Evolution of maternal effect senescence

Increased maternal age at reproduction is often associated with decreased offspring performance in numerous species of plants and animals (including humans). Current evolutionary theory considers such maternal effect senescence as part of a unified process of reproductive senescence, which is under...

Full description

Saved in:
Bibliographic Details
Published inProceedings of the National Academy of Sciences - PNAS Vol. 113; no. 2; pp. 362 - 367
Main Authors Moorad, Jacob A., Nussey, Daniel H.
Format Journal Article
LanguageEnglish
Published United States National Academy of Sciences 12.01.2016
National Acad Sciences
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Increased maternal age at reproduction is often associated with decreased offspring performance in numerous species of plants and animals (including humans). Current evolutionary theory considers such maternal effect senescence as part of a unified process of reproductive senescence, which is under identical age-specific selective pressures to fertility. We offer a novel theoretical perspective by combining William Hamilton’s evolutionary model for aging with a quantitative genetic model of indirect genetic effects. We demonstrate that fertility and maternal effect senescence are likely to experience different patterns of age-specific selection and thus can evolve to take divergent forms. Applied to neonatal survival, we find that selection for maternal effects is the product of age-specific fertility and Hamilton’s age-specific force of selection for fertility. Population genetic models show that senescence for these maternal effects can evolve in the absence of reproductive or actuarial senescence; this implies that maternal effect aging is a fundamentally distinct demographic manifestation of the evolution of aging. However, brief periods of increasingly beneficial maternal effects can evolve when fertility increases with age faster than cumulative survival declines. This is most likely to occur early in life. Our integration of theory provides a general framework with which to model, measure, and compare the evolutionary determinants of the social manifestations of aging. Extension of our maternal effects model to other ecological and social contexts could provide important insights into the drivers of the astonishing diversity of lifespans and aging patterns observed among species.
AbstractList Increased maternal age at reproduction is often associated with decreased offspring performance in numerous species of plants and animals (including humans). Current evolutionary theory considers such maternal effect senescence as part of a unified process of reproductive senescence, which is under identical age-specific selective pressures to fertility. We offer a novel theoretical perspective by combining William Hamilton's evolutionary model for aging with a quantitative genetic model of indirect genetic effects. We demonstrate that fertility and maternal effect senescence are likely to experience different patterns of age-specific selection and thus can evolve to take divergent forms. Applied to neonatal survival, we find that selection for maternal effects is the product of age-specific fertility and Hamilton's age-specific force of selection for fertility. Population genetic models show that senescence for these maternal effects can evolve in the absence of reproductive or actuarial senescence; this implies that maternal effect aging is a fundamentally distinct demographic manifestation of the evolution of aging. However, brief periods of increasingly beneficial maternal effects can evolve when fertility increases with age faster than cumulative survival declines. This is most likely to occur early in life. Our integration of theory provides a general framework with which to model, measure, and compare the evolutionary determinants of the social manifestations of aging. Extension of our maternal effects model to other ecological and social contexts could provide important insights into the drivers of the astonishing diversity of lifespans and aging patterns observed among species.
Evolutionary theory underpins our understanding of the aging process. The many aspects of reproduction that decline with maternal age in animals include number of offspring born, offspring size, and neonatal survival. Current theories of aging ignore potential differences in the evolutionary pressures on these traits. Here, we combine two important branches of evolutionary theory to allow consideration of age-dependent selection at both offspring and maternal levels. We show that we should actually expect the rates of age-related decline in female fertility and offspring performance to diverge under selection. Our model has the potential to significantly improve our understanding of the evolution of reproductive senescence and, more generally, the variability of aging patterns in nature. Increased maternal age at reproduction is often associated with decreased offspring performance in numerous species of plants and animals (including humans). Current evolutionary theory considers such maternal effect senescence as part of a unified process of reproductive senescence, which is under identical age-specific selective pressures to fertility. We offer a novel theoretical perspective by combining William Hamilton’s evolutionary model for aging with a quantitative genetic model of indirect genetic effects. We demonstrate that fertility and maternal effect senescence are likely to experience different patterns of age-specific selection and thus can evolve to take divergent forms. Applied to neonatal survival, we find that selection for maternal effects is the product of age-specific fertility and Hamilton’s age-specific force of selection for fertility. Population genetic models show that senescence for these maternal effects can evolve in the absence of reproductive or actuarial senescence; this implies that maternal effect aging is a fundamentally distinct demographic manifestation of the evolution of aging. However, brief periods of increasingly beneficial maternal effects can evolve when fertility increases with age faster than cumulative survival declines. This is most likely to occur early in life. Our integration of theory provides a general framework with which to model, measure, and compare the evolutionary determinants of the social manifestations of aging. Extension of our maternal effects model to other ecological and social contexts could provide important insights into the drivers of the astonishing diversity of lifespans and aging patterns observed among species.
Significance Evolutionary theory underpins our understanding of the aging process. The many aspects of reproduction that decline with maternal age in animals include number of offspring born, offspring size, and neonatal survival. Current theories of aging ignore potential differences in the evolutionary pressures on these traits. Here, we combine two important branches of evolutionary theory to allow consideration of age-dependent selection at both offspring and maternal levels. We show that we should actually expect the rates of age-related decline in female fertility and offspring performance to diverge under selection. Our model has the potential to significantly improve our understanding of the evolution of reproductive senescence and, more generally, the variability of aging patterns in nature. Increased maternal age at reproduction is often associated with decreased offspring performance in numerous species of plants and animals (including humans). Current evolutionary theory considers such maternal effect senescence as part of a unified process of reproductive senescence, which is under identical age-specific selective pressures to fertility. We offer a novel theoretical perspective by combining William Hamilton’s evolutionary model for aging with a quantitative genetic model of indirect genetic effects. We demonstrate that fertility and maternal effect senescence are likely to experience different patterns of age-specific selection and thus can evolve to take divergent forms. Applied to neonatal survival, we find that selection for maternal effects is the product of age-specific fertility and Hamilton’s age-specific force of selection for fertility. Population genetic models show that senescence for these maternal effects can evolve in the absence of reproductive or actuarial senescence; this implies that maternal effect aging is a fundamentally distinct demographic manifestation of the evolution of aging. However, brief periods of increasingly beneficial maternal effects can evolve when fertility increases with age faster than cumulative survival declines. This is most likely to occur early in life. Our integration of theory provides a general framework with which to model, measure, and compare the evolutionary determinants of the social manifestations of aging. Extension of our maternal effects model to other ecological and social contexts could provide important insights into the drivers of the astonishing diversity of lifespans and aging patterns observed among species.
Author Nussey, Daniel H.
Moorad, Jacob A.
Author_xml – sequence: 1
  givenname: Jacob A.
  surname: Moorad
  fullname: Moorad, Jacob A.
– sequence: 2
  givenname: Daniel H.
  surname: Nussey
  fullname: Nussey, Daniel H.
BackLink https://www.ncbi.nlm.nih.gov/pubmed/26715745$$D View this record in MEDLINE/PubMed
BookMark eNpdkTtPwzAUhS0EoqUwM4EqMcASuH7bCxKqeEmVWGC23MSGVKld4qQS_55ELS0webjfOdfnniO0H2JwCJ1iuMYg6c0y2HSNOQGmGcZ0Dw0xaJwJpmEfDQGIzBQjbICOUpoDgOYKDtGACIm5ZHyILu9XsWqbMoZx9OOFbVwdbDV23ru8GScXXMpdyN0xOvC2Su5k847Q28P96-Qpm748Pk_uplnOBG8yLAlYTAsvCQGXFzOttPTakRxmXGKJlRQzr8BTrVjBJeWWFIRoVWguLbN0hG7Xvst2tnBFt7upbWWWdbmw9ZeJtjR_J6H8MO9xZVi3mQLpDK42BnX8bF1qzKLsIlSVDS62yWApQAksOXToxT90Hts-fk9xDUTJ7sYjdLOm8jqmVDu__QwG05dg-hLMroROcf47w5b_uXoHnG2AXrm1w9QQQwXZzeepifUvPROSCka_AVWwllQ
CitedBy_id crossref_primary_10_3389_fevo_2022_982915
crossref_primary_10_1146_annurev_ento_061621_064341
crossref_primary_10_1073_pnas_1919988117
crossref_primary_10_1093_beheco_arac078
crossref_primary_10_1098_rspb_2020_0972
crossref_primary_10_1016_j_tree_2020_07_005
crossref_primary_10_1098_rspb_2018_1479
crossref_primary_10_1086_718716
crossref_primary_10_1007_s10750_024_05480_y
crossref_primary_10_1086_718236
crossref_primary_10_1098_rspb_2019_1845
crossref_primary_10_1111_brv_12328
crossref_primary_10_1111_ele_13839
crossref_primary_10_1002_ecm_1479
crossref_primary_10_1073_pnas_2117669119
crossref_primary_10_3389_fevo_2022_920481
crossref_primary_10_1098_rspb_2021_1843
crossref_primary_10_1098_rsbl_2016_0888
crossref_primary_10_1111_1365_2656_13590
crossref_primary_10_1093_beheco_arae049
crossref_primary_10_1098_rspb_2018_1123
crossref_primary_10_1111_mec_17046
crossref_primary_10_1371_journal_pbio_3000556
crossref_primary_10_3390_cells11101610
crossref_primary_10_1111_jeb_13712
crossref_primary_10_1111_evo_14498
crossref_primary_10_1093_evolut_qpac045
crossref_primary_10_1093_cz_zoab081
crossref_primary_10_1007_s11250_019_01876_4
crossref_primary_10_1038_s42003_023_05260_9
crossref_primary_10_1038_hdy_2017_25
crossref_primary_10_1016_j_ppees_2018_10_002
crossref_primary_10_1002_ajb2_1265
crossref_primary_10_1086_699654
crossref_primary_10_1111_jeb_13206
crossref_primary_10_1002_bies_201900227
crossref_primary_10_1111_jeb_13768
crossref_primary_10_1073_pnas_1914654117
crossref_primary_10_1098_rspb_2021_0851
crossref_primary_10_1038_s41598_022_19381_4
crossref_primary_10_1139_cjfas_2017_0220
crossref_primary_10_1590_1678_4685_GMB_2016_0020
crossref_primary_10_1038_s41598_019_40011_z
crossref_primary_10_1111_1365_2656_13218
crossref_primary_10_1086_711755
crossref_primary_10_1086_708271
crossref_primary_10_1038_s41598_017_03505_2
crossref_primary_10_1016_j_cris_2023_100068
crossref_primary_10_1111_1365_2435_13996
Cites_doi 10.1086/303168
10.1038/nature12789
10.1111/j.1558-5646.2010.01012.x
10.1086/603615
10.1371/journal.pone.0027245
10.1111/j.1365-2435.2011.01837.x
10.1111/evo.12235
10.1017/CBO9780511525711
10.1073/pnas.93.12.6140
10.1086/650726
10.1111/j.1558-5646.1957.tb02911.x
10.1111/j.0014-3820.2002.tb01405.x
10.1086/521963
10.5962/bhl.title.27468
10.1111/j.0030-1299.2008.16545.x
10.1890/13-0778.1
10.1111/j.1474-919X.1983.tb03130.x
10.1890/0012-9658(1999)080[2555:IDLARS]2.0.CO;2
10.1111/j.0014-3820.2001.tb00831.x
10.1111/j.1558-5646.2011.01253.x
10.1046/j.1365-2656.2003.00750.x
10.3354/meps08295
10.1093/acprof:oso/9780199674237.003.0005
10.1006/jtbi.2001.2296
10.1111/j.1365-2656.2006.01157.x
10.1111/j.1558-5646.1983.tb00236.x
10.1098/rspb.2000.1256
10.1111/j.1365-2435.2008.01408.x
10.1098/rspb.2007.0986
10.1603/008.102.0514
10.1111/j.1365-294X.2007.03259.x
10.1073/pnas.1306656110
10.1007/BF02270710
10.1098/rspb.2006.0072
10.1098/rsbl.2003.0051
10.2307/1936778
10.1016/j.arr.2012.07.004
10.1111/j.1420-9101.2009.01929.x
10.1111/j.1469-1809.1973.tb01825.x
10.1111/j.1558-5646.1997.tb01458.x
10.1046/j.0021-8790.2001.00555.x
10.1111/j.1420-9101.2008.01550.x
10.1111/j.1461-0248.2011.01735.x
10.1098/rspb.2008.0925
10.2307/2389921
10.1007/s00442-011-1914-3
10.1111/j.1558-5646.1989.tb04247.x
10.1098/rspb.2009.0183
10.1111/1365-2435.12029
10.1534/genetics.106.062711
10.1046/j.1420-9101.2001.00277.x
10.1038/367064a0
10.1111/ele.12092
10.1086/491687
10.1098/rspb.2008.1193
10.1111/j.1420-9101.2010.02212.x
10.1016/0022-5193(66)90184-6
10.1046/j.1420-9101.1999.00044.x
10.1186/1742-9994-6-4
10.1111/j.1420-9101.2004.00824.x
10.1111/1365-2435.12359
ContentType Journal Article
Copyright Volumes 1–89 and 106–113, copyright as a collective work only; author(s) retains copyright to individual articles
Copyright National Academy of Sciences Jan 12, 2016
Copyright_xml – notice: Volumes 1–89 and 106–113, copyright as a collective work only; author(s) retains copyright to individual articles
– notice: Copyright National Academy of Sciences Jan 12, 2016
DBID CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
5PM
DOI 10.1073/pnas.1520494113
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Immunology Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Virology and AIDS Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
Virology and AIDS Abstracts
Oncogenes and Growth Factors Abstracts
Technology Research Database
Nucleic Acids Abstracts
Ecology Abstracts
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Entomology Abstracts
Genetics Abstracts
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
Immunology Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
MEDLINE - Academic
DatabaseTitleList Virology and AIDS Abstracts


MEDLINE
CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
DocumentTitleAlternate Evolution of maternal effect senescence
EISSN 1091-6490
EndPage 367
ExternalDocumentID 3929598551
10_1073_pnas_1520494113
26715745
113_2_362
26467364
Genre Research Support, Non-U.S. Gov't
Journal Article
Feature
GrantInformation_xml – fundername: Biotechnology and Biological Sciences Research Council
  grantid: BB/H021868/1
– fundername: Biotechnology and Biological Sciences Research Council (BBSRC)
  grantid: David Phillips Fellowship
GroupedDBID ---
-DZ
-~X
.55
0R~
123
29P
2AX
2FS
2WC
4.4
53G
5RE
5VS
85S
AACGO
AAFWJ
AANCE
ABBHK
ABOCM
ABPLY
ABPPZ
ABTLG
ABXSQ
ABZEH
ACGOD
ACIWK
ACNCT
ACPRK
ADACV
ADULT
AENEX
AEUPB
AEXZC
AFFNX
AFOSN
AFRAH
ALMA_UNASSIGNED_HOLDINGS
AQVQM
BKOMP
CS3
D0L
DCCCD
DIK
DOOOF
DU5
E3Z
EBS
EJD
F5P
FRP
GX1
H13
HH5
HYE
IPSME
JAAYA
JBMMH
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JSG
JSODD
JST
KQ8
L7B
LU7
N9A
N~3
O9-
OK1
PNE
PQQKQ
R.V
RHF
RHI
RNA
RNS
RPM
RXW
SA0
SJN
TAE
TN5
UKR
VQA
W8F
WH7
WOQ
WOW
X7M
XSW
Y6R
YBH
YKV
YSK
ZCA
~02
~KM
-
02
0R
1AW
55
AAPBV
ABFLS
ABPTK
ADACO
ADZLD
ASUFR
DNJUQ
DWIUU
DZ
F20
KM
PQEST
X
XHC
ZA5
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
5PM
ID FETCH-LOGICAL-c465t-1720a13df7220ecdb9897f9e2c0b57171876bf80f3984d5735a2d2298d957a4a3
IEDL.DBID RPM
ISSN 0027-8424
IngestDate Tue Sep 17 21:22:45 EDT 2024
Fri Aug 16 23:33:14 EDT 2024
Fri Sep 13 08:12:30 EDT 2024
Fri Aug 23 01:52:15 EDT 2024
Sat Sep 28 08:29:46 EDT 2024
Wed Nov 11 00:29:27 EST 2020
Fri Sep 27 02:45:03 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords aging
selection
demography
social
indirect genetic effects
Language English
License Freely available online through the PNAS open access option.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c465t-1720a13df7220ecdb9897f9e2c0b57171876bf80f3984d5735a2d2298d957a4a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Author contributions: J.A.M. and D.H.N. designed research, performed research, and wrote the paper.
Edited by James W. Vaupel, Max Planck Institute for Demographic Research, Rostock, Germany, and approved December 4, 2015 (received for review October 23, 2015)
OpenAccessLink https://www.pnas.org/content/pnas/113/2/362.full.pdf
PMID 26715745
PQID 1759028707
PQPubID 42026
PageCount 6
ParticipantIDs jstor_primary_26467364
proquest_miscellaneous_1760861750
proquest_journals_1759028707
pnas_primary_113_2_362
crossref_primary_10_1073_pnas_1520494113
pubmedcentral_primary_oai_pubmedcentral_nih_gov_4720302
pubmed_primary_26715745
ProviderPackageCode RNA
PNE
PublicationCentury 2000
PublicationDate 2016-01-12
PublicationDateYYYYMMDD 2016-01-12
PublicationDate_xml – month: 01
  year: 2016
  text: 2016-01-12
  day: 12
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Washington
PublicationTitle Proceedings of the National Academy of Sciences - PNAS
PublicationTitleAlternate Proc Natl Acad Sci U S A
PublicationYear 2016
Publisher National Academy of Sciences
National Acad Sciences
Publisher_xml – name: National Academy of Sciences
– name: National Acad Sciences
References e_1_3_3_50_2
Grafen A (e_1_3_3_65_2) 1988
e_1_3_3_16_2
Hadfield J (e_1_3_3_68_2) 2012
e_1_3_3_18_2
e_1_3_3_39_2
e_1_3_3_12_2
e_1_3_3_58_2
e_1_3_3_14_2
e_1_3_3_35_2
e_1_3_3_56_2
e_1_3_3_33_2
e_1_3_3_54_2
e_1_3_3_10_2
e_1_3_3_31_2
e_1_3_3_52_2
e_1_3_3_40_2
e_1_3_3_61_2
Reid JM (e_1_3_3_62_2) 2010; 79
e_1_3_3_5_2
e_1_3_3_7_2
e_1_3_3_9_2
e_1_3_3_27_2
e_1_3_3_29_2
e_1_3_3_23_2
e_1_3_3_48_2
e_1_3_3_69_2
e_1_3_3_46_2
e_1_3_3_67_2
e_1_3_3_1_2
e_1_3_3_44_2
e_1_3_3_3_2
e_1_3_3_21_2
e_1_3_3_42_2
e_1_3_3_63_2
Falconer DS (e_1_3_3_25_2) 1996
e_1_3_3_51_2
Mousseau TA (e_1_3_3_37_2) 1998
e_1_3_3_17_2
e_1_3_3_19_2
e_1_3_3_38_2
e_1_3_3_13_2
e_1_3_3_36_2
e_1_3_3_59_2
e_1_3_3_15_2
e_1_3_3_34_2
e_1_3_3_57_2
e_1_3_3_32_2
e_1_3_3_55_2
e_1_3_3_11_2
e_1_3_3_30_2
e_1_3_3_53_2
e_1_3_3_60_2
e_1_3_3_6_2
Mahy M (e_1_3_3_8_2) 2003
e_1_3_3_28_2
e_1_3_3_49_2
e_1_3_3_24_2
e_1_3_3_47_2
Caswell H (e_1_3_3_64_2) 2001
e_1_3_3_26_2
Medawar PB (e_1_3_3_45_2) 1952
e_1_3_3_2_2
e_1_3_3_20_2
e_1_3_3_43_2
e_1_3_3_66_2
e_1_3_3_4_2
e_1_3_3_22_2
e_1_3_3_41_2
References_xml – ident: e_1_3_3_7_2
  doi: 10.1086/303168
– ident: e_1_3_3_42_2
  doi: 10.1038/nature12789
– volume-title: Introduction to Quantitative Genetics
  year: 1996
  ident: e_1_3_3_25_2
  contributor:
    fullname: Falconer DS
– ident: e_1_3_3_5_2
  doi: 10.1111/j.1558-5646.2010.01012.x
– ident: e_1_3_3_12_2
  doi: 10.1086/603615
– volume-title: The Evolution of Parental Care
  year: 2012
  ident: e_1_3_3_68_2
  contributor:
    fullname: Hadfield J
– ident: e_1_3_3_63_2
  doi: 10.1371/journal.pone.0027245
– ident: e_1_3_3_22_2
  doi: 10.1111/j.1365-2435.2011.01837.x
– ident: e_1_3_3_39_2
  doi: 10.1111/evo.12235
– ident: e_1_3_3_2_2
  doi: 10.1017/CBO9780511525711
– ident: e_1_3_3_44_2
  doi: 10.1073/pnas.93.12.6140
– volume-title: Childhood Mortality in the Developing World. A Review of Evidence from the Demographic and Health Surveys
  year: 2003
  ident: e_1_3_3_8_2
  contributor:
    fullname: Mahy M
– ident: e_1_3_3_9_2
  doi: 10.1086/650726
– ident: e_1_3_3_4_2
  doi: 10.1111/j.1558-5646.1957.tb02911.x
– ident: e_1_3_3_15_2
  doi: 10.1111/j.0014-3820.2002.tb01405.x
– start-page: 722
  volume-title: Matrix Population Models: Construction, Analysis, and Interpretation
  year: 2001
  ident: e_1_3_3_64_2
  contributor:
    fullname: Caswell H
– ident: e_1_3_3_60_2
  doi: 10.1086/521963
– ident: e_1_3_3_35_2
  doi: 10.5962/bhl.title.27468
– ident: e_1_3_3_11_2
  doi: 10.1111/j.0030-1299.2008.16545.x
– ident: e_1_3_3_34_2
  doi: 10.1890/13-0778.1
– ident: e_1_3_3_40_2
  doi: 10.1111/j.1474-919X.1983.tb03130.x
– ident: e_1_3_3_20_2
  doi: 10.1890/0012-9658(1999)080[2555:IDLARS]2.0.CO;2
– ident: e_1_3_3_14_2
  doi: 10.1111/j.0014-3820.2001.tb00831.x
– ident: e_1_3_3_21_2
  doi: 10.1111/j.1558-5646.2011.01253.x
– ident: e_1_3_3_54_2
  doi: 10.1046/j.1365-2656.2003.00750.x
– ident: e_1_3_3_17_2
  doi: 10.3354/meps08295
– ident: e_1_3_3_58_2
  doi: 10.1093/acprof:oso/9780199674237.003.0005
– ident: e_1_3_3_3_2
  doi: 10.1006/jtbi.2001.2296
– ident: e_1_3_3_49_2
  doi: 10.1111/j.1365-2656.2006.01157.x
– ident: e_1_3_3_27_2
  doi: 10.1111/j.1558-5646.1983.tb00236.x
– ident: e_1_3_3_13_2
  doi: 10.1098/rspb.2000.1256
– ident: e_1_3_3_43_2
  doi: 10.1111/j.1365-2435.2008.01408.x
– ident: e_1_3_3_59_2
  doi: 10.1098/rspb.2007.0986
– ident: e_1_3_3_16_2
  doi: 10.1603/008.102.0514
– ident: e_1_3_3_28_2
  doi: 10.1111/j.1365-294X.2007.03259.x
– volume-title: An Unsolved Problem of Biology
  year: 1952
  ident: e_1_3_3_45_2
  contributor:
    fullname: Medawar PB
– ident: e_1_3_3_57_2
  doi: 10.1073/pnas.1306656110
– ident: e_1_3_3_66_2
  doi: 10.1007/BF02270710
– ident: e_1_3_3_55_2
  doi: 10.1098/rspb.2006.0072
– ident: e_1_3_3_61_2
  doi: 10.1098/rsbl.2003.0051
– ident: e_1_3_3_36_2
  doi: 10.2307/1936778
– ident: e_1_3_3_48_2
  doi: 10.1016/j.arr.2012.07.004
– ident: e_1_3_3_52_2
  doi: 10.1111/j.1420-9101.2009.01929.x
– start-page: 454
  volume-title: Reproductive Success: Studies of Individual Variation in Contrasting Breeding Systems
  year: 1988
  ident: e_1_3_3_65_2
  contributor:
    fullname: Grafen A
– ident: e_1_3_3_33_2
  doi: 10.1111/j.1469-1809.1973.tb01825.x
– ident: e_1_3_3_6_2
  doi: 10.1111/j.1558-5646.1997.tb01458.x
– ident: e_1_3_3_23_2
  doi: 10.1046/j.0021-8790.2001.00555.x
– ident: e_1_3_3_32_2
  doi: 10.1111/j.1420-9101.2008.01550.x
– volume: 79
  start-page: 851
  year: 2010
  ident: e_1_3_3_62_2
  article-title: Parent age, lifespan and offspring survival: Structured variation in life history in a wild population
  publication-title: J Anim Ecol
  contributor:
    fullname: Reid JM
– ident: e_1_3_3_50_2
  doi: 10.1111/j.1461-0248.2011.01735.x
– ident: e_1_3_3_51_2
  doi: 10.1098/rspb.2008.0925
– ident: e_1_3_3_18_2
  doi: 10.2307/2389921
– ident: e_1_3_3_53_2
  doi: 10.1007/s00442-011-1914-3
– ident: e_1_3_3_38_2
  doi: 10.1111/j.1558-5646.1989.tb04247.x
– ident: e_1_3_3_47_2
  doi: 10.1098/rspb.2009.0183
– ident: e_1_3_3_56_2
  doi: 10.1111/1365-2435.12029
– ident: e_1_3_3_26_2
  doi: 10.1534/genetics.106.062711
– ident: e_1_3_3_67_2
  doi: 10.1046/j.1420-9101.2001.00277.x
– ident: e_1_3_3_46_2
  doi: 10.1038/367064a0
– ident: e_1_3_3_10_2
  doi: 10.1111/ele.12092
– start-page: 375
  volume-title: Maternal Effects as Adaptations
  year: 1998
  ident: e_1_3_3_37_2
  contributor:
    fullname: Mousseau TA
– ident: e_1_3_3_69_2
  doi: 10.1086/491687
– ident: e_1_3_3_30_2
  doi: 10.1098/rspb.2008.1193
– ident: e_1_3_3_31_2
  doi: 10.1111/j.1420-9101.2010.02212.x
– ident: e_1_3_3_1_2
  doi: 10.1016/0022-5193(66)90184-6
– ident: e_1_3_3_41_2
  doi: 10.1046/j.1420-9101.1999.00044.x
– ident: e_1_3_3_24_2
  doi: 10.1186/1742-9994-6-4
– ident: e_1_3_3_29_2
  doi: 10.1111/j.1420-9101.2004.00824.x
– ident: e_1_3_3_19_2
  doi: 10.1111/1365-2435.12359
SSID ssj0009580
Score 2.4596877
Snippet Increased maternal age at reproduction is often associated with decreased offspring performance in numerous species of plants and animals (including humans)....
Significance Evolutionary theory underpins our understanding of the aging process. The many aspects of reproduction that decline with maternal age in animals...
Evolutionary theory underpins our understanding of the aging process. The many aspects of reproduction that decline with maternal age in animals include number...
SourceID pubmedcentral
proquest
crossref
pubmed
pnas
jstor
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 362
SubjectTerms Aging - physiology
Animals
Biological Evolution
Biological Sciences
Demographics
Evolution
Female
Fertility
Humans
Maternal Age
Mutation - genetics
Population genetics
Selection, Genetic
Title Evolution of maternal effect senescence
URI https://www.jstor.org/stable/26467364
http://www.pnas.org/content/113/2/362.abstract
https://www.ncbi.nlm.nih.gov/pubmed/26715745
https://www.proquest.com/docview/1759028707/abstract/
https://search.proquest.com/docview/1760861750
https://pubmed.ncbi.nlm.nih.gov/PMC4720302
Volume 113
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB4BJy4V27IQuq1SCQk4hI0fySRHhECoEhUHkLhFfsQCCbIrdpffz9h5dLfi1Gs8Tqzx2P4cf_MZ4BidcDkymRiLIpGOFYnWJk-407m0KmUafb7z7Z_85kH-fswetyDrc2ECad_o5_Pm5fW8eX4K3Mr5q5n2PLHp3e2l9GeHKZ9uwzYK0W_RB6Xdos074TT9Si57PR8U03mjFv7CH6-Jwpi_QodTOzP0uUxrq1JLTPRqp2T_GfL8l0C5tiJd78GXDkrGF22TR7BVN19h1A3WRXzaKUqffYOTq_cuwuKZiwmjBuHnuOVyxAs_3RlfaR8erq_uL2-S7oaExMg8WyaEPlLFhHXIeVobq8uiRFfW3KQ6o40ao7lOuyJ1oiykzVBkilvOy8KWGSqpxBh2mllTH0IsS2voWWFzQkhOCeWcRFMiU5Zr51QEp72HqnkrhFGFA2wUlfdT9devEYyDBwc7Al2ePiapIJgO9ZmoeEVLaAST3slVN4bohRikZTDFCH4NxRT9_khDNfVs5W1y2pORZRrBQdsna19t-zYC3OitwcAra2-WUMAFhe0uwI7-u-Z32CVkFf7VMD6BneXbqv5B6GWpf4Zo_QAdgeuQ
link.rule.ids 230,315,733,786,790,891,27957,27958,53827,53829
linkProvider National Library of Medicine
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VcoBLoUBpoECQkCiH7MaPZJIjqlot0K04tKi3yI9YVG2zK3aXA7-esfNgW_VSrplxEmc843H8zWeAD-iEy5HJxFgUiXSsSLQ2ecKdzqVVKdPo652nJ_nkTH49z843IOtrYQJo3-iLUXN1PWoufgZs5fzajHuc2Pj79ED6vcOUjx_AQ_JXjv0ifeDaLdrKE04BWHLZM_qgGM8btfBH_nhWFMb8ITqc3jRDX820Ni-10ETPd0r6d-WetyGUa3PS0RP40femhaJcjlZLPTJ_bhE93ru7T2Gry1Ljz614Gzbq5hlsd3FgEe93ZNWfnsPHw9_d4I1nLqb0N3BKxy1MJF74SGp8oxdwdnR4ejBJusMXEiPzbJlQYpMqJqxDztPaWF0WJbqy5ibVGa0BGYVR7YrUibKQNkORKW45LwtbZqikEjuw2cyaehdiWVpD1wqbU_LllFDOSTQlMmW5dk5FsN9_-mrecmxUYW8cReUNUP0zWAQ7wTSDHuVzHpkmSRBUh_ZMVLyi2TmCvd56VeeedEMMrDWYYgTvBzE5lt8tUU09W3mdnJZ7pJlG8LI19tpT20ETAd4YBoOCJ-2-KSHjBvLuzpiv_rvlO3g0OZ0eV8dfTr69hseUwIVfQozvweby16p-Q0nSUr8NLvEX49QNiQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB61IFW9tNAWmvJokCqVHrKJH4njI6KsaAuIQ5FQL5EfsUCU7Kq720N_PWPnwYJ64hqPkzjjGX-OP38G-CQcc4UgPDFWsIQ7UiZamyKhThfcqoxo4fc7n54Vxxf8-2V-uXTUVyDtG309an7fjprrq8CtnN6atOeJpeenh9yvHWY0nVqXPodVjFkq-4n6oLdbtrtPKCZhTnmv6iNYOm3UzB_745VRCPEH6VB821z4HU1LY1NLT_Sap2j_P_z5mEa5NC6NX8OvvkUtHeVmtJjrkfn3SOzxSU1eg1cdWo0PWpN1eFY3b2C9ywezeL8Trf7yFj4f_e06cTxxMcLgoC0dt3SReOYzqvGV3sHF-Ojn4XHSHcKQGF7k8wQBTqYIs05QmtXGallK4WRNTaZznAsSTKfalZljsuQ2FyxX1FIqSytzobhiG7DSTJr6PcRcWoPXSlsgCHOKKee4MFIQZal2TkWw33_-atpqbVRhjVywyjuhundaBBvBPYMd4jrPUONYEEyH-oRVtMJROoLt3oNVF6Z4QxHUa0QmItgbijHA_KqJaurJwtsUOO1DyyyCzdbhS09tO04E4kFXGAy8ePfDEnRwEPHuHPrhyTU_wovzr-Pq5NvZjy14iTgu_BkidBtW5n8W9Q5ipbneDVFxB3VLEAk
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Evolution+of+maternal+effect+senescence&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Moorad%2C+Jacob+A&rft.au=Nussey%2C+Daniel+H&rft.date=2016-01-12&rft.pub=National+Academy+of+Sciences&rft.issn=0027-8424&rft.eissn=1091-6490&rft.volume=113&rft.issue=2&rft.spage=362&rft_id=info:doi/10.1073%2Fpnas.1520494113&rft.externalDBID=NO_FULL_TEXT&rft.externalDocID=3929598551
thumbnail_m http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F113%2F2.cover.gif
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F113%2F2.cover.gif