Evolution of the Vagus Nerve Stimulation (VNS) Therapy System Technology for Drug-Resistant Epilepsy

The vagus nerve stimulation (VNS) Therapy® System is the first FDA-approved medical device therapy for the treatment of drug-resistant epilepsy. Over the past two decades, the technology has evolved through multiple iterations resulting in software-related updates and implantable lead and generator...

Full description

Saved in:
Bibliographic Details
Published inFrontiers in medical technology Vol. 3; p. 696543
Main Authors Afra, Pegah, Adamolekun, Bola, Aydemir, Seyhmus, Watson, Glenn David Robert
Format Journal Article
LanguageEnglish
Published Switzerland Frontiers Media S.A 26.08.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The vagus nerve stimulation (VNS) Therapy® System is the first FDA-approved medical device therapy for the treatment of drug-resistant epilepsy. Over the past two decades, the technology has evolved through multiple iterations resulting in software-related updates and implantable lead and generator hardware improvements. Healthcare providers today commonly encounter a range of single- and dual-pin generators (models 100, 101, 102, 102R, 103, 104, 105, 106, 1000) and related programming systems (models 250, 3000), all of which have their own subtle, but practical differences. It can therefore be a daunting task to go through the manuals of these implant models for comparison, some of which are not readily available. In this review, we highlight the technological evolution of the VNS Therapy System with respect to device approval milestones and provide a comparison of conventional open-loop vs. the latest closed-loop generator models. Battery longevity projections and an in-depth examination of stimulation mode interactions are also presented to further differentiate amongst generator models.
AbstractList The vagus nerve stimulation (VNS) Therapy® System is the first FDA-approved medical device therapy for the treatment of drug-resistant epilepsy. Over the past two decades, the technology has evolved through multiple iterations resulting in software-related updates and implantable lead and generator hardware improvements. Healthcare providers today commonly encounter a range of single- and dual-pin generators (models 100, 101, 102, 102R, 103, 104, 105, 106, 1000) and related programming systems (models 250, 3000), all of which have their own subtle, but practical differences. It can therefore be a daunting task to go through the manuals of these implant models for comparison, some of which are not readily available. In this review, we highlight the technological evolution of the VNS Therapy System with respect to device approval milestones and provide a comparison of conventional open-loop vs. the latest closed-loop generator models. Battery longevity projections and an in-depth examination of stimulation mode interactions are also presented to further differentiate amongst generator models.
The vagus nerve stimulation (VNS) Therapy® System is the first FDA-approved medical device therapy for the treatment of drug-resistant epilepsy. Over the past two decades, the technology has evolved through multiple iterations resulting in software-related updates and implantable lead and generator hardware improvements. Healthcare providers today commonly encounter a range of single- and dual-pin generators (models 100, 101, 102, 102R, 103, 104, 105, 106, 1000) and related programming systems (models 250, 3000), all of which have their own subtle, but practical differences. It can therefore be a daunting task to go through the manuals of these implant models for comparison, some of which are not readily available. In this review, we highlight the technological evolution of the VNS Therapy System with respect to device approval milestones and provide a comparison of conventional open-loop vs. the latest closed-loop generator models. Battery longevity projections and an in-depth examination of stimulation mode interactions are also presented to further differentiate amongst generator models.The vagus nerve stimulation (VNS) Therapy® System is the first FDA-approved medical device therapy for the treatment of drug-resistant epilepsy. Over the past two decades, the technology has evolved through multiple iterations resulting in software-related updates and implantable lead and generator hardware improvements. Healthcare providers today commonly encounter a range of single- and dual-pin generators (models 100, 101, 102, 102R, 103, 104, 105, 106, 1000) and related programming systems (models 250, 3000), all of which have their own subtle, but practical differences. It can therefore be a daunting task to go through the manuals of these implant models for comparison, some of which are not readily available. In this review, we highlight the technological evolution of the VNS Therapy System with respect to device approval milestones and provide a comparison of conventional open-loop vs. the latest closed-loop generator models. Battery longevity projections and an in-depth examination of stimulation mode interactions are also presented to further differentiate amongst generator models.
Author Aydemir, Seyhmus
Afra, Pegah
Watson, Glenn David Robert
Adamolekun, Bola
AuthorAffiliation 4 LivaNova, Neuromodulation Unit , Houston, TX , United States
1 Department of Neurology, Weill-Cornell Medicine , New York, NY , United States
2 Department of Neurology, University of Utah School of Medicine , Salt Lake City, UT , United States
3 Department of Neurology, University of Tennessee Health Science Center , Memphis, TN , United States
AuthorAffiliation_xml – name: 1 Department of Neurology, Weill-Cornell Medicine , New York, NY , United States
– name: 2 Department of Neurology, University of Utah School of Medicine , Salt Lake City, UT , United States
– name: 4 LivaNova, Neuromodulation Unit , Houston, TX , United States
– name: 3 Department of Neurology, University of Tennessee Health Science Center , Memphis, TN , United States
Author_xml – sequence: 1
  givenname: Pegah
  surname: Afra
  fullname: Afra, Pegah
– sequence: 2
  givenname: Bola
  surname: Adamolekun
  fullname: Adamolekun, Bola
– sequence: 3
  givenname: Seyhmus
  surname: Aydemir
  fullname: Aydemir, Seyhmus
– sequence: 4
  givenname: Glenn David Robert
  surname: Watson
  fullname: Watson, Glenn David Robert
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35047938$$D View this record in MEDLINE/PubMed
BookMark eNp9ks1u1DAUhSNUREvpA7BBXpZFBv_G9gYJtUNbqSoSM3RreRw74yqJg-2MlLcnnSlVy4KVLd9zv3vke94XR33obVF8RHBBiJBfXGfrvMAQo0UlK0bJm-IEV5yUBGF59OJ-XJyl9AAhxAxhTOi74pgwSLkk4qSol7vQjtmHHgQH8taCe92MCdzZuLNglX03tnpfPr-_W30G662NepjAakrZdmBtzbYPbWgm4EIEl3Fsyp82-ZR1n8Fy8K0d0vSheOt0m-zZ03la_Pq-XF9cl7c_rm4uvt2WhlYsl5ggV1MoN1JwhgSfLWvBDZdMMEwcrRmFkHBaO0slp0ZX3ECJINKUOARrclrcHLh10A9qiL7TcVJBe7V_CLFROmZvWquQFRhSijCvBZXYCVojXekNEmRjnHMz6-uBNYyb-aeN7XPU7Svo60rvt6oJOzV756KSM-D8CRDD79GmrDqfjG1b3dswJoUrjCpWccZm6aeXs56H_F3TLEAHgYkhpWjdswRB9ZgGtU-DekyDOqRh7uH_9Bif96uc7fr2P51_ANYAujI
CitedBy_id crossref_primary_10_1016_j_seizure_2024_01_019
crossref_primary_10_1186_s12984_023_01159_y
crossref_primary_10_1016_j_neurom_2023_04_474
crossref_primary_10_1073_pnas_2322577121
crossref_primary_10_3390_children12020148
crossref_primary_10_3390_ijms25010091
crossref_primary_10_1007_s00247_023_05651_4
crossref_primary_10_1038_s42003_024_07222_1
crossref_primary_10_3390_cells12111540
crossref_primary_10_3390_brainsci14070675
crossref_primary_10_3390_biomedinformatics5010014
crossref_primary_10_1016_j_yebeh_2024_110008
crossref_primary_10_1093_ecco_jcc_jjad151
crossref_primary_10_3389_fvets_2022_928009
crossref_primary_10_1113_JP285854
crossref_primary_10_2478_amma_2023_0027
crossref_primary_10_1615_CritRevBiomedEng_2023049282
crossref_primary_10_1016_j_yebeh_2021_108319
crossref_primary_10_1097_AIA_0000000000000407
crossref_primary_10_1109_TBCAS_2022_3228895
crossref_primary_10_1016_j_neucli_2024_102996
crossref_primary_10_3389_fpsyt_2024_1376140
crossref_primary_10_1016_j_neubiorev_2024_105990
crossref_primary_10_1088_1741_2552_ad0c60
crossref_primary_10_1038_s41467_024_51988_1
crossref_primary_10_1007_s10286_024_01065_w
crossref_primary_10_1007_s00701_023_05875_1
crossref_primary_10_1088_1741_2552_acc6f1
crossref_primary_10_1007_s11910_023_01323_w
crossref_primary_10_1177_11795735231151830
crossref_primary_10_1186_s42494_023_00136_1
crossref_primary_10_2174_0118715273332140240724093837
crossref_primary_10_1002_14651858_CD015859
crossref_primary_10_1007_s00381_021_05416_0
crossref_primary_10_1111_nmo_14815
crossref_primary_10_3390_s24103172
crossref_primary_10_1002_mus_28029
crossref_primary_10_1186_s42234_023_00130_5
crossref_primary_10_3390_brainsci13091305
Cites_doi 10.1097/00004691-200109000-00008
10.1016/j.seizure.2021.02.015
10.3171/2018.6.FOCUS18216
10.1016/j.yebeh.2010.10.017
10.1016/j.nicl.2017.09.015
10.1016/S1474-4422(13)70214-X
10.1002/ana.25574
10.1016/j.eplepsyres.2016.07.009
10.1136/jnnp.74.6.811
10.1016/0920-1211(94)00083-9
10.1212/WNL.0b013e3182a393d1
10.1097/WNP.0000000000000847.
10.1016/j.yebeh.2017.08.021
10.1111/epi.12762
10.1016/j.seizure.2015.08.011
10.1016/j.seizure.2004.11.001
10.1007/s00234-021-02705-y.
10.1109/TBME.2016.2554559
10.1016/S0006-8993(10)80038-1
10.1016/j.eplepsyres.2020.106431
10.1097/00004691-200109000-00005
10.1684/epd.2017.0929
10.1016/S0920-1211(03)00107-4
10.1007/s00381-020-04962-3
10.1037/0735-7044.118.1.79
10.3389/fneur.2020.610379
10.1111/ner.13290.
10.1016/j.nicl.2020.102205
10.1111/j.1528-1157.1990.tb05848.x
10.2147/MDER.S62853
10.1016/j.seizure.2018.03.022
10.1016/B978-0-12-817002-1.00020-1
10.1111/j.1528-1157.1990.tb05845.x
10.1111/ner.12376
10.1046/j.1528-1157.2002.16102.x
10.1016/j.yebeh.2020.107280
10.1038/s41587-019-0244-6
10.1016/j.seizure.2020.09.027
10.1111/j.1528-1157.1998.tb01155.x
10.1212/WNL.53.8.1731
10.1111/epi.16661
10.1111/ner.12897
10.1016/j.seizure.2014.02.012
10.1016/j.biopsych.2003.12.004
10.1111/j.0013-9580.2004.03104.x
10.1016/j.eplepsyres.2017.04.008
10.1111/j.1528-1157.1990.tb05846.x
10.1111/j.1528-1157.1998.tb01448.x
10.1016/j.seizure.2008.05.001
10.1007/s13311-019-00727-2
10.1016/j.brainres.2006.08.048
10.1212/WNL.0b013e3181a55f90
10.1016/j.seizure.2021.03.030
10.1007/s00701-015-2362-3
ContentType Journal Article
Copyright Copyright © 2021 Afra, Adamolekun, Aydemir and Watson.
Copyright © 2021 Afra, Adamolekun, Aydemir and Watson. 2021 Afra, Adamolekun, Aydemir and Watson
Copyright_xml – notice: Copyright © 2021 Afra, Adamolekun, Aydemir and Watson.
– notice: Copyright © 2021 Afra, Adamolekun, Aydemir and Watson. 2021 Afra, Adamolekun, Aydemir and Watson
DBID AAYXX
CITATION
NPM
7X8
5PM
DOA
DOI 10.3389/fmedt.2021.696543
DatabaseName CrossRef
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList
CrossRef
MEDLINE - Academic
PubMed

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
EISSN 2673-3129
ExternalDocumentID oai_doaj_org_article_1e82044127d8492f84d1a6ab183bcfff
PMC8757869
35047938
10_3389_fmedt_2021_696543
Genre Journal Article
Review
GroupedDBID 9T4
AAFWJ
AAYXX
ACXDI
AFPKN
ALMA_UNASSIGNED_HOLDINGS
CITATION
GROUPED_DOAJ
M~E
OK1
PGMZT
RPM
EIHBH
NPM
7X8
5PM
ID FETCH-LOGICAL-c465t-231fd409b9875187000a87c7958523f4d5400374dfe4974ca67c09101a43f10d3
IEDL.DBID DOA
ISSN 2673-3129
IngestDate Wed Aug 27 01:31:39 EDT 2025
Thu Aug 21 18:16:07 EDT 2025
Fri Jul 11 07:11:48 EDT 2025
Mon Jul 21 05:34:55 EDT 2025
Tue Jul 01 04:18:28 EDT 2025
Thu Apr 24 22:59:44 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords drug-resistant epilepsy
neuromodulation
VNS
vagus nerve stimulation
medical device
Language English
License Copyright © 2021 Afra, Adamolekun, Aydemir and Watson.
This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c465t-231fd409b9875187000a87c7958523f4d5400374dfe4974ca67c09101a43f10d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
This article was submitted to Diagnostic and Therapeutic Devices, a section of the journal Frontiers in Medical Technology
Reviewed by: Ali Abdul Latif, Welfare hospital, Iraq; Sanjay Raghav, Monash University, Australia
Edited by: Dinesh Kumar, RMIT University, Australia
OpenAccessLink https://doaj.org/article/1e82044127d8492f84d1a6ab183bcfff
PMID 35047938
PQID 2621656755
PQPubID 23479
ParticipantIDs doaj_primary_oai_doaj_org_article_1e82044127d8492f84d1a6ab183bcfff
pubmedcentral_primary_oai_pubmedcentral_nih_gov_8757869
proquest_miscellaneous_2621656755
pubmed_primary_35047938
crossref_primary_10_3389_fmedt_2021_696543
crossref_citationtrail_10_3389_fmedt_2021_696543
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-08-26
PublicationDateYYYYMMDD 2021-08-26
PublicationDate_xml – month: 08
  year: 2021
  text: 2021-08-26
  day: 26
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
PublicationTitle Frontiers in medical technology
PublicationTitleAlternate Front Med Technol
PublicationYear 2021
Publisher Frontiers Media S.A
Publisher_xml – name: Frontiers Media S.A
References Arle (B4) 2020
Hachem (B20) 2018; 45
Datta (B51) 2020; 111
Ryvlin (B59) 2013; 12
Zabara (B44) 1985; 26
Penry (B46) 1990; 31
Vonck (B62) 2005; 14
Terry (B47) 1990; 31
Lockard (B45) 1986; 27
Hammond (B10) 1992; 583
Fisher (B63) 2016; 19
Eggleston (B48) 2014; 23
Lo (B52) 2020; 37
Espinosa (B58) 2009; 72
Ben-Menachem (B11) 1995; 20
Krahl (B12) 1998; 39
Schieder (B64) 2015; 157
(B5) 2019
Cagnan (B37) 2019; 37
Morris (B1) 1999; 53
Vonck (B18) 2008; 17
Ernst (B23) 2021
Marrosu (B14) 2003; 55
Liu (B25) 2003; 74
Ravan (B21) 2017; 133
Boon (B49) 2015; 32
Koo (B13) 2001; 18
Thomas (B36) 2015; 8
Abdelmoity (B54) 2021; 86
Kawai (B35) 2017; 19
Toffa (B9) 2020; 83
Cukiert (B53) 2020
(B42) 2017
Roosevelt (B17) 2006; 1119
Arle (B19) 2016; 126
Fisher (B7) 2021; 11
Narayanan (B26) 2002; 43
(B38) 2002
Mu (B27) 2004; 55
Orosz (B34) 2014; 55
(B3) 2020
Fetzer (B6) 2021
Mithani (B30) 2020; 26
Hassert (B16) 2004; 118
(B40) 2019
Hadjinicolaou (B57) 2020; 167
Henry (B15) 2004; 45
Kulju (B56) 2019; 22
Ravan (B22) 2017; 64
Elliott (B32) 2011; 20
(B43) 2017
Wong (B8) 2019; 16
Ali (B60) 2017; 76
Henry (B24) 1998; 39
Morris (B33) 2013; 81
Hamilton (B50) 2018; 58
Agnew (B61) 1990; 31
Ibrahim (B28) 2017; 16
(B41) 2019
Winston (B55) 2021; 88
Ben-Menachem (B2) 2001; 18
(B39) 2015
Workewych (B31) 2020; 61
Mithani (B29) 2019; 86
References_xml – volume: 18
  start-page: 434
  year: 2001
  ident: B13
  article-title: EEG. changes with vagus nerve stimulation
  publication-title: J Clin Neurophysiol.
  doi: 10.1097/00004691-200109000-00008
– volume: 86
  start-page: 168
  year: 2021
  ident: B54
  article-title: The efficacy and tolerability of auto-stimulation-VNS in children with Lennox-Gastaut syndrome
  publication-title: Seizure.
  doi: 10.1016/j.seizure.2021.02.015
– volume: 45
  start-page: E2
  year: 2018
  ident: B20
  article-title: The vagus afferent network: emerging role in translational connectomics
  publication-title: Neurosurg Focus.
  doi: 10.3171/2018.6.FOCUS18216
– volume: 20
  start-page: 57
  year: 2011
  ident: B32
  article-title: Vagus nerve stimulation in 436 consecutive patients with treatment-resistant epilepsy: long-term outcomes and predictors of response
  publication-title: Epilepsy Behav.
  doi: 10.1016/j.yebeh.2010.10.017
– volume: 16
  start-page: 634
  year: 2017
  ident: B28
  article-title: Presurgical thalamocortical connectivity is associated with response to vagus nerve stimulation in children with intractable epilepsy
  publication-title: Neuroimage Clin.
  doi: 10.1016/j.nicl.2017.09.015
– volume: 12
  start-page: 966
  year: 2013
  ident: B59
  article-title: Incidence and mechanisms of cardiorespiratory arrests in epilepsy monitoring untis (MORTEMUS): a retrospective study
  publication-title: Lancet Neurol.
  doi: 10.1016/S1474-4422(13)70214-X
– volume: 86
  start-page: 743
  year: 2019
  ident: B29
  article-title: Connectomic profiling identifies responders to vagus nerve stimulation
  publication-title: Ann Neurol.
  doi: 10.1002/ana.25574
– volume: 126
  start-page: 109
  year: 2016
  ident: B19
  article-title: Investigation of mechanisms of vagus nerve stimulation for seizure using finite element modeling
  publication-title: Epilepsy Res.
  doi: 10.1016/j.eplepsyres.2016.07.009
– volume: 74
  start-page: 811
  year: 2003
  ident: B25
  article-title: BOLD fMRI activation induced by vagus nerve stimulation in seizure patients
  publication-title: J Neurol Neurosurg Psychiatry.
  doi: 10.1136/jnnp.74.6.811
– volume: 20
  start-page: 221
  year: 1995
  ident: B11
  article-title: Effects of vagus nerve stimulation on amino acids and other metabolites in the CSF of patients with partial seizures
  publication-title: Epilepsy Res.
  doi: 10.1016/0920-1211(94)00083-9
– year: 2002
  ident: B38
  publication-title: NeuroCybernetic Prothesis System Physician's Manual
– year: 2017
  ident: B42
  publication-title: LivaNova
– year: 2020
  ident: B3
  publication-title: VNS Therapy Physician's Manual
– volume: 26
  start-page: 518
  year: 1985
  ident: B44
  article-title: Time course of seizure control to brief repetitive stimuli
  publication-title: Epilepsia.
– volume: 81
  start-page: 1452
  year: 2013
  ident: B33
  article-title: Evidence-based guideline update: vagus nerve stimulation for the treatment of epilepsy
  publication-title: Neurology.
  doi: 10.1212/WNL.0b013e3182a393d1
– year: 2021
  ident: B23
  article-title: Electrocorticography analysis in patients with dual neurostimulators supports desynchronization as a mechanism of action for acute vagal nerve stimulator stimulation
  publication-title: J Clin Neurophysiol
  doi: 10.1097/WNP.0000000000000847.
– volume: 76
  start-page: 1
  year: 2017
  ident: B60
  article-title: Association of sleep with sudden unexpected death in epilepsy
  publication-title: Epilepsy & Behavior.
  doi: 10.1016/j.yebeh.2017.08.021
– volume: 55
  start-page: 1576
  year: 2014
  ident: B34
  article-title: Vagus nerve stimulation for drug-resistant epilepsy: a European long-term study up to 24 months in 347 children
  publication-title: Epilepsia.
  doi: 10.1111/epi.12762
– volume: 32
  start-page: 52
  year: 2015
  ident: B49
  article-title: A prospective, multicenter study of cardiac-based seizure detection to activate vagus nerve stimulation
  publication-title: Seizure.
  doi: 10.1016/j.seizure.2015.08.011
– volume: 14
  start-page: 89
  year: 2005
  ident: B62
  article-title: Generator replacement in epilepsy patients treated with vagus nerve stimulation
  publication-title: Seizure.
  doi: 10.1016/j.seizure.2004.11.001
– year: 2021
  ident: B6
  article-title: A systematic review of magnetic resonance imaging in patients with an implanted vagus nerve stimulation system
  publication-title: Neuroradiology.
  doi: 10.1007/s00234-021-02705-y.
– volume: 64
  start-page: 419
  year: 2017
  ident: B22
  article-title: On quantitative biomarkers of VNS therapy using EEG and ECG signals
  publication-title: IEEE Trans Biomed Eng.
  doi: 10.1109/TBME.2016.2554559
– year: 2019
  ident: B40
  publication-title: NeuroCybernetic Prosthesis (NCP
– volume: 27
  start-page: 626
  year: 1986
  ident: B45
  article-title: Effects of vagal stimulation on seizure rate in monkey model
  publication-title: Epilepsia.
– volume: 583
  start-page: 300
  year: 1992
  ident: B10
  article-title: Neurochemical effects of vagus nerve stimulation in humans
  publication-title: Brain Res.
  doi: 10.1016/S0006-8993(10)80038-1
– volume: 167
  start-page: 106431
  year: 2020
  ident: B57
  article-title: Generator replacement with cardiac-based VNS device in children with drug-resistant epilepsy: an observational study
  publication-title: Epilepsy Res.
  doi: 10.1016/j.eplepsyres.2020.106431
– volume: 18
  start-page: 415
  year: 2001
  ident: B2
  article-title: Vagus nerve stimulation, side effects, and long-term safety
  publication-title: J Clin Neurophysiol.
  doi: 10.1097/00004691-200109000-00005
– volume: 19
  start-page: 327
  year: 2017
  ident: B35
  article-title: Outcome of vagus nerve stimulation for drug-resistant epilepsy: the first three years of a prospective Japanese registry
  publication-title: Epileptic Disord.
  doi: 10.1684/epd.2017.0929
– volume: 55
  start-page: 59
  year: 2003
  ident: B14
  article-title: Correlation between GABA(A) receptor density and vagus nerve stimulation in individuals with drug-resistant partial epilepsy
  publication-title: Epilepsy Res.
  doi: 10.1016/S0920-1211(03)00107-4
– year: 2015
  ident: B39
  publication-title: VNS Therapy
– volume: 37
  start-page: 1237
  year: 2020
  ident: B52
  article-title: Seizure improvement following vagus nerve stimulator (VNS) battery change with cardiac-based seizure detection automatic stimulation (AutoStim): early experience in a regional paediatric unit
  publication-title: Child's Nervous System.
  doi: 10.1007/s00381-020-04962-3
– volume: 118
  start-page: 79
  year: 2004
  ident: B16
  article-title: The effects of peripheral vagal nerve stimulation at a memory-modulating instensity on norepinephrine output in the basolateral amygdala
  publication-title: Behav Neurosci.
  doi: 10.1037/0735-7044.118.1.79
– volume: 11
  start-page: 610379
  year: 2021
  ident: B7
  article-title: Responsive vagus nerve stimulation for drug resistant epilepsy: a review of new features and practical guidance for advanced practice providers
  publication-title: Front Neurol.
  doi: 10.3389/fneur.2020.610379
– year: 2020
  ident: B53
  article-title: Impact of cardiac-based vagus nerve stimulation closed-loop stimulation on the seizure outcome of patients with generalized epilepsy: a prospective, individual-control study
  publication-title: Neuromodulation.
  doi: 10.1111/ner.13290.
– volume: 26
  start-page: 102205
  year: 2020
  ident: B30
  article-title: Somatosensory evoked fields predict response to vagus nerve stimulation
  publication-title: Neuroimage Clin
  doi: 10.1016/j.nicl.2020.102205
– volume: 31
  start-page: S40
  year: 1990
  ident: B46
  article-title: Prevention of intractable partial seizures by intermittent vagal stimulation in humans: preliminary results
  publication-title: Epilepsia.
  doi: 10.1111/j.1528-1157.1990.tb05848.x
– volume: 8
  start-page: 405
  year: 2015
  ident: B36
  article-title: Critical review of the responsive neurostimulator system for epilepsy
  publication-title: Med Devices.
  doi: 10.2147/MDER.S62853
– volume: 58
  start-page: 120
  year: 2018
  ident: B50
  article-title: Clinical outcomes of VNS therapy with AspireSR® (including cardiac-based seizure detection) at a large complex epilepsy and surgery centre
  publication-title: Seizure.
  doi: 10.1016/j.seizure.2018.03.022
– year: 2017
  ident: B43
  publication-title: VNS Therapy
– start-page: 153
  volume-title: The Neuromodulation Casejournal
  year: 2020
  ident: B4
  article-title: New vagus nerve stimulation lead and implantable pulse generator placement
  doi: 10.1016/B978-0-12-817002-1.00020-1
– volume: 31
  start-page: S27
  year: 1990
  ident: B61
  article-title: Considerations for safety with chronically implanted nerve electrodes
  publication-title: Epilepsia.
  doi: 10.1111/j.1528-1157.1990.tb05845.x
– volume: 19
  start-page: 188
  year: 2016
  ident: B63
  article-title: Automatic vagus nerve stimulation triggered by ictal tachycardia: clinical outcomes and device performance – The US E-37 trial
  publication-title: Neuromodulation.
  doi: 10.1111/ner.12376
– volume: 43
  start-page: 1509
  year: 2002
  ident: B26
  article-title: Cerebral activation during vagus nerve stimulation: a functional MR study
  publication-title: Epilepsia.
  doi: 10.1046/j.1528-1157.2002.16102.x
– volume: 111
  start-page: 107280
  year: 2020
  ident: B51
  article-title: Vagus nerve stimulation with tachycardia detection provides additional seizure reduction compared to traditional vagus nerve stimulation
  publication-title: Epilepsy & Behavior.
  doi: 10.1016/j.yebeh.2020.107280
– volume: 37
  start-page: 1024
  year: 2019
  ident: B37
  article-title: Emerging technologies for improved deep brain stimulation
  publication-title: Nat Biotechnol.
  doi: 10.1038/s41587-019-0244-6
– volume: 83
  start-page: 104
  year: 2020
  ident: B9
  article-title: Learnings from 30 years of reported efficacy and safety of vagus nerve stimulation (VNS) for epilepsy treatments: a critical review
  publication-title: Seizure.
  doi: 10.1016/j.seizure.2020.09.027
– volume: 39
  start-page: 709
  year: 1998
  ident: B12
  article-title: Locus coeruleus lesions suppress the seizure-attenuating effects of vagus nerve stimulation
  publication-title: Epilepsia.
  doi: 10.1111/j.1528-1157.1998.tb01155.x
– volume: 53
  start-page: 1731
  year: 1999
  ident: B1
  article-title: Long-term treatment with vagus nerve stimulation in patients with refractory epilepsy
  publication-title: Neurology.
  doi: 10.1212/WNL.53.8.1731
– year: 2019
  ident: B5
  publication-title: MRI with the VNS Therapy
– volume: 61
  start-page: 2069
  year: 2020
  ident: B31
  article-title: Biomarkers of seizure response to vagus nerve stimulation: a scoping review
  publication-title: Epilepsia.
  doi: 10.1111/epi.16661
– year: 2019
  ident: B41
  publication-title: VNS Therapy
– volume: 22
  start-page: 630
  year: 2019
  ident: B56
  article-title: Autostimulation in vagus nerve stimulator treatment: modulating neuromodulation
  publication-title: Neuromodulation.
  doi: 10.1111/ner.12897
– volume: 23
  start-page: 496
  year: 2014
  ident: B48
  article-title: Ictal tachycardia: the head-heart connection
  publication-title: Seizure.
  doi: 10.1016/j.seizure.2014.02.012
– volume: 55
  start-page: 816
  year: 2004
  ident: B27
  article-title: Acute vagus nerve stimulation using different pulse widths produces varying brain effects
  publication-title: Biol Psychiatry.
  doi: 10.1016/j.biopsych.2003.12.004
– volume: 45
  start-page: 1064
  year: 2004
  ident: B15
  article-title: Brain blood-flow alterations induced by therapeutic vagus nerve stimulation in partial epilepsy: II. Prolonged effects at high and low levels of stimulation
  publication-title: Epilepsia.
  doi: 10.1111/j.0013-9580.2004.03104.x
– volume: 133
  start-page: 46
  year: 2017
  ident: B21
  article-title: Investigating the correlation between short-term effectiveness of VNS therapy in reducing the severity of seizures and long-term responsiveness
  publication-title: Epilepsy Res.
  doi: 10.1016/j.eplepsyres.2017.04.008
– volume: 31
  start-page: S33
  year: 1990
  ident: B47
  article-title: An implantable neurocybernetic prothesis system
  publication-title: Epilepsia.
  doi: 10.1111/j.1528-1157.1990.tb05846.x
– volume: 39
  start-page: 983
  year: 1998
  ident: B24
  article-title: Brain blood flow alterations induced by therapeutic vagus nerve stimulatin in partial epilepsy: I. Acute effects at high and low levels of stimulation
  publication-title: Epilepsia.
  doi: 10.1111/j.1528-1157.1998.tb01448.x
– volume: 17
  start-page: 699
  year: 2008
  ident: B18
  article-title: Thalamic and limbic involvement in the mechanism of action of vagus nerve stimulation, a SPECT study
  publication-title: Seizure.
  doi: 10.1016/j.seizure.2008.05.001
– volume: 16
  start-page: 369
  year: 2019
  ident: B8
  article-title: Comparison and selection of current implantable anti-epileptic devices
  publication-title: Neurotherapeutics.
  doi: 10.1007/s13311-019-00727-2
– volume: 1119
  start-page: 124
  year: 2006
  ident: B17
  article-title: Increased extracellular concentrations of norepinephrine in cortex and hippocampus following vagus nerve stimulation in the rat
  publication-title: Brain Res.
  doi: 10.1016/j.brainres.2006.08.048
– volume: 72
  start-page: 1702
  year: 2009
  ident: B58
  article-title: Sudden unexpected near death in epilepsy: malignant arrhythmia from a partial seizure
  publication-title: Neurology.
  doi: 10.1212/WNL.0b013e3181a55f90
– volume: 88
  start-page: 95
  year: 2021
  ident: B55
  article-title: Closed-loop vagal nerve stimulation for intractable epilepsy: a single-center experience
  publication-title: Seizure.
  doi: 10.1016/j.seizure.2021.03.030
– volume: 157
  start-page: 721
  year: 2015
  ident: B64
  article-title: Implantation of a new vagus nerve stimulation (VNS) therapy® generator, AspireSR®: considerations and recommendations during implantation and replacement surgery – comparison to a traditional shystem
  publication-title: Acta Neurochir.
  doi: 10.1007/s00701-015-2362-3
SSID ssj0002512234
Score 2.399327
SecondaryResourceType review_article
Snippet The vagus nerve stimulation (VNS) Therapy® System is the first FDA-approved medical device therapy for the treatment of drug-resistant epilepsy. Over the past...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 696543
SubjectTerms drug-resistant epilepsy
medical device
Medical Technology
neuromodulation
vagus nerve stimulation
VNS
Title Evolution of the Vagus Nerve Stimulation (VNS) Therapy System Technology for Drug-Resistant Epilepsy
URI https://www.ncbi.nlm.nih.gov/pubmed/35047938
https://www.proquest.com/docview/2621656755
https://pubmed.ncbi.nlm.nih.gov/PMC8757869
https://doaj.org/article/1e82044127d8492f84d1a6ab183bcfff
Volume 3
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9wwELYqTlwqKqBNC8iVONBKgY2f8ZHHIoTEHspD3CwntilSm12xWST-PTNx2O6iqlx6TRzF-Wbi-caPbwjZjTJI5rjPnVYxF6VyeSVVlVeDMoQgWBEknka-GKmza3F-K28XSn3hnrAkD5yAOygCxCiI2Uz7UhgWS-ELp1wFrljVMUYcfSHmLSRTOAZj1GZcpGVMyMIMmCl43DvJin1l8EDlUiDq9Pr_RjJf75VcCD6na-R9zxrpYertB_IuNOvEDx97v6HjSIHI0Rt3N5vSEW5ipJft_e--NBfduxldfqNXSUCAJpFy-mdSnQJxpScPs7v8R5gin2xaOpzAcDGZPm2Q69Ph1fFZ3hdNyGuhZJsDX4sekrbKlLiiogEMV-paG8gLGI_CA0VDzRkfg4BconZK18gZCid4LAaeb5KVZtyET4SWkXPhADFTRREKYwB1MB5TrFa-ZjojgxcEbd0rimNhi18WMgsE3XagWwTdJtAz8n3-yCTJafyr8RGaZd4QlbC7C-AftvcP-5Z_ZOTri1Et_Dm4HOKaMJ5NLXwHSg9pKTPyMRl5_iouUXqflxnRS-Zf6svyneb-Z6fO3VUIUObz_-j8F7KKeOAcNlNbZKV9mIVtIEFttdP5-043O_UM0ecGhA
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Evolution+of+the+Vagus+Nerve+Stimulation+%28VNS%29+Therapy+System+Technology+for+Drug-Resistant+Epilepsy&rft.jtitle=Frontiers+in+medical+technology&rft.au=Afra%2C+Pegah&rft.au=Adamolekun%2C+Bola&rft.au=Aydemir%2C+Seyhmus&rft.au=Watson%2C+Glenn+David+Robert&rft.date=2021-08-26&rft.pub=Frontiers+Media+S.A&rft.eissn=2673-3129&rft.volume=3&rft_id=info:doi/10.3389%2Ffmedt.2021.696543&rft_id=info%3Apmid%2F35047938&rft.externalDocID=PMC8757869
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2673-3129&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2673-3129&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2673-3129&client=summon