Cadmium and arsenic accumulation during the rice growth period under in situ remediation
Rice (Oryza sativa L.) planted in cadmium (Cd)- and arsenic (As)-contaminated soil is considered the main source of dietary Cd and As intake for humans in Southeast Asia and thereby poses a threat to human health. Minimizing the transfer of these pollutants to rice grain is an urgent task for enviro...
Saved in:
Published in | Ecotoxicology and environmental safety Vol. 171; pp. 451 - 459 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Netherlands
Elsevier Inc
30.04.2019
|
Subjects | |
Online Access | Get full text |
ISSN | 0147-6513 1090-2414 1090-2414 |
DOI | 10.1016/j.ecoenv.2019.01.003 |
Cover
Loading…
Abstract | Rice (Oryza sativa L.) planted in cadmium (Cd)- and arsenic (As)-contaminated soil is considered the main source of dietary Cd and As intake for humans in Southeast Asia and thereby poses a threat to human health. Minimizing the transfer of these pollutants to rice grain is an urgent task for environmental researchers. The main objective of this study was to investigate the effects and the mechanisms of a combined amendment (hydroxyapatite + zeolite + biochar, HZB) on decreasing Cd and As accumulation in rice. In situ remediation and aqueous solution adsorption experiments were conducted. The results showed that after application of HZB, Cd and As concentrations of the exchangeable fraction and TCLP extraction in soil decreased with the growth of rice plants. Cd concentrations in rice tissues were decreased at the tillering, filling and maturing stages after in situ remediation, while As concentrations in rice tissues were decreased only at the maturing stage. When 8 kg·plot−1 (9000 kg ha−1) HZB was applied, concentrations of Cd and inorganic As in brown rice were decreased to 0.18 and 0.16 mg kg−1, respectively, lower than the levels permissible for grain in China, i.e., 0.2 mg kg−1. Application of HZB reduced Cd accumulation in rice tissues, and the suppression of Cd accumulation was significantly greater than that of As. Furthermore, HZB significantly increased rice grain yield. An aqueous solution adsorption experiment demonstrated that HZB could adsorb and covalently bind Cd and As (V) via -OH, -COOH, -Si-O-Si and CO32- groups to produce carboxylates, silicates and carbonates, thereby promoting in situ immobilization of Cd and As in soil solution.
•The soil amendment addition significantly decreased the bioavailabilities of Cd and As in soil.•The soil amendment in situ immobilization of Cd and As in soil by producing carboxylates, silicates and carbonates.•The soil amendment decreased Cd and inorganic As concentrations in brown rice at the same time.•The soil amendment addition significantly increased rice grain yield. |
---|---|
AbstractList | Rice (Oryza sativa L.) planted in cadmium (Cd)- and arsenic (As)-contaminated soil is considered the main source of dietary Cd and As intake for humans in Southeast Asia and thereby poses a threat to human health. Minimizing the transfer of these pollutants to rice grain is an urgent task for environmental researchers. The main objective of this study was to investigate the effects and the mechanisms of a combined amendment (hydroxyapatite + zeolite + biochar, HZB) on decreasing Cd and As accumulation in rice. In situ remediation and aqueous solution adsorption experiments were conducted. The results showed that after application of HZB, Cd and As concentrations of the exchangeable fraction and TCLP extraction in soil decreased with the growth of rice plants. Cd concentrations in rice tissues were decreased at the tillering, filling and maturing stages after in situ remediation, while As concentrations in rice tissues were decreased only at the maturing stage. When 8 kg·plot
(9000 kg ha
) HZB was applied, concentrations of Cd and inorganic As in brown rice were decreased to 0.18 and 0.16 mg kg
, respectively, lower than the levels permissible for grain in China, i.e., 0.2 mg kg
. Application of HZB reduced Cd accumulation in rice tissues, and the suppression of Cd accumulation was significantly greater than that of As. Furthermore, HZB significantly increased rice grain yield. An aqueous solution adsorption experiment demonstrated that HZB could adsorb and covalently bind Cd and As (V) via -OH, -COOH, -Si-O-Si and CO
groups to produce carboxylates, silicates and carbonates, thereby promoting in situ immobilization of Cd and As in soil solution. Rice (Oryza sativa L.) planted in cadmium (Cd)- and arsenic (As)-contaminated soil is considered the main source of dietary Cd and As intake for humans in Southeast Asia and thereby poses a threat to human health. Minimizing the transfer of these pollutants to rice grain is an urgent task for environmental researchers. The main objective of this study was to investigate the effects and the mechanisms of a combined amendment (hydroxyapatite + zeolite + biochar, HZB) on decreasing Cd and As accumulation in rice. In situ remediation and aqueous solution adsorption experiments were conducted. The results showed that after application of HZB, Cd and As concentrations of the exchangeable fraction and TCLP extraction in soil decreased with the growth of rice plants. Cd concentrations in rice tissues were decreased at the tillering, filling and maturing stages after in situ remediation, while As concentrations in rice tissues were decreased only at the maturing stage. When 8 kg·plot-1 (9000 kg ha-1) HZB was applied, concentrations of Cd and inorganic As in brown rice were decreased to 0.18 and 0.16 mg kg-1, respectively, lower than the levels permissible for grain in China, i.e., 0.2 mg kg-1. Application of HZB reduced Cd accumulation in rice tissues, and the suppression of Cd accumulation was significantly greater than that of As. Furthermore, HZB significantly increased rice grain yield. An aqueous solution adsorption experiment demonstrated that HZB could adsorb and covalently bind Cd and As (V) via -OH, -COOH, -Si-O-Si and CO32- groups to produce carboxylates, silicates and carbonates, thereby promoting in situ immobilization of Cd and As in soil solution.Rice (Oryza sativa L.) planted in cadmium (Cd)- and arsenic (As)-contaminated soil is considered the main source of dietary Cd and As intake for humans in Southeast Asia and thereby poses a threat to human health. Minimizing the transfer of these pollutants to rice grain is an urgent task for environmental researchers. The main objective of this study was to investigate the effects and the mechanisms of a combined amendment (hydroxyapatite + zeolite + biochar, HZB) on decreasing Cd and As accumulation in rice. In situ remediation and aqueous solution adsorption experiments were conducted. The results showed that after application of HZB, Cd and As concentrations of the exchangeable fraction and TCLP extraction in soil decreased with the growth of rice plants. Cd concentrations in rice tissues were decreased at the tillering, filling and maturing stages after in situ remediation, while As concentrations in rice tissues were decreased only at the maturing stage. When 8 kg·plot-1 (9000 kg ha-1) HZB was applied, concentrations of Cd and inorganic As in brown rice were decreased to 0.18 and 0.16 mg kg-1, respectively, lower than the levels permissible for grain in China, i.e., 0.2 mg kg-1. Application of HZB reduced Cd accumulation in rice tissues, and the suppression of Cd accumulation was significantly greater than that of As. Furthermore, HZB significantly increased rice grain yield. An aqueous solution adsorption experiment demonstrated that HZB could adsorb and covalently bind Cd and As (V) via -OH, -COOH, -Si-O-Si and CO32- groups to produce carboxylates, silicates and carbonates, thereby promoting in situ immobilization of Cd and As in soil solution. Rice (Oryza sativa L.) planted in cadmium (Cd)- and arsenic (As)-contaminated soil is considered the main source of dietary Cd and As intake for humans in Southeast Asia and thereby poses a threat to human health. Minimizing the transfer of these pollutants to rice grain is an urgent task for environmental researchers. The main objective of this study was to investigate the effects and the mechanisms of a combined amendment (hydroxyapatite + zeolite + biochar, HZB) on decreasing Cd and As accumulation in rice. In situ remediation and aqueous solution adsorption experiments were conducted. The results showed that after application of HZB, Cd and As concentrations of the exchangeable fraction and TCLP extraction in soil decreased with the growth of rice plants. Cd concentrations in rice tissues were decreased at the tillering, filling and maturing stages after in situ remediation, while As concentrations in rice tissues were decreased only at the maturing stage. When 8 kg·plot−1 (9000 kg ha−1) HZB was applied, concentrations of Cd and inorganic As in brown rice were decreased to 0.18 and 0.16 mg kg−1, respectively, lower than the levels permissible for grain in China, i.e., 0.2 mg kg−1. Application of HZB reduced Cd accumulation in rice tissues, and the suppression of Cd accumulation was significantly greater than that of As. Furthermore, HZB significantly increased rice grain yield. An aqueous solution adsorption experiment demonstrated that HZB could adsorb and covalently bind Cd and As (V) via -OH, -COOH, -Si-O-Si and CO32- groups to produce carboxylates, silicates and carbonates, thereby promoting in situ immobilization of Cd and As in soil solution. •The soil amendment addition significantly decreased the bioavailabilities of Cd and As in soil.•The soil amendment in situ immobilization of Cd and As in soil by producing carboxylates, silicates and carbonates.•The soil amendment decreased Cd and inorganic As concentrations in brown rice at the same time.•The soil amendment addition significantly increased rice grain yield. |
Author | Yang, Wen-tao Liu, Zhi-ming Liao, Bo-han Peng, Pei-qin Tang, Hui-ling Zeng, Min Gu, Jiao-feng Zhou, Hang |
Author_xml | – sequence: 1 givenname: Jiao-feng surname: Gu fullname: Gu, Jiao-feng email: gujiaofeng@163.com organization: College of Environment Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China – sequence: 2 givenname: Hang surname: Zhou fullname: Zhou, Hang email: zhouhang4607@163.com organization: College of Environment Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China – sequence: 3 givenname: Hui-ling surname: Tang fullname: Tang, Hui-ling email: TLmorn@163.com organization: College of Environment Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China – sequence: 4 givenname: Wen-tao surname: Yang fullname: Yang, Wen-tao email: wtyang0803@163.com organization: College of Environment Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China – sequence: 5 givenname: Min surname: Zeng fullname: Zeng, Min email: emailzm@163.com organization: College of Environment Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China – sequence: 6 givenname: Zhi-ming surname: Liu fullname: Liu, Zhi-ming email: zhiming.liu@enmu.edu organization: College of Environment Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China – sequence: 7 givenname: Pei-qin surname: Peng fullname: Peng, Pei-qin email: pqpeng123@sina.com organization: College of Environment Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China – sequence: 8 givenname: Bo-han surname: Liao fullname: Liao, Bo-han email: liaobohan1020@163.com organization: College of Environment Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30639871$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkE9vFSEUR4mpaV9rv4ExLN3MCAPDdFyYmJf-MWniRhN3hLlcWl5m4AlDjd9e2tduXOiKzTm_XM4pOQoxICFvOWs54-rDrkWIGB7ajvGxZbxlTLwiG85G1nSSyyOyYVwOjeq5OCGnOe9YJVjfH5MTwZQYLwa-IT-2xi6-LNQES03KGDxQA1CWMpvVx0BtST7c0fUeafKA9C7FX-s93WPy0dISLCbqA81-LTThgtY_eW_Ia2fmjOfP7xn5fnX5bXvT3H69_rL9fNuAVP3acNUpjsbB1I3OOYRROGMlmmEyzrEJJmAwMqWUVcPEjbzoKwa9HCdpVA_ijLw_7O5T_Fkwr3rxGXCeTcBYsu74MAoxikFV9N0zWqZ6p94nv5j0W7_UqMDHAwAp5pzQafDr02_WZPysOdOP6fVOH9Lrx_SacV3DVln-Jb_s_0f7dNCwRnrwmHQGjwFqx4Swahv9vwf-AKUnocA |
CitedBy_id | crossref_primary_10_3390_su15054320 crossref_primary_10_3390_w15122211 crossref_primary_10_1186_s12870_022_03475_2 crossref_primary_10_2139_ssrn_4126829 crossref_primary_10_3389_fpls_2024_1481372 crossref_primary_10_1007_s00128_021_03326_0 crossref_primary_10_3390_agriculture12081156 crossref_primary_10_1007_s11356_024_31942_w crossref_primary_10_1016_j_envpol_2024_125617 crossref_primary_10_1016_j_jhazmat_2023_130784 crossref_primary_10_1016_j_jenvman_2024_121661 crossref_primary_10_1016_j_scitotenv_2021_150872 crossref_primary_10_1007_s00128_021_03455_6 crossref_primary_10_1016_j_jclepro_2020_123874 crossref_primary_10_1007_s42729_025_02252_y crossref_primary_10_1016_j_envpol_2022_119390 crossref_primary_10_1016_j_jhazmat_2020_124543 crossref_primary_10_1016_j_envpol_2020_114614 crossref_primary_10_1016_j_scitotenv_2023_168269 crossref_primary_10_1016_j_eti_2021_101660 crossref_primary_10_1016_j_jhazmat_2024_135189 crossref_primary_10_1016_j_scitotenv_2021_146930 crossref_primary_10_1155_2022_7425085 crossref_primary_10_1007_s00128_020_02906_w crossref_primary_10_1088_1755_1315_791_1_012178 crossref_primary_10_1016_j_still_2019_104315 crossref_primary_10_1016_j_ecoenv_2020_110660 crossref_primary_10_3390_plants11020207 crossref_primary_10_2139_ssrn_4165548 crossref_primary_10_21498_2518_1017_15_4_2019_188718 crossref_primary_10_1016_j_scitotenv_2024_170959 crossref_primary_10_1016_j_ecolind_2022_109584 crossref_primary_10_1007_s11356_021_13856_z crossref_primary_10_3390_agronomy11081594 crossref_primary_10_1039_D0RA09358K crossref_primary_10_1007_s11356_020_07782_9 crossref_primary_10_1016_j_scitotenv_2020_143117 crossref_primary_10_1007_s11631_025_00770_1 crossref_primary_10_1038_s41598_024_83412_5 crossref_primary_10_1080_00103624_2023_2240373 crossref_primary_10_1016_j_scitotenv_2020_142188 crossref_primary_10_1016_j_chemosphere_2021_133347 crossref_primary_10_1016_j_chemosphere_2021_131043 crossref_primary_10_1016_j_scitotenv_2021_151801 crossref_primary_10_1016_j_rsci_2024_04_004 crossref_primary_10_1016_j_jclepro_2020_125557 crossref_primary_10_1016_j_jhazmat_2022_128325 crossref_primary_10_1039_D1RA00565K crossref_primary_10_1177_11786221231216862 crossref_primary_10_3389_fsufs_2024_1418554 crossref_primary_10_1016_j_scitotenv_2021_145824 crossref_primary_10_1016_j_jclepro_2022_133216 crossref_primary_10_1016_j_jenvman_2021_112302 crossref_primary_10_1016_j_rsci_2021_12_007 crossref_primary_10_3390_toxics12060418 crossref_primary_10_1007_s11356_022_21961_w crossref_primary_10_1016_j_biortech_2019_03_108 crossref_primary_10_1016_j_jhazmat_2019_04_057 crossref_primary_10_1016_j_scitotenv_2022_157572 crossref_primary_10_1111_sum_12796 crossref_primary_10_1021_acs_est_2c01393 crossref_primary_10_1088_1755_1315_787_1_012057 crossref_primary_10_1016_j_envpol_2020_114681 crossref_primary_10_1080_01904167_2022_2027977 crossref_primary_10_1016_j_jes_2024_04_030 |
Cites_doi | 10.1093/jxb/erp360 10.1016/j.scitotenv.2018.01.043 10.1016/j.clay.2013.08.022 10.1016/j.jhazmat.2011.12.011 10.1016/j.jenvman.2013.12.027 10.1016/j.agee.2017.10.017 10.1016/j.cej.2018.06.054 10.1016/j.still.2016.01.008 10.1016/S0269-7491(98)00184-5 10.1098/rsos.181328 10.1016/j.ecoleng.2016.10.057 10.1111/j.1365-2389.1994.tb00527.x 10.1016/j.envexpbot.2015.11.004 10.1146/annurev-arplant-042809-112152 10.1007/s11356-017-0921-2 10.2166/wh.2018.070 10.1093/jxb/ery107 10.1007/s11104-014-2268-5 10.1007/s11356-017-8462-2 10.1016/j.ecoenv.2017.10.043 10.1007/s11356-016-7326-5 10.2136/sssaj2002.4130 10.1021/es5047099 10.1016/j.ecoenv.2016.09.019 10.1007/s13738-016-0908-9 10.1016/j.envpol.2018.03.048 10.2134/jeq2007.0151 10.2134/jeq2017.07.0297 10.1016/j.geoderma.2015.12.017 10.1007/s10725-018-0417-1 10.1007/s11368-017-1823-0 10.1016/j.envint.2014.03.017 10.1093/jxb/erw175 10.1016/j.chemosphere.2007.10.015 10.1007/s10653-016-9904-3 10.1021/acs.est.5b05424 10.1016/j.scitotenv.2018.10.013 10.1007/BF00029094 10.1021/acs.est.8b04684 10.1016/j.envexpbot.2015.07.001 10.1016/j.jhazmat.2018.08.019 10.1021/acs.est.6b01669 10.1007/s10653-012-9458-y 10.1021/es034383n 10.1016/j.envexpbot.2016.08.004 10.1007/978-1-4613-8847-0_1 10.1016/j.plaphy.2015.11.005 10.1021/es405016t 10.1177/0748233718804426 10.1007/s00244-018-0518-x 10.1186/1939-8433-5-5 10.1007/s10098-016-1264-2 10.1016/j.tplants.2012.08.003 10.1007/s11356-014-4065-3 10.1021/es401997d 10.1146/annurev-earth-060313-054942 10.1097/00010694-198507000-00003 10.1016/j.jhazmat.2013.12.018 10.1071/S97085 10.1016/j.ceramint.2018.09.160 10.1073/pnas.0802361105 10.1016/j.envres.2017.03.014 10.1016/j.chemosphere.2012.05.008 10.1023/A:1013762204510 10.1007/s11368-016-1540-0 10.1186/s12864-018-4807-6 10.1016/j.scitotenv.2005.10.015 10.1016/j.envpol.2017.01.087 |
ContentType | Journal Article |
Copyright | 2019 Elsevier Inc. Copyright © 2019 Elsevier Inc. All rights reserved. |
Copyright_xml | – notice: 2019 Elsevier Inc. – notice: Copyright © 2019 Elsevier Inc. All rights reserved. |
DBID | AAYXX CITATION NPM 7X8 |
DOI | 10.1016/j.ecoenv.2019.01.003 |
DatabaseName | CrossRef PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | PubMed MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Public Health Ecology |
EISSN | 1090-2414 |
EndPage | 459 |
ExternalDocumentID | 30639871 10_1016_j_ecoenv_2019_01_003 S0147651319300041 |
Genre | Journal Article |
GroupedDBID | --- --K --M .~1 0R~ 0SF 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JM AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABFYP ABJNI ABLST ABMAC ABYKQ ACDAQ ACGFS ACRLP ADBBV ADEZE AEBSH AEKER AENEX AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHEUO AHHHB AIEXJ AIKHN AITUG AJOXV AKIFW ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLECG BLXMC CS3 DM4 DU5 EBS EFBJH EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA GROUPED_DOAJ IHE J1W KCYFY KOM LG5 LY8 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG ROL RPZ SCC SDF SDG SDP SES SPCBC SSJ SSZ T5K ZU3 ~G- 29G 53G AAFWJ AAHBH AAQXK AATTM AAXKI AAYWO AAYXX ABEFU ABFNM ABWVN ABXDB ACRPL ACVFH ADCNI ADFGL ADMUD ADNMO ADVLN AEGFY AEIPS AEUPX AFJKZ AFPKN AFPUW AGCQF AGQPQ AGRNS AI. AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CAG CITATION COF FEDTE FGOYB G-2 HMC HVGLF HZ~ H~9 OK1 R2- SEN SEW SSH VH1 WUQ XPP ZMT ZXP ~KM EFKBS NPM 7X8 |
ID | FETCH-LOGICAL-c465t-16261eafcb29fffec93fad4ea7baff0bcbc0c90666d67b1a485fffc549b4a65c3 |
IEDL.DBID | .~1 |
ISSN | 0147-6513 1090-2414 |
IngestDate | Fri Jul 11 09:12:40 EDT 2025 Mon Jul 21 06:06:29 EDT 2025 Thu Apr 24 23:05:59 EDT 2025 Tue Jul 01 04:00:03 EDT 2025 Fri Feb 23 02:27:37 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Soil Cadmium Arsenic Accumulation In situ remediation Rice |
Language | English |
License | Copyright © 2019 Elsevier Inc. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c465t-16261eafcb29fffec93fad4ea7baff0bcbc0c90666d67b1a485fffc549b4a65c3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 30639871 |
PQID | 2179339376 |
PQPubID | 23479 |
PageCount | 9 |
ParticipantIDs | proquest_miscellaneous_2179339376 pubmed_primary_30639871 crossref_citationtrail_10_1016_j_ecoenv_2019_01_003 crossref_primary_10_1016_j_ecoenv_2019_01_003 elsevier_sciencedirect_doi_10_1016_j_ecoenv_2019_01_003 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-04-30 |
PublicationDateYYYYMMDD | 2019-04-30 |
PublicationDate_xml | – month: 04 year: 2019 text: 2019-04-30 day: 30 |
PublicationDecade | 2010 |
PublicationPlace | Netherlands |
PublicationPlace_xml | – name: Netherlands |
PublicationTitle | Ecotoxicology and environmental safety |
PublicationTitleAlternate | Ecotoxicol Environ Saf |
PublicationYear | 2019 |
Publisher | Elsevier Inc |
Publisher_xml | – name: Elsevier Inc |
References | Fulda, Voegelin, Kretzschmar (bib17) 2013; 47 Shi, Li, Du, Wang, Shao (bib50) 2013; 85 Zhou, Zeng, Zhou, Liao, Peng, Hu, Zhu, Wu, Zou (bib69) 2015; 386 Herath, Kawakami, Nagasawa, Serikawa, Motoyama, Chaminda, Weragoda, Yatigammana, Amarasooriya (bib23) 2018; 16 Clemens, Aarts, Thomine, Verbruggen (bib11) 2013; 18 Cambier, Michaud, Paradelo, Germain, Mercier, Guérin-Lebourg, Revallier, Houot (bib6) 2019; 651 Lin, Zhong, Yan, Fei (bib31) 2018; 47 Zendehdel, Shoshtari-Yeganeh, Cruciani (bib64) 2016; 13 Chen, Tang, Wang, Zhao (bib7) 2018; 238 Zhang, Lin, Liu, Wang, Zhou, Huang, Lin, Wang, Brooks (bib65) 2017; 98 Goldberg (bib18) 2002; 66 Bradham, Diamond, Nelson, Noerpel, Scheckel, Elek, Chaney, Ma, Thomas (bib5) 2018; 52 Takahashi, Minamikawa, Hattori, Kurishima, Kihou, Yuita (bib55) 2004; 38 Tan, Wang, Kasiulienė, Huang, Ai (bib56) 2017; 19 Wang, Peng, Tan, Ma, Rathinasabapathi (bib59) 2015; 22 Antoniadis, Robinson, Alloway (bib1) 2008; 71 Ma, Yamaji, Mitani, Xu, Su, McGrath, Zhao (bib33) 2008; 105 Zheng, Cai, Liang, Huang, Chen, Huang, Arp, Sun (bib68) 2012; 89 Dixit, Singh, Kumar, Mishra, Dwivedi, Kumar (bib12) 2016; 99 Dermatas, Chrysochoou, Grubb, Xu (bib13) 2008; 37 Khan, Reid, Li, Zhu (bib28) 2014; 68 Seyfferth, McCurdy, Schaefer, Fendorf (bib48) 2014; 48 Kashem, Singh (bib27) 2001; 61 Chen, Zheng, Zheng, Dang, Zhang (bib9) 2018; 350 Chen, Shi, Jiang, Khanzada, Wassan, Zhu, Peng, XU, Chen, Yu, He, Fu, Chen, Hu, Ouyang, Sun, He, Bian (bib8) 2018; 19 Rahman, Ghosal, Alam, Kabir (bib44) 2017; 135 Wen, Peng, Liu, Fang, Zeng, Zhang (bib60) 2018; 18 Usman, A.R.A., Kuzyakov, Y., Stahr, K., 2004. Sorption, desorption, and immobilization of heavy metals by artificial soil. EUROSOIL 2004, Poster session 02b: Soil Properties and Processes. Reger, Bhargava, Ratha, Kundu, Balla (bib46) 2019; 45 Zhu, Yoshinaga, Zhao, Rosen (bib70) 2014; 2014 Honma, Ohba, Kaneko-Kadokura, Makino, Nakamura, Katou (bib24) 2016; 50 Suda, Makino (bib53) 2016; 270 Marin, Masscheleyn, Patrick (bib35) 1993; 152 Zhao, Mcgrath, Meharg (bib67) 2010; 61 Rahman, Kim, Saha, Swaraz, Paul (bib45) 2014; 134 Moitra, Ghosh, Firdous, Bandyopadhyay, Mondal, Biswas, Sahu, Bhattacharyya, Moitra (bib38) 2018; 34 McBride (bib36) 1989; 10 Naidu, Bolan, Kookana, Tiller (bib39) 1994; 45 Gray, McLaren, Roberts, Condron (bib20) 1998; 36 Maity, Nath, Kar, Chen, Banerjee, Jean, Liu, Centeno, Bhattacharya, Chang, Santra (bib34) 2012; 34 Yuan, Chai, Yang, Yang (bib63) 2017; 17 Shuman (bib52) 1985; 140 Guo, Ding, Zhou, Huang, Wang (bib22) 2018; 148 Yang, Gu, Zou, Zhou, Liao, Zeng (bib62) 2016; 23 Farooq, Detterbeck, Clemens, Dietz (bib16) 2016; 67 Cheng, Chang, Cheng, Shen, Sung, Guo (bib10) 2018; 626 Jahromi, Ghahreman (bib26) 2018; 360 Li, Luo, Li, Cai, Li, Mo, Wong (bib29) 2017; 224 Ni, Xu, Mei, Yang, Hong, Zeng, Hu, Deng, Hu (bib40) 2017; 32 Ishikawa, Abe, Kuramata, Yamaguchi, Ando, Yamamoto, Yano (bib25) 2010; 61 Shi, Chen, Wu, Zhu (bib51) 2017; 51 Gu, Zhou, Yang, Peng, Zhang, Zeng, Liao (bib21) 2018; 25 Puga, Melo, de Abreu, Coscione, Paz-Ferreiro (bib43) 2016; 164 Farooq, Islam, Ali, Najeeb, Mao, Gill, Yan, Siddique, Zhou (bib15) 2016; 132 Sanglard, Detmann, Martins, Teixeira, Pereira, Sanglard, Fernie, Araújo, DaMatta (bib47) 2016; 123 Bakhat, Zia, Fahad, Abbas, Hammad, Shahzad, Abbas, Alharby, Shahid (bib2) 2017; 24 Bolan, Kunhikrishnan, Thangarajan, Kumpiene, Park, Makino, Kirkham, Scheckel (bib4) 2014; 266 Boisson, Ruttens, Mench, Vangronsveld (bib3) 1999; 104 González, García, Moral, Simón (bib19) 2012; 205–206 Pérez-de-Mora, Madejón, Burgos, Cabrera (bib42) 2006; 363 Xue, Shi, Wu, Wu, Qin, Pan, Hartley, Cui (bib61) 2017; 156 Suriyagoda, Dittert, Lambers (bib54) 2018; 253 Pavlović, Pavlović, Čakmak, Kostić, Jarić, Sakan, Đordević, Mitrović, Grzetić, Pavlović (bib41) 2018; 75 Meharg, Meharg (bib37) 2015; 120 Lin, He, Lin, Li, Fang, Lin (bib30) 2018; 86 Zhao, Ma, Zhu, Tang, McGrath (bib66) 2015; 49 López-Abente, Locutura-Rupérez, Fernández-Navarro, Martín-Méndez, Bel-Lan, Núńez (bib32) 2018; 40 Shao, Xia, Yamaji (bib49) 2018; 69 Uraguchi, Fujiwara (bib57) 2012; 5 Fahmi, Samsuri, Jol, Singh (bib14) 2018; 5 Khan (10.1016/j.ecoenv.2019.01.003_bib28) 2014; 68 Ma (10.1016/j.ecoenv.2019.01.003_bib33) 2008; 105 Moitra (10.1016/j.ecoenv.2019.01.003_bib38) 2018; 34 Guo (10.1016/j.ecoenv.2019.01.003_bib22) 2018; 148 Lin (10.1016/j.ecoenv.2019.01.003_bib30) 2018; 86 Kashem (10.1016/j.ecoenv.2019.01.003_bib27) 2001; 61 Sanglard (10.1016/j.ecoenv.2019.01.003_bib47) 2016; 123 Chen (10.1016/j.ecoenv.2019.01.003_bib7) 2018; 238 Zhu (10.1016/j.ecoenv.2019.01.003_bib70) 2014; 2014 López-Abente (10.1016/j.ecoenv.2019.01.003_bib32) 2018; 40 Cambier (10.1016/j.ecoenv.2019.01.003_bib6) 2019; 651 Chen (10.1016/j.ecoenv.2019.01.003_bib8) 2018; 19 Marin (10.1016/j.ecoenv.2019.01.003_bib35) 1993; 152 Ishikawa (10.1016/j.ecoenv.2019.01.003_bib25) 2010; 61 Boisson (10.1016/j.ecoenv.2019.01.003_bib3) 1999; 104 Bradham (10.1016/j.ecoenv.2019.01.003_bib5) 2018; 52 Shi (10.1016/j.ecoenv.2019.01.003_bib50) 2013; 85 Naidu (10.1016/j.ecoenv.2019.01.003_bib39) 1994; 45 Rahman (10.1016/j.ecoenv.2019.01.003_bib45) 2014; 134 Xue (10.1016/j.ecoenv.2019.01.003_bib61) 2017; 156 Shao (10.1016/j.ecoenv.2019.01.003_bib49) 2018; 69 Gray (10.1016/j.ecoenv.2019.01.003_bib20) 1998; 36 Zheng (10.1016/j.ecoenv.2019.01.003_bib68) 2012; 89 Rahman (10.1016/j.ecoenv.2019.01.003_bib44) 2017; 135 Shuman (10.1016/j.ecoenv.2019.01.003_bib52) 1985; 140 Ni (10.1016/j.ecoenv.2019.01.003_bib40) 2017; 32 Chen (10.1016/j.ecoenv.2019.01.003_bib9) 2018; 350 Puga (10.1016/j.ecoenv.2019.01.003_bib43) 2016; 164 Pérez-de-Mora (10.1016/j.ecoenv.2019.01.003_bib42) 2006; 363 Zhao (10.1016/j.ecoenv.2019.01.003_bib67) 2010; 61 Dermatas (10.1016/j.ecoenv.2019.01.003_bib13) 2008; 37 Tan (10.1016/j.ecoenv.2019.01.003_bib56) 2017; 19 Zendehdel (10.1016/j.ecoenv.2019.01.003_bib64) 2016; 13 Farooq (10.1016/j.ecoenv.2019.01.003_bib15) 2016; 132 Lin (10.1016/j.ecoenv.2019.01.003_bib31) 2018; 47 Wen (10.1016/j.ecoenv.2019.01.003_bib60) 2018; 18 Dixit (10.1016/j.ecoenv.2019.01.003_bib12) 2016; 99 Uraguchi (10.1016/j.ecoenv.2019.01.003_bib57) 2012; 5 Fulda (10.1016/j.ecoenv.2019.01.003_bib17) 2013; 47 Fahmi (10.1016/j.ecoenv.2019.01.003_bib14) 2018; 5 Reger (10.1016/j.ecoenv.2019.01.003_bib46) 2019; 45 Maity (10.1016/j.ecoenv.2019.01.003_bib34) 2012; 34 Takahashi (10.1016/j.ecoenv.2019.01.003_bib55) 2004; 38 10.1016/j.ecoenv.2019.01.003_bib58 Antoniadis (10.1016/j.ecoenv.2019.01.003_bib1) 2008; 71 Jahromi (10.1016/j.ecoenv.2019.01.003_bib26) 2018; 360 Goldberg (10.1016/j.ecoenv.2019.01.003_bib18) 2002; 66 McBride (10.1016/j.ecoenv.2019.01.003_bib36) 1989; 10 Shi (10.1016/j.ecoenv.2019.01.003_bib51) 2017; 51 Pavlović (10.1016/j.ecoenv.2019.01.003_bib41) 2018; 75 Zhao (10.1016/j.ecoenv.2019.01.003_bib66) 2015; 49 Gu (10.1016/j.ecoenv.2019.01.003_bib21) 2018; 25 Wang (10.1016/j.ecoenv.2019.01.003_bib59) 2015; 22 Yuan (10.1016/j.ecoenv.2019.01.003_bib63) 2017; 17 Herath (10.1016/j.ecoenv.2019.01.003_bib23) 2018; 16 Zhang (10.1016/j.ecoenv.2019.01.003_bib65) 2017; 98 Seyfferth (10.1016/j.ecoenv.2019.01.003_bib48) 2014; 48 Suda (10.1016/j.ecoenv.2019.01.003_bib53) 2016; 270 Cheng (10.1016/j.ecoenv.2019.01.003_bib10) 2018; 626 Honma (10.1016/j.ecoenv.2019.01.003_bib24) 2016; 50 Yang (10.1016/j.ecoenv.2019.01.003_bib62) 2016; 23 Zhou (10.1016/j.ecoenv.2019.01.003_bib69) 2015; 386 Bolan (10.1016/j.ecoenv.2019.01.003_bib4) 2014; 266 Li (10.1016/j.ecoenv.2019.01.003_bib29) 2017; 224 Suriyagoda (10.1016/j.ecoenv.2019.01.003_bib54) 2018; 253 Bakhat (10.1016/j.ecoenv.2019.01.003_bib2) 2017; 24 Clemens (10.1016/j.ecoenv.2019.01.003_bib11) 2013; 18 Meharg (10.1016/j.ecoenv.2019.01.003_bib37) 2015; 120 Farooq (10.1016/j.ecoenv.2019.01.003_bib16) 2016; 67 González (10.1016/j.ecoenv.2019.01.003_bib19) 2012; 205–206 |
References_xml | – volume: 363 start-page: 28 year: 2006 end-page: 37 ident: bib42 article-title: Trace element availability and plant growth in a mine-spill-contaminated soil under assisted natural remediation: II. Plants publication-title: Sci. Total. Environ. – volume: 5 start-page: 5 year: 2012 ident: bib57 article-title: Cadmium transport and tolerance in rice: perspectives for reducing grain cadmium accumulation publication-title: Rice – volume: 86 start-page: 149 year: 2018 end-page: 157 ident: bib30 article-title: regulated Cd uptake and phytohormones accumulation in rice seedlings in presence of Si publication-title: Plant Growth Regul. – volume: 48 start-page: 4699 year: 2014 end-page: 4706 ident: bib48 article-title: Arsenic concentrations in paddy soil and rice and health implications for major rice-growing regions of Cambodia publication-title: Environ. Sci. Technol. – volume: 51 start-page: 1670 year: 2017 end-page: 1678 ident: bib51 article-title: Anthropogenic cycles of arsenic in mainland China: 1990–2010 publication-title: Environ. Sci. Technol. – volume: 132 start-page: 42 year: 2016 end-page: 52 ident: bib15 article-title: Arsenic toxicity in plants: cellular and molecular mechanisms of its transport and metabolism publication-title: Environ. Exp. Bot. – volume: 18 start-page: 323 year: 2018 end-page: 332 ident: bib60 article-title: A case study of evaluating zeolite, CaCO publication-title: J. Soil. Sediment. – volume: 156 start-page: 23 year: 2017 end-page: 30 ident: bib61 article-title: Cadmium, lead, and arsenic contamination in paddy soil of a mining area and their exposure effects on human HHEPG2 and keratinocyte cell-lines publication-title: Environ. Res. – volume: 52 start-page: 13908 year: 2018 end-page: 13913 ident: bib5 article-title: Long-term in situ reduction in soil lead bioavailability measured in a mouse model publication-title: Environ. Sci. Technol. – volume: 34 start-page: 908 year: 2018 end-page: 921 ident: bib38 article-title: Exposure to heavy metals alters the surface topology of alveolar macrophages and induces respiratory dysfunction among Indian metal arc-welders publication-title: Toxicol. Ind. Health – volume: 266 start-page: 141 year: 2014 end-page: 166 ident: bib4 article-title: Remediation of heavy metal (loid)s contaminated soils - to mobilize or to immobilize? publication-title: J. Hazard Mater. – volume: 45 start-page: 252 year: 2019 end-page: 263 ident: bib46 article-title: Structural and phase analysis of multi-ion doped hydroxyapatite for biomedical applications publication-title: Ceram. Int. – volume: 40 start-page: 283 year: 2018 end-page: 294 ident: bib32 article-title: Compositional analysis of topsoil metals and its associations with cancer mortality using spatial misaligned data publication-title: Environ. Geochem. Health – volume: 34 start-page: 563 year: 2012 end-page: 574 ident: bib34 article-title: Arsenic-induced health crisis in Peri-urban Moyna and Ardebok villages, West Bengal, India: an exposure assessment study publication-title: Environ. Geochem. Health – volume: 16 start-page: 212 year: 2018 end-page: 222 ident: bib23 article-title: Arsenic, cadmium, lead, and chromium in well water, rice, and human urine in Sri Lanka in relation to chronic kidney disease of unknown etiology publication-title: J. Water Health – volume: 18 start-page: 92 year: 2013 end-page: 99 ident: bib11 article-title: Plant science: the key to preventing slow cadmium poisoning publication-title: Trends Plant Sci. – volume: 25 start-page: 8608 year: 2018 end-page: 8619 ident: bib21 article-title: Effects of an additive (hydroxyapatite–biochar–zeolite) on the chemical speciation of Cd and As in paddy soils and their accumulation and translocation in rice plants publication-title: Environ. Sci. Pollut. Res. – volume: 85 start-page: 103 year: 2013 end-page: 108 ident: bib50 article-title: Immobilization of lead by application of zeolite: leaching column and rhizobox incubation studies publication-title: Appl. Clay Sci. – volume: 123 start-page: 22 year: 2016 end-page: 36 ident: bib47 article-title: The role of silicon in metabolic acclima-tionofrice plants challenged with arsenic publication-title: Environ. Exp. Bot. – volume: 71 start-page: 759 year: 2008 end-page: 764 ident: bib1 article-title: Effects of short-term pH fluctuations on cadmium, nickel, lead, and zinc availability to ryegrass in a sewage sludge-amended field publication-title: Chemosphere – volume: 50 start-page: 4178 year: 2016 end-page: 4185 ident: bib24 article-title: Optimal soil Eh, pH, and water management for simultaneously minimizing arsenic and cadmium concentrations in rice grains publication-title: Environ. Sci. Technol. – volume: 47 start-page: 12775 year: 2013 end-page: 12783 ident: bib17 article-title: Redox-controlled changes in cadmium solubility and solid-phase speciation in a paddy soil as affected by reducible sulfate and copper publication-title: Environ. Sci. Technol. – volume: 19 start-page: 761 year: 2017 end-page: 774 ident: bib56 article-title: Cadmium removal potential by rice straw-derived magnetic biochar publication-title: Clean. Technol. Environ. Policy – volume: 5 start-page: 181328 year: 2018 ident: bib14 article-title: Bioavailability and leaching of Cd and Pb from contaminated soil amended with different sizes of biochar publication-title: R. Soc. Open Sci. – volume: 135 start-page: 165 year: 2017 end-page: 172 ident: bib44 article-title: Remediation of cadmium toxicity in field peas ( publication-title: Ecotoxicol. Environ. Safe – volume: 47 start-page: 312 year: 2018 end-page: 317 ident: bib31 article-title: Reducing arsenic concentration in publication-title: J. Environ. Qual. – volume: 75 start-page: 335 year: 2018 end-page: 350 ident: bib41 article-title: Fractionation, mobility, and contamination assessment of potentially toxic metals in urban soils in four industrial Serbian cities publication-title: Arch. Environ. Contam. Toxicol. – volume: 68 start-page: 154 year: 2014 end-page: 161 ident: bib28 article-title: Application of biochar to soil reduces cancer risk via rice consumption: a case study in Miaoqian village, Longyan, China publication-title: Environ. Int. – volume: 253 start-page: 23 year: 2018 end-page: 37 ident: bib54 article-title: Mechanism of arsenic uptake, translocation and plant resistance to accumulate arsenic in rice grains publication-title: Agr. Ecosyst. Environ. – volume: 23 start-page: 20853 year: 2016 end-page: 20861 ident: bib62 article-title: Impacts of rapeseed dregs on Cd availability in contaminated acid soil and Cd translocation and accumulation in rice plants publication-title: Environ. Sci. Pollut. Res. – volume: 386 start-page: 317 year: 2015 end-page: 329 ident: bib69 article-title: Heavy metal translocation and accumulation in iron plaques and plant tissues for 32 hybrid rice ( publication-title: Plant Soil – volume: 61 start-page: 923 year: 2010 end-page: 934 ident: bib25 article-title: A major quantitative trait locus for increasing cadmium-specific concentration in rice grain is located on the short arm of chromosome 7 publication-title: J. Exp. Bot. – volume: 17 start-page: 432 year: 2017 end-page: 439 ident: bib63 article-title: Simultaneous immobilization of lead, cadmium, and arsenic in combined contaminated soil with iron hydroxyl phosphate publication-title: J. Soil. Sediment – volume: 89 start-page: 856 year: 2012 end-page: 862 ident: bib68 article-title: The effects of biochars from rice residue on the formation of iron plaque and the accumulation of Cd, Zn, Pb, As in rice ( publication-title: Chemosphere – volume: 104 start-page: 225 year: 1999 end-page: 233 ident: bib3 article-title: Evaluation of hydroxyapatite as a metal immobilizing soil additive for the remediation of polluted soils: Part 1. Influence of hydroxyapatite on metal exchangeability in soil, plant growth and plant metal accumulation publication-title: Environ. Pollut. – volume: 224 start-page: 622 year: 2017 end-page: 630 ident: bib29 article-title: Cadmium in rice: transport mechanisms, influencing factors, and minimizing measures publication-title: Environ. Pollut. – volume: 164 start-page: 25 year: 2016 end-page: 33 ident: bib43 article-title: Leaching and fractionation of heavy metals in mining soils amended with biochar publication-title: Soil Till Res. – volume: 36 start-page: 199 year: 1998 end-page: 216 ident: bib20 article-title: Sorption and desorption of cadmium from some New Zealand soils: effect of pH and contact time publication-title: Aust. J. Soil Res. – volume: 61 start-page: 535 year: 2010 end-page: 559 ident: bib67 article-title: Arsenic as a food chain contaminant: mechanisms of plant uptake and metabolism and mitigation strategies publication-title: Annu. Rev. Plant Biol. – reference: Usman, A.R.A., Kuzyakov, Y., Stahr, K., 2004. Sorption, desorption, and immobilization of heavy metals by artificial soil. EUROSOIL 2004, Poster session 02b: Soil Properties and Processes. – volume: 651 start-page: 2961 year: 2019 end-page: 2974 ident: bib6 article-title: Trace metal availability in soil horizons amended with various urban waste composts during 17 years - monitoring and modeling publication-title: Sci. Total Environ. – volume: 360 start-page: 631 year: 2018 end-page: 638 ident: bib26 article-title: In-situ oxidative arsenic precipitation as scorodite during carbon catalyzed enargite leaching process publication-title: J. Hazard. Mater. – volume: 45 start-page: 419 year: 1994 end-page: 429 ident: bib39 article-title: Ionic-strength and pH effects on the sorption of cadmium and the surface charge of soils publication-title: Eur. J. Soil. Sci. – volume: 22 start-page: 5742 year: 2015 end-page: 5750 ident: bib59 article-title: Recent advances in arsenic bioavailability, transport, and speciation in rice publication-title: Environ. Sci. Pollut. Res. – volume: 66 start-page: 413 year: 2002 end-page: 421 ident: bib18 article-title: Competitive adsorption of arsenate and arsenite on oxides and clay minerals publication-title: Soil Sci. Soc. Am. J. – volume: 38 year: 2004 ident: bib55 article-title: Arsenic behavior in paddy fields during the cycle of flooded and non-flooded periods publication-title: Environ. Sci. Technol. – volume: 13 start-page: 1915 year: 2016 end-page: 1930 ident: bib64 article-title: Removal of heavy metals and bacteria from aqueous solution by novel hydroxyapatite/zeolite nanocomposite, preparation, and characterization publication-title: J. Iran. Chem. Soc. – volume: 98 start-page: 183 year: 2017 end-page: 188 ident: bib65 article-title: Immobilization and bioavailability of heavy metals in greenhouse soils amended with rice straw-derived biochar publication-title: Ecol. Eng. – volume: 19 start-page: 460 year: 2018 ident: bib8 article-title: Genome-wide analysis of long non-coding rnas affecting roots development at an early stage in the rice response to cadmium stress publication-title: BMC Genom. – volume: 105 start-page: 9931 year: 2008 end-page: 9935 ident: bib33 article-title: Transporters of arsenite in rice and their role in arsenic accumulation in rice grain publication-title: Proc. Natl. Acad. Sci. USA – volume: 99 start-page: 86 year: 2016 end-page: 96 ident: bib12 article-title: Reduced arsenic accumulation in rice ( publication-title: Plant Physiol. Biochem. – volume: 152 start-page: 245 year: 1993 end-page: 253 ident: bib35 article-title: Soil redox-pH stability of arsenic species and its influence on arsenic uptake by rice publication-title: Plant Soil – volume: 140 start-page: 11 year: 1985 end-page: 22 ident: bib52 article-title: Fractionation method for soil microelements publication-title: Soil Sci. – volume: 270 start-page: 68 year: 2016 end-page: 75 ident: bib53 article-title: Functional effects of manganese and iron oxides on the dynamics of trace elements in soils with a special focus on arsenic and cadmium: a review publication-title: Geoderma – volume: 10 start-page: 1 year: 1989 end-page: 56 ident: bib36 article-title: Reactions controlling heavy metal solubility in soils publication-title: Adv. Soil. Sci. – volume: 49 start-page: 750 year: 2015 end-page: 759 ident: bib66 article-title: Soil contamination in China: current status and mitigation strategies publication-title: Environ. Sci. Technol. – volume: 61 start-page: 247 year: 2001 end-page: 255 ident: bib27 article-title: Metal availability in contaminated soils: I. effects of flooding and organic matter on changes in Eh, pH and solubility of Cd, Ni and Zn publication-title: Nutr. Cycl. Agroecosyst. – volume: 2014 start-page: 443 year: 2014 end-page: 467 ident: bib70 article-title: Earth abides arsenic biotransformations publication-title: Annu. Rev. Earth Planet. Sci. – volume: 32 start-page: 7 year: 2017 end-page: 11 ident: bib40 article-title: Distribution of major heavy metals in rice grains publication-title: J. Chin. Cereals Oils Assoc. – volume: 37 start-page: 47 year: 2008 end-page: 56 ident: bib13 article-title: Phosphate treatment of firing range soils: lead fixation or phosphorus release? publication-title: J. Environ. Qual. – volume: 205–206 start-page: 72 year: 2012 end-page: 80 ident: bib19 article-title: Effectiveness of amendments on the spread and phytotoxicity of contaminants in metal–arsenic polluted soil publication-title: J. Hazard. Mater. – volume: 148 start-page: 303 year: 2018 end-page: 310 ident: bib22 article-title: Effects of combined amendments on crop yield and cadmium uptake in two cadmium contaminated soils under rice-wheat rotation publication-title: Ecotoxicol. Environ. Saf. – volume: 134 start-page: 175 year: 2014 end-page: 185 ident: bib45 article-title: Review of remediation techniques for arsenic (As) contamination: a novel approach utilizing bio-organisms publication-title: J. Environ. Manag. – volume: 120 start-page: 8 year: 2015 end-page: 17 ident: bib37 article-title: Silicon, the silver bullet for mitigating biotic and abiotic stress, and improving grain quality, in rice? publication-title: Environ. Exp. Bot. – volume: 238 start-page: 482 year: 2018 end-page: 490 ident: bib7 article-title: Geographical variations of cadmium and arsenic concentrations and arsenic speciation in Chinese rice publication-title: Environ. Pollut. – volume: 24 start-page: 9142 year: 2017 end-page: 9158 ident: bib2 article-title: Arsenic uptake, accumulation and toxicity in rice plants: possible remedies for its detoxification: a review publication-title: Environ. Sci. Pollut. Res. – volume: 350 start-page: 1000 year: 2018 end-page: 1009 ident: bib9 article-title: Classical theory and electron-scale view of exceptional Cd(II) adsorption onto mesoporous cellulose biochar via experimental analysis coupled with DFT calculations publication-title: Chem. Eng. J. – volume: 626 start-page: 581 year: 2018 end-page: 591 ident: bib10 article-title: Associations between arsenic in drinking water and occurrence of end-stage renal disease with modifications by comorbidities: a nationwide population-based study in Taiwan publication-title: Sci. Total Environ. – volume: 69 start-page: 2743 year: 2018 end-page: 2752 ident: bib49 article-title: Effective reduction of cadmium accumulation in rice grain by expressing publication-title: J. Exp. Bot. – volume: 67 start-page: 3573 year: 2016 end-page: 3585 ident: bib16 article-title: Silicon-induced reversibility of cadmium toxicity in rice publication-title: J. Exp. Bot. – volume: 61 start-page: 923 year: 2010 ident: 10.1016/j.ecoenv.2019.01.003_bib25 article-title: A major quantitative trait locus for increasing cadmium-specific concentration in rice grain is located on the short arm of chromosome 7 publication-title: J. Exp. Bot. doi: 10.1093/jxb/erp360 – ident: 10.1016/j.ecoenv.2019.01.003_bib58 – volume: 626 start-page: 581 year: 2018 ident: 10.1016/j.ecoenv.2019.01.003_bib10 article-title: Associations between arsenic in drinking water and occurrence of end-stage renal disease with modifications by comorbidities: a nationwide population-based study in Taiwan publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2018.01.043 – volume: 85 start-page: 103 year: 2013 ident: 10.1016/j.ecoenv.2019.01.003_bib50 article-title: Immobilization of lead by application of zeolite: leaching column and rhizobox incubation studies publication-title: Appl. Clay Sci. doi: 10.1016/j.clay.2013.08.022 – volume: 205–206 start-page: 72 year: 2012 ident: 10.1016/j.ecoenv.2019.01.003_bib19 article-title: Effectiveness of amendments on the spread and phytotoxicity of contaminants in metal–arsenic polluted soil publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2011.12.011 – volume: 134 start-page: 175 year: 2014 ident: 10.1016/j.ecoenv.2019.01.003_bib45 article-title: Review of remediation techniques for arsenic (As) contamination: a novel approach utilizing bio-organisms publication-title: J. Environ. Manag. doi: 10.1016/j.jenvman.2013.12.027 – volume: 253 start-page: 23 year: 2018 ident: 10.1016/j.ecoenv.2019.01.003_bib54 article-title: Mechanism of arsenic uptake, translocation and plant resistance to accumulate arsenic in rice grains publication-title: Agr. Ecosyst. Environ. doi: 10.1016/j.agee.2017.10.017 – volume: 350 start-page: 1000 year: 2018 ident: 10.1016/j.ecoenv.2019.01.003_bib9 article-title: Classical theory and electron-scale view of exceptional Cd(II) adsorption onto mesoporous cellulose biochar via experimental analysis coupled with DFT calculations publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2018.06.054 – volume: 164 start-page: 25 year: 2016 ident: 10.1016/j.ecoenv.2019.01.003_bib43 article-title: Leaching and fractionation of heavy metals in mining soils amended with biochar publication-title: Soil Till Res. doi: 10.1016/j.still.2016.01.008 – volume: 104 start-page: 225 year: 1999 ident: 10.1016/j.ecoenv.2019.01.003_bib3 article-title: Evaluation of hydroxyapatite as a metal immobilizing soil additive for the remediation of polluted soils: Part 1. Influence of hydroxyapatite on metal exchangeability in soil, plant growth and plant metal accumulation publication-title: Environ. Pollut. doi: 10.1016/S0269-7491(98)00184-5 – volume: 5 start-page: 181328 year: 2018 ident: 10.1016/j.ecoenv.2019.01.003_bib14 article-title: Bioavailability and leaching of Cd and Pb from contaminated soil amended with different sizes of biochar publication-title: R. Soc. Open Sci. doi: 10.1098/rsos.181328 – volume: 98 start-page: 183 year: 2017 ident: 10.1016/j.ecoenv.2019.01.003_bib65 article-title: Immobilization and bioavailability of heavy metals in greenhouse soils amended with rice straw-derived biochar publication-title: Ecol. Eng. doi: 10.1016/j.ecoleng.2016.10.057 – volume: 45 start-page: 419 year: 1994 ident: 10.1016/j.ecoenv.2019.01.003_bib39 article-title: Ionic-strength and pH effects on the sorption of cadmium and the surface charge of soils publication-title: Eur. J. Soil. Sci. doi: 10.1111/j.1365-2389.1994.tb00527.x – volume: 123 start-page: 22 year: 2016 ident: 10.1016/j.ecoenv.2019.01.003_bib47 article-title: The role of silicon in metabolic acclima-tionofrice plants challenged with arsenic publication-title: Environ. Exp. Bot. doi: 10.1016/j.envexpbot.2015.11.004 – volume: 61 start-page: 535 year: 2010 ident: 10.1016/j.ecoenv.2019.01.003_bib67 article-title: Arsenic as a food chain contaminant: mechanisms of plant uptake and metabolism and mitigation strategies publication-title: Annu. Rev. Plant Biol. doi: 10.1146/annurev-arplant-042809-112152 – volume: 25 start-page: 8608 year: 2018 ident: 10.1016/j.ecoenv.2019.01.003_bib21 article-title: Effects of an additive (hydroxyapatite–biochar–zeolite) on the chemical speciation of Cd and As in paddy soils and their accumulation and translocation in rice plants publication-title: Environ. Sci. Pollut. Res. doi: 10.1007/s11356-017-0921-2 – volume: 16 start-page: 212 year: 2018 ident: 10.1016/j.ecoenv.2019.01.003_bib23 article-title: Arsenic, cadmium, lead, and chromium in well water, rice, and human urine in Sri Lanka in relation to chronic kidney disease of unknown etiology publication-title: J. Water Health doi: 10.2166/wh.2018.070 – volume: 69 start-page: 2743 year: 2018 ident: 10.1016/j.ecoenv.2019.01.003_bib49 article-title: Effective reduction of cadmium accumulation in rice grain by expressing OsHMA3 under the control of the OsHMA2 promoter publication-title: J. Exp. Bot. doi: 10.1093/jxb/ery107 – volume: 386 start-page: 317 year: 2015 ident: 10.1016/j.ecoenv.2019.01.003_bib69 article-title: Heavy metal translocation and accumulation in iron plaques and plant tissues for 32 hybrid rice (Oryza sativa L.) cultivars publication-title: Plant Soil doi: 10.1007/s11104-014-2268-5 – volume: 24 start-page: 9142 year: 2017 ident: 10.1016/j.ecoenv.2019.01.003_bib2 article-title: Arsenic uptake, accumulation and toxicity in rice plants: possible remedies for its detoxification: a review publication-title: Environ. Sci. Pollut. Res. doi: 10.1007/s11356-017-8462-2 – volume: 148 start-page: 303 year: 2018 ident: 10.1016/j.ecoenv.2019.01.003_bib22 article-title: Effects of combined amendments on crop yield and cadmium uptake in two cadmium contaminated soils under rice-wheat rotation publication-title: Ecotoxicol. Environ. Saf. doi: 10.1016/j.ecoenv.2017.10.043 – volume: 23 start-page: 20853 year: 2016 ident: 10.1016/j.ecoenv.2019.01.003_bib62 article-title: Impacts of rapeseed dregs on Cd availability in contaminated acid soil and Cd translocation and accumulation in rice plants publication-title: Environ. Sci. Pollut. Res. doi: 10.1007/s11356-016-7326-5 – volume: 66 start-page: 413 year: 2002 ident: 10.1016/j.ecoenv.2019.01.003_bib18 article-title: Competitive adsorption of arsenate and arsenite on oxides and clay minerals publication-title: Soil Sci. Soc. Am. J. doi: 10.2136/sssaj2002.4130 – volume: 49 start-page: 750 year: 2015 ident: 10.1016/j.ecoenv.2019.01.003_bib66 article-title: Soil contamination in China: current status and mitigation strategies publication-title: Environ. Sci. Technol. doi: 10.1021/es5047099 – volume: 135 start-page: 165 year: 2017 ident: 10.1016/j.ecoenv.2019.01.003_bib44 article-title: Remediation of cadmium toxicity in field peas (Pisum sativum L.) through exogenous silicon publication-title: Ecotoxicol. Environ. Safe doi: 10.1016/j.ecoenv.2016.09.019 – volume: 13 start-page: 1915 year: 2016 ident: 10.1016/j.ecoenv.2019.01.003_bib64 article-title: Removal of heavy metals and bacteria from aqueous solution by novel hydroxyapatite/zeolite nanocomposite, preparation, and characterization publication-title: J. Iran. Chem. Soc. doi: 10.1007/s13738-016-0908-9 – volume: 238 start-page: 482 year: 2018 ident: 10.1016/j.ecoenv.2019.01.003_bib7 article-title: Geographical variations of cadmium and arsenic concentrations and arsenic speciation in Chinese rice publication-title: Environ. Pollut. doi: 10.1016/j.envpol.2018.03.048 – volume: 37 start-page: 47 year: 2008 ident: 10.1016/j.ecoenv.2019.01.003_bib13 article-title: Phosphate treatment of firing range soils: lead fixation or phosphorus release? publication-title: J. Environ. Qual. doi: 10.2134/jeq2007.0151 – volume: 47 start-page: 312 year: 2018 ident: 10.1016/j.ecoenv.2019.01.003_bib31 article-title: Reducing arsenic concentration in Panax notoginseng via contaminant immobilization in soil using Fe-Ce oxide publication-title: J. Environ. Qual. doi: 10.2134/jeq2017.07.0297 – volume: 270 start-page: 68 year: 2016 ident: 10.1016/j.ecoenv.2019.01.003_bib53 article-title: Functional effects of manganese and iron oxides on the dynamics of trace elements in soils with a special focus on arsenic and cadmium: a review publication-title: Geoderma doi: 10.1016/j.geoderma.2015.12.017 – volume: 86 start-page: 149 year: 2018 ident: 10.1016/j.ecoenv.2019.01.003_bib30 article-title: Lsi1 regulated Cd uptake and phytohormones accumulation in rice seedlings in presence of Si publication-title: Plant Growth Regul. doi: 10.1007/s10725-018-0417-1 – volume: 18 start-page: 323 year: 2018 ident: 10.1016/j.ecoenv.2019.01.003_bib60 article-title: A case study of evaluating zeolite, CaCO3, and MnO2 for Cd-contaminated sediment reuse in soil publication-title: J. Soil. Sediment. doi: 10.1007/s11368-017-1823-0 – volume: 68 start-page: 154 year: 2014 ident: 10.1016/j.ecoenv.2019.01.003_bib28 article-title: Application of biochar to soil reduces cancer risk via rice consumption: a case study in Miaoqian village, Longyan, China publication-title: Environ. Int. doi: 10.1016/j.envint.2014.03.017 – volume: 67 start-page: 3573 year: 2016 ident: 10.1016/j.ecoenv.2019.01.003_bib16 article-title: Silicon-induced reversibility of cadmium toxicity in rice publication-title: J. Exp. Bot. doi: 10.1093/jxb/erw175 – volume: 71 start-page: 759 year: 2008 ident: 10.1016/j.ecoenv.2019.01.003_bib1 article-title: Effects of short-term pH fluctuations on cadmium, nickel, lead, and zinc availability to ryegrass in a sewage sludge-amended field publication-title: Chemosphere doi: 10.1016/j.chemosphere.2007.10.015 – volume: 40 start-page: 283 year: 2018 ident: 10.1016/j.ecoenv.2019.01.003_bib32 article-title: Compositional analysis of topsoil metals and its associations with cancer mortality using spatial misaligned data publication-title: Environ. Geochem. Health doi: 10.1007/s10653-016-9904-3 – volume: 50 start-page: 4178 year: 2016 ident: 10.1016/j.ecoenv.2019.01.003_bib24 article-title: Optimal soil Eh, pH, and water management for simultaneously minimizing arsenic and cadmium concentrations in rice grains publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.5b05424 – volume: 651 start-page: 2961 year: 2019 ident: 10.1016/j.ecoenv.2019.01.003_bib6 article-title: Trace metal availability in soil horizons amended with various urban waste composts during 17 years - monitoring and modeling publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2018.10.013 – volume: 152 start-page: 245 year: 1993 ident: 10.1016/j.ecoenv.2019.01.003_bib35 article-title: Soil redox-pH stability of arsenic species and its influence on arsenic uptake by rice publication-title: Plant Soil doi: 10.1007/BF00029094 – volume: 52 start-page: 13908 year: 2018 ident: 10.1016/j.ecoenv.2019.01.003_bib5 article-title: Long-term in situ reduction in soil lead bioavailability measured in a mouse model publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.8b04684 – volume: 120 start-page: 8 year: 2015 ident: 10.1016/j.ecoenv.2019.01.003_bib37 article-title: Silicon, the silver bullet for mitigating biotic and abiotic stress, and improving grain quality, in rice? publication-title: Environ. Exp. Bot. doi: 10.1016/j.envexpbot.2015.07.001 – volume: 360 start-page: 631 year: 2018 ident: 10.1016/j.ecoenv.2019.01.003_bib26 article-title: In-situ oxidative arsenic precipitation as scorodite during carbon catalyzed enargite leaching process publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2018.08.019 – volume: 51 start-page: 1670 year: 2017 ident: 10.1016/j.ecoenv.2019.01.003_bib51 article-title: Anthropogenic cycles of arsenic in mainland China: 1990–2010 publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.6b01669 – volume: 32 start-page: 7 year: 2017 ident: 10.1016/j.ecoenv.2019.01.003_bib40 article-title: Distribution of major heavy metals in rice grains publication-title: J. Chin. Cereals Oils Assoc. – volume: 34 start-page: 563 year: 2012 ident: 10.1016/j.ecoenv.2019.01.003_bib34 article-title: Arsenic-induced health crisis in Peri-urban Moyna and Ardebok villages, West Bengal, India: an exposure assessment study publication-title: Environ. Geochem. Health doi: 10.1007/s10653-012-9458-y – volume: 38 year: 2004 ident: 10.1016/j.ecoenv.2019.01.003_bib55 article-title: Arsenic behavior in paddy fields during the cycle of flooded and non-flooded periods publication-title: Environ. Sci. Technol. doi: 10.1021/es034383n – volume: 132 start-page: 42 year: 2016 ident: 10.1016/j.ecoenv.2019.01.003_bib15 article-title: Arsenic toxicity in plants: cellular and molecular mechanisms of its transport and metabolism publication-title: Environ. Exp. Bot. doi: 10.1016/j.envexpbot.2016.08.004 – volume: 10 start-page: 1 year: 1989 ident: 10.1016/j.ecoenv.2019.01.003_bib36 article-title: Reactions controlling heavy metal solubility in soils publication-title: Adv. Soil. Sci. doi: 10.1007/978-1-4613-8847-0_1 – volume: 99 start-page: 86 year: 2016 ident: 10.1016/j.ecoenv.2019.01.003_bib12 article-title: Reduced arsenic accumulation in rice (Oryza sativa L.) shoot involves sulfur mediated improved thiol metabolism, antioxidant system and altered arsenic transporters publication-title: Plant Physiol. Biochem. doi: 10.1016/j.plaphy.2015.11.005 – volume: 48 start-page: 4699 year: 2014 ident: 10.1016/j.ecoenv.2019.01.003_bib48 article-title: Arsenic concentrations in paddy soil and rice and health implications for major rice-growing regions of Cambodia publication-title: Environ. Sci. Technol. doi: 10.1021/es405016t – volume: 34 start-page: 908 year: 2018 ident: 10.1016/j.ecoenv.2019.01.003_bib38 article-title: Exposure to heavy metals alters the surface topology of alveolar macrophages and induces respiratory dysfunction among Indian metal arc-welders publication-title: Toxicol. Ind. Health doi: 10.1177/0748233718804426 – volume: 75 start-page: 335 year: 2018 ident: 10.1016/j.ecoenv.2019.01.003_bib41 article-title: Fractionation, mobility, and contamination assessment of potentially toxic metals in urban soils in four industrial Serbian cities publication-title: Arch. Environ. Contam. Toxicol. doi: 10.1007/s00244-018-0518-x – volume: 5 start-page: 5 year: 2012 ident: 10.1016/j.ecoenv.2019.01.003_bib57 article-title: Cadmium transport and tolerance in rice: perspectives for reducing grain cadmium accumulation publication-title: Rice doi: 10.1186/1939-8433-5-5 – volume: 19 start-page: 761 year: 2017 ident: 10.1016/j.ecoenv.2019.01.003_bib56 article-title: Cadmium removal potential by rice straw-derived magnetic biochar publication-title: Clean. Technol. Environ. Policy doi: 10.1007/s10098-016-1264-2 – volume: 18 start-page: 92 year: 2013 ident: 10.1016/j.ecoenv.2019.01.003_bib11 article-title: Plant science: the key to preventing slow cadmium poisoning publication-title: Trends Plant Sci. doi: 10.1016/j.tplants.2012.08.003 – volume: 22 start-page: 5742 year: 2015 ident: 10.1016/j.ecoenv.2019.01.003_bib59 article-title: Recent advances in arsenic bioavailability, transport, and speciation in rice publication-title: Environ. Sci. Pollut. Res. doi: 10.1007/s11356-014-4065-3 – volume: 47 start-page: 12775 year: 2013 ident: 10.1016/j.ecoenv.2019.01.003_bib17 article-title: Redox-controlled changes in cadmium solubility and solid-phase speciation in a paddy soil as affected by reducible sulfate and copper publication-title: Environ. Sci. Technol. doi: 10.1021/es401997d – volume: 2014 start-page: 443 issue: 42 year: 2014 ident: 10.1016/j.ecoenv.2019.01.003_bib70 article-title: Earth abides arsenic biotransformations publication-title: Annu. Rev. Earth Planet. Sci. doi: 10.1146/annurev-earth-060313-054942 – volume: 140 start-page: 11 year: 1985 ident: 10.1016/j.ecoenv.2019.01.003_bib52 article-title: Fractionation method for soil microelements publication-title: Soil Sci. doi: 10.1097/00010694-198507000-00003 – volume: 266 start-page: 141 year: 2014 ident: 10.1016/j.ecoenv.2019.01.003_bib4 article-title: Remediation of heavy metal (loid)s contaminated soils - to mobilize or to immobilize? publication-title: J. Hazard Mater. doi: 10.1016/j.jhazmat.2013.12.018 – volume: 36 start-page: 199 year: 1998 ident: 10.1016/j.ecoenv.2019.01.003_bib20 article-title: Sorption and desorption of cadmium from some New Zealand soils: effect of pH and contact time publication-title: Aust. J. Soil Res. doi: 10.1071/S97085 – volume: 45 start-page: 252 year: 2019 ident: 10.1016/j.ecoenv.2019.01.003_bib46 article-title: Structural and phase analysis of multi-ion doped hydroxyapatite for biomedical applications publication-title: Ceram. Int. doi: 10.1016/j.ceramint.2018.09.160 – volume: 105 start-page: 9931 year: 2008 ident: 10.1016/j.ecoenv.2019.01.003_bib33 article-title: Transporters of arsenite in rice and their role in arsenic accumulation in rice grain publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.0802361105 – volume: 156 start-page: 23 year: 2017 ident: 10.1016/j.ecoenv.2019.01.003_bib61 article-title: Cadmium, lead, and arsenic contamination in paddy soil of a mining area and their exposure effects on human HHEPG2 and keratinocyte cell-lines publication-title: Environ. Res. doi: 10.1016/j.envres.2017.03.014 – volume: 89 start-page: 856 year: 2012 ident: 10.1016/j.ecoenv.2019.01.003_bib68 article-title: The effects of biochars from rice residue on the formation of iron plaque and the accumulation of Cd, Zn, Pb, As in rice (Oryza sativa L.) seedlings publication-title: Chemosphere doi: 10.1016/j.chemosphere.2012.05.008 – volume: 61 start-page: 247 year: 2001 ident: 10.1016/j.ecoenv.2019.01.003_bib27 article-title: Metal availability in contaminated soils: I. effects of flooding and organic matter on changes in Eh, pH and solubility of Cd, Ni and Zn publication-title: Nutr. Cycl. Agroecosyst. doi: 10.1023/A:1013762204510 – volume: 17 start-page: 432 year: 2017 ident: 10.1016/j.ecoenv.2019.01.003_bib63 article-title: Simultaneous immobilization of lead, cadmium, and arsenic in combined contaminated soil with iron hydroxyl phosphate publication-title: J. Soil. Sediment doi: 10.1007/s11368-016-1540-0 – volume: 19 start-page: 460 year: 2018 ident: 10.1016/j.ecoenv.2019.01.003_bib8 article-title: Genome-wide analysis of long non-coding rnas affecting roots development at an early stage in the rice response to cadmium stress publication-title: BMC Genom. doi: 10.1186/s12864-018-4807-6 – volume: 363 start-page: 28 year: 2006 ident: 10.1016/j.ecoenv.2019.01.003_bib42 article-title: Trace element availability and plant growth in a mine-spill-contaminated soil under assisted natural remediation: II. Plants publication-title: Sci. Total. Environ. doi: 10.1016/j.scitotenv.2005.10.015 – volume: 224 start-page: 622 year: 2017 ident: 10.1016/j.ecoenv.2019.01.003_bib29 article-title: Cadmium in rice: transport mechanisms, influencing factors, and minimizing measures publication-title: Environ. Pollut. doi: 10.1016/j.envpol.2017.01.087 |
SSID | ssj0003055 |
Score | 2.488663 |
Snippet | Rice (Oryza sativa L.) planted in cadmium (Cd)- and arsenic (As)-contaminated soil is considered the main source of dietary Cd and As intake for humans in... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 451 |
SubjectTerms | Accumulation Arsenic Cadmium In situ remediation Rice Soil |
Title | Cadmium and arsenic accumulation during the rice growth period under in situ remediation |
URI | https://dx.doi.org/10.1016/j.ecoenv.2019.01.003 https://www.ncbi.nlm.nih.gov/pubmed/30639871 https://www.proquest.com/docview/2179339376 |
Volume | 171 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS9xAEB_EUhCktGrtVStb8HW9y-0muTweh3L9EpEK97bsp6b0cqJJwRf_dmeyiUWkCH0KSWbJMjPZndn9zW8BDsdOiMyZgucu01xqk3CjpeA-Dzj9TUIYtWDMH6fZ_EJ-XaSLNZj1tTAEq-zG_jimt6N192TYaXN4XZZDgiXlWZqgDwmKTNoKdnyCPn10_xfmQYxWEcaYc5Luy-dajBdmeL76QwCvoiXv7I_Oej49_Sv8bKehk7fwposf2TR28R2s-WoLXh-33NN3W7AZl-FYrC7ahsVMu2XZLJmuHMMc1lf4UlvbLLtju1isU2QYBzLiF2KXmJfXV4wIkFeOUYnZDSsrdlvWDaO1RBdtuQMXJ8c_Z3PeHabArczSmieYuSReB2vGRSCoSCGCdtLr3Gi0iLHGjmxB2YzLcpNoOUlRzGL6aKTOUivew3q1qvwHYMIUHqW1SIyVmhJMjFNCKAIFb6GQAxC9DpXtmMbpwIvfqoeU_VJR84o0r0YJMZQOgD-2uo5MGy_I57151BOPUTgZvNDyc29NhT8T7ZDoyq-aWzWm4YooArMB7EYzP_ZFUDCH6eXH__7uHmzQXdyL2of1-qbxnzCkqc1B67MH8Go6O_9-Rtcv3-anDyuF-NU |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fS9xAEB7kRFoQqbbV01a30NflLrebxDzKoZxV70nh3pb92ab0cqKJ4H_vTDY5KFKEvmZ3yTKzmZkvO_MNwPeJEyJzpuC5yzSX2iTcaCm4zwO6v9MQxm0y5s08m93JH4t0sQHTvhaG0io72x9temutuyejTpqj-7IcUVpSnqUJniFBkQlCoE1ip0oHsHl2eTWbrw0ykVrFTMac04K-gq5N80KQ56snyvEqWv7OvnvWaw_1rwi09UQXH2CnCyHZWdzlLmz4ag-2zlv66ec92I5_4lgsMPoIi6l2y7JZMl05hjDWVziorW2WXecuFksVGYaCjCiG2E-E5vUvRhzIK8eoyuyBlRV7LOuG0e9EF9X5Ce4uzm-nM971U-BWZmnNEwQvidfBmkkRKFukEEE76XVuNCrFWGPHtiBA47LcJFqepjjNIoI0UmepFZ9hUK0qfwBMmMLjbC0SY6UmjImhSghFoPgtFHIIopehsh3ZOPW8-KP6rLLfKkpekeTVOCGS0iHw9ar7SLbxxvy8V4_669Ao9AdvrPzWa1Ph90SXJLryq-ZRTchiEUtgNoT9qOb1XgTFc4gwD__7vSfwbnZ7c62uL-dXR_CeRuLV1BcY1A-N_4oRTm2OuxP8AuBp-fE |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Cadmium+and+arsenic+accumulation+during+the+rice+growth+period+under+in+situ+remediation&rft.jtitle=Ecotoxicology+and+environmental+safety&rft.au=Gu%2C+Jiao-feng&rft.au=Zhou%2C+Hang&rft.au=Tang%2C+Hui-ling&rft.au=Yang%2C+Wen-tao&rft.date=2019-04-30&rft.pub=Elsevier+Inc&rft.issn=0147-6513&rft.eissn=1090-2414&rft.volume=171&rft.spage=451&rft.epage=459&rft_id=info:doi/10.1016%2Fj.ecoenv.2019.01.003&rft.externalDocID=S0147651319300041 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0147-6513&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0147-6513&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0147-6513&client=summon |