Cadmium and arsenic accumulation during the rice growth period under in situ remediation

Rice (Oryza sativa L.) planted in cadmium (Cd)- and arsenic (As)-contaminated soil is considered the main source of dietary Cd and As intake for humans in Southeast Asia and thereby poses a threat to human health. Minimizing the transfer of these pollutants to rice grain is an urgent task for enviro...

Full description

Saved in:
Bibliographic Details
Published inEcotoxicology and environmental safety Vol. 171; pp. 451 - 459
Main Authors Gu, Jiao-feng, Zhou, Hang, Tang, Hui-ling, Yang, Wen-tao, Zeng, Min, Liu, Zhi-ming, Peng, Pei-qin, Liao, Bo-han
Format Journal Article
LanguageEnglish
Published Netherlands Elsevier Inc 30.04.2019
Subjects
Online AccessGet full text
ISSN0147-6513
1090-2414
1090-2414
DOI10.1016/j.ecoenv.2019.01.003

Cover

Loading…
Abstract Rice (Oryza sativa L.) planted in cadmium (Cd)- and arsenic (As)-contaminated soil is considered the main source of dietary Cd and As intake for humans in Southeast Asia and thereby poses a threat to human health. Minimizing the transfer of these pollutants to rice grain is an urgent task for environmental researchers. The main objective of this study was to investigate the effects and the mechanisms of a combined amendment (hydroxyapatite + zeolite + biochar, HZB) on decreasing Cd and As accumulation in rice. In situ remediation and aqueous solution adsorption experiments were conducted. The results showed that after application of HZB, Cd and As concentrations of the exchangeable fraction and TCLP extraction in soil decreased with the growth of rice plants. Cd concentrations in rice tissues were decreased at the tillering, filling and maturing stages after in situ remediation, while As concentrations in rice tissues were decreased only at the maturing stage. When 8 kg·plot−1 (9000 kg ha−1) HZB was applied, concentrations of Cd and inorganic As in brown rice were decreased to 0.18 and 0.16 mg kg−1, respectively, lower than the levels permissible for grain in China, i.e., 0.2 mg kg−1. Application of HZB reduced Cd accumulation in rice tissues, and the suppression of Cd accumulation was significantly greater than that of As. Furthermore, HZB significantly increased rice grain yield. An aqueous solution adsorption experiment demonstrated that HZB could adsorb and covalently bind Cd and As (V) via -OH, -COOH, -Si-O-Si and CO32- groups to produce carboxylates, silicates and carbonates, thereby promoting in situ immobilization of Cd and As in soil solution. •The soil amendment addition significantly decreased the bioavailabilities of Cd and As in soil.•The soil amendment in situ immobilization of Cd and As in soil by producing carboxylates, silicates and carbonates.•The soil amendment decreased Cd and inorganic As concentrations in brown rice at the same time.•The soil amendment addition significantly increased rice grain yield.
AbstractList Rice (Oryza sativa L.) planted in cadmium (Cd)- and arsenic (As)-contaminated soil is considered the main source of dietary Cd and As intake for humans in Southeast Asia and thereby poses a threat to human health. Minimizing the transfer of these pollutants to rice grain is an urgent task for environmental researchers. The main objective of this study was to investigate the effects and the mechanisms of a combined amendment (hydroxyapatite + zeolite + biochar, HZB) on decreasing Cd and As accumulation in rice. In situ remediation and aqueous solution adsorption experiments were conducted. The results showed that after application of HZB, Cd and As concentrations of the exchangeable fraction and TCLP extraction in soil decreased with the growth of rice plants. Cd concentrations in rice tissues were decreased at the tillering, filling and maturing stages after in situ remediation, while As concentrations in rice tissues were decreased only at the maturing stage. When 8 kg·plot (9000 kg ha ) HZB was applied, concentrations of Cd and inorganic As in brown rice were decreased to 0.18 and 0.16 mg kg , respectively, lower than the levels permissible for grain in China, i.e., 0.2 mg kg . Application of HZB reduced Cd accumulation in rice tissues, and the suppression of Cd accumulation was significantly greater than that of As. Furthermore, HZB significantly increased rice grain yield. An aqueous solution adsorption experiment demonstrated that HZB could adsorb and covalently bind Cd and As (V) via -OH, -COOH, -Si-O-Si and CO groups to produce carboxylates, silicates and carbonates, thereby promoting in situ immobilization of Cd and As in soil solution.
Rice (Oryza sativa L.) planted in cadmium (Cd)- and arsenic (As)-contaminated soil is considered the main source of dietary Cd and As intake for humans in Southeast Asia and thereby poses a threat to human health. Minimizing the transfer of these pollutants to rice grain is an urgent task for environmental researchers. The main objective of this study was to investigate the effects and the mechanisms of a combined amendment (hydroxyapatite + zeolite + biochar, HZB) on decreasing Cd and As accumulation in rice. In situ remediation and aqueous solution adsorption experiments were conducted. The results showed that after application of HZB, Cd and As concentrations of the exchangeable fraction and TCLP extraction in soil decreased with the growth of rice plants. Cd concentrations in rice tissues were decreased at the tillering, filling and maturing stages after in situ remediation, while As concentrations in rice tissues were decreased only at the maturing stage. When 8 kg·plot-1 (9000 kg ha-1) HZB was applied, concentrations of Cd and inorganic As in brown rice were decreased to 0.18 and 0.16 mg kg-1, respectively, lower than the levels permissible for grain in China, i.e., 0.2 mg kg-1. Application of HZB reduced Cd accumulation in rice tissues, and the suppression of Cd accumulation was significantly greater than that of As. Furthermore, HZB significantly increased rice grain yield. An aqueous solution adsorption experiment demonstrated that HZB could adsorb and covalently bind Cd and As (V) via -OH, -COOH, -Si-O-Si and CO32- groups to produce carboxylates, silicates and carbonates, thereby promoting in situ immobilization of Cd and As in soil solution.Rice (Oryza sativa L.) planted in cadmium (Cd)- and arsenic (As)-contaminated soil is considered the main source of dietary Cd and As intake for humans in Southeast Asia and thereby poses a threat to human health. Minimizing the transfer of these pollutants to rice grain is an urgent task for environmental researchers. The main objective of this study was to investigate the effects and the mechanisms of a combined amendment (hydroxyapatite + zeolite + biochar, HZB) on decreasing Cd and As accumulation in rice. In situ remediation and aqueous solution adsorption experiments were conducted. The results showed that after application of HZB, Cd and As concentrations of the exchangeable fraction and TCLP extraction in soil decreased with the growth of rice plants. Cd concentrations in rice tissues were decreased at the tillering, filling and maturing stages after in situ remediation, while As concentrations in rice tissues were decreased only at the maturing stage. When 8 kg·plot-1 (9000 kg ha-1) HZB was applied, concentrations of Cd and inorganic As in brown rice were decreased to 0.18 and 0.16 mg kg-1, respectively, lower than the levels permissible for grain in China, i.e., 0.2 mg kg-1. Application of HZB reduced Cd accumulation in rice tissues, and the suppression of Cd accumulation was significantly greater than that of As. Furthermore, HZB significantly increased rice grain yield. An aqueous solution adsorption experiment demonstrated that HZB could adsorb and covalently bind Cd and As (V) via -OH, -COOH, -Si-O-Si and CO32- groups to produce carboxylates, silicates and carbonates, thereby promoting in situ immobilization of Cd and As in soil solution.
Rice (Oryza sativa L.) planted in cadmium (Cd)- and arsenic (As)-contaminated soil is considered the main source of dietary Cd and As intake for humans in Southeast Asia and thereby poses a threat to human health. Minimizing the transfer of these pollutants to rice grain is an urgent task for environmental researchers. The main objective of this study was to investigate the effects and the mechanisms of a combined amendment (hydroxyapatite + zeolite + biochar, HZB) on decreasing Cd and As accumulation in rice. In situ remediation and aqueous solution adsorption experiments were conducted. The results showed that after application of HZB, Cd and As concentrations of the exchangeable fraction and TCLP extraction in soil decreased with the growth of rice plants. Cd concentrations in rice tissues were decreased at the tillering, filling and maturing stages after in situ remediation, while As concentrations in rice tissues were decreased only at the maturing stage. When 8 kg·plot−1 (9000 kg ha−1) HZB was applied, concentrations of Cd and inorganic As in brown rice were decreased to 0.18 and 0.16 mg kg−1, respectively, lower than the levels permissible for grain in China, i.e., 0.2 mg kg−1. Application of HZB reduced Cd accumulation in rice tissues, and the suppression of Cd accumulation was significantly greater than that of As. Furthermore, HZB significantly increased rice grain yield. An aqueous solution adsorption experiment demonstrated that HZB could adsorb and covalently bind Cd and As (V) via -OH, -COOH, -Si-O-Si and CO32- groups to produce carboxylates, silicates and carbonates, thereby promoting in situ immobilization of Cd and As in soil solution. •The soil amendment addition significantly decreased the bioavailabilities of Cd and As in soil.•The soil amendment in situ immobilization of Cd and As in soil by producing carboxylates, silicates and carbonates.•The soil amendment decreased Cd and inorganic As concentrations in brown rice at the same time.•The soil amendment addition significantly increased rice grain yield.
Author Yang, Wen-tao
Liu, Zhi-ming
Liao, Bo-han
Peng, Pei-qin
Tang, Hui-ling
Zeng, Min
Gu, Jiao-feng
Zhou, Hang
Author_xml – sequence: 1
  givenname: Jiao-feng
  surname: Gu
  fullname: Gu, Jiao-feng
  email: gujiaofeng@163.com
  organization: College of Environment Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
– sequence: 2
  givenname: Hang
  surname: Zhou
  fullname: Zhou, Hang
  email: zhouhang4607@163.com
  organization: College of Environment Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
– sequence: 3
  givenname: Hui-ling
  surname: Tang
  fullname: Tang, Hui-ling
  email: TLmorn@163.com
  organization: College of Environment Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
– sequence: 4
  givenname: Wen-tao
  surname: Yang
  fullname: Yang, Wen-tao
  email: wtyang0803@163.com
  organization: College of Environment Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
– sequence: 5
  givenname: Min
  surname: Zeng
  fullname: Zeng, Min
  email: emailzm@163.com
  organization: College of Environment Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
– sequence: 6
  givenname: Zhi-ming
  surname: Liu
  fullname: Liu, Zhi-ming
  email: zhiming.liu@enmu.edu
  organization: College of Environment Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
– sequence: 7
  givenname: Pei-qin
  surname: Peng
  fullname: Peng, Pei-qin
  email: pqpeng123@sina.com
  organization: College of Environment Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
– sequence: 8
  givenname: Bo-han
  surname: Liao
  fullname: Liao, Bo-han
  email: liaobohan1020@163.com
  organization: College of Environment Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30639871$$D View this record in MEDLINE/PubMed
BookMark eNqFkE9vFSEUR4mpaV9rv4ExLN3MCAPDdFyYmJf-MWniRhN3hLlcWl5m4AlDjd9e2tduXOiKzTm_XM4pOQoxICFvOWs54-rDrkWIGB7ajvGxZbxlTLwiG85G1nSSyyOyYVwOjeq5OCGnOe9YJVjfH5MTwZQYLwa-IT-2xi6-LNQES03KGDxQA1CWMpvVx0BtST7c0fUeafKA9C7FX-s93WPy0dISLCbqA81-LTThgtY_eW_Ia2fmjOfP7xn5fnX5bXvT3H69_rL9fNuAVP3acNUpjsbB1I3OOYRROGMlmmEyzrEJJmAwMqWUVcPEjbzoKwa9HCdpVA_ijLw_7O5T_Fkwr3rxGXCeTcBYsu74MAoxikFV9N0zWqZ6p94nv5j0W7_UqMDHAwAp5pzQafDr02_WZPysOdOP6fVOH9Lrx_SacV3DVln-Jb_s_0f7dNCwRnrwmHQGjwFqx4Swahv9vwf-AKUnocA
CitedBy_id crossref_primary_10_3390_su15054320
crossref_primary_10_3390_w15122211
crossref_primary_10_1186_s12870_022_03475_2
crossref_primary_10_2139_ssrn_4126829
crossref_primary_10_3389_fpls_2024_1481372
crossref_primary_10_1007_s00128_021_03326_0
crossref_primary_10_3390_agriculture12081156
crossref_primary_10_1007_s11356_024_31942_w
crossref_primary_10_1016_j_envpol_2024_125617
crossref_primary_10_1016_j_jhazmat_2023_130784
crossref_primary_10_1016_j_jenvman_2024_121661
crossref_primary_10_1016_j_scitotenv_2021_150872
crossref_primary_10_1007_s00128_021_03455_6
crossref_primary_10_1016_j_jclepro_2020_123874
crossref_primary_10_1007_s42729_025_02252_y
crossref_primary_10_1016_j_envpol_2022_119390
crossref_primary_10_1016_j_jhazmat_2020_124543
crossref_primary_10_1016_j_envpol_2020_114614
crossref_primary_10_1016_j_scitotenv_2023_168269
crossref_primary_10_1016_j_eti_2021_101660
crossref_primary_10_1016_j_jhazmat_2024_135189
crossref_primary_10_1016_j_scitotenv_2021_146930
crossref_primary_10_1155_2022_7425085
crossref_primary_10_1007_s00128_020_02906_w
crossref_primary_10_1088_1755_1315_791_1_012178
crossref_primary_10_1016_j_still_2019_104315
crossref_primary_10_1016_j_ecoenv_2020_110660
crossref_primary_10_3390_plants11020207
crossref_primary_10_2139_ssrn_4165548
crossref_primary_10_21498_2518_1017_15_4_2019_188718
crossref_primary_10_1016_j_scitotenv_2024_170959
crossref_primary_10_1016_j_ecolind_2022_109584
crossref_primary_10_1007_s11356_021_13856_z
crossref_primary_10_3390_agronomy11081594
crossref_primary_10_1039_D0RA09358K
crossref_primary_10_1007_s11356_020_07782_9
crossref_primary_10_1016_j_scitotenv_2020_143117
crossref_primary_10_1007_s11631_025_00770_1
crossref_primary_10_1038_s41598_024_83412_5
crossref_primary_10_1080_00103624_2023_2240373
crossref_primary_10_1016_j_scitotenv_2020_142188
crossref_primary_10_1016_j_chemosphere_2021_133347
crossref_primary_10_1016_j_chemosphere_2021_131043
crossref_primary_10_1016_j_scitotenv_2021_151801
crossref_primary_10_1016_j_rsci_2024_04_004
crossref_primary_10_1016_j_jclepro_2020_125557
crossref_primary_10_1016_j_jhazmat_2022_128325
crossref_primary_10_1039_D1RA00565K
crossref_primary_10_1177_11786221231216862
crossref_primary_10_3389_fsufs_2024_1418554
crossref_primary_10_1016_j_scitotenv_2021_145824
crossref_primary_10_1016_j_jclepro_2022_133216
crossref_primary_10_1016_j_jenvman_2021_112302
crossref_primary_10_1016_j_rsci_2021_12_007
crossref_primary_10_3390_toxics12060418
crossref_primary_10_1007_s11356_022_21961_w
crossref_primary_10_1016_j_biortech_2019_03_108
crossref_primary_10_1016_j_jhazmat_2019_04_057
crossref_primary_10_1016_j_scitotenv_2022_157572
crossref_primary_10_1111_sum_12796
crossref_primary_10_1021_acs_est_2c01393
crossref_primary_10_1088_1755_1315_787_1_012057
crossref_primary_10_1016_j_envpol_2020_114681
crossref_primary_10_1080_01904167_2022_2027977
crossref_primary_10_1016_j_jes_2024_04_030
Cites_doi 10.1093/jxb/erp360
10.1016/j.scitotenv.2018.01.043
10.1016/j.clay.2013.08.022
10.1016/j.jhazmat.2011.12.011
10.1016/j.jenvman.2013.12.027
10.1016/j.agee.2017.10.017
10.1016/j.cej.2018.06.054
10.1016/j.still.2016.01.008
10.1016/S0269-7491(98)00184-5
10.1098/rsos.181328
10.1016/j.ecoleng.2016.10.057
10.1111/j.1365-2389.1994.tb00527.x
10.1016/j.envexpbot.2015.11.004
10.1146/annurev-arplant-042809-112152
10.1007/s11356-017-0921-2
10.2166/wh.2018.070
10.1093/jxb/ery107
10.1007/s11104-014-2268-5
10.1007/s11356-017-8462-2
10.1016/j.ecoenv.2017.10.043
10.1007/s11356-016-7326-5
10.2136/sssaj2002.4130
10.1021/es5047099
10.1016/j.ecoenv.2016.09.019
10.1007/s13738-016-0908-9
10.1016/j.envpol.2018.03.048
10.2134/jeq2007.0151
10.2134/jeq2017.07.0297
10.1016/j.geoderma.2015.12.017
10.1007/s10725-018-0417-1
10.1007/s11368-017-1823-0
10.1016/j.envint.2014.03.017
10.1093/jxb/erw175
10.1016/j.chemosphere.2007.10.015
10.1007/s10653-016-9904-3
10.1021/acs.est.5b05424
10.1016/j.scitotenv.2018.10.013
10.1007/BF00029094
10.1021/acs.est.8b04684
10.1016/j.envexpbot.2015.07.001
10.1016/j.jhazmat.2018.08.019
10.1021/acs.est.6b01669
10.1007/s10653-012-9458-y
10.1021/es034383n
10.1016/j.envexpbot.2016.08.004
10.1007/978-1-4613-8847-0_1
10.1016/j.plaphy.2015.11.005
10.1021/es405016t
10.1177/0748233718804426
10.1007/s00244-018-0518-x
10.1186/1939-8433-5-5
10.1007/s10098-016-1264-2
10.1016/j.tplants.2012.08.003
10.1007/s11356-014-4065-3
10.1021/es401997d
10.1146/annurev-earth-060313-054942
10.1097/00010694-198507000-00003
10.1016/j.jhazmat.2013.12.018
10.1071/S97085
10.1016/j.ceramint.2018.09.160
10.1073/pnas.0802361105
10.1016/j.envres.2017.03.014
10.1016/j.chemosphere.2012.05.008
10.1023/A:1013762204510
10.1007/s11368-016-1540-0
10.1186/s12864-018-4807-6
10.1016/j.scitotenv.2005.10.015
10.1016/j.envpol.2017.01.087
ContentType Journal Article
Copyright 2019 Elsevier Inc.
Copyright © 2019 Elsevier Inc. All rights reserved.
Copyright_xml – notice: 2019 Elsevier Inc.
– notice: Copyright © 2019 Elsevier Inc. All rights reserved.
DBID AAYXX
CITATION
NPM
7X8
DOI 10.1016/j.ecoenv.2019.01.003
DatabaseName CrossRef
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList PubMed
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Public Health
Ecology
EISSN 1090-2414
EndPage 459
ExternalDocumentID 30639871
10_1016_j_ecoenv_2019_01_003
S0147651319300041
Genre Journal Article
GroupedDBID ---
--K
--M
.~1
0R~
0SF
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JM
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABFYP
ABJNI
ABLST
ABMAC
ABYKQ
ACDAQ
ACGFS
ACRLP
ADBBV
ADEZE
AEBSH
AEKER
AENEX
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHEUO
AHHHB
AIEXJ
AIKHN
AITUG
AJOXV
AKIFW
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLECG
BLXMC
CS3
DM4
DU5
EBS
EFBJH
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GROUPED_DOAJ
IHE
J1W
KCYFY
KOM
LG5
LY8
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
ROL
RPZ
SCC
SDF
SDG
SDP
SES
SPCBC
SSJ
SSZ
T5K
ZU3
~G-
29G
53G
AAFWJ
AAHBH
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABEFU
ABFNM
ABWVN
ABXDB
ACRPL
ACVFH
ADCNI
ADFGL
ADMUD
ADNMO
ADVLN
AEGFY
AEIPS
AEUPX
AFJKZ
AFPKN
AFPUW
AGCQF
AGQPQ
AGRNS
AI.
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CAG
CITATION
COF
FEDTE
FGOYB
G-2
HMC
HVGLF
HZ~
H~9
OK1
R2-
SEN
SEW
SSH
VH1
WUQ
XPP
ZMT
ZXP
~KM
EFKBS
NPM
7X8
ID FETCH-LOGICAL-c465t-16261eafcb29fffec93fad4ea7baff0bcbc0c90666d67b1a485fffc549b4a65c3
IEDL.DBID .~1
ISSN 0147-6513
1090-2414
IngestDate Fri Jul 11 09:12:40 EDT 2025
Mon Jul 21 06:06:29 EDT 2025
Thu Apr 24 23:05:59 EDT 2025
Tue Jul 01 04:00:03 EDT 2025
Fri Feb 23 02:27:37 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Soil
Cadmium
Arsenic
Accumulation
In situ remediation
Rice
Language English
License Copyright © 2019 Elsevier Inc. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c465t-16261eafcb29fffec93fad4ea7baff0bcbc0c90666d67b1a485fffc549b4a65c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 30639871
PQID 2179339376
PQPubID 23479
PageCount 9
ParticipantIDs proquest_miscellaneous_2179339376
pubmed_primary_30639871
crossref_citationtrail_10_1016_j_ecoenv_2019_01_003
crossref_primary_10_1016_j_ecoenv_2019_01_003
elsevier_sciencedirect_doi_10_1016_j_ecoenv_2019_01_003
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-04-30
PublicationDateYYYYMMDD 2019-04-30
PublicationDate_xml – month: 04
  year: 2019
  text: 2019-04-30
  day: 30
PublicationDecade 2010
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
PublicationTitle Ecotoxicology and environmental safety
PublicationTitleAlternate Ecotoxicol Environ Saf
PublicationYear 2019
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Fulda, Voegelin, Kretzschmar (bib17) 2013; 47
Shi, Li, Du, Wang, Shao (bib50) 2013; 85
Zhou, Zeng, Zhou, Liao, Peng, Hu, Zhu, Wu, Zou (bib69) 2015; 386
Herath, Kawakami, Nagasawa, Serikawa, Motoyama, Chaminda, Weragoda, Yatigammana, Amarasooriya (bib23) 2018; 16
Clemens, Aarts, Thomine, Verbruggen (bib11) 2013; 18
Cambier, Michaud, Paradelo, Germain, Mercier, Guérin-Lebourg, Revallier, Houot (bib6) 2019; 651
Lin, Zhong, Yan, Fei (bib31) 2018; 47
Zendehdel, Shoshtari-Yeganeh, Cruciani (bib64) 2016; 13
Chen, Tang, Wang, Zhao (bib7) 2018; 238
Zhang, Lin, Liu, Wang, Zhou, Huang, Lin, Wang, Brooks (bib65) 2017; 98
Goldberg (bib18) 2002; 66
Bradham, Diamond, Nelson, Noerpel, Scheckel, Elek, Chaney, Ma, Thomas (bib5) 2018; 52
Takahashi, Minamikawa, Hattori, Kurishima, Kihou, Yuita (bib55) 2004; 38
Tan, Wang, Kasiulienė, Huang, Ai (bib56) 2017; 19
Wang, Peng, Tan, Ma, Rathinasabapathi (bib59) 2015; 22
Antoniadis, Robinson, Alloway (bib1) 2008; 71
Ma, Yamaji, Mitani, Xu, Su, McGrath, Zhao (bib33) 2008; 105
Zheng, Cai, Liang, Huang, Chen, Huang, Arp, Sun (bib68) 2012; 89
Dixit, Singh, Kumar, Mishra, Dwivedi, Kumar (bib12) 2016; 99
Dermatas, Chrysochoou, Grubb, Xu (bib13) 2008; 37
Khan, Reid, Li, Zhu (bib28) 2014; 68
Seyfferth, McCurdy, Schaefer, Fendorf (bib48) 2014; 48
Kashem, Singh (bib27) 2001; 61
Chen, Zheng, Zheng, Dang, Zhang (bib9) 2018; 350
Chen, Shi, Jiang, Khanzada, Wassan, Zhu, Peng, XU, Chen, Yu, He, Fu, Chen, Hu, Ouyang, Sun, He, Bian (bib8) 2018; 19
Rahman, Ghosal, Alam, Kabir (bib44) 2017; 135
Wen, Peng, Liu, Fang, Zeng, Zhang (bib60) 2018; 18
Usman, A.R.A., Kuzyakov, Y., Stahr, K., 2004. Sorption, desorption, and immobilization of heavy metals by artificial soil. EUROSOIL 2004, Poster session 02b: Soil Properties and Processes.
Reger, Bhargava, Ratha, Kundu, Balla (bib46) 2019; 45
Zhu, Yoshinaga, Zhao, Rosen (bib70) 2014; 2014
Honma, Ohba, Kaneko-Kadokura, Makino, Nakamura, Katou (bib24) 2016; 50
Suda, Makino (bib53) 2016; 270
Marin, Masscheleyn, Patrick (bib35) 1993; 152
Zhao, Mcgrath, Meharg (bib67) 2010; 61
Rahman, Kim, Saha, Swaraz, Paul (bib45) 2014; 134
Moitra, Ghosh, Firdous, Bandyopadhyay, Mondal, Biswas, Sahu, Bhattacharyya, Moitra (bib38) 2018; 34
McBride (bib36) 1989; 10
Naidu, Bolan, Kookana, Tiller (bib39) 1994; 45
Gray, McLaren, Roberts, Condron (bib20) 1998; 36
Maity, Nath, Kar, Chen, Banerjee, Jean, Liu, Centeno, Bhattacharya, Chang, Santra (bib34) 2012; 34
Yuan, Chai, Yang, Yang (bib63) 2017; 17
Shuman (bib52) 1985; 140
Guo, Ding, Zhou, Huang, Wang (bib22) 2018; 148
Yang, Gu, Zou, Zhou, Liao, Zeng (bib62) 2016; 23
Farooq, Detterbeck, Clemens, Dietz (bib16) 2016; 67
Cheng, Chang, Cheng, Shen, Sung, Guo (bib10) 2018; 626
Jahromi, Ghahreman (bib26) 2018; 360
Li, Luo, Li, Cai, Li, Mo, Wong (bib29) 2017; 224
Ni, Xu, Mei, Yang, Hong, Zeng, Hu, Deng, Hu (bib40) 2017; 32
Ishikawa, Abe, Kuramata, Yamaguchi, Ando, Yamamoto, Yano (bib25) 2010; 61
Shi, Chen, Wu, Zhu (bib51) 2017; 51
Gu, Zhou, Yang, Peng, Zhang, Zeng, Liao (bib21) 2018; 25
Puga, Melo, de Abreu, Coscione, Paz-Ferreiro (bib43) 2016; 164
Farooq, Islam, Ali, Najeeb, Mao, Gill, Yan, Siddique, Zhou (bib15) 2016; 132
Sanglard, Detmann, Martins, Teixeira, Pereira, Sanglard, Fernie, Araújo, DaMatta (bib47) 2016; 123
Bakhat, Zia, Fahad, Abbas, Hammad, Shahzad, Abbas, Alharby, Shahid (bib2) 2017; 24
Bolan, Kunhikrishnan, Thangarajan, Kumpiene, Park, Makino, Kirkham, Scheckel (bib4) 2014; 266
Boisson, Ruttens, Mench, Vangronsveld (bib3) 1999; 104
González, García, Moral, Simón (bib19) 2012; 205–206
Pérez-de-Mora, Madejón, Burgos, Cabrera (bib42) 2006; 363
Xue, Shi, Wu, Wu, Qin, Pan, Hartley, Cui (bib61) 2017; 156
Suriyagoda, Dittert, Lambers (bib54) 2018; 253
Pavlović, Pavlović, Čakmak, Kostić, Jarić, Sakan, Đordević, Mitrović, Grzetić, Pavlović (bib41) 2018; 75
Meharg, Meharg (bib37) 2015; 120
Lin, He, Lin, Li, Fang, Lin (bib30) 2018; 86
Zhao, Ma, Zhu, Tang, McGrath (bib66) 2015; 49
López-Abente, Locutura-Rupérez, Fernández-Navarro, Martín-Méndez, Bel-Lan, Núńez (bib32) 2018; 40
Shao, Xia, Yamaji (bib49) 2018; 69
Uraguchi, Fujiwara (bib57) 2012; 5
Fahmi, Samsuri, Jol, Singh (bib14) 2018; 5
Khan (10.1016/j.ecoenv.2019.01.003_bib28) 2014; 68
Ma (10.1016/j.ecoenv.2019.01.003_bib33) 2008; 105
Moitra (10.1016/j.ecoenv.2019.01.003_bib38) 2018; 34
Guo (10.1016/j.ecoenv.2019.01.003_bib22) 2018; 148
Lin (10.1016/j.ecoenv.2019.01.003_bib30) 2018; 86
Kashem (10.1016/j.ecoenv.2019.01.003_bib27) 2001; 61
Sanglard (10.1016/j.ecoenv.2019.01.003_bib47) 2016; 123
Chen (10.1016/j.ecoenv.2019.01.003_bib7) 2018; 238
Zhu (10.1016/j.ecoenv.2019.01.003_bib70) 2014; 2014
López-Abente (10.1016/j.ecoenv.2019.01.003_bib32) 2018; 40
Cambier (10.1016/j.ecoenv.2019.01.003_bib6) 2019; 651
Chen (10.1016/j.ecoenv.2019.01.003_bib8) 2018; 19
Marin (10.1016/j.ecoenv.2019.01.003_bib35) 1993; 152
Ishikawa (10.1016/j.ecoenv.2019.01.003_bib25) 2010; 61
Boisson (10.1016/j.ecoenv.2019.01.003_bib3) 1999; 104
Bradham (10.1016/j.ecoenv.2019.01.003_bib5) 2018; 52
Shi (10.1016/j.ecoenv.2019.01.003_bib50) 2013; 85
Naidu (10.1016/j.ecoenv.2019.01.003_bib39) 1994; 45
Rahman (10.1016/j.ecoenv.2019.01.003_bib45) 2014; 134
Xue (10.1016/j.ecoenv.2019.01.003_bib61) 2017; 156
Shao (10.1016/j.ecoenv.2019.01.003_bib49) 2018; 69
Gray (10.1016/j.ecoenv.2019.01.003_bib20) 1998; 36
Zheng (10.1016/j.ecoenv.2019.01.003_bib68) 2012; 89
Rahman (10.1016/j.ecoenv.2019.01.003_bib44) 2017; 135
Shuman (10.1016/j.ecoenv.2019.01.003_bib52) 1985; 140
Ni (10.1016/j.ecoenv.2019.01.003_bib40) 2017; 32
Chen (10.1016/j.ecoenv.2019.01.003_bib9) 2018; 350
Puga (10.1016/j.ecoenv.2019.01.003_bib43) 2016; 164
Pérez-de-Mora (10.1016/j.ecoenv.2019.01.003_bib42) 2006; 363
Zhao (10.1016/j.ecoenv.2019.01.003_bib67) 2010; 61
Dermatas (10.1016/j.ecoenv.2019.01.003_bib13) 2008; 37
Tan (10.1016/j.ecoenv.2019.01.003_bib56) 2017; 19
Zendehdel (10.1016/j.ecoenv.2019.01.003_bib64) 2016; 13
Farooq (10.1016/j.ecoenv.2019.01.003_bib15) 2016; 132
Lin (10.1016/j.ecoenv.2019.01.003_bib31) 2018; 47
Wen (10.1016/j.ecoenv.2019.01.003_bib60) 2018; 18
Dixit (10.1016/j.ecoenv.2019.01.003_bib12) 2016; 99
Uraguchi (10.1016/j.ecoenv.2019.01.003_bib57) 2012; 5
Fulda (10.1016/j.ecoenv.2019.01.003_bib17) 2013; 47
Fahmi (10.1016/j.ecoenv.2019.01.003_bib14) 2018; 5
Reger (10.1016/j.ecoenv.2019.01.003_bib46) 2019; 45
Maity (10.1016/j.ecoenv.2019.01.003_bib34) 2012; 34
Takahashi (10.1016/j.ecoenv.2019.01.003_bib55) 2004; 38
10.1016/j.ecoenv.2019.01.003_bib58
Antoniadis (10.1016/j.ecoenv.2019.01.003_bib1) 2008; 71
Jahromi (10.1016/j.ecoenv.2019.01.003_bib26) 2018; 360
Goldberg (10.1016/j.ecoenv.2019.01.003_bib18) 2002; 66
McBride (10.1016/j.ecoenv.2019.01.003_bib36) 1989; 10
Shi (10.1016/j.ecoenv.2019.01.003_bib51) 2017; 51
Pavlović (10.1016/j.ecoenv.2019.01.003_bib41) 2018; 75
Zhao (10.1016/j.ecoenv.2019.01.003_bib66) 2015; 49
Gu (10.1016/j.ecoenv.2019.01.003_bib21) 2018; 25
Wang (10.1016/j.ecoenv.2019.01.003_bib59) 2015; 22
Yuan (10.1016/j.ecoenv.2019.01.003_bib63) 2017; 17
Herath (10.1016/j.ecoenv.2019.01.003_bib23) 2018; 16
Zhang (10.1016/j.ecoenv.2019.01.003_bib65) 2017; 98
Seyfferth (10.1016/j.ecoenv.2019.01.003_bib48) 2014; 48
Suda (10.1016/j.ecoenv.2019.01.003_bib53) 2016; 270
Cheng (10.1016/j.ecoenv.2019.01.003_bib10) 2018; 626
Honma (10.1016/j.ecoenv.2019.01.003_bib24) 2016; 50
Yang (10.1016/j.ecoenv.2019.01.003_bib62) 2016; 23
Zhou (10.1016/j.ecoenv.2019.01.003_bib69) 2015; 386
Bolan (10.1016/j.ecoenv.2019.01.003_bib4) 2014; 266
Li (10.1016/j.ecoenv.2019.01.003_bib29) 2017; 224
Suriyagoda (10.1016/j.ecoenv.2019.01.003_bib54) 2018; 253
Bakhat (10.1016/j.ecoenv.2019.01.003_bib2) 2017; 24
Clemens (10.1016/j.ecoenv.2019.01.003_bib11) 2013; 18
Meharg (10.1016/j.ecoenv.2019.01.003_bib37) 2015; 120
Farooq (10.1016/j.ecoenv.2019.01.003_bib16) 2016; 67
González (10.1016/j.ecoenv.2019.01.003_bib19) 2012; 205–206
References_xml – volume: 363
  start-page: 28
  year: 2006
  end-page: 37
  ident: bib42
  article-title: Trace element availability and plant growth in a mine-spill-contaminated soil under assisted natural remediation: II. Plants
  publication-title: Sci. Total. Environ.
– volume: 5
  start-page: 5
  year: 2012
  ident: bib57
  article-title: Cadmium transport and tolerance in rice: perspectives for reducing grain cadmium accumulation
  publication-title: Rice
– volume: 86
  start-page: 149
  year: 2018
  end-page: 157
  ident: bib30
  article-title: regulated Cd uptake and phytohormones accumulation in rice seedlings in presence of Si
  publication-title: Plant Growth Regul.
– volume: 48
  start-page: 4699
  year: 2014
  end-page: 4706
  ident: bib48
  article-title: Arsenic concentrations in paddy soil and rice and health implications for major rice-growing regions of Cambodia
  publication-title: Environ. Sci. Technol.
– volume: 51
  start-page: 1670
  year: 2017
  end-page: 1678
  ident: bib51
  article-title: Anthropogenic cycles of arsenic in mainland China: 1990–2010
  publication-title: Environ. Sci. Technol.
– volume: 132
  start-page: 42
  year: 2016
  end-page: 52
  ident: bib15
  article-title: Arsenic toxicity in plants: cellular and molecular mechanisms of its transport and metabolism
  publication-title: Environ. Exp. Bot.
– volume: 18
  start-page: 323
  year: 2018
  end-page: 332
  ident: bib60
  article-title: A case study of evaluating zeolite, CaCO
  publication-title: J. Soil. Sediment.
– volume: 156
  start-page: 23
  year: 2017
  end-page: 30
  ident: bib61
  article-title: Cadmium, lead, and arsenic contamination in paddy soil of a mining area and their exposure effects on human HHEPG2 and keratinocyte cell-lines
  publication-title: Environ. Res.
– volume: 52
  start-page: 13908
  year: 2018
  end-page: 13913
  ident: bib5
  article-title: Long-term in situ reduction in soil lead bioavailability measured in a mouse model
  publication-title: Environ. Sci. Technol.
– volume: 34
  start-page: 908
  year: 2018
  end-page: 921
  ident: bib38
  article-title: Exposure to heavy metals alters the surface topology of alveolar macrophages and induces respiratory dysfunction among Indian metal arc-welders
  publication-title: Toxicol. Ind. Health
– volume: 266
  start-page: 141
  year: 2014
  end-page: 166
  ident: bib4
  article-title: Remediation of heavy metal (loid)s contaminated soils - to mobilize or to immobilize?
  publication-title: J. Hazard Mater.
– volume: 45
  start-page: 252
  year: 2019
  end-page: 263
  ident: bib46
  article-title: Structural and phase analysis of multi-ion doped hydroxyapatite for biomedical applications
  publication-title: Ceram. Int.
– volume: 40
  start-page: 283
  year: 2018
  end-page: 294
  ident: bib32
  article-title: Compositional analysis of topsoil metals and its associations with cancer mortality using spatial misaligned data
  publication-title: Environ. Geochem. Health
– volume: 34
  start-page: 563
  year: 2012
  end-page: 574
  ident: bib34
  article-title: Arsenic-induced health crisis in Peri-urban Moyna and Ardebok villages, West Bengal, India: an exposure assessment study
  publication-title: Environ. Geochem. Health
– volume: 16
  start-page: 212
  year: 2018
  end-page: 222
  ident: bib23
  article-title: Arsenic, cadmium, lead, and chromium in well water, rice, and human urine in Sri Lanka in relation to chronic kidney disease of unknown etiology
  publication-title: J. Water Health
– volume: 18
  start-page: 92
  year: 2013
  end-page: 99
  ident: bib11
  article-title: Plant science: the key to preventing slow cadmium poisoning
  publication-title: Trends Plant Sci.
– volume: 25
  start-page: 8608
  year: 2018
  end-page: 8619
  ident: bib21
  article-title: Effects of an additive (hydroxyapatite–biochar–zeolite) on the chemical speciation of Cd and As in paddy soils and their accumulation and translocation in rice plants
  publication-title: Environ. Sci. Pollut. Res.
– volume: 85
  start-page: 103
  year: 2013
  end-page: 108
  ident: bib50
  article-title: Immobilization of lead by application of zeolite: leaching column and rhizobox incubation studies
  publication-title: Appl. Clay Sci.
– volume: 123
  start-page: 22
  year: 2016
  end-page: 36
  ident: bib47
  article-title: The role of silicon in metabolic acclima-tionofrice plants challenged with arsenic
  publication-title: Environ. Exp. Bot.
– volume: 71
  start-page: 759
  year: 2008
  end-page: 764
  ident: bib1
  article-title: Effects of short-term pH fluctuations on cadmium, nickel, lead, and zinc availability to ryegrass in a sewage sludge-amended field
  publication-title: Chemosphere
– volume: 50
  start-page: 4178
  year: 2016
  end-page: 4185
  ident: bib24
  article-title: Optimal soil Eh, pH, and water management for simultaneously minimizing arsenic and cadmium concentrations in rice grains
  publication-title: Environ. Sci. Technol.
– volume: 47
  start-page: 12775
  year: 2013
  end-page: 12783
  ident: bib17
  article-title: Redox-controlled changes in cadmium solubility and solid-phase speciation in a paddy soil as affected by reducible sulfate and copper
  publication-title: Environ. Sci. Technol.
– volume: 19
  start-page: 761
  year: 2017
  end-page: 774
  ident: bib56
  article-title: Cadmium removal potential by rice straw-derived magnetic biochar
  publication-title: Clean. Technol. Environ. Policy
– volume: 5
  start-page: 181328
  year: 2018
  ident: bib14
  article-title: Bioavailability and leaching of Cd and Pb from contaminated soil amended with different sizes of biochar
  publication-title: R. Soc. Open Sci.
– volume: 135
  start-page: 165
  year: 2017
  end-page: 172
  ident: bib44
  article-title: Remediation of cadmium toxicity in field peas (
  publication-title: Ecotoxicol. Environ. Safe
– volume: 47
  start-page: 312
  year: 2018
  end-page: 317
  ident: bib31
  article-title: Reducing arsenic concentration in
  publication-title: J. Environ. Qual.
– volume: 75
  start-page: 335
  year: 2018
  end-page: 350
  ident: bib41
  article-title: Fractionation, mobility, and contamination assessment of potentially toxic metals in urban soils in four industrial Serbian cities
  publication-title: Arch. Environ. Contam. Toxicol.
– volume: 68
  start-page: 154
  year: 2014
  end-page: 161
  ident: bib28
  article-title: Application of biochar to soil reduces cancer risk via rice consumption: a case study in Miaoqian village, Longyan, China
  publication-title: Environ. Int.
– volume: 253
  start-page: 23
  year: 2018
  end-page: 37
  ident: bib54
  article-title: Mechanism of arsenic uptake, translocation and plant resistance to accumulate arsenic in rice grains
  publication-title: Agr. Ecosyst. Environ.
– volume: 23
  start-page: 20853
  year: 2016
  end-page: 20861
  ident: bib62
  article-title: Impacts of rapeseed dregs on Cd availability in contaminated acid soil and Cd translocation and accumulation in rice plants
  publication-title: Environ. Sci. Pollut. Res.
– volume: 386
  start-page: 317
  year: 2015
  end-page: 329
  ident: bib69
  article-title: Heavy metal translocation and accumulation in iron plaques and plant tissues for 32 hybrid rice (
  publication-title: Plant Soil
– volume: 61
  start-page: 923
  year: 2010
  end-page: 934
  ident: bib25
  article-title: A major quantitative trait locus for increasing cadmium-specific concentration in rice grain is located on the short arm of chromosome 7
  publication-title: J. Exp. Bot.
– volume: 17
  start-page: 432
  year: 2017
  end-page: 439
  ident: bib63
  article-title: Simultaneous immobilization of lead, cadmium, and arsenic in combined contaminated soil with iron hydroxyl phosphate
  publication-title: J. Soil. Sediment
– volume: 89
  start-page: 856
  year: 2012
  end-page: 862
  ident: bib68
  article-title: The effects of biochars from rice residue on the formation of iron plaque and the accumulation of Cd, Zn, Pb, As in rice (
  publication-title: Chemosphere
– volume: 104
  start-page: 225
  year: 1999
  end-page: 233
  ident: bib3
  article-title: Evaluation of hydroxyapatite as a metal immobilizing soil additive for the remediation of polluted soils: Part 1. Influence of hydroxyapatite on metal exchangeability in soil, plant growth and plant metal accumulation
  publication-title: Environ. Pollut.
– volume: 224
  start-page: 622
  year: 2017
  end-page: 630
  ident: bib29
  article-title: Cadmium in rice: transport mechanisms, influencing factors, and minimizing measures
  publication-title: Environ. Pollut.
– volume: 164
  start-page: 25
  year: 2016
  end-page: 33
  ident: bib43
  article-title: Leaching and fractionation of heavy metals in mining soils amended with biochar
  publication-title: Soil Till Res.
– volume: 36
  start-page: 199
  year: 1998
  end-page: 216
  ident: bib20
  article-title: Sorption and desorption of cadmium from some New Zealand soils: effect of pH and contact time
  publication-title: Aust. J. Soil Res.
– volume: 61
  start-page: 535
  year: 2010
  end-page: 559
  ident: bib67
  article-title: Arsenic as a food chain contaminant: mechanisms of plant uptake and metabolism and mitigation strategies
  publication-title: Annu. Rev. Plant Biol.
– reference: Usman, A.R.A., Kuzyakov, Y., Stahr, K., 2004. Sorption, desorption, and immobilization of heavy metals by artificial soil. EUROSOIL 2004, Poster session 02b: Soil Properties and Processes.
– volume: 651
  start-page: 2961
  year: 2019
  end-page: 2974
  ident: bib6
  article-title: Trace metal availability in soil horizons amended with various urban waste composts during 17 years - monitoring and modeling
  publication-title: Sci. Total Environ.
– volume: 360
  start-page: 631
  year: 2018
  end-page: 638
  ident: bib26
  article-title: In-situ oxidative arsenic precipitation as scorodite during carbon catalyzed enargite leaching process
  publication-title: J. Hazard. Mater.
– volume: 45
  start-page: 419
  year: 1994
  end-page: 429
  ident: bib39
  article-title: Ionic-strength and pH effects on the sorption of cadmium and the surface charge of soils
  publication-title: Eur. J. Soil. Sci.
– volume: 22
  start-page: 5742
  year: 2015
  end-page: 5750
  ident: bib59
  article-title: Recent advances in arsenic bioavailability, transport, and speciation in rice
  publication-title: Environ. Sci. Pollut. Res.
– volume: 66
  start-page: 413
  year: 2002
  end-page: 421
  ident: bib18
  article-title: Competitive adsorption of arsenate and arsenite on oxides and clay minerals
  publication-title: Soil Sci. Soc. Am. J.
– volume: 38
  year: 2004
  ident: bib55
  article-title: Arsenic behavior in paddy fields during the cycle of flooded and non-flooded periods
  publication-title: Environ. Sci. Technol.
– volume: 13
  start-page: 1915
  year: 2016
  end-page: 1930
  ident: bib64
  article-title: Removal of heavy metals and bacteria from aqueous solution by novel hydroxyapatite/zeolite nanocomposite, preparation, and characterization
  publication-title: J. Iran. Chem. Soc.
– volume: 98
  start-page: 183
  year: 2017
  end-page: 188
  ident: bib65
  article-title: Immobilization and bioavailability of heavy metals in greenhouse soils amended with rice straw-derived biochar
  publication-title: Ecol. Eng.
– volume: 19
  start-page: 460
  year: 2018
  ident: bib8
  article-title: Genome-wide analysis of long non-coding rnas affecting roots development at an early stage in the rice response to cadmium stress
  publication-title: BMC Genom.
– volume: 105
  start-page: 9931
  year: 2008
  end-page: 9935
  ident: bib33
  article-title: Transporters of arsenite in rice and their role in arsenic accumulation in rice grain
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 99
  start-page: 86
  year: 2016
  end-page: 96
  ident: bib12
  article-title: Reduced arsenic accumulation in rice (
  publication-title: Plant Physiol. Biochem.
– volume: 152
  start-page: 245
  year: 1993
  end-page: 253
  ident: bib35
  article-title: Soil redox-pH stability of arsenic species and its influence on arsenic uptake by rice
  publication-title: Plant Soil
– volume: 140
  start-page: 11
  year: 1985
  end-page: 22
  ident: bib52
  article-title: Fractionation method for soil microelements
  publication-title: Soil Sci.
– volume: 270
  start-page: 68
  year: 2016
  end-page: 75
  ident: bib53
  article-title: Functional effects of manganese and iron oxides on the dynamics of trace elements in soils with a special focus on arsenic and cadmium: a review
  publication-title: Geoderma
– volume: 10
  start-page: 1
  year: 1989
  end-page: 56
  ident: bib36
  article-title: Reactions controlling heavy metal solubility in soils
  publication-title: Adv. Soil. Sci.
– volume: 49
  start-page: 750
  year: 2015
  end-page: 759
  ident: bib66
  article-title: Soil contamination in China: current status and mitigation strategies
  publication-title: Environ. Sci. Technol.
– volume: 61
  start-page: 247
  year: 2001
  end-page: 255
  ident: bib27
  article-title: Metal availability in contaminated soils: I. effects of flooding and organic matter on changes in Eh, pH and solubility of Cd, Ni and Zn
  publication-title: Nutr. Cycl. Agroecosyst.
– volume: 2014
  start-page: 443
  year: 2014
  end-page: 467
  ident: bib70
  article-title: Earth abides arsenic biotransformations
  publication-title: Annu. Rev. Earth Planet. Sci.
– volume: 32
  start-page: 7
  year: 2017
  end-page: 11
  ident: bib40
  article-title: Distribution of major heavy metals in rice grains
  publication-title: J. Chin. Cereals Oils Assoc.
– volume: 37
  start-page: 47
  year: 2008
  end-page: 56
  ident: bib13
  article-title: Phosphate treatment of firing range soils: lead fixation or phosphorus release?
  publication-title: J. Environ. Qual.
– volume: 205–206
  start-page: 72
  year: 2012
  end-page: 80
  ident: bib19
  article-title: Effectiveness of amendments on the spread and phytotoxicity of contaminants in metal–arsenic polluted soil
  publication-title: J. Hazard. Mater.
– volume: 148
  start-page: 303
  year: 2018
  end-page: 310
  ident: bib22
  article-title: Effects of combined amendments on crop yield and cadmium uptake in two cadmium contaminated soils under rice-wheat rotation
  publication-title: Ecotoxicol. Environ. Saf.
– volume: 134
  start-page: 175
  year: 2014
  end-page: 185
  ident: bib45
  article-title: Review of remediation techniques for arsenic (As) contamination: a novel approach utilizing bio-organisms
  publication-title: J. Environ. Manag.
– volume: 120
  start-page: 8
  year: 2015
  end-page: 17
  ident: bib37
  article-title: Silicon, the silver bullet for mitigating biotic and abiotic stress, and improving grain quality, in rice?
  publication-title: Environ. Exp. Bot.
– volume: 238
  start-page: 482
  year: 2018
  end-page: 490
  ident: bib7
  article-title: Geographical variations of cadmium and arsenic concentrations and arsenic speciation in Chinese rice
  publication-title: Environ. Pollut.
– volume: 24
  start-page: 9142
  year: 2017
  end-page: 9158
  ident: bib2
  article-title: Arsenic uptake, accumulation and toxicity in rice plants: possible remedies for its detoxification: a review
  publication-title: Environ. Sci. Pollut. Res.
– volume: 350
  start-page: 1000
  year: 2018
  end-page: 1009
  ident: bib9
  article-title: Classical theory and electron-scale view of exceptional Cd(II) adsorption onto mesoporous cellulose biochar via experimental analysis coupled with DFT calculations
  publication-title: Chem. Eng. J.
– volume: 626
  start-page: 581
  year: 2018
  end-page: 591
  ident: bib10
  article-title: Associations between arsenic in drinking water and occurrence of end-stage renal disease with modifications by comorbidities: a nationwide population-based study in Taiwan
  publication-title: Sci. Total Environ.
– volume: 69
  start-page: 2743
  year: 2018
  end-page: 2752
  ident: bib49
  article-title: Effective reduction of cadmium accumulation in rice grain by expressing
  publication-title: J. Exp. Bot.
– volume: 67
  start-page: 3573
  year: 2016
  end-page: 3585
  ident: bib16
  article-title: Silicon-induced reversibility of cadmium toxicity in rice
  publication-title: J. Exp. Bot.
– volume: 61
  start-page: 923
  year: 2010
  ident: 10.1016/j.ecoenv.2019.01.003_bib25
  article-title: A major quantitative trait locus for increasing cadmium-specific concentration in rice grain is located on the short arm of chromosome 7
  publication-title: J. Exp. Bot.
  doi: 10.1093/jxb/erp360
– ident: 10.1016/j.ecoenv.2019.01.003_bib58
– volume: 626
  start-page: 581
  year: 2018
  ident: 10.1016/j.ecoenv.2019.01.003_bib10
  article-title: Associations between arsenic in drinking water and occurrence of end-stage renal disease with modifications by comorbidities: a nationwide population-based study in Taiwan
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2018.01.043
– volume: 85
  start-page: 103
  year: 2013
  ident: 10.1016/j.ecoenv.2019.01.003_bib50
  article-title: Immobilization of lead by application of zeolite: leaching column and rhizobox incubation studies
  publication-title: Appl. Clay Sci.
  doi: 10.1016/j.clay.2013.08.022
– volume: 205–206
  start-page: 72
  year: 2012
  ident: 10.1016/j.ecoenv.2019.01.003_bib19
  article-title: Effectiveness of amendments on the spread and phytotoxicity of contaminants in metal–arsenic polluted soil
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2011.12.011
– volume: 134
  start-page: 175
  year: 2014
  ident: 10.1016/j.ecoenv.2019.01.003_bib45
  article-title: Review of remediation techniques for arsenic (As) contamination: a novel approach utilizing bio-organisms
  publication-title: J. Environ. Manag.
  doi: 10.1016/j.jenvman.2013.12.027
– volume: 253
  start-page: 23
  year: 2018
  ident: 10.1016/j.ecoenv.2019.01.003_bib54
  article-title: Mechanism of arsenic uptake, translocation and plant resistance to accumulate arsenic in rice grains
  publication-title: Agr. Ecosyst. Environ.
  doi: 10.1016/j.agee.2017.10.017
– volume: 350
  start-page: 1000
  year: 2018
  ident: 10.1016/j.ecoenv.2019.01.003_bib9
  article-title: Classical theory and electron-scale view of exceptional Cd(II) adsorption onto mesoporous cellulose biochar via experimental analysis coupled with DFT calculations
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2018.06.054
– volume: 164
  start-page: 25
  year: 2016
  ident: 10.1016/j.ecoenv.2019.01.003_bib43
  article-title: Leaching and fractionation of heavy metals in mining soils amended with biochar
  publication-title: Soil Till Res.
  doi: 10.1016/j.still.2016.01.008
– volume: 104
  start-page: 225
  year: 1999
  ident: 10.1016/j.ecoenv.2019.01.003_bib3
  article-title: Evaluation of hydroxyapatite as a metal immobilizing soil additive for the remediation of polluted soils: Part 1. Influence of hydroxyapatite on metal exchangeability in soil, plant growth and plant metal accumulation
  publication-title: Environ. Pollut.
  doi: 10.1016/S0269-7491(98)00184-5
– volume: 5
  start-page: 181328
  year: 2018
  ident: 10.1016/j.ecoenv.2019.01.003_bib14
  article-title: Bioavailability and leaching of Cd and Pb from contaminated soil amended with different sizes of biochar
  publication-title: R. Soc. Open Sci.
  doi: 10.1098/rsos.181328
– volume: 98
  start-page: 183
  year: 2017
  ident: 10.1016/j.ecoenv.2019.01.003_bib65
  article-title: Immobilization and bioavailability of heavy metals in greenhouse soils amended with rice straw-derived biochar
  publication-title: Ecol. Eng.
  doi: 10.1016/j.ecoleng.2016.10.057
– volume: 45
  start-page: 419
  year: 1994
  ident: 10.1016/j.ecoenv.2019.01.003_bib39
  article-title: Ionic-strength and pH effects on the sorption of cadmium and the surface charge of soils
  publication-title: Eur. J. Soil. Sci.
  doi: 10.1111/j.1365-2389.1994.tb00527.x
– volume: 123
  start-page: 22
  year: 2016
  ident: 10.1016/j.ecoenv.2019.01.003_bib47
  article-title: The role of silicon in metabolic acclima-tionofrice plants challenged with arsenic
  publication-title: Environ. Exp. Bot.
  doi: 10.1016/j.envexpbot.2015.11.004
– volume: 61
  start-page: 535
  year: 2010
  ident: 10.1016/j.ecoenv.2019.01.003_bib67
  article-title: Arsenic as a food chain contaminant: mechanisms of plant uptake and metabolism and mitigation strategies
  publication-title: Annu. Rev. Plant Biol.
  doi: 10.1146/annurev-arplant-042809-112152
– volume: 25
  start-page: 8608
  year: 2018
  ident: 10.1016/j.ecoenv.2019.01.003_bib21
  article-title: Effects of an additive (hydroxyapatite–biochar–zeolite) on the chemical speciation of Cd and As in paddy soils and their accumulation and translocation in rice plants
  publication-title: Environ. Sci. Pollut. Res.
  doi: 10.1007/s11356-017-0921-2
– volume: 16
  start-page: 212
  year: 2018
  ident: 10.1016/j.ecoenv.2019.01.003_bib23
  article-title: Arsenic, cadmium, lead, and chromium in well water, rice, and human urine in Sri Lanka in relation to chronic kidney disease of unknown etiology
  publication-title: J. Water Health
  doi: 10.2166/wh.2018.070
– volume: 69
  start-page: 2743
  year: 2018
  ident: 10.1016/j.ecoenv.2019.01.003_bib49
  article-title: Effective reduction of cadmium accumulation in rice grain by expressing OsHMA3 under the control of the OsHMA2 promoter
  publication-title: J. Exp. Bot.
  doi: 10.1093/jxb/ery107
– volume: 386
  start-page: 317
  year: 2015
  ident: 10.1016/j.ecoenv.2019.01.003_bib69
  article-title: Heavy metal translocation and accumulation in iron plaques and plant tissues for 32 hybrid rice (Oryza sativa L.) cultivars
  publication-title: Plant Soil
  doi: 10.1007/s11104-014-2268-5
– volume: 24
  start-page: 9142
  year: 2017
  ident: 10.1016/j.ecoenv.2019.01.003_bib2
  article-title: Arsenic uptake, accumulation and toxicity in rice plants: possible remedies for its detoxification: a review
  publication-title: Environ. Sci. Pollut. Res.
  doi: 10.1007/s11356-017-8462-2
– volume: 148
  start-page: 303
  year: 2018
  ident: 10.1016/j.ecoenv.2019.01.003_bib22
  article-title: Effects of combined amendments on crop yield and cadmium uptake in two cadmium contaminated soils under rice-wheat rotation
  publication-title: Ecotoxicol. Environ. Saf.
  doi: 10.1016/j.ecoenv.2017.10.043
– volume: 23
  start-page: 20853
  year: 2016
  ident: 10.1016/j.ecoenv.2019.01.003_bib62
  article-title: Impacts of rapeseed dregs on Cd availability in contaminated acid soil and Cd translocation and accumulation in rice plants
  publication-title: Environ. Sci. Pollut. Res.
  doi: 10.1007/s11356-016-7326-5
– volume: 66
  start-page: 413
  year: 2002
  ident: 10.1016/j.ecoenv.2019.01.003_bib18
  article-title: Competitive adsorption of arsenate and arsenite on oxides and clay minerals
  publication-title: Soil Sci. Soc. Am. J.
  doi: 10.2136/sssaj2002.4130
– volume: 49
  start-page: 750
  year: 2015
  ident: 10.1016/j.ecoenv.2019.01.003_bib66
  article-title: Soil contamination in China: current status and mitigation strategies
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es5047099
– volume: 135
  start-page: 165
  year: 2017
  ident: 10.1016/j.ecoenv.2019.01.003_bib44
  article-title: Remediation of cadmium toxicity in field peas (Pisum sativum L.) through exogenous silicon
  publication-title: Ecotoxicol. Environ. Safe
  doi: 10.1016/j.ecoenv.2016.09.019
– volume: 13
  start-page: 1915
  year: 2016
  ident: 10.1016/j.ecoenv.2019.01.003_bib64
  article-title: Removal of heavy metals and bacteria from aqueous solution by novel hydroxyapatite/zeolite nanocomposite, preparation, and characterization
  publication-title: J. Iran. Chem. Soc.
  doi: 10.1007/s13738-016-0908-9
– volume: 238
  start-page: 482
  year: 2018
  ident: 10.1016/j.ecoenv.2019.01.003_bib7
  article-title: Geographical variations of cadmium and arsenic concentrations and arsenic speciation in Chinese rice
  publication-title: Environ. Pollut.
  doi: 10.1016/j.envpol.2018.03.048
– volume: 37
  start-page: 47
  year: 2008
  ident: 10.1016/j.ecoenv.2019.01.003_bib13
  article-title: Phosphate treatment of firing range soils: lead fixation or phosphorus release?
  publication-title: J. Environ. Qual.
  doi: 10.2134/jeq2007.0151
– volume: 47
  start-page: 312
  year: 2018
  ident: 10.1016/j.ecoenv.2019.01.003_bib31
  article-title: Reducing arsenic concentration in Panax notoginseng via contaminant immobilization in soil using Fe-Ce oxide
  publication-title: J. Environ. Qual.
  doi: 10.2134/jeq2017.07.0297
– volume: 270
  start-page: 68
  year: 2016
  ident: 10.1016/j.ecoenv.2019.01.003_bib53
  article-title: Functional effects of manganese and iron oxides on the dynamics of trace elements in soils with a special focus on arsenic and cadmium: a review
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2015.12.017
– volume: 86
  start-page: 149
  year: 2018
  ident: 10.1016/j.ecoenv.2019.01.003_bib30
  article-title: Lsi1 regulated Cd uptake and phytohormones accumulation in rice seedlings in presence of Si
  publication-title: Plant Growth Regul.
  doi: 10.1007/s10725-018-0417-1
– volume: 18
  start-page: 323
  year: 2018
  ident: 10.1016/j.ecoenv.2019.01.003_bib60
  article-title: A case study of evaluating zeolite, CaCO3, and MnO2 for Cd-contaminated sediment reuse in soil
  publication-title: J. Soil. Sediment.
  doi: 10.1007/s11368-017-1823-0
– volume: 68
  start-page: 154
  year: 2014
  ident: 10.1016/j.ecoenv.2019.01.003_bib28
  article-title: Application of biochar to soil reduces cancer risk via rice consumption: a case study in Miaoqian village, Longyan, China
  publication-title: Environ. Int.
  doi: 10.1016/j.envint.2014.03.017
– volume: 67
  start-page: 3573
  year: 2016
  ident: 10.1016/j.ecoenv.2019.01.003_bib16
  article-title: Silicon-induced reversibility of cadmium toxicity in rice
  publication-title: J. Exp. Bot.
  doi: 10.1093/jxb/erw175
– volume: 71
  start-page: 759
  year: 2008
  ident: 10.1016/j.ecoenv.2019.01.003_bib1
  article-title: Effects of short-term pH fluctuations on cadmium, nickel, lead, and zinc availability to ryegrass in a sewage sludge-amended field
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2007.10.015
– volume: 40
  start-page: 283
  year: 2018
  ident: 10.1016/j.ecoenv.2019.01.003_bib32
  article-title: Compositional analysis of topsoil metals and its associations with cancer mortality using spatial misaligned data
  publication-title: Environ. Geochem. Health
  doi: 10.1007/s10653-016-9904-3
– volume: 50
  start-page: 4178
  year: 2016
  ident: 10.1016/j.ecoenv.2019.01.003_bib24
  article-title: Optimal soil Eh, pH, and water management for simultaneously minimizing arsenic and cadmium concentrations in rice grains
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.5b05424
– volume: 651
  start-page: 2961
  year: 2019
  ident: 10.1016/j.ecoenv.2019.01.003_bib6
  article-title: Trace metal availability in soil horizons amended with various urban waste composts during 17 years - monitoring and modeling
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2018.10.013
– volume: 152
  start-page: 245
  year: 1993
  ident: 10.1016/j.ecoenv.2019.01.003_bib35
  article-title: Soil redox-pH stability of arsenic species and its influence on arsenic uptake by rice
  publication-title: Plant Soil
  doi: 10.1007/BF00029094
– volume: 52
  start-page: 13908
  year: 2018
  ident: 10.1016/j.ecoenv.2019.01.003_bib5
  article-title: Long-term in situ reduction in soil lead bioavailability measured in a mouse model
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.8b04684
– volume: 120
  start-page: 8
  year: 2015
  ident: 10.1016/j.ecoenv.2019.01.003_bib37
  article-title: Silicon, the silver bullet for mitigating biotic and abiotic stress, and improving grain quality, in rice?
  publication-title: Environ. Exp. Bot.
  doi: 10.1016/j.envexpbot.2015.07.001
– volume: 360
  start-page: 631
  year: 2018
  ident: 10.1016/j.ecoenv.2019.01.003_bib26
  article-title: In-situ oxidative arsenic precipitation as scorodite during carbon catalyzed enargite leaching process
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2018.08.019
– volume: 51
  start-page: 1670
  year: 2017
  ident: 10.1016/j.ecoenv.2019.01.003_bib51
  article-title: Anthropogenic cycles of arsenic in mainland China: 1990–2010
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.6b01669
– volume: 32
  start-page: 7
  year: 2017
  ident: 10.1016/j.ecoenv.2019.01.003_bib40
  article-title: Distribution of major heavy metals in rice grains
  publication-title: J. Chin. Cereals Oils Assoc.
– volume: 34
  start-page: 563
  year: 2012
  ident: 10.1016/j.ecoenv.2019.01.003_bib34
  article-title: Arsenic-induced health crisis in Peri-urban Moyna and Ardebok villages, West Bengal, India: an exposure assessment study
  publication-title: Environ. Geochem. Health
  doi: 10.1007/s10653-012-9458-y
– volume: 38
  year: 2004
  ident: 10.1016/j.ecoenv.2019.01.003_bib55
  article-title: Arsenic behavior in paddy fields during the cycle of flooded and non-flooded periods
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es034383n
– volume: 132
  start-page: 42
  year: 2016
  ident: 10.1016/j.ecoenv.2019.01.003_bib15
  article-title: Arsenic toxicity in plants: cellular and molecular mechanisms of its transport and metabolism
  publication-title: Environ. Exp. Bot.
  doi: 10.1016/j.envexpbot.2016.08.004
– volume: 10
  start-page: 1
  year: 1989
  ident: 10.1016/j.ecoenv.2019.01.003_bib36
  article-title: Reactions controlling heavy metal solubility in soils
  publication-title: Adv. Soil. Sci.
  doi: 10.1007/978-1-4613-8847-0_1
– volume: 99
  start-page: 86
  year: 2016
  ident: 10.1016/j.ecoenv.2019.01.003_bib12
  article-title: Reduced arsenic accumulation in rice (Oryza sativa L.) shoot involves sulfur mediated improved thiol metabolism, antioxidant system and altered arsenic transporters
  publication-title: Plant Physiol. Biochem.
  doi: 10.1016/j.plaphy.2015.11.005
– volume: 48
  start-page: 4699
  year: 2014
  ident: 10.1016/j.ecoenv.2019.01.003_bib48
  article-title: Arsenic concentrations in paddy soil and rice and health implications for major rice-growing regions of Cambodia
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es405016t
– volume: 34
  start-page: 908
  year: 2018
  ident: 10.1016/j.ecoenv.2019.01.003_bib38
  article-title: Exposure to heavy metals alters the surface topology of alveolar macrophages and induces respiratory dysfunction among Indian metal arc-welders
  publication-title: Toxicol. Ind. Health
  doi: 10.1177/0748233718804426
– volume: 75
  start-page: 335
  year: 2018
  ident: 10.1016/j.ecoenv.2019.01.003_bib41
  article-title: Fractionation, mobility, and contamination assessment of potentially toxic metals in urban soils in four industrial Serbian cities
  publication-title: Arch. Environ. Contam. Toxicol.
  doi: 10.1007/s00244-018-0518-x
– volume: 5
  start-page: 5
  year: 2012
  ident: 10.1016/j.ecoenv.2019.01.003_bib57
  article-title: Cadmium transport and tolerance in rice: perspectives for reducing grain cadmium accumulation
  publication-title: Rice
  doi: 10.1186/1939-8433-5-5
– volume: 19
  start-page: 761
  year: 2017
  ident: 10.1016/j.ecoenv.2019.01.003_bib56
  article-title: Cadmium removal potential by rice straw-derived magnetic biochar
  publication-title: Clean. Technol. Environ. Policy
  doi: 10.1007/s10098-016-1264-2
– volume: 18
  start-page: 92
  year: 2013
  ident: 10.1016/j.ecoenv.2019.01.003_bib11
  article-title: Plant science: the key to preventing slow cadmium poisoning
  publication-title: Trends Plant Sci.
  doi: 10.1016/j.tplants.2012.08.003
– volume: 22
  start-page: 5742
  year: 2015
  ident: 10.1016/j.ecoenv.2019.01.003_bib59
  article-title: Recent advances in arsenic bioavailability, transport, and speciation in rice
  publication-title: Environ. Sci. Pollut. Res.
  doi: 10.1007/s11356-014-4065-3
– volume: 47
  start-page: 12775
  year: 2013
  ident: 10.1016/j.ecoenv.2019.01.003_bib17
  article-title: Redox-controlled changes in cadmium solubility and solid-phase speciation in a paddy soil as affected by reducible sulfate and copper
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es401997d
– volume: 2014
  start-page: 443
  issue: 42
  year: 2014
  ident: 10.1016/j.ecoenv.2019.01.003_bib70
  article-title: Earth abides arsenic biotransformations
  publication-title: Annu. Rev. Earth Planet. Sci.
  doi: 10.1146/annurev-earth-060313-054942
– volume: 140
  start-page: 11
  year: 1985
  ident: 10.1016/j.ecoenv.2019.01.003_bib52
  article-title: Fractionation method for soil microelements
  publication-title: Soil Sci.
  doi: 10.1097/00010694-198507000-00003
– volume: 266
  start-page: 141
  year: 2014
  ident: 10.1016/j.ecoenv.2019.01.003_bib4
  article-title: Remediation of heavy metal (loid)s contaminated soils - to mobilize or to immobilize?
  publication-title: J. Hazard Mater.
  doi: 10.1016/j.jhazmat.2013.12.018
– volume: 36
  start-page: 199
  year: 1998
  ident: 10.1016/j.ecoenv.2019.01.003_bib20
  article-title: Sorption and desorption of cadmium from some New Zealand soils: effect of pH and contact time
  publication-title: Aust. J. Soil Res.
  doi: 10.1071/S97085
– volume: 45
  start-page: 252
  year: 2019
  ident: 10.1016/j.ecoenv.2019.01.003_bib46
  article-title: Structural and phase analysis of multi-ion doped hydroxyapatite for biomedical applications
  publication-title: Ceram. Int.
  doi: 10.1016/j.ceramint.2018.09.160
– volume: 105
  start-page: 9931
  year: 2008
  ident: 10.1016/j.ecoenv.2019.01.003_bib33
  article-title: Transporters of arsenite in rice and their role in arsenic accumulation in rice grain
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.0802361105
– volume: 156
  start-page: 23
  year: 2017
  ident: 10.1016/j.ecoenv.2019.01.003_bib61
  article-title: Cadmium, lead, and arsenic contamination in paddy soil of a mining area and their exposure effects on human HHEPG2 and keratinocyte cell-lines
  publication-title: Environ. Res.
  doi: 10.1016/j.envres.2017.03.014
– volume: 89
  start-page: 856
  year: 2012
  ident: 10.1016/j.ecoenv.2019.01.003_bib68
  article-title: The effects of biochars from rice residue on the formation of iron plaque and the accumulation of Cd, Zn, Pb, As in rice (Oryza sativa L.) seedlings
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2012.05.008
– volume: 61
  start-page: 247
  year: 2001
  ident: 10.1016/j.ecoenv.2019.01.003_bib27
  article-title: Metal availability in contaminated soils: I. effects of flooding and organic matter on changes in Eh, pH and solubility of Cd, Ni and Zn
  publication-title: Nutr. Cycl. Agroecosyst.
  doi: 10.1023/A:1013762204510
– volume: 17
  start-page: 432
  year: 2017
  ident: 10.1016/j.ecoenv.2019.01.003_bib63
  article-title: Simultaneous immobilization of lead, cadmium, and arsenic in combined contaminated soil with iron hydroxyl phosphate
  publication-title: J. Soil. Sediment
  doi: 10.1007/s11368-016-1540-0
– volume: 19
  start-page: 460
  year: 2018
  ident: 10.1016/j.ecoenv.2019.01.003_bib8
  article-title: Genome-wide analysis of long non-coding rnas affecting roots development at an early stage in the rice response to cadmium stress
  publication-title: BMC Genom.
  doi: 10.1186/s12864-018-4807-6
– volume: 363
  start-page: 28
  year: 2006
  ident: 10.1016/j.ecoenv.2019.01.003_bib42
  article-title: Trace element availability and plant growth in a mine-spill-contaminated soil under assisted natural remediation: II. Plants
  publication-title: Sci. Total. Environ.
  doi: 10.1016/j.scitotenv.2005.10.015
– volume: 224
  start-page: 622
  year: 2017
  ident: 10.1016/j.ecoenv.2019.01.003_bib29
  article-title: Cadmium in rice: transport mechanisms, influencing factors, and minimizing measures
  publication-title: Environ. Pollut.
  doi: 10.1016/j.envpol.2017.01.087
SSID ssj0003055
Score 2.488663
Snippet Rice (Oryza sativa L.) planted in cadmium (Cd)- and arsenic (As)-contaminated soil is considered the main source of dietary Cd and As intake for humans in...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 451
SubjectTerms Accumulation
Arsenic
Cadmium
In situ remediation
Rice
Soil
Title Cadmium and arsenic accumulation during the rice growth period under in situ remediation
URI https://dx.doi.org/10.1016/j.ecoenv.2019.01.003
https://www.ncbi.nlm.nih.gov/pubmed/30639871
https://www.proquest.com/docview/2179339376
Volume 171
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS9xAEB_EUhCktGrtVStb8HW9y-0muTweh3L9EpEK97bsp6b0cqJJwRf_dmeyiUWkCH0KSWbJMjPZndn9zW8BDsdOiMyZgucu01xqk3CjpeA-Dzj9TUIYtWDMH6fZ_EJ-XaSLNZj1tTAEq-zG_jimt6N192TYaXN4XZZDgiXlWZqgDwmKTNoKdnyCPn10_xfmQYxWEcaYc5Luy-dajBdmeL76QwCvoiXv7I_Oej49_Sv8bKehk7fwposf2TR28R2s-WoLXh-33NN3W7AZl-FYrC7ahsVMu2XZLJmuHMMc1lf4UlvbLLtju1isU2QYBzLiF2KXmJfXV4wIkFeOUYnZDSsrdlvWDaO1RBdtuQMXJ8c_Z3PeHabArczSmieYuSReB2vGRSCoSCGCdtLr3Gi0iLHGjmxB2YzLcpNoOUlRzGL6aKTOUivew3q1qvwHYMIUHqW1SIyVmhJMjFNCKAIFb6GQAxC9DpXtmMbpwIvfqoeU_VJR84o0r0YJMZQOgD-2uo5MGy_I57151BOPUTgZvNDyc29NhT8T7ZDoyq-aWzWm4YooArMB7EYzP_ZFUDCH6eXH__7uHmzQXdyL2of1-qbxnzCkqc1B67MH8Go6O_9-Rtcv3-anDyuF-NU
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fS9xAEB7kRFoQqbbV01a30NflLrebxDzKoZxV70nh3pb92ab0cqKJ4H_vTDY5KFKEvmZ3yTKzmZkvO_MNwPeJEyJzpuC5yzSX2iTcaCm4zwO6v9MQxm0y5s08m93JH4t0sQHTvhaG0io72x9temutuyejTpqj-7IcUVpSnqUJniFBkQlCoE1ip0oHsHl2eTWbrw0ykVrFTMac04K-gq5N80KQ56snyvEqWv7OvnvWaw_1rwi09UQXH2CnCyHZWdzlLmz4ag-2zlv66ec92I5_4lgsMPoIi6l2y7JZMl05hjDWVziorW2WXecuFksVGYaCjCiG2E-E5vUvRhzIK8eoyuyBlRV7LOuG0e9EF9X5Ce4uzm-nM971U-BWZmnNEwQvidfBmkkRKFukEEE76XVuNCrFWGPHtiBA47LcJFqepjjNIoI0UmepFZ9hUK0qfwBMmMLjbC0SY6UmjImhSghFoPgtFHIIopehsh3ZOPW8-KP6rLLfKkpekeTVOCGS0iHw9ar7SLbxxvy8V4_669Ao9AdvrPzWa1Ph90SXJLryq-ZRTchiEUtgNoT9qOb1XgTFc4gwD__7vSfwbnZ7c62uL-dXR_CeRuLV1BcY1A-N_4oRTm2OuxP8AuBp-fE
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Cadmium+and+arsenic+accumulation+during+the+rice+growth+period+under+in+situ+remediation&rft.jtitle=Ecotoxicology+and+environmental+safety&rft.au=Gu%2C+Jiao-feng&rft.au=Zhou%2C+Hang&rft.au=Tang%2C+Hui-ling&rft.au=Yang%2C+Wen-tao&rft.date=2019-04-30&rft.pub=Elsevier+Inc&rft.issn=0147-6513&rft.eissn=1090-2414&rft.volume=171&rft.spage=451&rft.epage=459&rft_id=info:doi/10.1016%2Fj.ecoenv.2019.01.003&rft.externalDocID=S0147651319300041
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0147-6513&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0147-6513&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0147-6513&client=summon