Evolution of the Vagus Nerve Stimulation (VNS) Therapy System Technology for Drug-Resistant Epilepsy
The vagus nerve stimulation (VNS) Therapy® System is the first FDA-approved medical device therapy for the treatment of drug-resistant epilepsy. Over the past two decades, the technology has evolved through multiple iterations resulting in software-related updates and implantable lead and generator...
Saved in:
Published in | Frontiers in medical technology Vol. 3; p. 696543 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
Frontiers Media S.A
26.08.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The vagus nerve stimulation (VNS) Therapy® System is the first FDA-approved medical device therapy for the treatment of drug-resistant epilepsy. Over the past two decades, the technology has evolved through multiple iterations resulting in software-related updates and implantable lead and generator hardware improvements. Healthcare providers today commonly encounter a range of single- and dual-pin generators (models 100, 101, 102, 102R, 103, 104, 105, 106, 1000) and related programming systems (models 250, 3000), all of which have their own subtle, but practical differences. It can therefore be a daunting task to go through the manuals of these implant models for comparison, some of which are not readily available. In this review, we highlight the technological evolution of the VNS Therapy System with respect to device approval milestones and provide a comparison of conventional open-loop vs. the latest closed-loop generator models. Battery longevity projections and an in-depth examination of stimulation mode interactions are also presented to further differentiate amongst generator models. |
---|---|
AbstractList | The vagus nerve stimulation (VNS) Therapy® System is the first FDA-approved medical device therapy for the treatment of drug-resistant epilepsy. Over the past two decades, the technology has evolved through multiple iterations resulting in software-related updates and implantable lead and generator hardware improvements. Healthcare providers today commonly encounter a range of single- and dual-pin generators (models 100, 101, 102, 102R, 103, 104, 105, 106, 1000) and related programming systems (models 250, 3000), all of which have their own subtle, but practical differences. It can therefore be a daunting task to go through the manuals of these implant models for comparison, some of which are not readily available. In this review, we highlight the technological evolution of the VNS Therapy System with respect to device approval milestones and provide a comparison of conventional open-loop vs. the latest closed-loop generator models. Battery longevity projections and an in-depth examination of stimulation mode interactions are also presented to further differentiate amongst generator models. The vagus nerve stimulation (VNS) Therapy® System is the first FDA-approved medical device therapy for the treatment of drug-resistant epilepsy. Over the past two decades, the technology has evolved through multiple iterations resulting in software-related updates and implantable lead and generator hardware improvements. Healthcare providers today commonly encounter a range of single- and dual-pin generators (models 100, 101, 102, 102R, 103, 104, 105, 106, 1000) and related programming systems (models 250, 3000), all of which have their own subtle, but practical differences. It can therefore be a daunting task to go through the manuals of these implant models for comparison, some of which are not readily available. In this review, we highlight the technological evolution of the VNS Therapy System with respect to device approval milestones and provide a comparison of conventional open-loop vs. the latest closed-loop generator models. Battery longevity projections and an in-depth examination of stimulation mode interactions are also presented to further differentiate amongst generator models.The vagus nerve stimulation (VNS) Therapy® System is the first FDA-approved medical device therapy for the treatment of drug-resistant epilepsy. Over the past two decades, the technology has evolved through multiple iterations resulting in software-related updates and implantable lead and generator hardware improvements. Healthcare providers today commonly encounter a range of single- and dual-pin generators (models 100, 101, 102, 102R, 103, 104, 105, 106, 1000) and related programming systems (models 250, 3000), all of which have their own subtle, but practical differences. It can therefore be a daunting task to go through the manuals of these implant models for comparison, some of which are not readily available. In this review, we highlight the technological evolution of the VNS Therapy System with respect to device approval milestones and provide a comparison of conventional open-loop vs. the latest closed-loop generator models. Battery longevity projections and an in-depth examination of stimulation mode interactions are also presented to further differentiate amongst generator models. |
Author | Aydemir, Seyhmus Afra, Pegah Watson, Glenn David Robert Adamolekun, Bola |
AuthorAffiliation | 4 LivaNova, Neuromodulation Unit , Houston, TX , United States 1 Department of Neurology, Weill-Cornell Medicine , New York, NY , United States 2 Department of Neurology, University of Utah School of Medicine , Salt Lake City, UT , United States 3 Department of Neurology, University of Tennessee Health Science Center , Memphis, TN , United States |
AuthorAffiliation_xml | – name: 1 Department of Neurology, Weill-Cornell Medicine , New York, NY , United States – name: 2 Department of Neurology, University of Utah School of Medicine , Salt Lake City, UT , United States – name: 4 LivaNova, Neuromodulation Unit , Houston, TX , United States – name: 3 Department of Neurology, University of Tennessee Health Science Center , Memphis, TN , United States |
Author_xml | – sequence: 1 givenname: Pegah surname: Afra fullname: Afra, Pegah – sequence: 2 givenname: Bola surname: Adamolekun fullname: Adamolekun, Bola – sequence: 3 givenname: Seyhmus surname: Aydemir fullname: Aydemir, Seyhmus – sequence: 4 givenname: Glenn David Robert surname: Watson fullname: Watson, Glenn David Robert |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35047938$$D View this record in MEDLINE/PubMed |
BookMark | eNp9ks1u1DAUhSNUREvpA7BBXpZFBv_G9gYJtUNbqSoSM3RreRw74yqJg-2MlLcnnSlVy4KVLd9zv3vke94XR33obVF8RHBBiJBfXGfrvMAQo0UlK0bJm-IEV5yUBGF59OJ-XJyl9AAhxAxhTOi74pgwSLkk4qSol7vQjtmHHgQH8taCe92MCdzZuLNglX03tnpfPr-_W30G662NepjAakrZdmBtzbYPbWgm4EIEl3Fsyp82-ZR1n8Fy8K0d0vSheOt0m-zZ03la_Pq-XF9cl7c_rm4uvt2WhlYsl5ggV1MoN1JwhgSfLWvBDZdMMEwcrRmFkHBaO0slp0ZX3ECJINKUOARrclrcHLh10A9qiL7TcVJBe7V_CLFROmZvWquQFRhSijCvBZXYCVojXekNEmRjnHMz6-uBNYyb-aeN7XPU7Svo60rvt6oJOzV756KSM-D8CRDD79GmrDqfjG1b3dswJoUrjCpWccZm6aeXs56H_F3TLEAHgYkhpWjdswRB9ZgGtU-DekyDOqRh7uH_9Bif96uc7fr2P51_ANYAujI |
CitedBy_id | crossref_primary_10_1016_j_seizure_2024_01_019 crossref_primary_10_1186_s12984_023_01159_y crossref_primary_10_1016_j_neurom_2023_04_474 crossref_primary_10_1073_pnas_2322577121 crossref_primary_10_3390_children12020148 crossref_primary_10_3390_ijms25010091 crossref_primary_10_1007_s00247_023_05651_4 crossref_primary_10_1038_s42003_024_07222_1 crossref_primary_10_3390_cells12111540 crossref_primary_10_3390_brainsci14070675 crossref_primary_10_3390_biomedinformatics5010014 crossref_primary_10_1016_j_yebeh_2024_110008 crossref_primary_10_1093_ecco_jcc_jjad151 crossref_primary_10_3389_fvets_2022_928009 crossref_primary_10_1113_JP285854 crossref_primary_10_2478_amma_2023_0027 crossref_primary_10_1615_CritRevBiomedEng_2023049282 crossref_primary_10_1016_j_yebeh_2021_108319 crossref_primary_10_1097_AIA_0000000000000407 crossref_primary_10_1109_TBCAS_2022_3228895 crossref_primary_10_1016_j_neucli_2024_102996 crossref_primary_10_3389_fpsyt_2024_1376140 crossref_primary_10_1016_j_neubiorev_2024_105990 crossref_primary_10_1088_1741_2552_ad0c60 crossref_primary_10_1038_s41467_024_51988_1 crossref_primary_10_1007_s10286_024_01065_w crossref_primary_10_1007_s00701_023_05875_1 crossref_primary_10_1088_1741_2552_acc6f1 crossref_primary_10_1007_s11910_023_01323_w crossref_primary_10_1177_11795735231151830 crossref_primary_10_1186_s42494_023_00136_1 crossref_primary_10_2174_0118715273332140240724093837 crossref_primary_10_1002_14651858_CD015859 crossref_primary_10_1007_s00381_021_05416_0 crossref_primary_10_1111_nmo_14815 crossref_primary_10_3390_s24103172 crossref_primary_10_1002_mus_28029 crossref_primary_10_1186_s42234_023_00130_5 crossref_primary_10_3390_brainsci13091305 |
Cites_doi | 10.1097/00004691-200109000-00008 10.1016/j.seizure.2021.02.015 10.3171/2018.6.FOCUS18216 10.1016/j.yebeh.2010.10.017 10.1016/j.nicl.2017.09.015 10.1016/S1474-4422(13)70214-X 10.1002/ana.25574 10.1016/j.eplepsyres.2016.07.009 10.1136/jnnp.74.6.811 10.1016/0920-1211(94)00083-9 10.1212/WNL.0b013e3182a393d1 10.1097/WNP.0000000000000847. 10.1016/j.yebeh.2017.08.021 10.1111/epi.12762 10.1016/j.seizure.2015.08.011 10.1016/j.seizure.2004.11.001 10.1007/s00234-021-02705-y. 10.1109/TBME.2016.2554559 10.1016/S0006-8993(10)80038-1 10.1016/j.eplepsyres.2020.106431 10.1097/00004691-200109000-00005 10.1684/epd.2017.0929 10.1016/S0920-1211(03)00107-4 10.1007/s00381-020-04962-3 10.1037/0735-7044.118.1.79 10.3389/fneur.2020.610379 10.1111/ner.13290. 10.1016/j.nicl.2020.102205 10.1111/j.1528-1157.1990.tb05848.x 10.2147/MDER.S62853 10.1016/j.seizure.2018.03.022 10.1016/B978-0-12-817002-1.00020-1 10.1111/j.1528-1157.1990.tb05845.x 10.1111/ner.12376 10.1046/j.1528-1157.2002.16102.x 10.1016/j.yebeh.2020.107280 10.1038/s41587-019-0244-6 10.1016/j.seizure.2020.09.027 10.1111/j.1528-1157.1998.tb01155.x 10.1212/WNL.53.8.1731 10.1111/epi.16661 10.1111/ner.12897 10.1016/j.seizure.2014.02.012 10.1016/j.biopsych.2003.12.004 10.1111/j.0013-9580.2004.03104.x 10.1016/j.eplepsyres.2017.04.008 10.1111/j.1528-1157.1990.tb05846.x 10.1111/j.1528-1157.1998.tb01448.x 10.1016/j.seizure.2008.05.001 10.1007/s13311-019-00727-2 10.1016/j.brainres.2006.08.048 10.1212/WNL.0b013e3181a55f90 10.1016/j.seizure.2021.03.030 10.1007/s00701-015-2362-3 |
ContentType | Journal Article |
Copyright | Copyright © 2021 Afra, Adamolekun, Aydemir and Watson. Copyright © 2021 Afra, Adamolekun, Aydemir and Watson. 2021 Afra, Adamolekun, Aydemir and Watson |
Copyright_xml | – notice: Copyright © 2021 Afra, Adamolekun, Aydemir and Watson. – notice: Copyright © 2021 Afra, Adamolekun, Aydemir and Watson. 2021 Afra, Adamolekun, Aydemir and Watson |
DBID | AAYXX CITATION NPM 7X8 5PM DOA |
DOI | 10.3389/fmedt.2021.696543 |
DatabaseName | CrossRef PubMed MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | CrossRef MEDLINE - Academic PubMed |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
EISSN | 2673-3129 |
ExternalDocumentID | oai_doaj_org_article_1e82044127d8492f84d1a6ab183bcfff PMC8757869 35047938 10_3389_fmedt_2021_696543 |
Genre | Journal Article Review |
GroupedDBID | 9T4 AAFWJ AAYXX ACXDI AFPKN ALMA_UNASSIGNED_HOLDINGS CITATION GROUPED_DOAJ M~E OK1 PGMZT RPM EIHBH NPM 7X8 5PM |
ID | FETCH-LOGICAL-c465t-231fd409b9875187000a87c7958523f4d5400374dfe4974ca67c09101a43f10d3 |
IEDL.DBID | DOA |
ISSN | 2673-3129 |
IngestDate | Wed Aug 27 01:31:39 EDT 2025 Thu Aug 21 18:16:07 EDT 2025 Fri Jul 11 07:11:48 EDT 2025 Mon Jul 21 05:34:55 EDT 2025 Tue Jul 01 04:18:28 EDT 2025 Thu Apr 24 22:59:44 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | drug-resistant epilepsy neuromodulation VNS vagus nerve stimulation medical device |
Language | English |
License | Copyright © 2021 Afra, Adamolekun, Aydemir and Watson. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c465t-231fd409b9875187000a87c7958523f4d5400374dfe4974ca67c09101a43f10d3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 This article was submitted to Diagnostic and Therapeutic Devices, a section of the journal Frontiers in Medical Technology Reviewed by: Ali Abdul Latif, Welfare hospital, Iraq; Sanjay Raghav, Monash University, Australia Edited by: Dinesh Kumar, RMIT University, Australia |
OpenAccessLink | https://doaj.org/article/1e82044127d8492f84d1a6ab183bcfff |
PMID | 35047938 |
PQID | 2621656755 |
PQPubID | 23479 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_1e82044127d8492f84d1a6ab183bcfff pubmedcentral_primary_oai_pubmedcentral_nih_gov_8757869 proquest_miscellaneous_2621656755 pubmed_primary_35047938 crossref_primary_10_3389_fmedt_2021_696543 crossref_citationtrail_10_3389_fmedt_2021_696543 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-08-26 |
PublicationDateYYYYMMDD | 2021-08-26 |
PublicationDate_xml | – month: 08 year: 2021 text: 2021-08-26 day: 26 |
PublicationDecade | 2020 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland |
PublicationTitle | Frontiers in medical technology |
PublicationTitleAlternate | Front Med Technol |
PublicationYear | 2021 |
Publisher | Frontiers Media S.A |
Publisher_xml | – name: Frontiers Media S.A |
References | Arle (B4) 2020 Hachem (B20) 2018; 45 Datta (B51) 2020; 111 Ryvlin (B59) 2013; 12 Zabara (B44) 1985; 26 Penry (B46) 1990; 31 Vonck (B62) 2005; 14 Terry (B47) 1990; 31 Lockard (B45) 1986; 27 Hammond (B10) 1992; 583 Fisher (B63) 2016; 19 Eggleston (B48) 2014; 23 Lo (B52) 2020; 37 Espinosa (B58) 2009; 72 Ben-Menachem (B11) 1995; 20 Krahl (B12) 1998; 39 Schieder (B64) 2015; 157 (B5) 2019 Cagnan (B37) 2019; 37 Morris (B1) 1999; 53 Vonck (B18) 2008; 17 Ernst (B23) 2021 Marrosu (B14) 2003; 55 Liu (B25) 2003; 74 Ravan (B21) 2017; 133 Boon (B49) 2015; 32 Koo (B13) 2001; 18 Thomas (B36) 2015; 8 Abdelmoity (B54) 2021; 86 Kawai (B35) 2017; 19 Toffa (B9) 2020; 83 Cukiert (B53) 2020 (B42) 2017 Roosevelt (B17) 2006; 1119 Arle (B19) 2016; 126 Fisher (B7) 2021; 11 Narayanan (B26) 2002; 43 (B38) 2002 Mu (B27) 2004; 55 Orosz (B34) 2014; 55 (B3) 2020 Fetzer (B6) 2021 Mithani (B30) 2020; 26 Hassert (B16) 2004; 118 (B40) 2019 Hadjinicolaou (B57) 2020; 167 Henry (B15) 2004; 45 Kulju (B56) 2019; 22 Ravan (B22) 2017; 64 Elliott (B32) 2011; 20 (B43) 2017 Wong (B8) 2019; 16 Ali (B60) 2017; 76 Henry (B24) 1998; 39 Morris (B33) 2013; 81 Hamilton (B50) 2018; 58 Agnew (B61) 1990; 31 Ibrahim (B28) 2017; 16 (B41) 2019 Winston (B55) 2021; 88 Ben-Menachem (B2) 2001; 18 (B39) 2015 Workewych (B31) 2020; 61 Mithani (B29) 2019; 86 |
References_xml | – volume: 18 start-page: 434 year: 2001 ident: B13 article-title: EEG. changes with vagus nerve stimulation publication-title: J Clin Neurophysiol. doi: 10.1097/00004691-200109000-00008 – volume: 86 start-page: 168 year: 2021 ident: B54 article-title: The efficacy and tolerability of auto-stimulation-VNS in children with Lennox-Gastaut syndrome publication-title: Seizure. doi: 10.1016/j.seizure.2021.02.015 – volume: 45 start-page: E2 year: 2018 ident: B20 article-title: The vagus afferent network: emerging role in translational connectomics publication-title: Neurosurg Focus. doi: 10.3171/2018.6.FOCUS18216 – volume: 20 start-page: 57 year: 2011 ident: B32 article-title: Vagus nerve stimulation in 436 consecutive patients with treatment-resistant epilepsy: long-term outcomes and predictors of response publication-title: Epilepsy Behav. doi: 10.1016/j.yebeh.2010.10.017 – volume: 16 start-page: 634 year: 2017 ident: B28 article-title: Presurgical thalamocortical connectivity is associated with response to vagus nerve stimulation in children with intractable epilepsy publication-title: Neuroimage Clin. doi: 10.1016/j.nicl.2017.09.015 – volume: 12 start-page: 966 year: 2013 ident: B59 article-title: Incidence and mechanisms of cardiorespiratory arrests in epilepsy monitoring untis (MORTEMUS): a retrospective study publication-title: Lancet Neurol. doi: 10.1016/S1474-4422(13)70214-X – volume: 86 start-page: 743 year: 2019 ident: B29 article-title: Connectomic profiling identifies responders to vagus nerve stimulation publication-title: Ann Neurol. doi: 10.1002/ana.25574 – volume: 126 start-page: 109 year: 2016 ident: B19 article-title: Investigation of mechanisms of vagus nerve stimulation for seizure using finite element modeling publication-title: Epilepsy Res. doi: 10.1016/j.eplepsyres.2016.07.009 – volume: 74 start-page: 811 year: 2003 ident: B25 article-title: BOLD fMRI activation induced by vagus nerve stimulation in seizure patients publication-title: J Neurol Neurosurg Psychiatry. doi: 10.1136/jnnp.74.6.811 – volume: 20 start-page: 221 year: 1995 ident: B11 article-title: Effects of vagus nerve stimulation on amino acids and other metabolites in the CSF of patients with partial seizures publication-title: Epilepsy Res. doi: 10.1016/0920-1211(94)00083-9 – year: 2002 ident: B38 publication-title: NeuroCybernetic Prothesis System Physician's Manual – year: 2017 ident: B42 publication-title: LivaNova – year: 2020 ident: B3 publication-title: VNS Therapy Physician's Manual – volume: 26 start-page: 518 year: 1985 ident: B44 article-title: Time course of seizure control to brief repetitive stimuli publication-title: Epilepsia. – volume: 81 start-page: 1452 year: 2013 ident: B33 article-title: Evidence-based guideline update: vagus nerve stimulation for the treatment of epilepsy publication-title: Neurology. doi: 10.1212/WNL.0b013e3182a393d1 – year: 2021 ident: B23 article-title: Electrocorticography analysis in patients with dual neurostimulators supports desynchronization as a mechanism of action for acute vagal nerve stimulator stimulation publication-title: J Clin Neurophysiol doi: 10.1097/WNP.0000000000000847. – volume: 76 start-page: 1 year: 2017 ident: B60 article-title: Association of sleep with sudden unexpected death in epilepsy publication-title: Epilepsy & Behavior. doi: 10.1016/j.yebeh.2017.08.021 – volume: 55 start-page: 1576 year: 2014 ident: B34 article-title: Vagus nerve stimulation for drug-resistant epilepsy: a European long-term study up to 24 months in 347 children publication-title: Epilepsia. doi: 10.1111/epi.12762 – volume: 32 start-page: 52 year: 2015 ident: B49 article-title: A prospective, multicenter study of cardiac-based seizure detection to activate vagus nerve stimulation publication-title: Seizure. doi: 10.1016/j.seizure.2015.08.011 – volume: 14 start-page: 89 year: 2005 ident: B62 article-title: Generator replacement in epilepsy patients treated with vagus nerve stimulation publication-title: Seizure. doi: 10.1016/j.seizure.2004.11.001 – year: 2021 ident: B6 article-title: A systematic review of magnetic resonance imaging in patients with an implanted vagus nerve stimulation system publication-title: Neuroradiology. doi: 10.1007/s00234-021-02705-y. – volume: 64 start-page: 419 year: 2017 ident: B22 article-title: On quantitative biomarkers of VNS therapy using EEG and ECG signals publication-title: IEEE Trans Biomed Eng. doi: 10.1109/TBME.2016.2554559 – year: 2019 ident: B40 publication-title: NeuroCybernetic Prosthesis (NCP – volume: 27 start-page: 626 year: 1986 ident: B45 article-title: Effects of vagal stimulation on seizure rate in monkey model publication-title: Epilepsia. – volume: 583 start-page: 300 year: 1992 ident: B10 article-title: Neurochemical effects of vagus nerve stimulation in humans publication-title: Brain Res. doi: 10.1016/S0006-8993(10)80038-1 – volume: 167 start-page: 106431 year: 2020 ident: B57 article-title: Generator replacement with cardiac-based VNS device in children with drug-resistant epilepsy: an observational study publication-title: Epilepsy Res. doi: 10.1016/j.eplepsyres.2020.106431 – volume: 18 start-page: 415 year: 2001 ident: B2 article-title: Vagus nerve stimulation, side effects, and long-term safety publication-title: J Clin Neurophysiol. doi: 10.1097/00004691-200109000-00005 – volume: 19 start-page: 327 year: 2017 ident: B35 article-title: Outcome of vagus nerve stimulation for drug-resistant epilepsy: the first three years of a prospective Japanese registry publication-title: Epileptic Disord. doi: 10.1684/epd.2017.0929 – volume: 55 start-page: 59 year: 2003 ident: B14 article-title: Correlation between GABA(A) receptor density and vagus nerve stimulation in individuals with drug-resistant partial epilepsy publication-title: Epilepsy Res. doi: 10.1016/S0920-1211(03)00107-4 – year: 2015 ident: B39 publication-title: VNS Therapy – volume: 37 start-page: 1237 year: 2020 ident: B52 article-title: Seizure improvement following vagus nerve stimulator (VNS) battery change with cardiac-based seizure detection automatic stimulation (AutoStim): early experience in a regional paediatric unit publication-title: Child's Nervous System. doi: 10.1007/s00381-020-04962-3 – volume: 118 start-page: 79 year: 2004 ident: B16 article-title: The effects of peripheral vagal nerve stimulation at a memory-modulating instensity on norepinephrine output in the basolateral amygdala publication-title: Behav Neurosci. doi: 10.1037/0735-7044.118.1.79 – volume: 11 start-page: 610379 year: 2021 ident: B7 article-title: Responsive vagus nerve stimulation for drug resistant epilepsy: a review of new features and practical guidance for advanced practice providers publication-title: Front Neurol. doi: 10.3389/fneur.2020.610379 – year: 2020 ident: B53 article-title: Impact of cardiac-based vagus nerve stimulation closed-loop stimulation on the seizure outcome of patients with generalized epilepsy: a prospective, individual-control study publication-title: Neuromodulation. doi: 10.1111/ner.13290. – volume: 26 start-page: 102205 year: 2020 ident: B30 article-title: Somatosensory evoked fields predict response to vagus nerve stimulation publication-title: Neuroimage Clin doi: 10.1016/j.nicl.2020.102205 – volume: 31 start-page: S40 year: 1990 ident: B46 article-title: Prevention of intractable partial seizures by intermittent vagal stimulation in humans: preliminary results publication-title: Epilepsia. doi: 10.1111/j.1528-1157.1990.tb05848.x – volume: 8 start-page: 405 year: 2015 ident: B36 article-title: Critical review of the responsive neurostimulator system for epilepsy publication-title: Med Devices. doi: 10.2147/MDER.S62853 – volume: 58 start-page: 120 year: 2018 ident: B50 article-title: Clinical outcomes of VNS therapy with AspireSR® (including cardiac-based seizure detection) at a large complex epilepsy and surgery centre publication-title: Seizure. doi: 10.1016/j.seizure.2018.03.022 – year: 2017 ident: B43 publication-title: VNS Therapy – start-page: 153 volume-title: The Neuromodulation Casejournal year: 2020 ident: B4 article-title: New vagus nerve stimulation lead and implantable pulse generator placement doi: 10.1016/B978-0-12-817002-1.00020-1 – volume: 31 start-page: S27 year: 1990 ident: B61 article-title: Considerations for safety with chronically implanted nerve electrodes publication-title: Epilepsia. doi: 10.1111/j.1528-1157.1990.tb05845.x – volume: 19 start-page: 188 year: 2016 ident: B63 article-title: Automatic vagus nerve stimulation triggered by ictal tachycardia: clinical outcomes and device performance – The US E-37 trial publication-title: Neuromodulation. doi: 10.1111/ner.12376 – volume: 43 start-page: 1509 year: 2002 ident: B26 article-title: Cerebral activation during vagus nerve stimulation: a functional MR study publication-title: Epilepsia. doi: 10.1046/j.1528-1157.2002.16102.x – volume: 111 start-page: 107280 year: 2020 ident: B51 article-title: Vagus nerve stimulation with tachycardia detection provides additional seizure reduction compared to traditional vagus nerve stimulation publication-title: Epilepsy & Behavior. doi: 10.1016/j.yebeh.2020.107280 – volume: 37 start-page: 1024 year: 2019 ident: B37 article-title: Emerging technologies for improved deep brain stimulation publication-title: Nat Biotechnol. doi: 10.1038/s41587-019-0244-6 – volume: 83 start-page: 104 year: 2020 ident: B9 article-title: Learnings from 30 years of reported efficacy and safety of vagus nerve stimulation (VNS) for epilepsy treatments: a critical review publication-title: Seizure. doi: 10.1016/j.seizure.2020.09.027 – volume: 39 start-page: 709 year: 1998 ident: B12 article-title: Locus coeruleus lesions suppress the seizure-attenuating effects of vagus nerve stimulation publication-title: Epilepsia. doi: 10.1111/j.1528-1157.1998.tb01155.x – volume: 53 start-page: 1731 year: 1999 ident: B1 article-title: Long-term treatment with vagus nerve stimulation in patients with refractory epilepsy publication-title: Neurology. doi: 10.1212/WNL.53.8.1731 – year: 2019 ident: B5 publication-title: MRI with the VNS Therapy – volume: 61 start-page: 2069 year: 2020 ident: B31 article-title: Biomarkers of seizure response to vagus nerve stimulation: a scoping review publication-title: Epilepsia. doi: 10.1111/epi.16661 – year: 2019 ident: B41 publication-title: VNS Therapy – volume: 22 start-page: 630 year: 2019 ident: B56 article-title: Autostimulation in vagus nerve stimulator treatment: modulating neuromodulation publication-title: Neuromodulation. doi: 10.1111/ner.12897 – volume: 23 start-page: 496 year: 2014 ident: B48 article-title: Ictal tachycardia: the head-heart connection publication-title: Seizure. doi: 10.1016/j.seizure.2014.02.012 – volume: 55 start-page: 816 year: 2004 ident: B27 article-title: Acute vagus nerve stimulation using different pulse widths produces varying brain effects publication-title: Biol Psychiatry. doi: 10.1016/j.biopsych.2003.12.004 – volume: 45 start-page: 1064 year: 2004 ident: B15 article-title: Brain blood-flow alterations induced by therapeutic vagus nerve stimulation in partial epilepsy: II. Prolonged effects at high and low levels of stimulation publication-title: Epilepsia. doi: 10.1111/j.0013-9580.2004.03104.x – volume: 133 start-page: 46 year: 2017 ident: B21 article-title: Investigating the correlation between short-term effectiveness of VNS therapy in reducing the severity of seizures and long-term responsiveness publication-title: Epilepsy Res. doi: 10.1016/j.eplepsyres.2017.04.008 – volume: 31 start-page: S33 year: 1990 ident: B47 article-title: An implantable neurocybernetic prothesis system publication-title: Epilepsia. doi: 10.1111/j.1528-1157.1990.tb05846.x – volume: 39 start-page: 983 year: 1998 ident: B24 article-title: Brain blood flow alterations induced by therapeutic vagus nerve stimulatin in partial epilepsy: I. Acute effects at high and low levels of stimulation publication-title: Epilepsia. doi: 10.1111/j.1528-1157.1998.tb01448.x – volume: 17 start-page: 699 year: 2008 ident: B18 article-title: Thalamic and limbic involvement in the mechanism of action of vagus nerve stimulation, a SPECT study publication-title: Seizure. doi: 10.1016/j.seizure.2008.05.001 – volume: 16 start-page: 369 year: 2019 ident: B8 article-title: Comparison and selection of current implantable anti-epileptic devices publication-title: Neurotherapeutics. doi: 10.1007/s13311-019-00727-2 – volume: 1119 start-page: 124 year: 2006 ident: B17 article-title: Increased extracellular concentrations of norepinephrine in cortex and hippocampus following vagus nerve stimulation in the rat publication-title: Brain Res. doi: 10.1016/j.brainres.2006.08.048 – volume: 72 start-page: 1702 year: 2009 ident: B58 article-title: Sudden unexpected near death in epilepsy: malignant arrhythmia from a partial seizure publication-title: Neurology. doi: 10.1212/WNL.0b013e3181a55f90 – volume: 88 start-page: 95 year: 2021 ident: B55 article-title: Closed-loop vagal nerve stimulation for intractable epilepsy: a single-center experience publication-title: Seizure. doi: 10.1016/j.seizure.2021.03.030 – volume: 157 start-page: 721 year: 2015 ident: B64 article-title: Implantation of a new vagus nerve stimulation (VNS) therapy® generator, AspireSR®: considerations and recommendations during implantation and replacement surgery – comparison to a traditional shystem publication-title: Acta Neurochir. doi: 10.1007/s00701-015-2362-3 |
SSID | ssj0002512234 |
Score | 2.399327 |
SecondaryResourceType | review_article |
Snippet | The vagus nerve stimulation (VNS) Therapy® System is the first FDA-approved medical device therapy for the treatment of drug-resistant epilepsy. Over the past... |
SourceID | doaj pubmedcentral proquest pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 696543 |
SubjectTerms | drug-resistant epilepsy medical device Medical Technology neuromodulation vagus nerve stimulation VNS |
Title | Evolution of the Vagus Nerve Stimulation (VNS) Therapy System Technology for Drug-Resistant Epilepsy |
URI | https://www.ncbi.nlm.nih.gov/pubmed/35047938 https://www.proquest.com/docview/2621656755 https://pubmed.ncbi.nlm.nih.gov/PMC8757869 https://doaj.org/article/1e82044127d8492f84d1a6ab183bcfff |
Volume | 3 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9wwELYqTlwqKqBNC8iVONBKgY2f8ZHHIoTEHspD3CwntilSm12xWST-PTNx2O6iqlx6TRzF-Wbi-caPbwjZjTJI5rjPnVYxF6VyeSVVlVeDMoQgWBEknka-GKmza3F-K28XSn3hnrAkD5yAOygCxCiI2Uz7UhgWS-ELp1wFrljVMUYcfSHmLSRTOAZj1GZcpGVMyMIMmCl43DvJin1l8EDlUiDq9Pr_RjJf75VcCD6na-R9zxrpYertB_IuNOvEDx97v6HjSIHI0Rt3N5vSEW5ipJft_e--NBfduxldfqNXSUCAJpFy-mdSnQJxpScPs7v8R5gin2xaOpzAcDGZPm2Q69Ph1fFZ3hdNyGuhZJsDX4sekrbKlLiiogEMV-paG8gLGI_CA0VDzRkfg4BconZK18gZCid4LAaeb5KVZtyET4SWkXPhADFTRREKYwB1MB5TrFa-ZjojgxcEbd0rimNhi18WMgsE3XagWwTdJtAz8n3-yCTJafyr8RGaZd4QlbC7C-AftvcP-5Z_ZOTri1Et_Dm4HOKaMJ5NLXwHSg9pKTPyMRl5_iouUXqflxnRS-Zf6svyneb-Z6fO3VUIUObz_-j8F7KKeOAcNlNbZKV9mIVtIEFttdP5-043O_UM0ecGhA |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Evolution+of+the+Vagus+Nerve+Stimulation+%28VNS%29+Therapy+System+Technology+for+Drug-Resistant+Epilepsy&rft.jtitle=Frontiers+in+medical+technology&rft.au=Afra%2C+Pegah&rft.au=Adamolekun%2C+Bola&rft.au=Aydemir%2C+Seyhmus&rft.au=Watson%2C+Glenn+David+Robert&rft.date=2021-08-26&rft.pub=Frontiers+Media+S.A&rft.eissn=2673-3129&rft.volume=3&rft_id=info:doi/10.3389%2Ffmedt.2021.696543&rft_id=info%3Apmid%2F35047938&rft.externalDocID=PMC8757869 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2673-3129&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2673-3129&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2673-3129&client=summon |