 11 start-page: 545 year: 1999 ident: B79 article-title: Formation of silver nanowires by a novel solid-liquid phase arc discharge method. publication-title: Chem. Mater doi: 10.1021/cm981122h – volume: 3 start-page: S151 year: 2012 ident: B34 article-title: Synthesis, characterization and evaluation of antimicrobial activity of zinc oxide nanoparticles. publication-title: J. Biochem. Technol – volume: 75 start-page: 330 year: 2010 ident: B24 article-title: Ferroelectric BaTiO3 nanoparticles: biosynthesis and characterization. publication-title: Colloids Surf. B Biointerfaces doi: 10.1016/j.colsurfb.2009.09.005 – volume: 162 start-page: 989 year: 2010 ident: B66 article-title: Corynebacterium glutamicum-mediated crystallization of silver ions through sorption and reduction processes. publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2010.07.006 – volume: 279 start-page: 71 year: 2008 ident: B26 article-title: Antibacterial activity of ZnO nanoparticle suspensions on a broad spectrum of microorganisms. publication-title: FEMS Microbiol. Lett. doi: 10.1111/j.1574-6968.2007.01012.x – volume: 9 start-page: 220 year: 2015 ident: B44 article-title: Biological synthesis of maganese dioxide nanoparticles by kalopanax pictus plant extract. publication-title: IET Nanobiotechnol. doi: 10.1049/iet-nbt.2014.0051 – volume: 13 start-page: 6877 year: 2011 ident: B25 article-title: Antibacterial activity of magnesium oxide (MgO) nanoparticles against food-borne pathogens. publication-title: J. Nanopart. Res doi: 10.1007/s11051-011-0595-5 – volume: 47 start-page: 341 ident: B46 article-title: Green synthesis of zinc oxide nanoparticles using different plant extracts and their antibacterial activity against Xanthomonas oryzae pv. oryzae. publication-title: Artif. Cells Nanomed. Biotechnol. doi: 10.1080/21691401.2018.1557671 – volume: 40 start-page: 3527 year: 2006 ident: B4 article-title: Comparative eco-toxicity of nanoscale TiO2, SiO2 and ZnO water suspensions. publication-title: Water Res doi: 10.1016/j.watres.2006.08.004 – volume: 24 start-page: 4645 year: 2017 ident: B32 article-title: Biogenic synthesis of silver nanoparticle by using secondary metabolites from Pseudomonas aeruginosa DM1 and its anti-algal effect on Chlorella vulgaris and Chlorella pyrenoidosa. publication-title: Environ. Sci Pollut. Res doi: 10.1007/s11356-016-8170-3 – volume: 45 start-page: 1369 year: 2017 ident: B16 article-title: Synthesis and characterization of silver nanoparticles using Bacillus amyloliquefaciens and Bacillus subtilis to control filarial vector Culex pipiens pallens and its antimicrobial activity. publication-title: Artif. Cells Nanomed. Biotechnol. doi: 10.1080/21691401.2016.1241793 – volume: 37 start-page: 105 year: 2003 ident: B11 article-title: Evidence of the production of silver nanoparticles via pretreatment of Phoma sp.3.2883 with silver nitrate. publication-title: Lett. Appl. Microbiol doi: 10.1046/j.1472-765X.2003.01348.x – volume: 227 year: 2016 ident: B39 article-title: Effects of stabilized nanoparticles of copper, zinc, manganese, and iron oxides in low concentrations on lettuce (Lactuca sativa) seed germination: nanotoxicants or nanonutrients? publication-title: Water Air Soil Pollu. doi: 10.1007/s11270-015-2738-2 – volume: 36 start-page: 2079 year: 2014 ident: B51 article-title: Biomediated synthesis of silver nanoparticles using Exiguobacterium mexicanum. publication-title: Biotechnol. Lett. doi: 10.1007/s10529-014-1579-1 – volume: 2011 year: 2011 ident: B45 article-title: Biosynthesis of crystalline silver and gold nanoparticles by extremophilic yeasts. publication-title: Bioinorg. Chem. Appl. doi: 10.1155/2011/546074 – volume: 99 start-page: 5419 year: 2015 ident: B61 article-title: Comparative study of MnO2 nanoparticle synthesis by marine bacterium Saccharophagus degrdans and yeast Saccharomyces cerevisiae. publication-title: Appl. Microbiol. Biotechnol. doi: 10.1007/s00253-015-6559-4 – volume: 3 start-page: 257 year: 2014 ident: B71 article-title: Development of zinc nanofertilizer to enhance crop production in pearl millet (Pennisetum americanum). publication-title: Agric. Res. doi: 10.1007/s40003-014-0113-y – volume: 6 start-page: 982 year: 2017 ident: B65 article-title: Review on Bacterial Blight of rice caused by Xanthomonas oryzae pv. oryzae: different management approaches and role of Pseudomonas fluorescens as a potential biocontrol agent. publication-title: Int. J. Curr. Microb. Appl. Sci. doi: 10.20546/ijcmas.2017.603.117 – year: 1978 ident: B12 publication-title: Elements of X-Ray Diffraction. – volume: 6 year: 2016 ident: B17 article-title: In vitro antibacterial activity of ZnO and Nd doped ZnO nanoparticles against ESBL producing Escherichia coli and Klebsiella pneumoniae. publication-title: Sci. Rep. doi: 10.1038/srep24312 – volume: 9 start-page: 209 year: 2015 ident: B60 article-title: Perspectives of biosynthesized magnesium nanoparticles in foliar application of wheat plant. publication-title: J. Bioananosci. doi: 10.1166/jbns.2015.1296 – volume: 24 start-page: 1305 year: 2015 ident: B78 article-title: Pesticidal activity of metal oxide nanoparticles on plant pathogenic isolates of Pythium. publication-title: Ecotoxicology doi: 10.1007/s10646-015-1505-x – volume: 7 start-page: 109 year: 2013 ident: B10 article-title: Biological synthesis of metallic nanoparticles using algae. publication-title: IET Nanobiotechnol. doi: 10.1049/iet-nbt.2012.0041 – volume: 152 start-page: 825 year: 2016 ident: B37 article-title: Synthesis, characterization, and antibacterial activity of chitosan/TiO2 nanocomposite against Xanthomonas oryzae pv. oryzae. publication-title: Carbohydr. Polym. doi: 10.1016/j.carbpol.2016.07.070 – volume: 10 start-page: 339 year: 2015 ident: B35 article-title: Antibacterial activity of silver nanoparticles: a surface science insight. publication-title: Nano Today doi: 10.1016/j.nantod.2015.04.002 – volume: 15 start-page: 305 year: 2011 ident: B18 article-title: Evaluation of different detection methods of biofilm formation in the clinical isolates. publication-title: Brazilian J. Infect. Dis doi: 10.1016/s1413-8670(11)70197-0 – volume: 9 start-page: 29293 year: 2019 ident: B21 article-title: Biosynthesis of silver nanoparticles using endophytic bacteria and their role in inhibition of rice pathogenic bacteria and plant growth promotion. publication-title: RSC Adv. doi: 10.1039/c9ra04246f – volume: 148 start-page: 221 year: 2010 ident: B31 article-title: Synthesis of silver nanoparticles by glycolipid biosurfactant produced from marine Brevibacterium casei MSA19. publication-title: J. Biotechnol doi: 10.1016/j.jbiotec.2010.06.012 – volume: 1840 start-page: 428 year: 2014 ident: B50 article-title: Synthesizing and staining manganese oxide nanoparticles for cytotoxicity and cellular uptake investigation. publication-title: BBA Gen. Subj doi: 10.1016/j.bbagen.2013.10.001 – volume: 11 start-page: 471 year: 2017 ident: B64 article-title: Phytoassisted synthesis of magnesium oxide nanoparticles with Swertia chirayaita. publication-title: J. Taibah Univ. Sci doi: 10.1016/j.jtusci.2016.09.004 – volume: 40 start-page: 301 year: 1990 ident: B69 article-title: Reclassification of the causal agents of bacterial blight (Xanthomonas campestris pv. oryzae) and bacterial leaf streak (Xanthomonas campestris pv. oryzicola) of rice as pathovars of Xanthomonas oryzae (ex Isiyama 1922) sp. publication-title: Int. J. Syst. Bacteriol doi: 10.1099/00207713-40-3-309 – volume: 15 start-page: 1708 year: 2005 ident: B40 article-title: Microwave-assisted synthesis of nanocrystalline MgO and its use as a bacteriocide. publication-title: Adv. Funct. Mater doi: 10.1002/adfm.200500029 – volume: 6 start-page: 279 year: 2011 ident: B73 article-title: Extracellular synthesis of silver nanoparticles using leaf extract of Cassia auriculata. publication-title: Dig. J. Nanomater. Bios – volume: 2019 ident: B2 article-title: The green synthesis of MgO nano-flowers using Rosmarinus officinalis L. (Rosemary) and the antibacterial activities against Xanthomonas oryzae pv. oryzae. publication-title: Biomed. Res. Int. doi: 10.1155/2019/5620989 – volume: 36 start-page: 497 year: 2010 ident: B20 article-title: Preparation of zinc oxide ceramics with a sustainable antibacterial activity under dark conditions. publication-title: Ceram. Int. doi: 10.1016/j.ceramint.2009.09.026 – volume: 6 start-page: 3534 year: 2010 ident: B6 article-title: Extracellular microbial synthesis of biocompatible CdTe quantum dots. publication-title: Acta Biomater doi: 10.1016/j.actbio.2010.03.030 – volume: 161 start-page: 332 year: 2010 ident: B43 article-title: In situ studies of structure-reactivity relations in biodiesel synthesis over nanocrystalline MgO. publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2009.12.035 – volume: 31 start-page: 591 year: 2014 ident: B70 article-title: MgO nanoparticles as antibacterial agent: preparation and activity. publication-title: Brazilian J. Chem. Eng doi: 10.1590/0104-6632.20140313s00002813 – volume: 71 start-page: 235 year: 2001 ident: B19 article-title: Chitosan disrupts the barrier properties of the outer membrane of Gram-negative bacteria. publication-title: Int. J. Food Microbiol doi: 10.1016/s0168-1605(01)00609-2 – volume: 71 start-page: 80 year: 2008 ident: B54 article-title: Synthesis and spectroscopic characterization of gold nanoparticles. publication-title: Spectrochim. Acta A Mol. Biomol. Spectrosc doi: 10.1016/j.saa.2007.11.012 – volume: 190 start-page: 2183 year: 2008 ident: B36 article-title: The Xanthomonas oryzae PhoPQ two-component system is required for AvrXA21 activity, hrpG expression, and virulence. publication-title: J. Bacteriol. doi: 10.1128/jb.01406-07 – volume: 6 start-page: 29 year: 2014 ident: B63 article-title: Isolation and characterization of Xanthomonas oryzae isolates from different regions of Midnapore district of West Bengal and their ecofriendly management by medicinal plant extracts. publication-title: Int. J. Phytomed – volume: 9 start-page: 121 year: 2014 ident: B41 article-title: Synthesis of silver nanoparticles with antibacterial activity using the lichen Parmotrema praesorediosum. publication-title: Int. J. Nanomed doi: 10.2147/ijn.s52306 – volume: 97 start-page: 4885 year: 2000 ident: B59 article-title: Inorganic polyphosphate is needed for swimming, swarming, and twitching motilities of Pseudomonas aeruginosa. publication-title: Proc. Natl. Acad. Sci. U. S. A doi: 10.1073/pnas.060030097 – volume: 3 start-page: 1635 year: 2014 ident: B14 article-title: Synthesis of zinc oxide nanoparticles and antimicrobial activity of Murraya koenigii. publication-title: World J. Pharm. Pharm. Sci. – volume: 9 year: 2016 ident: B55 article-title: Protein-mediated precipitation of calcium carbonate. publication-title: Materials doi: 10.3390/ma9110944 – volume: 6 year: 2016 ident: B74 article-title: Zinc oxide nanoparticles affect biomass accumulation and photosynthesis in Arabidopsis. publication-title: Front. Plant Sci. doi: 10.3389/fpls.2015.01243 – volume: 4 start-page: 63 year: 2016 ident: B27 article-title: Xanthomonas oryzae pv. oryzae biochemical tests, rice (Oryza sativa), bacterial leaf blight (BLB) diseases, Sekinchan. publication-title: Appl. Environ. Microbiol |
SSID | ssj0000402000 |
Score | 2.5614388 |
Snippet | Xanthomonas oryzae
pv.
oryzae
(
Xoo
) is the most infectious pathogen of rice, which causes bacterial leaf blight (BLB) disease. However, the accumulation of... pv. ( ) is the most infectious pathogen of rice, which causes bacterial leaf blight (BLB) disease. However, the accumulation of chemical or antibiotic... Xanthomonas oryzae pv. oryzae (Xoo) is the most infectious pathogen of rice, which causes bacterial leaf blight (BLB) disease. However, the accumulation of... |
SourceID | doaj pubmedcentral proquest pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 588326 |
SubjectTerms | antibacterial biosynthesis Microbiology nanoparticles Paenibacillus polymyxa Xanthomonas oryzae pv. oryzae |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1di9QwFA2ysOCLuH6Oq0sEH1S2msnHtH2cFZdFHEdwhMWXkNsma2HJLDtdcH-I_9d7k-4wI6IvvrVN26Q5N8k5veFexl6UIOoAQRehJjejG7c4pLQpKhCA7N_rytF_yNmnyclX_eHUnG6k-qI9YTk8cO64tyBVoJ8lEqTQLdTQStmUqoEKgsNCmn1xzdsQU2kOJlkkBjcmqrAaYeoaQD0oxRtToRlPthaiFK__TyTz972SG4vP8V12Z2CNfJpbu8du-XiP7eY8ktf32U8Em-NZ8eU6IqFbdSu-DHyBMHk-80iv-fxH13qOUylq5GErHH_5Lc4P-SzO5SF3seWzs_mrdLAg5wGfxr6DHMuZqm5ymgk-PXMdUkreU5Xr4o_eBX50Tkqff0ZSuUS7fMAWx-8X706KId9C0eiJ6QulhBO-QnRKqBvpBOVGQjkWQoMsrPFIVqQbO9RcgLOiaQ14aEOYlME4JHLqIduJy-gfMw7GBS8FBNGOtS8TzcMXau1rH1Rbjpi46XvbDLHIKSXGuUVNQnDZBJcluGyGa8Rerx-5yIE4_nbzEQG6vpFiaKcLaFl26Gb7L8sasec35mBxzJEjxUW_vFpZiSu6UUiF8EMeZfNYV6WUQgYqsaTcMpyttmyXxO57iuuNTJz8YE_-R-P32W3qj7TxRj9lO_3llX-G9KmHgzRSfgGxaxnh priority: 102 providerName: Directory of Open Access Journals |
Title | The Bio-Synthesis of Three Metal Oxide Nanoparticles (ZnO, MnO2, and MgO) and Their Antibacterial Activity Against the Bacterial Leaf Blight Pathogen |
URI | https://www.ncbi.nlm.nih.gov/pubmed/33343527 https://www.proquest.com/docview/2471534067 https://pubmed.ncbi.nlm.nih.gov/PMC7746657 https://doaj.org/article/b23f01292b204db9bd22c73cb8bfab23 |
Volume | 11 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3db9MwELfGEGgviM9RYJOReAC0TI7tfD2gqZsYEyIUiU6qeInsxC6RKgfaTFr_Ev5d7py0WqfCS9TEqV37zr7f-dz7EfIm0Syz2srAZhhmVGEFU0pGQaqZBvRvZKpwHzL_Gl9cys-TaLJDVvRW_QAutrp2yCd1OZ8dX_9ensCE_4AeJ9hbkEBdanD1ODuOUtDQ-A65C4YpQUKDvEf7fmFGX8n_KSWMY4wH8EkX59xeyx65L4QAOIGMMzeMls_tvw2Q3j5XecNQnT8kD3qESYedSjwiO8Y9Jvc6zsnlE_IHFIPCXfB96QD8LeoFbSwdg0gNzQ2MAh1d15WhsOyCP90fm6Nvf7jREc3diHJ6RJWraD4dvfMfxhhqoEPX1rrL_IyNlx0pBR1OVQ0AlLbY6Lr4i1GWns5wX4B-AwjagBY_JePzj-Ozi6BnZwhKGUdtIARTzKQgy0RnJVcMmZTAebO2BMxWGoA2XIUKPDQNa2hURdroyto4sZEC2CeekV3XOPOcUB0pazjTllWhNIkHhVChlCYzVlTJgLDV6Bdln7kcCTRmBXgwKLvCy65A2RWd7Abk_forv7q0Hf97-RRFun4RM277B818WvQDXWguLG7acc2ZrHSmK87LRJQ61VZB4YC8XilEATMUwy7KmeZqUXCw_5EA4AQd2e8UZN3USsEGJNlQnY3fslni6p8-CzjgdoyavfhnnS_JHnbSn72Rr8huO78yB4CgWn3odx7g-mkSHvo58hfphRh9 |
linkProvider | Scholars Portal |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+Bio-Synthesis+of+Three+Metal+Oxide+Nanoparticles+%28ZnO%2C+MnO+2+%2C+and+MgO%29+and+Their+Antibacterial+Activity+Against+the+Bacterial+Leaf+Blight+Pathogen&rft.jtitle=Frontiers+in+microbiology&rft.au=Ogunyemi%2C+Solabomi+Olaitan&rft.au=Zhang%2C+Muchen&rft.au=Abdallah%2C+Yasmine&rft.au=Ahmed%2C+Temoor&rft.date=2020-12-04&rft.issn=1664-302X&rft.eissn=1664-302X&rft.volume=11&rft.spage=588326&rft_id=info:doi/10.3389%2Ffmicb.2020.588326&rft_id=info%3Apmid%2F33343527&rft.externalDocID=33343527 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1664-302X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1664-302X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1664-302X&client=summon |