Neural, electrophysiological and anatomical basis of brain-network variability and its characteristic changes in mental disorders
SEE MATTAR ET AL DOI101093/AWW151 FOR A SCIENTIFIC COMMENTARY ON THIS ARTICLE: Functional brain networks demonstrate significant temporal variability and dynamic reconfiguration even in the resting state. Currently, most studies investigate temporal variability of brain networks at the scale of sing...
Saved in:
Published in | Brain (London, England : 1878) Vol. 139; no. 8; pp. 2307 - 2321 |
---|---|
Main Authors | , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
England
01.08.2016
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | SEE MATTAR ET AL DOI101093/AWW151 FOR A SCIENTIFIC COMMENTARY ON THIS ARTICLE: Functional brain networks demonstrate significant temporal variability and dynamic reconfiguration even in the resting state. Currently, most studies investigate temporal variability of brain networks at the scale of single (micro) or whole-brain (macro) connectivity. However, the mechanism underlying time-varying properties remains unclear, as the coupling between brain network variability and neural activity is not readily apparent when analysed at either micro or macroscales. We propose an intermediate (meso) scale analysis and characterize temporal variability of the functional architecture associated with a particular region. This yields a topography of variability that reflects the whole-brain and, most importantly, creates an analytical framework to establish the fundamental relationship between variability of regional functional architecture and its neural activity or structural connectivity. We find that temporal variability reflects the dynamical reconfiguration of a brain region into distinct functional modules at different times and may be indicative of brain flexibility and adaptability. Primary and unimodal sensory-motor cortices demonstrate low temporal variability, while transmodal areas, including heteromodal association areas and limbic system, demonstrate the high variability. In particular, regions with highest variability such as hippocampus/parahippocampus, inferior and middle temporal gyrus, olfactory gyrus and caudate are all related to learning, suggesting that the temporal variability may indicate the level of brain adaptability. With simultaneously recorded electroencephalography/functional magnetic resonance imaging and functional magnetic resonance imaging/diffusion tensor imaging data, we also find that variability of regional functional architecture is modulated by local blood oxygen level-dependent activity and α-band oscillation, and is governed by the ratio of intra- to inter-community structural connectivity. Application of the mesoscale variability measure to multicentre datasets of three mental disorders and matched controls involving 1180 subjects reveals that those regions demonstrating extreme, i.e. highest/lowest variability in controls are most liable to change in mental disorders. Specifically, we draw attention to the identification of diametrically opposing patterns of variability changes between schizophrenia and attention deficit hyperactivity disorder/autism. Regions of the default-mode network demonstrate lower variability in patients with schizophrenia, but high variability in patients with autism/attention deficit hyperactivity disorder, compared with respective controls. In contrast, subcortical regions, especially the thalamus, show higher variability in schizophrenia patients, but lower variability in patients with attention deficit hyperactivity disorder. The changes in variability of these regions are also closely related to symptom scores. Our work provides insights into the dynamic organization of the resting brain and how it changes in brain disorders. The nodal variability measure may also be potentially useful as a predictor for learning and neural rehabilitation. |
---|---|
AbstractList | SEE MATTAR ET AL DOI101093/AWW151 FOR A SCIENTIFIC COMMENTARY ON THIS ARTICLE: Functional brain networks demonstrate significant temporal variability and dynamic reconfiguration even in the resting state. Currently, most studies investigate temporal variability of brain networks at the scale of single (micro) or whole-brain (macro) connectivity. However, the mechanism underlying time-varying properties remains unclear, as the coupling between brain network variability and neural activity is not readily apparent when analysed at either micro or macroscales. We propose an intermediate (meso) scale analysis and characterize temporal variability of the functional architecture associated with a particular region. This yields a topography of variability that reflects the whole-brain and, most importantly, creates an analytical framework to establish the fundamental relationship between variability of regional functional architecture and its neural activity or structural connectivity. We find that temporal variability reflects the dynamical reconfiguration of a brain region into distinct functional modules at different times and may be indicative of brain flexibility and adaptability. Primary and unimodal sensory-motor cortices demonstrate low temporal variability, while transmodal areas, including heteromodal association areas and limbic system, demonstrate the high variability. In particular, regions with highest variability such as hippocampus/parahippocampus, inferior and middle temporal gyrus, olfactory gyrus and caudate are all related to learning, suggesting that the temporal variability may indicate the level of brain adaptability. With simultaneously recorded electroencephalography/functional magnetic resonance imaging and functional magnetic resonance imaging/diffusion tensor imaging data, we also find that variability of regional functional architecture is modulated by local blood oxygen level-dependent activity and α-band oscillation, and is governed by the ratio of intra- to inter-community structural connectivity. Application of the mesoscale variability measure to multicentre datasets of three mental disorders and matched controls involving 1180 subjects reveals that those regions demonstrating extreme, i.e. highest/lowest variability in controls are most liable to change in mental disorders. Specifically, we draw attention to the identification of diametrically opposing patterns of variability changes between schizophrenia and attention deficit hyperactivity disorder/autism. Regions of the default-mode network demonstrate lower variability in patients with schizophrenia, but high variability in patients with autism/attention deficit hyperactivity disorder, compared with respective controls. In contrast, subcortical regions, especially the thalamus, show higher variability in schizophrenia patients, but lower variability in patients with attention deficit hyperactivity disorder. The changes in variability of these regions are also closely related to symptom scores. Our work provides insights into the dynamic organization of the resting brain and how it changes in brain disorders. The nodal variability measure may also be potentially useful as a predictor for learning and neural rehabilitation. |
Author | Lu, Guangming Cheng, Wei Yao, Ye Feng, Jianfeng Becker, Benjamin Kendrick, Keith M. Zhang, Jie Liu, Yicen Zhang, Kai Lei, Xu Liu, Zhaowen |
Author_xml | – sequence: 1 givenname: Jie surname: Zhang fullname: Zhang, Jie – sequence: 2 givenname: Wei surname: Cheng fullname: Cheng, Wei – sequence: 3 givenname: Zhaowen surname: Liu fullname: Liu, Zhaowen – sequence: 4 givenname: Kai surname: Zhang fullname: Zhang, Kai – sequence: 5 givenname: Xu surname: Lei fullname: Lei, Xu – sequence: 6 givenname: Ye surname: Yao fullname: Yao, Ye – sequence: 7 givenname: Benjamin surname: Becker fullname: Becker, Benjamin – sequence: 8 givenname: Yicen surname: Liu fullname: Liu, Yicen – sequence: 9 givenname: Keith M. surname: Kendrick fullname: Kendrick, Keith M. – sequence: 10 givenname: Guangming surname: Lu fullname: Lu, Guangming – sequence: 11 givenname: Jianfeng surname: Feng fullname: Feng, Jianfeng |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/27421791$$D View this record in MEDLINE/PubMed |
BookMark | eNptkb1PwzAQxS1URMvHxowyMhCwncRORlTxJSFYYLYc50INjl1sl6oj_zkmhQUxnE4n_d476b19NLHOAkLHBJ8T3BQXrZfaXsj1mpTFDpqRkuGckopN0AxjzPK6qfAU7YfwinFCKNtDU8pLSnhDZujzAVZemrMMDKjo3XKxCdoZ96KVNJm0XRoZ3TCerQw6ZK7Pxp-5hbh2_i37kF7LVhsdN6NCx5CphfRSRfA6RK2-T_sCIdM2G8DG5NXp4HwHPhyi3V6aAEc_-wA9X189zW_z-8ebu_nlfa5KVsWctJQ3UPbAoSo40L5hFDijhcJtx-tWYsIajKFnTc2gL3DKoK-g47wiFFRZHKDTre_Su_cVhCgGHRQYIy24VRCkxjy94KRJ6MkPumoH6MTS60H6jfiNLQF0CyjvQvDQC6WjjNrZmJIxgmDx3Y0YcxLbbpLo7I_o1_df_AtuIJWE |
CitedBy_id | crossref_primary_10_1007_s00787_025_02679_9 crossref_primary_10_1007_s11682_020_00448_7 crossref_primary_10_1016_j_neuroimage_2023_120472 crossref_primary_10_1142_S0219720021500177 crossref_primary_10_1016_j_nicl_2018_05_015 crossref_primary_10_1016_j_msard_2023_105146 crossref_primary_10_1093_cercor_bhac293 crossref_primary_10_3389_fnins_2021_820641 crossref_primary_10_3389_fnins_2023_1322967 crossref_primary_10_1209_0295_5075_122_40010 crossref_primary_10_1038_s41598_024_72945_4 crossref_primary_10_1016_j_neuroimage_2019_116233 crossref_primary_10_1016_j_neuroimage_2019_116230 crossref_primary_10_1093_scan_nsab050 crossref_primary_10_1109_TMI_2024_3421360 crossref_primary_10_1016_j_biopsych_2021_12_004 crossref_primary_10_1002_hbm_26071 crossref_primary_10_1063_1_5018824 crossref_primary_10_1162_netn_a_00396 crossref_primary_10_1016_j_pnpbp_2023_110827 crossref_primary_10_3390_brainsci12020218 crossref_primary_10_1111_bdi_12819 crossref_primary_10_1002_hbm_24447 crossref_primary_10_1016_j_media_2018_03_013 crossref_primary_10_2147_NDT_S379653 crossref_primary_10_1016_j_media_2022_102679 crossref_primary_10_3389_fnins_2019_00685 crossref_primary_10_1177_1087054719859074 crossref_primary_10_1007_s11571_020_09605_6 crossref_primary_10_3233_JAD_220539 crossref_primary_10_1016_j_dcn_2025_101528 crossref_primary_10_1016_j_neuroimage_2018_12_008 crossref_primary_10_1016_j_brainresbull_2022_03_007 crossref_primary_10_1002_jmri_27521 crossref_primary_10_1109_TMI_2022_3186797 crossref_primary_10_1227_neu_0000000000003124 crossref_primary_10_1111_ejn_15664 crossref_primary_10_1093_brain_aww151 crossref_primary_10_3389_fnagi_2021_758137 crossref_primary_10_1016_j_neuroimage_2021_118027 crossref_primary_10_1016_j_neuroimage_2021_118148 crossref_primary_10_3389_fnhum_2019_00430 crossref_primary_10_1007_s10803_024_06661_3 crossref_primary_10_1002_hbm_24902 crossref_primary_10_1093_cercor_bhac133 crossref_primary_10_1016_j_schres_2020_03_020 crossref_primary_10_1142_S0218127417501231 crossref_primary_10_1080_23273798_2022_2129084 crossref_primary_10_1016_j_neuroimage_2025_121120 crossref_primary_10_1038_s41398_024_02985_x crossref_primary_10_1080_01621459_2022_2156349 crossref_primary_10_1007_s00429_020_02174_8 crossref_primary_10_1177_1073858416667716 crossref_primary_10_3390_life13071587 crossref_primary_10_1007_s11682_018_9866_4 crossref_primary_10_3389_fneur_2021_615820 crossref_primary_10_1007_s00787_020_01555_y crossref_primary_10_1016_j_neuroimage_2020_117668 crossref_primary_10_1016_j_physa_2017_11_042 crossref_primary_10_1016_j_schres_2017_09_035 crossref_primary_10_1016_j_cjph_2017_10_002 crossref_primary_10_1162_netn_a_00083 crossref_primary_10_1016_j_physa_2018_03_043 crossref_primary_10_1016_j_dcn_2020_100850 crossref_primary_10_3389_fpsyt_2024_1472671 crossref_primary_10_1007_s12311_021_01241_y crossref_primary_10_1038_s41531_023_00498_w crossref_primary_10_1016_j_jpsychires_2022_02_011 crossref_primary_10_1016_j_bspc_2024_107471 crossref_primary_10_1007_s11434_016_1210_z crossref_primary_10_1371_journal_pone_0242330 crossref_primary_10_1111_cns_14178 crossref_primary_10_31083_j_jin2305095 crossref_primary_10_1016_j_bpsc_2024_08_019 crossref_primary_10_1016_j_pnpbp_2020_109866 crossref_primary_10_1016_j_nicl_2018_06_012 crossref_primary_10_1016_j_jpsychires_2016_12_003 crossref_primary_10_1063_5_0168783 crossref_primary_10_1073_pnas_1903403116 crossref_primary_10_1093_cercor_bhae204 crossref_primary_10_1093_cercor_bhae445 crossref_primary_10_1109_TNSRE_2023_3276896 crossref_primary_10_1016_j_jneumeth_2018_04_009 crossref_primary_10_1109_TMI_2019_2904555 crossref_primary_10_1111_cns_14866 crossref_primary_10_3390_e21121156 crossref_primary_10_1016_j_tics_2017_10_001 crossref_primary_10_3389_fnins_2022_1010488 crossref_primary_10_1109_ACCESS_2022_3178748 crossref_primary_10_1142_S0217984918500628 crossref_primary_10_1002_hbm_25404 crossref_primary_10_1002_hbm_25886 crossref_primary_10_3389_fnins_2019_00080 crossref_primary_10_1093_cercor_bhy232 crossref_primary_10_1007_s00429_021_02304_w crossref_primary_10_1209_0295_5075_121_48002 crossref_primary_10_1142_S0129065718500570 crossref_primary_10_1016_j_pnpbp_2024_111076 crossref_primary_10_1109_TCNS_2021_3106454 crossref_primary_10_3389_fpsyg_2024_1458339 crossref_primary_10_1016_j_neuroscience_2022_08_001 crossref_primary_10_1016_j_neuroimage_2017_02_066 crossref_primary_10_1016_j_nicl_2020_102163 crossref_primary_10_3389_fneur_2020_606592 crossref_primary_10_36472_msd_v11i3_1141 crossref_primary_10_3389_fnins_2017_00439 crossref_primary_10_1002_hbm_24787 crossref_primary_10_1002_hbm_26726 crossref_primary_10_1002_hbm_23890 crossref_primary_10_3389_fncir_2019_00036 crossref_primary_10_1016_j_neuroimage_2023_120195 crossref_primary_10_3389_fnhum_2022_972375 crossref_primary_10_1016_j_jad_2022_09_050 crossref_primary_10_1038_s41398_024_02929_5 crossref_primary_10_1093_cercor_bhy264 crossref_primary_10_1016_j_dcn_2019_100630 crossref_primary_10_1016_j_jpsychires_2019_01_005 crossref_primary_10_1016_j_neuroimage_2017_08_044 crossref_primary_10_1016_j_neubiorev_2017_03_018 crossref_primary_10_1016_j_pnpbp_2019_109833 crossref_primary_10_1002_hbm_25023 crossref_primary_10_1038_s41598_019_42322_7 crossref_primary_10_1016_j_fmre_2021_10_002 crossref_primary_10_1109_TKDE_2019_2960240 crossref_primary_10_1142_S0218127417500596 crossref_primary_10_1111_ejn_13988 crossref_primary_10_1007_s11571_018_9509_x crossref_primary_10_1093_cercor_bhy010 crossref_primary_10_3390_brainsci13060942 crossref_primary_10_1007_s11071_019_04924_8 crossref_primary_10_1016_j_bbr_2025_115425 crossref_primary_10_1016_j_ins_2024_121622 crossref_primary_10_1007_s11682_018_9989_7 crossref_primary_10_3390_brainsci9120380 crossref_primary_10_1093_cercor_bhab263 crossref_primary_10_3389_fnins_2022_933660 crossref_primary_10_1016_j_bspc_2024_106030 crossref_primary_10_1002_hbm_23430 crossref_primary_10_1016_j_physa_2018_04_075 crossref_primary_10_1002_brb3_1698 crossref_primary_10_1016_j_ejrad_2020_109324 crossref_primary_10_1016_j_media_2020_101709 crossref_primary_10_1109_JPROC_2018_2825200 crossref_primary_10_1016_j_neuroimage_2021_118413 crossref_primary_10_1007_s12021_018_9413_x crossref_primary_10_1016_j_biopsych_2023_09_017 crossref_primary_10_1038_s41598_017_00425_z crossref_primary_10_1016_j_brainresbull_2024_110881 crossref_primary_10_3389_fnins_2019_00174 crossref_primary_10_1109_JBHI_2019_2893880 crossref_primary_10_1002_jmri_28578 crossref_primary_10_1016_j_neuroimage_2018_03_074 crossref_primary_10_1093_schbul_sby108 crossref_primary_10_1002_alz_13411 crossref_primary_10_1038_s41380_021_01018_z crossref_primary_10_1016_j_scib_2020_04_003 crossref_primary_10_1016_j_neulet_2020_135519 crossref_primary_10_1016_j_schres_2018_12_005 crossref_primary_10_1088_2632_072X_ac4bee crossref_primary_10_1016_j_pnpbp_2018_12_006 crossref_primary_10_1016_j_neuroimage_2021_118784 crossref_primary_10_1109_TBME_2019_2957921 crossref_primary_10_1017_S0033291721004906 crossref_primary_10_1007_s11682_019_00234_0 crossref_primary_10_1007_s11682_023_00800_7 crossref_primary_10_1016_j_scib_2019_04_034 crossref_primary_10_1093_cercor_bhae035 crossref_primary_10_3390_brainsci13030429 crossref_primary_10_3389_fnins_2019_01430 crossref_primary_10_1002_hbm_26202 crossref_primary_10_3233_JAD_215649 crossref_primary_10_1038_s41380_023_02395_3 crossref_primary_10_1016_j_scib_2017_09_015 crossref_primary_10_1109_TCYB_2021_3071110 crossref_primary_10_1111_epi_16759 crossref_primary_10_1063_1_4977950 crossref_primary_10_1016_j_schres_2021_07_038 crossref_primary_10_3390_brainsci12101348 crossref_primary_10_1063_1_5120538 crossref_primary_10_1109_ACCESS_2023_3266804 crossref_primary_10_1002_hbm_23841 crossref_primary_10_2139_ssrn_4052510 crossref_primary_10_1142_S0129065720500653 crossref_primary_10_1038_s42003_022_03196_0 crossref_primary_10_1109_TNSE_2018_2869862 crossref_primary_10_1016_j_resourpol_2020_101613 crossref_primary_10_1088_1741_2552_aad7b1 crossref_primary_10_1016_j_neuroimage_2022_119673 crossref_primary_10_1016_j_tics_2020_01_008 crossref_primary_10_1093_cercor_bhae164 crossref_primary_10_1007_s11682_019_00077_9 crossref_primary_10_1002_hbm_24376 crossref_primary_10_1109_TSMC_2019_2956022 crossref_primary_10_1038_s41398_021_01197_x crossref_primary_10_1038_s41598_023_50265_3 crossref_primary_10_1209_0295_5075_116_50001 crossref_primary_10_1159_000534033 crossref_primary_10_1038_s41380_022_01731_3 crossref_primary_10_1038_s41598_017_08565_y crossref_primary_10_1186_s40708_024_00248_5 crossref_primary_10_3389_fpsyt_2019_00084 crossref_primary_10_1142_S0129065724500175 crossref_primary_10_1109_TMI_2022_3201974 crossref_primary_10_1016_j_brainres_2024_149228 crossref_primary_10_1063_1_5074155 crossref_primary_10_1002_hbm_23711 crossref_primary_10_3389_fnut_2023_1210726 crossref_primary_10_1016_j_media_2021_102063 crossref_primary_10_1093_cercor_bhaa128 crossref_primary_10_1002_hbm_26308 crossref_primary_10_3389_fnins_2022_965937 crossref_primary_10_1017_S0033291720002391 crossref_primary_10_1080_00207454_2022_2130295 crossref_primary_10_3390_brainsci12081106 crossref_primary_10_1007_s00723_019_01117_9 crossref_primary_10_1162_netn_a_00225 crossref_primary_10_1016_j_physa_2017_08_053 crossref_primary_10_1038_s41598_017_05890_0 crossref_primary_10_1126_sciadv_ado8837 crossref_primary_10_3389_fnhum_2021_679086 crossref_primary_10_3389_fnins_2022_844821 crossref_primary_10_3389_fnhum_2017_00408 crossref_primary_10_3389_fpsyt_2020_00422 crossref_primary_10_3389_fnagi_2021_809853 crossref_primary_10_1002_brb3_2174 crossref_primary_10_1155_2018_9394156 crossref_primary_10_1007_s11571_022_09848_5 crossref_primary_10_1007_s12021_022_09615_1 crossref_primary_10_1016_j_bbr_2022_113999 crossref_primary_10_1111_cns_13387 crossref_primary_10_1002_hbm_24391 crossref_primary_10_1088_1741_2552_ac999d crossref_primary_10_1016_j_aei_2019_100957 crossref_primary_10_1016_j_dcn_2024_101496 crossref_primary_10_3389_fnins_2019_00803 crossref_primary_10_1016_j_pnpbp_2018_03_020 crossref_primary_10_3389_fneur_2018_00810 crossref_primary_10_1002_jnr_24915 crossref_primary_10_1093_schbul_sbae110 crossref_primary_10_1002_hbm_23611 crossref_primary_10_1016_j_neuroimage_2021_118188 crossref_primary_10_1016_j_patcog_2023_109838 crossref_primary_10_3389_fpsyt_2021_701420 crossref_primary_10_1002_hbm_23976 crossref_primary_10_3390_e25091244 crossref_primary_10_1016_j_pnpbp_2018_03_026 |
Cites_doi | 10.1016/j.neuroimage.2014.12.020 10.1126/science.1099745 10.1101/lm.941510 10.1093/schbul/13.4.669 10.3389/neuro.09.048.2009 10.1073/pnas.1113148109 10.1093/brain/awt162 10.1017/S0140525X08004214 10.1073/pnas.0600674103 10.1038/srep02853 10.1002/hbm.22162 10.1016/j.neuroimage.2011.03.033 10.1038/nn.3993 10.1016/j.neuron.2011.09.006 10.1016/j.neuroimage.2013.01.049 10.1523/JNEUROSCI.3401-04.2005 10.1073/pnas.0809141106 10.1002/hbm.22058 10.1152/jn.00648.2010 10.1016/j.neuron.2014.08.016 10.1523/JNEUROSCI.5641-10.2011 10.1002/hbm.20256 10.1073/pnas.1018985108 10.1176/appi.ajp.164.3.450 10.1073/pnas.1317424111 10.1016/j.neuroimage.2010.08.030 10.1093/cercor/bhr099 10.1073/pnas.0135058100 10.1016/j.neubiorev.2007.02.005 10.1038/nn1662 10.1523/JNEUROSCI.4902-09.2010 10.1016/j.neuron.2014.10.015 10.1038/nrn2822 10.3389/fnhum.2014.00195 10.1097/01.wnr.0000239956.45448.4c 10.1093/cercor/bhs352 10.1038/mp.2010.4 10.1016/j.schres.2012.11.001 10.1038/npjschz.2015.16 10.1016/S0893-133X(96)80054-6 10.1093/brain/124.11.2232 10.1016/j.neuroimage.2011.07.044 10.1016/j.neuron.2014.03.020 10.1093/arclin/acs103 10.1093/brain/awv051 10.1016/j.neuroimage.2014.06.044 10.1016/j.neuron.2012.12.028 10.1073/pnas.1400181111 10.1016/j.neulet.2005.07.020 10.1146/annurev-clinpsy-032511-143049 10.1038/nrn700 10.1371/journal.pcbi.1003171 10.1152/jn.90247.2008 10.1016/j.neuroimage.2011.08.035 10.1016/j.neuroimage.2013.05.079 10.1073/pnas.1422487112 10.1523/JNEUROSCI.5166-09.2010 10.1038/nn1727 10.1126/science.286.5439.548 10.1016/j.neuroimage.2012.08.052 10.1007/s00702-007-0742-4 10.1016/j.neuroimage.2009.12.011 10.1002/hbm.21379 10.1152/jn.00235.2015 10.1016/j.biopsych.2007.06.025 10.1093/cercor/bhl047 10.1016/j.nicl.2014.07.003 10.1016/j.neuroimage.2007.01.022 10.1371/journal.pcbi.1000106 10.1016/j.neuroimage.2010.05.067 10.1016/j.neuroimage.2006.02.002 10.1093/brain/121.6.1013 10.1016/j.neuroimage.2013.08.048 10.1371/journal.pone.0039731 10.1016/j.neuroimage.2011.10.002 10.1016/j.biopsych.2008.03.031 10.1016/j.neuroimage.2007.10.052 |
ContentType | Journal Article |
Copyright | The Author (2016). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com. |
Copyright_xml | – notice: The Author (2016). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 |
DOI | 10.1093/brain/aww143 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1460-2156 |
EndPage | 2321 |
ExternalDocumentID | 27421791 10_1093_brain_aww143 |
Genre | Multicenter Study Meta-Analysis Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- -E4 -~X .2P .55 .GJ .I3 .XZ .ZR 0R~ 1CY 1TH 23N 2WC 354 3O- 4.4 41~ 482 48X 53G 5GY 5RE 5VS 5WA 5WD 6PF 70D AABZA AACZT AAGKA AAIMJ AAJKP AAJQQ AAMDB AAMVS AAOGV AAPGJ AAPNW AAPQZ AAPXW AAQQT AARHZ AAUAY AAUQX AAVAP AAVLN AAWDT AAWTL AAYJJ AAYXX ABDFA ABDPE ABEJV ABEUO ABGNP ABIME ABIVO ABIXL ABJNI ABKDP ABLJU ABMNT ABNGD ABNHQ ABNKS ABPIB ABPQP ABPTD ABQLI ABQNK ABSMQ ABVGC ABWST ABXVV ABXZS ABZBJ ABZEO ACBNA ACFRR ACGFS ACIWK ACPQN ACPRK ACUFI ACUKT ACUTJ ACUTO ACVCV ACYHN ACZBC ADBBV ADEYI ADEZT ADGKP ADGZP ADHKW ADHZD ADIPN ADMTO ADNBA ADOCK ADQBN ADRTK ADVEK ADYVW ADZXQ AEGPL AEHUL AEJOX AEKPW AEKSI AELWJ AEMDU AEMQT AENEX AENZO AEPUE AETBJ AEWNT AFFNX AFFQV AFFZL AFGWE AFIYH AFOFC AFSHK AFXAL AFYAG AGINJ AGKEF AGKRT AGMDO AGORE AGQPQ AGQXC AGSYK AGUTN AHGBF AHMBA AHMMS AHXPO AI. AIJHB AJBYB AJDVS AJEEA AJNCP AKWXX ALMA_UNASSIGNED_HOLDINGS ALUQC ALXQX ANFBD APIBT APJGH APWMN AQDSO AQKUS ARIXL ASAOO ASPBG ATDFG ATGXG ATTQO AVNTJ AVWKF AXUDD AYOIW AZFZN BAWUL BAYMD BCRHZ BEYMZ BHONS BQDIO BR6 BSWAC BTRTY BVRKM BZKNY C1A C45 CAG CDBKE CITATION COF CS3 CXTWN CZ4 DAKXR DFGAJ DIK DILTD DU5 D~K E3Z EBS EE~ EIHJH EJD ELUNK EMOBN ENERS F5P F9B FECEO FEDTE FHSFR FLUFQ FOEOM FOTVD FQBLK GAUVT GJXCC GX1 H13 H5~ HAR HVGLF HW0 HZ~ IOX J21 J5H JXSIZ KAQDR KBUDW KOP KQ8 KSI KSN L7B M-Z MBLQV MBTAY MHKGH ML0 MVM N4W N9A NGC NLBLG NOMLY NOYVH NTWIH NU- NVLIB O0~ O9- OAUYM OAWHX OBFPC OBOKY OCZFY ODMLO OHH OHT OJQWA OJZSN OK1 OPAEJ OVD OWPYF O~Y P2P PAFKI PB- PEELM PQQKQ Q1. Q5Y QBD R44 RD5 RIG RNI ROL ROX ROZ RUSNO RW1 RXO RZF RZO TCN TCURE TEORI TJX TLC TMA TR2 VH1 VVN W8F WH7 WOQ X7H X7M XJT XOL YAYTL YKOAZ YQJ YSK YXANX ZCG ZGI ZKB ZKX ZXP ~91 6.Y ABQTQ ABSAR ADJQC ADRIX AFXEN CGR CUY CVF ECM EIF M49 NPM VXZ 7X8 |
ID | FETCH-LOGICAL-c465t-1b279e4fe7e537e2f962e7623c0bd78ba016900ef6986ef30215f5ed77512ec43 |
ISSN | 0006-8950 |
IngestDate | Fri Jul 11 09:00:32 EDT 2025 Wed Feb 19 02:33:29 EST 2025 Thu Apr 24 23:07:32 EDT 2025 Tue Jul 01 00:46:08 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 8 |
Keywords | temporal variability brain flexibility and adaptability resting-state functional MRI functional brain networks mental disorders |
Language | English |
License | The Author (2016). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c465t-1b279e4fe7e537e2f962e7623c0bd78ba016900ef6986ef30215f5ed77512ec43 |
Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
OpenAccessLink | https://academic.oup.com/brain/article-pdf/139/8/2307/25054907/aww143.pdf |
PMID | 27421791 |
PQID | 1807279719 |
PQPubID | 23479 |
PageCount | 15 |
ParticipantIDs | proquest_miscellaneous_1807279719 pubmed_primary_27421791 crossref_citationtrail_10_1093_brain_aww143 crossref_primary_10_1093_brain_aww143 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2016-08-01 |
PublicationDateYYYYMMDD | 2016-08-01 |
PublicationDate_xml | – month: 08 year: 2016 text: 2016-08-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Brain (London, England : 1878) |
PublicationTitleAlternate | Brain |
PublicationYear | 2016 |
References | Schaefer (2016123003351140000_139.8.2307.61) 2014; 8 Bullard (2016123003351140000_139.8.2307.10) 2013; 28 2016123003351140000_139.8.2307.47 2016123003351140000_139.8.2307.44 2016123003351140000_139.8.2307.45 2016123003351140000_139.8.2307.48 2016123003351140000_139.8.2307.49 2016123003351140000_139.8.2307.42 2016123003351140000_139.8.2307.43 2016123003351140000_139.8.2307.40 2016123003351140000_139.8.2307.41 Liptak (2016123003351140000_139.8.2307.46) 1958; 3 2016123003351140000_139.8.2307.35 2016123003351140000_139.8.2307.79 2016123003351140000_139.8.2307.33 2016123003351140000_139.8.2307.77 2016123003351140000_139.8.2307.34 2016123003351140000_139.8.2307.78 2016123003351140000_139.8.2307.39 2016123003351140000_139.8.2307.37 2016123003351140000_139.8.2307.38 2016123003351140000_139.8.2307.71 2016123003351140000_139.8.2307.72 Jones (2016123003351140000_139.8.2307.36) 2012; 7 2016123003351140000_139.8.2307.70 2016123003351140000_139.8.2307.31 2016123003351140000_139.8.2307.75 2016123003351140000_139.8.2307.32 2016123003351140000_139.8.2307.76 2016123003351140000_139.8.2307.73 2016123003351140000_139.8.2307.30 Yao (2016123003351140000_139.8.2307.74) 2013; 3 2016123003351140000_139.8.2307.24 2016123003351140000_139.8.2307.68 2016123003351140000_139.8.2307.25 2016123003351140000_139.8.2307.69 2016123003351140000_139.8.2307.22 2016123003351140000_139.8.2307.66 2016123003351140000_139.8.2307.23 2016123003351140000_139.8.2307.67 2016123003351140000_139.8.2307.28 2016123003351140000_139.8.2307.29 2016123003351140000_139.8.2307.26 2016123003351140000_139.8.2307.27 2016123003351140000_139.8.2307.60 2016123003351140000_139.8.2307.20 2016123003351140000_139.8.2307.64 2016123003351140000_139.8.2307.21 2016123003351140000_139.8.2307.65 2016123003351140000_139.8.2307.62 2016123003351140000_139.8.2307.63 2016123003351140000_139.8.2307.9 2016123003351140000_139.8.2307.8 2016123003351140000_139.8.2307.19 2016123003351140000_139.8.2307.1 2016123003351140000_139.8.2307.13 2016123003351140000_139.8.2307.57 2016123003351140000_139.8.2307.14 2016123003351140000_139.8.2307.58 2016123003351140000_139.8.2307.3 2016123003351140000_139.8.2307.11 2016123003351140000_139.8.2307.55 2016123003351140000_139.8.2307.2 2016123003351140000_139.8.2307.12 2016123003351140000_139.8.2307.5 2016123003351140000_139.8.2307.17 2016123003351140000_139.8.2307.4 2016123003351140000_139.8.2307.18 2016123003351140000_139.8.2307.7 2016123003351140000_139.8.2307.15 2016123003351140000_139.8.2307.59 2016123003351140000_139.8.2307.6 2016123003351140000_139.8.2307.16 2016123003351140000_139.8.2307.50 Protzner (2016123003351140000_139.8.2307.56) 2010; 148 2016123003351140000_139.8.2307.53 2016123003351140000_139.8.2307.54 2016123003351140000_139.8.2307.51 2016123003351140000_139.8.2307.52 27457229 - Brain. 2016 Aug;139(Pt 8):2110-2 29917047 - Brain. 2018 Aug 1;141(8):e64 |
References_xml | – ident: 2016123003351140000_139.8.2307.75 doi: 10.1016/j.neuroimage.2014.12.020 – ident: 2016123003351140000_139.8.2307.11 doi: 10.1126/science.1099745 – ident: 2016123003351140000_139.8.2307.24 doi: 10.1101/lm.941510 – ident: 2016123003351140000_139.8.2307.25 doi: 10.1093/schbul/13.4.669 – ident: 2016123003351140000_139.8.2307.45 doi: 10.3389/neuro.09.048.2009 – ident: 2016123003351140000_139.8.2307.3 doi: 10.1073/pnas.1113148109 – ident: 2016123003351140000_139.8.2307.44 doi: 10.1093/brain/awt162 – ident: 2016123003351140000_139.8.2307.20 doi: 10.1017/S0140525X08004214 – ident: 2016123003351140000_139.8.2307.40 doi: 10.1073/pnas.0600674103 – volume: 3 start-page: 2853 year: 2013 ident: 2016123003351140000_139.8.2307.74 article-title: The increase of the functional entropy of the human brain with age publication-title: Sci Rep doi: 10.1038/srep02853 – ident: 2016123003351140000_139.8.2307.33 doi: 10.1002/hbm.22162 – ident: 2016123003351140000_139.8.2307.37 doi: 10.1016/j.neuroimage.2011.03.033 – ident: 2016123003351140000_139.8.2307.7 doi: 10.1038/nn.3993 – ident: 2016123003351140000_139.8.2307.54 doi: 10.1016/j.neuron.2011.09.006 – ident: 2016123003351140000_139.8.2307.16 doi: 10.1016/j.neuroimage.2013.01.049 – ident: 2016123003351140000_139.8.2307.63 doi: 10.1523/JNEUROSCI.3401-04.2005 – ident: 2016123003351140000_139.8.2307.72 doi: 10.1073/pnas.0809141106 – ident: 2016123003351140000_139.8.2307.35 doi: 10.1002/hbm.22058 – ident: 2016123003351140000_139.8.2307.51 doi: 10.1152/jn.00648.2010 – ident: 2016123003351140000_139.8.2307.41 doi: 10.1016/j.neuron.2014.08.016 – ident: 2016123003351140000_139.8.2307.28 doi: 10.1523/JNEUROSCI.5641-10.2011 – ident: 2016123003351140000_139.8.2307.66 doi: 10.1002/hbm.20256 – ident: 2016123003351140000_139.8.2307.5 doi: 10.1073/pnas.1018985108 – ident: 2016123003351140000_139.8.2307.29 doi: 10.1176/appi.ajp.164.3.450 – ident: 2016123003351140000_139.8.2307.79 doi: 10.1073/pnas.1317424111 – ident: 2016123003351140000_139.8.2307.47 doi: 10.1016/j.neuroimage.2010.08.030 – ident: 2016123003351140000_139.8.2307.64 doi: 10.1093/cercor/bhr099 – ident: 2016123003351140000_139.8.2307.32 doi: 10.1073/pnas.0135058100 – ident: 2016123003351140000_139.8.2307.65 doi: 10.1016/j.neubiorev.2007.02.005 – ident: 2016123003351140000_139.8.2307.73 doi: 10.1038/nn1662 – ident: 2016123003351140000_139.8.2307.59 doi: 10.1523/JNEUROSCI.4902-09.2010 – ident: 2016123003351140000_139.8.2307.12 doi: 10.1016/j.neuron.2014.10.015 – ident: 2016123003351140000_139.8.2307.23 doi: 10.1038/nrn2822 – volume: 8 start-page: 195 year: 2014 ident: 2016123003351140000_139.8.2307.61 article-title: Dynamic network participation of functional connectivity hubs assessed by resting-state fMRI publication-title: Front Hum Neurosci doi: 10.3389/fnhum.2014.00195 – ident: 2016123003351140000_139.8.2307.19 doi: 10.1097/01.wnr.0000239956.45448.4c – ident: 2016123003351140000_139.8.2307.1 doi: 10.1093/cercor/bhs352 – ident: 2016123003351140000_139.8.2307.62 doi: 10.1038/mp.2010.4 – ident: 2016123003351140000_139.8.2307.76 doi: 10.1016/j.schres.2012.11.001 – ident: 2016123003351140000_139.8.2307.17 doi: 10.1038/npjschz.2015.16 – ident: 2016123003351140000_139.8.2307.53 doi: 10.1016/S0893-133X(96)80054-6 – ident: 2016123003351140000_139.8.2307.57 doi: 10.1093/brain/124.11.2232 – ident: 2016123003351140000_139.8.2307.69 doi: 10.1016/j.neuroimage.2011.07.044 – ident: 2016123003351140000_139.8.2307.67 doi: 10.1016/j.neuron.2014.03.020 – volume: 28 start-page: 92 year: 2013 ident: 2016123003351140000_139.8.2307.10 article-title: Encyclopedia of clinical neuropsychology publication-title: Arch Clin Neuropsych doi: 10.1093/arclin/acs103 – ident: 2016123003351140000_139.8.2307.18 doi: 10.1093/brain/awv051 – ident: 2016123003351140000_139.8.2307.42 doi: 10.1016/j.neuroimage.2014.06.044 – ident: 2016123003351140000_139.8.2307.52 doi: 10.1016/j.neuron.2012.12.028 – ident: 2016123003351140000_139.8.2307.77 doi: 10.1073/pnas.1400181111 – ident: 2016123003351140000_139.8.2307.13 doi: 10.1016/j.neulet.2005.07.020 – ident: 2016123003351140000_139.8.2307.71 doi: 10.1146/annurev-clinpsy-032511-143049 – ident: 2016123003351140000_139.8.2307.58 doi: 10.1038/nrn700 – ident: 2016123003351140000_139.8.2307.6 doi: 10.1371/journal.pcbi.1003171 – ident: 2016123003351140000_139.8.2307.38 doi: 10.1152/jn.90247.2008 – ident: 2016123003351140000_139.8.2307.26 doi: 10.1016/j.neuroimage.2011.08.035 – ident: 2016123003351140000_139.8.2307.34 doi: 10.1016/j.neuroimage.2013.05.079 – ident: 2016123003351140000_139.8.2307.9 doi: 10.1073/pnas.1422487112 – ident: 2016123003351140000_139.8.2307.27 doi: 10.1523/JNEUROSCI.5166-09.2010 – ident: 2016123003351140000_139.8.2307.70 doi: 10.1038/nn1727 – ident: 2016123003351140000_139.8.2307.31 doi: 10.1126/science.286.5439.548 – ident: 2016123003351140000_139.8.2307.60 doi: 10.1016/j.neuroimage.2012.08.052 – ident: 2016123003351140000_139.8.2307.8 doi: 10.1007/s00702-007-0742-4 – ident: 2016123003351140000_139.8.2307.15 doi: 10.1016/j.neuroimage.2009.12.011 – ident: 2016123003351140000_139.8.2307.78 doi: 10.1002/hbm.21379 – ident: 2016123003351140000_139.8.2307.68 doi: 10.1152/jn.00235.2015 – ident: 2016123003351140000_139.8.2307.14 doi: 10.1016/j.biopsych.2007.06.025 – ident: 2016123003351140000_139.8.2307.48 doi: 10.1093/cercor/bhl047 – ident: 2016123003351140000_139.8.2307.21 doi: 10.1016/j.nicl.2014.07.003 – ident: 2016123003351140000_139.8.2307.22 doi: 10.1016/j.neuroimage.2007.01.022 – ident: 2016123003351140000_139.8.2307.49 doi: 10.1371/journal.pcbi.1000106 – ident: 2016123003351140000_139.8.2307.2 doi: 10.1016/j.neuroimage.2010.05.067 – ident: 2016123003351140000_139.8.2307.43 doi: 10.1016/j.neuroimage.2006.02.002 – ident: 2016123003351140000_139.8.2307.50 doi: 10.1093/brain/121.6.1013 – ident: 2016123003351140000_139.8.2307.55 doi: 10.1016/j.neuroimage.2013.08.048 – volume: 148 start-page: 289 year: 2010 ident: 2016123003351140000_139.8.2307.56 article-title: Hippocampal signal complexity in mesial temporal lobe epilepsy: a noisy brain is a healthy brain publication-title: Arch Ital Biol – volume: 7 start-page: e3973 year: 2012 ident: 2016123003351140000_139.8.2307.36 article-title: Non-stationarity in the “resting brain's” modular architecture publication-title: Plos One doi: 10.1371/journal.pone.0039731 – ident: 2016123003351140000_139.8.2307.4 doi: 10.1016/j.neuroimage.2011.10.002 – ident: 2016123003351140000_139.8.2307.30 doi: 10.1016/j.biopsych.2008.03.031 – ident: 2016123003351140000_139.8.2307.39 doi: 10.1016/j.neuroimage.2007.10.052 – volume: 3 start-page: 171 year: 1958 ident: 2016123003351140000_139.8.2307.46 article-title: On the combination of independent tests publication-title: Magyar Tud Akad Mat Kutato Int Kozl – reference: 29917047 - Brain. 2018 Aug 1;141(8):e64 – reference: 27457229 - Brain. 2016 Aug;139(Pt 8):2110-2 |
SSID | ssj0014326 |
Score | 2.6146877 |
SecondaryResourceType | review_article |
Snippet | SEE MATTAR ET AL DOI101093/AWW151 FOR A SCIENTIFIC COMMENTARY ON THIS ARTICLE: Functional brain networks demonstrate significant temporal variability and... |
SourceID | proquest pubmed crossref |
SourceType | Aggregation Database Index Database Enrichment Source |
StartPage | 2307 |
SubjectTerms | Adolescent Adult Attention Deficit Disorder with Hyperactivity - diagnostic imaging Attention Deficit Disorder with Hyperactivity - physiopathology Autistic Disorder - diagnostic imaging Autistic Disorder - physiopathology Child Diffusion Tensor Imaging - methods Electroencephalography - methods Functional Neuroimaging - methods Humans Magnetic Resonance Imaging - methods Multimodal Imaging Schizophrenia - diagnostic imaging Schizophrenia - physiopathology Time Factors Young Adult |
Title | Neural, electrophysiological and anatomical basis of brain-network variability and its characteristic changes in mental disorders |
URI | https://www.ncbi.nlm.nih.gov/pubmed/27421791 https://www.proquest.com/docview/1807279719 |
Volume | 139 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaWIiEuiDfLS0aC0-I2D8eOj6gClVbl1IreosSx1Ugoi-guK7jxk_iHjD2uN0GpVLhEKyvj1Xq-nYc9_oaQ17pVLS9rxZQsOONtbRlktoo1eS3rsml04u9WHX8SB6f88Kw4m81-D6qW1qtmV_-cvFfyP1qFMdCruyX7D5qNk8IAfAb9whM0DM9r6dgxa3jC_kXoZuP3KaI5Qx5WyKqREgAcFpKPNK4tBOuxAHzxHbJlJOv-EU8S9IjGOdwO9pWzoRdAG0g7L0aHwm7eyR4huPFQynKw8RC3qg-7CK79c4Njn00XS4W6tT9BOa-Xm-29tSh9VHfDnYtUxLq5rTUWrFRIPLtr0ABzkTAIQ8TIQiPfUYBiObS3OfbMDb4bwsN00i8gZ5ZfXuf8NpsUyaHGBNx_OcZYrogH9Xnl5SuUvkFuZpCZ-Cz-41E8uOK57_AXf1q4awHSe156D6XHUdAVqY0PcU7ukjshN6HvEGj3yMz098mt41B98YD8Qry9pVNoo6BmukUb9WijS0tHaKMDtHkJQBsdo40GtNGup4g2GtH2kJx-eH-yf8BCCw-muShWLG0yqQy3RpoilyazSmQG_G-uk6aVZVM7MqAkMVaoUhibuwjUFqaVEgJRo3n-iOz0y948IbSx0riAW0CKwS1Xtc4tLHDWWgjhdannZHG5pJUO_PauzcqXakp9c_Imvv0VeV2ueO_VpXYqMLzuNK3uzXJ9UaVlArG_kqmak8eotjiTq39wvL9Pr_ktz8jt7R_kOdlZfVubFxDsrpqXHl5_AOYIsWc |
linkProvider | Flying Publisher |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Neural%2C+electrophysiological+and+anatomical+basis+of+brain-network+variability+and+its+characteristic+changes+in+mental+disorders&rft.jtitle=Brain+%28London%2C+England+%3A+1878%29&rft.au=Zhang%2C+Jie&rft.au=Cheng%2C+Wei&rft.au=Liu%2C+Zhaowen&rft.au=Zhang%2C+Kai&rft.date=2016-08-01&rft.issn=0006-8950&rft.eissn=1460-2156&rft.volume=139&rft.issue=8&rft.spage=2307&rft.epage=2321&rft_id=info:doi/10.1093%2Fbrain%2Faww143&rft.externalDBID=n%2Fa&rft.externalDocID=10_1093_brain_aww143 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0006-8950&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0006-8950&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0006-8950&client=summon |