Metabolism and Hemoglobin Adduct Formation of Acrylamide in Humans
Acrylamide (AM), used in the manufacture of polyacrylamide and grouting agents, is produced during the cooking of foods. Workplace exposure to AM can occur through the dermal and inhalation routes. The objectives of this study were to evaluate the metabolism of AM in humans following oral administra...
Saved in:
Published in | Toxicological sciences Vol. 85; no. 1; pp. 447 - 459 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Oxford University Press
01.05.2005
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Acrylamide (AM), used in the manufacture of polyacrylamide and grouting agents, is produced during the cooking of foods. Workplace exposure to AM can occur through the dermal and inhalation routes. The objectives of this study were to evaluate the metabolism of AM in humans following oral administration, to compare hemoglobin adduct formation on oral and dermal administration, and to measure hormone levels. The health of the people exposed under controlled conditions was continually monitored. Prior to conducting exposures in humans, a low-dose study was conducted in rats administered 3 mg/kg (1,2,3-13C3) AM by gavage. The study protocol was reviewed and approved by Institute Review Boards both at RTI, which performed the sample analysis, and the clinical research center conducting the study. (1,2,3-13C3) AM was administered in an aqueous solution orally (single dose of 0.5, 1.0, or 3.0 mg/kg) or dermally (three daily doses of 3.0 mg/kg) to sterile male volunteers. Urine samples (3 mg/kg oral dose) were analyzed for AM metabolites using 13C NMR spectroscopy. Approximately 86% of the urinary metabolites were derived from GSH conjugation and excreted as N-acetyl-S-(3-amino-3-oxopropyl)cysteine and its S-oxide. Glycidamide, glyceramide, and low levels of N-acetyl-S-(3-amino-2-hydroxy-3-oxopropyl)cysteine were detected in urine. On oral administration, a linear dose response was observed for N-(2-carbamoylethyl)valine (AAVal) and N-(2-carbamoyl-2-hydroxyethyl)valine (GAVal) in hemoglobin. Dermal administration resulted in lower levels of AAVal and GAVal. This study indicated that humans metabolize AM via glycidamide to a lesser extent than rodents, and dermal uptake was approximately 6.6% of that observed with oral uptake. |
---|---|
AbstractList | Acrylamide (AM), used in the manufacture of polyacrylamide and grouting agents, is produced during the cooking of foods. Workplace exposure to AM can occur through the dermal and inhalation routes. The objectives of this study were to evaluate the metabolism of AM in humans following oral administration, to compare hemoglobin adduct formation on oral and dermal administration, and to measure hormone levels. The health of the people exposed under controlled conditions was continually monitored. Prior to conducting exposures in humans, a low-dose study was conducted in rats administered 3 mg/kg (1,2,3- super(13)C sub(3)) AM by gavage. The study protocol was reviewed and approved by Institute Review Boards both at RTI, which performed the sample analysis, and the clinical research center conducting the study. (1,2,3- super(13)C sub(3)) AM was administered in an aqueous solution orally (single dose of 0.5, 1.0, or 3.0 mg/kg) or dermally (three daily doses of 3.0 mg/kg) to sterile male volunteers. Urine samples (3 mg/kg oral dose) were analyzed for AM metabolites using super(13)C NMR spectroscopy. Approximately 86% of the urinary metabolites were derived from GSH conjugation and excreted as N-acetyl-S-(3-amino-3-oxopropyl)cysteine and its S-oxide. Glycidamide, glyceramide, and low levels of N-acetyl-S-(3-amino-2-hydroxy-3-oxopropyl)cysteine were detected in urine. On oral administration, a linear dose response was observed for N-(2-carbamoylethyl)valine (AAVal) and N-(2-carbamoyl-2-hydroxyethyl)valine (GAVal) in hemoglobin. Dermal administration resulted in lower levels of AAVal and GAVal. This study indicated that humans metabolize AM via glycidamide to a lesser extent than rodents, and dermal uptake was approximately 6.6% of that observed with oral uptake. Acrylamide (AM), used in the manufacture of polyacrylamide and grouting agents, is produced during the cooking of foods. Workplace exposure to AM can occur through the dermal and inhalation routes. The objectives of this study were to evaluate the metabolism of AM in humans following oral administration, to compare hemoglobin adduct formation on oral and dermal administration, and to measure hormone levels. The health of the people exposed under controlled conditions was continually monitored. Prior to conducting exposures in humans, a low-dose study was conducted in rats administered 3 mg/kg (1,2,3-13C3) AM by gavage. The study protocol was reviewed and approved by Institute Review Boards both at RTI, which performed the sample analysis, and the clinical research center conducting the study. (1,2,3-13C3) AM was administered in an aqueous solution orally (single dose of 0.5, 1.0, or 3.0 mg/kg) or dermally (three daily doses of 3.0 mg/kg) to sterile male volunteers. Urine samples (3 mg/kg oral dose) were analyzed for AM metabolites using 13C NMR spectroscopy. Approximately 86% of the urinary metabolites were derived from GSH conjugation and excreted as N-acetyl-S-(3-amino-3-oxopropyl)cysteine and its S-oxide. Glycidamide, glyceramide, and low levels of N-acetyl-S-(3-amino-2-hydroxy-3-oxopropyl)cysteine were detected in urine. On oral administration, a linear dose response was observed for N-(2-carbamoylethyl)valine (AAVal) and N-(2-carbamoyl-2-hydroxyethyl)valine (GAVal) in hemoglobin. Dermal administration resulted in lower levels of AAVal and GAVal. This study indicated that humans metabolize AM via glycidamide to a lesser extent than rodents, and dermal uptake was approximately 6.6% of that observed with oral uptake.Acrylamide (AM), used in the manufacture of polyacrylamide and grouting agents, is produced during the cooking of foods. Workplace exposure to AM can occur through the dermal and inhalation routes. The objectives of this study were to evaluate the metabolism of AM in humans following oral administration, to compare hemoglobin adduct formation on oral and dermal administration, and to measure hormone levels. The health of the people exposed under controlled conditions was continually monitored. Prior to conducting exposures in humans, a low-dose study was conducted in rats administered 3 mg/kg (1,2,3-13C3) AM by gavage. The study protocol was reviewed and approved by Institute Review Boards both at RTI, which performed the sample analysis, and the clinical research center conducting the study. (1,2,3-13C3) AM was administered in an aqueous solution orally (single dose of 0.5, 1.0, or 3.0 mg/kg) or dermally (three daily doses of 3.0 mg/kg) to sterile male volunteers. Urine samples (3 mg/kg oral dose) were analyzed for AM metabolites using 13C NMR spectroscopy. Approximately 86% of the urinary metabolites were derived from GSH conjugation and excreted as N-acetyl-S-(3-amino-3-oxopropyl)cysteine and its S-oxide. Glycidamide, glyceramide, and low levels of N-acetyl-S-(3-amino-2-hydroxy-3-oxopropyl)cysteine were detected in urine. On oral administration, a linear dose response was observed for N-(2-carbamoylethyl)valine (AAVal) and N-(2-carbamoyl-2-hydroxyethyl)valine (GAVal) in hemoglobin. Dermal administration resulted in lower levels of AAVal and GAVal. This study indicated that humans metabolize AM via glycidamide to a lesser extent than rodents, and dermal uptake was approximately 6.6% of that observed with oral uptake. Acrylamide (AM), used in the manufacture of polyacrylamide and grouting agents, is produced during the cooking of foods. Workplace exposure to AM can occur through the dermal and inhalation routes. The objectives of this study were to evaluate the metabolism of AM in humans following oral administration, to compare hemoglobin adduct formation on oral and dermal administration, and to measure hormone levels. The health of the people exposed under controlled conditions was continually monitored. Prior to conducting exposures in humans, a low-dose study was conducted in rats administered 3 mg/kg (1,2,3-13C3) AM by gavage. The study protocol was reviewed and approved by Institute Review Boards both at RTI, which performed the sample analysis, and the clinical research center conducting the study. (1,2,3-13C3) AM was administered in an aqueous solution orally (single dose of 0.5, 1.0, or 3.0 mg/kg) or dermally (three daily doses of 3.0 mg/kg) to sterile male volunteers. Urine samples (3 mg/kg oral dose) were analyzed for AM metabolites using 13C NMR spectroscopy. Approximately 86% of the urinary metabolites were derived from GSH conjugation and excreted as N-acetyl-S-(3-amino-3-oxopropyl)cysteine and its S-oxide. Glycidamide, glyceramide, and low levels of N-acetyl-S-(3-amino-2-hydroxy-3-oxopropyl)cysteine were detected in urine. On oral administration, a linear dose response was observed for N-(2-carbamoylethyl)valine (AAVal) and N-(2-carbamoyl-2-hydroxyethyl)valine (GAVal) in hemoglobin. Dermal administration resulted in lower levels of AAVal and GAVal. This study indicated that humans metabolize AM via glycidamide to a lesser extent than rodents, and dermal uptake was approximately 6.6% of that observed with oral uptake. |
Author | Fennell, Timothy R. Spicer, Rebecca Burgess, Jason Friedman, Marvin A. Sumner, Susan C.J. Snyder, Rodney W. Bridson, William E. |
Author_xml | – sequence: 1 givenname: Timothy R. surname: Fennell fullname: Fennell, Timothy R. email: To whom correspondence should be addressed at Research Triangle Institute, P.O. Box 12190, 3040 Cornwallis Road, Research Triangle Park, NC 27709. Fax: (919) 541-6499. Fennell@RTI.org. organization: Research Triangle Institute, Research Triangle Park, North Carolina 27709 – sequence: 2 givenname: Susan C.J. surname: Sumner fullname: Sumner, Susan C.J. organization: Research Triangle Institute, Research Triangle Park, North Carolina 27709 – sequence: 3 givenname: Rodney W. surname: Snyder fullname: Snyder, Rodney W. organization: Research Triangle Institute, Research Triangle Park, North Carolina 27709 – sequence: 4 givenname: Jason surname: Burgess fullname: Burgess, Jason organization: Research Triangle Institute, Research Triangle Park, North Carolina 27709 – sequence: 5 givenname: Rebecca surname: Spicer fullname: Spicer, Rebecca organization: Covance Clinical Research Unit, Inc., Madison, Wisconsin 53703; and – sequence: 6 givenname: William E. surname: Bridson fullname: Bridson, William E. organization: Covance Clinical Research Unit, Inc., Madison, Wisconsin 53703; and – sequence: 7 givenname: Marvin A. surname: Friedman fullname: Friedman, Marvin A. organization: University of Medicine and Dentistry of New Jersey, Newark, New Jersey 07103 |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/15625188$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkTlPxDAQhS0E4i5pUSq6gB3HdlwuiGW5RAPSisbyiQxJDLYjLf-ewC4UFNDMjEbfG2ne2wHrfegtAAcIHiPI8UkOi6T9yYvzkPI1sD0uaQl5xddXM4UN3AI7KT1DiBCFfBNsIUIrgppmG5ze2ixVaH3qCtmbYma78NQG5ftiYsygczENsZPZh74Irpjo-N7KzhtbjMRs6GSf9sCGk22y-6u-Cx6m5_dns_Lm7uLybHJT6pqSXKJGK-Uo1ERhM5aqdoQTKG1NpJHUsUbVijmHGUNEQdagxhpcO6OkYaZGeBccLe--xvA22JRF55O2bSt7G4YkKGOYEM7_BRFrWMUrMoKHK3BQnTXiNfpOxnfxbc8I4CWgY0gpWie0z19m5Ch9KxAUnyGIZQhiGcKoKn-pfg7_zfuU7eIHlvFl_AkzImbzRzG_vb56nM6nYo4_ABeNm9A |
CitedBy_id | crossref_primary_10_1016_j_envres_2007_03_005 crossref_primary_10_2337_dc09_0309 crossref_primary_10_1002_jbt_22326 crossref_primary_10_1016_j_ejmech_2014_02_032 crossref_primary_10_1080_10408440600851377 crossref_primary_10_1093_mutage_gex036 crossref_primary_10_1007_s00204_017_1990_1 crossref_primary_10_1016_j_tox_2024_153950 crossref_primary_10_1158_1055_9965_EPI_05_0647 crossref_primary_10_1016_j_envpol_2023_122508 crossref_primary_10_1021_jf703749h crossref_primary_10_1016_j_chroma_2007_07_044 crossref_primary_10_1080_10408398_2019_1588222 crossref_primary_10_1038_s41598_017_17692_5 crossref_primary_10_1007_s00204_019_02412_x crossref_primary_10_1093_toxsci_kfq323 crossref_primary_10_3390_antiox13121431 crossref_primary_10_1038_jes_2015_12 crossref_primary_10_3390_molecules26144314 crossref_primary_10_1080_03601234_2019_1634418 crossref_primary_10_5861_ijrsp_2013_250 crossref_primary_10_1016_j_yrtph_2008_05_010 crossref_primary_10_1016_j_chemosphere_2022_133880 crossref_primary_10_1093_toxsci_kfn214 crossref_primary_10_1016_j_jhazmat_2013_06_069 crossref_primary_10_1021_jf800277h crossref_primary_10_1016_j_fct_2023_113696 crossref_primary_10_1021_acs_jafc_1c04647 crossref_primary_10_1016_j_foodchem_2007_07_013 crossref_primary_10_1016_j_fct_2014_03_037 crossref_primary_10_1093_toxsci_kfi307 crossref_primary_10_1149_1945_7111_aca8d5 crossref_primary_10_1007_s11033_022_07642_4 crossref_primary_10_1007_s00204_019_02484_9 crossref_primary_10_1017_S0007114510005003 crossref_primary_10_1016_j_fct_2008_12_032 crossref_primary_10_1016_j_ijheh_2014_03_005 crossref_primary_10_1016_j_ecoenv_2024_117210 crossref_primary_10_1039_C5FO00342C crossref_primary_10_1080_10937404_2010_499735 crossref_primary_10_1016_j_taap_2008_12_001 crossref_primary_10_1007_s00204_008_0279_9 crossref_primary_10_1007_s11356_021_13580_8 crossref_primary_10_1016_j_fct_2011_06_057 crossref_primary_10_1080_15287390701601202 crossref_primary_10_1016_j_fct_2012_04_004 crossref_primary_10_1177_0960327116686818 crossref_primary_10_1080_10826070701274866 crossref_primary_10_1016_j_foodchem_2021_131653 crossref_primary_10_1158_1055_9965_EPI_12_1387 crossref_primary_10_1007_s00204_015_1494_9 crossref_primary_10_3109_15376516_2012_759307 crossref_primary_10_1021_acs_jafc_2c03016 crossref_primary_10_1093_aje_kwp213 crossref_primary_10_1155_2009_153472 crossref_primary_10_1016_j_chemosphere_2023_138798 crossref_primary_10_1016_j_jchromb_2010_03_034 crossref_primary_10_1016_j_scitotenv_2018_02_338 crossref_primary_10_3390_ijerph17207391 crossref_primary_10_1038_nutd_2016_48 crossref_primary_10_1021_tx200446z crossref_primary_10_1038_srep34902 crossref_primary_10_1016_j_toxlet_2011_03_008 crossref_primary_10_1016_j_toxlet_2005_11_004 crossref_primary_10_1021_tx700408t crossref_primary_10_1016_j_envpol_2017_03_016 crossref_primary_10_1002_mnfr_201000234 crossref_primary_10_1007_s00204_008_0369_8 crossref_primary_10_1007_s00204_024_03798_z crossref_primary_10_1007_s00420_010_0558_7 crossref_primary_10_1002_em_21939 crossref_primary_10_1016_j_chroma_2011_05_008 crossref_primary_10_1016_j_saa_2020_118644 crossref_primary_10_1016_j_chemosphere_2021_133458 crossref_primary_10_1016_j_toxlet_2018_06_008 crossref_primary_10_1080_0886022X_2016_1256320 crossref_primary_10_1016_j_fct_2009_11_049 crossref_primary_10_1038_sj_ejcn_1602704 crossref_primary_10_1016_j_aca_2015_08_033 crossref_primary_10_1016_j_envres_2014_08_043 crossref_primary_10_1080_19440049_2016_1217068 crossref_primary_10_3390_ani12131723 crossref_primary_10_1002_jat_1410 crossref_primary_10_3390_toxics12070484 crossref_primary_10_1016_j_fct_2009_11_040 crossref_primary_10_1016_j_fct_2006_12_007 crossref_primary_10_1093_mutage_gew028 crossref_primary_10_1080_19440049_2014_957737 crossref_primary_10_1038_jes_2013_34 crossref_primary_10_1016_j_envint_2022_107517 crossref_primary_10_1016_j_envres_2021_110796 crossref_primary_10_1021_jf800490s crossref_primary_10_1111_jfpp_15421 crossref_primary_10_2903_j_efsa_2015_4104 crossref_primary_10_1002_rcm_3530 crossref_primary_10_1002_jbt_21717 crossref_primary_10_1007_s00204_010_0605_x crossref_primary_10_1002_dta_3372 crossref_primary_10_1007_s00204_005_0011_y crossref_primary_10_1016_j_envpol_2021_116816 crossref_primary_10_1016_j_jhazmat_2020_122364 crossref_primary_10_1038_s41598_022_19178_5 crossref_primary_10_1002_jsfa_6349 crossref_primary_10_1016_j_fct_2014_01_046 crossref_primary_10_1021_jf073042g crossref_primary_10_3389_fnut_2024_1371612 crossref_primary_10_1039_C3FO60483G crossref_primary_10_1016_j_mrgentox_2009_04_009 crossref_primary_10_1016_j_fct_2013_05_008 crossref_primary_10_1021_jf703746f crossref_primary_10_1016_j_fct_2009_08_010 crossref_primary_10_1007_s00204_008_0296_8 crossref_primary_10_1016_j_taap_2005_03_003 crossref_primary_10_1080_19393210_2012_656145 crossref_primary_10_1007_s00216_022_04143_y crossref_primary_10_1016_j_taap_2014_01_010 crossref_primary_10_1007_s00204_020_02733_2 crossref_primary_10_1371_journal_pone_0225449 crossref_primary_10_1093_toxsci_kfl069 crossref_primary_10_1177_0748233710380217 crossref_primary_10_1016_j_fct_2021_112799 crossref_primary_10_3109_10408440903524254 crossref_primary_10_1016_j_lwt_2010_11_002 crossref_primary_10_1002_mnfr_202100584 crossref_primary_10_3390_ijms23116112 crossref_primary_10_1007_s00204_017_2143_2 crossref_primary_10_1016_j_toxlet_2012_12_017 crossref_primary_10_1002_poc_1600 crossref_primary_10_1016_j_yrtph_2008_08_004 crossref_primary_10_1016_j_envpol_2018_03_109 crossref_primary_10_1111_j_1742_7843_2011_00761_x crossref_primary_10_1016_j_cbi_2017_07_005 crossref_primary_10_1080_08958370600748430 crossref_primary_10_3389_ftox_2023_1051483 crossref_primary_10_1007_s11356_016_7126_y crossref_primary_10_1080_10408398_2022_2099344 crossref_primary_10_1080_10807039_2011_552399 crossref_primary_10_1097_01_EHX_0000418020_81995_dc crossref_primary_10_3389_fonc_2022_970021 crossref_primary_10_1289_ehp_0901021 crossref_primary_10_1016_j_ijheh_2009_01_002 crossref_primary_10_1016_j_envint_2018_04_047 crossref_primary_10_1093_toxsci_kfv104 crossref_primary_10_1080_01635581_2014_916323 crossref_primary_10_1016_j_envint_2022_107458 crossref_primary_10_1016_j_talanta_2017_09_092 crossref_primary_10_1016_j_toxlet_2012_10_003 crossref_primary_10_1080_02772248_2018_1458231 crossref_primary_10_1016_j_talanta_2014_07_042 crossref_primary_10_1016_j_reprotox_2021_02_006 crossref_primary_10_1158_1055_9965_EPI_08_0832 crossref_primary_10_1016_j_fct_2016_01_021 crossref_primary_10_1002_rcm_2396 crossref_primary_10_3390_nu12123863 crossref_primary_10_1038_s41370_018_0018_0 crossref_primary_10_1002_ijc_23359 crossref_primary_10_1016_j_mrgentox_2009_12_012 crossref_primary_10_23902_trkjnat_454020 crossref_primary_10_1016_j_jtumed_2017_03_005 crossref_primary_10_1007_s00216_011_5692_x crossref_primary_10_1016_j_tox_2006_12_014 |
Cites_doi | 10.1021/tx00025a014 10.1021/tx960113p 10.1080/02772248609357133 10.1093/toxsci/kfg165 10.1093/toxsci/71.2.164 10.1006/taap.1994.1127 10.1006/faat.1995.1112 10.1093/toxsci/kfg191 10.1016/0027-5107(76)90256-6 10.3109/03602539608994018 10.1017/S0317167100019739 10.1016/S0890-6238(02)00078-3 10.1006/taap.1993.1085 10.1016/S1382-6689(99)00005-8 10.1016/j.toxlet.2004.07.008 10.1016/0003-2697(86)90524-5 10.1016/0006-2952(70)90009-2 10.1016/0006-2952(75)90336-6 10.1021/jf020302f 10.1016/0041-008X(86)90109-2 10.1021/tx034108e 10.1017/S0317167100119201 10.1021/tx990040k 10.5271/sjweh.608 10.1093/carcin/16.5.1161 10.1289/ehp.7511129 10.1093/jnci/djh186 10.1016/0165-1218(85)90075-8 10.1021/jo01062a003 10.1021/tx00017a004 10.1002/tcm.1770010111 10.1006/abio.1999.4267 10.1039/b204938d 10.1016/0041-008X(82)90024-2 10.1021/tx9602123 10.1016/S0278-6915(03)00188-1 |
ContentType | Journal Article |
DBID | BSCLL AAYXX CITATION CGR CUY CVF ECM EIF NPM 7U7 C1K 7X8 |
DOI | 10.1093/toxsci/kfi069 |
DatabaseName | Istex CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Toxicology Abstracts Environmental Sciences and Pollution Management MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Toxicology Abstracts Environmental Sciences and Pollution Management MEDLINE - Academic |
DatabaseTitleList | Toxicology Abstracts MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Public Health Pharmacy, Therapeutics, & Pharmacology |
EISSN | 1096-0929 |
EndPage | 459 |
ExternalDocumentID | 15625188 10_1093_toxsci_kfi069 ark_67375_HXZ_XMKJZFXF_X |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- --K -E4 .2P .I3 .ZR 0R~ 123 18M 1B1 1~5 29Q 2WC 4.4 48X 4G. 53G 5RE 5VS 5WA 5WD 7-5 70D A8Z AABZA AACZT AAEDT AAHBH AAIMJ AAJKP AAJQQ AALRI AAMDB AAMVS AAOGV AAPNW AAPQZ AAPXW AAQXK AARHZ AAUAY AAUQX AAVAP AAVLN AAWDT AAXUO AAYWO ABDFA ABEJV ABEUO ABGNP ABIME ABIXL ABJNI ABKDP ABMAC ABMNT ABNGD ABNHQ ABNKS ABPQP ABPTD ABQLI ABVGC ABWST ABWVN ABXVV ABXZS ABZBJ ACFRR ACGFO ACGFS ACRPL ACUFI ACUKT ACUTJ ACUTO ADBBV ADEYI ADEZT ADGKP ADGZP ADHKW ADHZD ADIPN ADMUD ADNBA ADNMO ADOCK ADQBN ADRTK ADVEK ADYVW ADZTZ ADZXQ AEGPL AEGXH AEHUL AEJOX AEKSI AELWJ AEMDU AENEX AENZO AEPUE AETBJ AEWNT AFFZL AFGWE AFIYH AFOFC AGINJ AGKEF AGORE AGQPQ AGQXC AGSYK AHGBF AHMMS AHXPO AIJHB AJBYB AJEEA AJNCP AKHUL AKRWK AKWXX ALMA_UNASSIGNED_HOLDINGS ALUQC ALXQX ANFBD APIBT APWMN AQDSO ARIXL ASPBG ATGXG ATTQO AVWKF AXUDD AYOIW AZFZN BAWUL BAYMD BCRHZ BEYMZ BHONS BQDIO BSCLL BSWAC BTRTY BVRKM CAG CDBKE COF CS3 CZ4 DAKXR DIK DILTD DM4 DU5 D~K E3Z EBD EBS EDH EE~ EJD ELUNK EMOBN F5P F9B FDB FEDTE FGOYB FHSFR FIRID FLUFQ FOEOM FOTVD FQBLK GAUVT GJXCC GX1 H13 H5~ HAR HH5 HVGLF HW0 HZ~ I-F IHE IOX JXSIZ KAQDR KBUDW KOP KQ8 KSI KSN LG5 M-Z N9A NGC NLBLG NOMLY NOYVH NQ- NTWIH NU- NVLIB O-L O0~ O9- OAWHX OBOKY OCZFY ODMLO OHT OJQWA OJZSN OPAEJ OWPYF O~Y P2P PAFKI PB- PEELM Q1. Q5Y R2- R44 RD5 RIG RNI ROL ROX RPZ RUSNO RW1 RXO RZO SSZ SV3 TJX TLC TR2 UHS W8F WOQ X7H XPP YAYTL YKOAZ YXANX ZGI ZKX ZMT ZXP ~02 ~91 AAYXX CITATION 1TH AACTN ABQTQ ADJQC ADRIX AFXEN CGR CUY CVF ECM EIF J21 M49 NPM OK1 YCJ 7U7 C1K 7X8 |
ID | FETCH-LOGICAL-c465t-18cbbf60c5b3dc5b24f5950ae45ada6f78b4b7ff37715b07818ed34fdbad7d413 |
ISSN | 1096-6080 |
IngestDate | Fri Jul 11 11:03:42 EDT 2025 Sun Aug 24 03:29:33 EDT 2025 Wed Feb 19 01:40:30 EST 2025 Thu Apr 24 23:10:59 EDT 2025 Tue Jul 01 02:57:05 EDT 2025 Tue Aug 05 16:50:47 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c465t-18cbbf60c5b3dc5b24f5950ae45ada6f78b4b7ff37715b07818ed34fdbad7d413 |
Notes | local:kfi069 istex:9ED24B46130AA33B5CD51110C1473D8C2225B3F1 1To whom correspondence should be addressed at Research Triangle Institute, P.O. Box 12190, 3040 Cornwallis Road, Research Triangle Park, NC 27709. Fax: (919) 541-6499. E-mail: Fennell@RTI.org. ark:/67375/HXZ-XMKJZFXF-X ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 ObjectType-Article-1 ObjectType-Feature-2 |
OpenAccessLink | https://academic.oup.com/toxsci/article-pdf/85/1/447/16691858/kfi069.pdf |
PMID | 15625188 |
PQID | 17872925 |
PQPubID | 23462 |
PageCount | 13 |
ParticipantIDs | proquest_miscellaneous_67735599 proquest_miscellaneous_17872925 pubmed_primary_15625188 crossref_citationtrail_10_1093_toxsci_kfi069 crossref_primary_10_1093_toxsci_kfi069 istex_primary_ark_67375_HXZ_XMKJZFXF_X |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2005-05-01 |
PublicationDateYYYYMMDD | 2005-05-01 |
PublicationDate_xml | – month: 05 year: 2005 text: 2005-05-01 day: 01 |
PublicationDecade | 2000 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Toxicological sciences |
PublicationTitleAlternate | Toxicol. Sci |
PublicationYear | 2005 |
Publisher | Oxford University Press |
Publisher_xml | – name: Oxford University Press |
References | key 20171013190213_BIB17 key 20171013190213_BIB39 key 20171013190213_BIB18 key 20171013190213_BIB19 key 20171013190213_BIB13 key 20171013190213_BIB35 key 20171013190213_BIB14 key 20171013190213_BIB36 key 20171013190213_BIB15 key 20171013190213_BIB37 key 20171013190213_BIB16 key 20171013190213_BIB38 key 20171013190213_BIB3 key 20171013190213_BIB2 key 20171013190213_BIB5 key 20171013190213_BIB4 key 20171013190213_BIB1 key 20171013190213_BIB31 key 20171013190213_BIB10 key 20171013190213_BIB32 key 20171013190213_BIB11 key 20171013190213_BIB33 key 20171013190213_BIB12 key 20171013190213_BIB34 key 20171013190213_BIB7 key 20171013190213_BIB6 key 20171013190213_BIB9 key 20171013190213_BIB8 key 20171013190213_BIB30 key 20171013190213_BIB28 key 20171013190213_BIB29 key 20171013190213_BIB24 key 20171013190213_BIB25 key 20171013190213_BIB26 key 20171013190213_BIB27 key 20171013190213_BIB42 key 20171013190213_BIB20 key 20171013190213_BIB21 key 20171013190213_BIB43 key 20171013190213_BIB22 key 20171013190213_BIB23 key 20171013190213_BIB40 key 20171013190213_BIB41 |
References_xml | – ident: key 20171013190213_BIB33 doi: 10.1021/tx00025a014 – ident: key 20171013190213_BIB41 – ident: key 20171013190213_BIB6 – ident: key 20171013190213_BIB1 doi: 10.1021/tx960113p – ident: key 20171013190213_BIB23 doi: 10.1080/02772248609357133 – ident: key 20171013190213_BIB9 doi: 10.1093/toxsci/kfg165 – ident: key 20171013190213_BIB12 doi: 10.1093/toxsci/71.2.164 – ident: key 20171013190213_BIB7 doi: 10.1006/taap.1994.1127 – ident: key 20171013190213_BIB14 doi: 10.1006/faat.1995.1112 – ident: key 20171013190213_BIB35 doi: 10.1093/toxsci/kfg191 – ident: key 20171013190213_BIB24 doi: 10.1016/0027-5107(76)90256-6 – ident: key 20171013190213_BIB8 – ident: key 20171013190213_BIB4 doi: 10.3109/03602539608994018 – ident: key 20171013190213_BIB29 doi: 10.1017/S0317167100019739 – ident: key 20171013190213_BIB39 doi: 10.1016/S0890-6238(02)00078-3 – ident: key 20171013190213_BIB2 doi: 10.1006/taap.1993.1085 – ident: key 20171013190213_BIB20 doi: 10.1016/S1382-6689(99)00005-8 – ident: key 20171013190213_BIB21 doi: 10.1016/j.toxlet.2004.07.008 – ident: key 20171013190213_BIB43 doi: 10.1016/0003-2697(86)90524-5 – ident: key 20171013190213_BIB17 doi: 10.1016/0006-2952(70)90009-2 – ident: key 20171013190213_BIB10 doi: 10.1016/0006-2952(75)90336-6 – ident: key 20171013190213_BIB37 doi: 10.1021/jf020302f – ident: key 20171013190213_BIB19 doi: 10.1016/0041-008X(86)90109-2 – ident: key 20171013190213_BIB38 – ident: key 20171013190213_BIB15 doi: 10.1021/tx034108e – ident: key 20171013190213_BIB30 doi: 10.1017/S0317167100119201 – ident: key 20171013190213_BIB32 doi: 10.1021/tx990040k – ident: key 20171013190213_BIB16 doi: 10.5271/sjweh.608 – ident: key 20171013190213_BIB40 – ident: key 20171013190213_BIB42 – ident: key 20171013190213_BIB28 doi: 10.1093/carcin/16.5.1161 – ident: key 20171013190213_BIB13 – ident: key 20171013190213_BIB31 doi: 10.1289/ehp.7511129 – ident: key 20171013190213_BIB3 doi: 10.1093/jnci/djh186 – ident: key 20171013190213_BIB18 doi: 10.1016/0165-1218(85)90075-8 – ident: key 20171013190213_BIB25 doi: 10.1021/jo01062a003 – ident: key 20171013190213_BIB5 doi: 10.1021/tx00017a004 – ident: key 20171013190213_BIB11 doi: 10.1002/tcm.1770010111 – ident: key 20171013190213_BIB26 doi: 10.1006/abio.1999.4267 – ident: key 20171013190213_BIB27 doi: 10.1039/b204938d – ident: key 20171013190213_BIB22 doi: 10.1016/0041-008X(82)90024-2 – ident: key 20171013190213_BIB34 doi: 10.1021/tx9602123 – ident: key 20171013190213_BIB36 doi: 10.1016/S0278-6915(03)00188-1 |
SSID | ssj0011609 |
Score | 2.2625244 |
Snippet | Acrylamide (AM), used in the manufacture of polyacrylamide and grouting agents, is produced during the cooking of foods. Workplace exposure to AM can occur... |
SourceID | proquest pubmed crossref istex |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 447 |
SubjectTerms | acrylamide Acrylamide - metabolism Acrylamide - pharmacokinetics Acrylamide - toxicity adducts Administration, Cutaneous Administration, Oral Adult Aged Animals Carbon Isotopes Dose-Response Relationship, Drug Epoxy Compounds - metabolism glycidamide hemoglobin Hemoglobins - drug effects Hemoglobins - metabolism Hemoglobins - physiology Humans Inactivation, Metabolic Linear Models Magnetic Resonance Spectroscopy Male Middle Aged Rats Rats, Inbred F344 |
Title | Metabolism and Hemoglobin Adduct Formation of Acrylamide in Humans |
URI | https://api.istex.fr/ark:/67375/HXZ-XMKJZFXF-X/fulltext.pdf https://www.ncbi.nlm.nih.gov/pubmed/15625188 https://www.proquest.com/docview/17872925 https://www.proquest.com/docview/67735599 |
Volume | 85 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ba9swFBZbA2Mwypbd0t30MPLSeLVjXdLHdiyEhIyypcz0xUi2xUIbuyQOJPv1O7JkK90W2PYijC0sJ9_xsY50zvch9J6kEGf0ycCTjCuPEM49IST3fBkqFmYJUxWV0vQzG12ScUQjJ3dUVZeU8kPy4491Jf-DKpwDXHWV7D8g29wUTsAx4AstIAztX2E8zUrA8KbWufieLQpN8DHPj8GfrJPSlSZW2_3Jcgv4z9OKJ6QS51vtzk1nxWaeNL7QfhpdeUjWZMRYfF2u4df1ohbw0kk-x7ubTfk2tfLKRZqDA2rWdM51QbaRbB-LlbWOev2Bumw_6zIhCPKYb_SYap9qZHju2I5xkMTwa_7muA2pVVls4NfBwbWa-0bCZQfG20WFY6BjtsCIAf7ClV1fuo9afQgbwO-1ziZfvk2afaWAVUk_zTNb1lUY_cSMfWJGrtSazL3uTFha-t3b7I9GqlnJ7DE6tOEEPjO28QTdy_I2ejC1CRNt1L0w1OTbHp65SrtVD3fxhSMt37bRI7N-i01Z2lN07mwLg21hZ1vY2BZubAsXCjvbwtDD2NYzdDn8NPs48qzehpcQRksvGCRSKuYnVIYpNH2i6Cn1RUaoSAVTfCCJ5EqFnAdUapaoQZaGRKVSpDyF2dBzdJAXefYSYQhEIU72lVAkISEjIqBcBQPJRMgYD2QH9eo_NU4sGb3WRLmJTVJEGBs4YgNHB3Wb7reGhWVvxwqhppdYXuvURU7jUXQVR9PJ-GoYDeOog97VEMbgUPUumcizYr2KA_iE9U_7dH8Pxnmoifo66IXB3j2TtZmjvVdeoYfuJXqNDsrlOnsD09pSvrW2-hP4H6Ze |
linkProvider | Library Specific Holdings |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Metabolism+and+hemoglobin+adduct+formation+of+acrylamide+in+humans&rft.jtitle=Toxicological+sciences&rft.au=Fennell%2C+Timothy+R&rft.au=Sumner%2C+Susan+C+J&rft.au=Snyder%2C+Rodney+W&rft.au=Burgess%2C+Jason&rft.date=2005-05-01&rft.issn=1096-6080&rft.volume=85&rft.issue=1&rft.spage=447&rft_id=info:doi/10.1093%2Ftoxsci%2Fkfi069&rft_id=info%3Apmid%2F15625188&rft.externalDocID=15625188 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1096-6080&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1096-6080&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1096-6080&client=summon |