Bayesian Physics-Based Modeling of Tau Propagation in Alzheimer's Disease
Amyloid-β and hyperphosphorylated tau protein are known drivers of neuropathology in Alzheimer's disease. Tau in particular spreads in the brains of patients following a spatiotemporal pattern that is highly sterotypical and correlated with subsequent neurodegeneration. Novel medical imaging te...
Saved in:
Published in | Frontiers in physiology Vol. 12; p. 702975 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
Frontiers Media S.A
16.07.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Amyloid-β and hyperphosphorylated tau protein are known drivers of neuropathology in Alzheimer's disease. Tau in particular spreads in the brains of patients following a spatiotemporal pattern that is highly sterotypical and correlated with subsequent neurodegeneration. Novel medical imaging techniques can now visualize the distribution of tau in the brain
in vivo
, allowing for new insights to the dynamics of this biomarker. Here we personalize a network diffusion model with global spreading and local production terms to longitudinal tau positron emission tomography data of 76 subjects from the Alzheimer's Disease Neuroimaging Initiative. We use Bayesian inference with a hierarchical prior structure to infer means and credible intervals for our model parameters on group and subject levels. Our results show that the group average protein production rate for amyloid positive subjects is significantly higher with 0.019±0.27/yr, than that for amyloid negative subjects with −0.143±0.21/yr (
p
= 0.0075). These results support the hypothesis that amyloid pathology drives tau pathology. The calibrated model could serve as a valuable clinical tool to identify optimal time points for follow-up scans and predict the timeline of disease progression. |
---|---|
AbstractList | Amyloid-β and hyperphosphorylated tau protein are known drivers of neuropathology in Alzheimer's disease. Tau in particular spreads in the brains of patients following a spatiotemporal pattern that is highly sterotypical and correlated with subsequent neurodegeneration. Novel medical imaging techniques can now visualize the distribution of tau in the brain
in vivo
, allowing for new insights to the dynamics of this biomarker. Here we personalize a network diffusion model with global spreading and local production terms to longitudinal tau positron emission tomography data of 76 subjects from the Alzheimer's Disease Neuroimaging Initiative. We use Bayesian inference with a hierarchical prior structure to infer means and credible intervals for our model parameters on group and subject levels. Our results show that the group average protein production rate for amyloid positive subjects is significantly higher with 0.019±0.27/yr, than that for amyloid negative subjects with −0.143±0.21/yr (
p
= 0.0075). These results support the hypothesis that amyloid pathology drives tau pathology. The calibrated model could serve as a valuable clinical tool to identify optimal time points for follow-up scans and predict the timeline of disease progression. Amyloid-β and hyperphosphorylated tau protein are known drivers of neuropathology in Alzheimer's disease. Tau in particular spreads in the brains of patients following a spatiotemporal pattern that is highly sterotypical and correlated with subsequent neurodegeneration. Novel medical imaging techniques can now visualize the distribution of tau in the brain in vivo, allowing for new insights to the dynamics of this biomarker. Here we personalize a network diffusion model with global spreading and local production terms to longitudinal tau positron emission tomography data of 76 subjects from the Alzheimer's Disease Neuroimaging Initiative. We use Bayesian inference with a hierarchical prior structure to infer means and credible intervals for our model parameters on group and subject levels. Our results show that the group average protein production rate for amyloid positive subjects is significantly higher with 0.019±0.27/yr, than that for amyloid negative subjects with -0.143±0.21/yr (p = 0.0075). These results support the hypothesis that amyloid pathology drives tau pathology. The calibrated model could serve as a valuable clinical tool to identify optimal time points for follow-up scans and predict the timeline of disease progression.Amyloid-β and hyperphosphorylated tau protein are known drivers of neuropathology in Alzheimer's disease. Tau in particular spreads in the brains of patients following a spatiotemporal pattern that is highly sterotypical and correlated with subsequent neurodegeneration. Novel medical imaging techniques can now visualize the distribution of tau in the brain in vivo, allowing for new insights to the dynamics of this biomarker. Here we personalize a network diffusion model with global spreading and local production terms to longitudinal tau positron emission tomography data of 76 subjects from the Alzheimer's Disease Neuroimaging Initiative. We use Bayesian inference with a hierarchical prior structure to infer means and credible intervals for our model parameters on group and subject levels. Our results show that the group average protein production rate for amyloid positive subjects is significantly higher with 0.019±0.27/yr, than that for amyloid negative subjects with -0.143±0.21/yr (p = 0.0075). These results support the hypothesis that amyloid pathology drives tau pathology. The calibrated model could serve as a valuable clinical tool to identify optimal time points for follow-up scans and predict the timeline of disease progression. Amyloid-β and hyperphosphorylated tau protein are known drivers of neuropathology in Alzheimer's disease. Tau in particular spreads in the brains of patients following a spatiotemporal pattern that is highly sterotypical and correlated with subsequent neurodegeneration. Novel medical imaging techniques can now visualize the distribution of tau in the brain , allowing for new insights to the dynamics of this biomarker. Here we personalize a network diffusion model with global spreading and local production terms to longitudinal tau positron emission tomography data of 76 subjects from the Alzheimer's Disease Neuroimaging Initiative. We use Bayesian inference with a hierarchical prior structure to infer means and credible intervals for our model parameters on group and subject levels. Our results show that the group average protein production rate for amyloid positive subjects is significantly higher with 0.019±0.27/yr, than that for amyloid negative subjects with -0.143±0.21/yr ( = 0.0075). These results support the hypothesis that amyloid pathology drives tau pathology. The calibrated model could serve as a valuable clinical tool to identify optimal time points for follow-up scans and predict the timeline of disease progression. Amyloid-β and hyperphosphorylated tau protein are known drivers of neuropathology in Alzheimer's disease. Tau in particular spreads in the brains of patients following a spatiotemporal pattern that is highly sterotypical and correlated with subsequent neurodegeneration. Novel medical imaging techniques can now visualize the distribution of tau in the brain in vivo, allowing for new insights to the dynamics of this biomarker. Here we personalize a network diffusion model with global spreading and local production terms to longitudinal tau positron emission tomography data of 76 subjects from the Alzheimer's Disease Neuroimaging Initiative. We use Bayesian inference with a hierarchical prior structure to infer means and credible intervals for our model parameters on group and subject levels. Our results show that the group average protein production rate for amyloid positive subjects is significantly higher with 0.019±0.27/yr, than that for amyloid negative subjects with −0.143±0.21/yr (p = 0.0075). These results support the hypothesis that amyloid pathology drives tau pathology. The calibrated model could serve as a valuable clinical tool to identify optimal time points for follow-up scans and predict the timeline of disease progression. |
Author | Schäfer, Amelie Peirlinck, Mathias Linka, Kevin Kuhl, Ellen |
AuthorAffiliation | 1 Department of Mechanical Engineering, Stanford University , Stanford, CA , United States 2 Institute of Continuum and Materials Mechanics, Hamburg University of Technology , Hamburg , Germany |
AuthorAffiliation_xml | – name: 2 Institute of Continuum and Materials Mechanics, Hamburg University of Technology , Hamburg , Germany – name: 1 Department of Mechanical Engineering, Stanford University , Stanford, CA , United States |
Author_xml | – sequence: 1 givenname: Amelie surname: Schäfer fullname: Schäfer, Amelie – sequence: 2 givenname: Mathias surname: Peirlinck fullname: Peirlinck, Mathias – sequence: 3 givenname: Kevin surname: Linka fullname: Linka, Kevin – sequence: 4 givenname: Ellen surname: Kuhl fullname: Kuhl, Ellen |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/34335308$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kUtvEzEUhS1UREvpD2CDZkc3E_wcz2yQ2vKKVEQXRWJn3bGvE1cTO9gTpPDrmSQtapHwxtb1Od-RfV6So5giEvKa0ZkQbffOr5fbMuOUs5mmvNPqGTlhTSNrKvmPo0fnY3JWyh2dlqScUvaCHAsphBK0PSHzS9hiCRCrmwkXbKkvoaCrviaHQ4iLKvnqFjbVTU5rWMAYUqxCrC6G30sMK8xvS_UhFJw8r8hzD0PBs_v9lHz_9PH26kt9_e3z_OriurayUWPNGi8RFbcNR7TorWTQMNnrnjKrEPqWdq7vQYHTzlOKomGeee-4A8-sFqdkfuC6BHdmncMK8tYkCGY_SHlhII_BDmh6ibRrewDXT29XFDonfWdBecHA6x3r_YG13vQrdBbjmGF4An16E8PSLNIv0wrOO8knwPk9IKefGyyjWYVicRggYtoUw5XSSuhW0En65nHW35CHLiaBPghsTqVk9MaGcf_jU3QYDKNmV7zZF292xZtD8ZOT_eN8gP_f8wcmHLP- |
CitedBy_id | crossref_primary_10_1109_ACCESS_2025_3542634 crossref_primary_10_1137_22M1487801 crossref_primary_10_1007_s41468_024_00168_7 crossref_primary_10_1038_s41398_024_03073_w crossref_primary_10_1007_s00366_023_01873_0 crossref_primary_10_1007_s00366_024_01988_y crossref_primary_10_1016_j_brain_2024_100103 crossref_primary_10_1002_alz_12877 crossref_primary_10_1007_s00366_022_01660_3 crossref_primary_10_1038_s41583_023_00779_6 crossref_primary_10_1051_m2an_2023095 crossref_primary_10_1016_j_brain_2024_100094 crossref_primary_10_1038_s41746_022_00632_7 crossref_primary_10_1002_cpz1_381 crossref_primary_10_1016_j_brain_2024_100090 crossref_primary_10_1016_j_cma_2023_116647 crossref_primary_10_1016_j_brain_2024_100098 crossref_primary_10_1016_j_compbiomed_2025_109691 |
Cites_doi | 10.7717/peerj-cs.55 10.1093/brain/awy189 10.1101/2020.11.16.384727 10.1002/ana.24546 10.1016/j.neuroimage.2021.117980 10.1002/ana.24844 10.1523/JNEUROSCI.2642-12.2013 10.1007/s10237-019-01190-w 10.1002/ana.22615 10.1038/s41582-018-0013-z 10.1038/nrn1056 10.1002/ana.23908 10.3389/fnins.2020.566876 10.1126/scitranslmed.aau5732 10.1002/ana.25406 10.1186/s40478-016-0315-6 10.1016/j.physleta.2020.126935 10.3389/fnsys.2017.00030 10.1016/j.dadm.2018.01.007 10.1371/journal.pone.0031302 10.1038/ncb1901 10.1097/WCO.0b013e32835a30f4 10.1016/j.neuron.2011.12.040 10.1007/s00401-009-0532-1 10.1002/hipo.20315 10.1007/s11571-016-9407-z 10.1016/j.jalz.2019.01.010 10.1056/NEJMoa1202753 10.1016/j.cma.2019.04.028 10.1017/CBO9780511790942 10.1093/brain/awy059 10.1002/1531-8249(199903)45:3andlt;358::AID-ANA12andgt;3.0.CO;2-X 10.1523/JNEUROSCI.15-12-08259.1995 10.1016/j.neuron.2011.11.033 10.1016/j.cortex.2017.09.018 10.1016/j.jtbi.2019.110102 10.1093/brain/awx371 10.1146/annurev.psych.54.101601.145128 10.1080/87565640701190841 10.1016/j.neuroimage.2006.01.021 10.1038/nrn2614 10.1038/nrneurol.2018.9 10.1007/s00401-010-0789-4 10.1111/j.1469-1809.1937.tb02153.x 10.1007/s00401-006-0127-z 10.1098/rsif.2019.0356 10.1016/S1474-4422(12)70291-0 10.1016/j.neuron.2013.12.003 10.1152/jn.1997.77.2.587 10.1016/j.neuroimage.2013.05.074 10.1371/journal.pcbi.1003956 10.1016/j.jmps.2018.10.013 10.1371/journal.pcbi.1008267 10.1038/s41467-020-15701-2 10.1007/BF00308809 10.7554/eLife.50830 |
ContentType | Journal Article |
Copyright | Copyright © 2021 Schäfer, Peirlinck, Linka, Kuhl and the Alzheimer's Disease Neuroimaging Initiative (ADNI). Copyright © 2021 Schäfer, Peirlinck, Linka, Kuhl and the Alzheimer's Disease Neuroimaging Initiative (ADNI). 2021 Schäfer, Peirlinck, Linka, Kuhl and the Alzheimer's Disease Neuroimaging Initiative (ADNI) |
Copyright_xml | – notice: Copyright © 2021 Schäfer, Peirlinck, Linka, Kuhl and the Alzheimer's Disease Neuroimaging Initiative (ADNI). – notice: Copyright © 2021 Schäfer, Peirlinck, Linka, Kuhl and the Alzheimer's Disease Neuroimaging Initiative (ADNI). 2021 Schäfer, Peirlinck, Linka, Kuhl and the Alzheimer's Disease Neuroimaging Initiative (ADNI) |
CorporateAuthor | The Alzheimer's Disease Neuroimaging Initiative (ADNI) Alzheimer's Disease Neuroimaging Initiative (ADNI) |
CorporateAuthor_xml | – name: The Alzheimer's Disease Neuroimaging Initiative (ADNI) – name: Alzheimer's Disease Neuroimaging Initiative (ADNI) |
DBID | AAYXX CITATION NPM 7X8 5PM DOA |
DOI | 10.3389/fphys.2021.702975 |
DatabaseName | CrossRef PubMed MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic PubMed CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology |
EISSN | 1664-042X |
ExternalDocumentID | oai_doaj_org_article_b4e098baadb04050a9d4f9ca5f31af77 PMC8322942 34335308 10_3389_fphys_2021_702975 |
Genre | Journal Article |
GrantInformation_xml | – fundername: NIA NIH HHS grantid: U01 AG024904 – fundername: Stanford Bio-X – fundername: Belgian American Educational Foundation – fundername: Deutscher Akademischer Austauschdienst |
GroupedDBID | 53G 5VS 9T4 AAFWJ AAKDD AAYXX ACGFO ACGFS ACXDI ADBBV ADRAZ AENEX AFPKN ALMA_UNASSIGNED_HOLDINGS AOIJS BCNDV CITATION DIK EMOBN F5P GROUPED_DOAJ GX1 HYE KQ8 M48 M~E O5R O5S OK1 PGMZT RNS RPM IPNFZ NPM RIG 7X8 5PM |
ID | FETCH-LOGICAL-c465t-16f4ee52c62eecefc41a614b7b01c5eab809dbba5ad7df00e361f1ffd2daf1c73 |
IEDL.DBID | M48 |
ISSN | 1664-042X |
IngestDate | Wed Aug 27 01:22:17 EDT 2025 Thu Aug 21 13:31:34 EDT 2025 Fri Jul 11 10:01:15 EDT 2025 Mon Jul 21 06:05:31 EDT 2025 Tue Jul 01 02:44:40 EDT 2025 Thu Apr 24 23:03:35 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | network diffusion model uncertainty quantification Bayesian inference Alzheimer's disease hierarchical modeling tau PET |
Language | English |
License | Copyright © 2021 Schäfer, Peirlinck, Linka, Kuhl and the Alzheimer's Disease Neuroimaging Initiative (ADNI). This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c465t-16f4ee52c62eecefc41a614b7b01c5eab809dbba5ad7df00e361f1ffd2daf1c73 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 Data used in preparation of this article were obtained from the Alzheimer's Disease Neuroimaging Initiative (ADNI) database (adni.loni.usc.edu). As such, the investigators within the ADNI contributed to the design and implementation of ADNI and/or provided data but did not participate in analysis or writing of this report. A complete listing of ADNI investigators can be found at: http://adni.loni.usc.edu/wp-content/uploads/how_to_apply/ADNI_Acknowledgement_List.pdf Edited by: Nicole Y. K. Li-Jessen, McGill University, Canada Reviewed by: Sara Garbarino, University of Genoa, Italy; Bratislav Misic, McGill University, Canada This article was submitted to Computational Physiology and Medicine, a section of the journal Frontiers in Physiology |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.3389/fphys.2021.702975 |
PMID | 34335308 |
PQID | 2557537830 |
PQPubID | 23479 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_b4e098baadb04050a9d4f9ca5f31af77 pubmedcentral_primary_oai_pubmedcentral_nih_gov_8322942 proquest_miscellaneous_2557537830 pubmed_primary_34335308 crossref_citationtrail_10_3389_fphys_2021_702975 crossref_primary_10_3389_fphys_2021_702975 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-07-16 |
PublicationDateYYYYMMDD | 2021-07-16 |
PublicationDate_xml | – month: 07 year: 2021 text: 2021-07-16 day: 16 |
PublicationDecade | 2020 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland |
PublicationTitle | Frontiers in physiology |
PublicationTitleAlternate | Front Physiol |
PublicationYear | 2021 |
Publisher | Frontiers Media S.A |
Publisher_xml | – name: Frontiers Media S.A |
References | Kuruvilla (B36) 2017; 11 Raj (B51) 2012; 73 Jack (B29) 2018; 141 Buckley (B9) 1997; 77 Garbarino (B19) 2021; 235 Salvatier (B52) 2016; 2 Vogel (B60) 2020; 11 Purves (B50) 2001 Adolphs (B2) 2003; 4 Jack (B27) 2013; 80 Marquié (B42) 2017; 81 Price (B49) 1999; 45 Fisher (B15) 1937; 7 Iba (B25) 2013; 33 Iturria-Medina (B26) 2014; 10 Jones (B31) 2017; 97 Bigler (B5) 2007; 31 Mercken (B45) 1995; 15 Gernsbacher (B21) 2003; 54 Duyckaerts (B14) 2009; 118 Harrison (B23) 2019; 85 Peirlinck (B47) 2019; 18 Gelman (B20) 2006 Grothe (B22) 2018; 141 B1 Braak (B6) 2006; 112 Bateman (B4) 2012; 367 Weickenmeier (B61) 2019; 124 Villemagne (B59) 2018; 14 Association (B3) 2019; 15 De Calignon (B12) 2012; 73 Congdon (B11) 2018; 14 Musiek (B46) 2012; 25 Kerr (B33) 2007; 17 Johnson (B30) 2016; 79 Torok (B57) 2018; 141 Fornari (B16) 2019; 16 Kolmogorov (B35) 1937; 1 Clavaguera (B10) 2009; 11 Liu (B40) 2012; 7 Schäfer (B53) 2020; 14 Desikan (B13) 2006; 31 La Joie (B37) 2020; 12 Landau (B38) 2013; 74 Thompson (B56) 2020; 16 Fornari (B17) 2020; 486 Schäfer (B54) 2019; 352 Lemoine (B39) 2018 B18 Szalkai (B55) 2017; 11 McNab (B43) 2013; 80 Pereira (B48) 2019; 8 Hoffman (B24) 2014; 15 Lowe (B41) 2016; 4 Braak (B7) 1991; 82 Braak (B8) 2011; 121 Van Strien (B58) 2009; 10 Jack (B28) 2013; 12 Jucker (B32) 2011; 70 Kevrekidis (B34) 2020; 384 Meisl (B44) 2020 |
References_xml | – volume: 2 start-page: e55 year: 2016 ident: B52 article-title: Probabilistic programming in python using pymc3 publication-title: PeerJ Comput. Sci doi: 10.7717/peerj-cs.55 – volume: 141 start-page: 2755 year: 2018 ident: B22 article-title: Molecular properties underlying regional vulnerability to Alzheimer's disease pathology publication-title: Brain doi: 10.1093/brain/awy189 – volume-title: Neuroscience year: 2001 ident: B50 – year: 2020 ident: B44 article-title: Amplification, not spreading limits rate of tau aggregate accumulation in Alzheimer's disease publication-title: bioRxiv doi: 10.1101/2020.11.16.384727 – volume: 79 start-page: 110 year: 2016 ident: B30 article-title: Tau positron emission tomographic imaging in aging and early Alzheimer disease publication-title: Ann. Neurol doi: 10.1002/ana.24546 – volume: 235 start-page: 117980 year: 2021 ident: B19 article-title: Investigating hypotheses of neurodegeneration by learning dynamical systems of protein propagation in the brain publication-title: Neuroimage doi: 10.1016/j.neuroimage.2021.117980 – volume: 81 start-page: 117 year: 2017 ident: B42 article-title: Pathological correlations of [F-18]-AV-1451 imaging in non-alzheimer tauopathies publication-title: Ann. Neurol doi: 10.1002/ana.24844 – volume: 33 start-page: 1024 year: 2013 ident: B25 article-title: Synthetic tau fibrils mediate transmission of neurofibrillary tangles in a transgenic mouse model of alzheimer's-like tauopathy publication-title: J. Neurosci doi: 10.1523/JNEUROSCI.2642-12.2013 – volume: 18 start-page: 1987 year: 2019 ident: B47 article-title: Using machine learning to characterize heart failure across the scales publication-title: Biomech. Model. Mechanobiol doi: 10.1007/s10237-019-01190-w – volume: 70 start-page: 532 year: 2011 ident: B32 article-title: Pathogenic protein seeding in Alzheimer disease and other neurodegenerative disorders publication-title: Ann. Neurol doi: 10.1002/ana.22615 – volume: 14 start-page: 399 year: 2018 ident: B11 article-title: Tau-targeting therapies for alzheimer disease publication-title: Nat. Rev. Neurol doi: 10.1038/s41582-018-0013-z – volume: 4 start-page: 165 year: 2003 ident: B2 article-title: Cognitive neuroscience of human social behaviour publication-title: Nat. Rev. Neurosci doi: 10.1038/nrn1056 – volume: 74 start-page: 826 year: 2013 ident: B38 article-title: Comparing positron emission tomography imaging and cerebrospinal fluid measurements of β-amyloid publication-title: Ann. Neurol doi: 10.1002/ana.23908 – volume: 14 start-page: 1370 year: 2020 ident: B53 article-title: Network diffusion modeling explains longitudinal tau pet data publication-title: Front. Neurosci doi: 10.3389/fnins.2020.566876 – volume: 12 start-page: eaau5732 year: 2020 ident: B37 article-title: Prospective longitudinal atrophy in Alzheimer's disease correlates with the intensity and topography of baseline tau-PET publication-title: Sci. Transl. Med doi: 10.1126/scitranslmed.aau5732 – volume: 85 start-page: 229 year: 2019 ident: B23 article-title: Longitudinal tau accumulation and atrophy in aging and Alzheimer disease publication-title: Ann. Neurol doi: 10.1002/ana.25406 – volume: 4 start-page: 58 year: 2016 ident: B41 article-title: An autoradiographic evaluation of AV-1451 Tau PET in dementia publication-title: Acta Neuropathol. Commun doi: 10.1186/s40478-016-0315-6 – volume: 384 start-page: 126935 year: 2020 ident: B34 article-title: Anisotropic diffusion and traveling waves of toxic proteins in neurodegenerative diseases publication-title: Phys. Lett. A doi: 10.1016/j.physleta.2020.126935 – volume: 11 start-page: 30 year: 2017 ident: B36 article-title: Lateral entorhinal cortex lesions impair local spatial frameworks publication-title: Front. Syst. Neurosci doi: 10.3389/fnsys.2017.00030 – start-page: 232 year: 2018 ident: B39 article-title: Tau positron emission tomography imaging in tauopathies: the added hurdle of off-target binding publication-title: Alzheimers Dementia doi: 10.1016/j.dadm.2018.01.007 – volume: 7 start-page: e31302 year: 2012 ident: B40 article-title: Trans-synaptic spread of tau pathology in vivo publication-title: PLoS ONE doi: 10.1371/journal.pone.0031302 – volume: 11 start-page: 909 year: 2009 ident: B10 article-title: Transmission and spreading of tauopathy in transgenic mouse brain publication-title: Nat. Cell Biol doi: 10.1038/ncb1901 – volume: 25 start-page: 715 year: 2012 ident: B46 article-title: Origins of alzheimer's disease: Reconciling csf biomarker and neuropathology data regarding the temporal sequence of aβ and tau involvement publication-title: Curr. Opin. Neurol doi: 10.1097/WCO.0b013e32835a30f4 – volume: 73 start-page: 1204 year: 2012 ident: B51 article-title: A network diffusion model of disease progression in dementia publication-title: Neuron doi: 10.1016/j.neuron.2011.12.040 – volume: 118 start-page: 5 year: 2009 ident: B14 article-title: Classification and basic pathology of Alzheimer disease publication-title: Acta Neuropathol doi: 10.1007/s00401-009-0532-1 – volume: 17 start-page: 697 year: 2007 ident: B33 article-title: Functional neuroanatomy of the parahippocampal region: the lateral and medial entorhinal areas publication-title: Hippocampus doi: 10.1002/hipo.20315 – volume: 11 start-page: 113 year: 2017 ident: B55 article-title: Parameterizable consensus connectomes from the human connectome project: the budapest reference connectome server v3. 0 publication-title: Cogn. Neurodyn doi: 10.1007/s11571-016-9407-z – volume: 15 start-page: 321 year: 2019 ident: B3 article-title: 2019 Alzheimer's disease facts and figures publication-title: Alzheimers Dement doi: 10.1016/j.jalz.2019.01.010 – volume: 367 start-page: 795 year: 2012 ident: B4 article-title: Clinical and biomarker changes in dominantly inherited Alzheimer's disease publication-title: New Engl. J. Med doi: 10.1056/NEJMoa1202753 – volume: 352 start-page: 369 year: 2019 ident: B54 article-title: The interplay of biochemical and biomechanical degeneration in Alzheimer's disease publication-title: Comput. Methods Appl. Mech. Eng doi: 10.1016/j.cma.2019.04.028 – volume-title: Data Analysis Using Regression and Multilevel/Hierarchical Models year: 2006 ident: B20 doi: 10.1017/CBO9780511790942 – volume: 141 start-page: 1517 year: 2018 ident: B29 article-title: Longitudinal tau PET in ageing and Alzheimer's disease publication-title: Brain doi: 10.1093/brain/awy059 – volume: 45 start-page: 358 year: 1999 ident: B49 article-title: Tangles and plaques in nondemented aging and “preclinical” Alzheimer's disease publication-title: Ann. Neurol doi: 10.1002/1531-8249(199903)45:3andlt;358::AID-ANA12andgt;3.0.CO;2-X – volume: 15 start-page: 8259 year: 1995 ident: B45 article-title: Three distinct axonal transport rates for tau, tubulin, and other microtubule-associated proteins: evidence for dynamic interactions of tau with microtubules in vivo publication-title: J. Neurosci doi: 10.1523/JNEUROSCI.15-12-08259.1995 – volume: 73 start-page: 685 year: 2012 ident: B12 article-title: Propagation of tau pathology in a model of early Alzheimer's disease publication-title: Neuron doi: 10.1016/j.neuron.2011.11.033 – volume: 97 start-page: 143 year: 2017 ident: B31 article-title: Tau, amyloid, and cascading network failure across the Alzheimer's disease spectrum publication-title: Cortex doi: 10.1016/j.cortex.2017.09.018 – volume: 486 start-page: 110102 year: 2020 ident: B17 article-title: Spatially-extended nucleation-aggregation-fragmentation models for the dynamics of prion-like neurodegenerative protein-spreading in the brain and its connectome publication-title: J. Theor. Biol doi: 10.1016/j.jtbi.2019.110102 – ident: B1 – volume: 141 start-page: 863 year: 2018 ident: B57 article-title: A method for inferring regional origins of neurodegeneration publication-title: Brain doi: 10.1093/brain/awx371 – volume: 54 start-page: 91 year: 2003 ident: B21 article-title: Neuroimaging studies of language production and comprehension publication-title: Ann. Rev. Psychol doi: 10.1146/annurev.psych.54.101601.145128 – volume: 31 start-page: 217 year: 2007 ident: B5 article-title: Superior temporal gyrus, language function, and autism publication-title: Dev. Neuropsychol doi: 10.1080/87565640701190841 – volume: 31 start-page: 968 year: 2006 ident: B13 article-title: An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest publication-title: Neuroimage doi: 10.1016/j.neuroimage.2006.01.021 – volume: 10 start-page: 272 year: 2009 ident: B58 article-title: The anatomy of memory: an interactive overview of the parahippocampal-hippocampal network publication-title: Nat. Rev. Neurosci doi: 10.1038/nrn2614 – volume: 14 start-page: 225 year: 2018 ident: B59 article-title: Imaging tau and amyloid-β proteinopathies in Alzheimer disease and other conditions publication-title: Nat. Rev. Neurol doi: 10.1038/nrneurol.2018.9 – volume: 121 start-page: 171 year: 2011 ident: B8 article-title: The pathological process underlying alzheimer's disease in individuals under thirty publication-title: Acta Neuropathol doi: 10.1007/s00401-010-0789-4 – volume: 7 start-page: 355 year: 1937 ident: B15 article-title: The wave of advance of advantageous genes publication-title: Ann. Eugen doi: 10.1111/j.1469-1809.1937.tb02153.x – ident: B18 – volume: 112 start-page: 389 year: 2006 ident: B6 article-title: Staging of Alzheimer disease-associated neurofibrillary pathology using paraffin sections and immunocytochemistry publication-title: Acta Neuropathol doi: 10.1007/s00401-006-0127-z – volume: 16 start-page: 20190356 year: 2019 ident: B16 article-title: Prion-like spreading of Alzheimer's disease within the brain's connectome publication-title: J. R. Soc. Interface doi: 10.1098/rsif.2019.0356 – volume: 12 start-page: 207 year: 2013 ident: B28 article-title: Tracking pathophysiological processes in Alzheimer's disease: an updated hypothetical model of dynamic biomarkers publication-title: Lancet Neurol doi: 10.1016/S1474-4422(12)70291-0 – volume: 1 start-page: 1 year: 1937 ident: B35 article-title: A study of the equation of diffusion with increase in the quantity of matter, and its application to a biological problem publication-title: Byul. Moskovskogo Gos. Univ – volume: 80 start-page: 1347 year: 2013 ident: B27 article-title: Biomarker modeling of Alzheimer's disease publication-title: Neuron doi: 10.1016/j.neuron.2013.12.003 – volume: 77 start-page: 587 year: 1997 ident: B9 article-title: Functional double dissociation between two inferior temporal cortical areas: perirhinal cortex versus middle temporal gyrus publication-title: J. Neurophysiol doi: 10.1152/jn.1997.77.2.587 – volume: 80 start-page: 234 year: 2013 ident: B43 article-title: The Human Connectome Project and beyond: initial applications of 300 mT/m gradients publication-title: Neuroimage doi: 10.1016/j.neuroimage.2013.05.074 – volume: 10 start-page: e1003956 year: 2014 ident: B26 article-title: Epidemic spreading model to characterize misfolded proteins propagation in aging and associated neurodegenerative disorders publication-title: PLoS Comput. Biol doi: 10.1371/journal.pcbi.1003956 – volume: 124 start-page: 264 year: 2019 ident: B61 article-title: A physics-based model explains the prion-like features of neurodegeneration in Alzheimer's disease, Parkinson's disease, and amyotrophic lateral sclerosis publication-title: J. Mech. Phys. Solids doi: 10.1016/j.jmps.2018.10.013 – volume: 15 start-page: 1593 year: 2014 ident: B24 article-title: The no-u-turn sampler: adaptively setting path lengths in hamiltonian monte carlo publication-title: J. Mach. Learn. Res – volume: 16 start-page: e1008267 year: 2020 ident: B56 article-title: Protein-protein interactions in neurodegenerative diseases: a conspiracy theory publication-title: PLoS Comput. Biol doi: 10.1371/journal.pcbi.1008267 – volume: 11 start-page: 2612 year: 2020 ident: B60 article-title: Spread of pathological tau proteins through communicating neurons in human Alzheimer's disease publication-title: Nat. Commun doi: 10.1038/s41467-020-15701-2 – volume: 82 start-page: 239 year: 1991 ident: B7 article-title: Neuropathological stageing of Alzheimer-related changes publication-title: Acta Neuropathol doi: 10.1007/BF00308809 – volume: 8 start-page: e50830 year: 2019 ident: B48 article-title: Amyloid and tau accumulate across distinct spatial networks and are differentially associated with brain connectivity publication-title: eLife doi: 10.7554/eLife.50830 |
SSID | ssj0000402001 |
Score | 2.3548968 |
Snippet | Amyloid-β and hyperphosphorylated tau protein are known drivers of neuropathology in Alzheimer's disease. Tau in particular spreads in the brains of patients... |
SourceID | doaj pubmedcentral proquest pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 702975 |
SubjectTerms | Alzheimer's disease Bayesian inference hierarchical modeling network diffusion model Physiology tau PET uncertainty quantification |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3daxQxEA_SJ19ErR_rFxFEQVibbJLN7uOdWqqg-NBC35ZJMrEH7Z5c7x7av76T5HrcieiLr9mEhN_MZuaXSWYYe5OMNNHkUDcoVa2VdjU429aNQ9MHGzqfo-ffvrdHJ_rrqTndKvWV7oSV9MAFuAOnUfSdAwiO9M0I6IOOvQcTlYRo8ztysnlbZCrvwYkWCVnCmMTC-oOYTgqIDzbyg00Fm8yOIcr5-v_kZP5-V3LL-BzeZ_fWXiOflNU-YHdwfMj2JyMx5osr_pbne5z5gHyffZnCFaankaXVX9ZTslSBp6pn6e05n0d-DCv-Y0F8-WcWDJ-NfHJ-fYazC1y8u-SfStTmETs5_Hz88aheF0yovW7NspZt1Iim8W2D6DF6LYHMr7NOSG8QXCf64BwYIClEIVC1MsoYQxMgSm_VY7Y3zkd8yjhIi77tgIg3aOs6IEeQPEULvnMu9qZi4ha9wa-ziaeiFucDsYoE-JABHxLgQwG8Yu83Q36VVBp_6zxNItl0TFmwcwPpxrDWjeFfulGx17cCHeivSaEQGHG-opkMuanKdkpU7EkR8GYqRcprlOgqZndEv7OW3S_j7Cxn5k7bY6-bZ_9j8c_Z3YRHOkeW7Qu2t1ys8CU5QEv3Kuv6DcCPB2g priority: 102 providerName: Directory of Open Access Journals |
Title | Bayesian Physics-Based Modeling of Tau Propagation in Alzheimer's Disease |
URI | https://www.ncbi.nlm.nih.gov/pubmed/34335308 https://www.proquest.com/docview/2557537830 https://pubmed.ncbi.nlm.nih.gov/PMC8322942 https://doaj.org/article/b4e098baadb04050a9d4f9ca5f31af77 |
Volume | 12 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3daxQxEA-1gvRFrPVj1ZYIoiBs3ewmm90HKXfVUoWKDz3o2zLJJu3BdU_37sDzr3cmu3f05PDB13yQMJPJzG8mmWHsDSlphMl1nDqRxTKTJgaj8zg1TpW1rgsboucX3_Lzkfx6pa522Kq8VU_A2VZoR_WkRu3k-NfP5QkK_EdCnKhvP3hyAiDUS8WxplpM6h67j4pJk5xe9NZ-uJgJKyWii21un7nHHmS4d5VRuck7iirk899mhP79lvKOcjp7xB72ViUfdMdgn-245jE7GDSIqG-X_C0P7zyDA_2AfRnC0tHXya7VzuIharKaU1U0-pvOp55fwoJ_bxFPXwfG8XHDB5PfN25869p3M_6pi-o8YaOzz5en53FfUCG2MlfzWOReOqdSm6fOWeetFIDq2WiTCKscmCIpa2NAAXLJJ4nLcuGF93VagxdWZ0_ZbjNt3HPGQWhn8wIQmIPUpgA0FNGS1GALY3ypIpasqFfZPts4Fb2YVIg6iPZVoH1FtK862kfs_XrKjy7Vxr8GD4kl64GUJTs0TNvrqhe6ykiXlIUBqA3yXiVQ1tKXFpTPBHitI_Z6xdAKpYpCJdC46QJXUmjGZrrIkog96xi8Xmp1QCKmN1i_sZfNnmZ8EzJ30_VZyvTFf898yfaICORcFvkrtjtvF-4QraK5OQrehKNw4v8AbVIP-A |
linkProvider | Scholars Portal |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Bayesian+Physics-Based+Modeling+of+Tau+Propagation+in+Alzheimer%27s+Disease&rft.jtitle=Frontiers+in+physiology&rft.au=Sch%C3%A4fer%2C+Amelie&rft.au=Peirlinck%2C+Mathias&rft.au=Linka%2C+Kevin&rft.au=Kuhl%2C+Ellen&rft.date=2021-07-16&rft.pub=Frontiers+Media+S.A&rft.eissn=1664-042X&rft.volume=12&rft_id=info:doi/10.3389%2Ffphys.2021.702975&rft_id=info%3Apmid%2F34335308&rft.externalDocID=PMC8322942 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1664-042X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1664-042X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1664-042X&client=summon |