Alpha-actinin-3 deficiency does not significantly alter oxidative enzyme activity in fast human muscle fibres

Aim:  In Western European populations, about 18% of all individuals have a complete deficiency of the alpha‐actinin‐3 protein owing to homozygosity for a stop codon mutation (R577X) in the ACTN3 gene. Actn3−/− knock‐out mice show increased activity of multiple enzymes in the aerobic metabolic pathwa...

Full description

Saved in:
Bibliographic Details
Published inActa Physiologica Vol. 204; no. 4; pp. 555 - 561
Main Authors Vincent, B., Windelinckx, A., Van Proeyen, K., Masschelein, E., Nielens, H., Ramaekers, M., Van Leemputte, M., Hespel, P., Thomis, M.
Format Journal Article
LanguageEnglish
Published Oxford, UK Blackwell Publishing Ltd 01.04.2012
Wiley-Blackwell
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text
ISSN1748-1708
1748-1716
1748-1716
DOI10.1111/j.1748-1716.2011.02366.x

Cover

Loading…
Abstract Aim:  In Western European populations, about 18% of all individuals have a complete deficiency of the alpha‐actinin‐3 protein owing to homozygosity for a stop codon mutation (R577X) in the ACTN3 gene. Actn3−/− knock‐out mice show increased activity of multiple enzymes in the aerobic metabolic pathway in fast muscle fibres. Whether this observation is also present in human XX genotype carriers compared to RR carriers has not been studied in a fibre‐type‐specific approach in humans. The purpose of this study was therefore to compare fibre‐type‐specific oxidative enzyme activity in humans with a different ACTN3 R577X genotype. Methods:  Vastus lateralis muscle biopsy samples of 17 XX and 16 RR subjects were used to measure markers of oxidative capacity [cytochrome c oxidase (CYTOX) and succinate dehydrogenase (SDH)] in a fibre‐type‐specific assay using enzyme histochemistry. Results:  Cytochrome c oxidase staining showed no significant genotype group differences in type I or type II muscle fibres. Also, we found no significant differences in SDH staining of fast fibres comparing XX and RR carriers. Conclusion:  In conclusion, the increase in oxidative enzyme activity of fast muscle fibres, as reported in an Actn3−/− knock‐out mouse, was not observed in our human samples. Known differences in metabolic characteristics of muscle fibres in rodents compared to humans may in part explain this discrepancy in findings.
AbstractList In Western European populations, about 18% of all individuals have a complete deficiency of the alpha-actinin-3 protein owing to homozygosity for a stop codon mutation (R577X) in the ACTN3 gene. Actn3(-/-) knock-out mice show increased activity of multiple enzymes in the aerobic metabolic pathway in fast muscle fibres. Whether this observation is also present in human XX genotype carriers compared to RR carriers has not been studied in a fibre-type-specific approach in humans. The purpose of this study was therefore to compare fibre-type-specific oxidative enzyme activity in humans with a different ACTN3 R577X genotype.AIMIn Western European populations, about 18% of all individuals have a complete deficiency of the alpha-actinin-3 protein owing to homozygosity for a stop codon mutation (R577X) in the ACTN3 gene. Actn3(-/-) knock-out mice show increased activity of multiple enzymes in the aerobic metabolic pathway in fast muscle fibres. Whether this observation is also present in human XX genotype carriers compared to RR carriers has not been studied in a fibre-type-specific approach in humans. The purpose of this study was therefore to compare fibre-type-specific oxidative enzyme activity in humans with a different ACTN3 R577X genotype.Vastus lateralis muscle biopsy samples of 17 XX and 16 RR subjects were used to measure markers of oxidative capacity [cytochrome c oxidase (CYTOX) and succinate dehydrogenase (SDH)] in a fibre-type-specific assay using enzyme histochemistry.METHODSVastus lateralis muscle biopsy samples of 17 XX and 16 RR subjects were used to measure markers of oxidative capacity [cytochrome c oxidase (CYTOX) and succinate dehydrogenase (SDH)] in a fibre-type-specific assay using enzyme histochemistry.Cytochrome c oxidase staining showed no significant genotype group differences in type I or type II muscle fibres. Also, we found no significant differences in SDH staining of fast fibres comparing XX and RR carriers.RESULTSCytochrome c oxidase staining showed no significant genotype group differences in type I or type II muscle fibres. Also, we found no significant differences in SDH staining of fast fibres comparing XX and RR carriers.In conclusion, the increase in oxidative enzyme activity of fast muscle fibres, as reported in an Actn3(-/-) knock-out mouse, was not observed in our human samples. Known differences in metabolic characteristics of muscle fibres in rodents compared to humans may in part explain this discrepancy in findings.CONCLUSIONIn conclusion, the increase in oxidative enzyme activity of fast muscle fibres, as reported in an Actn3(-/-) knock-out mouse, was not observed in our human samples. Known differences in metabolic characteristics of muscle fibres in rodents compared to humans may in part explain this discrepancy in findings.
Aim:  In Western European populations, about 18% of all individuals have a complete deficiency of the alpha‐actinin‐3 protein owing to homozygosity for a stop codon mutation (R577X) in the ACTN3 gene. Actn3 −/− knock‐out mice show increased activity of multiple enzymes in the aerobic metabolic pathway in fast muscle fibres. Whether this observation is also present in human XX genotype carriers compared to RR carriers has not been studied in a fibre‐type‐specific approach in humans. The purpose of this study was therefore to compare fibre‐type‐specific oxidative enzyme activity in humans with a different ACTN3 R577X genotype. Methods:  Vastus lateralis muscle biopsy samples of 17 XX and 16 RR subjects were used to measure markers of oxidative capacity [cytochrome c oxidase (CYTOX) and succinate dehydrogenase (SDH)] in a fibre‐type‐specific assay using enzyme histochemistry. Results:  Cytochrome c oxidase staining showed no significant genotype group differences in type I or type II muscle fibres. Also, we found no significant differences in SDH staining of fast fibres comparing XX and RR carriers. Conclusion:  In conclusion, the increase in oxidative enzyme activity of fast muscle fibres, as reported in an Actn3 −/− knock‐out mouse, was not observed in our human samples. Known differences in metabolic characteristics of muscle fibres in rodents compared to humans may in part explain this discrepancy in findings.
In Western European populations, about 18% of all individuals have a complete deficiency of the alpha-actinin-3 protein owing to homozygosity for a stop codon mutation (R577X) in the ACTN3 gene. Actn3(-/-) knock-out mice show increased activity of multiple enzymes in the aerobic metabolic pathway in fast muscle fibres. Whether this observation is also present in human XX genotype carriers compared to RR carriers has not been studied in a fibre-type-specific approach in humans. The purpose of this study was therefore to compare fibre-type-specific oxidative enzyme activity in humans with a different ACTN3 R577X genotype. Vastus lateralis muscle biopsy samples of 17 XX and 16 RR subjects were used to measure markers of oxidative capacity [cytochrome c oxidase (CYTOX) and succinate dehydrogenase (SDH)] in a fibre-type-specific assay using enzyme histochemistry. Cytochrome c oxidase staining showed no significant genotype group differences in type I or type II muscle fibres. Also, we found no significant differences in SDH staining of fast fibres comparing XX and RR carriers. In conclusion, the increase in oxidative enzyme activity of fast muscle fibres, as reported in an Actn3(-/-) knock-out mouse, was not observed in our human samples. Known differences in metabolic characteristics of muscle fibres in rodents compared to humans may in part explain this discrepancy in findings.
Aim:  In Western European populations, about 18% of all individuals have a complete deficiency of the alpha‐actinin‐3 protein owing to homozygosity for a stop codon mutation (R577X) in the ACTN3 gene. Actn3−/− knock‐out mice show increased activity of multiple enzymes in the aerobic metabolic pathway in fast muscle fibres. Whether this observation is also present in human XX genotype carriers compared to RR carriers has not been studied in a fibre‐type‐specific approach in humans. The purpose of this study was therefore to compare fibre‐type‐specific oxidative enzyme activity in humans with a different ACTN3 R577X genotype. Methods:  Vastus lateralis muscle biopsy samples of 17 XX and 16 RR subjects were used to measure markers of oxidative capacity [cytochrome c oxidase (CYTOX) and succinate dehydrogenase (SDH)] in a fibre‐type‐specific assay using enzyme histochemistry. Results:  Cytochrome c oxidase staining showed no significant genotype group differences in type I or type II muscle fibres. Also, we found no significant differences in SDH staining of fast fibres comparing XX and RR carriers. Conclusion:  In conclusion, the increase in oxidative enzyme activity of fast muscle fibres, as reported in an Actn3−/− knock‐out mouse, was not observed in our human samples. Known differences in metabolic characteristics of muscle fibres in rodents compared to humans may in part explain this discrepancy in findings.
Aim: In Western European populations, about 18% of all individuals have a complete deficiency of the alpha-actinin-3 protein owing to homozygosity for a stop codon mutation (R577X) in the ACTN3 gene. Actn3-/- knock-out mice show increased activity of multiple enzymes in the aerobic metabolic pathway in fast muscle fibres. Whether this observation is also present in human XX genotype carriers compared to RR carriers has not been studied in a fibre-type-specific approach in humans. The purpose of this study was therefore to compare fibre-type-specific oxidative enzyme activity in humans with a different ACTN3 R577X genotype. Methods: Vastus lateralis muscle biopsy samples of 17 XX and 16 RR subjects were used to measure markers of oxidative capacity [cytochrome c oxidase (CYTOX) and succinate dehydrogenase (SDH)] in a fibre-type-specific assay using enzyme histochemistry. Results: Cytochrome c oxidase staining showed no significant genotype group differences in type I or type II muscle fibres. Also, we found no significant differences in SDH staining of fast fibres comparing XX and RR carriers. Conclusion: In conclusion, the increase in oxidative enzyme activity of fast muscle fibres, as reported in an Actn3-/- knock-out mouse, was not observed in our human samples. Known differences in metabolic characteristics of muscle fibres in rodents compared to humans may in part explain this discrepancy in findings. [PUBLICATION ABSTRACT]
Author Vincent, B.
Nielens, H.
Ramaekers, M.
Van Leemputte, M.
Thomis, M.
Van Proeyen, K.
Masschelein, E.
Hespel, P.
Windelinckx, A.
Author_xml – sequence: 1
  givenname: B.
  surname: Vincent
  fullname: Vincent, B.
  organization:  Research Centre for Exercise and Health, Department of Biomedical Kinesiology, Faculty of Kinesiology and Rehabilitation Sciences, K. U. Leuven, Leuven, Belgium
– sequence: 2
  givenname: A.
  surname: Windelinckx
  fullname: Windelinckx, A.
  organization:  Research Centre for Exercise and Health, Department of Biomedical Kinesiology, Faculty of Kinesiology and Rehabilitation Sciences, K. U. Leuven, Leuven, Belgium
– sequence: 3
  givenname: K.
  surname: Van Proeyen
  fullname: Van Proeyen, K.
  organization:  Research Centre for Exercise and Health, Department of Biomedical Kinesiology, Faculty of Kinesiology and Rehabilitation Sciences, K. U. Leuven, Leuven, Belgium
– sequence: 4
  givenname: E.
  surname: Masschelein
  fullname: Masschelein, E.
  organization:  Research Centre for Exercise and Health, Department of Biomedical Kinesiology, Faculty of Kinesiology and Rehabilitation Sciences, K. U. Leuven, Leuven, Belgium
– sequence: 5
  givenname: H.
  surname: Nielens
  fullname: Nielens, H.
  organization:  Department of Physical Medicine and Rehabilitation, Cliniques Universitaires St-Luc, UCL, Brussels, Belgium
– sequence: 6
  givenname: M.
  surname: Ramaekers
  fullname: Ramaekers, M.
  organization:  Research Centre for Exercise and Health, Department of Biomedical Kinesiology, Faculty of Kinesiology and Rehabilitation Sciences, K. U. Leuven, Leuven, Belgium
– sequence: 7
  givenname: M.
  surname: Van Leemputte
  fullname: Van Leemputte, M.
  organization:  Research Centre for Exercise and Health, Department of Biomedical Kinesiology, Faculty of Kinesiology and Rehabilitation Sciences, K. U. Leuven, Leuven, Belgium
– sequence: 8
  givenname: P.
  surname: Hespel
  fullname: Hespel, P.
  organization:  Research Centre for Exercise and Health, Department of Biomedical Kinesiology, Faculty of Kinesiology and Rehabilitation Sciences, K. U. Leuven, Leuven, Belgium
– sequence: 9
  givenname: M.
  surname: Thomis
  fullname: Thomis, M.
  organization:  Research Centre for Exercise and Health, Department of Biomedical Kinesiology, Faculty of Kinesiology and Rehabilitation Sciences, K. U. Leuven, Leuven, Belgium
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=25572676$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/21933355$$D View this record in MEDLINE/PubMed
BookMark eNqNkVtv1DAQhSNURC_0LyBLCPGUxZc4Wb8gbVfQoi03CcSjZTsT6iVxFttpN_x6HHa7SH2qXzyyvzkzOuc0O3K9gyxDBM9IOm_WM1IV85xUpJxRTMgMU1aWs-2T7OTwcXSo8fw4Ow9hjTEmlLCC0mfZMSWCMcb5SdYt2s2NypWJ1lmXM1RDY40FZ0ZU9xCQ6yMK9qez6Vm52I5ItRE86re2VtHeAgL3Z-wATRK3No7IOtSoENHN0CmHuiGYFlBjtYfwPHvaqDbA-f4-y76_f_dteZVff778sFxc56YoeZnPa6E1xRywEkbXSteVVlgU0PB6LqDkBIMWWIuyKgWrSaErjYEVmjRCqEKws-z1Tnfj-98DhCg7Gwy0rXLQD0EKygTntCSJfPmAXPeDd2k5SQpRYVwlyxP1Yk8NuoNabrztlB_lvY8JeLUHVDCqbbxyxob_HOcVTcsm7u2OM74PwUMjjY3Jxt5Fr2wrCZZTxnItp_jkFKWcMpb_MpbbJDB_IHA_4xGt-9l3toXx0X1y8eVqMZVJIN8J2BBhexBQ_pcsK1Zx-ePTpaRfV8vlx9WFXLG_QJXM-g
CitedBy_id crossref_primary_10_1586_14737159_2015_1039517
crossref_primary_10_1152_japplphysiol_00557_2013
crossref_primary_10_1111_apha_12414
crossref_primary_10_1111_bph_12399
crossref_primary_10_1371_journal_pone_0049281
crossref_primary_10_1519_JSC_0000000000002911
crossref_primary_10_1007_s13258_013_0111_7
crossref_primary_10_3390_sports6040145
crossref_primary_10_1093_hmg_ddt580
Cites_doi 10.1113/jphysiol.2010.196493
10.1038/ng2122
10.1038/sj.ejhg.5201438
10.1093/hmg/ddr196
10.1249/01.MSS.0000093617.28237.20
10.1136/bjsm.2007.039172
10.1086/377590
10.1242/jeb.115.1.179
10.1152/japplphysiol.01139.2004
10.1152/ajpendo.00112.2007
10.1093/gerona/62.2.206
10.1016/S0021-9258(19)50420-3
10.1038/sj.ejhg.5201724
10.1249/00005768-200605001-01545
10.1055/s-2007-965339
10.1016/j.febslet.2006.01.059
10.1016/j.exger.2010.11.006
10.1055/s-0029-1220731
10.1249/mss.0b013e31814844c9
10.1038/sj.ejhg.5201964
10.1152/japplphysiol.01007.2009
10.1093/hmg/ddm380
10.1002/humu.21526
10.1249/00005768-200605001-01551
10.1152/physiolgenomics.00173.2007
10.1007/s00421-008-0763-1
10.1007/BF00495049
10.1080/02640414.2010.507675
10.1152/japplphysiol.90856.2008
10.1093/hmg/ddq010
ContentType Journal Article
Copyright 2011 The Authors. Acta Physiologica © 2011 Scandinavian Physiological Society
2015 INIST-CNRS
2011 The Authors. Acta Physiologica © 2011 Scandinavian Physiological Society.
Copyright_xml – notice: 2011 The Authors. Acta Physiologica © 2011 Scandinavian Physiological Society
– notice: 2015 INIST-CNRS
– notice: 2011 The Authors. Acta Physiologica © 2011 Scandinavian Physiological Society.
DBID BSCLL
AAYXX
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7TK
7TS
7X8
DOI 10.1111/j.1748-1716.2011.02366.x
DatabaseName Istex
CrossRef
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Neurosciences Abstracts
Physical Education Index
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Neurosciences Abstracts
Physical Education Index
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
CrossRef
MEDLINE

Neurosciences Abstracts
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
EISSN 1748-1716
EndPage 561
ExternalDocumentID 3215050351
21933355
25572676
10_1111_j_1748_1716_2011_02366_x
APHA2366
ark_67375_WNG_2QKCCMKB_K
Genre article
Journal Article
GroupedDBID ---
.3N
.GA
.GJ
.Y3
05W
0R~
10A
1OC
23M
31~
33P
36B
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52U
52V
52W
52X
53G
5GY
5HH
5LA
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A01
A03
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABDBF
ABEML
ABLJU
ABPVW
ABQWH
ABXGK
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGOF
ACMXC
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADBTR
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFNX
AFFPM
AFGKR
AFPWT
AFZJQ
AHBTC
AIACR
AITYG
AIURR
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ASPBG
ATUGU
AVWKF
AZBYB
AZFZN
BAFTC
BDRZF
BFHJK
BHBCM
BMXJE
BROTX
BRXPI
BSCLL
BY8
C45
CAG
COF
CS3
D-6
D-7
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRMAN
DRSTM
DXH
EAD
EAP
EAS
EBC
EBD
EBS
EBX
EJD
EMB
EMK
EMOBN
EPS
ESX
EX3
F00
F01
F04
F5P
FEDTE
FUBAC
G-S
GODZA
HF~
HGLYW
HVGLF
HZI
HZ~
IHE
IX1
K48
KBYEO
L7B
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MXFUL
MXMAN
MXSTM
N04
N05
N9A
O66
O9-
OHT
OIG
OVD
P2W
P2X
P2Z
P4B
P4D
Q.N
Q11
QB0
R.K
ROL
RX1
SUPJJ
SV3
TEORI
TUS
UB1
W8V
W99
WBKPD
WIH
WIJ
WIK
WNSPC
WOHZO
WOW
WQJ
WRC
WXI
WXSBR
WYISQ
XG1
~IA
~KM
~WT
AAHQN
AAIPD
AAMNL
AANHP
AAYCA
ACRPL
ACUHS
ACYXJ
ADNMO
AFWVQ
ALVPJ
AAYXX
AGHNM
AGQPQ
AGYGG
CITATION
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
1OB
7TK
7TS
7X8
ID FETCH-LOGICAL-c4656-8d9bb205e0a9cbdabd7ba094ef5d89e6510eb90b967693d14b7b0e34b1f99a493
IEDL.DBID DR2
ISSN 1748-1708
1748-1716
IngestDate Fri Sep 05 05:06:00 EDT 2025
Wed Aug 13 04:24:19 EDT 2025
Thu Apr 03 07:09:32 EDT 2025
Mon Jul 21 09:13:32 EDT 2025
Tue Jul 01 03:43:26 EDT 2025
Thu Apr 24 23:04:48 EDT 2025
Wed Jan 22 17:07:02 EST 2025
Wed Oct 30 09:48:10 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords Human
Succinate dehydrogenase
ACTN3 R577X
Enzyme
cytochrome c oxidase
Striated muscle
enzyme histochemistry
Cytochrome c
fibre-type specific
Vertebrata
Mammalia
Enzymatic activity
Oxidoreductases
Histochemistry
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
CC BY 4.0
2011 The Authors. Acta Physiologica © 2011 Scandinavian Physiological Society.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4656-8d9bb205e0a9cbdabd7ba094ef5d89e6510eb90b967693d14b7b0e34b1f99a493
Notes istex:A421B043FBC582151A9352EAD1D5BD24D0A69403
ark:/67375/WNG-2QKCCMKB-K
ArticleID:APHA2366
ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
PMID 21933355
PQID 1497007111
PQPubID 1036382
PageCount 7
ParticipantIDs proquest_miscellaneous_923955261
proquest_journals_1497007111
pubmed_primary_21933355
pascalfrancis_primary_25572676
crossref_citationtrail_10_1111_j_1748_1716_2011_02366_x
crossref_primary_10_1111_j_1748_1716_2011_02366_x
wiley_primary_10_1111_j_1748_1716_2011_02366_x_APHA2366
istex_primary_ark_67375_WNG_2QKCCMKB_K
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate April 2012
PublicationDateYYYYMMDD 2012-04-01
PublicationDate_xml – month: 04
  year: 2012
  text: April 2012
PublicationDecade 2010
PublicationPlace Oxford, UK
PublicationPlace_xml – name: Oxford, UK
– name: Oxford
– name: England
– name: Stockholm
PublicationTitle Acta Physiologica
PublicationTitleAlternate Acta Physiol (Oxf)
PublicationYear 2012
Publisher Blackwell Publishing Ltd
Wiley-Blackwell
Wiley Subscription Services, Inc
Publisher_xml – name: Blackwell Publishing Ltd
– name: Wiley-Blackwell
– name: Wiley Subscription Services, Inc
References Quinlan, K.G., Seto, J.T., Turner, N., Vandebrouck, A., Floetenmeyer, M., MacArthur, D.G., Raftery, J.M., Lek, M., Yang, N., Parton, R.G., Cooney, G.J. & North, K.N.2010. Alpha-actinin-3 deficiency results in reduced glycogen phosphorylase activity and altered calcium handling in skeletal muscle. Hum Mol Genet19, 1335-1346.
Delmonico, M.J., Kostek, M.C., Doldo, N.A., Hand, B.D., Walsh, S., Conway, J.M., Carignan, C.R., Roth, S.M. & Hurley, B.F.2007. Alpha-actinin-3 (ACTN3) R577X polymorphism influences knee extensor peak power response to strength training in older men and women. J Gerontol A Biol Sci Med Sci62, 206-212.
Clarkson, P.M., Devaney, J.M., Gordish-Dressman, H., Thompson, P.D., Hubal, M.J., Urso, M., Price, T.B., Angelopoulos, T.J., Gordon, P.M., Moyna, N.M., Pescatello, L.S., Visich, P.S., Zoeller, R.F., Seip, R.L. & Hoffman, E.P.2005. ACTN3 genotype is associated with increases in muscle strength in response to resistance training in women. J Appl Physiol99, 154-163.
MacArthur, D.G., Seto, J.T., Raftery, J.M., Quinlan, K.G., Huttley, G.A., Hook, J.W., Lemckert, F.A., Kee, A.J., Edwards, M.R., Berman, Y., Hardeman, E.C., Gunning, P.W., Easteal, S., Yang, N. & North, K.N.2007. Loss of ACTN3 gene function alters mouse muscle metabolism and shows evidence of positive selection in humans. Nat Genet39, 1261-1265.
Santiago, C., Gonzalez-Freire, M., Serratosa, L., Morate, F.J., Meyer, T., Gomez-Gallego, F. & Lucia, A.2008. ACTN3 genotype in professional soccer players. Br J Sports Med42, 71-73.
Druzhevskaya, A.M., Ahmetov, I.I., Astratenkova, I.V. & Rogozkin, V.A.2008. Association of the ACTN3 R577X polymorphism with power athlete status in Russians. Eur J Appl Physiol103, 631-634.
Vincent, B., Windelinckx, A., Nielens, H., Ramaekers, M., Van, L.M., Hespel, P. & Thomis, M.A.2010. Protective role of alpha-actinin-3 in the response to an acute eccentric exercise bout. J Appl Physiol109, 564-573.
Doring, F.E., Onur, S., Geisen, U., Boulay, M.R., Perusse, L., Rankinen, T., Rauramaa, R., Wolfahrt, B. & Bouchard, C.2010. ACTN3 R577X and other polymorphisms are not associated with elite endurance athlete status in the Genathlete study. J Sports Sci28, 1355-1359.
Walsh, S., Liu, D., Metter, E.J., Ferrucci, L. & Roth, S.M.2008. ACTN3 genotype is associated with muscle phenotypes in women across the adult age span. J Appl Physiol105, 1486-1491.
Beggs, A.H., Byers, T.J., Knoll, J.H., Boyce, F.M., Bruns, G.A. & Kunkel, L.M.1992. Cloning and characterization of two human skeletal muscle alpha-actinin genes located on chromosomes 1 and 11. J Biol Chem267, 9281-9288.
Van Proeyen, K., Szlufcik, K., Nielens, H., Pelgrim, K., Deldicque, L., Hesselink, M., Van Veldhoven, P.P. & Hespel, P.2010. Training in the fasted state improves glucose tolerance during fat-rich diet. J Physiol588, 4289-4302.
Yang, N., MacArthur, D.G., Wolde, B., Onywera, V.O., Boit, M.K., Lau, S.Y., Wilson, R.H., Scott, R.A., Pitsiladis, Y.P. & North, K.2007. The ACTN3 R577X polymorphism in East and West African athletes. Med Sci Sports Exerc39, 1985-1988.
Pette, D. 1985. Metabolic heterogeneity of muscle fibres. J Exp Biol115, 179-189.
Hoeks, J., Hesselink, M.K., Sluiter, W., Schaart, G., Willems, J., Morrisson, A., Clapham, J.C., Saris, W.H. & Schrauwen, P.2006. The effect of high-fat feeding on intramuscular lipid and lipid peroxidation levels in UCP3-ablated mice. FEBS Lett580, 1371-1375.
MacArthur, D.G., Seto, J.T., Chan, S., Quinlan, K.G., Raftery, J.M., Turner, N., Nicholson, M.D., Kee, A.J., Hardeman, E.C., Gunning, P.W., Cooney, G.J., Head, S.I., Yang, N. & North, K.N.2008. An Actn3 knockout mouse provides mechanistic insights into the association between alpha-actinin-3 deficiency and human athletic performance. Hum Mol Genet17, 1076-1086.
Moran, C.N., Yang, N., Bailey, M.E., Tsiokanos, A., Jamurtas, A., MacArthur, D.G., North, K., Pitsiladis, Y.P. & Wilson, R.H.2007. Association analysis of the ACTN3 R577X polymorphism and complex quantitative body composition and performance phenotypes in adolescent Greeks. Eur J Hum Genet15, 88-93.
Yang, N., MacArthur, D.G., Gulbin, J.P., Hahn, A.G., Beggs, A.H., Easteal, S. & North, K.2003. ACTN3 genotype is associated with human elite athletic performance. Am J Hum Genet73, 627-631.
Reichmann, H. & Pette, D.1982. A comparative microphotometric study of succinate dehydrogenase activity levels in type I, IIA and IIB fibres of mammalian and human muscles. Histochemistry74, 27-41.
Eynon, N., Duarte, J.A., Oliveira, J., Sagiv, M., Yamin, C., Meckel, Y. & Goldhammer, E.2009. ACTN3 R577X Polymorphism and Israeli Top-level Athletes. Int J Sports Med30, 695-698.
De Bock, K., Dresselaers, T., Kiens, B., Richter, E.A., Van, H.P. & Hespel, P.2007. Evaluation of intramyocellular lipid breakdown during exercise by biochemical assay, NMR spectroscopy, and Oil Red O staining. Am J Physiol Endocrinol Metab293, E428-E434.
Alfred, T., Ben-Shlomo, Y., Cooper, R., Hardy, R., Cooper, C., Deary, I.J., Gunnell, D., Harris, S.E., Kumari, M., Martin, R.M.et al.2011. ACTN3 genotype, athletic status and lifecourse physical capability: meta-analysis of the published literature and findings from nine studies. Hum Mutat32, 1008-1018.
Roth, S.M., Walsh, S., Liu, D., Metter, E.J., Ferrucci, L. & Hurley, B.F.2008. The ACTN3 R577X nonsense allele is under-represented in elite-level strength athletes. Eur J Hum Genet16, 391-394.
Vincent, B., De Bock, K., Ramaekers, M., Van den Eede, E., Van Leemputte, M., Hespel, P. & Thomis, M.A.2007. ACTN3 (R577X) genotype is associated with fiber type distribution. Physiol Genomics32, 58-63.
Neary, J.P., Martin, T.P. & Quinney, H.A.2003. Effects of taper on endurance cycling capacity and single muscle fiber properties. Med Sci Sports Exerc35, 1875-1881.
Beunen, G.P., Windelinckx, A., De Mars, G., Huygens, W., Peeters, M., Vlietinck, R. & Thomis, M.A.2006. Alpha-actinin-3 R577X genotype is associated with muscle power in middle aged men and women. Med Sci Sports Exerc38, S364.
Niemi, A.K. & Majamaa, K.2005. Mitochondrial DNA and ACTN3 genotypes in Finnish elite endurance and sprint athletes. Eur J Hum Genet13, 965-969.
Thomis, M.A., De Mars, G., Windelinckx, A., Vincent, B., Huygens, W., Peeters, M., Vlietinck, R. & Beunen, G.P.2006. Alpha-actinin-3 R577X genotype and muscle power in young male adults of the Leuven Genes for Muscular Strength Study. Med Sci Sports Exerc38, S365.
Papadimitriou, I.D., Papadopoulos, C., Kouvatsi, A. & Triantaphyllidis, C.2008. The ACTN3 gene in elite Greek track and field athletes. Int J Sports Med29, 352-355.
Seto, J.T., Chan, S., Turner, N., MacArthur, D.G., Raftery, J.M., Berman, Y.D., Quinlan, K.G., Cooney, G.J., Head, S., Yang, N. & North, K.N.2011a. The effect of alpha-actinin-3 deficiency on muscle aging. Exp Gerontol46, 292-302.
Seto, J.T., Lek, M., Quinlan, K.G., Houweling, P.J., Zheng, X.F., Garton, F., MacArthur, D.G., Raftery, J.M., Garvey, S.M., Hauser, M.A., Yang, N., Head, S.I. & North, K.N.2011b. Deficiency of {alpha}-actinin-3 is associated with increased susceptibility to contraction-induced damage and skeletal muscle remodeling. Hum Mol Genet20, 2914-2927.
2007; 39
2011b; 20
2010; 109
2010; 19
2006; 38
1982; 74
1992; 267
2010; 588
2008; 16
2008; 17
2003; 35
2011; 32
2008; 105
2008; 103
2007; 32
2003; 73
2007; 15
2009; 30
2007; 293
2010; 28
2008; 29
2006; 580
1985; 115
2007; 62
2008; 42
2005; 99
2011a; 46
2005; 13
e_1_2_7_6_1
e_1_2_7_5_1
e_1_2_7_4_1
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_8_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_17_1
e_1_2_7_16_1
e_1_2_7_2_1
e_1_2_7_15_1
e_1_2_7_14_1
e_1_2_7_13_1
e_1_2_7_12_1
e_1_2_7_11_1
Pette D. (e_1_2_7_18_1) 1985; 115
e_1_2_7_10_1
e_1_2_7_26_1
e_1_2_7_27_1
e_1_2_7_28_1
e_1_2_7_29_1
e_1_2_7_30_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_24_1
e_1_2_7_23_1
e_1_2_7_22_1
e_1_2_7_21_1
e_1_2_7_20_1
References_xml – reference: Pette, D. 1985. Metabolic heterogeneity of muscle fibres. J Exp Biol115, 179-189.
– reference: Clarkson, P.M., Devaney, J.M., Gordish-Dressman, H., Thompson, P.D., Hubal, M.J., Urso, M., Price, T.B., Angelopoulos, T.J., Gordon, P.M., Moyna, N.M., Pescatello, L.S., Visich, P.S., Zoeller, R.F., Seip, R.L. & Hoffman, E.P.2005. ACTN3 genotype is associated with increases in muscle strength in response to resistance training in women. J Appl Physiol99, 154-163.
– reference: De Bock, K., Dresselaers, T., Kiens, B., Richter, E.A., Van, H.P. & Hespel, P.2007. Evaluation of intramyocellular lipid breakdown during exercise by biochemical assay, NMR spectroscopy, and Oil Red O staining. Am J Physiol Endocrinol Metab293, E428-E434.
– reference: Seto, J.T., Lek, M., Quinlan, K.G., Houweling, P.J., Zheng, X.F., Garton, F., MacArthur, D.G., Raftery, J.M., Garvey, S.M., Hauser, M.A., Yang, N., Head, S.I. & North, K.N.2011b. Deficiency of {alpha}-actinin-3 is associated with increased susceptibility to contraction-induced damage and skeletal muscle remodeling. Hum Mol Genet20, 2914-2927.
– reference: Beggs, A.H., Byers, T.J., Knoll, J.H., Boyce, F.M., Bruns, G.A. & Kunkel, L.M.1992. Cloning and characterization of two human skeletal muscle alpha-actinin genes located on chromosomes 1 and 11. J Biol Chem267, 9281-9288.
– reference: Reichmann, H. & Pette, D.1982. A comparative microphotometric study of succinate dehydrogenase activity levels in type I, IIA and IIB fibres of mammalian and human muscles. Histochemistry74, 27-41.
– reference: Yang, N., MacArthur, D.G., Wolde, B., Onywera, V.O., Boit, M.K., Lau, S.Y., Wilson, R.H., Scott, R.A., Pitsiladis, Y.P. & North, K.2007. The ACTN3 R577X polymorphism in East and West African athletes. Med Sci Sports Exerc39, 1985-1988.
– reference: Santiago, C., Gonzalez-Freire, M., Serratosa, L., Morate, F.J., Meyer, T., Gomez-Gallego, F. & Lucia, A.2008. ACTN3 genotype in professional soccer players. Br J Sports Med42, 71-73.
– reference: Yang, N., MacArthur, D.G., Gulbin, J.P., Hahn, A.G., Beggs, A.H., Easteal, S. & North, K.2003. ACTN3 genotype is associated with human elite athletic performance. Am J Hum Genet73, 627-631.
– reference: Delmonico, M.J., Kostek, M.C., Doldo, N.A., Hand, B.D., Walsh, S., Conway, J.M., Carignan, C.R., Roth, S.M. & Hurley, B.F.2007. Alpha-actinin-3 (ACTN3) R577X polymorphism influences knee extensor peak power response to strength training in older men and women. J Gerontol A Biol Sci Med Sci62, 206-212.
– reference: Eynon, N., Duarte, J.A., Oliveira, J., Sagiv, M., Yamin, C., Meckel, Y. & Goldhammer, E.2009. ACTN3 R577X Polymorphism and Israeli Top-level Athletes. Int J Sports Med30, 695-698.
– reference: Roth, S.M., Walsh, S., Liu, D., Metter, E.J., Ferrucci, L. & Hurley, B.F.2008. The ACTN3 R577X nonsense allele is under-represented in elite-level strength athletes. Eur J Hum Genet16, 391-394.
– reference: Vincent, B., De Bock, K., Ramaekers, M., Van den Eede, E., Van Leemputte, M., Hespel, P. & Thomis, M.A.2007. ACTN3 (R577X) genotype is associated with fiber type distribution. Physiol Genomics32, 58-63.
– reference: Van Proeyen, K., Szlufcik, K., Nielens, H., Pelgrim, K., Deldicque, L., Hesselink, M., Van Veldhoven, P.P. & Hespel, P.2010. Training in the fasted state improves glucose tolerance during fat-rich diet. J Physiol588, 4289-4302.
– reference: Vincent, B., Windelinckx, A., Nielens, H., Ramaekers, M., Van, L.M., Hespel, P. & Thomis, M.A.2010. Protective role of alpha-actinin-3 in the response to an acute eccentric exercise bout. J Appl Physiol109, 564-573.
– reference: Seto, J.T., Chan, S., Turner, N., MacArthur, D.G., Raftery, J.M., Berman, Y.D., Quinlan, K.G., Cooney, G.J., Head, S., Yang, N. & North, K.N.2011a. The effect of alpha-actinin-3 deficiency on muscle aging. Exp Gerontol46, 292-302.
– reference: Druzhevskaya, A.M., Ahmetov, I.I., Astratenkova, I.V. & Rogozkin, V.A.2008. Association of the ACTN3 R577X polymorphism with power athlete status in Russians. Eur J Appl Physiol103, 631-634.
– reference: Thomis, M.A., De Mars, G., Windelinckx, A., Vincent, B., Huygens, W., Peeters, M., Vlietinck, R. & Beunen, G.P.2006. Alpha-actinin-3 R577X genotype and muscle power in young male adults of the Leuven Genes for Muscular Strength Study. Med Sci Sports Exerc38, S365.
– reference: Hoeks, J., Hesselink, M.K., Sluiter, W., Schaart, G., Willems, J., Morrisson, A., Clapham, J.C., Saris, W.H. & Schrauwen, P.2006. The effect of high-fat feeding on intramuscular lipid and lipid peroxidation levels in UCP3-ablated mice. FEBS Lett580, 1371-1375.
– reference: Neary, J.P., Martin, T.P. & Quinney, H.A.2003. Effects of taper on endurance cycling capacity and single muscle fiber properties. Med Sci Sports Exerc35, 1875-1881.
– reference: Doring, F.E., Onur, S., Geisen, U., Boulay, M.R., Perusse, L., Rankinen, T., Rauramaa, R., Wolfahrt, B. & Bouchard, C.2010. ACTN3 R577X and other polymorphisms are not associated with elite endurance athlete status in the Genathlete study. J Sports Sci28, 1355-1359.
– reference: Quinlan, K.G., Seto, J.T., Turner, N., Vandebrouck, A., Floetenmeyer, M., MacArthur, D.G., Raftery, J.M., Lek, M., Yang, N., Parton, R.G., Cooney, G.J. & North, K.N.2010. Alpha-actinin-3 deficiency results in reduced glycogen phosphorylase activity and altered calcium handling in skeletal muscle. Hum Mol Genet19, 1335-1346.
– reference: Beunen, G.P., Windelinckx, A., De Mars, G., Huygens, W., Peeters, M., Vlietinck, R. & Thomis, M.A.2006. Alpha-actinin-3 R577X genotype is associated with muscle power in middle aged men and women. Med Sci Sports Exerc38, S364.
– reference: MacArthur, D.G., Seto, J.T., Raftery, J.M., Quinlan, K.G., Huttley, G.A., Hook, J.W., Lemckert, F.A., Kee, A.J., Edwards, M.R., Berman, Y., Hardeman, E.C., Gunning, P.W., Easteal, S., Yang, N. & North, K.N.2007. Loss of ACTN3 gene function alters mouse muscle metabolism and shows evidence of positive selection in humans. Nat Genet39, 1261-1265.
– reference: MacArthur, D.G., Seto, J.T., Chan, S., Quinlan, K.G., Raftery, J.M., Turner, N., Nicholson, M.D., Kee, A.J., Hardeman, E.C., Gunning, P.W., Cooney, G.J., Head, S.I., Yang, N. & North, K.N.2008. An Actn3 knockout mouse provides mechanistic insights into the association between alpha-actinin-3 deficiency and human athletic performance. Hum Mol Genet17, 1076-1086.
– reference: Moran, C.N., Yang, N., Bailey, M.E., Tsiokanos, A., Jamurtas, A., MacArthur, D.G., North, K., Pitsiladis, Y.P. & Wilson, R.H.2007. Association analysis of the ACTN3 R577X polymorphism and complex quantitative body composition and performance phenotypes in adolescent Greeks. Eur J Hum Genet15, 88-93.
– reference: Walsh, S., Liu, D., Metter, E.J., Ferrucci, L. & Roth, S.M.2008. ACTN3 genotype is associated with muscle phenotypes in women across the adult age span. J Appl Physiol105, 1486-1491.
– reference: Alfred, T., Ben-Shlomo, Y., Cooper, R., Hardy, R., Cooper, C., Deary, I.J., Gunnell, D., Harris, S.E., Kumari, M., Martin, R.M.et al.2011. ACTN3 genotype, athletic status and lifecourse physical capability: meta-analysis of the published literature and findings from nine studies. Hum Mutat32, 1008-1018.
– reference: Niemi, A.K. & Majamaa, K.2005. Mitochondrial DNA and ACTN3 genotypes in Finnish elite endurance and sprint athletes. Eur J Hum Genet13, 965-969.
– reference: Papadimitriou, I.D., Papadopoulos, C., Kouvatsi, A. & Triantaphyllidis, C.2008. The ACTN3 gene in elite Greek track and field athletes. Int J Sports Med29, 352-355.
– volume: 16
  start-page: 391
  year: 2008
  end-page: 394
  article-title: The ACTN3 R577X nonsense allele is under‐represented in elite‐level strength athletes
  publication-title: Eur J Hum Genet
– volume: 28
  start-page: 1355
  year: 2010
  end-page: 1359
  article-title: ACTN3 R577X and other polymorphisms are not associated with elite endurance athlete status in the Genathlete study
  publication-title: J Sports Sci
– volume: 46
  start-page: 292
  year: 2011a
  end-page: 302
  article-title: The effect of alpha‐actinin‐3 deficiency on muscle aging
  publication-title: Exp Gerontol
– volume: 38
  start-page: S364
  year: 2006
  article-title: Alpha‐actinin‐3 R577X genotype is associated with muscle power in middle aged men and women
  publication-title: Med Sci Sports Exerc
– volume: 30
  start-page: 695
  year: 2009
  end-page: 698
  article-title: ACTN3 R577X Polymorphism and Israeli Top‐level Athletes
  publication-title: Int J Sports Med
– volume: 39
  start-page: 1985
  year: 2007
  end-page: 1988
  article-title: The ACTN3 R577X polymorphism in East and West African athletes
  publication-title: Med Sci Sports Exerc
– volume: 32
  start-page: 58
  year: 2007
  end-page: 63
  article-title: ACTN3 (R577X) genotype is associated with fiber type distribution
  publication-title: Physiol Genomics
– volume: 19
  start-page: 1335
  year: 2010
  end-page: 1346
  article-title: Alpha‐actinin‐3 deficiency results in reduced glycogen phosphorylase activity and altered calcium handling in skeletal muscle
  publication-title: Hum Mol Genet
– volume: 74
  start-page: 27
  year: 1982
  end-page: 41
  article-title: A comparative microphotometric study of succinate dehydrogenase activity levels in type I, IIA and IIB fibres of mammalian and human muscles
  publication-title: Histochemistry
– volume: 115
  start-page: 179
  year: 1985
  end-page: 189
  article-title: Metabolic heterogeneity of muscle fibres
  publication-title: J Exp Biol
– volume: 39
  start-page: 1261
  year: 2007
  end-page: 1265
  article-title: Loss of ACTN3 gene function alters mouse muscle metabolism and shows evidence of positive selection in humans
  publication-title: Nat Genet
– volume: 15
  start-page: 88
  year: 2007
  end-page: 93
  article-title: Association analysis of the ACTN3 R577X polymorphism and complex quantitative body composition and performance phenotypes in adolescent Greeks
  publication-title: Eur J Hum Genet
– volume: 38
  start-page: S365
  year: 2006
  article-title: Alpha‐actinin‐3 R577X genotype and muscle power in young male adults of the Leuven Genes for Muscular Strength Study
  publication-title: Med Sci Sports Exerc
– volume: 105
  start-page: 1486
  year: 2008
  end-page: 1491
  article-title: ACTN3 genotype is associated with muscle phenotypes in women across the adult age span
  publication-title: J Appl Physiol
– volume: 35
  start-page: 1875
  year: 2003
  end-page: 1881
  article-title: Effects of taper on endurance cycling capacity and single muscle fiber properties
  publication-title: Med Sci Sports Exerc
– volume: 588
  start-page: 4289
  year: 2010
  end-page: 4302
  article-title: Training in the fasted state improves glucose tolerance during fat‐rich diet
  publication-title: J Physiol
– volume: 103
  start-page: 631
  year: 2008
  end-page: 634
  article-title: Association of the ACTN3 R577X polymorphism with power athlete status in Russians
  publication-title: Eur J Appl Physiol
– volume: 32
  start-page: 1008
  year: 2011
  end-page: 1018
  article-title: ACTN3 genotype, athletic status and lifecourse physical capability: meta‐analysis of the published literature and findings from nine studies
  publication-title: Hum Mutat
– volume: 42
  start-page: 71
  year: 2008
  end-page: 73
  article-title: ACTN3 genotype in professional soccer players
  publication-title: Br J Sports Med
– volume: 99
  start-page: 154
  year: 2005
  end-page: 163
  article-title: ACTN3 genotype is associated with increases in muscle strength in response to resistance training in women
  publication-title: J Appl Physiol
– volume: 73
  start-page: 627
  year: 2003
  end-page: 631
  article-title: ACTN3 genotype is associated with human elite athletic performance
  publication-title: Am J Hum Genet
– volume: 580
  start-page: 1371
  year: 2006
  end-page: 1375
  article-title: The effect of high‐fat feeding on intramuscular lipid and lipid peroxidation levels in UCP3‐ablated mice
  publication-title: FEBS Lett
– volume: 20
  start-page: 2914
  year: 2011b
  end-page: 2927
  article-title: Deficiency of {alpha}‐actinin‐3 is associated with increased susceptibility to contraction‐induced damage and skeletal muscle remodeling
  publication-title: Hum Mol Genet
– volume: 62
  start-page: 206
  year: 2007
  end-page: 212
  article-title: Alpha‐actinin‐3 (ACTN3) R577X polymorphism influences knee extensor peak power response to strength training in older men and women
  publication-title: J Gerontol A Biol Sci Med Sci
– volume: 13
  start-page: 965
  year: 2005
  end-page: 969
  article-title: Mitochondrial DNA and ACTN3 genotypes in Finnish elite endurance and sprint athletes
  publication-title: Eur J Hum Genet
– volume: 293
  start-page: E428
  year: 2007
  end-page: E434
  article-title: Evaluation of intramyocellular lipid breakdown during exercise by biochemical assay, NMR spectroscopy, and Oil Red O staining
  publication-title: Am J Physiol Endocrinol Metab
– volume: 109
  start-page: 564
  year: 2010
  end-page: 573
  article-title: Protective role of alpha‐actinin‐3 in the response to an acute eccentric exercise bout
  publication-title: J Appl Physiol
– volume: 267
  start-page: 9281
  year: 1992
  end-page: 9288
  article-title: Cloning and characterization of two human skeletal muscle alpha‐actinin genes located on chromosomes 1 and 11
  publication-title: J Biol Chem
– volume: 29
  start-page: 352
  year: 2008
  end-page: 355
  article-title: The ACTN3 gene in elite Greek track and field athletes
  publication-title: Int J Sports Med
– volume: 17
  start-page: 1076
  year: 2008
  end-page: 1086
  article-title: An Actn3 knockout mouse provides mechanistic insights into the association between alpha‐actinin‐3 deficiency and human athletic performance
  publication-title: Hum Mol Genet
– ident: e_1_2_7_26_1
  doi: 10.1113/jphysiol.2010.196493
– ident: e_1_2_7_12_1
  doi: 10.1038/ng2122
– ident: e_1_2_7_16_1
  doi: 10.1038/sj.ejhg.5201438
– ident: e_1_2_7_24_1
  doi: 10.1093/hmg/ddr196
– ident: e_1_2_7_15_1
  doi: 10.1249/01.MSS.0000093617.28237.20
– ident: e_1_2_7_22_1
  doi: 10.1136/bjsm.2007.039172
– ident: e_1_2_7_30_1
  doi: 10.1086/377590
– volume: 115
  start-page: 179
  year: 1985
  ident: e_1_2_7_18_1
  article-title: Metabolic heterogeneity of muscle fibres
  publication-title: J Exp Biol
  doi: 10.1242/jeb.115.1.179
– ident: e_1_2_7_5_1
  doi: 10.1152/japplphysiol.01139.2004
– ident: e_1_2_7_6_1
  doi: 10.1152/ajpendo.00112.2007
– ident: e_1_2_7_7_1
  doi: 10.1093/gerona/62.2.206
– ident: e_1_2_7_3_1
  doi: 10.1016/S0021-9258(19)50420-3
– ident: e_1_2_7_14_1
  doi: 10.1038/sj.ejhg.5201724
– ident: e_1_2_7_4_1
  doi: 10.1249/00005768-200605001-01545
– ident: e_1_2_7_17_1
  doi: 10.1055/s-2007-965339
– ident: e_1_2_7_11_1
  doi: 10.1016/j.febslet.2006.01.059
– ident: e_1_2_7_23_1
  doi: 10.1016/j.exger.2010.11.006
– ident: e_1_2_7_10_1
  doi: 10.1055/s-0029-1220731
– ident: e_1_2_7_31_1
  doi: 10.1249/mss.0b013e31814844c9
– ident: e_1_2_7_21_1
  doi: 10.1038/sj.ejhg.5201964
– ident: e_1_2_7_28_1
  doi: 10.1152/japplphysiol.01007.2009
– ident: e_1_2_7_13_1
  doi: 10.1093/hmg/ddm380
– ident: e_1_2_7_2_1
  doi: 10.1002/humu.21526
– ident: e_1_2_7_25_1
  doi: 10.1249/00005768-200605001-01551
– ident: e_1_2_7_27_1
  doi: 10.1152/physiolgenomics.00173.2007
– ident: e_1_2_7_9_1
  doi: 10.1007/s00421-008-0763-1
– ident: e_1_2_7_20_1
  doi: 10.1007/BF00495049
– ident: e_1_2_7_8_1
  doi: 10.1080/02640414.2010.507675
– ident: e_1_2_7_29_1
  doi: 10.1152/japplphysiol.90856.2008
– ident: e_1_2_7_19_1
  doi: 10.1093/hmg/ddq010
SSID ssj0001213422
ssj0043892
Score 2.0819507
Snippet Aim:  In Western European populations, about 18% of all individuals have a complete deficiency of the alpha‐actinin‐3 protein owing to homozygosity for a stop...
Aim:  In Western European populations, about 18% of all individuals have a complete deficiency of the alpha‐actinin‐3 protein owing to homozygosity for a stop...
In Western European populations, about 18% of all individuals have a complete deficiency of the alpha-actinin-3 protein owing to homozygosity for a stop codon...
Aim: In Western European populations, about 18% of all individuals have a complete deficiency of the alpha-actinin-3 protein owing to homozygosity for a stop...
SourceID proquest
pubmed
pascalfrancis
crossref
wiley
istex
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 555
SubjectTerms Actinin - deficiency
Actinin - genetics
ACTN3 R577X
Animals
Biological and medical sciences
cytochrome c oxidase
Electron Transport Complex IV - analysis
Electron Transport Complex IV - genetics
Electron Transport Complex IV - metabolism
enzyme histochemistry
Enzymes
Female
fibre-type specific
Fundamental and applied biological sciences. Psychology
Genotype
Genotype & phenotype
Humans
Male
Mice
Mice, Knockout
Muscle Fibers, Fast-Twitch - enzymology
Muscular system
Oxidation-Reduction
Polymorphism, Genetic
succinate dehydrogenase
Succinate Dehydrogenase - analysis
Succinate Dehydrogenase - genetics
Succinate Dehydrogenase - metabolism
Vertebrates: anatomy and physiology, studies on body, several organs or systems
Young Adult
Title Alpha-actinin-3 deficiency does not significantly alter oxidative enzyme activity in fast human muscle fibres
URI https://api.istex.fr/ark:/67375/WNG-2QKCCMKB-K/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fj.1748-1716.2011.02366.x
https://www.ncbi.nlm.nih.gov/pubmed/21933355
https://www.proquest.com/docview/1497007111
https://www.proquest.com/docview/923955261
Volume 204
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NbtQwELZQuXDhr_wESuUD6i2rxHbW8TGsKCtWVICo6M2y14602m5Sml1ptycegWfkSZhxsqFb9VAhblGiGcWTsfON_c0MIW-ldA5gaxl7k-SxGBoWW-dYPGWcMy-kzW1gW5wMx6fi41l21vGfMBemrQ_Rb7jhzAjrNU5wY5vdSS4FREAA-LtKnIwPhwPEk0jdQnz0lV3bbkm5YH1lKez5zdpcSVSR5DdJPrco3vlz3cePsEYmpWnAmGXbBeM2mLqLesNv6_gRmW8H3LJV5oPV0g6mVzdqQf4fizwmDzt0S4vWHZ-Qe756SvaLCiL7xYYe0cA3DRv5--RHgWm-v3_-wtSKalbBFafOY0ULTAelrvYNreolRYoJEprAB843NBzv03o9c6FkOfXV1WbhKSrBNhh0VtHSNEsamg_SxaqBF6EljMs3z8jp8ftvo3HcNYCIp1jGLc6dspYlmU-MmlpnrJPWQDzqy8zlyg9hPfFWJVaFjo4uFVbaxHNh01IpIxR_TvaquvIvCWXKGS5LnhiRi9xya0rmeQ6g3YBeKSIitx9XT7vq6Nik41xfi5LAuhqtq9G6OlhXryOS9pIXbYWQO8gcBf_pBczlHBl2MtPfTz5o9mUyGn2avNOTiBzuOFgvAJGgZDDsiBxsPU53q08D4ZySiB3TNCK0fwzrBh4GmcrXq0YDsFdZBvFzRF60jvpXN4B6DjgUbBLc7c7D0sXncYGXr_5Z8jV5APdZy406IHvLy5V_A7BvaQ_DhP4D2cdIIQ
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LbxMxELZQe4ALr_JYKMUH1NtWu7Y3Xh9DoATSRoBa0Ztlx14parKBbiIlPfET-I38Ema8m6WpeqgQt5V2Z7Qez9jf2PMg5I2UzgFsLWJvkjwWHcNi6xyLR4xz5oW0uQ3RFsNO_1R8OsvOmnZAmAtT14doD9zQMsJ6jQaOB9KbVi4FuECA-JtSnIx3OgcAKLexwTda6buv7MqBS8oFa2tLYddvVmdLIo8kvx7mcwPnjb1rG6dhibGUpgJxFnUfjJuA6ibuDRvX4QMyWQ-5jlc5P1jM7cHo8lo1yP8kk4fkfgNwabfWyEfkji8fk51uCc79dEX3aQg5DWf5O-RHFzN9f__8hdkV5biEJ06dx6IWmBFK3cxXtJzNKUaZYEwTqMFkRcMNP50txy5ULae-vFxNPUUm2AmDjktamGpOQ_9BOl1U8CO0gIH56gk5PXx_0uvHTQ-IeISV3OLcKWtZkvnEqJF1xjppDbikvshcrjzMc-KtSqwKTR1dKqy0iefCpoVSRij-lGyVs9I_J5QpZ7gseGJELnLLrSmY5zngdgN8pYiIXM-uHjUF0rFPx0RfcZRAuhqlq1G6OkhXLyOStpTf6yIht6DZDwrUEpiLcwyyk5n-Nvyg2ZdBr3c8eKsHEdnb0LCWAJxByWDYEdldq5xuFqAKPDolET6maURo-xqWDrwPMqWfLSoN2F5lGbjQEXlWa-pf3oDrOUBRkEnQt1sPS3c_97v4-OKfKV-Tu_2T4yN99HE4eEnuwTesDpXaJVvzi4V_BShwbveCdf8BQGxMOg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1fb9MwELfQJiFe-Df-BMbwA9pbqsR24uSxdJRCoRqIib1Zdu1IVdd0LK3U7omPwGfkk3DnpGGd9jAh3iIld4ovZ-d39u_uCHkjpbUAW4vQ6SgLRapZaKxl4ZhxzpyQJjOebTFKByfi42ly2vCfMBemrg_RbrjhzPDrNU7wc1tsT3IpIAICwN9U4mQ8TTuAJ3dFGmUYiB19ZVf2W2IuWFtaCpt-szpZEnVE2XWWzw2at35du_gVVkil1BVYs6jbYNyEU7dhr_9v9R-Q6WbENV1l2lkuTGd8ea0Y5P8xyUNyv4G3tFv74yNyx5WPyV63hNB-tqaH1BNO_U7-HvnRxTzf3z9_YW5FOSnhilPrsKQF5oNSO3cVLecLihwTZDSBE5ytqT_fp_PVxPqa5dSVl-uZo6gE-2DQSUkLXS2o7z5IZ8sKXoQWMC5XPSEn_XffeoOw6QARjrGOW5jZ3BgWJS7S-dhYbaw0GgJSVyQ2y10KC4ozeWRy39LRxsJIEzkuTFzkuRY5f0p2ynnpnhPKcqu5LHikRSYyw40umOMZoHYNeqUIiNx8XDVuyqNjl44zdSVMAusqtK5C6ypvXbUKSNxKntclQm4hc-j9pxXQF1Ok2MlEfR-9V-zLsNf7PHyrhgE52HKwVgBCQclg2AHZ33icapafCuK5XCJ4jOOA0PY2LBx4GqRLN19WCpB9niQQQAfkWe2of3UDqucARMEm3t1uPSzVPR508fLFP0u-JnePj_rq04fR8CW5B4-wmie1T3YWF0v3CiDgwhz4uf0HMrRK8g
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Alpha%E2%80%90actinin%E2%80%903+deficiency+does+not+significantly+alter+oxidative+enzyme+activity+in+fast+human+muscle+fibres&rft.jtitle=Acta+Physiologica&rft.au=Vincent%2C+B.&rft.au=Windelinckx%2C+A.&rft.au=Van+Proeyen%2C+K.&rft.au=Masschelein%2C+E.&rft.date=2012-04-01&rft.pub=Blackwell+Publishing+Ltd&rft.issn=1748-1708&rft.eissn=1748-1716&rft.volume=204&rft.issue=4&rft.spage=555&rft.epage=561&rft_id=info:doi/10.1111%2Fj.1748-1716.2011.02366.x&rft.externalDBID=10.1111%252Fj.1748-1716.2011.02366.x&rft.externalDocID=APHA2366
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1748-1708&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1748-1708&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1748-1708&client=summon