Chitosan-elicited defense responses in Cucumber mosaic virus (CMV)-infected tomato plants

[Display omitted] •Tomato plants chitosan-elicited to verify its Cucumber mosaic virus control efficacy.•Viral titer, plant photosynthetic performance and gene expression were investigated.•Chitosan reduced viral load, improved gas exchange and up-regulated PAL5 expression.•Virus alone did not signi...

Full description

Saved in:
Bibliographic Details
Published inJournal of plant physiology Vol. 234-235; pp. 9 - 17
Main Authors Rendina, Nunzia, Nuzzaci, Maria, Scopa, Antonio, Cuypers, Ann, Sofo, Adriano
Format Journal Article
LanguageEnglish
Published Germany Elsevier GmbH 01.03.2019
Elsevier Science Ltd
Subjects
Online AccessGet full text

Cover

Loading…
Abstract [Display omitted] •Tomato plants chitosan-elicited to verify its Cucumber mosaic virus control efficacy.•Viral titer, plant photosynthetic performance and gene expression were investigated.•Chitosan reduced viral load, improved gas exchange and up-regulated PAL5 expression.•Virus alone did not significantly affect CEVI-1, NPR1, PSY2 and PAL5 expressions.•Chitosan treatment elicited plant defense responses against viral infection. The control of plant diseases by inducing plant resistance responses represents an interesting solution to avoid yield losses and protect the natural environment. Hence, the intertwined relationships between host, pathogen and inducer are increasingly subject of investigations. Here, we report the efficacy of chitosan-elicited defense responses in Solanum lycopersicum var. cerasiforme plants against Cucumber mosaic virus (CMV). Chitosan was applied via foliar spray before the CMV inoculation to verify its effectiveness as a preventive treatment against the viral infection. Virus accumulation, photosynthetic performance, as well as genes encoding for proteins affecting resistance responses and biosynthetic pathways, were investigated. It was observed a significant reduction of CMV accumulation in chitosan-treated plants that were successively infected with CMV, compared to only CMV-infected ones (up to 100%). Similarly, a positive effect of chitosan on gas exchange dynamics was revealed. The analysis of gene expression (CEVI-1, NPR1, PSY2 and PAL5) suggested the occurrence of chitosan-induced, systemic acquired resistance-related responses associated with a readjustment of the plant’s oxidative status. In addition, the absence of deleterious symptoms in chitosan-treated successively CMV-infected plants, confirmed that chitosan can be used as a powerful control agent. Our data indicate that chitosan, when preventively applied, is able to elicit defense responses in tomato to control CMV infection. Such finding may be recommended to protect the tomato fruit yields as well as other crops.
AbstractList [Display omitted] •Tomato plants chitosan-elicited to verify its Cucumber mosaic virus control efficacy.•Viral titer, plant photosynthetic performance and gene expression were investigated.•Chitosan reduced viral load, improved gas exchange and up-regulated PAL5 expression.•Virus alone did not significantly affect CEVI-1, NPR1, PSY2 and PAL5 expressions.•Chitosan treatment elicited plant defense responses against viral infection. The control of plant diseases by inducing plant resistance responses represents an interesting solution to avoid yield losses and protect the natural environment. Hence, the intertwined relationships between host, pathogen and inducer are increasingly subject of investigations. Here, we report the efficacy of chitosan-elicited defense responses in Solanum lycopersicum var. cerasiforme plants against Cucumber mosaic virus (CMV). Chitosan was applied via foliar spray before the CMV inoculation to verify its effectiveness as a preventive treatment against the viral infection. Virus accumulation, photosynthetic performance, as well as genes encoding for proteins affecting resistance responses and biosynthetic pathways, were investigated. It was observed a significant reduction of CMV accumulation in chitosan-treated plants that were successively infected with CMV, compared to only CMV-infected ones (up to 100%). Similarly, a positive effect of chitosan on gas exchange dynamics was revealed. The analysis of gene expression (CEVI-1, NPR1, PSY2 and PAL5) suggested the occurrence of chitosan-induced, systemic acquired resistance-related responses associated with a readjustment of the plant’s oxidative status. In addition, the absence of deleterious symptoms in chitosan-treated successively CMV-infected plants, confirmed that chitosan can be used as a powerful control agent. Our data indicate that chitosan, when preventively applied, is able to elicit defense responses in tomato to control CMV infection. Such finding may be recommended to protect the tomato fruit yields as well as other crops.
The control of plant diseases by inducing plant resistance responses represents an interesting solution to avoid yield losses and protect the natural environment. Hence, the intertwined relationships between host, pathogen and inducer are increasingly subject of investigations. Here, we report the efficacy of chitosan-elicited defense responses in Solanum lycopersicum var. cerasiforme plants against Cucumber mosaic virus (CMV). Chitosan was applied via foliar spray before the CMV inoculation to verify its effectiveness as a preventive treatment against the viral infection. Virus accumulation, photosynthetic performance, as well as genes encoding for proteins affecting resistance responses and biosynthetic pathways, were investigated. It was observed a significant reduction of CMV accumulation in chitosan-treated plants that were successively infected with CMV, compared to only CMV-infected ones (up to 100%). Similarly, a positive effect of chitosan on gas exchange dynamics was revealed. The analysis of gene expression (CEVI-1, NPR1, PSY2 and PAL5) suggested the occurrence of chitosan-induced, systemic acquired resistance-related responses associated with a readjustment of the plant’s oxidative status. In addition, the absence of deleterious symptoms in chitosan-treated successively CMV-infected plants, confirmed that chitosan can be used as a powerful control agent. Our data indicate that chitosan, when preventively applied, is able to elicit defense responses in tomato to control CMV infection. Such finding may be recommended to protect the tomato fruit yields as well as other crops.
The control of plant diseases by inducing plant resistance responses represents an interesting solution to avoid yield losses and protect the natural environment. Hence, the intertwined relationships between host, pathogen and inducer are increasingly subject of investigations. Here, we report the efficacy of chitosan-elicited defense responses in Solanum lycopersicum var. cerasiforme plants against Cucumber mosaic virus (CMV). Chitosan was applied via foliar spray before the CMV inoculation to verify its effectiveness as a preventive treatment against the viral infection. Virus accumulation, photosynthetic performance, as well as genes encoding for proteins affecting resistance responses and biosynthetic pathways, were investigated. It was observed a significant reduction of CMV accumulation in chitosan-treated plants that were successively infected with CMV, compared to only CMV-infected ones (up to 100%). Similarly, a positive effect of chitosan on gas exchange dynamics was revealed. The analysis of gene expression (CEVI-1, NPR1, PSY2 and PAL5) suggested the occurrence of chitosan-induced, systemic acquired resistance-related responses associated with a readjustment of the plant's oxidative status. In addition, the absence of deleterious symptoms in chitosan-treated successively CMV-infected plants, confirmed that chitosan can be used as a powerful control agent. Our data indicate that chitosan, when preventively applied, is able to elicit defense responses in tomato to control CMV infection. Such finding may be recommended to protect the tomato fruit yields as well as other crops.The control of plant diseases by inducing plant resistance responses represents an interesting solution to avoid yield losses and protect the natural environment. Hence, the intertwined relationships between host, pathogen and inducer are increasingly subject of investigations. Here, we report the efficacy of chitosan-elicited defense responses in Solanum lycopersicum var. cerasiforme plants against Cucumber mosaic virus (CMV). Chitosan was applied via foliar spray before the CMV inoculation to verify its effectiveness as a preventive treatment against the viral infection. Virus accumulation, photosynthetic performance, as well as genes encoding for proteins affecting resistance responses and biosynthetic pathways, were investigated. It was observed a significant reduction of CMV accumulation in chitosan-treated plants that were successively infected with CMV, compared to only CMV-infected ones (up to 100%). Similarly, a positive effect of chitosan on gas exchange dynamics was revealed. The analysis of gene expression (CEVI-1, NPR1, PSY2 and PAL5) suggested the occurrence of chitosan-induced, systemic acquired resistance-related responses associated with a readjustment of the plant's oxidative status. In addition, the absence of deleterious symptoms in chitosan-treated successively CMV-infected plants, confirmed that chitosan can be used as a powerful control agent. Our data indicate that chitosan, when preventively applied, is able to elicit defense responses in tomato to control CMV infection. Such finding may be recommended to protect the tomato fruit yields as well as other crops.
Author Cuypers, Ann
Nuzzaci, Maria
Sofo, Adriano
Scopa, Antonio
Rendina, Nunzia
Author_xml – sequence: 1
  givenname: Nunzia
  surname: Rendina
  fullname: Rendina, Nunzia
  email: nunzia.rendina@unibas.it
  organization: School of Agricultural, Forestry, Food and Environmental Sciences, University of Basilicata, Viale dell’ Ateneo Lucano, 10, 85100 Potenza, Italy
– sequence: 2
  givenname: Maria
  surname: Nuzzaci
  fullname: Nuzzaci, Maria
  email: maria.nuzzaci@unibas.it
  organization: School of Agricultural, Forestry, Food and Environmental Sciences, University of Basilicata, Viale dell’ Ateneo Lucano, 10, 85100 Potenza, Italy
– sequence: 3
  givenname: Antonio
  orcidid: 0000-0001-8610-3323
  surname: Scopa
  fullname: Scopa, Antonio
  email: antonio.scopa@unibas.it
  organization: School of Agricultural, Forestry, Food and Environmental Sciences, University of Basilicata, Viale dell’ Ateneo Lucano, 10, 85100 Potenza, Italy
– sequence: 4
  givenname: Ann
  orcidid: 0000-0002-0171-0245
  surname: Cuypers
  fullname: Cuypers, Ann
  email: ann.cuypers@uhasselt.be
  organization: Environmental Biology, Centre for Environmental Sciences, Hasselt University, Agoralaan, Building D, 3590 Diepenbeek, Belgium
– sequence: 5
  givenname: Adriano
  surname: Sofo
  fullname: Sofo, Adriano
  email: adriano.sofo@unibas.it
  organization: School of Agricultural, Forestry, Food and Environmental Sciences, University of Basilicata, Viale dell’ Ateneo Lucano, 10, 85100 Potenza, Italy
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30640158$$D View this record in MEDLINE/PubMed
BookMark eNqFkT9r3TAUxUVJaV7SfoJCMXRJB7u6km3ZQ4di-g9SuoRCJyHJ10TGllxJDvTbV68vWTKkk67E7xyuzrkgZ847JOQ10AootO_nat6W7bZiFPqKQkUpf0YO0EJXAmfdGTlQEG2ZH8Q5uYhxpvnedPwFOee0rSk03YH8Gm5t8lG5EhdrbMKxGHFCF7EIGDefh1hYVwy72VeNoVgzbE1xZ8Mei6vh-893pXUTmqMy-VUlX2yLcim-JM8ntUR8dX9ekpvPn26Gr-X1jy_fho_XpanbJpWAMCEzvIOpV9AYrXvNG65GpoFPTKOoe6F4HmA0Nes1q7tWY694y3Ay_JJcnWy34H_vGJNcbTS45B3Q71EyxmhXQ8fa_6Mget4IEHVG3z5CZ78Hl_-RDYEJKgQ9Gr65p3a94ii3YFcV_siHeDPQnwATfIwBJ5kjVsl6l4KyiwQqj1XKWf6rUh6rlBRkrjJr-SPtg_3Tqg8nFebI7ywGGY1FZ3C0IZckR2-f1P8FMim4Cg
CitedBy_id crossref_primary_10_56124_cct_v2i2_008
crossref_primary_10_1007_s10343_021_00571_5
crossref_primary_10_14692_jfi_20_2_88_100
crossref_primary_10_5423_RPD_2022_28_2_82
crossref_primary_10_1016_j_jplph_2023_154002
crossref_primary_10_1016_j_jviromet_2021_114402
crossref_primary_10_1039_D3EN00402C
crossref_primary_10_1111_mpp_13018
crossref_primary_10_3390_agronomy12123028
crossref_primary_10_1007_s42977_023_00198_9
crossref_primary_10_1080_07060661_2021_1998225
crossref_primary_10_1016_j_scitotenv_2022_160476
crossref_primary_10_3390_polym13183105
crossref_primary_10_1016_j_jssas_2023_08_001
crossref_primary_10_1016_j_chemosphere_2022_135262
crossref_primary_10_3390_biology13100839
crossref_primary_10_1016_j_heliyon_2024_e36867
crossref_primary_10_3390_horticulturae8060543
crossref_primary_10_1016_j_pestbp_2020_104589
crossref_primary_10_3390_agronomy13010125
crossref_primary_10_1111_aab_12900
crossref_primary_10_3390_ijms21020535
crossref_primary_10_1016_j_jplph_2021_153461
crossref_primary_10_4103_epj_epj_23_24
crossref_primary_10_3390_insects12110960
crossref_primary_10_1016_j_plaphy_2021_04_038
crossref_primary_10_3390_ijms23136990
crossref_primary_10_1016_j_jviromet_2021_114438
crossref_primary_10_1021_acsagscitech_1c00252
crossref_primary_10_3390_plants11020203
crossref_primary_10_3390_agronomy11112188
crossref_primary_10_1021_acs_jafc_2c00672
crossref_primary_10_3390_polym15132961
crossref_primary_10_1016_j_jbiotec_2019_10_003
crossref_primary_10_3390_biom11060819
crossref_primary_10_1016_j_ijbiomac_2020_07_066
crossref_primary_10_3390_ijms22147449
crossref_primary_10_1080_03235408_2020_1833280
crossref_primary_10_1016_j_carbpol_2021_117799
crossref_primary_10_1016_j_carpta_2023_100293
crossref_primary_10_3390_agronomy13082182
crossref_primary_10_61186_pps_13_1_125
crossref_primary_10_1039_D3EN00234A
crossref_primary_10_1007_s42161_022_01263_3
crossref_primary_10_3390_agronomy14020386
crossref_primary_10_3390_plants10122701
crossref_primary_10_1007_s11816_022_00750_4
crossref_primary_10_2174_1381612826666200617165915
crossref_primary_10_3389_fpls_2022_910594
crossref_primary_10_3390_molecules24091752
crossref_primary_10_3390_agronomy13010023
crossref_primary_10_3390_polym16223122
crossref_primary_10_3390_polym15132867
crossref_primary_10_1016_j_sjbs_2021_10_007
crossref_primary_10_1038_s41598_021_83445_0
crossref_primary_10_1016_j_indcrop_2021_113987
crossref_primary_10_1128_jvi_01803_24
crossref_primary_10_1016_j_heliyon_2024_e34871
Cites_doi 10.1073/pnas.92.10.4095
10.1016/S0092-8674(03)00429-X
10.1016/S0261-2194(00)00031-4
10.1094/MPMI.2000.13.1.23
10.3390/ijms140510178
10.3389/fpls.2017.00238
10.1016/j.ijbiomac.2018.02.130
10.3923/ajppaj.2017.53.70
10.3389/fmicb.2016.01565
10.1016/j.carbpol.2015.05.078
10.1016/j.ijfoodmicro.2004.01.022
10.3390/molecules23040872
10.1111/j.1742-4658.2007.06219.x
10.3390/ijms17070996
10.4172/2161-1009.1000308
10.1007/s12250-014-3452-8
10.1016/j.envexpbot.2009.01.004
10.1007/s10526-014-9626-3
10.1016/j.phytochem.2010.03.021
10.1105/tpc.009159
10.1007/s10265-010-0399-1
10.1016/S0065-3527(10)76003-6
10.1023/A:1012508625017
10.1111/j.1439-0434.2011.01791.x
10.1007/s13593-014-0252-3
10.1016/S0168-1702(00)00184-2
10.5511/plantbiotechnology.23.395
10.1016/j.pestbp.2018.06.008
10.4161/psb.32096
10.1021/acs.jafc.5b01566
10.1016/j.bcab.2013.06.001
10.1074/jbc.M110.116657
10.3389/fpls.2016.01520
10.1016/j.plipres.2003.10.002
10.1016/j.ijbiomac.2018.01.113
10.1016/j.celrep.2012.05.008
10.1038/srep26144
10.1093/jxb/ert208
10.1016/j.jplph.2017.06.008
10.1007/s11356-014-3571-7
10.1111/j.1432-1033.1994.tb20031.x
10.1016/j.bbrc.2015.11.081
10.21273/HORTSCI.28.4.322
ContentType Journal Article
Copyright 2019 Elsevier GmbH
Copyright © 2019 Elsevier GmbH. All rights reserved.
Copyright Urban & Fischer Verlag Mar/Apr 2019
Copyright_xml – notice: 2019 Elsevier GmbH
– notice: Copyright © 2019 Elsevier GmbH. All rights reserved.
– notice: Copyright Urban & Fischer Verlag Mar/Apr 2019
DBID AAYXX
CITATION
NPM
7QP
7SS
8FD
FR3
K9.
M7N
P64
RC3
7X8
7S9
L.6
DOI 10.1016/j.jplph.2019.01.003
DatabaseName CrossRef
PubMed
Calcium & Calcified Tissue Abstracts
Entomology Abstracts (Full archive)
Technology Research Database
Engineering Research Database
ProQuest Health & Medical Complete (Alumni)
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
PubMed
Entomology Abstracts
Genetics Abstracts
Technology Research Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
ProQuest Health & Medical Complete (Alumni)
Engineering Research Database
Calcium & Calcified Tissue Abstracts
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
AGRICOLA
PubMed
Entomology Abstracts
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Botany
EISSN 1618-1328
EndPage 17
ExternalDocumentID 30640158
10_1016_j_jplph_2019_01_003
S0176161718306424
Genre Journal Article
GroupedDBID ---
--K
--M
-~X
.~1
0R~
1B1
1RT
1~.
1~5
29L
3V.
4.4
457
4G.
53G
5GY
5VS
7-5
71M
7X2
7X7
88A
88E
88I
8AF
8CJ
8FE
8FH
8FI
8FJ
8FW
8P~
8R4
8R5
9JM
AABNK
AABVA
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALCJ
AALRI
AAOAW
AAQFI
AAQXK
AATLK
AAXUO
ABCQX
ABFNM
ABFRF
ABGRD
ABGSF
ABJNI
ABLJU
ABLST
ABMAC
ABUDA
ABUWG
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACGOD
ACPRK
ACRLP
ADBBV
ADEZE
ADKUU
ADMUD
ADQTV
ADUVX
AEBSH
AEFWE
AEHWI
AEKER
AENEX
AEQOU
AFFNX
AFKRA
AFKWA
AFRAH
AFTJW
AFXIZ
AGHFR
AGRDE
AGUBO
AGYEJ
AHEUO
AHHHB
AHMBA
AI.
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKIFW
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
ATCPS
AVWKF
AXJTR
AZFZN
AZQEC
BBNVY
BENPR
BES
BHPHI
BKOJK
BLECG
BLXMC
BPHCQ
BVXVI
CAG
CBWCG
CCPQU
COF
CS3
D1J
DOVZS
DU5
DWQXO
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
FYUFA
G-Q
GBLVA
GNUQQ
HCIFZ
HMCUK
HVGLF
HZ~
IHE
J1W
K-O
KCYFY
KOM
L7B
LK8
M0K
M0L
M1P
M2P
M2Q
M41
M7P
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
PROAC
PSQYO
Q2X
Q38
R2-
RIG
ROL
RPZ
S0X
SDF
SDG
SES
SEW
SPCBC
SSA
SSJ
SSU
SSZ
T5J
T5K
TN5
UKHRP
UPT
VH1
WHG
YQT
~G-
~KM
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AEUYN
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ALIPV
ANKPU
APXCP
BNPGV
CITATION
PHGZM
PHGZT
EFKBS
NPM
7QP
7SS
8FD
FR3
K9.
M7N
P64
RC3
7X8
7S9
L.6
ID FETCH-LOGICAL-c465t-1e1fe2c381f9a15cbb9b353ad2b13f2be7497a32be1dc429b2486be9a362efc3
IEDL.DBID .~1
ISSN 0176-1617
1618-1328
IngestDate Thu Jul 10 19:12:35 EDT 2025
Thu Jul 10 19:57:40 EDT 2025
Wed Aug 13 08:56:35 EDT 2025
Mon Jul 21 05:58:54 EDT 2025
Tue Jul 01 03:02:52 EDT 2025
Thu Apr 24 23:12:31 EDT 2025
Fri Feb 23 02:33:55 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords DAS-ELISA
PAR
A
Defense/antioxidant-related protein
PR
NPR1
SAR
Photosynthetic performance
ΦPSII
CHT
SA
PVX
ANOVA
UK
Cucumber mosaic virus
Solanum lycopersicum var. cerasiforme
qPCR
TUB
CERK1
ISR
gs
CMV
Disease control
ET
Fv/Fm
JA
PSY
ROS
AR156
PAL
Chitosan
TMV
TP
GAPDH
Language English
License Copyright © 2019 Elsevier GmbH. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c465t-1e1fe2c381f9a15cbb9b353ad2b13f2be7497a32be1dc429b2486be9a362efc3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Article-2
ObjectType-Undefined-1
ObjectType-Feature-3
content type line 23
ORCID 0000-0002-0171-0245
0000-0001-8610-3323
OpenAccessLink https://ars.els-cdn.com/content/image/1-s2.0-S0176161718306424-ga1_lrg.jpg
PMID 30640158
PQID 2212707706
PQPubID 38119
PageCount 9
ParticipantIDs proquest_miscellaneous_2220841826
proquest_miscellaneous_2179357174
proquest_journals_2212707706
pubmed_primary_30640158
crossref_citationtrail_10_1016_j_jplph_2019_01_003
crossref_primary_10_1016_j_jplph_2019_01_003
elsevier_sciencedirect_doi_10_1016_j_jplph_2019_01_003
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-03-01
PublicationDateYYYYMMDD 2019-03-01
PublicationDate_xml – month: 03
  year: 2019
  text: 2019-03-01
  day: 01
PublicationDecade 2010
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Stuttgart
PublicationTitle Journal of plant physiology
PublicationTitleAlternate J Plant Physiol
PublicationYear 2019
Publisher Elsevier GmbH
Elsevier Science Ltd
Publisher_xml – name: Elsevier GmbH
– name: Elsevier Science Ltd
References Liu, Du, Wang, Sun (bib0110) 2004; 95
Mou, Fan, Dong (bib0145) 2003; 113
Sivakumar, Bill, Korsten, Thompson (bib0205) 2016
Wu, Zhang, Chu, Boyle, Wang, Brindle, De Luca, Després (bib0235) 2012; 1
Petutschnig, Jones, Serazetdinova, Lipka, Lipka (bib0180) 2010; 285
Iriti, Varoni (bib0080) 2015; 22
Niu, Wang, Wang, Song, Wang, Guo, Zhao (bib0165) 2016; 469
Kumaraswamy, Kumari, Choudhary, Pal, Raliya, Biswas, Saharan (bib0100) 2018; 113
Povero, Loreti, Pucciariello, Santaniello, Di Tommaso, Di Tommaso, Kapetis, Zolezzi, Piaggesi, Perata (bib0185) 2011; 124
Chirkov, Il’ina, Surgucheva, Letunova, Varitsev, Tatarinova, Varlamov (bib0020) 2001; 48
Gallitelli (bib0055) 2000; 71
Spoel, Koornneef, Claessens, Korzelius, Van Pelt, Mueller, Buchala, Métraux, Brown, Kazan, Van Loon, Dong, Pieterse (bib0215) 2003; 15
Liu, Jiao, Cheng, Li, Pei, Pei, Yin, Du (bib0115) 2018; 111
Sharif, Mujtaba, Ur Rahman, Shalmani, Ahmad, Anwar, Tianchan, Wang (bib0195) 2018; 23
Xing, Zhu, Peng, Qin (bib0240) 2015; 35
Mayda, Marqués, Conejero, Vera (bib0130) 2000; 13
Meléndez-Martínez, Fraser, Bramley (bib0140) 2010; 71
Van, Minh, Anh (bib0220) 2013; 2
Fraser, Bramley (bib0045) 2004; 43
Zhang, Wang, Hu, Liu (bib0245) 2015; 63
Edwardson, Christie (bib0035) 1991
Lee, Heinz, Robb, Nazar (bib0105) 1994; 226
Malerba, Cerana (bib0120) 2016; 17
Marler, Mickelbart, Quitugua (bib0125) 1993; 28
Zhao, Zhang, Hong, Liu (bib0250) 2016; 7
Mejía-Teniente, de Dalia Duran-Flores, Chapa-Oliver, Torres-Pacheco, Cruz-Hernández, González-Chavira, Ocampo-Velázquez, Guevara-González (bib0135) 2013; 14
Feliziani, Landi, Romanazzi (bib0040) 2015; 132
Gallitelli (bib0050) 1998
Shi, Yu, Song (bib0200) 2018; 149
Carr, Lewsey, Palukaitis (bib0015) 2010
Doares, Syrovets, Weiler, Ryan (bib0030) 1995; 92
Hassan, Chang (bib0065) 2017; 11
Vitti, La Monaca, Sofo, Scopa, Cuypers, Nuzzaci (bib0225) 2015; 60
Jia, Meng, Zeng, Wang, Yin (bib0090) 2016; 6
Nie, Li, Wang, Guo, Zhao, Niu (bib0160) 2017; 8
Pandey, Awasthi, Singh, Tiwari, Dwivedi (bib0175) 2017; 6
Agrios (bib0005) 1997
Anfoka (bib0010) 2000; 19
Iriti, Picchi, Rossoni, Gomarasca, Ludwig, Gargano, Faoro (bib0085) 2009; 66
Murchie, Lawson (bib0150) 2013; 64
Kumar, Chauhan, Agrawal, Raj, Srivastava, Gupta, Mishra, Yadav, Singh, Raj, Nautiyal (bib0095) 2016; 11
Coqueiro, Maraschin, Di Piero (bib0025) 2011; 159
Salachna, Byczyńska, Jeziorska, Udycz (bib0190) 2017; 62
Ibdah, Dubey, Eizenberg, Dabour, Abu-Nassar, Gal-On, Aly (bib0070) 2014; 9
Nagorskaya, Reunov, Lapshina, Davydova, Yermak (bib0155) 2014; 29
Ogawa, Nakajima, Seo, Mitsuhara, Kamada, Ohashi (bib0170) 2006; 23
Giorio, Stigliani, D’Ambrosio (bib0060) 2008; 275
Sofo, Bochicchio, Amato, Rendina, Vitti, Nuzzaci, Altamura, Falasca, Della Rovere, Scopa (bib0210) 2017; 216
Ipper, Cho, Lee, Cho, Hur, Lim (bib0075) 2008; 18
Vitti, Pellegrini, Nali, Lovelli, Sofo, Valerio, Scopa, Nuzzaci (bib0230) 2016; 7
Povero (10.1016/j.jplph.2019.01.003_bib0185) 2011; 124
Malerba (10.1016/j.jplph.2019.01.003_bib0120) 2016; 17
Vitti (10.1016/j.jplph.2019.01.003_bib0230) 2016; 7
Anfoka (10.1016/j.jplph.2019.01.003_bib0010) 2000; 19
Ogawa (10.1016/j.jplph.2019.01.003_bib0170) 2006; 23
Giorio (10.1016/j.jplph.2019.01.003_bib0060) 2008; 275
Xing (10.1016/j.jplph.2019.01.003_bib0240) 2015; 35
Kumaraswamy (10.1016/j.jplph.2019.01.003_bib0100) 2018; 113
Mejía-Teniente (10.1016/j.jplph.2019.01.003_bib0135) 2013; 14
Shi (10.1016/j.jplph.2019.01.003_bib0200) 2018; 149
Wu (10.1016/j.jplph.2019.01.003_bib0235) 2012; 1
Nagorskaya (10.1016/j.jplph.2019.01.003_bib0155) 2014; 29
Zhao (10.1016/j.jplph.2019.01.003_bib0250) 2016; 7
Iriti (10.1016/j.jplph.2019.01.003_bib0085) 2009; 66
Sharif (10.1016/j.jplph.2019.01.003_bib0195) 2018; 23
Gallitelli (10.1016/j.jplph.2019.01.003_bib0050) 1998
Murchie (10.1016/j.jplph.2019.01.003_bib0150) 2013; 64
Vitti (10.1016/j.jplph.2019.01.003_bib0225) 2015; 60
Ipper (10.1016/j.jplph.2019.01.003_bib0075) 2008; 18
Gallitelli (10.1016/j.jplph.2019.01.003_bib0055) 2000; 71
Pandey (10.1016/j.jplph.2019.01.003_bib0175) 2017; 6
Spoel (10.1016/j.jplph.2019.01.003_bib0215) 2003; 15
Fraser (10.1016/j.jplph.2019.01.003_bib0045) 2004; 43
Mou (10.1016/j.jplph.2019.01.003_bib0145) 2003; 113
Agrios (10.1016/j.jplph.2019.01.003_bib0005) 1997
Ibdah (10.1016/j.jplph.2019.01.003_bib0070) 2014; 9
Liu (10.1016/j.jplph.2019.01.003_bib0115) 2018; 111
Edwardson (10.1016/j.jplph.2019.01.003_bib0035) 1991
Liu (10.1016/j.jplph.2019.01.003_bib0110) 2004; 95
Meléndez-Martínez (10.1016/j.jplph.2019.01.003_bib0140) 2010; 71
Hassan (10.1016/j.jplph.2019.01.003_bib0065) 2017; 11
Van (10.1016/j.jplph.2019.01.003_bib0220) 2013; 2
Lee (10.1016/j.jplph.2019.01.003_bib0105) 1994; 226
Niu (10.1016/j.jplph.2019.01.003_bib0165) 2016; 469
Carr (10.1016/j.jplph.2019.01.003_bib0015) 2010
Iriti (10.1016/j.jplph.2019.01.003_bib0080) 2015; 22
Sofo (10.1016/j.jplph.2019.01.003_bib0210) 2017; 216
Nie (10.1016/j.jplph.2019.01.003_bib0160) 2017; 8
Mayda (10.1016/j.jplph.2019.01.003_bib0130) 2000; 13
Chirkov (10.1016/j.jplph.2019.01.003_bib0020) 2001; 48
Jia (10.1016/j.jplph.2019.01.003_bib0090) 2016; 6
Sivakumar (10.1016/j.jplph.2019.01.003_bib0205) 2016
Coqueiro (10.1016/j.jplph.2019.01.003_bib0025) 2011; 159
Petutschnig (10.1016/j.jplph.2019.01.003_bib0180) 2010; 285
Salachna (10.1016/j.jplph.2019.01.003_bib0190) 2017; 62
Feliziani (10.1016/j.jplph.2019.01.003_bib0040) 2015; 132
Doares (10.1016/j.jplph.2019.01.003_bib0030) 1995; 92
Marler (10.1016/j.jplph.2019.01.003_bib0125) 1993; 28
Kumar (10.1016/j.jplph.2019.01.003_bib0095) 2016; 11
Zhang (10.1016/j.jplph.2019.01.003_bib0245) 2015; 63
References_xml – volume: 226
  start-page: 109
  year: 1994
  end-page: 114
  ident: bib0105
  article-title: Differential utilization of alternate initiation sites in a plant defense gene responding to environmental stimuli
  publication-title: Eur. J. Biochem.
– volume: 111
  start-page: 1083
  year: 2018
  end-page: 1090
  ident: bib0115
  article-title: Identification of chitosan oligosaccharides binding proteins from the plasma membrane of wheat leaf cell
  publication-title: Int. J. Biol. Macromol.
– volume: 113
  start-page: 494
  year: 2018
  end-page: 506
  ident: bib0100
  article-title: Engineered chitosan based nanomaterials: bioactivities, mechanisms and perspectives in plant protection and growth
  publication-title: Int. J. Biol. Macromol.
– volume: 19
  start-page: 401
  year: 2000
  end-page: 405
  ident: bib0010
  article-title: Benzo-(1,2,3)-thiadiazole-7-carbothioic acid
  publication-title: Crop Prot.
– volume: 28
  start-page: 322
  year: 1993
  end-page: 324
  ident: bib0125
  article-title: Papaya ringspot virus influences net gas exchange of papaya leaves
  publication-title: HortScience
– volume: 7
  start-page: 1565
  year: 2016
  ident: bib0250
  article-title: Chloroplast in plant-virus interaction
  publication-title: Front. Microbiol.
– volume: 159
  start-page: 488
  year: 2011
  end-page: 494
  ident: bib0025
  article-title: Chitosan reduces bacterial spot severity and acts in phenylpropanoid metabolism in tomato plants
  publication-title: J. Phytopathol.
– volume: 15
  start-page: 760
  year: 2003
  end-page: 770
  ident: bib0215
  article-title: NPR1 modulates cross-talk between salicylate- and jasmonate-dependent defense pathways through a novel function in the cytosol
  publication-title: Plant Cell
– start-page: 127
  year: 2016
  end-page: 153
  ident: bib0205
  article-title: Integrated application of chitosan coating with different postharvest treatments in the control of postharvest decay and maintenance of overall fruit quality
  publication-title: Chitosan in the Preservation of Agricultural Commodities
– volume: 23
  start-page: 872
  year: 2018
  ident: bib0195
  article-title: The multifunctional role of chitosan in horticultural crops; a review
  publication-title: Molecules
– volume: 6
  start-page: 26144
  year: 2016
  ident: bib0090
  article-title: Chitosan oligosaccharide induces resistance to
  publication-title: Sci. Rep.
– volume: 149
  start-page: 113
  year: 2018
  end-page: 122
  ident: bib0200
  article-title: Proteomics analysis of Xiangcaoliusuobingmi-treated
  publication-title: Pest. Biochem. Physiol.
– volume: 124
  start-page: 619
  year: 2011
  end-page: 629
  ident: bib0185
  article-title: Transcript profiling of chitosan-treated
  publication-title: J. Plant Res.
– volume: 216
  start-page: 174
  year: 2017
  end-page: 180
  ident: bib0210
  article-title: Plant architecture, auxin homeostasis and phenol content in
  publication-title: J. Plant Physiol.
– volume: 8
  start-page: 238
  year: 2017
  ident: bib0160
  article-title: Induced systemic resistance against
  publication-title: Front. Plant Sci.
– volume: 71
  start-page: 1104
  year: 2010
  end-page: 1114
  ident: bib0140
  article-title: Accumulation of health promoting phytochemicals in wild relatives of tomato and their contribution to
  publication-title: Phytochemistry
– volume: 1
  start-page: 639
  year: 2012
  end-page: 647
  ident: bib0235
  article-title: The
  publication-title: Cell Rep.
– start-page: 507
  year: 1998
  end-page: 523
  ident: bib0050
  article-title: Present status of controlling
  publication-title: Plant Virus Disease Control
– volume: 95
  start-page: 147
  year: 2004
  end-page: 155
  ident: bib0110
  article-title: Chitosan kills bacteria through cell membrane damage
  publication-title: Int. J. Food Microbiol.
– volume: 13
  start-page: 23
  year: 2000
  end-page: 31
  ident: bib0130
  article-title: Expression of a pathogen-induced gene can be mimicked by auxin insensitivity
  publication-title: Mol. Plant Microbe Interact.
– volume: 71
  start-page: 9
  year: 2000
  end-page: 21
  ident: bib0055
  article-title: The ecology of
  publication-title: Virus Res.
– volume: 63
  start-page: 7399
  year: 2015
  end-page: 7404
  ident: bib0245
  article-title: Chitosan controls postharvest decay on cherry tomato fruit possibly via the mitogen-activated protein kinase signaling pathway
  publication-title: J. Agric. Food Chem.
– volume: 469
  start-page: 120
  year: 2016
  end-page: 125
  ident: bib0165
  article-title: AR156 activates PAMP-triggered immunity and induces a systemic acquired resistance through a
  publication-title: Biochem. Biophys. Res. Commun.
– year: 1991
  ident: bib0035
  article-title: CRC Handbook of Viruses Infecting Legumes
– volume: 6
  start-page: 308
  year: 2017
  ident: bib0175
  article-title: A comprehensive review on function and application of plant peroxidases
  publication-title: Biochem. Anal. Biochem.
– volume: 285
  start-page: 28902
  year: 2010
  end-page: 28911
  ident: bib0180
  article-title: The lysin motif receptor-like kinase (LysM-RLK) CERK1 is a major chitin-binding protein in
  publication-title: J. Biol. Chem.
– volume: 22
  start-page: 2935
  year: 2015
  end-page: 2944
  ident: bib0080
  article-title: Chitosan-induced antiviral activity and innate immunity in plants
  publication-title: Environ. Sci. Pollut. Res.
– volume: 64
  start-page: 3983
  year: 2013
  end-page: 3998
  ident: bib0150
  article-title: Chlorophyll fluorescence analysis: a guide to good practice and understanding some new applications
  publication-title: J. Exp. Bot.
– volume: 62
  start-page: 111
  year: 2017
  end-page: 123
  ident: bib0190
  article-title: Plant growth of
  publication-title: World Sci. News
– volume: 7
  start-page: 1520
  year: 2016
  ident: bib0230
  article-title: T-22 induces systemic resistance in tomato infected by
  publication-title: Front. Plant Sci.
– volume: 29
  start-page: 250
  year: 2014
  end-page: 256
  ident: bib0155
  article-title: Effect of chitosan on
  publication-title: Virol. Sin.
– volume: 9
  year: 2014
  ident: bib0070
  article-title: as a carotenoid inhibitor reducing
  publication-title: Plant Signal. Behav.
– volume: 275
  start-page: 527
  year: 2008
  end-page: 535
  ident: bib0060
  article-title: Phytoene synthase genes in tomato (
  publication-title: FEBS J.
– volume: 18
  start-page: 67
  year: 2008
  end-page: 73
  ident: bib0075
  article-title: Antiviral activity of the exopolysaccharide produced by
  publication-title: J. Microbiol. Biotechnol.
– start-page: 57
  year: 2010
  end-page: 121
  ident: bib0015
  article-title: Signaling in induced resistance
  publication-title: Advances in Virus Research
– volume: 11
  year: 2016
  ident: bib0095
  article-title: inoculation enhances tobacco growth and extenuates the virulence of
  publication-title: PLoS One
– volume: 2
  start-page: 289
  year: 2013
  end-page: 294
  ident: bib0220
  article-title: Study on chitosan nanoparticles on biophysical characteristics and growth of Robusta coffee in green house
  publication-title: Biocatal. Agric. Biotechnol.
– volume: 14
  start-page: 10178
  year: 2013
  end-page: 10196
  ident: bib0135
  article-title: Oxidative and molecular responses in
  publication-title: Int. J. Mol. Sci.
– volume: 132
  start-page: 111
  year: 2015
  end-page: 117
  ident: bib0040
  article-title: Preharvest treatments with chitosan and other alternatives to conventional fungicides to control postharvest decay of strawberry
  publication-title: Carbohydr. Polym.
– volume: 11
  start-page: 53
  year: 2017
  end-page: 70
  ident: bib0065
  article-title: Chitosan for eco-friendly control of plant disease
  publication-title: Asian J. Plant Pathol.
– volume: 113
  start-page: 935
  year: 2003
  end-page: 944
  ident: bib0145
  article-title: Inducers of plant systemic acquired resistance regulate NPR1 function through redox changes
  publication-title: Cell
– year: 1997
  ident: bib0005
  article-title: Plant Pathology
– volume: 92
  start-page: 4095
  year: 1995
  end-page: 4098
  ident: bib0030
  article-title: Oligogalacturonides and chitosan activate plant defensive genes through the octadecanoid pathway
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 43
  start-page: 228
  year: 2004
  end-page: 265
  ident: bib0045
  article-title: The biosynthesis and nutritional uses of carotenoids
  publication-title: Prog. Lipid Res.
– volume: 66
  start-page: 493
  year: 2009
  end-page: 500
  ident: bib0085
  article-title: Chitosan antitranspirant activity is due to abscisic acid-dependent stomatal closure
  publication-title: Environ. Exp. Bot.
– volume: 48
  start-page: 774
  year: 2001
  end-page: 779
  ident: bib0020
  article-title: Effect of chitosan on systemic viral infection and some defense responses in potato plants
  publication-title: Russ. J. Plant Physiol.
– volume: 17
  start-page: 996
  year: 2016
  ident: bib0120
  article-title: Chitosan effects on plant systems
  publication-title: Int. J. Mol. Sci.
– volume: 35
  start-page: 569
  year: 2015
  end-page: 588
  ident: bib0240
  article-title: Chitosan antimicrobial and eliciting properties for pest control in agriculture: a review
  publication-title: Agron. Sustain. Dev.
– volume: 60
  start-page: 135
  year: 2015
  end-page: 147
  ident: bib0225
  article-title: Beneficial effects of
  publication-title: BioControl
– volume: 23
  start-page: 395
  year: 2006
  end-page: 398
  ident: bib0170
  article-title: The phenylalanine pathway is the main route of salicylic acid biosynthesis in
  publication-title: Plant Biotechnol.
– start-page: 507
  year: 1998
  ident: 10.1016/j.jplph.2019.01.003_bib0050
  article-title: Present status of controlling Cucumber mosaic virus
– volume: 92
  start-page: 4095
  year: 1995
  ident: 10.1016/j.jplph.2019.01.003_bib0030
  article-title: Oligogalacturonides and chitosan activate plant defensive genes through the octadecanoid pathway
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.92.10.4095
– volume: 113
  start-page: 935
  year: 2003
  ident: 10.1016/j.jplph.2019.01.003_bib0145
  article-title: Inducers of plant systemic acquired resistance regulate NPR1 function through redox changes
  publication-title: Cell
  doi: 10.1016/S0092-8674(03)00429-X
– volume: 62
  start-page: 111
  year: 2017
  ident: 10.1016/j.jplph.2019.01.003_bib0190
  article-title: Plant growth of Verbena bonariensis L. after chitosan, gellan gum or iota-carrageenan foliar applications
  publication-title: World Sci. News
– volume: 19
  start-page: 401
  year: 2000
  ident: 10.1016/j.jplph.2019.01.003_bib0010
  article-title: Benzo-(1,2,3)-thiadiazole-7-carbothioic acid S-methyl ester induces systemic resistance in tomato (Lycopersicon esculentum. Mill cv. Vollendung) to Cucumber mosaic virus
  publication-title: Crop Prot.
  doi: 10.1016/S0261-2194(00)00031-4
– volume: 13
  start-page: 23
  year: 2000
  ident: 10.1016/j.jplph.2019.01.003_bib0130
  article-title: Expression of a pathogen-induced gene can be mimicked by auxin insensitivity
  publication-title: Mol. Plant Microbe Interact.
  doi: 10.1094/MPMI.2000.13.1.23
– volume: 14
  start-page: 10178
  year: 2013
  ident: 10.1016/j.jplph.2019.01.003_bib0135
  article-title: Oxidative and molecular responses in Capsicum annuum L. after hydrogen peroxide, salicylic acid and chitosan foliar applications
  publication-title: Int. J. Mol. Sci.
  doi: 10.3390/ijms140510178
– volume: 8
  start-page: 238
  year: 2017
  ident: 10.1016/j.jplph.2019.01.003_bib0160
  article-title: Induced systemic resistance against Botrytis cinerea by Bacillus cereus AR156 through a JA/ET- and NPR1-dependent signaling pathway and activates PAMP-triggered immunity in Arabidopsis
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2017.00238
– volume: 113
  start-page: 494
  year: 2018
  ident: 10.1016/j.jplph.2019.01.003_bib0100
  article-title: Engineered chitosan based nanomaterials: bioactivities, mechanisms and perspectives in plant protection and growth
  publication-title: Int. J. Biol. Macromol.
  doi: 10.1016/j.ijbiomac.2018.02.130
– volume: 11
  start-page: 53
  year: 2017
  ident: 10.1016/j.jplph.2019.01.003_bib0065
  article-title: Chitosan for eco-friendly control of plant disease
  publication-title: Asian J. Plant Pathol.
  doi: 10.3923/ajppaj.2017.53.70
– volume: 7
  start-page: 1565
  year: 2016
  ident: 10.1016/j.jplph.2019.01.003_bib0250
  article-title: Chloroplast in plant-virus interaction
  publication-title: Front. Microbiol.
  doi: 10.3389/fmicb.2016.01565
– volume: 132
  start-page: 111
  year: 2015
  ident: 10.1016/j.jplph.2019.01.003_bib0040
  article-title: Preharvest treatments with chitosan and other alternatives to conventional fungicides to control postharvest decay of strawberry
  publication-title: Carbohydr. Polym.
  doi: 10.1016/j.carbpol.2015.05.078
– volume: 95
  start-page: 147
  year: 2004
  ident: 10.1016/j.jplph.2019.01.003_bib0110
  article-title: Chitosan kills bacteria through cell membrane damage
  publication-title: Int. J. Food Microbiol.
  doi: 10.1016/j.ijfoodmicro.2004.01.022
– volume: 23
  start-page: 872
  year: 2018
  ident: 10.1016/j.jplph.2019.01.003_bib0195
  article-title: The multifunctional role of chitosan in horticultural crops; a review
  publication-title: Molecules
  doi: 10.3390/molecules23040872
– volume: 11
  year: 2016
  ident: 10.1016/j.jplph.2019.01.003_bib0095
  article-title: Paenibacillus lentimorbus inoculation enhances tobacco growth and extenuates the virulence of Cucumber mosaic virus
  publication-title: PLoS One
– volume: 275
  start-page: 527
  year: 2008
  ident: 10.1016/j.jplph.2019.01.003_bib0060
  article-title: Phytoene synthase genes in tomato (Solanum lycopersicum L.) – new data on the structures, the deduced amino acid sequences and the expression patterns
  publication-title: FEBS J.
  doi: 10.1111/j.1742-4658.2007.06219.x
– volume: 18
  start-page: 67
  year: 2008
  ident: 10.1016/j.jplph.2019.01.003_bib0075
  article-title: Antiviral activity of the exopolysaccharide produced by Serratia sp. strain Gsm01 against Cucumber mosaic virus
  publication-title: J. Microbiol. Biotechnol.
– volume: 17
  start-page: 996
  year: 2016
  ident: 10.1016/j.jplph.2019.01.003_bib0120
  article-title: Chitosan effects on plant systems
  publication-title: Int. J. Mol. Sci.
  doi: 10.3390/ijms17070996
– volume: 6
  start-page: 308
  year: 2017
  ident: 10.1016/j.jplph.2019.01.003_bib0175
  article-title: A comprehensive review on function and application of plant peroxidases
  publication-title: Biochem. Anal. Biochem.
  doi: 10.4172/2161-1009.1000308
– volume: 29
  start-page: 250
  year: 2014
  ident: 10.1016/j.jplph.2019.01.003_bib0155
  article-title: Effect of chitosan on Tobacco mosaic virus (TMV) accumulation, hydrolase activity, and morphological abnormalities of the viral particles in leaves of N. tabacum L. cv. Samsun
  publication-title: Virol. Sin.
  doi: 10.1007/s12250-014-3452-8
– volume: 66
  start-page: 493
  year: 2009
  ident: 10.1016/j.jplph.2019.01.003_bib0085
  article-title: Chitosan antitranspirant activity is due to abscisic acid-dependent stomatal closure
  publication-title: Environ. Exp. Bot.
  doi: 10.1016/j.envexpbot.2009.01.004
– volume: 60
  start-page: 135
  year: 2015
  ident: 10.1016/j.jplph.2019.01.003_bib0225
  article-title: Beneficial effects of Trichoderma harzianum T-22 in tomato seedlings infected by Cucumber mosaic virus (CMV)
  publication-title: BioControl
  doi: 10.1007/s10526-014-9626-3
– volume: 71
  start-page: 1104
  year: 2010
  ident: 10.1016/j.jplph.2019.01.003_bib0140
  article-title: Accumulation of health promoting phytochemicals in wild relatives of tomato and their contribution to in vitro antioxidant activity
  publication-title: Phytochemistry
  doi: 10.1016/j.phytochem.2010.03.021
– volume: 15
  start-page: 760
  year: 2003
  ident: 10.1016/j.jplph.2019.01.003_bib0215
  article-title: NPR1 modulates cross-talk between salicylate- and jasmonate-dependent defense pathways through a novel function in the cytosol
  publication-title: Plant Cell
  doi: 10.1105/tpc.009159
– year: 1997
  ident: 10.1016/j.jplph.2019.01.003_bib0005
– volume: 124
  start-page: 619
  year: 2011
  ident: 10.1016/j.jplph.2019.01.003_bib0185
  article-title: Transcript profiling of chitosan-treated Arabidopsis seedlings
  publication-title: J. Plant Res.
  doi: 10.1007/s10265-010-0399-1
– start-page: 57
  year: 2010
  ident: 10.1016/j.jplph.2019.01.003_bib0015
  article-title: Signaling in induced resistance
  doi: 10.1016/S0065-3527(10)76003-6
– volume: 48
  start-page: 774
  year: 2001
  ident: 10.1016/j.jplph.2019.01.003_bib0020
  article-title: Effect of chitosan on systemic viral infection and some defense responses in potato plants
  publication-title: Russ. J. Plant Physiol.
  doi: 10.1023/A:1012508625017
– volume: 159
  start-page: 488
  year: 2011
  ident: 10.1016/j.jplph.2019.01.003_bib0025
  article-title: Chitosan reduces bacterial spot severity and acts in phenylpropanoid metabolism in tomato plants
  publication-title: J. Phytopathol.
  doi: 10.1111/j.1439-0434.2011.01791.x
– volume: 35
  start-page: 569
  year: 2015
  ident: 10.1016/j.jplph.2019.01.003_bib0240
  article-title: Chitosan antimicrobial and eliciting properties for pest control in agriculture: a review
  publication-title: Agron. Sustain. Dev.
  doi: 10.1007/s13593-014-0252-3
– volume: 71
  start-page: 9
  year: 2000
  ident: 10.1016/j.jplph.2019.01.003_bib0055
  article-title: The ecology of Cucumber mosaic virus and sustainable agriculture
  publication-title: Virus Res.
  doi: 10.1016/S0168-1702(00)00184-2
– volume: 23
  start-page: 395
  year: 2006
  ident: 10.1016/j.jplph.2019.01.003_bib0170
  article-title: The phenylalanine pathway is the main route of salicylic acid biosynthesis in Tobacco mosaic virus-infected tobacco leaves
  publication-title: Plant Biotechnol.
  doi: 10.5511/plantbiotechnology.23.395
– volume: 149
  start-page: 113
  year: 2018
  ident: 10.1016/j.jplph.2019.01.003_bib0200
  article-title: Proteomics analysis of Xiangcaoliusuobingmi-treated Capsicum annuum L. infected with Cucumber mosaic virus
  publication-title: Pest. Biochem. Physiol.
  doi: 10.1016/j.pestbp.2018.06.008
– year: 1991
  ident: 10.1016/j.jplph.2019.01.003_bib0035
– volume: 9
  year: 2014
  ident: 10.1016/j.jplph.2019.01.003_bib0070
  article-title: Cucumber mosaic virus as a carotenoid inhibitor reducing Phelipanche aegyptiaca infection in tobacco plants
  publication-title: Plant Signal. Behav.
  doi: 10.4161/psb.32096
– volume: 63
  start-page: 7399
  year: 2015
  ident: 10.1016/j.jplph.2019.01.003_bib0245
  article-title: Chitosan controls postharvest decay on cherry tomato fruit possibly via the mitogen-activated protein kinase signaling pathway
  publication-title: J. Agric. Food Chem.
  doi: 10.1021/acs.jafc.5b01566
– volume: 2
  start-page: 289
  year: 2013
  ident: 10.1016/j.jplph.2019.01.003_bib0220
  article-title: Study on chitosan nanoparticles on biophysical characteristics and growth of Robusta coffee in green house
  publication-title: Biocatal. Agric. Biotechnol.
  doi: 10.1016/j.bcab.2013.06.001
– volume: 285
  start-page: 28902
  year: 2010
  ident: 10.1016/j.jplph.2019.01.003_bib0180
  article-title: The lysin motif receptor-like kinase (LysM-RLK) CERK1 is a major chitin-binding protein in Arabidopsis thaliana and subject to chitin-induced phosphorylation
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M110.116657
– volume: 7
  start-page: 1520
  year: 2016
  ident: 10.1016/j.jplph.2019.01.003_bib0230
  article-title: Trichoderma harzianum T-22 induces systemic resistance in tomato infected by Cucumber mosaic virus
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2016.01520
– volume: 43
  start-page: 228
  year: 2004
  ident: 10.1016/j.jplph.2019.01.003_bib0045
  article-title: The biosynthesis and nutritional uses of carotenoids
  publication-title: Prog. Lipid Res.
  doi: 10.1016/j.plipres.2003.10.002
– volume: 111
  start-page: 1083
  year: 2018
  ident: 10.1016/j.jplph.2019.01.003_bib0115
  article-title: Identification of chitosan oligosaccharides binding proteins from the plasma membrane of wheat leaf cell
  publication-title: Int. J. Biol. Macromol.
  doi: 10.1016/j.ijbiomac.2018.01.113
– volume: 1
  start-page: 639
  year: 2012
  ident: 10.1016/j.jplph.2019.01.003_bib0235
  article-title: The Arabidopsis NPR1 protein is a receptor for the plant defense hormone salicylic acid
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2012.05.008
– volume: 6
  start-page: 26144
  year: 2016
  ident: 10.1016/j.jplph.2019.01.003_bib0090
  article-title: Chitosan oligosaccharide induces resistance to Tobacco mosaic virus in Arabidopsis via the salicylic acid-mediated signalling pathway
  publication-title: Sci. Rep.
  doi: 10.1038/srep26144
– volume: 64
  start-page: 3983
  year: 2013
  ident: 10.1016/j.jplph.2019.01.003_bib0150
  article-title: Chlorophyll fluorescence analysis: a guide to good practice and understanding some new applications
  publication-title: J. Exp. Bot.
  doi: 10.1093/jxb/ert208
– volume: 216
  start-page: 174
  year: 2017
  ident: 10.1016/j.jplph.2019.01.003_bib0210
  article-title: Plant architecture, auxin homeostasis and phenol content in Arabidopsis thaliana grown in cadmium- and zinc-enriched media
  publication-title: J. Plant Physiol.
  doi: 10.1016/j.jplph.2017.06.008
– volume: 22
  start-page: 2935
  year: 2015
  ident: 10.1016/j.jplph.2019.01.003_bib0080
  article-title: Chitosan-induced antiviral activity and innate immunity in plants
  publication-title: Environ. Sci. Pollut. Res.
  doi: 10.1007/s11356-014-3571-7
– volume: 226
  start-page: 109
  year: 1994
  ident: 10.1016/j.jplph.2019.01.003_bib0105
  article-title: Differential utilization of alternate initiation sites in a plant defense gene responding to environmental stimuli
  publication-title: Eur. J. Biochem.
  doi: 10.1111/j.1432-1033.1994.tb20031.x
– volume: 469
  start-page: 120
  year: 2016
  ident: 10.1016/j.jplph.2019.01.003_bib0165
  article-title: Bacillus cereus AR156 activates PAMP-triggered immunity and induces a systemic acquired resistance through a NPR1-and SA-dependent signaling pathway
  publication-title: Biochem. Biophys. Res. Commun.
  doi: 10.1016/j.bbrc.2015.11.081
– volume: 28
  start-page: 322
  year: 1993
  ident: 10.1016/j.jplph.2019.01.003_bib0125
  article-title: Papaya ringspot virus influences net gas exchange of papaya leaves
  publication-title: HortScience
  doi: 10.21273/HORTSCI.28.4.322
– start-page: 127
  year: 2016
  ident: 10.1016/j.jplph.2019.01.003_bib0205
  article-title: Integrated application of chitosan coating with different postharvest treatments in the control of postharvest decay and maintenance of overall fruit quality
SSID ssj0017583
Score 2.4755733
Snippet [Display omitted] •Tomato plants chitosan-elicited to verify its Cucumber mosaic virus control efficacy.•Viral titer, plant photosynthetic performance and gene...
The control of plant diseases by inducing plant resistance responses represents an interesting solution to avoid yield losses and protect the natural...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 9
SubjectTerms Accumulation
biochemical pathways
Chitosan
Crop yield
crops
Cucumber mosaic virus
Defense/antioxidant-related protein
Disease control
Flowers & plants
foliar spraying
fruit yield
Gas exchange
Gene expression
genes
Inoculation
Natural environment
Oxidation resistance
Photosynthesis
Photosynthetic performance
plant disease control
Plant diseases
plant diseases and disorders
Plant resistance
Plant virus diseases
Plant viruses
Proteins
Signs and symptoms
Solanum lycopersicum
Solanum lycopersicum var. cerasiforme
Tomatoes
Viral infections
Viruses
Title Chitosan-elicited defense responses in Cucumber mosaic virus (CMV)-infected tomato plants
URI https://dx.doi.org/10.1016/j.jplph.2019.01.003
https://www.ncbi.nlm.nih.gov/pubmed/30640158
https://www.proquest.com/docview/2212707706
https://www.proquest.com/docview/2179357174
https://www.proquest.com/docview/2220841826
Volume 234-235
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEB5CmkMvJU362LxQoIcGqu5Kll_HxDRsU5JL0pKehCTL1GFrm30Eeulvz4wfC6V0D73Z8gjk0Ty-QaMZgHfGytTZwqCKu5irQuQ8zRPFQ-GkNwTS27tV1zfR9Ku6ug_vtyAb7sJQWmVv-zub3lrrfmTcc3PclOX4FmUpInSOQkkommqCKhWTlH_8vU7zQO_YleJEYk7UQ-WhNsfroZk1dCIh0rZ259A562_v9C_02Xqhy1140cNHdt6t8CVs-WoPdi5qhHi_9uF79gMVdGEq7melIzDJcl9goOrZvMuF9QtWVixbubYRCPuJxKVjj-V8tWDvs-tvZ7zLzsKZyxrBbM2aGWXKvIK7y0932ZT3vRO4U1G45MKLwkuH_rhIjQidtakNwsDk0oqgkNbHKo1NgA8id-iTrFRJZH1q0KH5wgWvYbuqK_8WmHIJjkSpt9Yr62KDAZIyiGNwlw1q9wjkwDLt-rri1N5ipocEsgfd8lkTn_VEUDnSEXxYT2q6shqbyaNhL_Qf0qHR8G-eeDTsnO6Vc6ElVbWfxPEkGsHp-jOqFZ2VmMrXK6QhwxVirKs20Eg5SRQFaCN400nF-mdIJBFpJQf_u_JDeE5vXbrbEWwv5yt_jPhnaU9aAT-BZ-efv0xvngCsaASS
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LixQxEC7WWUEv4nMdXTWCBwXDTNLp13FtXGbdnbk4ynoKSTqNvYzdzTwE_71V_RgQcQ7emqQK0kk9vqIqFYA3xsrU2cKgiruYq0LkPM0TxUPhpDcE0tu7VfNFNPuiPl2H10eQDXdhqKyyt_2dTW-tdT8y6Xdz0pTl5DPKUkToHIWSULS6BcfUnSocwfHZxeVssU8mICRuE81Iz4lhaD7UlnndNKuGkhIibdt3Do9n_e2g_gVAW0d0fh_u9QiSnXWLfABHvnoItz_UiPJ-PYJv2XfU0Y2puF-VjvAky32Bsapn664c1m9YWbFs59q3QNgPJC4d-1mudxv2Npt_fce7Ai3k3NaIZ2vWrKhY5jEszz8usxnvn0_gTkXhlgsvCi8duuQiNSJ01qY2CAOTSyuCQlofqzQ2AX6I3KFbslIlkfWpQZ_mCxc8gVFVV_4pMOUSHIlSb61X1sUGYyRlEMrgQRtU8DHIYcu061uL0wsXKz3UkN3odp817bOeCupIOob3e6am66xxmDwazkL_ISAabf9hxtPh5HSvnxstqbH9NI6n0Rhe76dRsyhdYipf75CGbFeI4a46QCPlNFEUo43hpJOK_c-QVCLYSp7978pfwZ3Zcn6lry4Wl8_hLs101W-nMNqud_4FwqGtfdmL-2-TkAdD
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Chitosan-elicited+defense+responses+in+Cucumber+mosaic+virus+%28CMV%29-infected+tomato+plants&rft.jtitle=Journal+of+plant+physiology&rft.au=Rendina%2C+Nunzia&rft.au=Nuzzaci%2C+Maria&rft.au=Scopa%2C+Antonio&rft.au=Cuypers%2C+Ann&rft.date=2019-03-01&rft.eissn=1618-1328&rft.volume=234-235&rft.spage=9&rft_id=info:doi/10.1016%2Fj.jplph.2019.01.003&rft_id=info%3Apmid%2F30640158&rft.externalDocID=30640158
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0176-1617&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0176-1617&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0176-1617&client=summon