In vivo quantitative proton MRSI study of brain development from childhood to adolescence
Purpose To quantify regional variations in metabolite levels in the developing brain using quantitative proton MR spectroscopic imaging (MRSI). Materials and Methods Fifteen healthy subjects three to 19 years old were examined by in vivo multislice proton MRSI. Concentrations of N‐acetyl aspartate (...
Saved in:
Published in | Journal of magnetic resonance imaging Vol. 15; no. 2; pp. 137 - 143 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
New York
Wiley Subscription Services, Inc., A Wiley Company
01.02.2002
|
Subjects | |
Online Access | Get full text |
ISSN | 1053-1807 1522-2586 |
DOI | 10.1002/jmri.10057 |
Cover
Abstract | Purpose
To quantify regional variations in metabolite levels in the developing brain using quantitative proton MR spectroscopic imaging (MRSI).
Materials and Methods
Fifteen healthy subjects three to 19 years old were examined by in vivo multislice proton MRSI. Concentrations of N‐acetyl aspartate (NAA), total choline (Cho), total creatine (Cr), and peak area ratios were determined in selected frontal and parietal gray and white matter regions, basal ganglia, and thalamus.
Results
In cortical gray matter regions, the ratio of NAA/Cho increased to a maximum at 10 years and decreased thereafter (P = 0.010). In contrast, in white matter, average ratios NAA/Cho increased linearly with age (P = 0.045). In individual brain regions, age‐related changes in NAA/Cho were found in the putamen (P = 0.044). No significant age‐related changes in NAA, Cho, Cr, or other metabolite ratios could be determined.
Conclusion
Consistent with recent studies using other structural and functional neuroimaging techniques, our data suggest that small but significant changes occur in regional cerebral metabolism during childhood and adolescence. Non‐linear age related changes of NAA/Cho in frontal and parietal areas, resembling previously reported age related changes in rates of glucose utilization and cortical volumes, may be associated with dendritic and synaptic development and regression. Linear age‐related changes of NAA/Cho in white matter are also in agreement with age‐related increases in white matter volumes, and may reflect progressive increases in axonal diameter and myelination. J. Magn. Reson. Imaging 2002;15:137–143. Published 2002 Wiley‐Liss, Inc. |
---|---|
AbstractList | To quantify regional variations in metabolite levels in the developing brain using quantitative proton MR spectroscopic imaging (MRSI).PURPOSETo quantify regional variations in metabolite levels in the developing brain using quantitative proton MR spectroscopic imaging (MRSI).Fifteen healthy subjects three to 19 years old were examined by in vivo multislice proton MRSI. Concentrations of N-acetyl aspartate (NAA), total choline (Cho), total creatine (Cr), and peak area ratios were determined in selected frontal and parietal gray and white matter regions, basal ganglia, and thalamus.MATERIALS AND METHODSFifteen healthy subjects three to 19 years old were examined by in vivo multislice proton MRSI. Concentrations of N-acetyl aspartate (NAA), total choline (Cho), total creatine (Cr), and peak area ratios were determined in selected frontal and parietal gray and white matter regions, basal ganglia, and thalamus.In cortical gray matter regions, the ratio of NAA/Cho increased to a maximum at 10 years and decreased thereafter (P = 0.010). In contrast, in white matter, average ratios NAA/Cho increased linearly with age (P = 0.045). In individual brain regions, age-related changes in NAA/Cho were found in the putamen (P = 0.044). No significant age-related changes in NAA, Cho, Cr, or other metabolite ratios could be determined.RESULTSIn cortical gray matter regions, the ratio of NAA/Cho increased to a maximum at 10 years and decreased thereafter (P = 0.010). In contrast, in white matter, average ratios NAA/Cho increased linearly with age (P = 0.045). In individual brain regions, age-related changes in NAA/Cho were found in the putamen (P = 0.044). No significant age-related changes in NAA, Cho, Cr, or other metabolite ratios could be determined.Consistent with recent studies using other structural and functional neuroimaging techniques, our data suggest that small but significant changes occur in regional cerebral metabolism during childhood and adolescence. Non-linear age related changes of NAA/Cho in frontal and parietal areas, resembling previously reported age related changes in rates of glucose utilization and cortical volumes, may be associated with dendritic and synaptic development and regression. Linear age-related changes of NAA/Cho in white matter are also in agreement with age-related increases in white matter volumes, and may reflect progressive increases in axonal diameter and myelination.CONCLUSIONConsistent with recent studies using other structural and functional neuroimaging techniques, our data suggest that small but significant changes occur in regional cerebral metabolism during childhood and adolescence. Non-linear age related changes of NAA/Cho in frontal and parietal areas, resembling previously reported age related changes in rates of glucose utilization and cortical volumes, may be associated with dendritic and synaptic development and regression. Linear age-related changes of NAA/Cho in white matter are also in agreement with age-related increases in white matter volumes, and may reflect progressive increases in axonal diameter and myelination. To quantify regional variations in metabolite levels in the developing brain using quantitative proton MR spectroscopic imaging (MRSI). Fifteen healthy subjects three to 19 years old were examined by in vivo multislice proton MRSI. Concentrations of N-acetyl aspartate (NAA), total choline (Cho), total creatine (Cr), and peak area ratios were determined in selected frontal and parietal gray and white matter regions, basal ganglia, and thalamus. In cortical gray matter regions, the ratio of NAA/Cho increased to a maximum at 10 years and decreased thereafter (P = 0.010). In contrast, in white matter, average ratios NAA/Cho increased linearly with age (P = 0.045). In individual brain regions, age-related changes in NAA/Cho were found in the putamen (P = 0.044). No significant age-related changes in NAA, Cho, Cr, or other metabolite ratios could be determined. Consistent with recent studies using other structural and functional neuroimaging techniques, our data suggest that small but significant changes occur in regional cerebral metabolism during childhood and adolescence. Non-linear age related changes of NAA/Cho in frontal and parietal areas, resembling previously reported age related changes in rates of glucose utilization and cortical volumes, may be associated with dendritic and synaptic development and regression. Linear age-related changes of NAA/Cho in white matter are also in agreement with age-related increases in white matter volumes, and may reflect progressive increases in axonal diameter and myelination. Purpose To quantify regional variations in metabolite levels in the developing brain using quantitative proton MR spectroscopic imaging (MRSI). Materials and Methods Fifteen healthy subjects three to 19 years old were examined by in vivo multislice proton MRSI. Concentrations of N‐acetyl aspartate (NAA), total choline (Cho), total creatine (Cr), and peak area ratios were determined in selected frontal and parietal gray and white matter regions, basal ganglia, and thalamus. Results In cortical gray matter regions, the ratio of NAA/Cho increased to a maximum at 10 years and decreased thereafter (P = 0.010). In contrast, in white matter, average ratios NAA/Cho increased linearly with age (P = 0.045). In individual brain regions, age‐related changes in NAA/Cho were found in the putamen (P = 0.044). No significant age‐related changes in NAA, Cho, Cr, or other metabolite ratios could be determined. Conclusion Consistent with recent studies using other structural and functional neuroimaging techniques, our data suggest that small but significant changes occur in regional cerebral metabolism during childhood and adolescence. Non‐linear age related changes of NAA/Cho in frontal and parietal areas, resembling previously reported age related changes in rates of glucose utilization and cortical volumes, may be associated with dendritic and synaptic development and regression. Linear age‐related changes of NAA/Cho in white matter are also in agreement with age‐related increases in white matter volumes, and may reflect progressive increases in axonal diameter and myelination. J. Magn. Reson. Imaging 2002;15:137–143. Published 2002 Wiley‐Liss, Inc. |
Author | Brant, Larry J. Kaufmann, Walter E. Harris, James C. Barker, Peter B. Naidu, Sakkubai Horská, Alena |
Author_xml | – sequence: 1 givenname: Alena surname: Horská fullname: Horská, Alena email: ahorska@mri.jhu.edu organization: The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University, School of Medicine, Baltimore, Maryland – sequence: 2 givenname: Walter E. surname: Kaufmann fullname: Kaufmann, Walter E. organization: The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University, School of Medicine, Baltimore, Maryland – sequence: 3 givenname: Larry J. surname: Brant fullname: Brant, Larry J. organization: Gerontology Research Center NIA/NIH, Baltimore, Maryland – sequence: 4 givenname: Sakkubai surname: Naidu fullname: Naidu, Sakkubai organization: Department of Neurology, Johns Hopkins University, School of Medicine, Baltimore, Maryland – sequence: 5 givenname: James C. surname: Harris fullname: Harris, James C. organization: Department of Pediatrics, Johns Hopkins University, School of Medicine, Baltimore, Maryland – sequence: 6 givenname: Peter B. surname: Barker fullname: Barker, Peter B. organization: The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University, School of Medicine, Baltimore, Maryland |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/11836768$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kMtuEzEUQK2qFX3Ahg9AXnWBNNSPsT2zrAItqVKQAgh1ZXn8UF1m7NT2BPL3TJq2C1Sx8l2cc3V9jsF-iMEC8BajDxghcnY3JL-dmNgDR5gRUhHW8P1pRoxWuEHiEBznfIcQatuavQKHGDeUC94cgZt5gGu_jvB-VKH4oopfW7hKscQAr5ff5jCX0WxgdLBLygdo7Nr2cTXYUKBLcYD61vfmNkYDS4TKxN5mbYO2r8GBU322bx7fE_Dj4tP32edq8fVyPjtfVLrmTFSq5VijltWYIW6oJkRgYoTpuGlQw5x13HU1a01HBDfKdYRqRxltHFGtIR09Aae7vdPR96PNRQ5-uqDvVbBxzFLgmuGWogl89wiO3WCNXCU_qLSRTzEmAO0AnWLOyTqpH4LEUKav9xIjue0tt73lQ-9Jef-P8rz1JRjv4N--t5v_kPLqejl_cqqd43Oxf54dlX5JLqhg8ueXS3nxcUnJYraUlP4FagKgEA |
CitedBy_id | crossref_primary_10_1016_j_pscychresns_2010_07_008 crossref_primary_10_1002_hbm_25396 crossref_primary_10_1016_j_neubiorev_2015_02_009 crossref_primary_10_1002_jmri_20480 crossref_primary_10_1007_s11064_015_1600_7 crossref_primary_10_1016_j_ab_2021_114479 crossref_primary_10_1089_104303402760128612 crossref_primary_10_1097_CHI_0b013e318185e703 crossref_primary_10_1016_j_pscychresns_2010_08_007 crossref_primary_10_1007_s00247_006_0159_5 crossref_primary_10_1016_j_nicl_2021_102622 crossref_primary_10_1016_j_biopsych_2006_07_022 crossref_primary_10_1371_journal_pone_0282756 crossref_primary_10_1007_s00247_014_3204_9 crossref_primary_10_1002_mrm_21556 crossref_primary_10_1177_088307380401900801 crossref_primary_10_1038_npp_2009_115 crossref_primary_10_1016_j_brainres_2010_12_057 crossref_primary_10_1016_j_biopsych_2012_04_023 crossref_primary_10_1002_jmri_21285 crossref_primary_10_1016_j_pediatrneurol_2003_11_005 crossref_primary_10_1111_j_1552_6569_2007_00207_x crossref_primary_10_1002_jmri_20515 crossref_primary_10_1111_j_1530_0277_2008_00747_x crossref_primary_10_1002_cne_23634 crossref_primary_10_1016_j_neuroimage_2018_10_002 crossref_primary_10_1111_j_1469_8749_2007_00135_x crossref_primary_10_1111_j_1399_5618_2005_00266_x crossref_primary_10_1016_j_euroneuro_2018_01_002 crossref_primary_10_1016_j_neuroimage_2020_117016 crossref_primary_10_1016_j_cub_2022_10_021 crossref_primary_10_1120_jacmp_v15i3_4754 crossref_primary_10_1016_j_arr_2018_05_005 crossref_primary_10_1016_j_neuroimage_2011_02_044 crossref_primary_10_1259_bjr_20140693 crossref_primary_10_1007_s10334_008_0142_2 crossref_primary_10_1016_j_nicl_2016_11_013 crossref_primary_10_1016_j_seizure_2010_07_005 crossref_primary_10_1016_j_apmr_2006_07_275 crossref_primary_10_1038_npp_2016_260 crossref_primary_10_1371_journal_pone_0167274 crossref_primary_10_1002_jmri_21394 crossref_primary_10_1073_pnas_1907730116 crossref_primary_10_3174_ajnr_A1106 crossref_primary_10_1097_00001756_200412030_00003 crossref_primary_10_3174_ajnr_A3843 crossref_primary_10_1016_j_ejpn_2008_04_014 crossref_primary_10_1002_jmri_20627 crossref_primary_10_1016_j_jfludis_2007_06_001 crossref_primary_10_1002_jmri_21909 crossref_primary_10_1016_j_pnmrs_2006_06_002 crossref_primary_10_1126_scitranslmed_3003454 crossref_primary_10_1177_1533317511421780 crossref_primary_10_1038_pr_2017_101 crossref_primary_10_1148_rg_335125212 crossref_primary_10_1177_08830738060210061801 crossref_primary_10_3174_ajnr_A4181 crossref_primary_10_1002_acn3_222 crossref_primary_10_1111_adb_12473 crossref_primary_10_1016_j_acra_2009_07_025 crossref_primary_10_1017_S0954579414000030 crossref_primary_10_3174_ajnr_A3297 crossref_primary_10_2217_npy_12_40 crossref_primary_10_1017_S0954579406060548 crossref_primary_10_1212_01_WNL_0000125492_57419_25 crossref_primary_10_1016_j_neuroimage_2022_119574 crossref_primary_10_1111_j_1526_4610_2008_01153_x crossref_primary_10_1203_01_PDR_0000180559_29393_BE crossref_primary_10_1177_0883073814538504 crossref_primary_10_1016_j_nicl_2023_103427 crossref_primary_10_1212_WNL_0b013e3181feb217 crossref_primary_10_1002_jmri_21425 crossref_primary_10_1097_00001756_200403220_00026 crossref_primary_10_1016_j_ymgme_2007_03_006 crossref_primary_10_1097_00004850_200303000_00002 crossref_primary_10_1177_2470547018763359 crossref_primary_10_1038_s41598_021_86443_4 crossref_primary_10_1186_1866_1955_4_23 crossref_primary_10_1007_s00431_007_0469_0 crossref_primary_10_1016_j_neuroimage_2021_118101 crossref_primary_10_1371_journal_pone_0180973 crossref_primary_10_1007_s11682_020_00330_6 crossref_primary_10_1002_ajmg_a_37468 crossref_primary_10_1111_j_1467_7687_2010_01014_x |
Cites_doi | 10.1038/13154 10.1016/0006-8993(79)90349-4 10.1097/00004728-199011000-00004 10.1148/radiology.188.1.8511313 10.1038/13158 10.1002/mrm.1910360610 10.1093/cercor/6.4.551 10.1203/00006450-199502000-00003 10.1212/WNL.54.3.715 10.1126/science.283.5409.1908 10.1016/0306-4522(91)90101-S 10.1203/00006450-199910000-00019 10.1203/00006450-199112000-00017 10.1111/j.1469-8749.1995.tb12023.x 10.1002/mrm.1910350313 10.1006/nimg.1999.0436 10.1148/radiology.176.2.2164237 10.1002/ana.410220408 10.2307/2529876 10.1148/radiology.194.2.7529934 10.1093/cercor/6.5.726 10.1126/science.7414326 10.1214/ss/1177012092 10.1038/35004593 10.1002/jmri.1880040102 10.1006/jmrb.1993.1056 10.1002/mrm.1910300405 10.1007/978-1-4612-2294-1 10.1002/jmri.1880040510 |
ContentType | Journal Article |
Copyright | Published 2002 Wiley‐Liss, Inc. |
Copyright_xml | – notice: Published 2002 Wiley‐Liss, Inc. |
DBID | BSCLL AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 |
DOI | 10.1002/jmri.10057 |
DatabaseName | Istex CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1522-2586 |
EndPage | 143 |
ExternalDocumentID | 11836768 10_1002_jmri_10057 JMRI10057 ark_67375_WNG_FDR32LCR_3 |
Genre | article Research Support, U.S. Gov't, P.H.S Journal Article |
GrantInformation_xml | – fundername: NIH funderid: 2 P01 HD24448‐11; 5P30 HD24061‐13 – fundername: PCRU funderid: RR‐00052 – fundername: NICHD NIH HHS grantid: 2 PO1 HD24448-11 – fundername: NCRR NIH HHS grantid: RR-00052 – fundername: NIDA NIH HHS grantid: 1 R03 DA11979-01 – fundername: NICHD NIH HHS grantid: 5P30 HD24061-13 |
GroupedDBID | --- -DZ .3N .GA .GJ .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 31~ 33P 3O- 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52R 52S 52T 52U 52V 52W 52X 53G 5GY 5RE 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A01 A03 AAESR AAEVG AAHQN AAIPD AAMMB AAMNL AANHP AANLZ AAONW AASGY AAWTL AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABJNI ABLJU ABOCM ABPVW ABQWH ABXGK ACAHQ ACBWZ ACCZN ACGFO ACGFS ACGOF ACIWK ACMXC ACPOU ACPRK ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADBTR ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN AEFGJ AEGXH AEIGN AEIMD AENEX AEUYR AEYWJ AFBPY AFFPM AFGKR AFRAH AFWVQ AFZJQ AGHNM AGQPQ AGXDD AGYGG AHBTC AHMBA AIACR AIAGR AIDQK AIDYY AITYG AIURR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ATUGU AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMXJE BROTX BRXPI BSCLL BY8 C45 CS3 D-6 D-7 D-E D-F DCZOG DPXWK DR2 DRFUL DRMAN DRSTM DU5 EBD EBS EJD EMOBN F00 F01 F04 F5P FEDTE FUBAC G-S G.N GNP GODZA H.X HBH HDBZQ HF~ HGLYW HHY HHZ HVGLF HZ~ IX1 J0M JPC KBYEO KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M65 MEWTI MK4 MRFUL MRMAN MRSTM MSFUL MSMAN MSSTM MXFUL MXMAN MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG OVD P2P P2W P2X P2Z P4B P4D PALCI PQQKQ Q.N Q11 QB0 QRW R.K RIWAO RJQFR ROL RX1 RYL SAMSI SUPJJ SV3 TEORI TWZ UB1 V2E V8K V9Y W8V W99 WBKPD WHWMO WIB WIH WIJ WIK WIN WJL WOHZO WQJ WVDHM WXI WXSBR XG1 XV2 ZXP ZZTAW ~IA ~WT 24P AAHHS ACCFJ AEEZP AEQDE AEUQT AFPWT AIWBW AJBDE RGB RWI WRC WUP AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 |
ID | FETCH-LOGICAL-c4657-a961c09541506d3c22712d7db6d8085fef6fb459db276dafb23cf3538f2a9d2b3 |
IEDL.DBID | DR2 |
ISSN | 1053-1807 |
IngestDate | Thu Jul 10 19:14:15 EDT 2025 Wed Feb 19 01:31:15 EST 2025 Tue Jul 01 01:40:59 EDT 2025 Thu Apr 24 23:08:29 EDT 2025 Wed Jan 22 16:26:52 EST 2025 Tue Sep 09 05:32:21 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4657-a961c09541506d3c22712d7db6d8085fef6fb459db276dafb23cf3538f2a9d2b3 |
Notes | ark:/67375/WNG-FDR32LCR-3 ArticleID:JMRI10057 This article is a US Government work and, as such, is in the public domain in the United States of America. NIH - No. 2 P01 HD24448-11; No. 5P30 HD24061-13 PCRU - No. RR-00052 istex:3BE313007E5B078696ABBDCD6A1BF7C7ECAB540F ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/jmri.10057 |
PMID | 11836768 |
PQID | 71451930 |
PQPubID | 23479 |
PageCount | 7 |
ParticipantIDs | proquest_miscellaneous_71451930 pubmed_primary_11836768 crossref_citationtrail_10_1002_jmri_10057 crossref_primary_10_1002_jmri_10057 wiley_primary_10_1002_jmri_10057_JMRI10057 istex_primary_ark_67375_WNG_FDR32LCR_3 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | February 2002 |
PublicationDateYYYYMMDD | 2002-02-01 |
PublicationDate_xml | – month: 02 year: 2002 text: February 2002 |
PublicationDecade | 2000 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York – name: United States |
PublicationTitle | Journal of magnetic resonance imaging |
PublicationTitleAlternate | J. Magn. Reson. Imaging |
PublicationYear | 2002 |
Publisher | Wiley Subscription Services, Inc., A Wiley Company |
Publisher_xml | – name: Wiley Subscription Services, Inc., A Wiley Company |
References | Thompson PM, Giedd JN, Woods RP, et al. Growth patterns in the developing brain detected by using continuum mechanical tensor maps. Nature 2000; 404: 190-193. Horská A, Naidu S, Herskovits EH, et al. Quantitative 1H MR spectroscopic imaging in early Rett syndrome. Neurology 2000; 54: 715-722. Giedd JN, Blumenthal J, Jeffries NO, et al. Brain development during childhood and adolescence: a longitudinal MRI study [letter]. Nat Neurosci 1999; 2: 861-863. Giedd JN, Snell JW, Lange N, et al. Quantitative magnetic resonance imaging of human brain development: ages 4-18. Cereb Cortex 1996; 6: 551-560. Simmons ML, Frondoza CG, Coyle JT. Immunocytochemical localization of N-acetyl-aspartate with monoclonal antibodies. Neuroscience 1991; 45: 37-45. Breslow N. Biostatistics and Bayes. Statist Sci 1990; 5: 269-298. Laird NW, Ware JH. Random-effects models for longitudinal data. Biometrics 1982; 38: 963-974. Duyn JH, Gillen J, Sobering G, van Zijl PCM, Moonen CT. Multisection proton MR spectroscopic imaging of the brain. Radiology 1993; 188: 277-282. Paus T, Zijdenbos A, Worsley K, et al. Structural maturation of neural pathways in children and adolescents: in vivo study. Science 1999; 283: 1908-1911. Purves D, Lichtman JW. Elimination of synapses in the developing nervous system. Science 1980; 210: 153-157. Toft PB, Leth H, Lou HC, Pryds O, Henriksen O. Metabolite concentrations in the developing brain estimated with proton MR spectroscopy. J Magn Reson Imaging 1994; 4: 674-680. Huttenlocher PR. Synaptic density in human frontal cortex-developmental changes and effects of aging. Brain Res 1979; 163: 195-205. Sowell ER, Thompson PM, Holmes CJ, Jernigan TL, Toga AW. In vivo evidence for post-adolescent brain maturation in frontal and striatal regions [letter]. Nat Neurosci 1999; 2: 859-861. Kimura H, Fujii Y, Itoh S, et al. Metabolic alterations in the neonate and infant brain during development: evaluation with proton MR spectroscopy. Radiology 1995; 194: 483-489. Sowell ER, Thompson PM, Holmes CJ, et al. Localizing age-related changes in brain structure between childhood and adolescence using statistical parametric mapping. Neuroimage 1999; 9: 587-597. Peden CJ, Cowan FM, Bryant DJ, et al. Proton MR spectroscopy of the brain in infants. J Comput Assist Tomogr 1990; 14: 886-894. Kreis R, Ernst T, Ross BD. Development of the human brain: in vivo quantification of metabolite and water content with proton magnetic resonance spectroscopy. Magn Reson Med 1993; 30: 424-437. Hüppi PS, Fusch C, Boesch C, et al. Regional metabolic assessment of human brain during development by proton magnetic resonance spectroscopy in vivo and by high-performance liquid chromatography/gas chromatography in autopsy tissue. Pediatr Res 1995; 37: 145-150. Hashimoto T, Tayama M, Miyazaki M, et al. Developmental brain changes investigated with proton magnetic resonance spectroscopy. Dev Med Child Neurol 1995; 37: 398-405. Chugani HT, Phelps ME, Mazziotta JC. Positron emission tomography study of human brain functional development. Ann Neurol 1987; 22: 487-497. Cady EB, Penrice J, Amess PN, et al. Lactate, N-acetylaspartate, choline and creatine concentrations, and spin-spin relaxation in thalamic and occipito-parietal regions of developing human brain. Magn Reson Med 1996; 36: 878-886. Reiss AL, Abrams MT, Singer HS, Ross JL, Denckla MB. Brain development, gender and IQ in children. A volumetric imaging study. Brain 1996; 119: 1763-1774. Verbeke G, Molenberghs G. Linear mixed models in practice: a SAS-oriented approach, 1st ed. New York: Springer; 1997. Pouwels PJW, Brockmann K, Kruse B, et al. Regional age dependence of human brain metabolites from infancy to adulthood as detected by quantitative localized proton MRS. Pediatr Res 1999; 46: 474-485. Kreis R, Ernst T, Ross BD. Absolute quantitation of water and metabolites in the human brain. II. Metabolite concentrations. J Magn Reson 1993; B102: 9-19. Choi CG, Ko TS, Lee HK, Lee JH, Suh DC. Localized proton MR spectroscopy of the allocortex and isocortex in healthy children. AJNR Am J Neuroradiol 2000; 21: 1354-1358. van der Knaap MS, van der Grond J, van Rijen PC, et al. Age-dependent changes in localized proton and phosphorus MR spectroscopy of the brain. Radiology 1990; 176: 509-515. Caviness Jr VS, Kennedy DN, Richelme C, Rademacher J, Filipek PA. The human brain age 7-11 years: a volumetric analysis based on magnetic resonance images. Cereb Cortex 1996; 6: 726-736. Toft PB, Christiansen P, Pryds O, Lou HC, Henriksen O. T1, T2, and concentrations of brain metabolites in neonates and adolescents estimated with H-1 MR spectroscopy. J Magn Reson Imaging 1994; 4: 1-5. Kadota T, Horinouchi T, Kuroda C. Development and aging of the cerebrum: assessment with proton MR spectroscopy. AJNR Am J Neuroradiol 2001; 22: 128-135. Hüppi PS, Posse S, Lazeyras F, et al. Magnetic resonance in preterm and term newborns: 1H-spectroscopy in developing human brain. Pediatr Res 1991; 30: 574-578. Soher BJ, van Zijl PCM, Duyn JH, Barker PB. Quantitative proton MR spectroscopic imaging of the human brain. Magn Reson Med 1996; 35: 356-363. 1982; 38 1990; 14 1995; 37 1991; 30 2000; 21 1999; 46 1997 1999; 283 1999; 2 2002 1991 1996; 36 2001; 22 1996; 35 1980; 210 1995; 194 1993; 188 1999; 9 1987; 22 1993; B102 1991; 45 2001 2000 2000; 54 2000; 404 1993; 30 1990; 176 1979; 163 1996; 119 1994; 4 1996; 6 1990; 5 e_1_2_6_31_2 e_1_2_6_30_2 e_1_2_6_18_2 e_1_2_6_19_2 e_1_2_6_12_2 e_1_2_6_35_2 e_1_2_6_13_2 e_1_2_6_10_2 e_1_2_6_33_2 Reiss AL (e_1_2_6_3_2) 1996; 119 e_1_2_6_11_2 Kaufmann WE (e_1_2_6_32_2) 2002 e_1_2_6_38_2 e_1_2_6_14_2 e_1_2_6_37_2 e_1_2_6_15_2 e_1_2_6_36_2 e_1_2_6_20_2 Kelly JP (e_1_2_6_34_2) 1991 Barkovich AJ (e_1_2_6_2_2) 2000 e_1_2_6_8_2 Choi CG (e_1_2_6_16_2) 2000; 21 e_1_2_6_7_2 e_1_2_6_9_2 e_1_2_6_29_2 e_1_2_6_4_2 e_1_2_6_6_2 e_1_2_6_5_2 e_1_2_6_24_2 e_1_2_6_23_2 e_1_2_6_22_2 e_1_2_6_21_2 e_1_2_6_28_2 e_1_2_6_27_2 e_1_2_6_26_2 Kadota T (e_1_2_6_17_2) 2001; 22 e_1_2_6_25_2 |
References_xml | – reference: Hüppi PS, Fusch C, Boesch C, et al. Regional metabolic assessment of human brain during development by proton magnetic resonance spectroscopy in vivo and by high-performance liquid chromatography/gas chromatography in autopsy tissue. Pediatr Res 1995; 37: 145-150. – reference: Reiss AL, Abrams MT, Singer HS, Ross JL, Denckla MB. Brain development, gender and IQ in children. A volumetric imaging study. Brain 1996; 119: 1763-1774. – reference: Soher BJ, van Zijl PCM, Duyn JH, Barker PB. Quantitative proton MR spectroscopic imaging of the human brain. Magn Reson Med 1996; 35: 356-363. – reference: Caviness Jr VS, Kennedy DN, Richelme C, Rademacher J, Filipek PA. The human brain age 7-11 years: a volumetric analysis based on magnetic resonance images. Cereb Cortex 1996; 6: 726-736. – reference: Paus T, Zijdenbos A, Worsley K, et al. Structural maturation of neural pathways in children and adolescents: in vivo study. Science 1999; 283: 1908-1911. – reference: Huttenlocher PR. Synaptic density in human frontal cortex-developmental changes and effects of aging. Brain Res 1979; 163: 195-205. – reference: Hashimoto T, Tayama M, Miyazaki M, et al. Developmental brain changes investigated with proton magnetic resonance spectroscopy. Dev Med Child Neurol 1995; 37: 398-405. – reference: Kreis R, Ernst T, Ross BD. Absolute quantitation of water and metabolites in the human brain. II. Metabolite concentrations. J Magn Reson 1993; B102: 9-19. – reference: Thompson PM, Giedd JN, Woods RP, et al. Growth patterns in the developing brain detected by using continuum mechanical tensor maps. Nature 2000; 404: 190-193. – reference: Kreis R, Ernst T, Ross BD. Development of the human brain: in vivo quantification of metabolite and water content with proton magnetic resonance spectroscopy. Magn Reson Med 1993; 30: 424-437. – reference: Kadota T, Horinouchi T, Kuroda C. Development and aging of the cerebrum: assessment with proton MR spectroscopy. AJNR Am J Neuroradiol 2001; 22: 128-135. – reference: Horská A, Naidu S, Herskovits EH, et al. Quantitative 1H MR spectroscopic imaging in early Rett syndrome. Neurology 2000; 54: 715-722. – reference: Duyn JH, Gillen J, Sobering G, van Zijl PCM, Moonen CT. Multisection proton MR spectroscopic imaging of the brain. Radiology 1993; 188: 277-282. – reference: van der Knaap MS, van der Grond J, van Rijen PC, et al. Age-dependent changes in localized proton and phosphorus MR spectroscopy of the brain. Radiology 1990; 176: 509-515. – reference: Giedd JN, Snell JW, Lange N, et al. Quantitative magnetic resonance imaging of human brain development: ages 4-18. Cereb Cortex 1996; 6: 551-560. – reference: Giedd JN, Blumenthal J, Jeffries NO, et al. Brain development during childhood and adolescence: a longitudinal MRI study [letter]. Nat Neurosci 1999; 2: 861-863. – reference: Sowell ER, Thompson PM, Holmes CJ, et al. Localizing age-related changes in brain structure between childhood and adolescence using statistical parametric mapping. Neuroimage 1999; 9: 587-597. – reference: Toft PB, Leth H, Lou HC, Pryds O, Henriksen O. Metabolite concentrations in the developing brain estimated with proton MR spectroscopy. J Magn Reson Imaging 1994; 4: 674-680. – reference: Breslow N. Biostatistics and Bayes. Statist Sci 1990; 5: 269-298. – reference: Peden CJ, Cowan FM, Bryant DJ, et al. Proton MR spectroscopy of the brain in infants. J Comput Assist Tomogr 1990; 14: 886-894. – reference: Laird NW, Ware JH. Random-effects models for longitudinal data. Biometrics 1982; 38: 963-974. – reference: Choi CG, Ko TS, Lee HK, Lee JH, Suh DC. Localized proton MR spectroscopy of the allocortex and isocortex in healthy children. AJNR Am J Neuroradiol 2000; 21: 1354-1358. – reference: Chugani HT, Phelps ME, Mazziotta JC. Positron emission tomography study of human brain functional development. Ann Neurol 1987; 22: 487-497. – reference: Verbeke G, Molenberghs G. Linear mixed models in practice: a SAS-oriented approach, 1st ed. New York: Springer; 1997. – reference: Simmons ML, Frondoza CG, Coyle JT. Immunocytochemical localization of N-acetyl-aspartate with monoclonal antibodies. Neuroscience 1991; 45: 37-45. – reference: Toft PB, Christiansen P, Pryds O, Lou HC, Henriksen O. T1, T2, and concentrations of brain metabolites in neonates and adolescents estimated with H-1 MR spectroscopy. J Magn Reson Imaging 1994; 4: 1-5. – reference: Sowell ER, Thompson PM, Holmes CJ, Jernigan TL, Toga AW. In vivo evidence for post-adolescent brain maturation in frontal and striatal regions [letter]. Nat Neurosci 1999; 2: 859-861. – reference: Hüppi PS, Posse S, Lazeyras F, et al. Magnetic resonance in preterm and term newborns: 1H-spectroscopy in developing human brain. Pediatr Res 1991; 30: 574-578. – reference: Cady EB, Penrice J, Amess PN, et al. Lactate, N-acetylaspartate, choline and creatine concentrations, and spin-spin relaxation in thalamic and occipito-parietal regions of developing human brain. Magn Reson Med 1996; 36: 878-886. – reference: Kimura H, Fujii Y, Itoh S, et al. Metabolic alterations in the neonate and infant brain during development: evaluation with proton MR spectroscopy. Radiology 1995; 194: 483-489. – reference: Pouwels PJW, Brockmann K, Kruse B, et al. Regional age dependence of human brain metabolites from infancy to adulthood as detected by quantitative localized proton MRS. Pediatr Res 1999; 46: 474-485. – reference: Purves D, Lichtman JW. Elimination of synapses in the developing nervous system. Science 1980; 210: 153-157. – volume: 4 start-page: 1 year: 1994 end-page: 5 article-title: T1, T2, and concentrations of brain metabolites in neonates and adolescents estimated with H‐1 MR spectroscopy publication-title: J Magn Reson Imaging – volume: 283 start-page: 1908 year: 1999 end-page: 1911 article-title: Structural maturation of neural pathways in children and adolescents: in vivo study publication-title: Science – volume: 36 start-page: 878 year: 1996 end-page: 886 article-title: Lactate, N‐acetylaspartate, choline and creatine concentrations, and spin‐spin relaxation in thalamic and occipito‐parietal regions of developing human brain publication-title: Magn Reson Med – volume: 9 start-page: 587 year: 1999 end-page: 597 article-title: Localizing age‐related changes in brain structure between childhood and adolescence using statistical parametric mapping publication-title: Neuroimage – start-page: 13 year: 2000 end-page: 69 – volume: 38 start-page: 963 year: 1982 end-page: 974 article-title: Random‐effects models for longitudinal data publication-title: Biometrics – volume: 176 start-page: 509 year: 1990 end-page: 515 article-title: Age‐dependent changes in localized proton and phosphorus MR spectroscopy of the brain publication-title: Radiology – volume: 45 start-page: 37 year: 1991 end-page: 45 article-title: Immunocytochemical localization of N‐acetyl‐aspartate with monoclonal antibodies publication-title: Neuroscience – volume: 30 start-page: 574 year: 1991 end-page: 578 article-title: Magnetic resonance in preterm and term newborns: 1H‐spectroscopy in developing human brain publication-title: Pediatr Res – start-page: 979 year: 2001 – volume: 188 start-page: 277 year: 1993 end-page: 282 article-title: Multisection proton MR spectroscopic imaging of the brain publication-title: Radiology – volume: 14 start-page: 886 year: 1990 end-page: 894 article-title: Proton MR spectroscopy of the brain in infants publication-title: J Comput Assist Tomogr – volume: 6 start-page: 551 year: 1996 end-page: 560 article-title: Quantitative magnetic resonance imaging of human brain development: ages 4–18 publication-title: Cereb Cortex – volume: 37 start-page: 398 year: 1995 end-page: 405 article-title: Developmental brain changes investigated with proton magnetic resonance spectroscopy publication-title: Dev Med Child Neurol – volume: 22 start-page: 487 year: 1987 end-page: 497 article-title: Positron emission tomography study of human brain functional development publication-title: Ann Neurol – volume: 22 start-page: 128 year: 2001 end-page: 135 article-title: Development and aging of the cerebrum: assessment with proton MR spectroscopy publication-title: AJNR Am J Neuroradiol – volume: 163 start-page: 195 year: 1979 end-page: 205 article-title: Synaptic density in human frontal cortex—developmental changes and effects of aging publication-title: Brain Res – volume: 2 start-page: 861 year: 1999 end-page: 863 article-title: Brain development during childhood and adolescence: a longitudinal MRI study [letter] publication-title: Nat Neurosci – volume: 194 start-page: 483 year: 1995 end-page: 489 article-title: Metabolic alterations in the neonate and infant brain during development: evaluation with proton MR spectroscopy publication-title: Radiology – start-page: 1684 year: 2001 – volume: 21 start-page: 1354 year: 2000 end-page: 1358 article-title: Localized proton MR spectroscopy of the allocortex and isocortex in healthy children publication-title: AJNR Am J Neuroradiol – volume: 30 start-page: 424 year: 1993 end-page: 437 article-title: Development of the human brain: in vivo quantification of metabolite and water content with proton magnetic resonance spectroscopy publication-title: Magn Reson Med – volume: 6 start-page: 726 year: 1996 end-page: 736 article-title: The human brain age 7–11 years: a volumetric analysis based on magnetic resonance images publication-title: Cereb Cortex – year: 2002 – volume: 4 start-page: 674 year: 1994 end-page: 680 article-title: Metabolite concentrations in the developing brain estimated with proton MR spectroscopy publication-title: J Magn Reson Imaging – volume: 210 start-page: 153 year: 1980 end-page: 157 article-title: Elimination of synapses in the developing nervous system publication-title: Science – year: 1997 – start-page: 283 year: 1991 end-page: 295 – volume: 5 start-page: 269 year: 1990 end-page: 298 article-title: Biostatistics and Bayes publication-title: Statist Sci – volume: B102 start-page: 9 year: 1993 end-page: 19 article-title: Absolute quantitation of water and metabolites in the human brain. II. Metabolite concentrations publication-title: J Magn Reson – volume: 404 start-page: 190 year: 2000 end-page: 193 article-title: Growth patterns in the developing brain detected by using continuum mechanical tensor maps publication-title: Nature – volume: 35 start-page: 356 year: 1996 end-page: 363 article-title: Quantitative proton MR spectroscopic imaging of the human brain publication-title: Magn Reson Med – volume: 46 start-page: 474 year: 1999 end-page: 485 article-title: Regional age dependence of human brain metabolites from infancy to adulthood as detected by quantitative localized proton MRS publication-title: Pediatr Res – volume: 119 start-page: 1763 year: 1996 end-page: 1774 article-title: Brain development, gender and IQ in children publication-title: A volumetric imaging study. Brain – volume: 37 start-page: 145 year: 1995 end-page: 150 article-title: Regional metabolic assessment of human brain during development by proton magnetic resonance spectroscopy in vivo and by high‐performance liquid chromatography/gas chromatography in autopsy tissue publication-title: Pediatr Res – volume: 2 start-page: 859 year: 1999 end-page: 861 article-title: In vivo evidence for post‐adolescent brain maturation in frontal and striatal regions [letter] publication-title: Nat Neurosci – volume: 54 start-page: 715 year: 2000 end-page: 722 article-title: Quantitative 1 MR spectroscopic imaging in early Rett syndrome publication-title: Neurology – ident: e_1_2_6_18_2 doi: 10.1038/13154 – ident: e_1_2_6_33_2 doi: 10.1016/0006-8993(79)90349-4 – ident: e_1_2_6_6_2 doi: 10.1097/00004728-199011000-00004 – ident: e_1_2_6_20_2 doi: 10.1148/radiology.188.1.8511313 – volume: 21 start-page: 1354 year: 2000 ident: e_1_2_6_16_2 article-title: Localized proton MR spectroscopy of the allocortex and isocortex in healthy children publication-title: AJNR Am J Neuroradiol – ident: e_1_2_6_21_2 doi: 10.1038/13158 – ident: e_1_2_6_14_2 doi: 10.1002/mrm.1910360610 – ident: e_1_2_6_4_2 doi: 10.1093/cercor/6.4.551 – ident: e_1_2_6_11_2 doi: 10.1203/00006450-199502000-00003 – start-page: 283 volume-title: Principles of neural science year: 1991 ident: e_1_2_6_34_2 – ident: e_1_2_6_19_2 doi: 10.1212/WNL.54.3.715 – volume-title: Encyclopedia of the neurological sciences year: 2002 ident: e_1_2_6_32_2 – ident: e_1_2_6_29_2 doi: 10.1126/science.283.5409.1908 – ident: e_1_2_6_38_2 – volume: 119 start-page: 1763 year: 1996 ident: e_1_2_6_3_2 article-title: Brain development, gender and IQ in children publication-title: A volumetric imaging study. Brain – ident: e_1_2_6_27_2 doi: 10.1016/0306-4522(91)90101-S – ident: e_1_2_6_15_2 doi: 10.1203/00006450-199910000-00019 – ident: e_1_2_6_7_2 doi: 10.1203/00006450-199112000-00017 – ident: e_1_2_6_13_2 doi: 10.1111/j.1469-8749.1995.tb12023.x – ident: e_1_2_6_22_2 doi: 10.1002/mrm.1910350313 – ident: e_1_2_6_35_2 doi: 10.1006/nimg.1999.0436 – volume: 22 start-page: 128 year: 2001 ident: e_1_2_6_17_2 article-title: Development and aging of the cerebrum: assessment with proton MR spectroscopy publication-title: AJNR Am J Neuroradiol – ident: e_1_2_6_5_2 doi: 10.1148/radiology.176.2.2164237 – ident: e_1_2_6_30_2 doi: 10.1002/ana.410220408 – start-page: 13 volume-title: Pediatric neuroimaging year: 2000 ident: e_1_2_6_2_2 – ident: e_1_2_6_24_2 doi: 10.2307/2529876 – ident: e_1_2_6_12_2 doi: 10.1148/radiology.194.2.7529934 – ident: e_1_2_6_28_2 doi: 10.1093/cercor/6.5.726 – ident: e_1_2_6_37_2 – ident: e_1_2_6_31_2 doi: 10.1126/science.7414326 – ident: e_1_2_6_26_2 doi: 10.1214/ss/1177012092 – ident: e_1_2_6_36_2 doi: 10.1038/35004593 – ident: e_1_2_6_10_2 doi: 10.1002/jmri.1880040102 – ident: e_1_2_6_23_2 doi: 10.1006/jmrb.1993.1056 – ident: e_1_2_6_8_2 doi: 10.1002/mrm.1910300405 – ident: e_1_2_6_25_2 doi: 10.1007/978-1-4612-2294-1 – ident: e_1_2_6_9_2 doi: 10.1002/jmri.1880040510 |
SSID | ssj0009945 |
Score | 2.0183337 |
Snippet | Purpose
To quantify regional variations in metabolite levels in the developing brain using quantitative proton MR spectroscopic imaging (MRSI).
Materials and... To quantify regional variations in metabolite levels in the developing brain using quantitative proton MR spectroscopic imaging (MRSI). Fifteen healthy... To quantify regional variations in metabolite levels in the developing brain using quantitative proton MR spectroscopic imaging (MRSI).PURPOSETo quantify... |
SourceID | proquest pubmed crossref wiley istex |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 137 |
SubjectTerms | Adolescent Adult Analysis of Variance Aspartic Acid - analogs & derivatives Aspartic Acid - metabolism Brain - anatomy & histology Brain - growth & development Brain - metabolism brain development Child Child, Preschool choline Choline - metabolism creatine Creatine - metabolism Humans Magnetic Resonance Spectroscopy N-acetyl aspartate proton MRSI Protons |
Title | In vivo quantitative proton MRSI study of brain development from childhood to adolescence |
URI | https://api.istex.fr/ark:/67375/WNG-FDR32LCR-3/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fjmri.10057 https://www.ncbi.nlm.nih.gov/pubmed/11836768 https://www.proquest.com/docview/71451930 |
Volume | 15 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9UwFD-MCcMXnfOrTl3AISh0a5M2aWEvsu26O3b3UB3OBwn5hDlt9e7eIf71S9Lblo0x0Lc8nNI05yO_NOf8DsCmVsrh5NSnNBYiznJFY0GZjBVjuSVCF0Wo8J4c04OT7PA0P12Cna4WpuWH6H-4ec8I8do7uJAX2wNp6Pef0zM_zn0peUqoJ87fqwbuqLIMHYodfiBxWiSs5ybF28Oj13aje35h_9wGNa8j17D1jB7Ct27SbcbJ-dZ8JrfU3xt8jv_7VavwYIFJ0YfWiB7BkqnXYGWyuHV_DF_HNbo8u2zQ77moQ1GaC5HIMzw0NZpUn8YokNSixiLpO04gPWQiIV-_glRHoIxmDepJpJR5Aiej_c-7B_GiJUOsMpqzWJQ0VQ6VZZ6YUBOFMUuxZlpSXTjwZo2lVmZ5qSVmVAsrMVGWuKBqsSg1luQpLNdNbZ4DyoTxpy1sEqoynBqZ2MQoqQQThUwUi-BdpxquFnzlvm3GD94yLWPu14qHtYrgTS_7q2XpuFXqbdBwLyKm5z6vjeX8y_FHPtqrCD7arTiJYKMzAe68zV-hiNo08wvOfGPjkiQRPGstY3idi43Und0ieB_0e8c8-OGkGofRi38RXof7oRVNSBl_Ccuz6dy8cohoJl8Hy78CJLMGxg |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaglYBLeUPKo5ZASCClTZzETo6oZdktmz2EVpST5afUB0m73a0Qvx6Pk01UVCHBzYeJksx4xp_tmW8QequVcjg5hpTGXIRppmgoKJOhYiyzidB57iu8yxkdH6b7R9lRl5sDtTAtP0R_4Aae4eM1ODgcSO8MrKEnP-bHMM7YbbSeOqQBe6-9amCPKgrfo9ghiCSM84j17KRkZ3j22nq0Dqr9eRPYvI5d_eIzut92WL30nIWQc3K6vVzIbfXrD0bH__6vB2ijg6X4YzuPHqJbpn6E7pTdxftj9H1S46vjqwZfLEXt69JclMRA8tDUuKy-TrDnqcWNxRKaTmA9JCNhKGHBasWhjBcN7nmklHmCDkefDnbHYdeVIVROySwUBY2VA2YpcBPqRBHCYqKZllTnDr9ZY6mVaVZoSRjVwkqSKJu4uGqJKDSRyVO0Vje1eY5wKgxsuIiJqEpJbGRkI6OkEkzkMlIsQO9XtuGqoyyHzhlnvCVbJhx0xb2uAvSmlz1viTpulHrnTdyLiPkppLaxjH-bfeajvSoh092KJwHaWs0B7hwOblFEbZrlJWfQ27hIogA9a6fG8DoXHqnbvgXogzfwX76D75fVxI82_0V4C90dH5RTPp3MvrxA93xnGp9B_hKtLeZL88oBpIV87d3gN42ZCuU |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9UwFD_MDYYv89vVrwUUQaFbm7RJC77I5nV37l6kOtweJOQT5rSd13uH-NebpLctkyHoWx5OaZrzkV-ac34H4JlWyuHk1Kc0FiLOckVjQZmMFWO5JUIXRajwnkzp_lF2cJwfr8Crrham5Yfof7h5zwjx2jv4ubY7A2nol2-zUz_O2TVYy6iDEh4SVQN5VFmGFsUOQJA4LRLWk5PineHZS9vRml_Zn1dhzcvQNew9oxvwuZt1m3Jytr2Yy2316w9Cx__9rJuwsQSl6HVrRbdgxdS3YX2yvHa_AyfjGl2cXjTo-0LUoSrNxUjkKR6aGk2qD2MUWGpRY5H0LSeQHlKRkC9gQapjUEbzBvUsUsrchaPRm4-7-_GyJ0OsMpqzWJQ0VQ6WZZ6ZUBOFMUuxZlpSXTj0Zo2lVmZ5qSVmVAsrMVGWuKhqsSg1luQerNZNbTYBZcL44xY2CVUZTo1MbGKUVIKJQiaKRfCiUw1XS8Jy3zfjK2-pljH3a8XDWkXwtJc9b2k6rpR6HjTci4jZmU9sYzn_NH3LR3sVwYe7FScRbHUmwJ27-TsUUZtm8YMz39m4JEkE91vLGF7ngiN1h7cIXgb9_mUe_GBSjcPowb8Ib8H6-70RPxxP3z2E66EtTUgffwSr89nCPHboaC6fBCf4DWsHCZQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=In+vivo+quantitative+proton+MRSI+study+of+brain+development+from+childhood+to+adolescence&rft.jtitle=Journal+of+magnetic+resonance+imaging&rft.au=Horsk%C3%A1%2C+Alena&rft.au=Kaufmann%2C+Walter+E&rft.au=Brant%2C+Larry+J&rft.au=Naidu%2C+Sakkubai&rft.date=2002-02-01&rft.issn=1053-1807&rft.volume=15&rft.issue=2&rft.spage=137&rft_id=info:doi/10.1002%2Fjmri.10057&rft_id=info%3Apmid%2F11836768&rft.externalDocID=11836768 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1053-1807&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1053-1807&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1053-1807&client=summon |