The Bio-Synthesis of Three Metal Oxide Nanoparticles (ZnO, MnO2, and MgO) and Their Antibacterial Activity Against the Bacterial Leaf Blight Pathogen

Xanthomonas oryzae pv. oryzae ( Xoo ) is the most infectious pathogen of rice, which causes bacterial leaf blight (BLB) disease. However, the accumulation of chemical or antibiotic resistance of Xoo necessitate the development of its alternative control. In this study, we biologically synthesize thr...

Full description

Saved in:
Bibliographic Details
Published inFrontiers in microbiology Vol. 11; p. 588326
Main Authors Ogunyemi, Solabomi Olaitan, Zhang, Muchen, Abdallah, Yasmine, Ahmed, Temoor, Qiu, Wen, Ali, Md. Arshad, Yan, Chengqi, Yang, Yong, Chen, Jianping, Li, Bin
Format Journal Article
LanguageEnglish
Published Switzerland Frontiers Media S.A 04.12.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Xanthomonas oryzae pv. oryzae ( Xoo ) is the most infectious pathogen of rice, which causes bacterial leaf blight (BLB) disease. However, the accumulation of chemical or antibiotic resistance of Xoo necessitate the development of its alternative control. In this study, we biologically synthesize three metal oxide nanoparticles (ZnO, MnO 2 , and MgO) using rhizophytic bacteria Paenibacillus polymyxa strain Sx3 as reducing agent. The biosynthesis of nanoparticles was confirmed and characterized by using UV-vis spectroscopy, XRD, FTIR, EDS, SEM, and TEM analysis. The UV Vis reflectance of the nanoparticle had peaks at 385, 230, and 230 nm with an average crystallite particle size 62.8, 18.8, and 10.9 nm for ZnO, MnO 2 , and MgO, respectively. Biogenic ZnO, MnO 2 , and MgO nanoparticles showed substantial significant inhibition effects against Xoo strain GZ 0006 at a concentration of 16.0 μg/ml, for which the antagonized area was 17, 13, and 13 mm and the biofilm formation was decreased by 74.5, 74.4, and 80.2%, respectively. Moreover, the underlining mechanism of nanoparticles was inferred to be in relation to the reactive oxygen species based on their antibacterial efficiency and the deformity in the cell wall phenomenon. Overall, an attractive and eco-friendly biogenic ZnO, MnO 2 , and MgO nanoparticles were successfully produced. Altogether, the results suggest that the nanoparticles had an excellent antibacterial efficacy against BLB disease in rice plants, together with the increase in growth parameter and rice biomass. In conclusion, the synthesized nanoparticles could serve as an alternative safe measure in combatting the antibiotic-resistant of Xoo.
AbstractList Xanthomonas oryzae pv. oryzae (Xoo) is the most infectious pathogen of rice, which causes bacterial leaf blight (BLB) disease. However, the accumulation of chemical or antibiotic resistance of Xoo necessitate the development of its alternative control. In this study, we biologically synthesize three metal oxide nanoparticles (ZnO, MnO2, and MgO) using rhizophytic bacteria Paenibacillus polymyxa strain Sx3 as reducing agent. The biosynthesis of nanoparticles was confirmed and characterized by using UV-vis spectroscopy, XRD, FTIR, EDS, SEM, and TEM analysis. The UV Vis reflectance of the nanoparticle had peaks at 385, 230, and 230 nm with an average crystallite particle size 62.8, 18.8, and 10.9 nm for ZnO, MnO2, and MgO, respectively. Biogenic ZnO, MnO2, and MgO nanoparticles showed substantial significant inhibition effects against Xoo strain GZ 0006 at a concentration of 16.0 μg/ml, for which the antagonized area was 17, 13, and 13 mm and the biofilm formation was decreased by 74.5, 74.4, and 80.2%, respectively. Moreover, the underlining mechanism of nanoparticles was inferred to be in relation to the reactive oxygen species based on their antibacterial efficiency and the deformity in the cell wall phenomenon. Overall, an attractive and eco-friendly biogenic ZnO, MnO2, and MgO nanoparticles were successfully produced. Altogether, the results suggest that the nanoparticles had an excellent antibacterial efficacy against BLB disease in rice plants, together with the increase in growth parameter and rice biomass. In conclusion, the synthesized nanoparticles could serve as an alternative safe measure in combatting the antibiotic-resistant of Xoo.Xanthomonas oryzae pv. oryzae (Xoo) is the most infectious pathogen of rice, which causes bacterial leaf blight (BLB) disease. However, the accumulation of chemical or antibiotic resistance of Xoo necessitate the development of its alternative control. In this study, we biologically synthesize three metal oxide nanoparticles (ZnO, MnO2, and MgO) using rhizophytic bacteria Paenibacillus polymyxa strain Sx3 as reducing agent. The biosynthesis of nanoparticles was confirmed and characterized by using UV-vis spectroscopy, XRD, FTIR, EDS, SEM, and TEM analysis. The UV Vis reflectance of the nanoparticle had peaks at 385, 230, and 230 nm with an average crystallite particle size 62.8, 18.8, and 10.9 nm for ZnO, MnO2, and MgO, respectively. Biogenic ZnO, MnO2, and MgO nanoparticles showed substantial significant inhibition effects against Xoo strain GZ 0006 at a concentration of 16.0 μg/ml, for which the antagonized area was 17, 13, and 13 mm and the biofilm formation was decreased by 74.5, 74.4, and 80.2%, respectively. Moreover, the underlining mechanism of nanoparticles was inferred to be in relation to the reactive oxygen species based on their antibacterial efficiency and the deformity in the cell wall phenomenon. Overall, an attractive and eco-friendly biogenic ZnO, MnO2, and MgO nanoparticles were successfully produced. Altogether, the results suggest that the nanoparticles had an excellent antibacterial efficacy against BLB disease in rice plants, together with the increase in growth parameter and rice biomass. In conclusion, the synthesized nanoparticles could serve as an alternative safe measure in combatting the antibiotic-resistant of Xoo.
Xanthomonas oryzae pv. oryzae ( Xoo ) is the most infectious pathogen of rice, which causes bacterial leaf blight (BLB) disease. However, the accumulation of chemical or antibiotic resistance of Xoo necessitate the development of its alternative control. In this study, we biologically synthesize three metal oxide nanoparticles (ZnO, MnO 2 , and MgO) using rhizophytic bacteria Paenibacillus polymyxa strain Sx3 as reducing agent. The biosynthesis of nanoparticles was confirmed and characterized by using UV-vis spectroscopy, XRD, FTIR, EDS, SEM, and TEM analysis. The UV Vis reflectance of the nanoparticle had peaks at 385, 230, and 230 nm with an average crystallite particle size 62.8, 18.8, and 10.9 nm for ZnO, MnO 2 , and MgO, respectively. Biogenic ZnO, MnO 2 , and MgO nanoparticles showed substantial significant inhibition effects against Xoo strain GZ 0006 at a concentration of 16.0 μg/ml, for which the antagonized area was 17, 13, and 13 mm and the biofilm formation was decreased by 74.5, 74.4, and 80.2%, respectively. Moreover, the underlining mechanism of nanoparticles was inferred to be in relation to the reactive oxygen species based on their antibacterial efficiency and the deformity in the cell wall phenomenon. Overall, an attractive and eco-friendly biogenic ZnO, MnO 2 , and MgO nanoparticles were successfully produced. Altogether, the results suggest that the nanoparticles had an excellent antibacterial efficacy against BLB disease in rice plants, together with the increase in growth parameter and rice biomass. In conclusion, the synthesized nanoparticles could serve as an alternative safe measure in combatting the antibiotic-resistant of Xoo.
pv. ( ) is the most infectious pathogen of rice, which causes bacterial leaf blight (BLB) disease. However, the accumulation of chemical or antibiotic resistance of necessitate the development of its alternative control. In this study, we biologically synthesize three metal oxide nanoparticles (ZnO, MnO , and MgO) using rhizophytic bacteria strain Sx3 as reducing agent. The biosynthesis of nanoparticles was confirmed and characterized by using UV-vis spectroscopy, XRD, FTIR, EDS, SEM, and TEM analysis. The UV Vis reflectance of the nanoparticle had peaks at 385, 230, and 230 nm with an average crystallite particle size 62.8, 18.8, and 10.9 nm for ZnO, MnO , and MgO, respectively. Biogenic ZnO, MnO , and MgO nanoparticles showed substantial significant inhibition effects against strain GZ 0006 at a concentration of 16.0 μg/ml, for which the antagonized area was 17, 13, and 13 mm and the biofilm formation was decreased by 74.5, 74.4, and 80.2%, respectively. Moreover, the underlining mechanism of nanoparticles was inferred to be in relation to the reactive oxygen species based on their antibacterial efficiency and the deformity in the cell wall phenomenon. Overall, an attractive and eco-friendly biogenic ZnO, MnO , and MgO nanoparticles were successfully produced. Altogether, the results suggest that the nanoparticles had an excellent antibacterial efficacy against BLB disease in rice plants, together with the increase in growth parameter and rice biomass. In conclusion, the synthesized nanoparticles could serve as an alternative safe measure in combatting the antibiotic-resistant of Xoo.
Xanthomonas oryzae pv. oryzae (Xoo) is the most infectious pathogen of rice, which causes bacterial leaf blight (BLB) disease. However, the accumulation of chemical or antibiotic resistance of Xoo necessitate the development of its alternative control. In this study, we biologically synthesize three metal oxide nanoparticles (ZnO, MnO2, and MgO) using rhizophytic bacteria Paenibacillus polymyxa strain Sx3 as reducing agent. The biosynthesis of nanoparticles was confirmed and characterized by using UV-vis spectroscopy, XRD, FTIR, EDS, SEM, and TEM analysis. The UV Vis reflectance of the nanoparticle had peaks at 385, 230, and 230 nm with an average crystallite particle size 62.8, 18.8, and 10.9 nm for ZnO, MnO2, and MgO, respectively. Biogenic ZnO, MnO2, and MgO nanoparticles showed substantial significant inhibition effects against Xoo strain GZ 0006 at a concentration of 16.0 μg/ml, for which the antagonized area was 17, 13, and 13 mm and the biofilm formation was decreased by 74.5, 74.4, and 80.2%, respectively. Moreover, the underlining mechanism of nanoparticles was inferred to be in relation to the reactive oxygen species based on their antibacterial efficiency and the deformity in the cell wall phenomenon. Overall, an attractive and eco-friendly biogenic ZnO, MnO2, and MgO nanoparticles were successfully produced. Altogether, the results suggest that the nanoparticles had an excellent antibacterial efficacy against BLB disease in rice plants, together with the increase in growth parameter and rice biomass. In conclusion, the synthesized nanoparticles could serve as an alternative safe measure in combatting the antibiotic-resistant of Xoo.
Author Li, Bin
Ahmed, Temoor
Yan, Chengqi
Ogunyemi, Solabomi Olaitan
Abdallah, Yasmine
Zhang, Muchen
Chen, Jianping
Ali, Md. Arshad
Qiu, Wen
Yang, Yong
AuthorAffiliation 1 State Key Laboratory of Rice Biology, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University , Hangzhou , China
4 Institute of Plant Virology, Ningbo University , Ningbo , China
3 Department of Plant Pathology, Faculty of Agriculture, Minia University , Minya , Egypt
2 Department of Crop Protection, Federal University of Agriculture Abeokuta , Abeokuta , Nigeria
5 State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences , Hangzhou , China
AuthorAffiliation_xml – name: 2 Department of Crop Protection, Federal University of Agriculture Abeokuta , Abeokuta , Nigeria
– name: 1 State Key Laboratory of Rice Biology, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University , Hangzhou , China
– name: 5 State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences , Hangzhou , China
– name: 3 Department of Plant Pathology, Faculty of Agriculture, Minia University , Minya , Egypt
– name: 4 Institute of Plant Virology, Ningbo University , Ningbo , China
Author_xml – sequence: 1
  givenname: Solabomi Olaitan
  surname: Ogunyemi
  fullname: Ogunyemi, Solabomi Olaitan
– sequence: 2
  givenname: Muchen
  surname: Zhang
  fullname: Zhang, Muchen
– sequence: 3
  givenname: Yasmine
  surname: Abdallah
  fullname: Abdallah, Yasmine
– sequence: 4
  givenname: Temoor
  surname: Ahmed
  fullname: Ahmed, Temoor
– sequence: 5
  givenname: Wen
  surname: Qiu
  fullname: Qiu, Wen
– sequence: 6
  givenname: Md. Arshad
  surname: Ali
  fullname: Ali, Md. Arshad
– sequence: 7
  givenname: Chengqi
  surname: Yan
  fullname: Yan, Chengqi
– sequence: 8
  givenname: Yong
  surname: Yang
  fullname: Yang, Yong
– sequence: 9
  givenname: Jianping
  surname: Chen
  fullname: Chen, Jianping
– sequence: 10
  givenname: Bin
  surname: Li
  fullname: Li, Bin
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33343527$$D View this record in MEDLINE/PubMed
BookMark eNp9kstu3CAUhq0qVXNpHqCbimUqxVMMxpdNpUnUS6SZulJnUXWDDhhsIg9MgYk6D5L3refSUdJF2XDE-c_3g_jPkxPrrEqSNxmeUFrV7_XSSDEhmOAJqypKihfJWVYUeUox-XHypD5NLkO4x-PKRzHGr5JTSmlOGSnPksdFr9CNcen3jY29CiYgp9Gi90qhuYowoOa3aRX6CtatwEcjBxXQ1U_bXKO5bcg1Atuiede82xUjzXg0tdEIkFF5MwKmMpoHEzdo2oGxIaK4tTy2Zwo0uhlM10f0DWLvOmVfJy81DEFdHvaLZPHp4-L2SzprPt_dTmepzAsWU0oxYFVVkJeilgRwxgir60prmWEmVcEqAhmQIhPQtqxlQolW66LUDCrK6EVyt8e2Du75ypsl-A13YPjuwPmOH57MBaEaZ6QmguC8FbVoCZEllaISGsbmyPqwZ63WYqlaqWz0MDyDPu9Y0_POPfCyzIuClSPg6gDw7tdahciXJkg1DGCVWwdO8jJjNMfFVvr2qdfR5O-3joJsL5DeheCVPkoyzLfp4bv08G16-D4940z5z4w0EaJx2-ua4T-TfwDE6MuO
CitedBy_id crossref_primary_10_1002_cben_202200056
crossref_primary_10_1007_s13369_024_08709_z
crossref_primary_10_3390_plants11182392
crossref_primary_10_1016_j_bcab_2023_102781
crossref_primary_10_1088_1742_6596_2133_1_012004
crossref_primary_10_1007_s44297_023_00006_9
crossref_primary_10_1016_j_jece_2021_106093
crossref_primary_10_3390_toxics10040172
crossref_primary_10_5423_PPJ_OA_10_2023_0145
crossref_primary_10_1016_j_mtsust_2022_100203
crossref_primary_10_3390_microorganisms11020378
crossref_primary_10_1016_j_inoche_2022_109312
crossref_primary_10_3390_life14121690
crossref_primary_10_3390_biom11060886
crossref_primary_10_1016_j_envres_2025_121002
crossref_primary_10_1002_ps_7857
crossref_primary_10_1002_ps_7218
crossref_primary_10_3390_plants11212892
crossref_primary_10_1039_D4NJ04053H
crossref_primary_10_3389_fchem_2023_1235437
crossref_primary_10_3390_ijms26062492
crossref_primary_10_1038_s41598_024_85005_8
crossref_primary_10_3389_fmicb_2022_935193
crossref_primary_10_1038_s41598_023_28749_z
crossref_primary_10_3390_jof9060611
crossref_primary_10_1080_10408398_2022_2046543
crossref_primary_10_3390_agronomy14092175
crossref_primary_10_1186_s11671_024_04063_z
crossref_primary_10_1016_j_heliyon_2024_e40735
crossref_primary_10_3390_nano11040884
crossref_primary_10_1007_s00344_024_11262_6
crossref_primary_10_1007_s11947_024_03660_1
crossref_primary_10_1007_s11356_022_21925_0
crossref_primary_10_1016_j_plana_2023_100033
crossref_primary_10_1186_s40538_024_00534_8
crossref_primary_10_1039_D4RA02006E
crossref_primary_10_1007_s42161_024_01723_y
crossref_primary_10_1016_j_inoche_2023_111353
crossref_primary_10_1016_j_plana_2023_100027
crossref_primary_10_1016_j_apmt_2024_102335
crossref_primary_10_1039_D4EN00174E
crossref_primary_10_3390_v14081770
crossref_primary_10_1007_s10876_024_02705_x
crossref_primary_10_1038_s41598_024_51398_9
crossref_primary_10_3389_fmicb_2021_700707
crossref_primary_10_1016_j_hazadv_2024_100401
crossref_primary_10_1039_D5EN00055F
crossref_primary_10_1002_app_54945
crossref_primary_10_15407_frg2023_04_314
crossref_primary_10_1002_smll_202205687
crossref_primary_10_1021_acs_jafc_3c07350
crossref_primary_10_1016_j_bcab_2024_103293
crossref_primary_10_1016_j_jtumed_2022_10_006
crossref_primary_10_1016_j_stress_2023_100253
crossref_primary_10_2174_1389557523666221212114416
crossref_primary_10_1007_s00284_021_02737_w
crossref_primary_10_1007_s12298_022_01251_y
crossref_primary_10_1093_micmic_ozad067_006
crossref_primary_10_3390_molecules30051164
crossref_primary_10_1186_s12934_025_02648_6
crossref_primary_10_3389_fmicb_2022_1034779
crossref_primary_10_1007_s10895_023_03560_1
crossref_primary_10_1007_s12010_024_05102_2
crossref_primary_10_1007_s00284_023_03455_1
crossref_primary_10_1080_07388551_2021_2007842
crossref_primary_10_3390_coatings11111385
crossref_primary_10_1016_j_heliyon_2024_e37939
crossref_primary_10_1016_j_jenvman_2024_123420
crossref_primary_10_1007_s43621_025_00855_0
crossref_primary_10_2174_1389201023666220608113924
crossref_primary_10_1039_D4NR01354A
crossref_primary_10_3389_fmicb_2023_1193206
crossref_primary_10_1016_j_chemosphere_2022_137301
crossref_primary_10_3390_plants12040815
crossref_primary_10_1016_j_envpol_2021_117785
crossref_primary_10_3389_fmicb_2021_792737
crossref_primary_10_1016_j_matchemphys_2025_130517
crossref_primary_10_1016_j_fpsl_2023_101213
crossref_primary_10_1002_smll_202207136
crossref_primary_10_3389_fbioe_2021_788574
crossref_primary_10_3390_toxics10100553
crossref_primary_10_1186_s41938_021_00475_6
crossref_primary_10_1039_D4EN00548A
crossref_primary_10_3390_antiox11061064
crossref_primary_10_1039_D2NR03944C
crossref_primary_10_1007_s12223_024_01147_2
crossref_primary_10_1007_s40684_024_00647_3
crossref_primary_10_1016_j_chemosphere_2023_139312
crossref_primary_10_1016_j_pestbp_2023_105447
crossref_primary_10_1016_j_pestbp_2023_105722
crossref_primary_10_1007_s11033_023_08914_3
crossref_primary_10_3389_fmicb_2021_718963
crossref_primary_10_1186_s40543_024_00446_0
crossref_primary_10_1016_j_jma_2024_06_014
Cites_doi 10.1007/978-3-319-44890-9_23
10.3389/fmicb.2018.00790
10.1007/s12668-015-0185-6
10.1016/j.colsurfb.2018.11.009
10.1111/lam.13117
10.1007/s42161-018-0188-6
10.2903/sp.efsa.2014.EN-621
10.3390/molecules25204795
10.1002/elan.200403216
10.1016/j.micpath.2018.11.017
10.1016/j.foodcont.2018.05.008
10.1016/s1872-2067(11)60431-2
10.1080/21691401.2016.1192040
10.1007/s13204-018-0852-3
10.1007/s12010-011-9245-8
10.1021/la026772l
10.1021/la0202374
10.1007/s00284-006-0485-8
10.1080/21691401.2019.1622552
10.5012/bkcs.2009.30.11.2567
10.1016/j.nano.2009.07.002
10.3389/fmicb.2017.01895
10.1016/j.ecoenv.2015.03.039
10.1016/j.btre.2014.10.009
10.1016/j.aquatox.2014.10.014
10.1007/s12010-014-0831-4
10.1038/nprot.2007.521
10.2110/pec.85.35.0001
10.1016/j.colsurfb.2008.02.018
10.1021/cm981122h
10.1016/j.colsurfb.2009.09.005
10.1016/j.cej.2010.07.006
10.1111/j.1574-6968.2007.01012.x
10.1049/iet-nbt.2014.0051
10.1007/s11051-011-0595-5
10.1080/21691401.2018.1557671
10.1016/j.watres.2006.08.004
10.1007/s11356-016-8170-3
10.1080/21691401.2016.1241793
10.1046/j.1472-765X.2003.01348.x
10.1007/s11270-015-2738-2
10.1007/s10529-014-1579-1
10.1155/2011/546074
10.1007/s00253-015-6559-4
10.1007/s40003-014-0113-y
10.20546/ijcmas.2017.603.117
10.1038/srep24312
10.1166/jbns.2015.1296
10.1007/s10646-015-1505-x
10.1049/iet-nbt.2012.0041
10.1016/j.carbpol.2016.07.070
10.1016/j.nantod.2015.04.002
10.1016/s1413-8670(11)70197-0
10.1039/c9ra04246f
10.1016/j.jbiotec.2010.06.012
10.1016/j.bbagen.2013.10.001
10.1016/j.jtusci.2016.09.004
10.1099/00207713-40-3-309
10.1002/adfm.200500029
10.1155/2019/5620989
10.1016/j.ceramint.2009.09.026
10.1016/j.actbio.2010.03.030
10.1016/j.cej.2009.12.035
10.1590/0104-6632.20140313s00002813
10.1016/s0168-1605(01)00609-2
10.1016/j.saa.2007.11.012
10.1128/jb.01406-07
10.2147/ijn.s52306
10.1073/pnas.060030097
10.3390/ma9110944
10.3389/fpls.2015.01243
ContentType Journal Article
Copyright Copyright © 2020 Ogunyemi, Zhang, Abdallah, Ahmed, Qiu, Ali, Yan, Yang, Chen and Li.
Copyright © 2020 Ogunyemi, Zhang, Abdallah, Ahmed, Qiu, Ali, Yan, Yang, Chen and Li. 2020 Ogunyemi, Zhang, Abdallah, Ahmed, Qiu, Ali, Yan, Yang, Chen and Li
Copyright_xml – notice: Copyright © 2020 Ogunyemi, Zhang, Abdallah, Ahmed, Qiu, Ali, Yan, Yang, Chen and Li.
– notice: Copyright © 2020 Ogunyemi, Zhang, Abdallah, Ahmed, Qiu, Ali, Yan, Yang, Chen and Li. 2020 Ogunyemi, Zhang, Abdallah, Ahmed, Qiu, Ali, Yan, Yang, Chen and Li
DBID AAYXX
CITATION
NPM
7X8
5PM
DOA
DOI 10.3389/fmicb.2020.588326
DatabaseName CrossRef
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
CrossRef
PubMed


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1664-302X
ExternalDocumentID oai_doaj_org_article_b23f01292b204db9bd22c73cb8bfab23
PMC7746657
33343527
10_3389_fmicb_2020_588326
Genre Journal Article
GrantInformation_xml – fundername: NIEHS NIH HHS
  grantid: 27306C2006
– fundername: National Natural Science Foundation of China
GroupedDBID 53G
5VS
9T4
AAFWJ
AAKDD
AAYXX
ACGFO
ACGFS
ACXDI
ADBBV
ADRAZ
AENEX
AFPKN
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BAWUL
BCNDV
CITATION
DIK
ECGQY
GROUPED_DOAJ
GX1
HYE
KQ8
M48
M~E
O5R
O5S
OK1
PGMZT
RNS
RPM
IPNFZ
NPM
RIG
7X8
5PM
ID FETCH-LOGICAL-c465t-330a0e88a47b9c2a01525998ffc105ce6582a1a261badd5d5bebdff67f5a8353
IEDL.DBID M48
ISSN 1664-302X
IngestDate Wed Aug 27 01:25:50 EDT 2025
Thu Aug 21 14:01:53 EDT 2025
Thu Jul 10 18:26:21 EDT 2025
Mon Jul 21 05:59:50 EDT 2025
Tue Jul 01 01:12:46 EDT 2025
Thu Apr 24 22:56:33 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Xanthomonas oryzae pv. oryzae
antibacterial
nanoparticles
Paenibacillus polymyxa
biosynthesis
Language English
License Copyright © 2020 Ogunyemi, Zhang, Abdallah, Ahmed, Qiu, Ali, Yan, Yang, Chen and Li.
This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c465t-330a0e88a47b9c2a01525998ffc105ce6582a1a261badd5d5bebdff67f5a8353
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Edited by: Marco Scortichini, Council for Agricultural and Economics Research (CREA), Italy
These authors have contributed equally to this work
Reviewed by: Randy Ortiz-Castro, National Council of Science and Technology (CONACYT), Mexico; Sang-Wook Han, Chung-Ang University, South Korea
This article was submitted to Microbe and Virus Interactions with Plants, a section of the journal Frontiers in Microbiology
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.3389/fmicb.2020.588326
PMID 33343527
PQID 2471534067
PQPubID 23479
ParticipantIDs doaj_primary_oai_doaj_org_article_b23f01292b204db9bd22c73cb8bfab23
pubmedcentral_primary_oai_pubmedcentral_nih_gov_7746657
proquest_miscellaneous_2471534067
pubmed_primary_33343527
crossref_primary_10_3389_fmicb_2020_588326
crossref_citationtrail_10_3389_fmicb_2020_588326
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-12-04
PublicationDateYYYYMMDD 2020-12-04
PublicationDate_xml – month: 12
  year: 2020
  text: 2020-12-04
  day: 04
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
PublicationTitle Frontiers in microbiology
PublicationTitleAlternate Front Microbiol
PublicationYear 2020
Publisher Frontiers Media S.A
Publisher_xml – name: Frontiers Media S.A
References Abdallah (B1) 2020; 25
Rashid (B59) 2000; 97
Padman (B51) 2014; 36
Duffy (B15) 2018; 92
Fouad (B16) 2017; 45
Ogunyemi (B47); 101
Hameed (B17) 2016; 6
Castro (B10) 2013; 7
Cullity (B12) 1978
Divyapriya (B14) 2014; 3
Kumari (B32) 2017; 24
Adams (B4) 2006; 40
Chen (B11) 2003; 37
Ogunyemi (B46); 47
Zabrieski (B78) 2015; 24
Rajabairavi (B56) 2017; 189
Ahmad (B5) 2003; 19
Bastrzyk (B7) 2019; 174
Salunkhe (B62) 2011; 165
Kalimuthu (B29) 2008; 65
Salunke (B61) 2015; 99
Kiran (B31) 2010; 148
Ogunyemi (B48); 126
Sneha (B66) 2010; 162
Swings (B69) 1990; 40
Sharma (B64) 2017; 11
Li (B38) 2015; 158
Yang (B76) 2007; 54
Juibari (B28) 2015; 5
Bao (B6) 2010; 6
Thakkar (B72) 2010; 6
Raliya (B57) 2015; 5
Tang (B70) 2014; 31
Wang (B74) 2016; 6
Abdallah (B3); 68
Jonit (B27) 2016; 4
Le Ouay (B35) 2015; 10
Yasmin (B77) 2017; 8
Samanta (B63) 2014; 6
Polowezyk (B55) 2016; 9
De Yoreo (B13) 2015; 349
Jin (B25) 2011; 13
Sharma (B65) 2017; 6
Kauffman (B30) 1973; 56
Lee (B36) 2008; 190
Tarafdar (B71) 2014; 3
Lakshmi (B34) 2012; 3
Borase (B8) 2014; 173
Abdallah (B2); 2019
Ogunyemi (B49); 47
Mirzaei (B42) 2012; 33
Moon (B44) 2015; 9
Omid (B50) 2014; 1840
Sundrarajan (B68) 2012; 7
Pandian (B52) 2015; 121
Peters (B53) 2014; 11
Hirota (B20) 2010; 36
Liu (B39) 2016; 227
Makhluf (B40) 2005; 15
Hassan (B18) 2011; 15
Stoimenov (B67) 2002; 18
Wiegand (B75) 2008; 3
Mie (B41) 2014; 9
Cai (B9) 2018; 9
Jones (B26) 2008; 279
Philip (B54) 2008; 71
Ilk (B22) 2016; 45
Kwon (B33) 2009; 30
Li (B37) 2016; 152
Helander (B19) 2001; 71
Zhou (B79) 1999; 11
Janeiro (B23) 2005; 17
Udayasoorian (B73) 2011; 6
Rathore (B60) 2015; 9
Ibrahim (B21) 2019; 9
Jha (B24) 2010; 75
Montero (B43) 2010; 161
Mourato (B45) 2011; 2011
Rangarajan (B58) 2018; 8
References_xml – volume: 189
  start-page: 245
  year: 2017
  ident: B56
  article-title: Biosynthesis of novel zinc oxide nanoparticles (ZnO NPs) using endophytic bacteria Sphingobacterium thalpophilum.
  publication-title: In J. Ebenezar. Recent Trends Mater. Sci. Appl.
  doi: 10.1007/978-3-319-44890-9_23
– volume: 9
  year: 2018
  ident: B9
  article-title: Magnesium oxide nanoparticles: effective agricultural antibacterial agent against Ralstonia solanacearum.
  publication-title: Front. Microbiol.
  doi: 10.3389/fmicb.2018.00790
– volume: 56
  start-page: 537
  year: 1973
  ident: B30
  article-title: An improved technique for evaluating resistance of rice varieties to Xanthomonas oryzae.
  publication-title: Plant Dis. Report.
– volume: 5
  start-page: 233
  year: 2015
  ident: B28
  article-title: Investigation of a hot-spring extremophilic Ureibacillus thermosphaericus strain Thermo-BF for extracellular biosynthesis of functionalized Gold nanoparticles.
  publication-title: Bionanoscience
  doi: 10.1007/s12668-015-0185-6
– volume: 7
  start-page: 983
  year: 2012
  ident: B68
  article-title: A comparative study on antibacterial properties of mgo nanoparticles prepared under different calcination temperature.
  publication-title: Dig. J. Nanomater. Bios.
– volume: 174
  start-page: 145
  year: 2019
  ident: B7
  article-title: Effect of a lipopeptide biosurfactant on the precipitation of calcium carbonate.
  publication-title: Colloids Surf. B Biointerfaces
  doi: 10.1016/j.colsurfb.2018.11.009
– volume: 68
  start-page: 423
  ident: B3
  article-title: Plant growth promotion and suppression of bacterial leaf blight in rice by Paenibacillus polymyxa Sx3.
  publication-title: Lett. Appl. Microbiol.
  doi: 10.1111/lam.13117
– volume: 101
  start-page: 263
  ident: B47
  article-title: Identification and characterization of five new OP2-related Myoviridae bacteriophages infecting different strains of Xanthomonas oryzae pv. oryzae.
  publication-title: J. Plant Pathol.
  doi: 10.1007/s42161-018-0188-6
– volume: 11
  year: 2014
  ident: B53
  article-title: Inventory of nanotechnology applications in the agricultural, feed and food sector.
  publication-title: EFSA
  doi: 10.2903/sp.efsa.2014.EN-621
– volume: 25
  year: 2020
  ident: B1
  article-title: Bioinspired green synthesis of chitosan and zinc oxide nanoparticles with strong antibacterial activity against rice pathogen Xanthomonas oryzae pv. oryzae.
  publication-title: Molecules
  doi: 10.3390/molecules25204795
– volume: 17
  start-page: 1059
  year: 2005
  ident: B23
  article-title: Chrysin and (+/-)-taxifolin electrochemical oxidation mechanisms.
  publication-title: Electroanal
  doi: 10.1002/elan.200403216
– volume: 126
  start-page: 343
  ident: B48
  article-title: Role of type IV secretion system genes in virulence of rice bacterial brown stripe pathogen Acidovorax oryzae strain RS-2.
  publication-title: Microb. Pathog
  doi: 10.1016/j.micpath.2018.11.017
– volume: 92
  start-page: 293
  year: 2018
  ident: B15
  article-title: Investigation into the antibacterial activity of silver, zinc oxide and copper oxide nanoparticles against poultry-relevant isolates of Salmonella and Campylobacter.
  publication-title: Food Control
  doi: 10.1016/j.foodcont.2018.05.008
– volume: 33
  start-page: 1502
  year: 2012
  ident: B42
  article-title: Microwave assisted sol-gel synthesis of MgO nanoparticles and their catalytic activity in the synthesis of Hantzsch 1,4-Dihydropyridines.
  publication-title: Chin. J. Catal
  doi: 10.1016/s1872-2067(11)60431-2
– volume: 45
  start-page: 907
  year: 2016
  ident: B22
  article-title: Kaempferol loaded lecithin/chitosan nanoparticles: Preparation, characterization, and their potential applications as a sustainable antifungal agent.
  publication-title: Artif. Cells Nanomed. Biotechnol.
  doi: 10.1080/21691401.2016.1192040
– volume: 8
  start-page: 1809
  year: 2018
  ident: B58
  article-title: Bacillus lipopeptides: powerful capping and dispersing agents of silver nanoparticles.
  publication-title: Appl. Nanosci.
  doi: 10.1007/s13204-018-0852-3
– volume: 165
  start-page: 221
  year: 2011
  ident: B62
  article-title: Studies on silver accumulation and nanoparticle synthesis by Cochliobolus lunatus.
  publication-title: Appl. Biochem. Biotechnol
  doi: 10.1007/s12010-011-9245-8
– volume: 19
  start-page: 3550
  year: 2003
  ident: B5
  article-title: Extracellular biosynthesis of monodisperse gold nanoparticles by a novel extremophilic actinomycete, Thermomonospora sp.
  publication-title: Langmuir
  doi: 10.1021/la026772l
– volume: 18
  start-page: 6679
  year: 2002
  ident: B67
  article-title: Metal oxide nanoparticles as bactericidal agents.
  publication-title: Langmuir
  doi: 10.1021/la0202374
– volume: 54
  start-page: 307
  year: 2007
  ident: B76
  article-title: Zinc uptake regulator (zur) gene involved in zinc homeostasis and virulence of Xoo in rice.
  publication-title: Curr. Microbiol
  doi: 10.1007/s00284-006-0485-8
– volume: 47
  start-page: 2230
  ident: B49
  article-title: Biosynthesis and characterization of magnesium oxide and manganese dioxide nanoparticles using Matricaria chamomilla L. extract and its inhibitory effect on Acidovorax oryzae strain RS-2.
  publication-title: Artif. Cells Nanomed. Biotechnol
  doi: 10.1080/21691401.2019.1622552
– volume: 30
  start-page: 2567
  year: 2009
  ident: B33
  article-title: Infra-red study of surface carbonation on polycrystalline magnesium hydroxide.
  publication-title: Bull. Korean Chem. Soc
  doi: 10.5012/bkcs.2009.30.11.2567
– volume: 6
  start-page: 257
  year: 2010
  ident: B72
  article-title: Biological synthesis of metallic nanoparticles.
  publication-title: Nanomed. Nanotechnol. Biol. Med
  doi: 10.1016/j.nano.2009.07.002
– volume: 8
  year: 2017
  ident: B77
  article-title: Biocontrol of bacterial leaf blight of rice and profiling of secondary metabolites produced by rhizospheric Pseudomonas aeruginosa BRp3.
  publication-title: Front. Microbiol.
  doi: 10.3389/fmicb.2017.01895
– volume: 121
  start-page: 211
  year: 2015
  ident: B52
  article-title: Synthesis of silver nanoparticle and its application.
  publication-title: Ecotoxicol. Environ. Saf
  doi: 10.1016/j.ecoenv.2015.03.039
– volume: 5
  start-page: 22
  year: 2015
  ident: B57
  article-title: TiO2 nanoparticle biosynthesis and its physiological effect on mung bean (Vigna radiata L.).
  publication-title: Biotechnol. Rep.
  doi: 10.1016/j.btre.2014.10.009
– volume: 158
  start-page: 1
  year: 2015
  ident: B38
  article-title: Toxicity of nano-TiO2 on algae and the site of reactive oxygen species production.
  publication-title: Aquat. Toxicol
  doi: 10.1016/j.aquatox.2014.10.014
– volume: 173
  start-page: 1
  year: 2014
  ident: B8
  article-title: Plant extract: a promising biomatrix for ecofriendly, controlled synthesis of silver nanoparticles.
  publication-title: Appl. Biochem. Biotechnol
  doi: 10.1007/s12010-014-0831-4
– volume: 3
  start-page: 163
  year: 2008
  ident: B75
  article-title: Agar and broth dilution methods to determine the minimal inhibitory concentration (MIC) of antimicrobial substances.
  publication-title: Nat. Protoc
  doi: 10.1038/nprot.2007.521
– volume: 349
  start-page: 1
  year: 2015
  ident: B13
  article-title: Crystallization by particle attachment in synthetic, biogenic and geologic environments.
  publication-title: Science
  doi: 10.2110/pec.85.35.0001
– volume: 65
  start-page: 150
  year: 2008
  ident: B29
  article-title: Biosynthesis of silver nanocrystals by Bacillus licheniformis.
  publication-title: Colloids Surf. B Biointerfaces
  doi: 10.1016/j.colsurfb.2008.02.018
– volume: 11
  start-page: 545
  year: 1999
  ident: B79
  article-title: Formation of silver nanowires by a novel solid-liquid phase arc discharge method.
  publication-title: Chem. Mater
  doi: 10.1021/cm981122h
– volume: 3
  start-page: S151
  year: 2012
  ident: B34
  article-title: Synthesis, characterization and evaluation of antimicrobial activity of zinc oxide nanoparticles.
  publication-title: J. Biochem. Technol
– volume: 75
  start-page: 330
  year: 2010
  ident: B24
  article-title: Ferroelectric BaTiO3 nanoparticles: biosynthesis and characterization.
  publication-title: Colloids Surf. B Biointerfaces
  doi: 10.1016/j.colsurfb.2009.09.005
– volume: 162
  start-page: 989
  year: 2010
  ident: B66
  article-title: Corynebacterium glutamicum-mediated crystallization of silver ions through sorption and reduction processes.
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2010.07.006
– volume: 279
  start-page: 71
  year: 2008
  ident: B26
  article-title: Antibacterial activity of ZnO nanoparticle suspensions on a broad spectrum of microorganisms.
  publication-title: FEMS Microbiol. Lett.
  doi: 10.1111/j.1574-6968.2007.01012.x
– volume: 9
  start-page: 220
  year: 2015
  ident: B44
  article-title: Biological synthesis of maganese dioxide nanoparticles by kalopanax pictus plant extract.
  publication-title: IET Nanobiotechnol.
  doi: 10.1049/iet-nbt.2014.0051
– volume: 13
  start-page: 6877
  year: 2011
  ident: B25
  article-title: Antibacterial activity of magnesium oxide (MgO) nanoparticles against food-borne pathogens.
  publication-title: J. Nanopart. Res
  doi: 10.1007/s11051-011-0595-5
– volume: 47
  start-page: 341
  ident: B46
  article-title: Green synthesis of zinc oxide nanoparticles using different plant extracts and their antibacterial activity against Xanthomonas oryzae pv. oryzae.
  publication-title: Artif. Cells Nanomed. Biotechnol.
  doi: 10.1080/21691401.2018.1557671
– volume: 40
  start-page: 3527
  year: 2006
  ident: B4
  article-title: Comparative eco-toxicity of nanoscale TiO2, SiO2 and ZnO water suspensions.
  publication-title: Water Res
  doi: 10.1016/j.watres.2006.08.004
– volume: 24
  start-page: 4645
  year: 2017
  ident: B32
  article-title: Biogenic synthesis of silver nanoparticle by using secondary metabolites from Pseudomonas aeruginosa DM1 and its anti-algal effect on Chlorella vulgaris and Chlorella pyrenoidosa.
  publication-title: Environ. Sci Pollut. Res
  doi: 10.1007/s11356-016-8170-3
– volume: 45
  start-page: 1369
  year: 2017
  ident: B16
  article-title: Synthesis and characterization of silver nanoparticles using Bacillus amyloliquefaciens and Bacillus subtilis to control filarial vector Culex pipiens pallens and its antimicrobial activity.
  publication-title: Artif. Cells Nanomed. Biotechnol.
  doi: 10.1080/21691401.2016.1241793
– volume: 37
  start-page: 105
  year: 2003
  ident: B11
  article-title: Evidence of the production of silver nanoparticles via pretreatment of Phoma sp.3.2883 with silver nitrate.
  publication-title: Lett. Appl. Microbiol
  doi: 10.1046/j.1472-765X.2003.01348.x
– volume: 227
  year: 2016
  ident: B39
  article-title: Effects of stabilized nanoparticles of copper, zinc, manganese, and iron oxides in low concentrations on lettuce (Lactuca sativa) seed germination: nanotoxicants or nanonutrients?
  publication-title: Water Air Soil Pollu.
  doi: 10.1007/s11270-015-2738-2
– volume: 36
  start-page: 2079
  year: 2014
  ident: B51
  article-title: Biomediated synthesis of silver nanoparticles using Exiguobacterium mexicanum.
  publication-title: Biotechnol. Lett.
  doi: 10.1007/s10529-014-1579-1
– volume: 2011
  year: 2011
  ident: B45
  article-title: Biosynthesis of crystalline silver and gold nanoparticles by extremophilic yeasts.
  publication-title: Bioinorg. Chem. Appl.
  doi: 10.1155/2011/546074
– volume: 99
  start-page: 5419
  year: 2015
  ident: B61
  article-title: Comparative study of MnO2 nanoparticle synthesis by marine bacterium Saccharophagus degrdans and yeast Saccharomyces cerevisiae.
  publication-title: Appl. Microbiol. Biotechnol.
  doi: 10.1007/s00253-015-6559-4
– volume: 3
  start-page: 257
  year: 2014
  ident: B71
  article-title: Development of zinc nanofertilizer to enhance crop production in pearl millet (Pennisetum americanum).
  publication-title: Agric. Res.
  doi: 10.1007/s40003-014-0113-y
– volume: 6
  start-page: 982
  year: 2017
  ident: B65
  article-title: Review on Bacterial Blight of rice caused by Xanthomonas oryzae pv. oryzae: different management approaches and role of Pseudomonas fluorescens as a potential biocontrol agent.
  publication-title: Int. J. Curr. Microb. Appl. Sci.
  doi: 10.20546/ijcmas.2017.603.117
– year: 1978
  ident: B12
  publication-title: Elements of X-Ray Diffraction.
– volume: 6
  year: 2016
  ident: B17
  article-title: In vitro antibacterial activity of ZnO and Nd doped ZnO nanoparticles against ESBL producing Escherichia coli and Klebsiella pneumoniae.
  publication-title: Sci. Rep.
  doi: 10.1038/srep24312
– volume: 9
  start-page: 209
  year: 2015
  ident: B60
  article-title: Perspectives of biosynthesized magnesium nanoparticles in foliar application of wheat plant.
  publication-title: J. Bioananosci.
  doi: 10.1166/jbns.2015.1296
– volume: 24
  start-page: 1305
  year: 2015
  ident: B78
  article-title: Pesticidal activity of metal oxide nanoparticles on plant pathogenic isolates of Pythium.
  publication-title: Ecotoxicology
  doi: 10.1007/s10646-015-1505-x
– volume: 7
  start-page: 109
  year: 2013
  ident: B10
  article-title: Biological synthesis of metallic nanoparticles using algae.
  publication-title: IET Nanobiotechnol.
  doi: 10.1049/iet-nbt.2012.0041
– volume: 152
  start-page: 825
  year: 2016
  ident: B37
  article-title: Synthesis, characterization, and antibacterial activity of chitosan/TiO2 nanocomposite against Xanthomonas oryzae pv. oryzae.
  publication-title: Carbohydr. Polym.
  doi: 10.1016/j.carbpol.2016.07.070
– volume: 10
  start-page: 339
  year: 2015
  ident: B35
  article-title: Antibacterial activity of silver nanoparticles: a surface science insight.
  publication-title: Nano Today
  doi: 10.1016/j.nantod.2015.04.002
– volume: 15
  start-page: 305
  year: 2011
  ident: B18
  article-title: Evaluation of different detection methods of biofilm formation in the clinical isolates.
  publication-title: Brazilian J. Infect. Dis
  doi: 10.1016/s1413-8670(11)70197-0
– volume: 9
  start-page: 29293
  year: 2019
  ident: B21
  article-title: Biosynthesis of silver nanoparticles using endophytic bacteria and their role in inhibition of rice pathogenic bacteria and plant growth promotion.
  publication-title: RSC Adv.
  doi: 10.1039/c9ra04246f
– volume: 148
  start-page: 221
  year: 2010
  ident: B31
  article-title: Synthesis of silver nanoparticles by glycolipid biosurfactant produced from marine Brevibacterium casei MSA19.
  publication-title: J. Biotechnol
  doi: 10.1016/j.jbiotec.2010.06.012
– volume: 1840
  start-page: 428
  year: 2014
  ident: B50
  article-title: Synthesizing and staining manganese oxide nanoparticles for cytotoxicity and cellular uptake investigation.
  publication-title: BBA Gen. Subj
  doi: 10.1016/j.bbagen.2013.10.001
– volume: 11
  start-page: 471
  year: 2017
  ident: B64
  article-title: Phytoassisted synthesis of magnesium oxide nanoparticles with Swertia chirayaita.
  publication-title: J. Taibah Univ. Sci
  doi: 10.1016/j.jtusci.2016.09.004
– volume: 40
  start-page: 301
  year: 1990
  ident: B69
  article-title: Reclassification of the causal agents of bacterial blight (Xanthomonas campestris pv. oryzae) and bacterial leaf streak (Xanthomonas campestris pv. oryzicola) of rice as pathovars of Xanthomonas oryzae (ex Isiyama 1922) sp.
  publication-title: Int. J. Syst. Bacteriol
  doi: 10.1099/00207713-40-3-309
– volume: 15
  start-page: 1708
  year: 2005
  ident: B40
  article-title: Microwave-assisted synthesis of nanocrystalline MgO and its use as a bacteriocide.
  publication-title: Adv. Funct. Mater
  doi: 10.1002/adfm.200500029
– volume: 6
  start-page: 279
  year: 2011
  ident: B73
  article-title: Extracellular synthesis of silver nanoparticles using leaf extract of Cassia auriculata.
  publication-title: Dig. J. Nanomater. Bios
– volume: 2019
  ident: B2
  article-title: The green synthesis of MgO nano-flowers using Rosmarinus officinalis L. (Rosemary) and the antibacterial activities against Xanthomonas oryzae pv. oryzae.
  publication-title: Biomed. Res. Int.
  doi: 10.1155/2019/5620989
– volume: 36
  start-page: 497
  year: 2010
  ident: B20
  article-title: Preparation of zinc oxide ceramics with a sustainable antibacterial activity under dark conditions.
  publication-title: Ceram. Int.
  doi: 10.1016/j.ceramint.2009.09.026
– volume: 6
  start-page: 3534
  year: 2010
  ident: B6
  article-title: Extracellular microbial synthesis of biocompatible CdTe quantum dots.
  publication-title: Acta Biomater
  doi: 10.1016/j.actbio.2010.03.030
– volume: 161
  start-page: 332
  year: 2010
  ident: B43
  article-title: In situ studies of structure-reactivity relations in biodiesel synthesis over nanocrystalline MgO.
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2009.12.035
– volume: 31
  start-page: 591
  year: 2014
  ident: B70
  article-title: MgO nanoparticles as antibacterial agent: preparation and activity.
  publication-title: Brazilian J. Chem. Eng
  doi: 10.1590/0104-6632.20140313s00002813
– volume: 71
  start-page: 235
  year: 2001
  ident: B19
  article-title: Chitosan disrupts the barrier properties of the outer membrane of Gram-negative bacteria.
  publication-title: Int. J. Food Microbiol
  doi: 10.1016/s0168-1605(01)00609-2
– volume: 71
  start-page: 80
  year: 2008
  ident: B54
  article-title: Synthesis and spectroscopic characterization of gold nanoparticles.
  publication-title: Spectrochim. Acta A Mol. Biomol. Spectrosc
  doi: 10.1016/j.saa.2007.11.012
– volume: 190
  start-page: 2183
  year: 2008
  ident: B36
  article-title: The Xanthomonas oryzae PhoPQ two-component system is required for AvrXA21 activity, hrpG expression, and virulence.
  publication-title: J. Bacteriol.
  doi: 10.1128/jb.01406-07
– volume: 6
  start-page: 29
  year: 2014
  ident: B63
  article-title: Isolation and characterization of Xanthomonas oryzae isolates from different regions of Midnapore district of West Bengal and their ecofriendly management by medicinal plant extracts.
  publication-title: Int. J. Phytomed
– volume: 9
  start-page: 121
  year: 2014
  ident: B41
  article-title: Synthesis of silver nanoparticles with antibacterial activity using the lichen Parmotrema praesorediosum.
  publication-title: Int. J. Nanomed
  doi: 10.2147/ijn.s52306
– volume: 97
  start-page: 4885
  year: 2000
  ident: B59
  article-title: Inorganic polyphosphate is needed for swimming, swarming, and twitching motilities of Pseudomonas aeruginosa.
  publication-title: Proc. Natl. Acad. Sci. U. S. A
  doi: 10.1073/pnas.060030097
– volume: 3
  start-page: 1635
  year: 2014
  ident: B14
  article-title: Synthesis of zinc oxide nanoparticles and antimicrobial activity of Murraya koenigii.
  publication-title: World J. Pharm. Pharm. Sci.
– volume: 9
  year: 2016
  ident: B55
  article-title: Protein-mediated precipitation of calcium carbonate.
  publication-title: Materials
  doi: 10.3390/ma9110944
– volume: 6
  year: 2016
  ident: B74
  article-title: Zinc oxide nanoparticles affect biomass accumulation and photosynthesis in Arabidopsis.
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2015.01243
– volume: 4
  start-page: 63
  year: 2016
  ident: B27
  article-title: Xanthomonas oryzae pv. oryzae biochemical tests, rice (Oryza sativa), bacterial leaf blight (BLB) diseases, Sekinchan.
  publication-title: Appl. Environ. Microbiol
SSID ssj0000402000
Score 2.5614388
Snippet Xanthomonas oryzae pv. oryzae ( Xoo ) is the most infectious pathogen of rice, which causes bacterial leaf blight (BLB) disease. However, the accumulation of...
pv. ( ) is the most infectious pathogen of rice, which causes bacterial leaf blight (BLB) disease. However, the accumulation of chemical or antibiotic...
Xanthomonas oryzae pv. oryzae (Xoo) is the most infectious pathogen of rice, which causes bacterial leaf blight (BLB) disease. However, the accumulation of...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 588326
SubjectTerms antibacterial
biosynthesis
Microbiology
nanoparticles
Paenibacillus polymyxa
Xanthomonas oryzae pv. oryzae
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1di9QwFA2ysOCLuH6Oq0sEH1S2msnHtH2cFZdFHEdwhMWXkNsma2HJLDtdcH-I_9d7k-4wI6IvvrVN26Q5N8k5veFexl6UIOoAQRehJjejG7c4pLQpKhCA7N_rytF_yNmnyclX_eHUnG6k-qI9YTk8cO64tyBVoJ8lEqTQLdTQStmUqoEKgsNCmn1xzdsQU2kOJlkkBjcmqrAaYeoaQD0oxRtToRlPthaiFK__TyTz972SG4vP8V12Z2CNfJpbu8du-XiP7eY8ktf32U8Em-NZ8eU6IqFbdSu-DHyBMHk-80iv-fxH13qOUylq5GErHH_5Lc4P-SzO5SF3seWzs_mrdLAg5wGfxr6DHMuZqm5ymgk-PXMdUkreU5Xr4o_eBX50Tkqff0ZSuUS7fMAWx-8X706KId9C0eiJ6QulhBO-QnRKqBvpBOVGQjkWQoMsrPFIVqQbO9RcgLOiaQ14aEOYlME4JHLqIduJy-gfMw7GBS8FBNGOtS8TzcMXau1rH1Rbjpi46XvbDLHIKSXGuUVNQnDZBJcluGyGa8Rerx-5yIE4_nbzEQG6vpFiaKcLaFl26Gb7L8sasec35mBxzJEjxUW_vFpZiSu6UUiF8EMeZfNYV6WUQgYqsaTcMpyttmyXxO57iuuNTJz8YE_-R-P32W3qj7TxRj9lO_3llX-G9KmHgzRSfgGxaxnh
  priority: 102
  providerName: Directory of Open Access Journals
Title The Bio-Synthesis of Three Metal Oxide Nanoparticles (ZnO, MnO2, and MgO) and Their Antibacterial Activity Against the Bacterial Leaf Blight Pathogen
URI https://www.ncbi.nlm.nih.gov/pubmed/33343527
https://www.proquest.com/docview/2471534067
https://pubmed.ncbi.nlm.nih.gov/PMC7746657
https://doaj.org/article/b23f01292b204db9bd22c73cb8bfab23
Volume 11
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3db9MwELfGEGgviM9RYJOReAC0TI7tfD2gqZsYEyIUiU6qeInsxC6RKgfaTFr_Ev5d7py0WqfCS9TEqV37zr7f-dz7EfIm0Syz2srAZhhmVGEFU0pGQaqZBvRvZKpwHzL_Gl9cys-TaLJDVvRW_QAutrp2yCd1OZ8dX_9ensCE_4AeJ9hbkEBdanD1ODuOUtDQ-A65C4YpQUKDvEf7fmFGX8n_KSWMY4wH8EkX59xeyx65L4QAOIGMMzeMls_tvw2Q3j5XecNQnT8kD3qESYedSjwiO8Y9Jvc6zsnlE_IHFIPCXfB96QD8LeoFbSwdg0gNzQ2MAh1d15WhsOyCP90fm6Nvf7jREc3diHJ6RJWraD4dvfMfxhhqoEPX1rrL_IyNlx0pBR1OVQ0AlLbY6Lr4i1GWns5wX4B-AwjagBY_JePzj-Ozi6BnZwhKGUdtIARTzKQgy0RnJVcMmZTAebO2BMxWGoA2XIUKPDQNa2hURdroyto4sZEC2CeekV3XOPOcUB0pazjTllWhNIkHhVChlCYzVlTJgLDV6Bdln7kcCTRmBXgwKLvCy65A2RWd7Abk_forv7q0Hf97-RRFun4RM277B818WvQDXWguLG7acc2ZrHSmK87LRJQ61VZB4YC8XilEATMUwy7KmeZqUXCw_5EA4AQd2e8UZN3USsEGJNlQnY3fslni6p8-CzjgdoyavfhnnS_JHnbSn72Rr8huO78yB4CgWn3odx7g-mkSHvo58hfphRh9
linkProvider Scholars Portal
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+Bio-Synthesis+of+Three+Metal+Oxide+Nanoparticles+%28ZnO%2C+MnO+2+%2C+and+MgO%29+and+Their+Antibacterial+Activity+Against+the+Bacterial+Leaf+Blight+Pathogen&rft.jtitle=Frontiers+in+microbiology&rft.au=Ogunyemi%2C+Solabomi+Olaitan&rft.au=Zhang%2C+Muchen&rft.au=Abdallah%2C+Yasmine&rft.au=Ahmed%2C+Temoor&rft.date=2020-12-04&rft.issn=1664-302X&rft.eissn=1664-302X&rft.volume=11&rft.spage=588326&rft_id=info:doi/10.3389%2Ffmicb.2020.588326&rft_id=info%3Apmid%2F33343527&rft.externalDocID=33343527
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1664-302X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1664-302X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1664-302X&client=summon