In vivo quantitative proton MRSI study of brain development from childhood to adolescence

Purpose To quantify regional variations in metabolite levels in the developing brain using quantitative proton MR spectroscopic imaging (MRSI). Materials and Methods Fifteen healthy subjects three to 19 years old were examined by in vivo multislice proton MRSI. Concentrations of N‐acetyl aspartate (...

Full description

Saved in:
Bibliographic Details
Published inJournal of magnetic resonance imaging Vol. 15; no. 2; pp. 137 - 143
Main Authors Horská, Alena, Kaufmann, Walter E., Brant, Larry J., Naidu, Sakkubai, Harris, James C., Barker, Peter B.
Format Journal Article
LanguageEnglish
Published New York Wiley Subscription Services, Inc., A Wiley Company 01.02.2002
Subjects
Online AccessGet full text
ISSN1053-1807
1522-2586
DOI10.1002/jmri.10057

Cover

Abstract Purpose To quantify regional variations in metabolite levels in the developing brain using quantitative proton MR spectroscopic imaging (MRSI). Materials and Methods Fifteen healthy subjects three to 19 years old were examined by in vivo multislice proton MRSI. Concentrations of N‐acetyl aspartate (NAA), total choline (Cho), total creatine (Cr), and peak area ratios were determined in selected frontal and parietal gray and white matter regions, basal ganglia, and thalamus. Results In cortical gray matter regions, the ratio of NAA/Cho increased to a maximum at 10 years and decreased thereafter (P = 0.010). In contrast, in white matter, average ratios NAA/Cho increased linearly with age (P = 0.045). In individual brain regions, age‐related changes in NAA/Cho were found in the putamen (P = 0.044). No significant age‐related changes in NAA, Cho, Cr, or other metabolite ratios could be determined. Conclusion Consistent with recent studies using other structural and functional neuroimaging techniques, our data suggest that small but significant changes occur in regional cerebral metabolism during childhood and adolescence. Non‐linear age related changes of NAA/Cho in frontal and parietal areas, resembling previously reported age related changes in rates of glucose utilization and cortical volumes, may be associated with dendritic and synaptic development and regression. Linear age‐related changes of NAA/Cho in white matter are also in agreement with age‐related increases in white matter volumes, and may reflect progressive increases in axonal diameter and myelination. J. Magn. Reson. Imaging 2002;15:137–143. Published 2002 Wiley‐Liss, Inc.
AbstractList To quantify regional variations in metabolite levels in the developing brain using quantitative proton MR spectroscopic imaging (MRSI).PURPOSETo quantify regional variations in metabolite levels in the developing brain using quantitative proton MR spectroscopic imaging (MRSI).Fifteen healthy subjects three to 19 years old were examined by in vivo multislice proton MRSI. Concentrations of N-acetyl aspartate (NAA), total choline (Cho), total creatine (Cr), and peak area ratios were determined in selected frontal and parietal gray and white matter regions, basal ganglia, and thalamus.MATERIALS AND METHODSFifteen healthy subjects three to 19 years old were examined by in vivo multislice proton MRSI. Concentrations of N-acetyl aspartate (NAA), total choline (Cho), total creatine (Cr), and peak area ratios were determined in selected frontal and parietal gray and white matter regions, basal ganglia, and thalamus.In cortical gray matter regions, the ratio of NAA/Cho increased to a maximum at 10 years and decreased thereafter (P = 0.010). In contrast, in white matter, average ratios NAA/Cho increased linearly with age (P = 0.045). In individual brain regions, age-related changes in NAA/Cho were found in the putamen (P = 0.044). No significant age-related changes in NAA, Cho, Cr, or other metabolite ratios could be determined.RESULTSIn cortical gray matter regions, the ratio of NAA/Cho increased to a maximum at 10 years and decreased thereafter (P = 0.010). In contrast, in white matter, average ratios NAA/Cho increased linearly with age (P = 0.045). In individual brain regions, age-related changes in NAA/Cho were found in the putamen (P = 0.044). No significant age-related changes in NAA, Cho, Cr, or other metabolite ratios could be determined.Consistent with recent studies using other structural and functional neuroimaging techniques, our data suggest that small but significant changes occur in regional cerebral metabolism during childhood and adolescence. Non-linear age related changes of NAA/Cho in frontal and parietal areas, resembling previously reported age related changes in rates of glucose utilization and cortical volumes, may be associated with dendritic and synaptic development and regression. Linear age-related changes of NAA/Cho in white matter are also in agreement with age-related increases in white matter volumes, and may reflect progressive increases in axonal diameter and myelination.CONCLUSIONConsistent with recent studies using other structural and functional neuroimaging techniques, our data suggest that small but significant changes occur in regional cerebral metabolism during childhood and adolescence. Non-linear age related changes of NAA/Cho in frontal and parietal areas, resembling previously reported age related changes in rates of glucose utilization and cortical volumes, may be associated with dendritic and synaptic development and regression. Linear age-related changes of NAA/Cho in white matter are also in agreement with age-related increases in white matter volumes, and may reflect progressive increases in axonal diameter and myelination.
To quantify regional variations in metabolite levels in the developing brain using quantitative proton MR spectroscopic imaging (MRSI). Fifteen healthy subjects three to 19 years old were examined by in vivo multislice proton MRSI. Concentrations of N-acetyl aspartate (NAA), total choline (Cho), total creatine (Cr), and peak area ratios were determined in selected frontal and parietal gray and white matter regions, basal ganglia, and thalamus. In cortical gray matter regions, the ratio of NAA/Cho increased to a maximum at 10 years and decreased thereafter (P = 0.010). In contrast, in white matter, average ratios NAA/Cho increased linearly with age (P = 0.045). In individual brain regions, age-related changes in NAA/Cho were found in the putamen (P = 0.044). No significant age-related changes in NAA, Cho, Cr, or other metabolite ratios could be determined. Consistent with recent studies using other structural and functional neuroimaging techniques, our data suggest that small but significant changes occur in regional cerebral metabolism during childhood and adolescence. Non-linear age related changes of NAA/Cho in frontal and parietal areas, resembling previously reported age related changes in rates of glucose utilization and cortical volumes, may be associated with dendritic and synaptic development and regression. Linear age-related changes of NAA/Cho in white matter are also in agreement with age-related increases in white matter volumes, and may reflect progressive increases in axonal diameter and myelination.
Purpose To quantify regional variations in metabolite levels in the developing brain using quantitative proton MR spectroscopic imaging (MRSI). Materials and Methods Fifteen healthy subjects three to 19 years old were examined by in vivo multislice proton MRSI. Concentrations of N‐acetyl aspartate (NAA), total choline (Cho), total creatine (Cr), and peak area ratios were determined in selected frontal and parietal gray and white matter regions, basal ganglia, and thalamus. Results In cortical gray matter regions, the ratio of NAA/Cho increased to a maximum at 10 years and decreased thereafter (P = 0.010). In contrast, in white matter, average ratios NAA/Cho increased linearly with age (P = 0.045). In individual brain regions, age‐related changes in NAA/Cho were found in the putamen (P = 0.044). No significant age‐related changes in NAA, Cho, Cr, or other metabolite ratios could be determined. Conclusion Consistent with recent studies using other structural and functional neuroimaging techniques, our data suggest that small but significant changes occur in regional cerebral metabolism during childhood and adolescence. Non‐linear age related changes of NAA/Cho in frontal and parietal areas, resembling previously reported age related changes in rates of glucose utilization and cortical volumes, may be associated with dendritic and synaptic development and regression. Linear age‐related changes of NAA/Cho in white matter are also in agreement with age‐related increases in white matter volumes, and may reflect progressive increases in axonal diameter and myelination. J. Magn. Reson. Imaging 2002;15:137–143. Published 2002 Wiley‐Liss, Inc.
Author Brant, Larry J.
Kaufmann, Walter E.
Harris, James C.
Barker, Peter B.
Naidu, Sakkubai
Horská, Alena
Author_xml – sequence: 1
  givenname: Alena
  surname: Horská
  fullname: Horská, Alena
  email: ahorska@mri.jhu.edu
  organization: The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University, School of Medicine, Baltimore, Maryland
– sequence: 2
  givenname: Walter E.
  surname: Kaufmann
  fullname: Kaufmann, Walter E.
  organization: The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University, School of Medicine, Baltimore, Maryland
– sequence: 3
  givenname: Larry J.
  surname: Brant
  fullname: Brant, Larry J.
  organization: Gerontology Research Center NIA/NIH, Baltimore, Maryland
– sequence: 4
  givenname: Sakkubai
  surname: Naidu
  fullname: Naidu, Sakkubai
  organization: Department of Neurology, Johns Hopkins University, School of Medicine, Baltimore, Maryland
– sequence: 5
  givenname: James C.
  surname: Harris
  fullname: Harris, James C.
  organization: Department of Pediatrics, Johns Hopkins University, School of Medicine, Baltimore, Maryland
– sequence: 6
  givenname: Peter B.
  surname: Barker
  fullname: Barker, Peter B.
  organization: The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University, School of Medicine, Baltimore, Maryland
BackLink https://www.ncbi.nlm.nih.gov/pubmed/11836768$$D View this record in MEDLINE/PubMed
BookMark eNp9kMtuEzEUQK2qFX3Ahg9AXnWBNNSPsT2zrAItqVKQAgh1ZXn8UF1m7NT2BPL3TJq2C1Sx8l2cc3V9jsF-iMEC8BajDxghcnY3JL-dmNgDR5gRUhHW8P1pRoxWuEHiEBznfIcQatuavQKHGDeUC94cgZt5gGu_jvB-VKH4oopfW7hKscQAr5ff5jCX0WxgdLBLygdo7Nr2cTXYUKBLcYD61vfmNkYDS4TKxN5mbYO2r8GBU322bx7fE_Dj4tP32edq8fVyPjtfVLrmTFSq5VijltWYIW6oJkRgYoTpuGlQw5x13HU1a01HBDfKdYRqRxltHFGtIR09Aae7vdPR96PNRQ5-uqDvVbBxzFLgmuGWogl89wiO3WCNXCU_qLSRTzEmAO0AnWLOyTqpH4LEUKav9xIjue0tt73lQ-9Jef-P8rz1JRjv4N--t5v_kPLqejl_cqqd43Oxf54dlX5JLqhg8ueXS3nxcUnJYraUlP4FagKgEA
CitedBy_id crossref_primary_10_1016_j_pscychresns_2010_07_008
crossref_primary_10_1002_hbm_25396
crossref_primary_10_1016_j_neubiorev_2015_02_009
crossref_primary_10_1002_jmri_20480
crossref_primary_10_1007_s11064_015_1600_7
crossref_primary_10_1016_j_ab_2021_114479
crossref_primary_10_1089_104303402760128612
crossref_primary_10_1097_CHI_0b013e318185e703
crossref_primary_10_1016_j_pscychresns_2010_08_007
crossref_primary_10_1007_s00247_006_0159_5
crossref_primary_10_1016_j_nicl_2021_102622
crossref_primary_10_1016_j_biopsych_2006_07_022
crossref_primary_10_1371_journal_pone_0282756
crossref_primary_10_1007_s00247_014_3204_9
crossref_primary_10_1002_mrm_21556
crossref_primary_10_1177_088307380401900801
crossref_primary_10_1038_npp_2009_115
crossref_primary_10_1016_j_brainres_2010_12_057
crossref_primary_10_1016_j_biopsych_2012_04_023
crossref_primary_10_1002_jmri_21285
crossref_primary_10_1016_j_pediatrneurol_2003_11_005
crossref_primary_10_1111_j_1552_6569_2007_00207_x
crossref_primary_10_1002_jmri_20515
crossref_primary_10_1111_j_1530_0277_2008_00747_x
crossref_primary_10_1002_cne_23634
crossref_primary_10_1016_j_neuroimage_2018_10_002
crossref_primary_10_1111_j_1469_8749_2007_00135_x
crossref_primary_10_1111_j_1399_5618_2005_00266_x
crossref_primary_10_1016_j_euroneuro_2018_01_002
crossref_primary_10_1016_j_neuroimage_2020_117016
crossref_primary_10_1016_j_cub_2022_10_021
crossref_primary_10_1120_jacmp_v15i3_4754
crossref_primary_10_1016_j_arr_2018_05_005
crossref_primary_10_1016_j_neuroimage_2011_02_044
crossref_primary_10_1259_bjr_20140693
crossref_primary_10_1007_s10334_008_0142_2
crossref_primary_10_1016_j_nicl_2016_11_013
crossref_primary_10_1016_j_seizure_2010_07_005
crossref_primary_10_1016_j_apmr_2006_07_275
crossref_primary_10_1038_npp_2016_260
crossref_primary_10_1371_journal_pone_0167274
crossref_primary_10_1002_jmri_21394
crossref_primary_10_1073_pnas_1907730116
crossref_primary_10_3174_ajnr_A1106
crossref_primary_10_1097_00001756_200412030_00003
crossref_primary_10_3174_ajnr_A3843
crossref_primary_10_1016_j_ejpn_2008_04_014
crossref_primary_10_1002_jmri_20627
crossref_primary_10_1016_j_jfludis_2007_06_001
crossref_primary_10_1002_jmri_21909
crossref_primary_10_1016_j_pnmrs_2006_06_002
crossref_primary_10_1126_scitranslmed_3003454
crossref_primary_10_1177_1533317511421780
crossref_primary_10_1038_pr_2017_101
crossref_primary_10_1148_rg_335125212
crossref_primary_10_1177_08830738060210061801
crossref_primary_10_3174_ajnr_A4181
crossref_primary_10_1002_acn3_222
crossref_primary_10_1111_adb_12473
crossref_primary_10_1016_j_acra_2009_07_025
crossref_primary_10_1017_S0954579414000030
crossref_primary_10_3174_ajnr_A3297
crossref_primary_10_2217_npy_12_40
crossref_primary_10_1017_S0954579406060548
crossref_primary_10_1212_01_WNL_0000125492_57419_25
crossref_primary_10_1016_j_neuroimage_2022_119574
crossref_primary_10_1111_j_1526_4610_2008_01153_x
crossref_primary_10_1203_01_PDR_0000180559_29393_BE
crossref_primary_10_1177_0883073814538504
crossref_primary_10_1016_j_nicl_2023_103427
crossref_primary_10_1212_WNL_0b013e3181feb217
crossref_primary_10_1002_jmri_21425
crossref_primary_10_1097_00001756_200403220_00026
crossref_primary_10_1016_j_ymgme_2007_03_006
crossref_primary_10_1097_00004850_200303000_00002
crossref_primary_10_1177_2470547018763359
crossref_primary_10_1038_s41598_021_86443_4
crossref_primary_10_1186_1866_1955_4_23
crossref_primary_10_1007_s00431_007_0469_0
crossref_primary_10_1016_j_neuroimage_2021_118101
crossref_primary_10_1371_journal_pone_0180973
crossref_primary_10_1007_s11682_020_00330_6
crossref_primary_10_1002_ajmg_a_37468
crossref_primary_10_1111_j_1467_7687_2010_01014_x
Cites_doi 10.1038/13154
10.1016/0006-8993(79)90349-4
10.1097/00004728-199011000-00004
10.1148/radiology.188.1.8511313
10.1038/13158
10.1002/mrm.1910360610
10.1093/cercor/6.4.551
10.1203/00006450-199502000-00003
10.1212/WNL.54.3.715
10.1126/science.283.5409.1908
10.1016/0306-4522(91)90101-S
10.1203/00006450-199910000-00019
10.1203/00006450-199112000-00017
10.1111/j.1469-8749.1995.tb12023.x
10.1002/mrm.1910350313
10.1006/nimg.1999.0436
10.1148/radiology.176.2.2164237
10.1002/ana.410220408
10.2307/2529876
10.1148/radiology.194.2.7529934
10.1093/cercor/6.5.726
10.1126/science.7414326
10.1214/ss/1177012092
10.1038/35004593
10.1002/jmri.1880040102
10.1006/jmrb.1993.1056
10.1002/mrm.1910300405
10.1007/978-1-4612-2294-1
10.1002/jmri.1880040510
ContentType Journal Article
Copyright Published 2002 Wiley‐Liss, Inc.
Copyright_xml – notice: Published 2002 Wiley‐Liss, Inc.
DBID BSCLL
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1002/jmri.10057
DatabaseName Istex
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1522-2586
EndPage 143
ExternalDocumentID 11836768
10_1002_jmri_10057
JMRI10057
ark_67375_WNG_FDR32LCR_3
Genre article
Research Support, U.S. Gov't, P.H.S
Journal Article
GrantInformation_xml – fundername: NIH
  funderid: 2 P01 HD24448‐11; 5P30 HD24061‐13
– fundername: PCRU
  funderid: RR‐00052
– fundername: NICHD NIH HHS
  grantid: 2 PO1 HD24448-11
– fundername: NCRR NIH HHS
  grantid: RR-00052
– fundername: NIDA NIH HHS
  grantid: 1 R03 DA11979-01
– fundername: NICHD NIH HHS
  grantid: 5P30 HD24061-13
GroupedDBID ---
-DZ
.3N
.GA
.GJ
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
31~
33P
3O-
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52U
52V
52W
52X
53G
5GY
5RE
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A01
A03
AAESR
AAEVG
AAHQN
AAIPD
AAMMB
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAWTL
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ABLJU
ABOCM
ABPVW
ABQWH
ABXGK
ACAHQ
ACBWZ
ACCZN
ACGFO
ACGFS
ACGOF
ACIWK
ACMXC
ACPOU
ACPRK
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADBTR
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEFGJ
AEGXH
AEIGN
AEIMD
AENEX
AEUYR
AEYWJ
AFBPY
AFFPM
AFGKR
AFRAH
AFWVQ
AFZJQ
AGHNM
AGQPQ
AGXDD
AGYGG
AHBTC
AHMBA
AIACR
AIAGR
AIDQK
AIDYY
AITYG
AIURR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMXJE
BROTX
BRXPI
BSCLL
BY8
C45
CS3
D-6
D-7
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRMAN
DRSTM
DU5
EBD
EBS
EJD
EMOBN
F00
F01
F04
F5P
FEDTE
FUBAC
G-S
G.N
GNP
GODZA
H.X
HBH
HDBZQ
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
IX1
J0M
JPC
KBYEO
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M65
MEWTI
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MXFUL
MXMAN
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
OVD
P2P
P2W
P2X
P2Z
P4B
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RIWAO
RJQFR
ROL
RX1
RYL
SAMSI
SUPJJ
SV3
TEORI
TWZ
UB1
V2E
V8K
V9Y
W8V
W99
WBKPD
WHWMO
WIB
WIH
WIJ
WIK
WIN
WJL
WOHZO
WQJ
WVDHM
WXI
WXSBR
XG1
XV2
ZXP
ZZTAW
~IA
~WT
24P
AAHHS
ACCFJ
AEEZP
AEQDE
AEUQT
AFPWT
AIWBW
AJBDE
RGB
RWI
WRC
WUP
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ID FETCH-LOGICAL-c4657-a961c09541506d3c22712d7db6d8085fef6fb459db276dafb23cf3538f2a9d2b3
IEDL.DBID DR2
ISSN 1053-1807
IngestDate Thu Jul 10 19:14:15 EDT 2025
Wed Feb 19 01:31:15 EST 2025
Tue Jul 01 01:40:59 EDT 2025
Thu Apr 24 23:08:29 EDT 2025
Wed Jan 22 16:26:52 EST 2025
Tue Sep 09 05:32:21 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4657-a961c09541506d3c22712d7db6d8085fef6fb459db276dafb23cf3538f2a9d2b3
Notes ark:/67375/WNG-FDR32LCR-3
ArticleID:JMRI10057
This article is a US Government work and, as such, is in the public domain in the United States of America.
NIH - No. 2 P01 HD24448-11; No. 5P30 HD24061-13
PCRU - No. RR-00052
istex:3BE313007E5B078696ABBDCD6A1BF7C7ECAB540F
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/jmri.10057
PMID 11836768
PQID 71451930
PQPubID 23479
PageCount 7
ParticipantIDs proquest_miscellaneous_71451930
pubmed_primary_11836768
crossref_citationtrail_10_1002_jmri_10057
crossref_primary_10_1002_jmri_10057
wiley_primary_10_1002_jmri_10057_JMRI10057
istex_primary_ark_67375_WNG_FDR32LCR_3
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate February 2002
PublicationDateYYYYMMDD 2002-02-01
PublicationDate_xml – month: 02
  year: 2002
  text: February 2002
PublicationDecade 2000
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: United States
PublicationTitle Journal of magnetic resonance imaging
PublicationTitleAlternate J. Magn. Reson. Imaging
PublicationYear 2002
Publisher Wiley Subscription Services, Inc., A Wiley Company
Publisher_xml – name: Wiley Subscription Services, Inc., A Wiley Company
References Thompson PM, Giedd JN, Woods RP, et al. Growth patterns in the developing brain detected by using continuum mechanical tensor maps. Nature 2000; 404: 190-193.
Horská A, Naidu S, Herskovits EH, et al. Quantitative 1H MR spectroscopic imaging in early Rett syndrome. Neurology 2000; 54: 715-722.
Giedd JN, Blumenthal J, Jeffries NO, et al. Brain development during childhood and adolescence: a longitudinal MRI study [letter]. Nat Neurosci 1999; 2: 861-863.
Giedd JN, Snell JW, Lange N, et al. Quantitative magnetic resonance imaging of human brain development: ages 4-18. Cereb Cortex 1996; 6: 551-560.
Simmons ML, Frondoza CG, Coyle JT. Immunocytochemical localization of N-acetyl-aspartate with monoclonal antibodies. Neuroscience 1991; 45: 37-45.
Breslow N. Biostatistics and Bayes. Statist Sci 1990; 5: 269-298.
Laird NW, Ware JH. Random-effects models for longitudinal data. Biometrics 1982; 38: 963-974.
Duyn JH, Gillen J, Sobering G, van Zijl PCM, Moonen CT. Multisection proton MR spectroscopic imaging of the brain. Radiology 1993; 188: 277-282.
Paus T, Zijdenbos A, Worsley K, et al. Structural maturation of neural pathways in children and adolescents: in vivo study. Science 1999; 283: 1908-1911.
Purves D, Lichtman JW. Elimination of synapses in the developing nervous system. Science 1980; 210: 153-157.
Toft PB, Leth H, Lou HC, Pryds O, Henriksen O. Metabolite concentrations in the developing brain estimated with proton MR spectroscopy. J Magn Reson Imaging 1994; 4: 674-680.
Huttenlocher PR. Synaptic density in human frontal cortex-developmental changes and effects of aging. Brain Res 1979; 163: 195-205.
Sowell ER, Thompson PM, Holmes CJ, Jernigan TL, Toga AW. In vivo evidence for post-adolescent brain maturation in frontal and striatal regions [letter]. Nat Neurosci 1999; 2: 859-861.
Kimura H, Fujii Y, Itoh S, et al. Metabolic alterations in the neonate and infant brain during development: evaluation with proton MR spectroscopy. Radiology 1995; 194: 483-489.
Sowell ER, Thompson PM, Holmes CJ, et al. Localizing age-related changes in brain structure between childhood and adolescence using statistical parametric mapping. Neuroimage 1999; 9: 587-597.
Peden CJ, Cowan FM, Bryant DJ, et al. Proton MR spectroscopy of the brain in infants. J Comput Assist Tomogr 1990; 14: 886-894.
Kreis R, Ernst T, Ross BD. Development of the human brain: in vivo quantification of metabolite and water content with proton magnetic resonance spectroscopy. Magn Reson Med 1993; 30: 424-437.
Hüppi PS, Fusch C, Boesch C, et al. Regional metabolic assessment of human brain during development by proton magnetic resonance spectroscopy in vivo and by high-performance liquid chromatography/gas chromatography in autopsy tissue. Pediatr Res 1995; 37: 145-150.
Hashimoto T, Tayama M, Miyazaki M, et al. Developmental brain changes investigated with proton magnetic resonance spectroscopy. Dev Med Child Neurol 1995; 37: 398-405.
Chugani HT, Phelps ME, Mazziotta JC. Positron emission tomography study of human brain functional development. Ann Neurol 1987; 22: 487-497.
Cady EB, Penrice J, Amess PN, et al. Lactate, N-acetylaspartate, choline and creatine concentrations, and spin-spin relaxation in thalamic and occipito-parietal regions of developing human brain. Magn Reson Med 1996; 36: 878-886.
Reiss AL, Abrams MT, Singer HS, Ross JL, Denckla MB. Brain development, gender and IQ in children. A volumetric imaging study. Brain 1996; 119: 1763-1774.
Verbeke G, Molenberghs G. Linear mixed models in practice: a SAS-oriented approach, 1st ed. New York: Springer; 1997.
Pouwels PJW, Brockmann K, Kruse B, et al. Regional age dependence of human brain metabolites from infancy to adulthood as detected by quantitative localized proton MRS. Pediatr Res 1999; 46: 474-485.
Kreis R, Ernst T, Ross BD. Absolute quantitation of water and metabolites in the human brain. II. Metabolite concentrations. J Magn Reson 1993; B102: 9-19.
Choi CG, Ko TS, Lee HK, Lee JH, Suh DC. Localized proton MR spectroscopy of the allocortex and isocortex in healthy children. AJNR Am J Neuroradiol 2000; 21: 1354-1358.
van der Knaap MS, van der Grond J, van Rijen PC, et al. Age-dependent changes in localized proton and phosphorus MR spectroscopy of the brain. Radiology 1990; 176: 509-515.
Caviness Jr VS, Kennedy DN, Richelme C, Rademacher J, Filipek PA. The human brain age 7-11 years: a volumetric analysis based on magnetic resonance images. Cereb Cortex 1996; 6: 726-736.
Toft PB, Christiansen P, Pryds O, Lou HC, Henriksen O. T1, T2, and concentrations of brain metabolites in neonates and adolescents estimated with H-1 MR spectroscopy. J Magn Reson Imaging 1994; 4: 1-5.
Kadota T, Horinouchi T, Kuroda C. Development and aging of the cerebrum: assessment with proton MR spectroscopy. AJNR Am J Neuroradiol 2001; 22: 128-135.
Hüppi PS, Posse S, Lazeyras F, et al. Magnetic resonance in preterm and term newborns: 1H-spectroscopy in developing human brain. Pediatr Res 1991; 30: 574-578.
Soher BJ, van Zijl PCM, Duyn JH, Barker PB. Quantitative proton MR spectroscopic imaging of the human brain. Magn Reson Med 1996; 35: 356-363.
1982; 38
1990; 14
1995; 37
1991; 30
2000; 21
1999; 46
1997
1999; 283
1999; 2
2002
1991
1996; 36
2001; 22
1996; 35
1980; 210
1995; 194
1993; 188
1999; 9
1987; 22
1993; B102
1991; 45
2001
2000
2000; 54
2000; 404
1993; 30
1990; 176
1979; 163
1996; 119
1994; 4
1996; 6
1990; 5
e_1_2_6_31_2
e_1_2_6_30_2
e_1_2_6_18_2
e_1_2_6_19_2
e_1_2_6_12_2
e_1_2_6_35_2
e_1_2_6_13_2
e_1_2_6_10_2
e_1_2_6_33_2
Reiss AL (e_1_2_6_3_2) 1996; 119
e_1_2_6_11_2
Kaufmann WE (e_1_2_6_32_2) 2002
e_1_2_6_38_2
e_1_2_6_14_2
e_1_2_6_37_2
e_1_2_6_15_2
e_1_2_6_36_2
e_1_2_6_20_2
Kelly JP (e_1_2_6_34_2) 1991
Barkovich AJ (e_1_2_6_2_2) 2000
e_1_2_6_8_2
Choi CG (e_1_2_6_16_2) 2000; 21
e_1_2_6_7_2
e_1_2_6_9_2
e_1_2_6_29_2
e_1_2_6_4_2
e_1_2_6_6_2
e_1_2_6_5_2
e_1_2_6_24_2
e_1_2_6_23_2
e_1_2_6_22_2
e_1_2_6_21_2
e_1_2_6_28_2
e_1_2_6_27_2
e_1_2_6_26_2
Kadota T (e_1_2_6_17_2) 2001; 22
e_1_2_6_25_2
References_xml – reference: Hüppi PS, Fusch C, Boesch C, et al. Regional metabolic assessment of human brain during development by proton magnetic resonance spectroscopy in vivo and by high-performance liquid chromatography/gas chromatography in autopsy tissue. Pediatr Res 1995; 37: 145-150.
– reference: Reiss AL, Abrams MT, Singer HS, Ross JL, Denckla MB. Brain development, gender and IQ in children. A volumetric imaging study. Brain 1996; 119: 1763-1774.
– reference: Soher BJ, van Zijl PCM, Duyn JH, Barker PB. Quantitative proton MR spectroscopic imaging of the human brain. Magn Reson Med 1996; 35: 356-363.
– reference: Caviness Jr VS, Kennedy DN, Richelme C, Rademacher J, Filipek PA. The human brain age 7-11 years: a volumetric analysis based on magnetic resonance images. Cereb Cortex 1996; 6: 726-736.
– reference: Paus T, Zijdenbos A, Worsley K, et al. Structural maturation of neural pathways in children and adolescents: in vivo study. Science 1999; 283: 1908-1911.
– reference: Huttenlocher PR. Synaptic density in human frontal cortex-developmental changes and effects of aging. Brain Res 1979; 163: 195-205.
– reference: Hashimoto T, Tayama M, Miyazaki M, et al. Developmental brain changes investigated with proton magnetic resonance spectroscopy. Dev Med Child Neurol 1995; 37: 398-405.
– reference: Kreis R, Ernst T, Ross BD. Absolute quantitation of water and metabolites in the human brain. II. Metabolite concentrations. J Magn Reson 1993; B102: 9-19.
– reference: Thompson PM, Giedd JN, Woods RP, et al. Growth patterns in the developing brain detected by using continuum mechanical tensor maps. Nature 2000; 404: 190-193.
– reference: Kreis R, Ernst T, Ross BD. Development of the human brain: in vivo quantification of metabolite and water content with proton magnetic resonance spectroscopy. Magn Reson Med 1993; 30: 424-437.
– reference: Kadota T, Horinouchi T, Kuroda C. Development and aging of the cerebrum: assessment with proton MR spectroscopy. AJNR Am J Neuroradiol 2001; 22: 128-135.
– reference: Horská A, Naidu S, Herskovits EH, et al. Quantitative 1H MR spectroscopic imaging in early Rett syndrome. Neurology 2000; 54: 715-722.
– reference: Duyn JH, Gillen J, Sobering G, van Zijl PCM, Moonen CT. Multisection proton MR spectroscopic imaging of the brain. Radiology 1993; 188: 277-282.
– reference: van der Knaap MS, van der Grond J, van Rijen PC, et al. Age-dependent changes in localized proton and phosphorus MR spectroscopy of the brain. Radiology 1990; 176: 509-515.
– reference: Giedd JN, Snell JW, Lange N, et al. Quantitative magnetic resonance imaging of human brain development: ages 4-18. Cereb Cortex 1996; 6: 551-560.
– reference: Giedd JN, Blumenthal J, Jeffries NO, et al. Brain development during childhood and adolescence: a longitudinal MRI study [letter]. Nat Neurosci 1999; 2: 861-863.
– reference: Sowell ER, Thompson PM, Holmes CJ, et al. Localizing age-related changes in brain structure between childhood and adolescence using statistical parametric mapping. Neuroimage 1999; 9: 587-597.
– reference: Toft PB, Leth H, Lou HC, Pryds O, Henriksen O. Metabolite concentrations in the developing brain estimated with proton MR spectroscopy. J Magn Reson Imaging 1994; 4: 674-680.
– reference: Breslow N. Biostatistics and Bayes. Statist Sci 1990; 5: 269-298.
– reference: Peden CJ, Cowan FM, Bryant DJ, et al. Proton MR spectroscopy of the brain in infants. J Comput Assist Tomogr 1990; 14: 886-894.
– reference: Laird NW, Ware JH. Random-effects models for longitudinal data. Biometrics 1982; 38: 963-974.
– reference: Choi CG, Ko TS, Lee HK, Lee JH, Suh DC. Localized proton MR spectroscopy of the allocortex and isocortex in healthy children. AJNR Am J Neuroradiol 2000; 21: 1354-1358.
– reference: Chugani HT, Phelps ME, Mazziotta JC. Positron emission tomography study of human brain functional development. Ann Neurol 1987; 22: 487-497.
– reference: Verbeke G, Molenberghs G. Linear mixed models in practice: a SAS-oriented approach, 1st ed. New York: Springer; 1997.
– reference: Simmons ML, Frondoza CG, Coyle JT. Immunocytochemical localization of N-acetyl-aspartate with monoclonal antibodies. Neuroscience 1991; 45: 37-45.
– reference: Toft PB, Christiansen P, Pryds O, Lou HC, Henriksen O. T1, T2, and concentrations of brain metabolites in neonates and adolescents estimated with H-1 MR spectroscopy. J Magn Reson Imaging 1994; 4: 1-5.
– reference: Sowell ER, Thompson PM, Holmes CJ, Jernigan TL, Toga AW. In vivo evidence for post-adolescent brain maturation in frontal and striatal regions [letter]. Nat Neurosci 1999; 2: 859-861.
– reference: Hüppi PS, Posse S, Lazeyras F, et al. Magnetic resonance in preterm and term newborns: 1H-spectroscopy in developing human brain. Pediatr Res 1991; 30: 574-578.
– reference: Cady EB, Penrice J, Amess PN, et al. Lactate, N-acetylaspartate, choline and creatine concentrations, and spin-spin relaxation in thalamic and occipito-parietal regions of developing human brain. Magn Reson Med 1996; 36: 878-886.
– reference: Kimura H, Fujii Y, Itoh S, et al. Metabolic alterations in the neonate and infant brain during development: evaluation with proton MR spectroscopy. Radiology 1995; 194: 483-489.
– reference: Pouwels PJW, Brockmann K, Kruse B, et al. Regional age dependence of human brain metabolites from infancy to adulthood as detected by quantitative localized proton MRS. Pediatr Res 1999; 46: 474-485.
– reference: Purves D, Lichtman JW. Elimination of synapses in the developing nervous system. Science 1980; 210: 153-157.
– volume: 4
  start-page: 1
  year: 1994
  end-page: 5
  article-title: T1, T2, and concentrations of brain metabolites in neonates and adolescents estimated with H‐1 MR spectroscopy
  publication-title: J Magn Reson Imaging
– volume: 283
  start-page: 1908
  year: 1999
  end-page: 1911
  article-title: Structural maturation of neural pathways in children and adolescents: in vivo study
  publication-title: Science
– volume: 36
  start-page: 878
  year: 1996
  end-page: 886
  article-title: Lactate, N‐acetylaspartate, choline and creatine concentrations, and spin‐spin relaxation in thalamic and occipito‐parietal regions of developing human brain
  publication-title: Magn Reson Med
– volume: 9
  start-page: 587
  year: 1999
  end-page: 597
  article-title: Localizing age‐related changes in brain structure between childhood and adolescence using statistical parametric mapping
  publication-title: Neuroimage
– start-page: 13
  year: 2000
  end-page: 69
– volume: 38
  start-page: 963
  year: 1982
  end-page: 974
  article-title: Random‐effects models for longitudinal data
  publication-title: Biometrics
– volume: 176
  start-page: 509
  year: 1990
  end-page: 515
  article-title: Age‐dependent changes in localized proton and phosphorus MR spectroscopy of the brain
  publication-title: Radiology
– volume: 45
  start-page: 37
  year: 1991
  end-page: 45
  article-title: Immunocytochemical localization of N‐acetyl‐aspartate with monoclonal antibodies
  publication-title: Neuroscience
– volume: 30
  start-page: 574
  year: 1991
  end-page: 578
  article-title: Magnetic resonance in preterm and term newborns: 1H‐spectroscopy in developing human brain
  publication-title: Pediatr Res
– start-page: 979
  year: 2001
– volume: 188
  start-page: 277
  year: 1993
  end-page: 282
  article-title: Multisection proton MR spectroscopic imaging of the brain
  publication-title: Radiology
– volume: 14
  start-page: 886
  year: 1990
  end-page: 894
  article-title: Proton MR spectroscopy of the brain in infants
  publication-title: J Comput Assist Tomogr
– volume: 6
  start-page: 551
  year: 1996
  end-page: 560
  article-title: Quantitative magnetic resonance imaging of human brain development: ages 4–18
  publication-title: Cereb Cortex
– volume: 37
  start-page: 398
  year: 1995
  end-page: 405
  article-title: Developmental brain changes investigated with proton magnetic resonance spectroscopy
  publication-title: Dev Med Child Neurol
– volume: 22
  start-page: 487
  year: 1987
  end-page: 497
  article-title: Positron emission tomography study of human brain functional development
  publication-title: Ann Neurol
– volume: 22
  start-page: 128
  year: 2001
  end-page: 135
  article-title: Development and aging of the cerebrum: assessment with proton MR spectroscopy
  publication-title: AJNR Am J Neuroradiol
– volume: 163
  start-page: 195
  year: 1979
  end-page: 205
  article-title: Synaptic density in human frontal cortex—developmental changes and effects of aging
  publication-title: Brain Res
– volume: 2
  start-page: 861
  year: 1999
  end-page: 863
  article-title: Brain development during childhood and adolescence: a longitudinal MRI study [letter]
  publication-title: Nat Neurosci
– volume: 194
  start-page: 483
  year: 1995
  end-page: 489
  article-title: Metabolic alterations in the neonate and infant brain during development: evaluation with proton MR spectroscopy
  publication-title: Radiology
– start-page: 1684
  year: 2001
– volume: 21
  start-page: 1354
  year: 2000
  end-page: 1358
  article-title: Localized proton MR spectroscopy of the allocortex and isocortex in healthy children
  publication-title: AJNR Am J Neuroradiol
– volume: 30
  start-page: 424
  year: 1993
  end-page: 437
  article-title: Development of the human brain: in vivo quantification of metabolite and water content with proton magnetic resonance spectroscopy
  publication-title: Magn Reson Med
– volume: 6
  start-page: 726
  year: 1996
  end-page: 736
  article-title: The human brain age 7–11 years: a volumetric analysis based on magnetic resonance images
  publication-title: Cereb Cortex
– year: 2002
– volume: 4
  start-page: 674
  year: 1994
  end-page: 680
  article-title: Metabolite concentrations in the developing brain estimated with proton MR spectroscopy
  publication-title: J Magn Reson Imaging
– volume: 210
  start-page: 153
  year: 1980
  end-page: 157
  article-title: Elimination of synapses in the developing nervous system
  publication-title: Science
– year: 1997
– start-page: 283
  year: 1991
  end-page: 295
– volume: 5
  start-page: 269
  year: 1990
  end-page: 298
  article-title: Biostatistics and Bayes
  publication-title: Statist Sci
– volume: B102
  start-page: 9
  year: 1993
  end-page: 19
  article-title: Absolute quantitation of water and metabolites in the human brain. II. Metabolite concentrations
  publication-title: J Magn Reson
– volume: 404
  start-page: 190
  year: 2000
  end-page: 193
  article-title: Growth patterns in the developing brain detected by using continuum mechanical tensor maps
  publication-title: Nature
– volume: 35
  start-page: 356
  year: 1996
  end-page: 363
  article-title: Quantitative proton MR spectroscopic imaging of the human brain
  publication-title: Magn Reson Med
– volume: 46
  start-page: 474
  year: 1999
  end-page: 485
  article-title: Regional age dependence of human brain metabolites from infancy to adulthood as detected by quantitative localized proton MRS
  publication-title: Pediatr Res
– volume: 119
  start-page: 1763
  year: 1996
  end-page: 1774
  article-title: Brain development, gender and IQ in children
  publication-title: A volumetric imaging study. Brain
– volume: 37
  start-page: 145
  year: 1995
  end-page: 150
  article-title: Regional metabolic assessment of human brain during development by proton magnetic resonance spectroscopy in vivo and by high‐performance liquid chromatography/gas chromatography in autopsy tissue
  publication-title: Pediatr Res
– volume: 2
  start-page: 859
  year: 1999
  end-page: 861
  article-title: In vivo evidence for post‐adolescent brain maturation in frontal and striatal regions [letter]
  publication-title: Nat Neurosci
– volume: 54
  start-page: 715
  year: 2000
  end-page: 722
  article-title: Quantitative 1 MR spectroscopic imaging in early Rett syndrome
  publication-title: Neurology
– ident: e_1_2_6_18_2
  doi: 10.1038/13154
– ident: e_1_2_6_33_2
  doi: 10.1016/0006-8993(79)90349-4
– ident: e_1_2_6_6_2
  doi: 10.1097/00004728-199011000-00004
– ident: e_1_2_6_20_2
  doi: 10.1148/radiology.188.1.8511313
– volume: 21
  start-page: 1354
  year: 2000
  ident: e_1_2_6_16_2
  article-title: Localized proton MR spectroscopy of the allocortex and isocortex in healthy children
  publication-title: AJNR Am J Neuroradiol
– ident: e_1_2_6_21_2
  doi: 10.1038/13158
– ident: e_1_2_6_14_2
  doi: 10.1002/mrm.1910360610
– ident: e_1_2_6_4_2
  doi: 10.1093/cercor/6.4.551
– ident: e_1_2_6_11_2
  doi: 10.1203/00006450-199502000-00003
– start-page: 283
  volume-title: Principles of neural science
  year: 1991
  ident: e_1_2_6_34_2
– ident: e_1_2_6_19_2
  doi: 10.1212/WNL.54.3.715
– volume-title: Encyclopedia of the neurological sciences
  year: 2002
  ident: e_1_2_6_32_2
– ident: e_1_2_6_29_2
  doi: 10.1126/science.283.5409.1908
– ident: e_1_2_6_38_2
– volume: 119
  start-page: 1763
  year: 1996
  ident: e_1_2_6_3_2
  article-title: Brain development, gender and IQ in children
  publication-title: A volumetric imaging study. Brain
– ident: e_1_2_6_27_2
  doi: 10.1016/0306-4522(91)90101-S
– ident: e_1_2_6_15_2
  doi: 10.1203/00006450-199910000-00019
– ident: e_1_2_6_7_2
  doi: 10.1203/00006450-199112000-00017
– ident: e_1_2_6_13_2
  doi: 10.1111/j.1469-8749.1995.tb12023.x
– ident: e_1_2_6_22_2
  doi: 10.1002/mrm.1910350313
– ident: e_1_2_6_35_2
  doi: 10.1006/nimg.1999.0436
– volume: 22
  start-page: 128
  year: 2001
  ident: e_1_2_6_17_2
  article-title: Development and aging of the cerebrum: assessment with proton MR spectroscopy
  publication-title: AJNR Am J Neuroradiol
– ident: e_1_2_6_5_2
  doi: 10.1148/radiology.176.2.2164237
– ident: e_1_2_6_30_2
  doi: 10.1002/ana.410220408
– start-page: 13
  volume-title: Pediatric neuroimaging
  year: 2000
  ident: e_1_2_6_2_2
– ident: e_1_2_6_24_2
  doi: 10.2307/2529876
– ident: e_1_2_6_12_2
  doi: 10.1148/radiology.194.2.7529934
– ident: e_1_2_6_28_2
  doi: 10.1093/cercor/6.5.726
– ident: e_1_2_6_37_2
– ident: e_1_2_6_31_2
  doi: 10.1126/science.7414326
– ident: e_1_2_6_26_2
  doi: 10.1214/ss/1177012092
– ident: e_1_2_6_36_2
  doi: 10.1038/35004593
– ident: e_1_2_6_10_2
  doi: 10.1002/jmri.1880040102
– ident: e_1_2_6_23_2
  doi: 10.1006/jmrb.1993.1056
– ident: e_1_2_6_8_2
  doi: 10.1002/mrm.1910300405
– ident: e_1_2_6_25_2
  doi: 10.1007/978-1-4612-2294-1
– ident: e_1_2_6_9_2
  doi: 10.1002/jmri.1880040510
SSID ssj0009945
Score 2.0183337
Snippet Purpose To quantify regional variations in metabolite levels in the developing brain using quantitative proton MR spectroscopic imaging (MRSI). Materials and...
To quantify regional variations in metabolite levels in the developing brain using quantitative proton MR spectroscopic imaging (MRSI). Fifteen healthy...
To quantify regional variations in metabolite levels in the developing brain using quantitative proton MR spectroscopic imaging (MRSI).PURPOSETo quantify...
SourceID proquest
pubmed
crossref
wiley
istex
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 137
SubjectTerms Adolescent
Adult
Analysis of Variance
Aspartic Acid - analogs & derivatives
Aspartic Acid - metabolism
Brain - anatomy & histology
Brain - growth & development
Brain - metabolism
brain development
Child
Child, Preschool
choline
Choline - metabolism
creatine
Creatine - metabolism
Humans
Magnetic Resonance Spectroscopy
N-acetyl aspartate
proton MRSI
Protons
Title In vivo quantitative proton MRSI study of brain development from childhood to adolescence
URI https://api.istex.fr/ark:/67375/WNG-FDR32LCR-3/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fjmri.10057
https://www.ncbi.nlm.nih.gov/pubmed/11836768
https://www.proquest.com/docview/71451930
Volume 15
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9UwFD-MCcMXnfOrTl3AISh0a5M2aWEvsu26O3b3UB3OBwn5hDlt9e7eIf71S9Lblo0x0Lc8nNI05yO_NOf8DsCmVsrh5NSnNBYiznJFY0GZjBVjuSVCF0Wo8J4c04OT7PA0P12Cna4WpuWH6H-4ec8I8do7uJAX2wNp6Pef0zM_zn0peUqoJ87fqwbuqLIMHYodfiBxWiSs5ybF28Oj13aje35h_9wGNa8j17D1jB7Ct27SbcbJ-dZ8JrfU3xt8jv_7VavwYIFJ0YfWiB7BkqnXYGWyuHV_DF_HNbo8u2zQ77moQ1GaC5HIMzw0NZpUn8YokNSixiLpO04gPWQiIV-_glRHoIxmDepJpJR5Aiej_c-7B_GiJUOsMpqzWJQ0VQ6VZZ6YUBOFMUuxZlpSXTjwZo2lVmZ5qSVmVAsrMVGWuKBqsSg1luQpLNdNbZ4DyoTxpy1sEqoynBqZ2MQoqQQThUwUi-BdpxquFnzlvm3GD94yLWPu14qHtYrgTS_7q2XpuFXqbdBwLyKm5z6vjeX8y_FHPtqrCD7arTiJYKMzAe68zV-hiNo08wvOfGPjkiQRPGstY3idi43Und0ieB_0e8c8-OGkGofRi38RXof7oRVNSBl_Ccuz6dy8cohoJl8Hy78CJLMGxg
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaglYBLeUPKo5ZASCClTZzETo6oZdktmz2EVpST5afUB0m73a0Qvx6Pk01UVCHBzYeJksx4xp_tmW8QequVcjg5hpTGXIRppmgoKJOhYiyzidB57iu8yxkdH6b7R9lRl5sDtTAtP0R_4Aae4eM1ODgcSO8MrKEnP-bHMM7YbbSeOqQBe6-9amCPKgrfo9ghiCSM84j17KRkZ3j22nq0Dqr9eRPYvI5d_eIzut92WL30nIWQc3K6vVzIbfXrD0bH__6vB2ijg6X4YzuPHqJbpn6E7pTdxftj9H1S46vjqwZfLEXt69JclMRA8tDUuKy-TrDnqcWNxRKaTmA9JCNhKGHBasWhjBcN7nmklHmCDkefDnbHYdeVIVROySwUBY2VA2YpcBPqRBHCYqKZllTnDr9ZY6mVaVZoSRjVwkqSKJu4uGqJKDSRyVO0Vje1eY5wKgxsuIiJqEpJbGRkI6OkEkzkMlIsQO9XtuGqoyyHzhlnvCVbJhx0xb2uAvSmlz1viTpulHrnTdyLiPkppLaxjH-bfeajvSoh092KJwHaWs0B7hwOblFEbZrlJWfQ27hIogA9a6fG8DoXHqnbvgXogzfwX76D75fVxI82_0V4C90dH5RTPp3MvrxA93xnGp9B_hKtLeZL88oBpIV87d3gN42ZCuU
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9UwFD_MDYYv89vVrwUUQaFbm7RJC77I5nV37l6kOtweJOQT5rSd13uH-NebpLctkyHoWx5OaZrzkV-ac34H4JlWyuHk1Kc0FiLOckVjQZmMFWO5JUIXRajwnkzp_lF2cJwfr8Crrham5Yfof7h5zwjx2jv4ubY7A2nol2-zUz_O2TVYy6iDEh4SVQN5VFmGFsUOQJA4LRLWk5PineHZS9vRml_Zn1dhzcvQNew9oxvwuZt1m3Jytr2Yy2316w9Cx__9rJuwsQSl6HVrRbdgxdS3YX2yvHa_AyfjGl2cXjTo-0LUoSrNxUjkKR6aGk2qD2MUWGpRY5H0LSeQHlKRkC9gQapjUEbzBvUsUsrchaPRm4-7-_GyJ0OsMpqzWJQ0VQ6WZZ6ZUBOFMUuxZlpSXTj0Zo2lVmZ5qSVmVAsrMVGWuKhqsSg1luQerNZNbTYBZcL44xY2CVUZTo1MbGKUVIKJQiaKRfCiUw1XS8Jy3zfjK2-pljH3a8XDWkXwtJc9b2k6rpR6HjTci4jZmU9sYzn_NH3LR3sVwYe7FScRbHUmwJ27-TsUUZtm8YMz39m4JEkE91vLGF7ngiN1h7cIXgb9_mUe_GBSjcPowb8Ib8H6-70RPxxP3z2E66EtTUgffwSr89nCPHboaC6fBCf4DWsHCZQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=In+vivo+quantitative+proton+MRSI+study+of+brain+development+from+childhood+to+adolescence&rft.jtitle=Journal+of+magnetic+resonance+imaging&rft.au=Horsk%C3%A1%2C+Alena&rft.au=Kaufmann%2C+Walter+E&rft.au=Brant%2C+Larry+J&rft.au=Naidu%2C+Sakkubai&rft.date=2002-02-01&rft.issn=1053-1807&rft.volume=15&rft.issue=2&rft.spage=137&rft_id=info:doi/10.1002%2Fjmri.10057&rft_id=info%3Apmid%2F11836768&rft.externalDocID=11836768
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1053-1807&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1053-1807&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1053-1807&client=summon