In vitro Characterization of Anti-SARS-CoV-2 Intravenous Immunoglobulins (IVIg) Produced From Plasma of Donors Immunized With the BNT162b2 Vaccine and Its Comparison With a Similar Formulation Produced From Plasma of COVID-19 Convalescent Donors

Despite vaccines are the main strategy to control the ongoing global COVID-19 pandemic, their effectiveness could not be enough for individuals with immunosuppression. In these cases, as well as in patients with moderate/severe COVID-19, passive immunization with anti-SARS-CoV-2 immunoglobulins coul...

Full description

Saved in:
Bibliographic Details
Published inFrontiers in medical technology Vol. 3; p. 772275
Main Authors Rojas-Jiménez, Gabriel, Solano, Daniela, Segura, Álvaro, Sánchez, Andrés, Chaves-Araya, Stephanie, Herrera, María, Vargas, Mariángela, Cerdas, Maykel, Calvo, Gerardo, Alfaro, Jonathan, Molina, Sebastián, Bolaños, Kimberly, Moreira-Soto, Andrés, Villalta, Mauren, Sánchez, Adriana, Cordero, Daniel, Durán, Gina, Solano, Gabriela, Gómez, Aarón, Hernández, Andrés, Sánchez, Laura, Vargas, Marco, Drexler, Jean Felix, Alape-Girón, Alberto, Díaz, Cecilia, León, Guillermo
Format Journal Article
LanguageEnglish
Published Switzerland Frontiers Media S.A 05.01.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Despite vaccines are the main strategy to control the ongoing global COVID-19 pandemic, their effectiveness could not be enough for individuals with immunosuppression. In these cases, as well as in patients with moderate/severe COVID-19, passive immunization with anti-SARS-CoV-2 immunoglobulins could be a therapeutic alternative. We used caprylic acid precipitation to prepare a pilot-scale batch of anti-SARS-CoV-2 intravenous immunoglobulins (IVIg) from plasma of donors immunized with the BNT162b2 (Pfizer-BioNTech) anti-COVID-19 vaccine (VP-IVIg) and compared their in vitro efficacy and safety with those of a similar formulation produced from plasma of COVID-19 convalescent donors (CP-IVIg). Both formulations showed immunological, physicochemical, biochemical, and microbiological characteristics that meet the specifications of IVIg formulations. Moreover, the concentration of anti-RBD and ACE2-RBD neutralizing antibodies was higher in VP-IVIg than in CP-IVIg. In concordance, plaque reduction neutralization tests showed inhibitory concentrations of 0.03–0.09 g/L in VP-IVIg and of 0.06–0.13 in CP-IVIg. Thus, VP-IVIg has in vitro efficacy and safety profiles that justify their evaluation as therapeutic alternative for clinical cases of COVID-19. Precipitation with caprylic acid could be a simple, feasible, and affordable alternative to produce formulations of anti-SARS-CoV-2 IVIg to be used therapeutically or prophylactically to confront the COVID-19 pandemic in middle and low-income countries.
AbstractList Despite vaccines are the main strategy to control the ongoing global COVID-19 pandemic, their effectiveness could not be enough for individuals with immunosuppression. In these cases, as well as in patients with moderate/severe COVID-19, passive immunization with anti-SARS-CoV-2 immunoglobulins could be a therapeutic alternative. We used caprylic acid precipitation to prepare a pilot-scale batch of anti-SARS-CoV-2 intravenous immunoglobulins (IVIg) from plasma of donors immunized with the BNT162b2 (Pfizer-BioNTech) anti-COVID-19 vaccine (VP-IVIg) and compared their in vitro efficacy and safety with those of a similar formulation produced from plasma of COVID-19 convalescent donors (CP-IVIg). Both formulations showed immunological, physicochemical, biochemical, and microbiological characteristics that meet the specifications of IVIg formulations. Moreover, the concentration of anti-RBD and ACE2-RBD neutralizing antibodies was higher in VP-IVIg than in CP-IVIg. In concordance, plaque reduction neutralization tests showed inhibitory concentrations of 0.03–0.09 g/L in VP-IVIg and of 0.06–0.13 in CP-IVIg. Thus, VP-IVIg has in vitro efficacy and safety profiles that justify their evaluation as therapeutic alternative for clinical cases of COVID-19. Precipitation with caprylic acid could be a simple, feasible, and affordable alternative to produce formulations of anti-SARS-CoV-2 IVIg to be used therapeutically or prophylactically to confront the COVID-19 pandemic in middle and low-income countries.
Despite vaccines are the main strategy to control the ongoing global COVID-19 pandemic, their effectiveness could not be enough for individuals with immunosuppression. In these cases, as well as in patients with moderate/severe COVID-19, passive immunization with anti-SARS-CoV-2 immunoglobulins could be a therapeutic alternative. We used caprylic acid precipitation to prepare a pilot-scale batch of anti-SARS-CoV-2 intravenous immunoglobulins (IVIg) from plasma of donors immunized with the BNT162b2 (Pfizer-BioNTech) anti-COVID-19 vaccine (VP-IVIg) and compared their in vitro efficacy and safety with those of a similar formulation produced from plasma of COVID-19 convalescent donors (CP-IVIg). Both formulations showed immunological, physicochemical, biochemical, and microbiological characteristics that meet the specifications of IVIg formulations. Moreover, the concentration of anti-RBD and ACE2-RBD neutralizing antibodies was higher in VP-IVIg than in CP-IVIg. In concordance, plaque reduction neutralization tests showed inhibitory concentrations of 0.03–0.09 g/L in VP-IVIg and of 0.06–0.13 in CP-IVIg. Thus, VP-IVIg has in vitro efficacy and safety profiles that justify their evaluation as therapeutic alternative for clinical cases of COVID-19. Precipitation with caprylic acid could be a simple, feasible, and affordable alternative to produce formulations of anti-SARS-CoV-2 IVIg to be used therapeutically or prophylactically to confront the COVID-19 pandemic in middle and low-income countries.
Despite vaccines are the main strategy to control the ongoing global COVID-19 pandemic, their effectiveness could not be enough for individuals with immunosuppression. In these cases, as well as in patients with moderate/severe COVID-19, passive immunization with anti-SARS-CoV-2 immunoglobulins could be a therapeutic alternative. We used caprylic acid precipitation to prepare a pilot-scale batch of anti-SARS-CoV-2 intravenous immunoglobulins (IVIg) from plasma of donors immunized with the BNT162b2 (Pfizer-BioNTech) anti-COVID-19 vaccine (VP-IVIg) and compared their efficacy and safety with those of a similar formulation produced from plasma of COVID-19 convalescent donors (CP-IVIg). Both formulations showed immunological, physicochemical, biochemical, and microbiological characteristics that meet the specifications of IVIg formulations. Moreover, the concentration of anti-RBD and ACE2-RBD neutralizing antibodies was higher in VP-IVIg than in CP-IVIg. In concordance, plaque reduction neutralization tests showed inhibitory concentrations of 0.03-0.09 g/L in VP-IVIg and of 0.06-0.13 in CP-IVIg. Thus, VP-IVIg has efficacy and safety profiles that justify their evaluation as therapeutic alternative for clinical cases of COVID-19. Precipitation with caprylic acid could be a simple, feasible, and affordable alternative to produce formulations of anti-SARS-CoV-2 IVIg to be used therapeutically or prophylactically to confront the COVID-19 pandemic in middle and low-income countries.
Despite vaccines are the main strategy to control the ongoing global COVID-19 pandemic, their effectiveness could not be enough for individuals with immunosuppression. In these cases, as well as in patients with moderate/severe COVID-19, passive immunization with anti-SARS-CoV-2 immunoglobulins could be a therapeutic alternative. We used caprylic acid precipitation to prepare a pilot-scale batch of anti-SARS-CoV-2 intravenous immunoglobulins (IVIg) from plasma of donors immunized with the BNT162b2 (Pfizer-BioNTech) anti-COVID-19 vaccine (VP-IVIg) and compared their in vitro efficacy and safety with those of a similar formulation produced from plasma of COVID-19 convalescent donors (CP-IVIg). Both formulations showed immunological, physicochemical, biochemical, and microbiological characteristics that meet the specifications of IVIg formulations. Moreover, the concentration of anti-RBD and ACE2-RBD neutralizing antibodies was higher in VP-IVIg than in CP-IVIg. In concordance, plaque reduction neutralization tests showed inhibitory concentrations of 0.03-0.09 g/L in VP-IVIg and of 0.06-0.13 in CP-IVIg. Thus, VP-IVIg has in vitro efficacy and safety profiles that justify their evaluation as therapeutic alternative for clinical cases of COVID-19. Precipitation with caprylic acid could be a simple, feasible, and affordable alternative to produce formulations of anti-SARS-CoV-2 IVIg to be used therapeutically or prophylactically to confront the COVID-19 pandemic in middle and low-income countries.Despite vaccines are the main strategy to control the ongoing global COVID-19 pandemic, their effectiveness could not be enough for individuals with immunosuppression. In these cases, as well as in patients with moderate/severe COVID-19, passive immunization with anti-SARS-CoV-2 immunoglobulins could be a therapeutic alternative. We used caprylic acid precipitation to prepare a pilot-scale batch of anti-SARS-CoV-2 intravenous immunoglobulins (IVIg) from plasma of donors immunized with the BNT162b2 (Pfizer-BioNTech) anti-COVID-19 vaccine (VP-IVIg) and compared their in vitro efficacy and safety with those of a similar formulation produced from plasma of COVID-19 convalescent donors (CP-IVIg). Both formulations showed immunological, physicochemical, biochemical, and microbiological characteristics that meet the specifications of IVIg formulations. Moreover, the concentration of anti-RBD and ACE2-RBD neutralizing antibodies was higher in VP-IVIg than in CP-IVIg. In concordance, plaque reduction neutralization tests showed inhibitory concentrations of 0.03-0.09 g/L in VP-IVIg and of 0.06-0.13 in CP-IVIg. Thus, VP-IVIg has in vitro efficacy and safety profiles that justify their evaluation as therapeutic alternative for clinical cases of COVID-19. Precipitation with caprylic acid could be a simple, feasible, and affordable alternative to produce formulations of anti-SARS-CoV-2 IVIg to be used therapeutically or prophylactically to confront the COVID-19 pandemic in middle and low-income countries.
Author Segura, Álvaro
Calvo, Gerardo
Herrera, María
Moreira-Soto, Andrés
Solano, Daniela
Alfaro, Jonathan
Chaves-Araya, Stephanie
Alape-Girón, Alberto
Rojas-Jiménez, Gabriel
Drexler, Jean Felix
Díaz, Cecilia
León, Guillermo
Vargas, Mariángela
Villalta, Mauren
Bolaños, Kimberly
Gómez, Aarón
Vargas, Marco
Sánchez, Andrés
Sánchez, Laura
Cordero, Daniel
Molina, Sebastián
Durán, Gina
Hernández, Andrés
Solano, Gabriela
Cerdas, Maykel
Sánchez, Adriana
AuthorAffiliation 6 Centro de Investigación en Enfermedades Tropicales (CIET), Facultad de Microbiología, Universidad de Costa Rica , San Jose , Costa Rica
3 Laboratorio Clínico y Banco de Sangre de la Universidad de Costa Rica, Oficina de Bienestar y Salud, Universidad de Costa Rica , San José , Costa Rica
5 Institute of Virology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health , Berlin , Germany
7 German Centre for Infection Research (DZIF), Associated Partner Charité-Universitätsmedizin Berlin , Berlin , Germany
1 Sección de Virología Médica, Departamento de Microbiología e Inmunología, Facultad de Microbiología, Universidad de Costa Rica , San José , Costa Rica
2 Instituto Clodomiro Picado, Factulad de Microbiología, Universidad de Costa Rica , San José , Costa Rica
4 Banco Nacional de Sangre, Gerencia Médica, Caja Costarricense del Seguro Social , San José , Costa Rica
8 Departamento de Bioquímica, Escuela de
AuthorAffiliation_xml – name: 8 Departamento de Bioquímica, Escuela de Medicina, Universidad de Costa Rica , San José , Costa Rica
– name: 7 German Centre for Infection Research (DZIF), Associated Partner Charité-Universitätsmedizin Berlin , Berlin , Germany
– name: 2 Instituto Clodomiro Picado, Factulad de Microbiología, Universidad de Costa Rica , San José , Costa Rica
– name: 6 Centro de Investigación en Enfermedades Tropicales (CIET), Facultad de Microbiología, Universidad de Costa Rica , San Jose , Costa Rica
– name: 4 Banco Nacional de Sangre, Gerencia Médica, Caja Costarricense del Seguro Social , San José , Costa Rica
– name: 3 Laboratorio Clínico y Banco de Sangre de la Universidad de Costa Rica, Oficina de Bienestar y Salud, Universidad de Costa Rica , San José , Costa Rica
– name: 1 Sección de Virología Médica, Departamento de Microbiología e Inmunología, Facultad de Microbiología, Universidad de Costa Rica , San José , Costa Rica
– name: 5 Institute of Virology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health , Berlin , Germany
Author_xml – sequence: 1
  givenname: Gabriel
  surname: Rojas-Jiménez
  fullname: Rojas-Jiménez, Gabriel
– sequence: 2
  givenname: Daniela
  surname: Solano
  fullname: Solano, Daniela
– sequence: 3
  givenname: Álvaro
  surname: Segura
  fullname: Segura, Álvaro
– sequence: 4
  givenname: Andrés
  surname: Sánchez
  fullname: Sánchez, Andrés
– sequence: 5
  givenname: Stephanie
  surname: Chaves-Araya
  fullname: Chaves-Araya, Stephanie
– sequence: 6
  givenname: María
  surname: Herrera
  fullname: Herrera, María
– sequence: 7
  givenname: Mariángela
  surname: Vargas
  fullname: Vargas, Mariángela
– sequence: 8
  givenname: Maykel
  surname: Cerdas
  fullname: Cerdas, Maykel
– sequence: 9
  givenname: Gerardo
  surname: Calvo
  fullname: Calvo, Gerardo
– sequence: 10
  givenname: Jonathan
  surname: Alfaro
  fullname: Alfaro, Jonathan
– sequence: 11
  givenname: Sebastián
  surname: Molina
  fullname: Molina, Sebastián
– sequence: 12
  givenname: Kimberly
  surname: Bolaños
  fullname: Bolaños, Kimberly
– sequence: 13
  givenname: Andrés
  surname: Moreira-Soto
  fullname: Moreira-Soto, Andrés
– sequence: 14
  givenname: Mauren
  surname: Villalta
  fullname: Villalta, Mauren
– sequence: 15
  givenname: Adriana
  surname: Sánchez
  fullname: Sánchez, Adriana
– sequence: 16
  givenname: Daniel
  surname: Cordero
  fullname: Cordero, Daniel
– sequence: 17
  givenname: Gina
  surname: Durán
  fullname: Durán, Gina
– sequence: 18
  givenname: Gabriela
  surname: Solano
  fullname: Solano, Gabriela
– sequence: 19
  givenname: Aarón
  surname: Gómez
  fullname: Gómez, Aarón
– sequence: 20
  givenname: Andrés
  surname: Hernández
  fullname: Hernández, Andrés
– sequence: 21
  givenname: Laura
  surname: Sánchez
  fullname: Sánchez, Laura
– sequence: 22
  givenname: Marco
  surname: Vargas
  fullname: Vargas, Marco
– sequence: 23
  givenname: Jean Felix
  surname: Drexler
  fullname: Drexler, Jean Felix
– sequence: 24
  givenname: Alberto
  surname: Alape-Girón
  fullname: Alape-Girón, Alberto
– sequence: 25
  givenname: Cecilia
  surname: Díaz
  fullname: Díaz, Cecilia
– sequence: 26
  givenname: Guillermo
  surname: León
  fullname: León, Guillermo
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35047966$$D View this record in MEDLINE/PubMed
BookMark eNp1kk1v1DAQhiNUREvpD-CCfCyHLP6Inc0FaUkpRKpoxZblaDmxs-vKsRfbWYn-b-54P4papF5syzPzvGPP-zo7ss6qLHuL4ISQafWhH5SMEwwxmpQlxiV9kZ1gVpKcIFwdPTofZ2ch3EEIMUUYk-JVdkwoLMqKsZPsT2PBRkfvQL0SXnRReX0vonYWuB7MbNT5fPZ9ntdukWPQ2OjFRlk3BtAMw2jd0rh2NNoGcN4smuV7cOOdHDslwaV3A7gxIgxii7pw1vlDlb5P8Z86rkBcKfDp2y1iuMVgIbpOWwWElaCJAdRuWAuvQ-pllyzAXA_aCA8unR9Gs2_zOcH6etFc5KhKGLsRRoVO2Xho4032shcmqLPDfpr9uPx8W3_Nr66_NPXsKu8KRmOOUatgQUnFJGWiUmmhHZU97KdtRRmlPSFIwarvWyJLVBUtm0KJiqKkqGpVRU6zZs-VTtzxtdeD8L-5E5rvLpxfcuGj7oziDEMpEJKEUVS0pZiWRSEEkQRCqSRpE-vjnrUe2zT67Wu8ME-gTyNWr_jSbfi0pMkgLAHODwDvfo0qRD7o9CnGCKvSQDlmGDHKpqRMqe8ea_0TefBNSij3CZ13IXjV807H3TyStDYcQb41Kd-ZlG9NyvcmTZXov8oH-PM1fwEj7u0Q
CitedBy_id crossref_primary_10_3389_fpubh_2023_1229045
crossref_primary_10_1002_rmv_2341
crossref_primary_10_2217_imt_2022_0015
Cites_doi 10.3233/HAB-200441
10.1080/1744666X.2021.1894927
10.3389/fimmu.2021.708523
10.1038/s41541-021-00292-w
10.1002/14651858.CD013600.pub3
10.1016/0003-9861(69)90285-9
10.3389/fmed.2021.735853
10.1056/NEJMc2103916
10.1002/eji.202048970
10.1128/mBio.03372-20
10.1177/17534666211028077
10.1016/0003-2697(65)90085-0
10.1111/trf.12280
10.1016/j.intimp.2021.108095
10.1111/trf.16378
10.3390/cells10040821
10.1371/journal.pntd.0003501
10.1016/j.cell.2021.06.021
10.1016/j.coi.2021.03.009
10.3389/fcimb.2020.587269
10.1016/j.toxicon.2013.09.010
10.3389/fcimb.2021.655896
10.1101/2021.03.10.21253260
10.1016/j.eclinm.2021.100926
10.1016/j.cell.2020.02.058
10.1021/acscentsci.1c00120
10.1038/s41598-021-89242-z
10.2217/imt-2020-0263
10.1038/s41467-020-19943-y
10.1016/j.intimp.2020.107220
10.1038/s41401-020-0485-4
10.1016/j.toxicon.2013.03.013
ContentType Journal Article
Copyright Copyright © 2022 Rojas-Jiménez, Solano, Segura, Sánchez, Chaves-Araya, Herrera, Vargas, Cerdas, Calvo, Alfaro, Molina, Bolaños, Moreira-Soto, Villalta, Sánchez, Cordero, Durán, Solano, Gómez, Hernández, Sánchez, Vargas, Drexler, Alape-Girón, Díaz and León.
Copyright © 2022 Rojas-Jiménez, Solano, Segura, Sánchez, Chaves-Araya, Herrera, Vargas, Cerdas, Calvo, Alfaro, Molina, Bolaños, Moreira-Soto, Villalta, Sánchez, Cordero, Durán, Solano, Gómez, Hernández, Sánchez, Vargas, Drexler, Alape-Girón, Díaz and León. 2022 Rojas-Jiménez, Solano, Segura, Sánchez, Chaves-Araya, Herrera, Vargas, Cerdas, Calvo, Alfaro, Molina, Bolaños, Moreira-Soto, Villalta, Sánchez, Cordero, Durán, Solano, Gómez, Hernández, Sánchez, Vargas, Drexler, Alape-Girón, Díaz and León
Copyright_xml – notice: Copyright © 2022 Rojas-Jiménez, Solano, Segura, Sánchez, Chaves-Araya, Herrera, Vargas, Cerdas, Calvo, Alfaro, Molina, Bolaños, Moreira-Soto, Villalta, Sánchez, Cordero, Durán, Solano, Gómez, Hernández, Sánchez, Vargas, Drexler, Alape-Girón, Díaz and León.
– notice: Copyright © 2022 Rojas-Jiménez, Solano, Segura, Sánchez, Chaves-Araya, Herrera, Vargas, Cerdas, Calvo, Alfaro, Molina, Bolaños, Moreira-Soto, Villalta, Sánchez, Cordero, Durán, Solano, Gómez, Hernández, Sánchez, Vargas, Drexler, Alape-Girón, Díaz and León. 2022 Rojas-Jiménez, Solano, Segura, Sánchez, Chaves-Araya, Herrera, Vargas, Cerdas, Calvo, Alfaro, Molina, Bolaños, Moreira-Soto, Villalta, Sánchez, Cordero, Durán, Solano, Gómez, Hernández, Sánchez, Vargas, Drexler, Alape-Girón, Díaz and León
DBID AAYXX
CITATION
NPM
7X8
5PM
DOA
DOI 10.3389/fmedt.2021.772275
DatabaseName CrossRef
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList CrossRef

PubMed
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
EISSN 2673-3129
ExternalDocumentID oai_doaj_org_article_620da11d36514b7a8744aa3d300ded3b
PMC8757726
35047966
10_3389_fmedt_2021_772275
Genre Journal Article
GroupedDBID 9T4
AAFWJ
AAYXX
ACXDI
AFPKN
ALMA_UNASSIGNED_HOLDINGS
CITATION
GROUPED_DOAJ
M~E
OK1
PGMZT
RPM
NPM
7X8
5PM
ID FETCH-LOGICAL-c465t-21be045396d56a9e56a5c5df0f8b95655f331e09ffb3d7194b680d1447519be93
IEDL.DBID DOA
ISSN 2673-3129
IngestDate Wed Aug 27 01:27:47 EDT 2025
Thu Aug 21 18:08:59 EDT 2025
Fri Jul 11 05:05:34 EDT 2025
Thu Jan 02 22:42:38 EST 2025
Tue Jul 01 04:18:29 EDT 2025
Thu Apr 24 22:56:33 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords COVID-19
BNT162b2 vaccine
SARS-CoV-2
hyperimmune polyclonal antibodies
IVIg
hyperimmune plasma
passive immunotherapy
convalescent plasma
Language English
License Copyright © 2022 Rojas-Jiménez, Solano, Segura, Sánchez, Chaves-Araya, Herrera, Vargas, Cerdas, Calvo, Alfaro, Molina, Bolaños, Moreira-Soto, Villalta, Sánchez, Cordero, Durán, Solano, Gómez, Hernández, Sánchez, Vargas, Drexler, Alape-Girón, Díaz and León.
This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c465t-21be045396d56a9e56a5c5df0f8b95655f331e09ffb3d7194b680d1447519be93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Edited by: Laura Fregonese, European Medicines Agency, Netherlands
This article was submitted to Regulatory Affairs, a section of the journal Frontiers in Medical Technology
Reviewed by: Thierry Burnouf, Taipei Medical University, Taiwan; Mike Joyner, Mayo Clinic, United States
OpenAccessLink https://doaj.org/article/620da11d36514b7a8744aa3d300ded3b
PMID 35047966
PQID 2621656837
PQPubID 23479
ParticipantIDs doaj_primary_oai_doaj_org_article_620da11d36514b7a8744aa3d300ded3b
pubmedcentral_primary_oai_pubmedcentral_nih_gov_8757726
proquest_miscellaneous_2621656837
pubmed_primary_35047966
crossref_citationtrail_10_3389_fmedt_2021_772275
crossref_primary_10_3389_fmedt_2021_772275
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-01-05
PublicationDateYYYYMMDD 2022-01-05
PublicationDate_xml – month: 01
  year: 2022
  text: 2022-01-05
  day: 05
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
PublicationTitle Frontiers in medical technology
PublicationTitleAlternate Front Med Technol
PublicationYear 2022
Publisher Frontiers Media S.A
Publisher_xml – name: Frontiers Media S.A
References Yadav (B1) 2021; 10
(B3) 2020
Shaukat (B13) 2021; 13
El-Ekiaby (B17) 2015; 9
Parvin (B20) 1965; 12
da Costa (B15) 2021; 90
Padoan (B18) 2021; 59
Casadevall (B4) 2021; 12
Quinti (B32) 2021; 11
Wang (B2) 2020; 10
Li (B25) 2020; 11
Shaukat (B28) 2021; 36
Excler (B9) 2021; 71
Chai (B10) 2020; 10
Abeldaño-Zúñiga (B27) 2021; 15
León (B29) 2021; 11
Li (B5) 2021; 7
USP (B22) 2019
Kyriakidis (B11) 2021; 6
Steinbuch (B16) 1969; 134
Cagdas (B8) 2021; 17
León (B35) 2013; 76
Doria-Rose (B23) 2021; 384
Walls (B7) 2020; 181
Rojas (B31) 2013; 70
Moreira-Soto (B19) 2021; 8
Infantino (B30) 2021; 100
USP (B21) 2019
Huang (B6) 2020; 41
Li (B34) 2021; 184
Xiang (B26) 2021; 12
Tabll (B14) 2021; 29
Figueiredo-Campos (B24) 2020; 50
Seifner (B33) 2014; 54
Vandeberg (B12) 2020; 61
References_xml – volume: 29
  start-page: 179
  year: 2021
  ident: B14
  article-title: A review of monoclonal antibodies in COVID-19: Role in immunotherapy, vaccine development and viral detection
  publication-title: Hum Antibodies.
  doi: 10.3233/HAB-200441
– volume: 17
  start-page: 309
  year: 2021
  ident: B8
  article-title: Convalescent plasma and hyperimmune globulin therapy in COVID-19
  publication-title: Expert Rev Clin Immunol.
  doi: 10.1080/1744666X.2021.1894927
– year: 2019
  ident: B21
– volume: 12
  start-page: 708523
  year: 2021
  ident: B26
  article-title: Declining levels of neutralizing antibodies against SARS-CoV-2 in convalescent COVID-19 patients one year post symptom onset
  publication-title: Front Immunol.
  doi: 10.3389/fimmu.2021.708523
– volume: 6
  start-page: 28
  year: 2021
  ident: B11
  article-title: SARS-CoV-2 vaccines strategies: a comprehensive review of phase 3 candidates
  publication-title: NPJ Vaccines.
  doi: 10.1038/s41541-021-00292-w
– volume-title: Clinical Management of COVID-19. Interim Guidance
  year: 2020
  ident: B3
– volume: 10
  start-page: CD013600
  year: 2020
  ident: B10
  article-title: Convalescent plasma or hyperimmune immunoglobulin for people with COVID-19: a living systematic review
  publication-title: Cochrane Database Syst Rev.
  doi: 10.1002/14651858.CD013600.pub3
– volume: 134
  start-page: 279
  year: 1969
  ident: B16
  article-title: The isolation of IgG from mammalian sera with the aid of caprylic acid
  publication-title: Arch Biochem Biophys.
  doi: 10.1016/0003-9861(69)90285-9
– volume: 8
  start-page: 735853
  year: 2021
  ident: B19
  article-title: High efficacy of therapeutic equine hyperimmune antibodies against SARS-CoV-2 variants of concern
  publication-title: Front Med.
  doi: 10.3389/fmed.2021.735853
– volume: 384
  start-page: 2259
  year: 2021
  ident: B23
  article-title: Antibody persistence through 6 months after the second dose of mRNA-1273 vaccine for Covid-19
  publication-title: N Engl J Med.
  doi: 10.1056/NEJMc2103916
– volume: 50
  start-page: 2025
  year: 2020
  ident: B24
  article-title: Seroprevalence of anti-SARS-CoV-2 antibodies in COVID-19 patients and healthy volunteers up to 6 months post disease onset
  publication-title: Eur J Immunol.
  doi: 10.1002/eji.202048970
– volume: 12
  start-page: e03372
  year: 2021
  ident: B4
  article-title: The principles of antibody therapy for infectious diseases with relevance for COVID-19
  publication-title: MBio.
  doi: 10.1128/mBio.03372-20
– volume: 15
  start-page: 17534666211028077
  year: 2021
  ident: B27
  article-title: Clinical effectiveness of convalescent plasma in hospitalized patients with COVID-19: a systematic review and meta-analysis
  publication-title: Ther Adv Respir Dis.
  doi: 10.1177/17534666211028077
– volume: 12
  start-page: 219
  year: 1965
  ident: B20
  article-title: On the colorimetric biuret method of protein determination
  publication-title: Anal Biochem.
  doi: 10.1016/0003-2697(65)90085-0
– volume: 54
  start-page: 376
  year: 2014
  ident: B33
  article-title: Assessment of immunoglobulin concentrates on thrombogenic activity by thrombin generation assay, prekallikrein activator assay, and size-exclusion chromatography
  publication-title: Transfusion.
  doi: 10.1111/trf.12280
– volume: 100
  start-page: 108095
  year: 2021
  ident: B30
  article-title: The WHO International Standard for COVID-19 serological tests: towards harmonization of anti-spike assays
  publication-title: Int Immunopharmacol.
  doi: 10.1016/j.intimp.2021.108095
– volume: 61
  start-page: 1705
  year: 2020
  ident: B12
  article-title: Production of anti-SARS-CoV-2 hyperimmune globulin from convalescent plasma
  publication-title: Transfusion.
  doi: 10.1111/trf.16378
– volume: 10
  start-page: 821
  year: 2021
  ident: B1
  article-title: Role of structural and non-structural proteins and therapeutic targets of SARS-CoV-2 for COVID-19
  publication-title: Cells.
  doi: 10.3390/cells10040821
– volume: 9
  start-page: e0003501
  year: 2015
  ident: B17
  article-title: Minipool caprylic acid fractionation of plasma using disposable equipment: a practical method to enhance immunoglobulin supply in developing countries
  publication-title: PLoS Negl Trop Dis.
  doi: 10.1371/journal.pntd.0003501
– volume: 184
  start-page: 4203
  year: 2021
  ident: B34
  doi: 10.1016/j.cell.2021.06.021
– volume: 71
  start-page: 13
  year: 2021
  ident: B9
  article-title: Supply and delivery of vaccines for global health
  publication-title: Curr Opin Immunol.
  doi: 10.1016/j.coi.2021.03.009
– volume: 10
  start-page: 587269
  year: 2020
  ident: B2
  article-title: SARS-CoV-2: Structure, biology, and structure-based therapeutics development
  publication-title: Front Cell Infect Microbiol.
  doi: 10.3389/fcimb.2020.587269
– volume: 76
  start-page: 63
  year: 2013
  ident: B35
  article-title: Pathogenic mechanisms underlying adverse reactions induced by intravenous administration of snake antivenoms
  publication-title: Toxicon.
  doi: 10.1016/j.toxicon.2013.09.010
– volume: 11
  start-page: 655896
  year: 2021
  ident: B32
  article-title: IgA antibodies and IgA deficiency in SARS-CoV-2 infection
  publication-title: Front Cell Infect Microbiol.
  doi: 10.3389/fcimb.2021.655896
– volume: 59
  start-page: 1444
  year: 2021
  ident: B18
  article-title: Analytical and clinical performance of a SARS-CoV-2 S-RBD IgG assay: comparison with neutralization titers
  publication-title: Clin Chem Lab Med
  doi: 10.1101/2021.03.10.21253260
– volume: 36
  start-page: 100926
  year: 2021
  ident: B28
  article-title: Hyperimmune anti-COVID-19 IVIG (C-IVIG) treatment in severe and critical COVID-19 patients: a phase I/II randomized control trial
  publication-title: EClinicalMedicine.
  doi: 10.1016/j.eclinm.2021.100926
– volume: 181
  start-page: 281
  year: 2020
  ident: B7
  article-title: Structure, function, and antigenicity of the SARSCoV-2 spike glycoprotein
  publication-title: Cell.
  doi: 10.1016/j.cell.2020.02.058
– volume: 7
  start-page: 512
  year: 2021
  ident: B5
  article-title: A comprehensive review of the global efforts on COVID-19 vaccine development
  publication-title: ACS Cent Sci.
  doi: 10.1021/acscentsci.1c00120
– volume: 11
  start-page: 9825
  year: 2021
  ident: B29
  article-title: Development and characterization of two equine formulations towards SARS-CoV-2 proteins for the potential treatment of COVID-19
  publication-title: Sci Rep.
  doi: 10.1038/s41598-021-89242-z
– volume: 13
  start-page: 397
  year: 2021
  ident: B13
  article-title: Production of hyperimmune anti-SARS-CoV-2 intravenous immunoglobulin from pooled COVID-19 convalescent plasma
  publication-title: Immunotherapy.
  doi: 10.2217/imt-2020-0263
– volume: 11
  start-page: 6044
  year: 2020
  ident: B25
  article-title: Dynamic changes in anti-SARS-CoV-2 antibodies during SARS-CoV-2 infection and recovery from COVID-19
  publication-title: Nat Commun.
  doi: 10.1038/s41467-020-19943-y
– volume: 90
  start-page: 107220
  year: 2021
  ident: B15
  article-title: COVID-19 and hyperimmune sera: A feasible plan B to fight against coronavirus
  publication-title: Int Immunopharmacol.
  doi: 10.1016/j.intimp.2020.107220
– volume: 41
  start-page: 1141
  year: 2020
  ident: B6
  article-title: Structural and functional properties of SARS-CoV-2 spike protein: potential antivirus drug development for COVID-19
  publication-title: Acta Pharmacol Sin
  doi: 10.1038/s41401-020-0485-4
– year: 2019
  ident: B22
– volume: 70
  start-page: 9
  year: 2013
  ident: B31
  article-title: Role of the animal model on the pharmacokinetics of equine-derived antivenoms
  publication-title: Toxicon.
  doi: 10.1016/j.toxicon.2013.03.013
SSID ssj0002512234
Score 2.211575
Snippet Despite vaccines are the main strategy to control the ongoing global COVID-19 pandemic, their effectiveness could not be enough for individuals with...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 772275
SubjectTerms BNT162b2 vaccine
convalescent plasma
COVID-19
hyperimmune plasma
hyperimmune polyclonal antibodies
IVIg
Medical Technology
Title In vitro Characterization of Anti-SARS-CoV-2 Intravenous Immunoglobulins (IVIg) Produced From Plasma of Donors Immunized With the BNT162b2 Vaccine and Its Comparison With a Similar Formulation Produced From Plasma of COVID-19 Convalescent Donors
URI https://www.ncbi.nlm.nih.gov/pubmed/35047966
https://www.proquest.com/docview/2621656837
https://pubmed.ncbi.nlm.nih.gov/PMC8757726
https://doaj.org/article/620da11d36514b7a8744aa3d300ded3b
Volume 3
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQT1wQiNfyqIzEAZAMsZ048XGbsmqQKBXbLr1FTuzQSKyDtqEH_jd3ZuI02kU8LlxySGzHij9nvrHH3xDy3CnhTJTFrNGuYjEYYGZkXTNV24bHTsRK4uHk98fq6Cx-d56cb6X6wpiwIA8cPtwbJSJrOLdSgWmvUoNy7cZIK6PIOisr_PuCzdtypvAfjFZbyDhsY4IXpmGYnMXYScFfA6EUGFe4ZYgGvf7fkcxfYyW3jM_iNrk1skY6D729Q244f5f8KDy9avtNR_NJdTkcqqRdQ-e-b9ly_nHJ8m7FBC2w4atBkZUWeCikQy0QjEO_pC-KVfH5JT0Z1F-dpYtNt6YnwKvXBps67Hy3GWu13-H5p7a_oMAc6cHxKVeiEnRlatyhp8ZbWvSXNJ_SG4bChi7bdQteNF0ASR5Thv3xhfmHVXHIuIZmPMyEoDg1duMeOVu8Pc2P2JjFgdWxSnomeOWAN0qtbKKMdnBJ6sQ2UZNV4JwlSSMld5FumkralOu4UllkOQoRcl05Le-TPd9595BQoUWjaqEzKIqZ0ww3LnbYCAcWFokZia6HtKxHiXPMtPGlBFcHUVAOKCgRBWVAwYy8mqp8Dfoefyt8gDiZCqI093ADAFuOgC3_BdgZeXaNshKmMu7PGO9g8EuhBGohZTKdkQcBddOrZIK5AJSakXQHjzt92X3i24tBLhxTFqRCPfofnX9Mbgo8_4FrUMkTstdvvrmnwMr6an-YgPvDctlPw704dQ
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=In+vitro+Characterization+of+Anti-SARS-CoV-2+Intravenous+Immunoglobulins+%28IVIg%29+Produced+From+Plasma+of+Donors+Immunized+With+the+BNT162b2+Vaccine+and+Its+Comparison+With+a+Similar+Formulation+Produced+From+Plasma+of+COVID-19+Convalescent+Donors&rft.jtitle=Frontiers+in+medical+technology&rft.au=Rojas-Jim%C3%A9nez%2C+Gabriel&rft.au=Solano%2C+Daniela&rft.au=Segura%2C+%C3%81lvaro&rft.au=S%C3%A1nchez%2C+Andr%C3%A9s&rft.date=2022-01-05&rft.pub=Frontiers+Media+S.A&rft.eissn=2673-3129&rft.volume=3&rft_id=info:doi/10.3389%2Ffmedt.2021.772275&rft_id=info%3Apmid%2F35047966&rft.externalDocID=PMC8757726
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2673-3129&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2673-3129&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2673-3129&client=summon