Neural, electrophysiological and anatomical basis of brain-network variability and its characteristic changes in mental disorders

SEE MATTAR ET AL DOI101093/AWW151 FOR A SCIENTIFIC COMMENTARY ON THIS ARTICLE: Functional brain networks demonstrate significant temporal variability and dynamic reconfiguration even in the resting state. Currently, most studies investigate temporal variability of brain networks at the scale of sing...

Full description

Saved in:
Bibliographic Details
Published inBrain (London, England : 1878) Vol. 139; no. 8; pp. 2307 - 2321
Main Authors Zhang, Jie, Cheng, Wei, Liu, Zhaowen, Zhang, Kai, Lei, Xu, Yao, Ye, Becker, Benjamin, Liu, Yicen, Kendrick, Keith M., Lu, Guangming, Feng, Jianfeng
Format Journal Article
LanguageEnglish
Published England 01.08.2016
Subjects
Online AccessGet full text

Cover

Loading…
Abstract SEE MATTAR ET AL DOI101093/AWW151 FOR A SCIENTIFIC COMMENTARY ON THIS ARTICLE: Functional brain networks demonstrate significant temporal variability and dynamic reconfiguration even in the resting state. Currently, most studies investigate temporal variability of brain networks at the scale of single (micro) or whole-brain (macro) connectivity. However, the mechanism underlying time-varying properties remains unclear, as the coupling between brain network variability and neural activity is not readily apparent when analysed at either micro or macroscales. We propose an intermediate (meso) scale analysis and characterize temporal variability of the functional architecture associated with a particular region. This yields a topography of variability that reflects the whole-brain and, most importantly, creates an analytical framework to establish the fundamental relationship between variability of regional functional architecture and its neural activity or structural connectivity. We find that temporal variability reflects the dynamical reconfiguration of a brain region into distinct functional modules at different times and may be indicative of brain flexibility and adaptability. Primary and unimodal sensory-motor cortices demonstrate low temporal variability, while transmodal areas, including heteromodal association areas and limbic system, demonstrate the high variability. In particular, regions with highest variability such as hippocampus/parahippocampus, inferior and middle temporal gyrus, olfactory gyrus and caudate are all related to learning, suggesting that the temporal variability may indicate the level of brain adaptability. With simultaneously recorded electroencephalography/functional magnetic resonance imaging and functional magnetic resonance imaging/diffusion tensor imaging data, we also find that variability of regional functional architecture is modulated by local blood oxygen level-dependent activity and α-band oscillation, and is governed by the ratio of intra- to inter-community structural connectivity. Application of the mesoscale variability measure to multicentre datasets of three mental disorders and matched controls involving 1180 subjects reveals that those regions demonstrating extreme, i.e. highest/lowest variability in controls are most liable to change in mental disorders. Specifically, we draw attention to the identification of diametrically opposing patterns of variability changes between schizophrenia and attention deficit hyperactivity disorder/autism. Regions of the default-mode network demonstrate lower variability in patients with schizophrenia, but high variability in patients with autism/attention deficit hyperactivity disorder, compared with respective controls. In contrast, subcortical regions, especially the thalamus, show higher variability in schizophrenia patients, but lower variability in patients with attention deficit hyperactivity disorder. The changes in variability of these regions are also closely related to symptom scores. Our work provides insights into the dynamic organization of the resting brain and how it changes in brain disorders. The nodal variability measure may also be potentially useful as a predictor for learning and neural rehabilitation.
AbstractList SEE MATTAR ET AL DOI101093/AWW151 FOR A SCIENTIFIC COMMENTARY ON THIS ARTICLE: Functional brain networks demonstrate significant temporal variability and dynamic reconfiguration even in the resting state. Currently, most studies investigate temporal variability of brain networks at the scale of single (micro) or whole-brain (macro) connectivity. However, the mechanism underlying time-varying properties remains unclear, as the coupling between brain network variability and neural activity is not readily apparent when analysed at either micro or macroscales. We propose an intermediate (meso) scale analysis and characterize temporal variability of the functional architecture associated with a particular region. This yields a topography of variability that reflects the whole-brain and, most importantly, creates an analytical framework to establish the fundamental relationship between variability of regional functional architecture and its neural activity or structural connectivity. We find that temporal variability reflects the dynamical reconfiguration of a brain region into distinct functional modules at different times and may be indicative of brain flexibility and adaptability. Primary and unimodal sensory-motor cortices demonstrate low temporal variability, while transmodal areas, including heteromodal association areas and limbic system, demonstrate the high variability. In particular, regions with highest variability such as hippocampus/parahippocampus, inferior and middle temporal gyrus, olfactory gyrus and caudate are all related to learning, suggesting that the temporal variability may indicate the level of brain adaptability. With simultaneously recorded electroencephalography/functional magnetic resonance imaging and functional magnetic resonance imaging/diffusion tensor imaging data, we also find that variability of regional functional architecture is modulated by local blood oxygen level-dependent activity and α-band oscillation, and is governed by the ratio of intra- to inter-community structural connectivity. Application of the mesoscale variability measure to multicentre datasets of three mental disorders and matched controls involving 1180 subjects reveals that those regions demonstrating extreme, i.e. highest/lowest variability in controls are most liable to change in mental disorders. Specifically, we draw attention to the identification of diametrically opposing patterns of variability changes between schizophrenia and attention deficit hyperactivity disorder/autism. Regions of the default-mode network demonstrate lower variability in patients with schizophrenia, but high variability in patients with autism/attention deficit hyperactivity disorder, compared with respective controls. In contrast, subcortical regions, especially the thalamus, show higher variability in schizophrenia patients, but lower variability in patients with attention deficit hyperactivity disorder. The changes in variability of these regions are also closely related to symptom scores. Our work provides insights into the dynamic organization of the resting brain and how it changes in brain disorders. The nodal variability measure may also be potentially useful as a predictor for learning and neural rehabilitation.
Author Lu, Guangming
Cheng, Wei
Yao, Ye
Feng, Jianfeng
Becker, Benjamin
Kendrick, Keith M.
Zhang, Jie
Liu, Yicen
Zhang, Kai
Lei, Xu
Liu, Zhaowen
Author_xml – sequence: 1
  givenname: Jie
  surname: Zhang
  fullname: Zhang, Jie
– sequence: 2
  givenname: Wei
  surname: Cheng
  fullname: Cheng, Wei
– sequence: 3
  givenname: Zhaowen
  surname: Liu
  fullname: Liu, Zhaowen
– sequence: 4
  givenname: Kai
  surname: Zhang
  fullname: Zhang, Kai
– sequence: 5
  givenname: Xu
  surname: Lei
  fullname: Lei, Xu
– sequence: 6
  givenname: Ye
  surname: Yao
  fullname: Yao, Ye
– sequence: 7
  givenname: Benjamin
  surname: Becker
  fullname: Becker, Benjamin
– sequence: 8
  givenname: Yicen
  surname: Liu
  fullname: Liu, Yicen
– sequence: 9
  givenname: Keith M.
  surname: Kendrick
  fullname: Kendrick, Keith M.
– sequence: 10
  givenname: Guangming
  surname: Lu
  fullname: Lu, Guangming
– sequence: 11
  givenname: Jianfeng
  surname: Feng
  fullname: Feng, Jianfeng
BackLink https://www.ncbi.nlm.nih.gov/pubmed/27421791$$D View this record in MEDLINE/PubMed
BookMark eNptkb1PwzAQxS1URMvHxowyMhCwncRORlTxJSFYYLYc50INjl1sl6oj_zkmhQUxnE4n_d476b19NLHOAkLHBJ8T3BQXrZfaXsj1mpTFDpqRkuGckopN0AxjzPK6qfAU7YfwinFCKNtDU8pLSnhDZujzAVZemrMMDKjo3XKxCdoZ96KVNJm0XRoZ3TCerQw6ZK7Pxp-5hbh2_i37kF7LVhsdN6NCx5CphfRSRfA6RK2-T_sCIdM2G8DG5NXp4HwHPhyi3V6aAEc_-wA9X189zW_z-8ebu_nlfa5KVsWctJQ3UPbAoSo40L5hFDijhcJtx-tWYsIajKFnTc2gL3DKoK-g47wiFFRZHKDTre_Su_cVhCgGHRQYIy24VRCkxjy94KRJ6MkPumoH6MTS60H6jfiNLQF0CyjvQvDQC6WjjNrZmJIxgmDx3Y0YcxLbbpLo7I_o1_df_AtuIJWE
CitedBy_id crossref_primary_10_1007_s00787_025_02679_9
crossref_primary_10_1007_s11682_020_00448_7
crossref_primary_10_1016_j_neuroimage_2023_120472
crossref_primary_10_1142_S0219720021500177
crossref_primary_10_1016_j_nicl_2018_05_015
crossref_primary_10_1016_j_msard_2023_105146
crossref_primary_10_1093_cercor_bhac293
crossref_primary_10_3389_fnins_2021_820641
crossref_primary_10_3389_fnins_2023_1322967
crossref_primary_10_1209_0295_5075_122_40010
crossref_primary_10_1038_s41598_024_72945_4
crossref_primary_10_1016_j_neuroimage_2019_116233
crossref_primary_10_1016_j_neuroimage_2019_116230
crossref_primary_10_1093_scan_nsab050
crossref_primary_10_1109_TMI_2024_3421360
crossref_primary_10_1016_j_biopsych_2021_12_004
crossref_primary_10_1002_hbm_26071
crossref_primary_10_1063_1_5018824
crossref_primary_10_1162_netn_a_00396
crossref_primary_10_1016_j_pnpbp_2023_110827
crossref_primary_10_3390_brainsci12020218
crossref_primary_10_1111_bdi_12819
crossref_primary_10_1002_hbm_24447
crossref_primary_10_1016_j_media_2018_03_013
crossref_primary_10_2147_NDT_S379653
crossref_primary_10_1016_j_media_2022_102679
crossref_primary_10_3389_fnins_2019_00685
crossref_primary_10_1177_1087054719859074
crossref_primary_10_1007_s11571_020_09605_6
crossref_primary_10_3233_JAD_220539
crossref_primary_10_1016_j_dcn_2025_101528
crossref_primary_10_1016_j_neuroimage_2018_12_008
crossref_primary_10_1016_j_brainresbull_2022_03_007
crossref_primary_10_1002_jmri_27521
crossref_primary_10_1109_TMI_2022_3186797
crossref_primary_10_1227_neu_0000000000003124
crossref_primary_10_1111_ejn_15664
crossref_primary_10_1093_brain_aww151
crossref_primary_10_3389_fnagi_2021_758137
crossref_primary_10_1016_j_neuroimage_2021_118027
crossref_primary_10_1016_j_neuroimage_2021_118148
crossref_primary_10_3389_fnhum_2019_00430
crossref_primary_10_1007_s10803_024_06661_3
crossref_primary_10_1002_hbm_24902
crossref_primary_10_1093_cercor_bhac133
crossref_primary_10_1016_j_schres_2020_03_020
crossref_primary_10_1142_S0218127417501231
crossref_primary_10_1080_23273798_2022_2129084
crossref_primary_10_1016_j_neuroimage_2025_121120
crossref_primary_10_1038_s41398_024_02985_x
crossref_primary_10_1080_01621459_2022_2156349
crossref_primary_10_1007_s00429_020_02174_8
crossref_primary_10_1177_1073858416667716
crossref_primary_10_3390_life13071587
crossref_primary_10_1007_s11682_018_9866_4
crossref_primary_10_3389_fneur_2021_615820
crossref_primary_10_1007_s00787_020_01555_y
crossref_primary_10_1016_j_neuroimage_2020_117668
crossref_primary_10_1016_j_physa_2017_11_042
crossref_primary_10_1016_j_schres_2017_09_035
crossref_primary_10_1016_j_cjph_2017_10_002
crossref_primary_10_1162_netn_a_00083
crossref_primary_10_1016_j_physa_2018_03_043
crossref_primary_10_1016_j_dcn_2020_100850
crossref_primary_10_3389_fpsyt_2024_1472671
crossref_primary_10_1007_s12311_021_01241_y
crossref_primary_10_1038_s41531_023_00498_w
crossref_primary_10_1016_j_jpsychires_2022_02_011
crossref_primary_10_1016_j_bspc_2024_107471
crossref_primary_10_1007_s11434_016_1210_z
crossref_primary_10_1371_journal_pone_0242330
crossref_primary_10_1111_cns_14178
crossref_primary_10_31083_j_jin2305095
crossref_primary_10_1016_j_bpsc_2024_08_019
crossref_primary_10_1016_j_pnpbp_2020_109866
crossref_primary_10_1016_j_nicl_2018_06_012
crossref_primary_10_1016_j_jpsychires_2016_12_003
crossref_primary_10_1063_5_0168783
crossref_primary_10_1073_pnas_1903403116
crossref_primary_10_1093_cercor_bhae204
crossref_primary_10_1093_cercor_bhae445
crossref_primary_10_1109_TNSRE_2023_3276896
crossref_primary_10_1016_j_jneumeth_2018_04_009
crossref_primary_10_1109_TMI_2019_2904555
crossref_primary_10_1111_cns_14866
crossref_primary_10_3390_e21121156
crossref_primary_10_1016_j_tics_2017_10_001
crossref_primary_10_3389_fnins_2022_1010488
crossref_primary_10_1109_ACCESS_2022_3178748
crossref_primary_10_1142_S0217984918500628
crossref_primary_10_1002_hbm_25404
crossref_primary_10_1002_hbm_25886
crossref_primary_10_3389_fnins_2019_00080
crossref_primary_10_1093_cercor_bhy232
crossref_primary_10_1007_s00429_021_02304_w
crossref_primary_10_1209_0295_5075_121_48002
crossref_primary_10_1142_S0129065718500570
crossref_primary_10_1016_j_pnpbp_2024_111076
crossref_primary_10_1109_TCNS_2021_3106454
crossref_primary_10_3389_fpsyg_2024_1458339
crossref_primary_10_1016_j_neuroscience_2022_08_001
crossref_primary_10_1016_j_neuroimage_2017_02_066
crossref_primary_10_1016_j_nicl_2020_102163
crossref_primary_10_3389_fneur_2020_606592
crossref_primary_10_36472_msd_v11i3_1141
crossref_primary_10_3389_fnins_2017_00439
crossref_primary_10_1002_hbm_24787
crossref_primary_10_1002_hbm_26726
crossref_primary_10_1002_hbm_23890
crossref_primary_10_3389_fncir_2019_00036
crossref_primary_10_1016_j_neuroimage_2023_120195
crossref_primary_10_3389_fnhum_2022_972375
crossref_primary_10_1016_j_jad_2022_09_050
crossref_primary_10_1038_s41398_024_02929_5
crossref_primary_10_1093_cercor_bhy264
crossref_primary_10_1016_j_dcn_2019_100630
crossref_primary_10_1016_j_jpsychires_2019_01_005
crossref_primary_10_1016_j_neuroimage_2017_08_044
crossref_primary_10_1016_j_neubiorev_2017_03_018
crossref_primary_10_1016_j_pnpbp_2019_109833
crossref_primary_10_1002_hbm_25023
crossref_primary_10_1038_s41598_019_42322_7
crossref_primary_10_1016_j_fmre_2021_10_002
crossref_primary_10_1109_TKDE_2019_2960240
crossref_primary_10_1142_S0218127417500596
crossref_primary_10_1111_ejn_13988
crossref_primary_10_1007_s11571_018_9509_x
crossref_primary_10_1093_cercor_bhy010
crossref_primary_10_3390_brainsci13060942
crossref_primary_10_1007_s11071_019_04924_8
crossref_primary_10_1016_j_bbr_2025_115425
crossref_primary_10_1016_j_ins_2024_121622
crossref_primary_10_1007_s11682_018_9989_7
crossref_primary_10_3390_brainsci9120380
crossref_primary_10_1093_cercor_bhab263
crossref_primary_10_3389_fnins_2022_933660
crossref_primary_10_1016_j_bspc_2024_106030
crossref_primary_10_1002_hbm_23430
crossref_primary_10_1016_j_physa_2018_04_075
crossref_primary_10_1002_brb3_1698
crossref_primary_10_1016_j_ejrad_2020_109324
crossref_primary_10_1016_j_media_2020_101709
crossref_primary_10_1109_JPROC_2018_2825200
crossref_primary_10_1016_j_neuroimage_2021_118413
crossref_primary_10_1007_s12021_018_9413_x
crossref_primary_10_1016_j_biopsych_2023_09_017
crossref_primary_10_1038_s41598_017_00425_z
crossref_primary_10_1016_j_brainresbull_2024_110881
crossref_primary_10_3389_fnins_2019_00174
crossref_primary_10_1109_JBHI_2019_2893880
crossref_primary_10_1002_jmri_28578
crossref_primary_10_1016_j_neuroimage_2018_03_074
crossref_primary_10_1093_schbul_sby108
crossref_primary_10_1002_alz_13411
crossref_primary_10_1038_s41380_021_01018_z
crossref_primary_10_1016_j_scib_2020_04_003
crossref_primary_10_1016_j_neulet_2020_135519
crossref_primary_10_1016_j_schres_2018_12_005
crossref_primary_10_1088_2632_072X_ac4bee
crossref_primary_10_1016_j_pnpbp_2018_12_006
crossref_primary_10_1016_j_neuroimage_2021_118784
crossref_primary_10_1109_TBME_2019_2957921
crossref_primary_10_1017_S0033291721004906
crossref_primary_10_1007_s11682_019_00234_0
crossref_primary_10_1007_s11682_023_00800_7
crossref_primary_10_1016_j_scib_2019_04_034
crossref_primary_10_1093_cercor_bhae035
crossref_primary_10_3390_brainsci13030429
crossref_primary_10_3389_fnins_2019_01430
crossref_primary_10_1002_hbm_26202
crossref_primary_10_3233_JAD_215649
crossref_primary_10_1038_s41380_023_02395_3
crossref_primary_10_1016_j_scib_2017_09_015
crossref_primary_10_1109_TCYB_2021_3071110
crossref_primary_10_1111_epi_16759
crossref_primary_10_1063_1_4977950
crossref_primary_10_1016_j_schres_2021_07_038
crossref_primary_10_3390_brainsci12101348
crossref_primary_10_1063_1_5120538
crossref_primary_10_1109_ACCESS_2023_3266804
crossref_primary_10_1002_hbm_23841
crossref_primary_10_2139_ssrn_4052510
crossref_primary_10_1142_S0129065720500653
crossref_primary_10_1038_s42003_022_03196_0
crossref_primary_10_1109_TNSE_2018_2869862
crossref_primary_10_1016_j_resourpol_2020_101613
crossref_primary_10_1088_1741_2552_aad7b1
crossref_primary_10_1016_j_neuroimage_2022_119673
crossref_primary_10_1016_j_tics_2020_01_008
crossref_primary_10_1093_cercor_bhae164
crossref_primary_10_1007_s11682_019_00077_9
crossref_primary_10_1002_hbm_24376
crossref_primary_10_1109_TSMC_2019_2956022
crossref_primary_10_1038_s41398_021_01197_x
crossref_primary_10_1038_s41598_023_50265_3
crossref_primary_10_1209_0295_5075_116_50001
crossref_primary_10_1159_000534033
crossref_primary_10_1038_s41380_022_01731_3
crossref_primary_10_1038_s41598_017_08565_y
crossref_primary_10_1186_s40708_024_00248_5
crossref_primary_10_3389_fpsyt_2019_00084
crossref_primary_10_1142_S0129065724500175
crossref_primary_10_1109_TMI_2022_3201974
crossref_primary_10_1016_j_brainres_2024_149228
crossref_primary_10_1063_1_5074155
crossref_primary_10_1002_hbm_23711
crossref_primary_10_3389_fnut_2023_1210726
crossref_primary_10_1016_j_media_2021_102063
crossref_primary_10_1093_cercor_bhaa128
crossref_primary_10_1002_hbm_26308
crossref_primary_10_3389_fnins_2022_965937
crossref_primary_10_1017_S0033291720002391
crossref_primary_10_1080_00207454_2022_2130295
crossref_primary_10_3390_brainsci12081106
crossref_primary_10_1007_s00723_019_01117_9
crossref_primary_10_1162_netn_a_00225
crossref_primary_10_1016_j_physa_2017_08_053
crossref_primary_10_1038_s41598_017_05890_0
crossref_primary_10_1126_sciadv_ado8837
crossref_primary_10_3389_fnhum_2021_679086
crossref_primary_10_3389_fnins_2022_844821
crossref_primary_10_3389_fnhum_2017_00408
crossref_primary_10_3389_fpsyt_2020_00422
crossref_primary_10_3389_fnagi_2021_809853
crossref_primary_10_1002_brb3_2174
crossref_primary_10_1155_2018_9394156
crossref_primary_10_1007_s11571_022_09848_5
crossref_primary_10_1007_s12021_022_09615_1
crossref_primary_10_1016_j_bbr_2022_113999
crossref_primary_10_1111_cns_13387
crossref_primary_10_1002_hbm_24391
crossref_primary_10_1088_1741_2552_ac999d
crossref_primary_10_1016_j_aei_2019_100957
crossref_primary_10_1016_j_dcn_2024_101496
crossref_primary_10_3389_fnins_2019_00803
crossref_primary_10_1016_j_pnpbp_2018_03_020
crossref_primary_10_3389_fneur_2018_00810
crossref_primary_10_1002_jnr_24915
crossref_primary_10_1093_schbul_sbae110
crossref_primary_10_1002_hbm_23611
crossref_primary_10_1016_j_neuroimage_2021_118188
crossref_primary_10_1016_j_patcog_2023_109838
crossref_primary_10_3389_fpsyt_2021_701420
crossref_primary_10_1002_hbm_23976
crossref_primary_10_3390_e25091244
crossref_primary_10_1016_j_pnpbp_2018_03_026
Cites_doi 10.1016/j.neuroimage.2014.12.020
10.1126/science.1099745
10.1101/lm.941510
10.1093/schbul/13.4.669
10.3389/neuro.09.048.2009
10.1073/pnas.1113148109
10.1093/brain/awt162
10.1017/S0140525X08004214
10.1073/pnas.0600674103
10.1038/srep02853
10.1002/hbm.22162
10.1016/j.neuroimage.2011.03.033
10.1038/nn.3993
10.1016/j.neuron.2011.09.006
10.1016/j.neuroimage.2013.01.049
10.1523/JNEUROSCI.3401-04.2005
10.1073/pnas.0809141106
10.1002/hbm.22058
10.1152/jn.00648.2010
10.1016/j.neuron.2014.08.016
10.1523/JNEUROSCI.5641-10.2011
10.1002/hbm.20256
10.1073/pnas.1018985108
10.1176/appi.ajp.164.3.450
10.1073/pnas.1317424111
10.1016/j.neuroimage.2010.08.030
10.1093/cercor/bhr099
10.1073/pnas.0135058100
10.1016/j.neubiorev.2007.02.005
10.1038/nn1662
10.1523/JNEUROSCI.4902-09.2010
10.1016/j.neuron.2014.10.015
10.1038/nrn2822
10.3389/fnhum.2014.00195
10.1097/01.wnr.0000239956.45448.4c
10.1093/cercor/bhs352
10.1038/mp.2010.4
10.1016/j.schres.2012.11.001
10.1038/npjschz.2015.16
10.1016/S0893-133X(96)80054-6
10.1093/brain/124.11.2232
10.1016/j.neuroimage.2011.07.044
10.1016/j.neuron.2014.03.020
10.1093/arclin/acs103
10.1093/brain/awv051
10.1016/j.neuroimage.2014.06.044
10.1016/j.neuron.2012.12.028
10.1073/pnas.1400181111
10.1016/j.neulet.2005.07.020
10.1146/annurev-clinpsy-032511-143049
10.1038/nrn700
10.1371/journal.pcbi.1003171
10.1152/jn.90247.2008
10.1016/j.neuroimage.2011.08.035
10.1016/j.neuroimage.2013.05.079
10.1073/pnas.1422487112
10.1523/JNEUROSCI.5166-09.2010
10.1038/nn1727
10.1126/science.286.5439.548
10.1016/j.neuroimage.2012.08.052
10.1007/s00702-007-0742-4
10.1016/j.neuroimage.2009.12.011
10.1002/hbm.21379
10.1152/jn.00235.2015
10.1016/j.biopsych.2007.06.025
10.1093/cercor/bhl047
10.1016/j.nicl.2014.07.003
10.1016/j.neuroimage.2007.01.022
10.1371/journal.pcbi.1000106
10.1016/j.neuroimage.2010.05.067
10.1016/j.neuroimage.2006.02.002
10.1093/brain/121.6.1013
10.1016/j.neuroimage.2013.08.048
10.1371/journal.pone.0039731
10.1016/j.neuroimage.2011.10.002
10.1016/j.biopsych.2008.03.031
10.1016/j.neuroimage.2007.10.052
ContentType Journal Article
Copyright The Author (2016). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Copyright_xml – notice: The Author (2016). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1093/brain/aww143
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1460-2156
EndPage 2321
ExternalDocumentID 27421791
10_1093_brain_aww143
Genre Multicenter Study
Meta-Analysis
Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
-E4
-~X
.2P
.55
.GJ
.I3
.XZ
.ZR
0R~
1CY
1TH
23N
2WC
354
3O-
4.4
41~
482
48X
53G
5GY
5RE
5VS
5WA
5WD
6PF
70D
AABZA
AACZT
AAGKA
AAIMJ
AAJKP
AAJQQ
AAMDB
AAMVS
AAOGV
AAPGJ
AAPNW
AAPQZ
AAPXW
AAQQT
AARHZ
AAUAY
AAUQX
AAVAP
AAVLN
AAWDT
AAWTL
AAYJJ
AAYXX
ABDFA
ABDPE
ABEJV
ABEUO
ABGNP
ABIME
ABIVO
ABIXL
ABJNI
ABKDP
ABLJU
ABMNT
ABNGD
ABNHQ
ABNKS
ABPIB
ABPQP
ABPTD
ABQLI
ABQNK
ABSMQ
ABVGC
ABWST
ABXVV
ABXZS
ABZBJ
ABZEO
ACBNA
ACFRR
ACGFS
ACIWK
ACPQN
ACPRK
ACUFI
ACUKT
ACUTJ
ACUTO
ACVCV
ACYHN
ACZBC
ADBBV
ADEYI
ADEZT
ADGKP
ADGZP
ADHKW
ADHZD
ADIPN
ADMTO
ADNBA
ADOCK
ADQBN
ADRTK
ADVEK
ADYVW
ADZXQ
AEGPL
AEHUL
AEJOX
AEKPW
AEKSI
AELWJ
AEMDU
AEMQT
AENEX
AENZO
AEPUE
AETBJ
AEWNT
AFFNX
AFFQV
AFFZL
AFGWE
AFIYH
AFOFC
AFSHK
AFXAL
AFYAG
AGINJ
AGKEF
AGKRT
AGMDO
AGORE
AGQPQ
AGQXC
AGSYK
AGUTN
AHGBF
AHMBA
AHMMS
AHXPO
AI.
AIJHB
AJBYB
AJDVS
AJEEA
AJNCP
AKWXX
ALMA_UNASSIGNED_HOLDINGS
ALUQC
ALXQX
ANFBD
APIBT
APJGH
APWMN
AQDSO
AQKUS
ARIXL
ASAOO
ASPBG
ATDFG
ATGXG
ATTQO
AVNTJ
AVWKF
AXUDD
AYOIW
AZFZN
BAWUL
BAYMD
BCRHZ
BEYMZ
BHONS
BQDIO
BR6
BSWAC
BTRTY
BVRKM
BZKNY
C1A
C45
CAG
CDBKE
CITATION
COF
CS3
CXTWN
CZ4
DAKXR
DFGAJ
DIK
DILTD
DU5
D~K
E3Z
EBS
EE~
EIHJH
EJD
ELUNK
EMOBN
ENERS
F5P
F9B
FECEO
FEDTE
FHSFR
FLUFQ
FOEOM
FOTVD
FQBLK
GAUVT
GJXCC
GX1
H13
H5~
HAR
HVGLF
HW0
HZ~
IOX
J21
J5H
JXSIZ
KAQDR
KBUDW
KOP
KQ8
KSI
KSN
L7B
M-Z
MBLQV
MBTAY
MHKGH
ML0
MVM
N4W
N9A
NGC
NLBLG
NOMLY
NOYVH
NTWIH
NU-
NVLIB
O0~
O9-
OAUYM
OAWHX
OBFPC
OBOKY
OCZFY
ODMLO
OHH
OHT
OJQWA
OJZSN
OK1
OPAEJ
OVD
OWPYF
O~Y
P2P
PAFKI
PB-
PEELM
PQQKQ
Q1.
Q5Y
QBD
R44
RD5
RIG
RNI
ROL
ROX
ROZ
RUSNO
RW1
RXO
RZF
RZO
TCN
TCURE
TEORI
TJX
TLC
TMA
TR2
VH1
VVN
W8F
WH7
WOQ
X7H
X7M
XJT
XOL
YAYTL
YKOAZ
YQJ
YSK
YXANX
ZCG
ZGI
ZKB
ZKX
ZXP
~91
6.Y
ABQTQ
ABSAR
ADJQC
ADRIX
AFXEN
CGR
CUY
CVF
ECM
EIF
M49
NPM
VXZ
7X8
ID FETCH-LOGICAL-c465t-1b279e4fe7e537e2f962e7623c0bd78ba016900ef6986ef30215f5ed77512ec43
ISSN 0006-8950
IngestDate Fri Jul 11 09:00:32 EDT 2025
Wed Feb 19 02:33:29 EST 2025
Thu Apr 24 23:07:32 EDT 2025
Tue Jul 01 00:46:08 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 8
Keywords temporal variability
brain flexibility and adaptability
resting-state functional MRI
functional brain networks
mental disorders
Language English
License The Author (2016). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c465t-1b279e4fe7e537e2f962e7623c0bd78ba016900ef6986ef30215f5ed77512ec43
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
OpenAccessLink https://academic.oup.com/brain/article-pdf/139/8/2307/25054907/aww143.pdf
PMID 27421791
PQID 1807279719
PQPubID 23479
PageCount 15
ParticipantIDs proquest_miscellaneous_1807279719
pubmed_primary_27421791
crossref_citationtrail_10_1093_brain_aww143
crossref_primary_10_1093_brain_aww143
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2016-08-01
PublicationDateYYYYMMDD 2016-08-01
PublicationDate_xml – month: 08
  year: 2016
  text: 2016-08-01
  day: 01
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Brain (London, England : 1878)
PublicationTitleAlternate Brain
PublicationYear 2016
References Schaefer (2016123003351140000_139.8.2307.61) 2014; 8
Bullard (2016123003351140000_139.8.2307.10) 2013; 28
2016123003351140000_139.8.2307.47
2016123003351140000_139.8.2307.44
2016123003351140000_139.8.2307.45
2016123003351140000_139.8.2307.48
2016123003351140000_139.8.2307.49
2016123003351140000_139.8.2307.42
2016123003351140000_139.8.2307.43
2016123003351140000_139.8.2307.40
2016123003351140000_139.8.2307.41
Liptak (2016123003351140000_139.8.2307.46) 1958; 3
2016123003351140000_139.8.2307.35
2016123003351140000_139.8.2307.79
2016123003351140000_139.8.2307.33
2016123003351140000_139.8.2307.77
2016123003351140000_139.8.2307.34
2016123003351140000_139.8.2307.78
2016123003351140000_139.8.2307.39
2016123003351140000_139.8.2307.37
2016123003351140000_139.8.2307.38
2016123003351140000_139.8.2307.71
2016123003351140000_139.8.2307.72
Jones (2016123003351140000_139.8.2307.36) 2012; 7
2016123003351140000_139.8.2307.70
2016123003351140000_139.8.2307.31
2016123003351140000_139.8.2307.75
2016123003351140000_139.8.2307.32
2016123003351140000_139.8.2307.76
2016123003351140000_139.8.2307.73
2016123003351140000_139.8.2307.30
Yao (2016123003351140000_139.8.2307.74) 2013; 3
2016123003351140000_139.8.2307.24
2016123003351140000_139.8.2307.68
2016123003351140000_139.8.2307.25
2016123003351140000_139.8.2307.69
2016123003351140000_139.8.2307.22
2016123003351140000_139.8.2307.66
2016123003351140000_139.8.2307.23
2016123003351140000_139.8.2307.67
2016123003351140000_139.8.2307.28
2016123003351140000_139.8.2307.29
2016123003351140000_139.8.2307.26
2016123003351140000_139.8.2307.27
2016123003351140000_139.8.2307.60
2016123003351140000_139.8.2307.20
2016123003351140000_139.8.2307.64
2016123003351140000_139.8.2307.21
2016123003351140000_139.8.2307.65
2016123003351140000_139.8.2307.62
2016123003351140000_139.8.2307.63
2016123003351140000_139.8.2307.9
2016123003351140000_139.8.2307.8
2016123003351140000_139.8.2307.19
2016123003351140000_139.8.2307.1
2016123003351140000_139.8.2307.13
2016123003351140000_139.8.2307.57
2016123003351140000_139.8.2307.14
2016123003351140000_139.8.2307.58
2016123003351140000_139.8.2307.3
2016123003351140000_139.8.2307.11
2016123003351140000_139.8.2307.55
2016123003351140000_139.8.2307.2
2016123003351140000_139.8.2307.12
2016123003351140000_139.8.2307.5
2016123003351140000_139.8.2307.17
2016123003351140000_139.8.2307.4
2016123003351140000_139.8.2307.18
2016123003351140000_139.8.2307.7
2016123003351140000_139.8.2307.15
2016123003351140000_139.8.2307.59
2016123003351140000_139.8.2307.6
2016123003351140000_139.8.2307.16
2016123003351140000_139.8.2307.50
Protzner (2016123003351140000_139.8.2307.56) 2010; 148
2016123003351140000_139.8.2307.53
2016123003351140000_139.8.2307.54
2016123003351140000_139.8.2307.51
2016123003351140000_139.8.2307.52
27457229 - Brain. 2016 Aug;139(Pt 8):2110-2
29917047 - Brain. 2018 Aug 1;141(8):e64
References_xml – ident: 2016123003351140000_139.8.2307.75
  doi: 10.1016/j.neuroimage.2014.12.020
– ident: 2016123003351140000_139.8.2307.11
  doi: 10.1126/science.1099745
– ident: 2016123003351140000_139.8.2307.24
  doi: 10.1101/lm.941510
– ident: 2016123003351140000_139.8.2307.25
  doi: 10.1093/schbul/13.4.669
– ident: 2016123003351140000_139.8.2307.45
  doi: 10.3389/neuro.09.048.2009
– ident: 2016123003351140000_139.8.2307.3
  doi: 10.1073/pnas.1113148109
– ident: 2016123003351140000_139.8.2307.44
  doi: 10.1093/brain/awt162
– ident: 2016123003351140000_139.8.2307.20
  doi: 10.1017/S0140525X08004214
– ident: 2016123003351140000_139.8.2307.40
  doi: 10.1073/pnas.0600674103
– volume: 3
  start-page: 2853
  year: 2013
  ident: 2016123003351140000_139.8.2307.74
  article-title: The increase of the functional entropy of the human brain with age
  publication-title: Sci Rep
  doi: 10.1038/srep02853
– ident: 2016123003351140000_139.8.2307.33
  doi: 10.1002/hbm.22162
– ident: 2016123003351140000_139.8.2307.37
  doi: 10.1016/j.neuroimage.2011.03.033
– ident: 2016123003351140000_139.8.2307.7
  doi: 10.1038/nn.3993
– ident: 2016123003351140000_139.8.2307.54
  doi: 10.1016/j.neuron.2011.09.006
– ident: 2016123003351140000_139.8.2307.16
  doi: 10.1016/j.neuroimage.2013.01.049
– ident: 2016123003351140000_139.8.2307.63
  doi: 10.1523/JNEUROSCI.3401-04.2005
– ident: 2016123003351140000_139.8.2307.72
  doi: 10.1073/pnas.0809141106
– ident: 2016123003351140000_139.8.2307.35
  doi: 10.1002/hbm.22058
– ident: 2016123003351140000_139.8.2307.51
  doi: 10.1152/jn.00648.2010
– ident: 2016123003351140000_139.8.2307.41
  doi: 10.1016/j.neuron.2014.08.016
– ident: 2016123003351140000_139.8.2307.28
  doi: 10.1523/JNEUROSCI.5641-10.2011
– ident: 2016123003351140000_139.8.2307.66
  doi: 10.1002/hbm.20256
– ident: 2016123003351140000_139.8.2307.5
  doi: 10.1073/pnas.1018985108
– ident: 2016123003351140000_139.8.2307.29
  doi: 10.1176/appi.ajp.164.3.450
– ident: 2016123003351140000_139.8.2307.79
  doi: 10.1073/pnas.1317424111
– ident: 2016123003351140000_139.8.2307.47
  doi: 10.1016/j.neuroimage.2010.08.030
– ident: 2016123003351140000_139.8.2307.64
  doi: 10.1093/cercor/bhr099
– ident: 2016123003351140000_139.8.2307.32
  doi: 10.1073/pnas.0135058100
– ident: 2016123003351140000_139.8.2307.65
  doi: 10.1016/j.neubiorev.2007.02.005
– ident: 2016123003351140000_139.8.2307.73
  doi: 10.1038/nn1662
– ident: 2016123003351140000_139.8.2307.59
  doi: 10.1523/JNEUROSCI.4902-09.2010
– ident: 2016123003351140000_139.8.2307.12
  doi: 10.1016/j.neuron.2014.10.015
– ident: 2016123003351140000_139.8.2307.23
  doi: 10.1038/nrn2822
– volume: 8
  start-page: 195
  year: 2014
  ident: 2016123003351140000_139.8.2307.61
  article-title: Dynamic network participation of functional connectivity hubs assessed by resting-state fMRI
  publication-title: Front Hum Neurosci
  doi: 10.3389/fnhum.2014.00195
– ident: 2016123003351140000_139.8.2307.19
  doi: 10.1097/01.wnr.0000239956.45448.4c
– ident: 2016123003351140000_139.8.2307.1
  doi: 10.1093/cercor/bhs352
– ident: 2016123003351140000_139.8.2307.62
  doi: 10.1038/mp.2010.4
– ident: 2016123003351140000_139.8.2307.76
  doi: 10.1016/j.schres.2012.11.001
– ident: 2016123003351140000_139.8.2307.17
  doi: 10.1038/npjschz.2015.16
– ident: 2016123003351140000_139.8.2307.53
  doi: 10.1016/S0893-133X(96)80054-6
– ident: 2016123003351140000_139.8.2307.57
  doi: 10.1093/brain/124.11.2232
– ident: 2016123003351140000_139.8.2307.69
  doi: 10.1016/j.neuroimage.2011.07.044
– ident: 2016123003351140000_139.8.2307.67
  doi: 10.1016/j.neuron.2014.03.020
– volume: 28
  start-page: 92
  year: 2013
  ident: 2016123003351140000_139.8.2307.10
  article-title: Encyclopedia of clinical neuropsychology
  publication-title: Arch Clin Neuropsych
  doi: 10.1093/arclin/acs103
– ident: 2016123003351140000_139.8.2307.18
  doi: 10.1093/brain/awv051
– ident: 2016123003351140000_139.8.2307.42
  doi: 10.1016/j.neuroimage.2014.06.044
– ident: 2016123003351140000_139.8.2307.52
  doi: 10.1016/j.neuron.2012.12.028
– ident: 2016123003351140000_139.8.2307.77
  doi: 10.1073/pnas.1400181111
– ident: 2016123003351140000_139.8.2307.13
  doi: 10.1016/j.neulet.2005.07.020
– ident: 2016123003351140000_139.8.2307.71
  doi: 10.1146/annurev-clinpsy-032511-143049
– ident: 2016123003351140000_139.8.2307.58
  doi: 10.1038/nrn700
– ident: 2016123003351140000_139.8.2307.6
  doi: 10.1371/journal.pcbi.1003171
– ident: 2016123003351140000_139.8.2307.38
  doi: 10.1152/jn.90247.2008
– ident: 2016123003351140000_139.8.2307.26
  doi: 10.1016/j.neuroimage.2011.08.035
– ident: 2016123003351140000_139.8.2307.34
  doi: 10.1016/j.neuroimage.2013.05.079
– ident: 2016123003351140000_139.8.2307.9
  doi: 10.1073/pnas.1422487112
– ident: 2016123003351140000_139.8.2307.27
  doi: 10.1523/JNEUROSCI.5166-09.2010
– ident: 2016123003351140000_139.8.2307.70
  doi: 10.1038/nn1727
– ident: 2016123003351140000_139.8.2307.31
  doi: 10.1126/science.286.5439.548
– ident: 2016123003351140000_139.8.2307.60
  doi: 10.1016/j.neuroimage.2012.08.052
– ident: 2016123003351140000_139.8.2307.8
  doi: 10.1007/s00702-007-0742-4
– ident: 2016123003351140000_139.8.2307.15
  doi: 10.1016/j.neuroimage.2009.12.011
– ident: 2016123003351140000_139.8.2307.78
  doi: 10.1002/hbm.21379
– ident: 2016123003351140000_139.8.2307.68
  doi: 10.1152/jn.00235.2015
– ident: 2016123003351140000_139.8.2307.14
  doi: 10.1016/j.biopsych.2007.06.025
– ident: 2016123003351140000_139.8.2307.48
  doi: 10.1093/cercor/bhl047
– ident: 2016123003351140000_139.8.2307.21
  doi: 10.1016/j.nicl.2014.07.003
– ident: 2016123003351140000_139.8.2307.22
  doi: 10.1016/j.neuroimage.2007.01.022
– ident: 2016123003351140000_139.8.2307.49
  doi: 10.1371/journal.pcbi.1000106
– ident: 2016123003351140000_139.8.2307.2
  doi: 10.1016/j.neuroimage.2010.05.067
– ident: 2016123003351140000_139.8.2307.43
  doi: 10.1016/j.neuroimage.2006.02.002
– ident: 2016123003351140000_139.8.2307.50
  doi: 10.1093/brain/121.6.1013
– ident: 2016123003351140000_139.8.2307.55
  doi: 10.1016/j.neuroimage.2013.08.048
– volume: 148
  start-page: 289
  year: 2010
  ident: 2016123003351140000_139.8.2307.56
  article-title: Hippocampal signal complexity in mesial temporal lobe epilepsy: a noisy brain is a healthy brain
  publication-title: Arch Ital Biol
– volume: 7
  start-page: e3973
  year: 2012
  ident: 2016123003351140000_139.8.2307.36
  article-title: Non-stationarity in the “resting brain's” modular architecture
  publication-title: Plos One
  doi: 10.1371/journal.pone.0039731
– ident: 2016123003351140000_139.8.2307.4
  doi: 10.1016/j.neuroimage.2011.10.002
– ident: 2016123003351140000_139.8.2307.30
  doi: 10.1016/j.biopsych.2008.03.031
– ident: 2016123003351140000_139.8.2307.39
  doi: 10.1016/j.neuroimage.2007.10.052
– volume: 3
  start-page: 171
  year: 1958
  ident: 2016123003351140000_139.8.2307.46
  article-title: On the combination of independent tests
  publication-title: Magyar Tud Akad Mat Kutato Int Kozl
– reference: 29917047 - Brain. 2018 Aug 1;141(8):e64
– reference: 27457229 - Brain. 2016 Aug;139(Pt 8):2110-2
SSID ssj0014326
Score 2.6146877
SecondaryResourceType review_article
Snippet SEE MATTAR ET AL DOI101093/AWW151 FOR A SCIENTIFIC COMMENTARY ON THIS ARTICLE: Functional brain networks demonstrate significant temporal variability and...
SourceID proquest
pubmed
crossref
SourceType Aggregation Database
Index Database
Enrichment Source
StartPage 2307
SubjectTerms Adolescent
Adult
Attention Deficit Disorder with Hyperactivity - diagnostic imaging
Attention Deficit Disorder with Hyperactivity - physiopathology
Autistic Disorder - diagnostic imaging
Autistic Disorder - physiopathology
Child
Diffusion Tensor Imaging - methods
Electroencephalography - methods
Functional Neuroimaging - methods
Humans
Magnetic Resonance Imaging - methods
Multimodal Imaging
Schizophrenia - diagnostic imaging
Schizophrenia - physiopathology
Time Factors
Young Adult
Title Neural, electrophysiological and anatomical basis of brain-network variability and its characteristic changes in mental disorders
URI https://www.ncbi.nlm.nih.gov/pubmed/27421791
https://www.proquest.com/docview/1807279719
Volume 139
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaWIiEuiDfLS0aC0-I2D8eOj6gClVbl1IreosSx1Ugoi-guK7jxk_iHjD2uN0GpVLhEKyvj1Xq-nYc9_oaQ17pVLS9rxZQsOONtbRlktoo1eS3rsml04u9WHX8SB6f88Kw4m81-D6qW1qtmV_-cvFfyP1qFMdCruyX7D5qNk8IAfAb9whM0DM9r6dgxa3jC_kXoZuP3KaI5Qx5WyKqREgAcFpKPNK4tBOuxAHzxHbJlJOv-EU8S9IjGOdwO9pWzoRdAG0g7L0aHwm7eyR4huPFQynKw8RC3qg-7CK79c4Njn00XS4W6tT9BOa-Xm-29tSh9VHfDnYtUxLq5rTUWrFRIPLtr0ABzkTAIQ8TIQiPfUYBiObS3OfbMDb4bwsN00i8gZ5ZfXuf8NpsUyaHGBNx_OcZYrogH9Xnl5SuUvkFuZpCZ-Cz-41E8uOK57_AXf1q4awHSe156D6XHUdAVqY0PcU7ukjshN6HvEGj3yMz098mt41B98YD8Qry9pVNoo6BmukUb9WijS0tHaKMDtHkJQBsdo40GtNGup4g2GtH2kJx-eH-yf8BCCw-muShWLG0yqQy3RpoilyazSmQG_G-uk6aVZVM7MqAkMVaoUhibuwjUFqaVEgJRo3n-iOz0y948IbSx0riAW0CKwS1Xtc4tLHDWWgjhdannZHG5pJUO_PauzcqXakp9c_Imvv0VeV2ueO_VpXYqMLzuNK3uzXJ9UaVlArG_kqmak8eotjiTq39wvL9Pr_ktz8jt7R_kOdlZfVubFxDsrpqXHl5_AOYIsWc
linkProvider Flying Publisher
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Neural%2C+electrophysiological+and+anatomical+basis+of+brain-network+variability+and+its+characteristic+changes+in+mental+disorders&rft.jtitle=Brain+%28London%2C+England+%3A+1878%29&rft.au=Zhang%2C+Jie&rft.au=Cheng%2C+Wei&rft.au=Liu%2C+Zhaowen&rft.au=Zhang%2C+Kai&rft.date=2016-08-01&rft.issn=0006-8950&rft.eissn=1460-2156&rft.volume=139&rft.issue=8&rft.spage=2307&rft.epage=2321&rft_id=info:doi/10.1093%2Fbrain%2Faww143&rft.externalDBID=n%2Fa&rft.externalDocID=10_1093_brain_aww143
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0006-8950&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0006-8950&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0006-8950&client=summon