Chitosan-elicited defense responses in Cucumber mosaic virus (CMV)-infected tomato plants
[Display omitted] •Tomato plants chitosan-elicited to verify its Cucumber mosaic virus control efficacy.•Viral titer, plant photosynthetic performance and gene expression were investigated.•Chitosan reduced viral load, improved gas exchange and up-regulated PAL5 expression.•Virus alone did not signi...
Saved in:
Published in | Journal of plant physiology Vol. 234-235; pp. 9 - 17 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Germany
Elsevier GmbH
01.03.2019
Elsevier Science Ltd |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | [Display omitted]
•Tomato plants chitosan-elicited to verify its Cucumber mosaic virus control efficacy.•Viral titer, plant photosynthetic performance and gene expression were investigated.•Chitosan reduced viral load, improved gas exchange and up-regulated PAL5 expression.•Virus alone did not significantly affect CEVI-1, NPR1, PSY2 and PAL5 expressions.•Chitosan treatment elicited plant defense responses against viral infection.
The control of plant diseases by inducing plant resistance responses represents an interesting solution to avoid yield losses and protect the natural environment. Hence, the intertwined relationships between host, pathogen and inducer are increasingly subject of investigations. Here, we report the efficacy of chitosan-elicited defense responses in Solanum lycopersicum var. cerasiforme plants against Cucumber mosaic virus (CMV). Chitosan was applied via foliar spray before the CMV inoculation to verify its effectiveness as a preventive treatment against the viral infection. Virus accumulation, photosynthetic performance, as well as genes encoding for proteins affecting resistance responses and biosynthetic pathways, were investigated. It was observed a significant reduction of CMV accumulation in chitosan-treated plants that were successively infected with CMV, compared to only CMV-infected ones (up to 100%). Similarly, a positive effect of chitosan on gas exchange dynamics was revealed. The analysis of gene expression (CEVI-1, NPR1, PSY2 and PAL5) suggested the occurrence of chitosan-induced, systemic acquired resistance-related responses associated with a readjustment of the plant’s oxidative status. In addition, the absence of deleterious symptoms in chitosan-treated successively CMV-infected plants, confirmed that chitosan can be used as a powerful control agent. Our data indicate that chitosan, when preventively applied, is able to elicit defense responses in tomato to control CMV infection. Such finding may be recommended to protect the tomato fruit yields as well as other crops. |
---|---|
AbstractList | [Display omitted]
•Tomato plants chitosan-elicited to verify its Cucumber mosaic virus control efficacy.•Viral titer, plant photosynthetic performance and gene expression were investigated.•Chitosan reduced viral load, improved gas exchange and up-regulated PAL5 expression.•Virus alone did not significantly affect CEVI-1, NPR1, PSY2 and PAL5 expressions.•Chitosan treatment elicited plant defense responses against viral infection.
The control of plant diseases by inducing plant resistance responses represents an interesting solution to avoid yield losses and protect the natural environment. Hence, the intertwined relationships between host, pathogen and inducer are increasingly subject of investigations. Here, we report the efficacy of chitosan-elicited defense responses in Solanum lycopersicum var. cerasiforme plants against Cucumber mosaic virus (CMV). Chitosan was applied via foliar spray before the CMV inoculation to verify its effectiveness as a preventive treatment against the viral infection. Virus accumulation, photosynthetic performance, as well as genes encoding for proteins affecting resistance responses and biosynthetic pathways, were investigated. It was observed a significant reduction of CMV accumulation in chitosan-treated plants that were successively infected with CMV, compared to only CMV-infected ones (up to 100%). Similarly, a positive effect of chitosan on gas exchange dynamics was revealed. The analysis of gene expression (CEVI-1, NPR1, PSY2 and PAL5) suggested the occurrence of chitosan-induced, systemic acquired resistance-related responses associated with a readjustment of the plant’s oxidative status. In addition, the absence of deleterious symptoms in chitosan-treated successively CMV-infected plants, confirmed that chitosan can be used as a powerful control agent. Our data indicate that chitosan, when preventively applied, is able to elicit defense responses in tomato to control CMV infection. Such finding may be recommended to protect the tomato fruit yields as well as other crops. The control of plant diseases by inducing plant resistance responses represents an interesting solution to avoid yield losses and protect the natural environment. Hence, the intertwined relationships between host, pathogen and inducer are increasingly subject of investigations. Here, we report the efficacy of chitosan-elicited defense responses in Solanum lycopersicum var. cerasiforme plants against Cucumber mosaic virus (CMV). Chitosan was applied via foliar spray before the CMV inoculation to verify its effectiveness as a preventive treatment against the viral infection. Virus accumulation, photosynthetic performance, as well as genes encoding for proteins affecting resistance responses and biosynthetic pathways, were investigated. It was observed a significant reduction of CMV accumulation in chitosan-treated plants that were successively infected with CMV, compared to only CMV-infected ones (up to 100%). Similarly, a positive effect of chitosan on gas exchange dynamics was revealed. The analysis of gene expression (CEVI-1, NPR1, PSY2 and PAL5) suggested the occurrence of chitosan-induced, systemic acquired resistance-related responses associated with a readjustment of the plant’s oxidative status. In addition, the absence of deleterious symptoms in chitosan-treated successively CMV-infected plants, confirmed that chitosan can be used as a powerful control agent. Our data indicate that chitosan, when preventively applied, is able to elicit defense responses in tomato to control CMV infection. Such finding may be recommended to protect the tomato fruit yields as well as other crops. The control of plant diseases by inducing plant resistance responses represents an interesting solution to avoid yield losses and protect the natural environment. Hence, the intertwined relationships between host, pathogen and inducer are increasingly subject of investigations. Here, we report the efficacy of chitosan-elicited defense responses in Solanum lycopersicum var. cerasiforme plants against Cucumber mosaic virus (CMV). Chitosan was applied via foliar spray before the CMV inoculation to verify its effectiveness as a preventive treatment against the viral infection. Virus accumulation, photosynthetic performance, as well as genes encoding for proteins affecting resistance responses and biosynthetic pathways, were investigated. It was observed a significant reduction of CMV accumulation in chitosan-treated plants that were successively infected with CMV, compared to only CMV-infected ones (up to 100%). Similarly, a positive effect of chitosan on gas exchange dynamics was revealed. The analysis of gene expression (CEVI-1, NPR1, PSY2 and PAL5) suggested the occurrence of chitosan-induced, systemic acquired resistance-related responses associated with a readjustment of the plant's oxidative status. In addition, the absence of deleterious symptoms in chitosan-treated successively CMV-infected plants, confirmed that chitosan can be used as a powerful control agent. Our data indicate that chitosan, when preventively applied, is able to elicit defense responses in tomato to control CMV infection. Such finding may be recommended to protect the tomato fruit yields as well as other crops.The control of plant diseases by inducing plant resistance responses represents an interesting solution to avoid yield losses and protect the natural environment. Hence, the intertwined relationships between host, pathogen and inducer are increasingly subject of investigations. Here, we report the efficacy of chitosan-elicited defense responses in Solanum lycopersicum var. cerasiforme plants against Cucumber mosaic virus (CMV). Chitosan was applied via foliar spray before the CMV inoculation to verify its effectiveness as a preventive treatment against the viral infection. Virus accumulation, photosynthetic performance, as well as genes encoding for proteins affecting resistance responses and biosynthetic pathways, were investigated. It was observed a significant reduction of CMV accumulation in chitosan-treated plants that were successively infected with CMV, compared to only CMV-infected ones (up to 100%). Similarly, a positive effect of chitosan on gas exchange dynamics was revealed. The analysis of gene expression (CEVI-1, NPR1, PSY2 and PAL5) suggested the occurrence of chitosan-induced, systemic acquired resistance-related responses associated with a readjustment of the plant's oxidative status. In addition, the absence of deleterious symptoms in chitosan-treated successively CMV-infected plants, confirmed that chitosan can be used as a powerful control agent. Our data indicate that chitosan, when preventively applied, is able to elicit defense responses in tomato to control CMV infection. Such finding may be recommended to protect the tomato fruit yields as well as other crops. |
Author | Cuypers, Ann Nuzzaci, Maria Sofo, Adriano Scopa, Antonio Rendina, Nunzia |
Author_xml | – sequence: 1 givenname: Nunzia surname: Rendina fullname: Rendina, Nunzia email: nunzia.rendina@unibas.it organization: School of Agricultural, Forestry, Food and Environmental Sciences, University of Basilicata, Viale dell’ Ateneo Lucano, 10, 85100 Potenza, Italy – sequence: 2 givenname: Maria surname: Nuzzaci fullname: Nuzzaci, Maria email: maria.nuzzaci@unibas.it organization: School of Agricultural, Forestry, Food and Environmental Sciences, University of Basilicata, Viale dell’ Ateneo Lucano, 10, 85100 Potenza, Italy – sequence: 3 givenname: Antonio orcidid: 0000-0001-8610-3323 surname: Scopa fullname: Scopa, Antonio email: antonio.scopa@unibas.it organization: School of Agricultural, Forestry, Food and Environmental Sciences, University of Basilicata, Viale dell’ Ateneo Lucano, 10, 85100 Potenza, Italy – sequence: 4 givenname: Ann orcidid: 0000-0002-0171-0245 surname: Cuypers fullname: Cuypers, Ann email: ann.cuypers@uhasselt.be organization: Environmental Biology, Centre for Environmental Sciences, Hasselt University, Agoralaan, Building D, 3590 Diepenbeek, Belgium – sequence: 5 givenname: Adriano surname: Sofo fullname: Sofo, Adriano email: adriano.sofo@unibas.it organization: School of Agricultural, Forestry, Food and Environmental Sciences, University of Basilicata, Viale dell’ Ateneo Lucano, 10, 85100 Potenza, Italy |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30640158$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkT9r3TAUxUVJaV7SfoJCMXRJB7u6km3ZQ4di-g9SuoRCJyHJ10TGllxJDvTbV68vWTKkk67E7xyuzrkgZ847JOQ10AootO_nat6W7bZiFPqKQkUpf0YO0EJXAmfdGTlQEG2ZH8Q5uYhxpvnedPwFOee0rSk03YH8Gm5t8lG5EhdrbMKxGHFCF7EIGDefh1hYVwy72VeNoVgzbE1xZ8Mei6vh-893pXUTmqMy-VUlX2yLcim-JM8ntUR8dX9ekpvPn26Gr-X1jy_fho_XpanbJpWAMCEzvIOpV9AYrXvNG65GpoFPTKOoe6F4HmA0Nes1q7tWY694y3Ay_JJcnWy34H_vGJNcbTS45B3Q71EyxmhXQ8fa_6Mget4IEHVG3z5CZ78Hl_-RDYEJKgQ9Gr65p3a94ii3YFcV_siHeDPQnwATfIwBJ5kjVsl6l4KyiwQqj1XKWf6rUh6rlBRkrjJr-SPtg_3Tqg8nFebI7ywGGY1FZ3C0IZckR2-f1P8FMim4Cg |
CitedBy_id | crossref_primary_10_56124_cct_v2i2_008 crossref_primary_10_1007_s10343_021_00571_5 crossref_primary_10_14692_jfi_20_2_88_100 crossref_primary_10_5423_RPD_2022_28_2_82 crossref_primary_10_1016_j_jplph_2023_154002 crossref_primary_10_1016_j_jviromet_2021_114402 crossref_primary_10_1039_D3EN00402C crossref_primary_10_1111_mpp_13018 crossref_primary_10_3390_agronomy12123028 crossref_primary_10_1007_s42977_023_00198_9 crossref_primary_10_1080_07060661_2021_1998225 crossref_primary_10_1016_j_scitotenv_2022_160476 crossref_primary_10_3390_polym13183105 crossref_primary_10_1016_j_jssas_2023_08_001 crossref_primary_10_1016_j_chemosphere_2022_135262 crossref_primary_10_3390_biology13100839 crossref_primary_10_1016_j_heliyon_2024_e36867 crossref_primary_10_3390_horticulturae8060543 crossref_primary_10_1016_j_pestbp_2020_104589 crossref_primary_10_3390_agronomy13010125 crossref_primary_10_1111_aab_12900 crossref_primary_10_3390_ijms21020535 crossref_primary_10_1016_j_jplph_2021_153461 crossref_primary_10_4103_epj_epj_23_24 crossref_primary_10_3390_insects12110960 crossref_primary_10_1016_j_plaphy_2021_04_038 crossref_primary_10_3390_ijms23136990 crossref_primary_10_1016_j_jviromet_2021_114438 crossref_primary_10_1021_acsagscitech_1c00252 crossref_primary_10_3390_plants11020203 crossref_primary_10_3390_agronomy11112188 crossref_primary_10_1021_acs_jafc_2c00672 crossref_primary_10_3390_polym15132961 crossref_primary_10_1016_j_jbiotec_2019_10_003 crossref_primary_10_3390_biom11060819 crossref_primary_10_1016_j_ijbiomac_2020_07_066 crossref_primary_10_3390_ijms22147449 crossref_primary_10_1080_03235408_2020_1833280 crossref_primary_10_1016_j_carbpol_2021_117799 crossref_primary_10_1016_j_carpta_2023_100293 crossref_primary_10_3390_agronomy13082182 crossref_primary_10_61186_pps_13_1_125 crossref_primary_10_1039_D3EN00234A crossref_primary_10_1007_s42161_022_01263_3 crossref_primary_10_3390_agronomy14020386 crossref_primary_10_3390_plants10122701 crossref_primary_10_1007_s11816_022_00750_4 crossref_primary_10_2174_1381612826666200617165915 crossref_primary_10_3389_fpls_2022_910594 crossref_primary_10_3390_molecules24091752 crossref_primary_10_3390_agronomy13010023 crossref_primary_10_3390_polym16223122 crossref_primary_10_3390_polym15132867 crossref_primary_10_1016_j_sjbs_2021_10_007 crossref_primary_10_1038_s41598_021_83445_0 crossref_primary_10_1016_j_indcrop_2021_113987 crossref_primary_10_1128_jvi_01803_24 crossref_primary_10_1016_j_heliyon_2024_e34871 |
Cites_doi | 10.1073/pnas.92.10.4095 10.1016/S0092-8674(03)00429-X 10.1016/S0261-2194(00)00031-4 10.1094/MPMI.2000.13.1.23 10.3390/ijms140510178 10.3389/fpls.2017.00238 10.1016/j.ijbiomac.2018.02.130 10.3923/ajppaj.2017.53.70 10.3389/fmicb.2016.01565 10.1016/j.carbpol.2015.05.078 10.1016/j.ijfoodmicro.2004.01.022 10.3390/molecules23040872 10.1111/j.1742-4658.2007.06219.x 10.3390/ijms17070996 10.4172/2161-1009.1000308 10.1007/s12250-014-3452-8 10.1016/j.envexpbot.2009.01.004 10.1007/s10526-014-9626-3 10.1016/j.phytochem.2010.03.021 10.1105/tpc.009159 10.1007/s10265-010-0399-1 10.1016/S0065-3527(10)76003-6 10.1023/A:1012508625017 10.1111/j.1439-0434.2011.01791.x 10.1007/s13593-014-0252-3 10.1016/S0168-1702(00)00184-2 10.5511/plantbiotechnology.23.395 10.1016/j.pestbp.2018.06.008 10.4161/psb.32096 10.1021/acs.jafc.5b01566 10.1016/j.bcab.2013.06.001 10.1074/jbc.M110.116657 10.3389/fpls.2016.01520 10.1016/j.plipres.2003.10.002 10.1016/j.ijbiomac.2018.01.113 10.1016/j.celrep.2012.05.008 10.1038/srep26144 10.1093/jxb/ert208 10.1016/j.jplph.2017.06.008 10.1007/s11356-014-3571-7 10.1111/j.1432-1033.1994.tb20031.x 10.1016/j.bbrc.2015.11.081 10.21273/HORTSCI.28.4.322 |
ContentType | Journal Article |
Copyright | 2019 Elsevier GmbH Copyright © 2019 Elsevier GmbH. All rights reserved. Copyright Urban & Fischer Verlag Mar/Apr 2019 |
Copyright_xml | – notice: 2019 Elsevier GmbH – notice: Copyright © 2019 Elsevier GmbH. All rights reserved. – notice: Copyright Urban & Fischer Verlag Mar/Apr 2019 |
DBID | AAYXX CITATION NPM 7QP 7SS 8FD FR3 K9. M7N P64 RC3 7X8 7S9 L.6 |
DOI | 10.1016/j.jplph.2019.01.003 |
DatabaseName | CrossRef PubMed Calcium & Calcified Tissue Abstracts Entomology Abstracts (Full archive) Technology Research Database Engineering Research Database ProQuest Health & Medical Complete (Alumni) Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef PubMed Entomology Abstracts Genetics Abstracts Technology Research Database Algology Mycology and Protozoology Abstracts (Microbiology C) ProQuest Health & Medical Complete (Alumni) Engineering Research Database Calcium & Calcified Tissue Abstracts Biotechnology and BioEngineering Abstracts MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA PubMed Entomology Abstracts MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Botany |
EISSN | 1618-1328 |
EndPage | 17 |
ExternalDocumentID | 30640158 10_1016_j_jplph_2019_01_003 S0176161718306424 |
Genre | Journal Article |
GroupedDBID | --- --K --M -~X .~1 0R~ 1B1 1RT 1~. 1~5 29L 3V. 4.4 457 4G. 53G 5GY 5VS 7-5 71M 7X2 7X7 88A 88E 88I 8AF 8CJ 8FE 8FH 8FI 8FJ 8FW 8P~ 8R4 8R5 9JM AABNK AABVA AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALCJ AALRI AAOAW AAQFI AAQXK AATLK AAXUO ABCQX ABFNM ABFRF ABGRD ABGSF ABJNI ABLJU ABLST ABMAC ABUDA ABUWG ABXDB ABYKQ ACDAQ ACGFO ACGFS ACGOD ACPRK ACRLP ADBBV ADEZE ADKUU ADMUD ADQTV ADUVX AEBSH AEFWE AEHWI AEKER AENEX AEQOU AFFNX AFKRA AFKWA AFRAH AFTJW AFXIZ AGHFR AGRDE AGUBO AGYEJ AHEUO AHHHB AHMBA AI. AIEXJ AIKHN AITUG AJBFU AJOXV AKIFW ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG ATCPS AVWKF AXJTR AZFZN AZQEC BBNVY BENPR BES BHPHI BKOJK BLECG BLXMC BPHCQ BVXVI CAG CBWCG CCPQU COF CS3 D1J DOVZS DU5 DWQXO EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN FYUFA G-Q GBLVA GNUQQ HCIFZ HMCUK HVGLF HZ~ IHE J1W K-O KCYFY KOM L7B LK8 M0K M0L M1P M2P M2Q M41 M7P MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PQQKQ PROAC PSQYO Q2X Q38 R2- RIG ROL RPZ S0X SDF SDG SES SEW SPCBC SSA SSJ SSU SSZ T5J T5K TN5 UKHRP UPT VH1 WHG YQT ~G- ~KM AAHBH AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AEUYN AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ALIPV ANKPU APXCP BNPGV CITATION PHGZM PHGZT EFKBS NPM 7QP 7SS 8FD FR3 K9. M7N P64 RC3 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-c465t-1e1fe2c381f9a15cbb9b353ad2b13f2be7497a32be1dc429b2486be9a362efc3 |
IEDL.DBID | .~1 |
ISSN | 0176-1617 1618-1328 |
IngestDate | Thu Jul 10 19:12:35 EDT 2025 Thu Jul 10 19:57:40 EDT 2025 Wed Aug 13 08:56:35 EDT 2025 Mon Jul 21 05:58:54 EDT 2025 Tue Jul 01 03:02:52 EDT 2025 Thu Apr 24 23:12:31 EDT 2025 Fri Feb 23 02:33:55 EST 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | DAS-ELISA PAR A Defense/antioxidant-related protein PR NPR1 SAR Photosynthetic performance ΦPSII CHT SA PVX ANOVA UK Cucumber mosaic virus Solanum lycopersicum var. cerasiforme qPCR TUB CERK1 ISR gs CMV Disease control ET Fv/Fm JA PSY ROS AR156 PAL Chitosan TMV TP GAPDH |
Language | English |
License | Copyright © 2019 Elsevier GmbH. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c465t-1e1fe2c381f9a15cbb9b353ad2b13f2be7497a32be1dc429b2486be9a362efc3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Article-2 ObjectType-Undefined-1 ObjectType-Feature-3 content type line 23 |
ORCID | 0000-0002-0171-0245 0000-0001-8610-3323 |
OpenAccessLink | https://ars.els-cdn.com/content/image/1-s2.0-S0176161718306424-ga1_lrg.jpg |
PMID | 30640158 |
PQID | 2212707706 |
PQPubID | 38119 |
PageCount | 9 |
ParticipantIDs | proquest_miscellaneous_2220841826 proquest_miscellaneous_2179357174 proquest_journals_2212707706 pubmed_primary_30640158 crossref_citationtrail_10_1016_j_jplph_2019_01_003 crossref_primary_10_1016_j_jplph_2019_01_003 elsevier_sciencedirect_doi_10_1016_j_jplph_2019_01_003 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-03-01 |
PublicationDateYYYYMMDD | 2019-03-01 |
PublicationDate_xml | – month: 03 year: 2019 text: 2019-03-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Stuttgart |
PublicationTitle | Journal of plant physiology |
PublicationTitleAlternate | J Plant Physiol |
PublicationYear | 2019 |
Publisher | Elsevier GmbH Elsevier Science Ltd |
Publisher_xml | – name: Elsevier GmbH – name: Elsevier Science Ltd |
References | Liu, Du, Wang, Sun (bib0110) 2004; 95 Mou, Fan, Dong (bib0145) 2003; 113 Sivakumar, Bill, Korsten, Thompson (bib0205) 2016 Wu, Zhang, Chu, Boyle, Wang, Brindle, De Luca, Després (bib0235) 2012; 1 Petutschnig, Jones, Serazetdinova, Lipka, Lipka (bib0180) 2010; 285 Iriti, Varoni (bib0080) 2015; 22 Niu, Wang, Wang, Song, Wang, Guo, Zhao (bib0165) 2016; 469 Kumaraswamy, Kumari, Choudhary, Pal, Raliya, Biswas, Saharan (bib0100) 2018; 113 Povero, Loreti, Pucciariello, Santaniello, Di Tommaso, Di Tommaso, Kapetis, Zolezzi, Piaggesi, Perata (bib0185) 2011; 124 Chirkov, Il’ina, Surgucheva, Letunova, Varitsev, Tatarinova, Varlamov (bib0020) 2001; 48 Gallitelli (bib0055) 2000; 71 Spoel, Koornneef, Claessens, Korzelius, Van Pelt, Mueller, Buchala, Métraux, Brown, Kazan, Van Loon, Dong, Pieterse (bib0215) 2003; 15 Liu, Jiao, Cheng, Li, Pei, Pei, Yin, Du (bib0115) 2018; 111 Sharif, Mujtaba, Ur Rahman, Shalmani, Ahmad, Anwar, Tianchan, Wang (bib0195) 2018; 23 Xing, Zhu, Peng, Qin (bib0240) 2015; 35 Mayda, Marqués, Conejero, Vera (bib0130) 2000; 13 Meléndez-Martínez, Fraser, Bramley (bib0140) 2010; 71 Van, Minh, Anh (bib0220) 2013; 2 Fraser, Bramley (bib0045) 2004; 43 Zhang, Wang, Hu, Liu (bib0245) 2015; 63 Edwardson, Christie (bib0035) 1991 Lee, Heinz, Robb, Nazar (bib0105) 1994; 226 Malerba, Cerana (bib0120) 2016; 17 Marler, Mickelbart, Quitugua (bib0125) 1993; 28 Zhao, Zhang, Hong, Liu (bib0250) 2016; 7 Mejía-Teniente, de Dalia Duran-Flores, Chapa-Oliver, Torres-Pacheco, Cruz-Hernández, González-Chavira, Ocampo-Velázquez, Guevara-González (bib0135) 2013; 14 Feliziani, Landi, Romanazzi (bib0040) 2015; 132 Gallitelli (bib0050) 1998 Shi, Yu, Song (bib0200) 2018; 149 Carr, Lewsey, Palukaitis (bib0015) 2010 Doares, Syrovets, Weiler, Ryan (bib0030) 1995; 92 Hassan, Chang (bib0065) 2017; 11 Vitti, La Monaca, Sofo, Scopa, Cuypers, Nuzzaci (bib0225) 2015; 60 Jia, Meng, Zeng, Wang, Yin (bib0090) 2016; 6 Nie, Li, Wang, Guo, Zhao, Niu (bib0160) 2017; 8 Pandey, Awasthi, Singh, Tiwari, Dwivedi (bib0175) 2017; 6 Agrios (bib0005) 1997 Anfoka (bib0010) 2000; 19 Iriti, Picchi, Rossoni, Gomarasca, Ludwig, Gargano, Faoro (bib0085) 2009; 66 Murchie, Lawson (bib0150) 2013; 64 Kumar, Chauhan, Agrawal, Raj, Srivastava, Gupta, Mishra, Yadav, Singh, Raj, Nautiyal (bib0095) 2016; 11 Coqueiro, Maraschin, Di Piero (bib0025) 2011; 159 Salachna, Byczyńska, Jeziorska, Udycz (bib0190) 2017; 62 Ibdah, Dubey, Eizenberg, Dabour, Abu-Nassar, Gal-On, Aly (bib0070) 2014; 9 Nagorskaya, Reunov, Lapshina, Davydova, Yermak (bib0155) 2014; 29 Ogawa, Nakajima, Seo, Mitsuhara, Kamada, Ohashi (bib0170) 2006; 23 Giorio, Stigliani, D’Ambrosio (bib0060) 2008; 275 Sofo, Bochicchio, Amato, Rendina, Vitti, Nuzzaci, Altamura, Falasca, Della Rovere, Scopa (bib0210) 2017; 216 Ipper, Cho, Lee, Cho, Hur, Lim (bib0075) 2008; 18 Vitti, Pellegrini, Nali, Lovelli, Sofo, Valerio, Scopa, Nuzzaci (bib0230) 2016; 7 Povero (10.1016/j.jplph.2019.01.003_bib0185) 2011; 124 Malerba (10.1016/j.jplph.2019.01.003_bib0120) 2016; 17 Vitti (10.1016/j.jplph.2019.01.003_bib0230) 2016; 7 Anfoka (10.1016/j.jplph.2019.01.003_bib0010) 2000; 19 Ogawa (10.1016/j.jplph.2019.01.003_bib0170) 2006; 23 Giorio (10.1016/j.jplph.2019.01.003_bib0060) 2008; 275 Xing (10.1016/j.jplph.2019.01.003_bib0240) 2015; 35 Kumaraswamy (10.1016/j.jplph.2019.01.003_bib0100) 2018; 113 Mejía-Teniente (10.1016/j.jplph.2019.01.003_bib0135) 2013; 14 Shi (10.1016/j.jplph.2019.01.003_bib0200) 2018; 149 Wu (10.1016/j.jplph.2019.01.003_bib0235) 2012; 1 Nagorskaya (10.1016/j.jplph.2019.01.003_bib0155) 2014; 29 Zhao (10.1016/j.jplph.2019.01.003_bib0250) 2016; 7 Iriti (10.1016/j.jplph.2019.01.003_bib0085) 2009; 66 Sharif (10.1016/j.jplph.2019.01.003_bib0195) 2018; 23 Gallitelli (10.1016/j.jplph.2019.01.003_bib0050) 1998 Murchie (10.1016/j.jplph.2019.01.003_bib0150) 2013; 64 Vitti (10.1016/j.jplph.2019.01.003_bib0225) 2015; 60 Ipper (10.1016/j.jplph.2019.01.003_bib0075) 2008; 18 Gallitelli (10.1016/j.jplph.2019.01.003_bib0055) 2000; 71 Pandey (10.1016/j.jplph.2019.01.003_bib0175) 2017; 6 Spoel (10.1016/j.jplph.2019.01.003_bib0215) 2003; 15 Fraser (10.1016/j.jplph.2019.01.003_bib0045) 2004; 43 Mou (10.1016/j.jplph.2019.01.003_bib0145) 2003; 113 Agrios (10.1016/j.jplph.2019.01.003_bib0005) 1997 Ibdah (10.1016/j.jplph.2019.01.003_bib0070) 2014; 9 Liu (10.1016/j.jplph.2019.01.003_bib0115) 2018; 111 Edwardson (10.1016/j.jplph.2019.01.003_bib0035) 1991 Liu (10.1016/j.jplph.2019.01.003_bib0110) 2004; 95 Meléndez-Martínez (10.1016/j.jplph.2019.01.003_bib0140) 2010; 71 Hassan (10.1016/j.jplph.2019.01.003_bib0065) 2017; 11 Van (10.1016/j.jplph.2019.01.003_bib0220) 2013; 2 Lee (10.1016/j.jplph.2019.01.003_bib0105) 1994; 226 Niu (10.1016/j.jplph.2019.01.003_bib0165) 2016; 469 Carr (10.1016/j.jplph.2019.01.003_bib0015) 2010 Iriti (10.1016/j.jplph.2019.01.003_bib0080) 2015; 22 Sofo (10.1016/j.jplph.2019.01.003_bib0210) 2017; 216 Nie (10.1016/j.jplph.2019.01.003_bib0160) 2017; 8 Mayda (10.1016/j.jplph.2019.01.003_bib0130) 2000; 13 Chirkov (10.1016/j.jplph.2019.01.003_bib0020) 2001; 48 Jia (10.1016/j.jplph.2019.01.003_bib0090) 2016; 6 Sivakumar (10.1016/j.jplph.2019.01.003_bib0205) 2016 Coqueiro (10.1016/j.jplph.2019.01.003_bib0025) 2011; 159 Petutschnig (10.1016/j.jplph.2019.01.003_bib0180) 2010; 285 Salachna (10.1016/j.jplph.2019.01.003_bib0190) 2017; 62 Feliziani (10.1016/j.jplph.2019.01.003_bib0040) 2015; 132 Doares (10.1016/j.jplph.2019.01.003_bib0030) 1995; 92 Marler (10.1016/j.jplph.2019.01.003_bib0125) 1993; 28 Kumar (10.1016/j.jplph.2019.01.003_bib0095) 2016; 11 Zhang (10.1016/j.jplph.2019.01.003_bib0245) 2015; 63 |
References_xml | – volume: 226 start-page: 109 year: 1994 end-page: 114 ident: bib0105 article-title: Differential utilization of alternate initiation sites in a plant defense gene responding to environmental stimuli publication-title: Eur. J. Biochem. – volume: 111 start-page: 1083 year: 2018 end-page: 1090 ident: bib0115 article-title: Identification of chitosan oligosaccharides binding proteins from the plasma membrane of wheat leaf cell publication-title: Int. J. Biol. Macromol. – volume: 113 start-page: 494 year: 2018 end-page: 506 ident: bib0100 article-title: Engineered chitosan based nanomaterials: bioactivities, mechanisms and perspectives in plant protection and growth publication-title: Int. J. Biol. Macromol. – volume: 19 start-page: 401 year: 2000 end-page: 405 ident: bib0010 article-title: Benzo-(1,2,3)-thiadiazole-7-carbothioic acid publication-title: Crop Prot. – volume: 28 start-page: 322 year: 1993 end-page: 324 ident: bib0125 article-title: Papaya ringspot virus influences net gas exchange of papaya leaves publication-title: HortScience – volume: 7 start-page: 1565 year: 2016 ident: bib0250 article-title: Chloroplast in plant-virus interaction publication-title: Front. Microbiol. – volume: 159 start-page: 488 year: 2011 end-page: 494 ident: bib0025 article-title: Chitosan reduces bacterial spot severity and acts in phenylpropanoid metabolism in tomato plants publication-title: J. Phytopathol. – volume: 15 start-page: 760 year: 2003 end-page: 770 ident: bib0215 article-title: NPR1 modulates cross-talk between salicylate- and jasmonate-dependent defense pathways through a novel function in the cytosol publication-title: Plant Cell – start-page: 127 year: 2016 end-page: 153 ident: bib0205 article-title: Integrated application of chitosan coating with different postharvest treatments in the control of postharvest decay and maintenance of overall fruit quality publication-title: Chitosan in the Preservation of Agricultural Commodities – volume: 23 start-page: 872 year: 2018 ident: bib0195 article-title: The multifunctional role of chitosan in horticultural crops; a review publication-title: Molecules – volume: 6 start-page: 26144 year: 2016 ident: bib0090 article-title: Chitosan oligosaccharide induces resistance to publication-title: Sci. Rep. – volume: 149 start-page: 113 year: 2018 end-page: 122 ident: bib0200 article-title: Proteomics analysis of Xiangcaoliusuobingmi-treated publication-title: Pest. Biochem. Physiol. – volume: 124 start-page: 619 year: 2011 end-page: 629 ident: bib0185 article-title: Transcript profiling of chitosan-treated publication-title: J. Plant Res. – volume: 216 start-page: 174 year: 2017 end-page: 180 ident: bib0210 article-title: Plant architecture, auxin homeostasis and phenol content in publication-title: J. Plant Physiol. – volume: 8 start-page: 238 year: 2017 ident: bib0160 article-title: Induced systemic resistance against publication-title: Front. Plant Sci. – volume: 71 start-page: 1104 year: 2010 end-page: 1114 ident: bib0140 article-title: Accumulation of health promoting phytochemicals in wild relatives of tomato and their contribution to publication-title: Phytochemistry – volume: 1 start-page: 639 year: 2012 end-page: 647 ident: bib0235 article-title: The publication-title: Cell Rep. – start-page: 507 year: 1998 end-page: 523 ident: bib0050 article-title: Present status of controlling publication-title: Plant Virus Disease Control – volume: 95 start-page: 147 year: 2004 end-page: 155 ident: bib0110 article-title: Chitosan kills bacteria through cell membrane damage publication-title: Int. J. Food Microbiol. – volume: 13 start-page: 23 year: 2000 end-page: 31 ident: bib0130 article-title: Expression of a pathogen-induced gene can be mimicked by auxin insensitivity publication-title: Mol. Plant Microbe Interact. – volume: 71 start-page: 9 year: 2000 end-page: 21 ident: bib0055 article-title: The ecology of publication-title: Virus Res. – volume: 63 start-page: 7399 year: 2015 end-page: 7404 ident: bib0245 article-title: Chitosan controls postharvest decay on cherry tomato fruit possibly via the mitogen-activated protein kinase signaling pathway publication-title: J. Agric. Food Chem. – volume: 469 start-page: 120 year: 2016 end-page: 125 ident: bib0165 article-title: AR156 activates PAMP-triggered immunity and induces a systemic acquired resistance through a publication-title: Biochem. Biophys. Res. Commun. – year: 1991 ident: bib0035 article-title: CRC Handbook of Viruses Infecting Legumes – volume: 6 start-page: 308 year: 2017 ident: bib0175 article-title: A comprehensive review on function and application of plant peroxidases publication-title: Biochem. Anal. Biochem. – volume: 285 start-page: 28902 year: 2010 end-page: 28911 ident: bib0180 article-title: The lysin motif receptor-like kinase (LysM-RLK) CERK1 is a major chitin-binding protein in publication-title: J. Biol. Chem. – volume: 22 start-page: 2935 year: 2015 end-page: 2944 ident: bib0080 article-title: Chitosan-induced antiviral activity and innate immunity in plants publication-title: Environ. Sci. Pollut. Res. – volume: 64 start-page: 3983 year: 2013 end-page: 3998 ident: bib0150 article-title: Chlorophyll fluorescence analysis: a guide to good practice and understanding some new applications publication-title: J. Exp. Bot. – volume: 62 start-page: 111 year: 2017 end-page: 123 ident: bib0190 article-title: Plant growth of publication-title: World Sci. News – volume: 7 start-page: 1520 year: 2016 ident: bib0230 article-title: T-22 induces systemic resistance in tomato infected by publication-title: Front. Plant Sci. – volume: 29 start-page: 250 year: 2014 end-page: 256 ident: bib0155 article-title: Effect of chitosan on publication-title: Virol. Sin. – volume: 9 year: 2014 ident: bib0070 article-title: as a carotenoid inhibitor reducing publication-title: Plant Signal. Behav. – volume: 275 start-page: 527 year: 2008 end-page: 535 ident: bib0060 article-title: Phytoene synthase genes in tomato ( publication-title: FEBS J. – volume: 18 start-page: 67 year: 2008 end-page: 73 ident: bib0075 article-title: Antiviral activity of the exopolysaccharide produced by publication-title: J. Microbiol. Biotechnol. – start-page: 57 year: 2010 end-page: 121 ident: bib0015 article-title: Signaling in induced resistance publication-title: Advances in Virus Research – volume: 11 year: 2016 ident: bib0095 article-title: inoculation enhances tobacco growth and extenuates the virulence of publication-title: PLoS One – volume: 2 start-page: 289 year: 2013 end-page: 294 ident: bib0220 article-title: Study on chitosan nanoparticles on biophysical characteristics and growth of Robusta coffee in green house publication-title: Biocatal. Agric. Biotechnol. – volume: 14 start-page: 10178 year: 2013 end-page: 10196 ident: bib0135 article-title: Oxidative and molecular responses in publication-title: Int. J. Mol. Sci. – volume: 132 start-page: 111 year: 2015 end-page: 117 ident: bib0040 article-title: Preharvest treatments with chitosan and other alternatives to conventional fungicides to control postharvest decay of strawberry publication-title: Carbohydr. Polym. – volume: 11 start-page: 53 year: 2017 end-page: 70 ident: bib0065 article-title: Chitosan for eco-friendly control of plant disease publication-title: Asian J. Plant Pathol. – volume: 113 start-page: 935 year: 2003 end-page: 944 ident: bib0145 article-title: Inducers of plant systemic acquired resistance regulate NPR1 function through redox changes publication-title: Cell – year: 1997 ident: bib0005 article-title: Plant Pathology – volume: 92 start-page: 4095 year: 1995 end-page: 4098 ident: bib0030 article-title: Oligogalacturonides and chitosan activate plant defensive genes through the octadecanoid pathway publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 43 start-page: 228 year: 2004 end-page: 265 ident: bib0045 article-title: The biosynthesis and nutritional uses of carotenoids publication-title: Prog. Lipid Res. – volume: 66 start-page: 493 year: 2009 end-page: 500 ident: bib0085 article-title: Chitosan antitranspirant activity is due to abscisic acid-dependent stomatal closure publication-title: Environ. Exp. Bot. – volume: 48 start-page: 774 year: 2001 end-page: 779 ident: bib0020 article-title: Effect of chitosan on systemic viral infection and some defense responses in potato plants publication-title: Russ. J. Plant Physiol. – volume: 17 start-page: 996 year: 2016 ident: bib0120 article-title: Chitosan effects on plant systems publication-title: Int. J. Mol. Sci. – volume: 35 start-page: 569 year: 2015 end-page: 588 ident: bib0240 article-title: Chitosan antimicrobial and eliciting properties for pest control in agriculture: a review publication-title: Agron. Sustain. Dev. – volume: 60 start-page: 135 year: 2015 end-page: 147 ident: bib0225 article-title: Beneficial effects of publication-title: BioControl – volume: 23 start-page: 395 year: 2006 end-page: 398 ident: bib0170 article-title: The phenylalanine pathway is the main route of salicylic acid biosynthesis in publication-title: Plant Biotechnol. – start-page: 507 year: 1998 ident: 10.1016/j.jplph.2019.01.003_bib0050 article-title: Present status of controlling Cucumber mosaic virus – volume: 92 start-page: 4095 year: 1995 ident: 10.1016/j.jplph.2019.01.003_bib0030 article-title: Oligogalacturonides and chitosan activate plant defensive genes through the octadecanoid pathway publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.92.10.4095 – volume: 113 start-page: 935 year: 2003 ident: 10.1016/j.jplph.2019.01.003_bib0145 article-title: Inducers of plant systemic acquired resistance regulate NPR1 function through redox changes publication-title: Cell doi: 10.1016/S0092-8674(03)00429-X – volume: 62 start-page: 111 year: 2017 ident: 10.1016/j.jplph.2019.01.003_bib0190 article-title: Plant growth of Verbena bonariensis L. after chitosan, gellan gum or iota-carrageenan foliar applications publication-title: World Sci. News – volume: 19 start-page: 401 year: 2000 ident: 10.1016/j.jplph.2019.01.003_bib0010 article-title: Benzo-(1,2,3)-thiadiazole-7-carbothioic acid S-methyl ester induces systemic resistance in tomato (Lycopersicon esculentum. Mill cv. Vollendung) to Cucumber mosaic virus publication-title: Crop Prot. doi: 10.1016/S0261-2194(00)00031-4 – volume: 13 start-page: 23 year: 2000 ident: 10.1016/j.jplph.2019.01.003_bib0130 article-title: Expression of a pathogen-induced gene can be mimicked by auxin insensitivity publication-title: Mol. Plant Microbe Interact. doi: 10.1094/MPMI.2000.13.1.23 – volume: 14 start-page: 10178 year: 2013 ident: 10.1016/j.jplph.2019.01.003_bib0135 article-title: Oxidative and molecular responses in Capsicum annuum L. after hydrogen peroxide, salicylic acid and chitosan foliar applications publication-title: Int. J. Mol. Sci. doi: 10.3390/ijms140510178 – volume: 8 start-page: 238 year: 2017 ident: 10.1016/j.jplph.2019.01.003_bib0160 article-title: Induced systemic resistance against Botrytis cinerea by Bacillus cereus AR156 through a JA/ET- and NPR1-dependent signaling pathway and activates PAMP-triggered immunity in Arabidopsis publication-title: Front. Plant Sci. doi: 10.3389/fpls.2017.00238 – volume: 113 start-page: 494 year: 2018 ident: 10.1016/j.jplph.2019.01.003_bib0100 article-title: Engineered chitosan based nanomaterials: bioactivities, mechanisms and perspectives in plant protection and growth publication-title: Int. J. Biol. Macromol. doi: 10.1016/j.ijbiomac.2018.02.130 – volume: 11 start-page: 53 year: 2017 ident: 10.1016/j.jplph.2019.01.003_bib0065 article-title: Chitosan for eco-friendly control of plant disease publication-title: Asian J. Plant Pathol. doi: 10.3923/ajppaj.2017.53.70 – volume: 7 start-page: 1565 year: 2016 ident: 10.1016/j.jplph.2019.01.003_bib0250 article-title: Chloroplast in plant-virus interaction publication-title: Front. Microbiol. doi: 10.3389/fmicb.2016.01565 – volume: 132 start-page: 111 year: 2015 ident: 10.1016/j.jplph.2019.01.003_bib0040 article-title: Preharvest treatments with chitosan and other alternatives to conventional fungicides to control postharvest decay of strawberry publication-title: Carbohydr. Polym. doi: 10.1016/j.carbpol.2015.05.078 – volume: 95 start-page: 147 year: 2004 ident: 10.1016/j.jplph.2019.01.003_bib0110 article-title: Chitosan kills bacteria through cell membrane damage publication-title: Int. J. Food Microbiol. doi: 10.1016/j.ijfoodmicro.2004.01.022 – volume: 23 start-page: 872 year: 2018 ident: 10.1016/j.jplph.2019.01.003_bib0195 article-title: The multifunctional role of chitosan in horticultural crops; a review publication-title: Molecules doi: 10.3390/molecules23040872 – volume: 11 year: 2016 ident: 10.1016/j.jplph.2019.01.003_bib0095 article-title: Paenibacillus lentimorbus inoculation enhances tobacco growth and extenuates the virulence of Cucumber mosaic virus publication-title: PLoS One – volume: 275 start-page: 527 year: 2008 ident: 10.1016/j.jplph.2019.01.003_bib0060 article-title: Phytoene synthase genes in tomato (Solanum lycopersicum L.) – new data on the structures, the deduced amino acid sequences and the expression patterns publication-title: FEBS J. doi: 10.1111/j.1742-4658.2007.06219.x – volume: 18 start-page: 67 year: 2008 ident: 10.1016/j.jplph.2019.01.003_bib0075 article-title: Antiviral activity of the exopolysaccharide produced by Serratia sp. strain Gsm01 against Cucumber mosaic virus publication-title: J. Microbiol. Biotechnol. – volume: 17 start-page: 996 year: 2016 ident: 10.1016/j.jplph.2019.01.003_bib0120 article-title: Chitosan effects on plant systems publication-title: Int. J. Mol. Sci. doi: 10.3390/ijms17070996 – volume: 6 start-page: 308 year: 2017 ident: 10.1016/j.jplph.2019.01.003_bib0175 article-title: A comprehensive review on function and application of plant peroxidases publication-title: Biochem. Anal. Biochem. doi: 10.4172/2161-1009.1000308 – volume: 29 start-page: 250 year: 2014 ident: 10.1016/j.jplph.2019.01.003_bib0155 article-title: Effect of chitosan on Tobacco mosaic virus (TMV) accumulation, hydrolase activity, and morphological abnormalities of the viral particles in leaves of N. tabacum L. cv. Samsun publication-title: Virol. Sin. doi: 10.1007/s12250-014-3452-8 – volume: 66 start-page: 493 year: 2009 ident: 10.1016/j.jplph.2019.01.003_bib0085 article-title: Chitosan antitranspirant activity is due to abscisic acid-dependent stomatal closure publication-title: Environ. Exp. Bot. doi: 10.1016/j.envexpbot.2009.01.004 – volume: 60 start-page: 135 year: 2015 ident: 10.1016/j.jplph.2019.01.003_bib0225 article-title: Beneficial effects of Trichoderma harzianum T-22 in tomato seedlings infected by Cucumber mosaic virus (CMV) publication-title: BioControl doi: 10.1007/s10526-014-9626-3 – volume: 71 start-page: 1104 year: 2010 ident: 10.1016/j.jplph.2019.01.003_bib0140 article-title: Accumulation of health promoting phytochemicals in wild relatives of tomato and their contribution to in vitro antioxidant activity publication-title: Phytochemistry doi: 10.1016/j.phytochem.2010.03.021 – volume: 15 start-page: 760 year: 2003 ident: 10.1016/j.jplph.2019.01.003_bib0215 article-title: NPR1 modulates cross-talk between salicylate- and jasmonate-dependent defense pathways through a novel function in the cytosol publication-title: Plant Cell doi: 10.1105/tpc.009159 – year: 1997 ident: 10.1016/j.jplph.2019.01.003_bib0005 – volume: 124 start-page: 619 year: 2011 ident: 10.1016/j.jplph.2019.01.003_bib0185 article-title: Transcript profiling of chitosan-treated Arabidopsis seedlings publication-title: J. Plant Res. doi: 10.1007/s10265-010-0399-1 – start-page: 57 year: 2010 ident: 10.1016/j.jplph.2019.01.003_bib0015 article-title: Signaling in induced resistance doi: 10.1016/S0065-3527(10)76003-6 – volume: 48 start-page: 774 year: 2001 ident: 10.1016/j.jplph.2019.01.003_bib0020 article-title: Effect of chitosan on systemic viral infection and some defense responses in potato plants publication-title: Russ. J. Plant Physiol. doi: 10.1023/A:1012508625017 – volume: 159 start-page: 488 year: 2011 ident: 10.1016/j.jplph.2019.01.003_bib0025 article-title: Chitosan reduces bacterial spot severity and acts in phenylpropanoid metabolism in tomato plants publication-title: J. Phytopathol. doi: 10.1111/j.1439-0434.2011.01791.x – volume: 35 start-page: 569 year: 2015 ident: 10.1016/j.jplph.2019.01.003_bib0240 article-title: Chitosan antimicrobial and eliciting properties for pest control in agriculture: a review publication-title: Agron. Sustain. Dev. doi: 10.1007/s13593-014-0252-3 – volume: 71 start-page: 9 year: 2000 ident: 10.1016/j.jplph.2019.01.003_bib0055 article-title: The ecology of Cucumber mosaic virus and sustainable agriculture publication-title: Virus Res. doi: 10.1016/S0168-1702(00)00184-2 – volume: 23 start-page: 395 year: 2006 ident: 10.1016/j.jplph.2019.01.003_bib0170 article-title: The phenylalanine pathway is the main route of salicylic acid biosynthesis in Tobacco mosaic virus-infected tobacco leaves publication-title: Plant Biotechnol. doi: 10.5511/plantbiotechnology.23.395 – volume: 149 start-page: 113 year: 2018 ident: 10.1016/j.jplph.2019.01.003_bib0200 article-title: Proteomics analysis of Xiangcaoliusuobingmi-treated Capsicum annuum L. infected with Cucumber mosaic virus publication-title: Pest. Biochem. Physiol. doi: 10.1016/j.pestbp.2018.06.008 – year: 1991 ident: 10.1016/j.jplph.2019.01.003_bib0035 – volume: 9 year: 2014 ident: 10.1016/j.jplph.2019.01.003_bib0070 article-title: Cucumber mosaic virus as a carotenoid inhibitor reducing Phelipanche aegyptiaca infection in tobacco plants publication-title: Plant Signal. Behav. doi: 10.4161/psb.32096 – volume: 63 start-page: 7399 year: 2015 ident: 10.1016/j.jplph.2019.01.003_bib0245 article-title: Chitosan controls postharvest decay on cherry tomato fruit possibly via the mitogen-activated protein kinase signaling pathway publication-title: J. Agric. Food Chem. doi: 10.1021/acs.jafc.5b01566 – volume: 2 start-page: 289 year: 2013 ident: 10.1016/j.jplph.2019.01.003_bib0220 article-title: Study on chitosan nanoparticles on biophysical characteristics and growth of Robusta coffee in green house publication-title: Biocatal. Agric. Biotechnol. doi: 10.1016/j.bcab.2013.06.001 – volume: 285 start-page: 28902 year: 2010 ident: 10.1016/j.jplph.2019.01.003_bib0180 article-title: The lysin motif receptor-like kinase (LysM-RLK) CERK1 is a major chitin-binding protein in Arabidopsis thaliana and subject to chitin-induced phosphorylation publication-title: J. Biol. Chem. doi: 10.1074/jbc.M110.116657 – volume: 7 start-page: 1520 year: 2016 ident: 10.1016/j.jplph.2019.01.003_bib0230 article-title: Trichoderma harzianum T-22 induces systemic resistance in tomato infected by Cucumber mosaic virus publication-title: Front. Plant Sci. doi: 10.3389/fpls.2016.01520 – volume: 43 start-page: 228 year: 2004 ident: 10.1016/j.jplph.2019.01.003_bib0045 article-title: The biosynthesis and nutritional uses of carotenoids publication-title: Prog. Lipid Res. doi: 10.1016/j.plipres.2003.10.002 – volume: 111 start-page: 1083 year: 2018 ident: 10.1016/j.jplph.2019.01.003_bib0115 article-title: Identification of chitosan oligosaccharides binding proteins from the plasma membrane of wheat leaf cell publication-title: Int. J. Biol. Macromol. doi: 10.1016/j.ijbiomac.2018.01.113 – volume: 1 start-page: 639 year: 2012 ident: 10.1016/j.jplph.2019.01.003_bib0235 article-title: The Arabidopsis NPR1 protein is a receptor for the plant defense hormone salicylic acid publication-title: Cell Rep. doi: 10.1016/j.celrep.2012.05.008 – volume: 6 start-page: 26144 year: 2016 ident: 10.1016/j.jplph.2019.01.003_bib0090 article-title: Chitosan oligosaccharide induces resistance to Tobacco mosaic virus in Arabidopsis via the salicylic acid-mediated signalling pathway publication-title: Sci. Rep. doi: 10.1038/srep26144 – volume: 64 start-page: 3983 year: 2013 ident: 10.1016/j.jplph.2019.01.003_bib0150 article-title: Chlorophyll fluorescence analysis: a guide to good practice and understanding some new applications publication-title: J. Exp. Bot. doi: 10.1093/jxb/ert208 – volume: 216 start-page: 174 year: 2017 ident: 10.1016/j.jplph.2019.01.003_bib0210 article-title: Plant architecture, auxin homeostasis and phenol content in Arabidopsis thaliana grown in cadmium- and zinc-enriched media publication-title: J. Plant Physiol. doi: 10.1016/j.jplph.2017.06.008 – volume: 22 start-page: 2935 year: 2015 ident: 10.1016/j.jplph.2019.01.003_bib0080 article-title: Chitosan-induced antiviral activity and innate immunity in plants publication-title: Environ. Sci. Pollut. Res. doi: 10.1007/s11356-014-3571-7 – volume: 226 start-page: 109 year: 1994 ident: 10.1016/j.jplph.2019.01.003_bib0105 article-title: Differential utilization of alternate initiation sites in a plant defense gene responding to environmental stimuli publication-title: Eur. J. Biochem. doi: 10.1111/j.1432-1033.1994.tb20031.x – volume: 469 start-page: 120 year: 2016 ident: 10.1016/j.jplph.2019.01.003_bib0165 article-title: Bacillus cereus AR156 activates PAMP-triggered immunity and induces a systemic acquired resistance through a NPR1-and SA-dependent signaling pathway publication-title: Biochem. Biophys. Res. Commun. doi: 10.1016/j.bbrc.2015.11.081 – volume: 28 start-page: 322 year: 1993 ident: 10.1016/j.jplph.2019.01.003_bib0125 article-title: Papaya ringspot virus influences net gas exchange of papaya leaves publication-title: HortScience doi: 10.21273/HORTSCI.28.4.322 – start-page: 127 year: 2016 ident: 10.1016/j.jplph.2019.01.003_bib0205 article-title: Integrated application of chitosan coating with different postharvest treatments in the control of postharvest decay and maintenance of overall fruit quality |
SSID | ssj0017583 |
Score | 2.4755733 |
Snippet | [Display omitted]
•Tomato plants chitosan-elicited to verify its Cucumber mosaic virus control efficacy.•Viral titer, plant photosynthetic performance and gene... The control of plant diseases by inducing plant resistance responses represents an interesting solution to avoid yield losses and protect the natural... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 9 |
SubjectTerms | Accumulation biochemical pathways Chitosan Crop yield crops Cucumber mosaic virus Defense/antioxidant-related protein Disease control Flowers & plants foliar spraying fruit yield Gas exchange Gene expression genes Inoculation Natural environment Oxidation resistance Photosynthesis Photosynthetic performance plant disease control Plant diseases plant diseases and disorders Plant resistance Plant virus diseases Plant viruses Proteins Signs and symptoms Solanum lycopersicum Solanum lycopersicum var. cerasiforme Tomatoes Viral infections Viruses |
Title | Chitosan-elicited defense responses in Cucumber mosaic virus (CMV)-infected tomato plants |
URI | https://dx.doi.org/10.1016/j.jplph.2019.01.003 https://www.ncbi.nlm.nih.gov/pubmed/30640158 https://www.proquest.com/docview/2212707706 https://www.proquest.com/docview/2179357174 https://www.proquest.com/docview/2220841826 |
Volume | 234-235 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEB5CmkMvJU362LxQoIcGqu5Kll_HxDRsU5JL0pKehCTL1GFrm30Eeulvz4wfC6V0D73Z8gjk0Ty-QaMZgHfGytTZwqCKu5irQuQ8zRPFQ-GkNwTS27tV1zfR9Ku6ug_vtyAb7sJQWmVv-zub3lrrfmTcc3PclOX4FmUpInSOQkkommqCKhWTlH_8vU7zQO_YleJEYk7UQ-WhNsfroZk1dCIh0rZ259A562_v9C_02Xqhy1140cNHdt6t8CVs-WoPdi5qhHi_9uF79gMVdGEq7melIzDJcl9goOrZvMuF9QtWVixbubYRCPuJxKVjj-V8tWDvs-tvZ7zLzsKZyxrBbM2aGWXKvIK7y0932ZT3vRO4U1G45MKLwkuH_rhIjQidtakNwsDk0oqgkNbHKo1NgA8id-iTrFRJZH1q0KH5wgWvYbuqK_8WmHIJjkSpt9Yr62KDAZIyiGNwlw1q9wjkwDLt-rri1N5ipocEsgfd8lkTn_VEUDnSEXxYT2q6shqbyaNhL_Qf0qHR8G-eeDTsnO6Vc6ElVbWfxPEkGsHp-jOqFZ2VmMrXK6QhwxVirKs20Eg5SRQFaCN400nF-mdIJBFpJQf_u_JDeE5vXbrbEWwv5yt_jPhnaU9aAT-BZ-efv0xvngCsaASS |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LixQxEC7WWUEv4nMdXTWCBwXDTNLp13FtXGbdnbk4ynoKSTqNvYzdzTwE_71V_RgQcQ7emqQK0kk9vqIqFYA3xsrU2cKgiruYq0LkPM0TxUPhpDcE0tu7VfNFNPuiPl2H10eQDXdhqKyyt_2dTW-tdT8y6Xdz0pTl5DPKUkToHIWSULS6BcfUnSocwfHZxeVssU8mICRuE81Iz4lhaD7UlnndNKuGkhIibdt3Do9n_e2g_gVAW0d0fh_u9QiSnXWLfABHvnoItz_UiPJ-PYJv2XfU0Y2puF-VjvAky32Bsapn664c1m9YWbFs59q3QNgPJC4d-1mudxv2Npt_fce7Ai3k3NaIZ2vWrKhY5jEszz8usxnvn0_gTkXhlgsvCi8duuQiNSJ01qY2CAOTSyuCQlofqzQ2AX6I3KFbslIlkfWpQZ_mCxc8gVFVV_4pMOUSHIlSb61X1sUGYyRlEMrgQRtU8DHIYcu061uL0wsXKz3UkN3odp817bOeCupIOob3e6am66xxmDwazkL_ISAabf9hxtPh5HSvnxstqbH9NI6n0Rhe76dRsyhdYipf75CGbFeI4a46QCPlNFEUo43hpJOK_c-QVCLYSp7978pfwZ3Zcn6lry4Wl8_hLs101W-nMNqud_4FwqGtfdmL-2-TkAdD |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Chitosan-elicited+defense+responses+in+Cucumber+mosaic+virus+%28CMV%29-infected+tomato+plants&rft.jtitle=Journal+of+plant+physiology&rft.au=Rendina%2C+Nunzia&rft.au=Nuzzaci%2C+Maria&rft.au=Scopa%2C+Antonio&rft.au=Cuypers%2C+Ann&rft.date=2019-03-01&rft.eissn=1618-1328&rft.volume=234-235&rft.spage=9&rft_id=info:doi/10.1016%2Fj.jplph.2019.01.003&rft_id=info%3Apmid%2F30640158&rft.externalDocID=30640158 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0176-1617&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0176-1617&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0176-1617&client=summon |