Alpha-actinin-3 deficiency does not significantly alter oxidative enzyme activity in fast human muscle fibres
Aim: In Western European populations, about 18% of all individuals have a complete deficiency of the alpha‐actinin‐3 protein owing to homozygosity for a stop codon mutation (R577X) in the ACTN3 gene. Actn3−/− knock‐out mice show increased activity of multiple enzymes in the aerobic metabolic pathwa...
Saved in:
Published in | Acta Physiologica Vol. 204; no. 4; pp. 555 - 561 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Oxford, UK
Blackwell Publishing Ltd
01.04.2012
Wiley-Blackwell Wiley Subscription Services, Inc |
Subjects | |
Online Access | Get full text |
ISSN | 1748-1708 1748-1716 1748-1716 |
DOI | 10.1111/j.1748-1716.2011.02366.x |
Cover
Loading…
Abstract | Aim: In Western European populations, about 18% of all individuals have a complete deficiency of the alpha‐actinin‐3 protein owing to homozygosity for a stop codon mutation (R577X) in the ACTN3 gene. Actn3−/− knock‐out mice show increased activity of multiple enzymes in the aerobic metabolic pathway in fast muscle fibres. Whether this observation is also present in human XX genotype carriers compared to RR carriers has not been studied in a fibre‐type‐specific approach in humans. The purpose of this study was therefore to compare fibre‐type‐specific oxidative enzyme activity in humans with a different ACTN3 R577X genotype.
Methods: Vastus lateralis muscle biopsy samples of 17 XX and 16 RR subjects were used to measure markers of oxidative capacity [cytochrome c oxidase (CYTOX) and succinate dehydrogenase (SDH)] in a fibre‐type‐specific assay using enzyme histochemistry.
Results: Cytochrome c oxidase staining showed no significant genotype group differences in type I or type II muscle fibres. Also, we found no significant differences in SDH staining of fast fibres comparing XX and RR carriers.
Conclusion: In conclusion, the increase in oxidative enzyme activity of fast muscle fibres, as reported in an Actn3−/− knock‐out mouse, was not observed in our human samples. Known differences in metabolic characteristics of muscle fibres in rodents compared to humans may in part explain this discrepancy in findings. |
---|---|
AbstractList | In Western European populations, about 18% of all individuals have a complete deficiency of the alpha-actinin-3 protein owing to homozygosity for a stop codon mutation (R577X) in the ACTN3 gene. Actn3(-/-) knock-out mice show increased activity of multiple enzymes in the aerobic metabolic pathway in fast muscle fibres. Whether this observation is also present in human XX genotype carriers compared to RR carriers has not been studied in a fibre-type-specific approach in humans. The purpose of this study was therefore to compare fibre-type-specific oxidative enzyme activity in humans with a different ACTN3 R577X genotype.AIMIn Western European populations, about 18% of all individuals have a complete deficiency of the alpha-actinin-3 protein owing to homozygosity for a stop codon mutation (R577X) in the ACTN3 gene. Actn3(-/-) knock-out mice show increased activity of multiple enzymes in the aerobic metabolic pathway in fast muscle fibres. Whether this observation is also present in human XX genotype carriers compared to RR carriers has not been studied in a fibre-type-specific approach in humans. The purpose of this study was therefore to compare fibre-type-specific oxidative enzyme activity in humans with a different ACTN3 R577X genotype.Vastus lateralis muscle biopsy samples of 17 XX and 16 RR subjects were used to measure markers of oxidative capacity [cytochrome c oxidase (CYTOX) and succinate dehydrogenase (SDH)] in a fibre-type-specific assay using enzyme histochemistry.METHODSVastus lateralis muscle biopsy samples of 17 XX and 16 RR subjects were used to measure markers of oxidative capacity [cytochrome c oxidase (CYTOX) and succinate dehydrogenase (SDH)] in a fibre-type-specific assay using enzyme histochemistry.Cytochrome c oxidase staining showed no significant genotype group differences in type I or type II muscle fibres. Also, we found no significant differences in SDH staining of fast fibres comparing XX and RR carriers.RESULTSCytochrome c oxidase staining showed no significant genotype group differences in type I or type II muscle fibres. Also, we found no significant differences in SDH staining of fast fibres comparing XX and RR carriers.In conclusion, the increase in oxidative enzyme activity of fast muscle fibres, as reported in an Actn3(-/-) knock-out mouse, was not observed in our human samples. Known differences in metabolic characteristics of muscle fibres in rodents compared to humans may in part explain this discrepancy in findings.CONCLUSIONIn conclusion, the increase in oxidative enzyme activity of fast muscle fibres, as reported in an Actn3(-/-) knock-out mouse, was not observed in our human samples. Known differences in metabolic characteristics of muscle fibres in rodents compared to humans may in part explain this discrepancy in findings. Aim: In Western European populations, about 18% of all individuals have a complete deficiency of the alpha‐actinin‐3 protein owing to homozygosity for a stop codon mutation (R577X) in the ACTN3 gene. Actn3 −/− knock‐out mice show increased activity of multiple enzymes in the aerobic metabolic pathway in fast muscle fibres. Whether this observation is also present in human XX genotype carriers compared to RR carriers has not been studied in a fibre‐type‐specific approach in humans. The purpose of this study was therefore to compare fibre‐type‐specific oxidative enzyme activity in humans with a different ACTN3 R577X genotype. Methods: Vastus lateralis muscle biopsy samples of 17 XX and 16 RR subjects were used to measure markers of oxidative capacity [cytochrome c oxidase (CYTOX) and succinate dehydrogenase (SDH)] in a fibre‐type‐specific assay using enzyme histochemistry. Results: Cytochrome c oxidase staining showed no significant genotype group differences in type I or type II muscle fibres. Also, we found no significant differences in SDH staining of fast fibres comparing XX and RR carriers. Conclusion: In conclusion, the increase in oxidative enzyme activity of fast muscle fibres, as reported in an Actn3 −/− knock‐out mouse, was not observed in our human samples. Known differences in metabolic characteristics of muscle fibres in rodents compared to humans may in part explain this discrepancy in findings. In Western European populations, about 18% of all individuals have a complete deficiency of the alpha-actinin-3 protein owing to homozygosity for a stop codon mutation (R577X) in the ACTN3 gene. Actn3(-/-) knock-out mice show increased activity of multiple enzymes in the aerobic metabolic pathway in fast muscle fibres. Whether this observation is also present in human XX genotype carriers compared to RR carriers has not been studied in a fibre-type-specific approach in humans. The purpose of this study was therefore to compare fibre-type-specific oxidative enzyme activity in humans with a different ACTN3 R577X genotype. Vastus lateralis muscle biopsy samples of 17 XX and 16 RR subjects were used to measure markers of oxidative capacity [cytochrome c oxidase (CYTOX) and succinate dehydrogenase (SDH)] in a fibre-type-specific assay using enzyme histochemistry. Cytochrome c oxidase staining showed no significant genotype group differences in type I or type II muscle fibres. Also, we found no significant differences in SDH staining of fast fibres comparing XX and RR carriers. In conclusion, the increase in oxidative enzyme activity of fast muscle fibres, as reported in an Actn3(-/-) knock-out mouse, was not observed in our human samples. Known differences in metabolic characteristics of muscle fibres in rodents compared to humans may in part explain this discrepancy in findings. Aim: In Western European populations, about 18% of all individuals have a complete deficiency of the alpha‐actinin‐3 protein owing to homozygosity for a stop codon mutation (R577X) in the ACTN3 gene. Actn3−/− knock‐out mice show increased activity of multiple enzymes in the aerobic metabolic pathway in fast muscle fibres. Whether this observation is also present in human XX genotype carriers compared to RR carriers has not been studied in a fibre‐type‐specific approach in humans. The purpose of this study was therefore to compare fibre‐type‐specific oxidative enzyme activity in humans with a different ACTN3 R577X genotype. Methods: Vastus lateralis muscle biopsy samples of 17 XX and 16 RR subjects were used to measure markers of oxidative capacity [cytochrome c oxidase (CYTOX) and succinate dehydrogenase (SDH)] in a fibre‐type‐specific assay using enzyme histochemistry. Results: Cytochrome c oxidase staining showed no significant genotype group differences in type I or type II muscle fibres. Also, we found no significant differences in SDH staining of fast fibres comparing XX and RR carriers. Conclusion: In conclusion, the increase in oxidative enzyme activity of fast muscle fibres, as reported in an Actn3−/− knock‐out mouse, was not observed in our human samples. Known differences in metabolic characteristics of muscle fibres in rodents compared to humans may in part explain this discrepancy in findings. Aim: In Western European populations, about 18% of all individuals have a complete deficiency of the alpha-actinin-3 protein owing to homozygosity for a stop codon mutation (R577X) in the ACTN3 gene. Actn3-/- knock-out mice show increased activity of multiple enzymes in the aerobic metabolic pathway in fast muscle fibres. Whether this observation is also present in human XX genotype carriers compared to RR carriers has not been studied in a fibre-type-specific approach in humans. The purpose of this study was therefore to compare fibre-type-specific oxidative enzyme activity in humans with a different ACTN3 R577X genotype. Methods: Vastus lateralis muscle biopsy samples of 17 XX and 16 RR subjects were used to measure markers of oxidative capacity [cytochrome c oxidase (CYTOX) and succinate dehydrogenase (SDH)] in a fibre-type-specific assay using enzyme histochemistry. Results: Cytochrome c oxidase staining showed no significant genotype group differences in type I or type II muscle fibres. Also, we found no significant differences in SDH staining of fast fibres comparing XX and RR carriers. Conclusion: In conclusion, the increase in oxidative enzyme activity of fast muscle fibres, as reported in an Actn3-/- knock-out mouse, was not observed in our human samples. Known differences in metabolic characteristics of muscle fibres in rodents compared to humans may in part explain this discrepancy in findings. [PUBLICATION ABSTRACT] |
Author | Vincent, B. Nielens, H. Ramaekers, M. Van Leemputte, M. Thomis, M. Van Proeyen, K. Masschelein, E. Hespel, P. Windelinckx, A. |
Author_xml | – sequence: 1 givenname: B. surname: Vincent fullname: Vincent, B. organization: Research Centre for Exercise and Health, Department of Biomedical Kinesiology, Faculty of Kinesiology and Rehabilitation Sciences, K. U. Leuven, Leuven, Belgium – sequence: 2 givenname: A. surname: Windelinckx fullname: Windelinckx, A. organization: Research Centre for Exercise and Health, Department of Biomedical Kinesiology, Faculty of Kinesiology and Rehabilitation Sciences, K. U. Leuven, Leuven, Belgium – sequence: 3 givenname: K. surname: Van Proeyen fullname: Van Proeyen, K. organization: Research Centre for Exercise and Health, Department of Biomedical Kinesiology, Faculty of Kinesiology and Rehabilitation Sciences, K. U. Leuven, Leuven, Belgium – sequence: 4 givenname: E. surname: Masschelein fullname: Masschelein, E. organization: Research Centre for Exercise and Health, Department of Biomedical Kinesiology, Faculty of Kinesiology and Rehabilitation Sciences, K. U. Leuven, Leuven, Belgium – sequence: 5 givenname: H. surname: Nielens fullname: Nielens, H. organization: Department of Physical Medicine and Rehabilitation, Cliniques Universitaires St-Luc, UCL, Brussels, Belgium – sequence: 6 givenname: M. surname: Ramaekers fullname: Ramaekers, M. organization: Research Centre for Exercise and Health, Department of Biomedical Kinesiology, Faculty of Kinesiology and Rehabilitation Sciences, K. U. Leuven, Leuven, Belgium – sequence: 7 givenname: M. surname: Van Leemputte fullname: Van Leemputte, M. organization: Research Centre for Exercise and Health, Department of Biomedical Kinesiology, Faculty of Kinesiology and Rehabilitation Sciences, K. U. Leuven, Leuven, Belgium – sequence: 8 givenname: P. surname: Hespel fullname: Hespel, P. organization: Research Centre for Exercise and Health, Department of Biomedical Kinesiology, Faculty of Kinesiology and Rehabilitation Sciences, K. U. Leuven, Leuven, Belgium – sequence: 9 givenname: M. surname: Thomis fullname: Thomis, M. organization: Research Centre for Exercise and Health, Department of Biomedical Kinesiology, Faculty of Kinesiology and Rehabilitation Sciences, K. U. Leuven, Leuven, Belgium |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=25572676$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/21933355$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkVtv1DAQhSNURC_0LyBLCPGUxZc4Wb8gbVfQoi03CcSjZTsT6iVxFttpN_x6HHa7SH2qXzyyvzkzOuc0O3K9gyxDBM9IOm_WM1IV85xUpJxRTMgMU1aWs-2T7OTwcXSo8fw4Ow9hjTEmlLCC0mfZMSWCMcb5SdYt2s2NypWJ1lmXM1RDY40FZ0ZU9xCQ6yMK9qez6Vm52I5ItRE86re2VtHeAgL3Z-wATRK3No7IOtSoENHN0CmHuiGYFlBjtYfwPHvaqDbA-f4-y76_f_dteZVff778sFxc56YoeZnPa6E1xRywEkbXSteVVlgU0PB6LqDkBIMWWIuyKgWrSaErjYEVmjRCqEKws-z1Tnfj-98DhCg7Gwy0rXLQD0EKygTntCSJfPmAXPeDd2k5SQpRYVwlyxP1Yk8NuoNabrztlB_lvY8JeLUHVDCqbbxyxob_HOcVTcsm7u2OM74PwUMjjY3Jxt5Fr2wrCZZTxnItp_jkFKWcMpb_MpbbJDB_IHA_4xGt-9l3toXx0X1y8eVqMZVJIN8J2BBhexBQ_pcsK1Zx-ePTpaRfV8vlx9WFXLG_QJXM-g |
CitedBy_id | crossref_primary_10_1586_14737159_2015_1039517 crossref_primary_10_1152_japplphysiol_00557_2013 crossref_primary_10_1111_apha_12414 crossref_primary_10_1111_bph_12399 crossref_primary_10_1371_journal_pone_0049281 crossref_primary_10_1519_JSC_0000000000002911 crossref_primary_10_1007_s13258_013_0111_7 crossref_primary_10_3390_sports6040145 crossref_primary_10_1093_hmg_ddt580 |
Cites_doi | 10.1113/jphysiol.2010.196493 10.1038/ng2122 10.1038/sj.ejhg.5201438 10.1093/hmg/ddr196 10.1249/01.MSS.0000093617.28237.20 10.1136/bjsm.2007.039172 10.1086/377590 10.1242/jeb.115.1.179 10.1152/japplphysiol.01139.2004 10.1152/ajpendo.00112.2007 10.1093/gerona/62.2.206 10.1016/S0021-9258(19)50420-3 10.1038/sj.ejhg.5201724 10.1249/00005768-200605001-01545 10.1055/s-2007-965339 10.1016/j.febslet.2006.01.059 10.1016/j.exger.2010.11.006 10.1055/s-0029-1220731 10.1249/mss.0b013e31814844c9 10.1038/sj.ejhg.5201964 10.1152/japplphysiol.01007.2009 10.1093/hmg/ddm380 10.1002/humu.21526 10.1249/00005768-200605001-01551 10.1152/physiolgenomics.00173.2007 10.1007/s00421-008-0763-1 10.1007/BF00495049 10.1080/02640414.2010.507675 10.1152/japplphysiol.90856.2008 10.1093/hmg/ddq010 |
ContentType | Journal Article |
Copyright | 2011 The Authors. Acta Physiologica © 2011 Scandinavian Physiological Society 2015 INIST-CNRS 2011 The Authors. Acta Physiologica © 2011 Scandinavian Physiological Society. |
Copyright_xml | – notice: 2011 The Authors. Acta Physiologica © 2011 Scandinavian Physiological Society – notice: 2015 INIST-CNRS – notice: 2011 The Authors. Acta Physiologica © 2011 Scandinavian Physiological Society. |
DBID | BSCLL AAYXX CITATION IQODW CGR CUY CVF ECM EIF NPM 7TK 7TS 7X8 |
DOI | 10.1111/j.1748-1716.2011.02366.x |
DatabaseName | Istex CrossRef Pascal-Francis Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Neurosciences Abstracts Physical Education Index MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Neurosciences Abstracts Physical Education Index MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic CrossRef MEDLINE Neurosciences Abstracts |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology |
EISSN | 1748-1716 |
EndPage | 561 |
ExternalDocumentID | 3215050351 21933355 25572676 10_1111_j_1748_1716_2011_02366_x APHA2366 ark_67375_WNG_2QKCCMKB_K |
Genre | article Journal Article |
GroupedDBID | --- .3N .GA .GJ .Y3 05W 0R~ 10A 1OC 23M 31~ 33P 36B 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52R 52S 52T 52U 52V 52W 52X 53G 5GY 5HH 5LA 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A01 A03 AAESR AAEVG AAHHS AANLZ AAONW AASGY AAXRX AAZKR ABCQN ABCUV ABDBF ABEML ABLJU ABPVW ABQWH ABXGK ACAHQ ACBWZ ACCFJ ACCZN ACGOF ACMXC ACPOU ACPRK ACSCC ACXBN ACXQS ADBBV ADBTR ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFNX AFFPM AFGKR AFPWT AFZJQ AHBTC AIACR AITYG AIURR AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ASPBG ATUGU AVWKF AZBYB AZFZN BAFTC BDRZF BFHJK BHBCM BMXJE BROTX BRXPI BSCLL BY8 C45 CAG COF CS3 D-6 D-7 D-E D-F DCZOG DPXWK DR2 DRFUL DRMAN DRSTM DXH EAD EAP EAS EBC EBD EBS EBX EJD EMB EMK EMOBN EPS ESX EX3 F00 F01 F04 F5P FEDTE FUBAC G-S GODZA HF~ HGLYW HVGLF HZI HZ~ IHE IX1 K48 KBYEO L7B LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRMAN MRSTM MSFUL MSMAN MSSTM MXFUL MXMAN MXSTM N04 N05 N9A O66 O9- OHT OIG OVD P2W P2X P2Z P4B P4D Q.N Q11 QB0 R.K ROL RX1 SUPJJ SV3 TEORI TUS UB1 W8V W99 WBKPD WIH WIJ WIK WNSPC WOHZO WOW WQJ WRC WXI WXSBR WYISQ XG1 ~IA ~KM ~WT AAHQN AAIPD AAMNL AANHP AAYCA ACRPL ACUHS ACYXJ ADNMO AFWVQ ALVPJ AAYXX AGHNM AGQPQ AGYGG CITATION AAMMB AEFGJ AGXDD AIDQK AIDYY IQODW CGR CUY CVF ECM EIF NPM 1OB 7TK 7TS 7X8 |
ID | FETCH-LOGICAL-c4656-8d9bb205e0a9cbdabd7ba094ef5d89e6510eb90b967693d14b7b0e34b1f99a493 |
IEDL.DBID | DR2 |
ISSN | 1748-1708 1748-1716 |
IngestDate | Fri Sep 05 05:06:00 EDT 2025 Wed Aug 13 04:24:19 EDT 2025 Thu Apr 03 07:09:32 EDT 2025 Mon Jul 21 09:13:32 EDT 2025 Tue Jul 01 03:43:26 EDT 2025 Thu Apr 24 23:04:48 EDT 2025 Wed Jan 22 17:07:02 EST 2025 Wed Oct 30 09:48:10 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | Human Succinate dehydrogenase ACTN3 R577X Enzyme cytochrome c oxidase Striated muscle enzyme histochemistry Cytochrome c fibre-type specific Vertebrata Mammalia Enzymatic activity Oxidoreductases Histochemistry |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor CC BY 4.0 2011 The Authors. Acta Physiologica © 2011 Scandinavian Physiological Society. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4656-8d9bb205e0a9cbdabd7ba094ef5d89e6510eb90b967693d14b7b0e34b1f99a493 |
Notes | istex:A421B043FBC582151A9352EAD1D5BD24D0A69403 ark:/67375/WNG-2QKCCMKB-K ArticleID:APHA2366 ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 |
PMID | 21933355 |
PQID | 1497007111 |
PQPubID | 1036382 |
PageCount | 7 |
ParticipantIDs | proquest_miscellaneous_923955261 proquest_journals_1497007111 pubmed_primary_21933355 pascalfrancis_primary_25572676 crossref_citationtrail_10_1111_j_1748_1716_2011_02366_x crossref_primary_10_1111_j_1748_1716_2011_02366_x wiley_primary_10_1111_j_1748_1716_2011_02366_x_APHA2366 istex_primary_ark_67375_WNG_2QKCCMKB_K |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | April 2012 |
PublicationDateYYYYMMDD | 2012-04-01 |
PublicationDate_xml | – month: 04 year: 2012 text: April 2012 |
PublicationDecade | 2010 |
PublicationPlace | Oxford, UK |
PublicationPlace_xml | – name: Oxford, UK – name: Oxford – name: England – name: Stockholm |
PublicationTitle | Acta Physiologica |
PublicationTitleAlternate | Acta Physiol (Oxf) |
PublicationYear | 2012 |
Publisher | Blackwell Publishing Ltd Wiley-Blackwell Wiley Subscription Services, Inc |
Publisher_xml | – name: Blackwell Publishing Ltd – name: Wiley-Blackwell – name: Wiley Subscription Services, Inc |
References | Quinlan, K.G., Seto, J.T., Turner, N., Vandebrouck, A., Floetenmeyer, M., MacArthur, D.G., Raftery, J.M., Lek, M., Yang, N., Parton, R.G., Cooney, G.J. & North, K.N.2010. Alpha-actinin-3 deficiency results in reduced glycogen phosphorylase activity and altered calcium handling in skeletal muscle. Hum Mol Genet19, 1335-1346. Delmonico, M.J., Kostek, M.C., Doldo, N.A., Hand, B.D., Walsh, S., Conway, J.M., Carignan, C.R., Roth, S.M. & Hurley, B.F.2007. Alpha-actinin-3 (ACTN3) R577X polymorphism influences knee extensor peak power response to strength training in older men and women. J Gerontol A Biol Sci Med Sci62, 206-212. Clarkson, P.M., Devaney, J.M., Gordish-Dressman, H., Thompson, P.D., Hubal, M.J., Urso, M., Price, T.B., Angelopoulos, T.J., Gordon, P.M., Moyna, N.M., Pescatello, L.S., Visich, P.S., Zoeller, R.F., Seip, R.L. & Hoffman, E.P.2005. ACTN3 genotype is associated with increases in muscle strength in response to resistance training in women. J Appl Physiol99, 154-163. MacArthur, D.G., Seto, J.T., Raftery, J.M., Quinlan, K.G., Huttley, G.A., Hook, J.W., Lemckert, F.A., Kee, A.J., Edwards, M.R., Berman, Y., Hardeman, E.C., Gunning, P.W., Easteal, S., Yang, N. & North, K.N.2007. Loss of ACTN3 gene function alters mouse muscle metabolism and shows evidence of positive selection in humans. Nat Genet39, 1261-1265. Santiago, C., Gonzalez-Freire, M., Serratosa, L., Morate, F.J., Meyer, T., Gomez-Gallego, F. & Lucia, A.2008. ACTN3 genotype in professional soccer players. Br J Sports Med42, 71-73. Druzhevskaya, A.M., Ahmetov, I.I., Astratenkova, I.V. & Rogozkin, V.A.2008. Association of the ACTN3 R577X polymorphism with power athlete status in Russians. Eur J Appl Physiol103, 631-634. Vincent, B., Windelinckx, A., Nielens, H., Ramaekers, M., Van, L.M., Hespel, P. & Thomis, M.A.2010. Protective role of alpha-actinin-3 in the response to an acute eccentric exercise bout. J Appl Physiol109, 564-573. Doring, F.E., Onur, S., Geisen, U., Boulay, M.R., Perusse, L., Rankinen, T., Rauramaa, R., Wolfahrt, B. & Bouchard, C.2010. ACTN3 R577X and other polymorphisms are not associated with elite endurance athlete status in the Genathlete study. J Sports Sci28, 1355-1359. Walsh, S., Liu, D., Metter, E.J., Ferrucci, L. & Roth, S.M.2008. ACTN3 genotype is associated with muscle phenotypes in women across the adult age span. J Appl Physiol105, 1486-1491. Beggs, A.H., Byers, T.J., Knoll, J.H., Boyce, F.M., Bruns, G.A. & Kunkel, L.M.1992. Cloning and characterization of two human skeletal muscle alpha-actinin genes located on chromosomes 1 and 11. J Biol Chem267, 9281-9288. Van Proeyen, K., Szlufcik, K., Nielens, H., Pelgrim, K., Deldicque, L., Hesselink, M., Van Veldhoven, P.P. & Hespel, P.2010. Training in the fasted state improves glucose tolerance during fat-rich diet. J Physiol588, 4289-4302. Yang, N., MacArthur, D.G., Wolde, B., Onywera, V.O., Boit, M.K., Lau, S.Y., Wilson, R.H., Scott, R.A., Pitsiladis, Y.P. & North, K.2007. The ACTN3 R577X polymorphism in East and West African athletes. Med Sci Sports Exerc39, 1985-1988. Pette, D. 1985. Metabolic heterogeneity of muscle fibres. J Exp Biol115, 179-189. Hoeks, J., Hesselink, M.K., Sluiter, W., Schaart, G., Willems, J., Morrisson, A., Clapham, J.C., Saris, W.H. & Schrauwen, P.2006. The effect of high-fat feeding on intramuscular lipid and lipid peroxidation levels in UCP3-ablated mice. FEBS Lett580, 1371-1375. MacArthur, D.G., Seto, J.T., Chan, S., Quinlan, K.G., Raftery, J.M., Turner, N., Nicholson, M.D., Kee, A.J., Hardeman, E.C., Gunning, P.W., Cooney, G.J., Head, S.I., Yang, N. & North, K.N.2008. An Actn3 knockout mouse provides mechanistic insights into the association between alpha-actinin-3 deficiency and human athletic performance. Hum Mol Genet17, 1076-1086. Moran, C.N., Yang, N., Bailey, M.E., Tsiokanos, A., Jamurtas, A., MacArthur, D.G., North, K., Pitsiladis, Y.P. & Wilson, R.H.2007. Association analysis of the ACTN3 R577X polymorphism and complex quantitative body composition and performance phenotypes in adolescent Greeks. Eur J Hum Genet15, 88-93. Yang, N., MacArthur, D.G., Gulbin, J.P., Hahn, A.G., Beggs, A.H., Easteal, S. & North, K.2003. ACTN3 genotype is associated with human elite athletic performance. Am J Hum Genet73, 627-631. Reichmann, H. & Pette, D.1982. A comparative microphotometric study of succinate dehydrogenase activity levels in type I, IIA and IIB fibres of mammalian and human muscles. Histochemistry74, 27-41. Eynon, N., Duarte, J.A., Oliveira, J., Sagiv, M., Yamin, C., Meckel, Y. & Goldhammer, E.2009. ACTN3 R577X Polymorphism and Israeli Top-level Athletes. Int J Sports Med30, 695-698. De Bock, K., Dresselaers, T., Kiens, B., Richter, E.A., Van, H.P. & Hespel, P.2007. Evaluation of intramyocellular lipid breakdown during exercise by biochemical assay, NMR spectroscopy, and Oil Red O staining. Am J Physiol Endocrinol Metab293, E428-E434. Alfred, T., Ben-Shlomo, Y., Cooper, R., Hardy, R., Cooper, C., Deary, I.J., Gunnell, D., Harris, S.E., Kumari, M., Martin, R.M.et al.2011. ACTN3 genotype, athletic status and lifecourse physical capability: meta-analysis of the published literature and findings from nine studies. Hum Mutat32, 1008-1018. Roth, S.M., Walsh, S., Liu, D., Metter, E.J., Ferrucci, L. & Hurley, B.F.2008. The ACTN3 R577X nonsense allele is under-represented in elite-level strength athletes. Eur J Hum Genet16, 391-394. Vincent, B., De Bock, K., Ramaekers, M., Van den Eede, E., Van Leemputte, M., Hespel, P. & Thomis, M.A.2007. ACTN3 (R577X) genotype is associated with fiber type distribution. Physiol Genomics32, 58-63. Neary, J.P., Martin, T.P. & Quinney, H.A.2003. Effects of taper on endurance cycling capacity and single muscle fiber properties. Med Sci Sports Exerc35, 1875-1881. Beunen, G.P., Windelinckx, A., De Mars, G., Huygens, W., Peeters, M., Vlietinck, R. & Thomis, M.A.2006. Alpha-actinin-3 R577X genotype is associated with muscle power in middle aged men and women. Med Sci Sports Exerc38, S364. Niemi, A.K. & Majamaa, K.2005. Mitochondrial DNA and ACTN3 genotypes in Finnish elite endurance and sprint athletes. Eur J Hum Genet13, 965-969. Thomis, M.A., De Mars, G., Windelinckx, A., Vincent, B., Huygens, W., Peeters, M., Vlietinck, R. & Beunen, G.P.2006. Alpha-actinin-3 R577X genotype and muscle power in young male adults of the Leuven Genes for Muscular Strength Study. Med Sci Sports Exerc38, S365. Papadimitriou, I.D., Papadopoulos, C., Kouvatsi, A. & Triantaphyllidis, C.2008. The ACTN3 gene in elite Greek track and field athletes. Int J Sports Med29, 352-355. Seto, J.T., Chan, S., Turner, N., MacArthur, D.G., Raftery, J.M., Berman, Y.D., Quinlan, K.G., Cooney, G.J., Head, S., Yang, N. & North, K.N.2011a. The effect of alpha-actinin-3 deficiency on muscle aging. Exp Gerontol46, 292-302. Seto, J.T., Lek, M., Quinlan, K.G., Houweling, P.J., Zheng, X.F., Garton, F., MacArthur, D.G., Raftery, J.M., Garvey, S.M., Hauser, M.A., Yang, N., Head, S.I. & North, K.N.2011b. Deficiency of {alpha}-actinin-3 is associated with increased susceptibility to contraction-induced damage and skeletal muscle remodeling. Hum Mol Genet20, 2914-2927. 2007; 39 2011b; 20 2010; 109 2010; 19 2006; 38 1982; 74 1992; 267 2010; 588 2008; 16 2008; 17 2003; 35 2011; 32 2008; 105 2008; 103 2007; 32 2003; 73 2007; 15 2009; 30 2007; 293 2010; 28 2008; 29 2006; 580 1985; 115 2007; 62 2008; 42 2005; 99 2011a; 46 2005; 13 e_1_2_7_6_1 e_1_2_7_5_1 e_1_2_7_4_1 e_1_2_7_3_1 e_1_2_7_9_1 e_1_2_7_8_1 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_17_1 e_1_2_7_16_1 e_1_2_7_2_1 e_1_2_7_15_1 e_1_2_7_14_1 e_1_2_7_13_1 e_1_2_7_12_1 e_1_2_7_11_1 Pette D. (e_1_2_7_18_1) 1985; 115 e_1_2_7_10_1 e_1_2_7_26_1 e_1_2_7_27_1 e_1_2_7_28_1 e_1_2_7_29_1 e_1_2_7_30_1 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_24_1 e_1_2_7_23_1 e_1_2_7_22_1 e_1_2_7_21_1 e_1_2_7_20_1 |
References_xml | – reference: Pette, D. 1985. Metabolic heterogeneity of muscle fibres. J Exp Biol115, 179-189. – reference: Clarkson, P.M., Devaney, J.M., Gordish-Dressman, H., Thompson, P.D., Hubal, M.J., Urso, M., Price, T.B., Angelopoulos, T.J., Gordon, P.M., Moyna, N.M., Pescatello, L.S., Visich, P.S., Zoeller, R.F., Seip, R.L. & Hoffman, E.P.2005. ACTN3 genotype is associated with increases in muscle strength in response to resistance training in women. J Appl Physiol99, 154-163. – reference: De Bock, K., Dresselaers, T., Kiens, B., Richter, E.A., Van, H.P. & Hespel, P.2007. Evaluation of intramyocellular lipid breakdown during exercise by biochemical assay, NMR spectroscopy, and Oil Red O staining. Am J Physiol Endocrinol Metab293, E428-E434. – reference: Seto, J.T., Lek, M., Quinlan, K.G., Houweling, P.J., Zheng, X.F., Garton, F., MacArthur, D.G., Raftery, J.M., Garvey, S.M., Hauser, M.A., Yang, N., Head, S.I. & North, K.N.2011b. Deficiency of {alpha}-actinin-3 is associated with increased susceptibility to contraction-induced damage and skeletal muscle remodeling. Hum Mol Genet20, 2914-2927. – reference: Beggs, A.H., Byers, T.J., Knoll, J.H., Boyce, F.M., Bruns, G.A. & Kunkel, L.M.1992. Cloning and characterization of two human skeletal muscle alpha-actinin genes located on chromosomes 1 and 11. J Biol Chem267, 9281-9288. – reference: Reichmann, H. & Pette, D.1982. A comparative microphotometric study of succinate dehydrogenase activity levels in type I, IIA and IIB fibres of mammalian and human muscles. Histochemistry74, 27-41. – reference: Yang, N., MacArthur, D.G., Wolde, B., Onywera, V.O., Boit, M.K., Lau, S.Y., Wilson, R.H., Scott, R.A., Pitsiladis, Y.P. & North, K.2007. The ACTN3 R577X polymorphism in East and West African athletes. Med Sci Sports Exerc39, 1985-1988. – reference: Santiago, C., Gonzalez-Freire, M., Serratosa, L., Morate, F.J., Meyer, T., Gomez-Gallego, F. & Lucia, A.2008. ACTN3 genotype in professional soccer players. Br J Sports Med42, 71-73. – reference: Yang, N., MacArthur, D.G., Gulbin, J.P., Hahn, A.G., Beggs, A.H., Easteal, S. & North, K.2003. ACTN3 genotype is associated with human elite athletic performance. Am J Hum Genet73, 627-631. – reference: Delmonico, M.J., Kostek, M.C., Doldo, N.A., Hand, B.D., Walsh, S., Conway, J.M., Carignan, C.R., Roth, S.M. & Hurley, B.F.2007. Alpha-actinin-3 (ACTN3) R577X polymorphism influences knee extensor peak power response to strength training in older men and women. J Gerontol A Biol Sci Med Sci62, 206-212. – reference: Eynon, N., Duarte, J.A., Oliveira, J., Sagiv, M., Yamin, C., Meckel, Y. & Goldhammer, E.2009. ACTN3 R577X Polymorphism and Israeli Top-level Athletes. Int J Sports Med30, 695-698. – reference: Roth, S.M., Walsh, S., Liu, D., Metter, E.J., Ferrucci, L. & Hurley, B.F.2008. The ACTN3 R577X nonsense allele is under-represented in elite-level strength athletes. Eur J Hum Genet16, 391-394. – reference: Vincent, B., De Bock, K., Ramaekers, M., Van den Eede, E., Van Leemputte, M., Hespel, P. & Thomis, M.A.2007. ACTN3 (R577X) genotype is associated with fiber type distribution. Physiol Genomics32, 58-63. – reference: Van Proeyen, K., Szlufcik, K., Nielens, H., Pelgrim, K., Deldicque, L., Hesselink, M., Van Veldhoven, P.P. & Hespel, P.2010. Training in the fasted state improves glucose tolerance during fat-rich diet. J Physiol588, 4289-4302. – reference: Vincent, B., Windelinckx, A., Nielens, H., Ramaekers, M., Van, L.M., Hespel, P. & Thomis, M.A.2010. Protective role of alpha-actinin-3 in the response to an acute eccentric exercise bout. J Appl Physiol109, 564-573. – reference: Seto, J.T., Chan, S., Turner, N., MacArthur, D.G., Raftery, J.M., Berman, Y.D., Quinlan, K.G., Cooney, G.J., Head, S., Yang, N. & North, K.N.2011a. The effect of alpha-actinin-3 deficiency on muscle aging. Exp Gerontol46, 292-302. – reference: Druzhevskaya, A.M., Ahmetov, I.I., Astratenkova, I.V. & Rogozkin, V.A.2008. Association of the ACTN3 R577X polymorphism with power athlete status in Russians. Eur J Appl Physiol103, 631-634. – reference: Thomis, M.A., De Mars, G., Windelinckx, A., Vincent, B., Huygens, W., Peeters, M., Vlietinck, R. & Beunen, G.P.2006. Alpha-actinin-3 R577X genotype and muscle power in young male adults of the Leuven Genes for Muscular Strength Study. Med Sci Sports Exerc38, S365. – reference: Hoeks, J., Hesselink, M.K., Sluiter, W., Schaart, G., Willems, J., Morrisson, A., Clapham, J.C., Saris, W.H. & Schrauwen, P.2006. The effect of high-fat feeding on intramuscular lipid and lipid peroxidation levels in UCP3-ablated mice. FEBS Lett580, 1371-1375. – reference: Neary, J.P., Martin, T.P. & Quinney, H.A.2003. Effects of taper on endurance cycling capacity and single muscle fiber properties. Med Sci Sports Exerc35, 1875-1881. – reference: Doring, F.E., Onur, S., Geisen, U., Boulay, M.R., Perusse, L., Rankinen, T., Rauramaa, R., Wolfahrt, B. & Bouchard, C.2010. ACTN3 R577X and other polymorphisms are not associated with elite endurance athlete status in the Genathlete study. J Sports Sci28, 1355-1359. – reference: Quinlan, K.G., Seto, J.T., Turner, N., Vandebrouck, A., Floetenmeyer, M., MacArthur, D.G., Raftery, J.M., Lek, M., Yang, N., Parton, R.G., Cooney, G.J. & North, K.N.2010. Alpha-actinin-3 deficiency results in reduced glycogen phosphorylase activity and altered calcium handling in skeletal muscle. Hum Mol Genet19, 1335-1346. – reference: Beunen, G.P., Windelinckx, A., De Mars, G., Huygens, W., Peeters, M., Vlietinck, R. & Thomis, M.A.2006. Alpha-actinin-3 R577X genotype is associated with muscle power in middle aged men and women. Med Sci Sports Exerc38, S364. – reference: MacArthur, D.G., Seto, J.T., Raftery, J.M., Quinlan, K.G., Huttley, G.A., Hook, J.W., Lemckert, F.A., Kee, A.J., Edwards, M.R., Berman, Y., Hardeman, E.C., Gunning, P.W., Easteal, S., Yang, N. & North, K.N.2007. Loss of ACTN3 gene function alters mouse muscle metabolism and shows evidence of positive selection in humans. Nat Genet39, 1261-1265. – reference: MacArthur, D.G., Seto, J.T., Chan, S., Quinlan, K.G., Raftery, J.M., Turner, N., Nicholson, M.D., Kee, A.J., Hardeman, E.C., Gunning, P.W., Cooney, G.J., Head, S.I., Yang, N. & North, K.N.2008. An Actn3 knockout mouse provides mechanistic insights into the association between alpha-actinin-3 deficiency and human athletic performance. Hum Mol Genet17, 1076-1086. – reference: Moran, C.N., Yang, N., Bailey, M.E., Tsiokanos, A., Jamurtas, A., MacArthur, D.G., North, K., Pitsiladis, Y.P. & Wilson, R.H.2007. Association analysis of the ACTN3 R577X polymorphism and complex quantitative body composition and performance phenotypes in adolescent Greeks. Eur J Hum Genet15, 88-93. – reference: Walsh, S., Liu, D., Metter, E.J., Ferrucci, L. & Roth, S.M.2008. ACTN3 genotype is associated with muscle phenotypes in women across the adult age span. J Appl Physiol105, 1486-1491. – reference: Alfred, T., Ben-Shlomo, Y., Cooper, R., Hardy, R., Cooper, C., Deary, I.J., Gunnell, D., Harris, S.E., Kumari, M., Martin, R.M.et al.2011. ACTN3 genotype, athletic status and lifecourse physical capability: meta-analysis of the published literature and findings from nine studies. Hum Mutat32, 1008-1018. – reference: Niemi, A.K. & Majamaa, K.2005. Mitochondrial DNA and ACTN3 genotypes in Finnish elite endurance and sprint athletes. Eur J Hum Genet13, 965-969. – reference: Papadimitriou, I.D., Papadopoulos, C., Kouvatsi, A. & Triantaphyllidis, C.2008. The ACTN3 gene in elite Greek track and field athletes. Int J Sports Med29, 352-355. – volume: 16 start-page: 391 year: 2008 end-page: 394 article-title: The ACTN3 R577X nonsense allele is under‐represented in elite‐level strength athletes publication-title: Eur J Hum Genet – volume: 28 start-page: 1355 year: 2010 end-page: 1359 article-title: ACTN3 R577X and other polymorphisms are not associated with elite endurance athlete status in the Genathlete study publication-title: J Sports Sci – volume: 46 start-page: 292 year: 2011a end-page: 302 article-title: The effect of alpha‐actinin‐3 deficiency on muscle aging publication-title: Exp Gerontol – volume: 38 start-page: S364 year: 2006 article-title: Alpha‐actinin‐3 R577X genotype is associated with muscle power in middle aged men and women publication-title: Med Sci Sports Exerc – volume: 30 start-page: 695 year: 2009 end-page: 698 article-title: ACTN3 R577X Polymorphism and Israeli Top‐level Athletes publication-title: Int J Sports Med – volume: 39 start-page: 1985 year: 2007 end-page: 1988 article-title: The ACTN3 R577X polymorphism in East and West African athletes publication-title: Med Sci Sports Exerc – volume: 32 start-page: 58 year: 2007 end-page: 63 article-title: ACTN3 (R577X) genotype is associated with fiber type distribution publication-title: Physiol Genomics – volume: 19 start-page: 1335 year: 2010 end-page: 1346 article-title: Alpha‐actinin‐3 deficiency results in reduced glycogen phosphorylase activity and altered calcium handling in skeletal muscle publication-title: Hum Mol Genet – volume: 74 start-page: 27 year: 1982 end-page: 41 article-title: A comparative microphotometric study of succinate dehydrogenase activity levels in type I, IIA and IIB fibres of mammalian and human muscles publication-title: Histochemistry – volume: 115 start-page: 179 year: 1985 end-page: 189 article-title: Metabolic heterogeneity of muscle fibres publication-title: J Exp Biol – volume: 39 start-page: 1261 year: 2007 end-page: 1265 article-title: Loss of ACTN3 gene function alters mouse muscle metabolism and shows evidence of positive selection in humans publication-title: Nat Genet – volume: 15 start-page: 88 year: 2007 end-page: 93 article-title: Association analysis of the ACTN3 R577X polymorphism and complex quantitative body composition and performance phenotypes in adolescent Greeks publication-title: Eur J Hum Genet – volume: 38 start-page: S365 year: 2006 article-title: Alpha‐actinin‐3 R577X genotype and muscle power in young male adults of the Leuven Genes for Muscular Strength Study publication-title: Med Sci Sports Exerc – volume: 105 start-page: 1486 year: 2008 end-page: 1491 article-title: ACTN3 genotype is associated with muscle phenotypes in women across the adult age span publication-title: J Appl Physiol – volume: 35 start-page: 1875 year: 2003 end-page: 1881 article-title: Effects of taper on endurance cycling capacity and single muscle fiber properties publication-title: Med Sci Sports Exerc – volume: 588 start-page: 4289 year: 2010 end-page: 4302 article-title: Training in the fasted state improves glucose tolerance during fat‐rich diet publication-title: J Physiol – volume: 103 start-page: 631 year: 2008 end-page: 634 article-title: Association of the ACTN3 R577X polymorphism with power athlete status in Russians publication-title: Eur J Appl Physiol – volume: 32 start-page: 1008 year: 2011 end-page: 1018 article-title: ACTN3 genotype, athletic status and lifecourse physical capability: meta‐analysis of the published literature and findings from nine studies publication-title: Hum Mutat – volume: 42 start-page: 71 year: 2008 end-page: 73 article-title: ACTN3 genotype in professional soccer players publication-title: Br J Sports Med – volume: 99 start-page: 154 year: 2005 end-page: 163 article-title: ACTN3 genotype is associated with increases in muscle strength in response to resistance training in women publication-title: J Appl Physiol – volume: 73 start-page: 627 year: 2003 end-page: 631 article-title: ACTN3 genotype is associated with human elite athletic performance publication-title: Am J Hum Genet – volume: 580 start-page: 1371 year: 2006 end-page: 1375 article-title: The effect of high‐fat feeding on intramuscular lipid and lipid peroxidation levels in UCP3‐ablated mice publication-title: FEBS Lett – volume: 20 start-page: 2914 year: 2011b end-page: 2927 article-title: Deficiency of {alpha}‐actinin‐3 is associated with increased susceptibility to contraction‐induced damage and skeletal muscle remodeling publication-title: Hum Mol Genet – volume: 62 start-page: 206 year: 2007 end-page: 212 article-title: Alpha‐actinin‐3 (ACTN3) R577X polymorphism influences knee extensor peak power response to strength training in older men and women publication-title: J Gerontol A Biol Sci Med Sci – volume: 13 start-page: 965 year: 2005 end-page: 969 article-title: Mitochondrial DNA and ACTN3 genotypes in Finnish elite endurance and sprint athletes publication-title: Eur J Hum Genet – volume: 293 start-page: E428 year: 2007 end-page: E434 article-title: Evaluation of intramyocellular lipid breakdown during exercise by biochemical assay, NMR spectroscopy, and Oil Red O staining publication-title: Am J Physiol Endocrinol Metab – volume: 109 start-page: 564 year: 2010 end-page: 573 article-title: Protective role of alpha‐actinin‐3 in the response to an acute eccentric exercise bout publication-title: J Appl Physiol – volume: 267 start-page: 9281 year: 1992 end-page: 9288 article-title: Cloning and characterization of two human skeletal muscle alpha‐actinin genes located on chromosomes 1 and 11 publication-title: J Biol Chem – volume: 29 start-page: 352 year: 2008 end-page: 355 article-title: The ACTN3 gene in elite Greek track and field athletes publication-title: Int J Sports Med – volume: 17 start-page: 1076 year: 2008 end-page: 1086 article-title: An Actn3 knockout mouse provides mechanistic insights into the association between alpha‐actinin‐3 deficiency and human athletic performance publication-title: Hum Mol Genet – ident: e_1_2_7_26_1 doi: 10.1113/jphysiol.2010.196493 – ident: e_1_2_7_12_1 doi: 10.1038/ng2122 – ident: e_1_2_7_16_1 doi: 10.1038/sj.ejhg.5201438 – ident: e_1_2_7_24_1 doi: 10.1093/hmg/ddr196 – ident: e_1_2_7_15_1 doi: 10.1249/01.MSS.0000093617.28237.20 – ident: e_1_2_7_22_1 doi: 10.1136/bjsm.2007.039172 – ident: e_1_2_7_30_1 doi: 10.1086/377590 – volume: 115 start-page: 179 year: 1985 ident: e_1_2_7_18_1 article-title: Metabolic heterogeneity of muscle fibres publication-title: J Exp Biol doi: 10.1242/jeb.115.1.179 – ident: e_1_2_7_5_1 doi: 10.1152/japplphysiol.01139.2004 – ident: e_1_2_7_6_1 doi: 10.1152/ajpendo.00112.2007 – ident: e_1_2_7_7_1 doi: 10.1093/gerona/62.2.206 – ident: e_1_2_7_3_1 doi: 10.1016/S0021-9258(19)50420-3 – ident: e_1_2_7_14_1 doi: 10.1038/sj.ejhg.5201724 – ident: e_1_2_7_4_1 doi: 10.1249/00005768-200605001-01545 – ident: e_1_2_7_17_1 doi: 10.1055/s-2007-965339 – ident: e_1_2_7_11_1 doi: 10.1016/j.febslet.2006.01.059 – ident: e_1_2_7_23_1 doi: 10.1016/j.exger.2010.11.006 – ident: e_1_2_7_10_1 doi: 10.1055/s-0029-1220731 – ident: e_1_2_7_31_1 doi: 10.1249/mss.0b013e31814844c9 – ident: e_1_2_7_21_1 doi: 10.1038/sj.ejhg.5201964 – ident: e_1_2_7_28_1 doi: 10.1152/japplphysiol.01007.2009 – ident: e_1_2_7_13_1 doi: 10.1093/hmg/ddm380 – ident: e_1_2_7_2_1 doi: 10.1002/humu.21526 – ident: e_1_2_7_25_1 doi: 10.1249/00005768-200605001-01551 – ident: e_1_2_7_27_1 doi: 10.1152/physiolgenomics.00173.2007 – ident: e_1_2_7_9_1 doi: 10.1007/s00421-008-0763-1 – ident: e_1_2_7_20_1 doi: 10.1007/BF00495049 – ident: e_1_2_7_8_1 doi: 10.1080/02640414.2010.507675 – ident: e_1_2_7_29_1 doi: 10.1152/japplphysiol.90856.2008 – ident: e_1_2_7_19_1 doi: 10.1093/hmg/ddq010 |
SSID | ssj0001213422 ssj0043892 |
Score | 2.0819507 |
Snippet | Aim: In Western European populations, about 18% of all individuals have a complete deficiency of the alpha‐actinin‐3 protein owing to homozygosity for a stop... Aim: In Western European populations, about 18% of all individuals have a complete deficiency of the alpha‐actinin‐3 protein owing to homozygosity for a stop... In Western European populations, about 18% of all individuals have a complete deficiency of the alpha-actinin-3 protein owing to homozygosity for a stop codon... Aim: In Western European populations, about 18% of all individuals have a complete deficiency of the alpha-actinin-3 protein owing to homozygosity for a stop... |
SourceID | proquest pubmed pascalfrancis crossref wiley istex |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 555 |
SubjectTerms | Actinin - deficiency Actinin - genetics ACTN3 R577X Animals Biological and medical sciences cytochrome c oxidase Electron Transport Complex IV - analysis Electron Transport Complex IV - genetics Electron Transport Complex IV - metabolism enzyme histochemistry Enzymes Female fibre-type specific Fundamental and applied biological sciences. Psychology Genotype Genotype & phenotype Humans Male Mice Mice, Knockout Muscle Fibers, Fast-Twitch - enzymology Muscular system Oxidation-Reduction Polymorphism, Genetic succinate dehydrogenase Succinate Dehydrogenase - analysis Succinate Dehydrogenase - genetics Succinate Dehydrogenase - metabolism Vertebrates: anatomy and physiology, studies on body, several organs or systems Young Adult |
Title | Alpha-actinin-3 deficiency does not significantly alter oxidative enzyme activity in fast human muscle fibres |
URI | https://api.istex.fr/ark:/67375/WNG-2QKCCMKB-K/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fj.1748-1716.2011.02366.x https://www.ncbi.nlm.nih.gov/pubmed/21933355 https://www.proquest.com/docview/1497007111 https://www.proquest.com/docview/923955261 |
Volume | 204 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NbtQwELZQuXDhr_wESuUD6i2rxHbW8TGsKCtWVICo6M2y14602m5Sml1ptycegWfkSZhxsqFb9VAhblGiGcWTsfON_c0MIW-ldA5gaxl7k-SxGBoWW-dYPGWcMy-kzW1gW5wMx6fi41l21vGfMBemrQ_Rb7jhzAjrNU5wY5vdSS4FREAA-LtKnIwPhwPEk0jdQnz0lV3bbkm5YH1lKez5zdpcSVSR5DdJPrco3vlz3cePsEYmpWnAmGXbBeM2mLqLesNv6_gRmW8H3LJV5oPV0g6mVzdqQf4fizwmDzt0S4vWHZ-Qe756SvaLCiL7xYYe0cA3DRv5--RHgWm-v3_-wtSKalbBFafOY0ULTAelrvYNreolRYoJEprAB843NBzv03o9c6FkOfXV1WbhKSrBNhh0VtHSNEsamg_SxaqBF6EljMs3z8jp8ftvo3HcNYCIp1jGLc6dspYlmU-MmlpnrJPWQDzqy8zlyg9hPfFWJVaFjo4uFVbaxHNh01IpIxR_TvaquvIvCWXKGS5LnhiRi9xya0rmeQ6g3YBeKSIitx9XT7vq6Nik41xfi5LAuhqtq9G6OlhXryOS9pIXbYWQO8gcBf_pBczlHBl2MtPfTz5o9mUyGn2avNOTiBzuOFgvAJGgZDDsiBxsPU53q08D4ZySiB3TNCK0fwzrBh4GmcrXq0YDsFdZBvFzRF60jvpXN4B6DjgUbBLc7c7D0sXncYGXr_5Z8jV5APdZy406IHvLy5V_A7BvaQ_DhP4D2cdIIQ |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LbxMxELZQe4ALr_JYKMUH1NtWu7Y3Xh9DoATSRoBa0Ztlx14parKBbiIlPfET-I38Ema8m6WpeqgQt5V2Z7Qez9jf2PMg5I2UzgFsLWJvkjwWHcNi6xyLR4xz5oW0uQ3RFsNO_1R8OsvOmnZAmAtT14doD9zQMsJ6jQaOB9KbVi4FuECA-JtSnIx3OgcAKLexwTda6buv7MqBS8oFa2tLYddvVmdLIo8kvx7mcwPnjb1rG6dhibGUpgJxFnUfjJuA6ibuDRvX4QMyWQ-5jlc5P1jM7cHo8lo1yP8kk4fkfgNwabfWyEfkji8fk51uCc79dEX3aQg5DWf5O-RHFzN9f__8hdkV5biEJ06dx6IWmBFK3cxXtJzNKUaZYEwTqMFkRcMNP50txy5ULae-vFxNPUUm2AmDjktamGpOQ_9BOl1U8CO0gIH56gk5PXx_0uvHTQ-IeISV3OLcKWtZkvnEqJF1xjppDbikvshcrjzMc-KtSqwKTR1dKqy0iefCpoVSRij-lGyVs9I_J5QpZ7gseGJELnLLrSmY5zngdgN8pYiIXM-uHjUF0rFPx0RfcZRAuhqlq1G6OkhXLyOStpTf6yIht6DZDwrUEpiLcwyyk5n-Nvyg2ZdBr3c8eKsHEdnb0LCWAJxByWDYEdldq5xuFqAKPDolET6maURo-xqWDrwPMqWfLSoN2F5lGbjQEXlWa-pf3oDrOUBRkEnQt1sPS3c_97v4-OKfKV-Tu_2T4yN99HE4eEnuwTesDpXaJVvzi4V_BShwbveCdf8BQGxMOg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1fb9MwELfQJiFe-Df-BMbwA9pbqsR24uSxdJRCoRqIib1Zdu1IVdd0LK3U7omPwGfkk3DnpGGd9jAh3iIld4ovZ-d39u_uCHkjpbUAW4vQ6SgLRapZaKxl4ZhxzpyQJjOebTFKByfi42ly2vCfMBemrg_RbrjhzPDrNU7wc1tsT3IpIAICwN9U4mQ8TTuAJ3dFGmUYiB19ZVf2W2IuWFtaCpt-szpZEnVE2XWWzw2at35du_gVVkil1BVYs6jbYNyEU7dhr_9v9R-Q6WbENV1l2lkuTGd8ea0Y5P8xyUNyv4G3tFv74yNyx5WPyV63hNB-tqaH1BNO_U7-HvnRxTzf3z9_YW5FOSnhilPrsKQF5oNSO3cVLecLihwTZDSBE5ytqT_fp_PVxPqa5dSVl-uZo6gE-2DQSUkLXS2o7z5IZ8sKXoQWMC5XPSEn_XffeoOw6QARjrGOW5jZ3BgWJS7S-dhYbaw0GgJSVyQ2y10KC4ozeWRy39LRxsJIEzkuTFzkuRY5f0p2ynnpnhPKcqu5LHikRSYyw40umOMZoHYNeqUIiNx8XDVuyqNjl44zdSVMAusqtK5C6ypvXbUKSNxKntclQm4hc-j9pxXQF1Ok2MlEfR-9V-zLsNf7PHyrhgE52HKwVgBCQclg2AHZ33icapafCuK5XCJ4jOOA0PY2LBx4GqRLN19WCpB9niQQQAfkWe2of3UDqucARMEm3t1uPSzVPR508fLFP0u-JnePj_rq04fR8CW5B4-wmie1T3YWF0v3CiDgwhz4uf0HMrRK8g |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Alpha%E2%80%90actinin%E2%80%903+deficiency+does+not+significantly+alter+oxidative+enzyme+activity+in+fast+human+muscle+fibres&rft.jtitle=Acta+Physiologica&rft.au=Vincent%2C+B.&rft.au=Windelinckx%2C+A.&rft.au=Van+Proeyen%2C+K.&rft.au=Masschelein%2C+E.&rft.date=2012-04-01&rft.pub=Blackwell+Publishing+Ltd&rft.issn=1748-1708&rft.eissn=1748-1716&rft.volume=204&rft.issue=4&rft.spage=555&rft.epage=561&rft_id=info:doi/10.1111%2Fj.1748-1716.2011.02366.x&rft.externalDBID=10.1111%252Fj.1748-1716.2011.02366.x&rft.externalDocID=APHA2366 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1748-1708&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1748-1708&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1748-1708&client=summon |