A new justification of the Hartung‐Knapp method for random‐effects meta‐analysis based on weighted least squares regression

The Hartung‐Knapp method for random‐effects meta‐analysis, that was also independently proposed by Sidik and Jonkman, is becoming advocated for general use. This method has previously been justified by taking all estimated variances as known and using a different pivotal quantity to the more convent...

Full description

Saved in:
Bibliographic Details
Published inResearch synthesis methods Vol. 10; no. 4; pp. 515 - 527
Main Authors Aert, Robbie C. M., Jackson, Dan
Format Journal Article
LanguageEnglish
Published England Wiley-Blackwell 01.12.2019
Wiley Subscription Services, Inc
John Wiley and Sons Inc
Subjects
Online AccessGet full text
ISSN1759-2879
1759-2887
1759-2887
DOI10.1002/jrsm.1356

Cover

Loading…
Abstract The Hartung‐Knapp method for random‐effects meta‐analysis, that was also independently proposed by Sidik and Jonkman, is becoming advocated for general use. This method has previously been justified by taking all estimated variances as known and using a different pivotal quantity to the more conventional one when making inferences about the average effect. We provide a new conceptual framework for, and justification of, the Hartung‐Knapp method. Specifically, we show that inferences from fitted random‐effects models, using both the conventional and the Hartung‐Knapp method, are equivalent to those from closely related intercept only weighted least squares regression models. This observation provides a new link between Hartung and Knapp's methodology for meta‐analysis and standard linear models, where it can be seen that the Hartung‐Knapp method can be justified by a linear model that makes a slightly weaker assumption than taking all variances as known. This provides intuition for why the Hartung‐Knapp method has been found to perform better than the conventional one in simulation studies. Furthermore, our new findings give more credence to ad hoc adjustments of confidence intervals from the Hartung‐Knapp method that ensure these are at least as wide as more conventional confidence intervals. The conceptual basis for the Hartung‐Knapp method that we present here should replace the established one because it more clearly illustrates the potential benefit of using it.
AbstractList The Hartung-Knapp method for random-effects meta-analysis, that was also independently proposed by Sidik and Jonkman, is becoming advocated for general use. This method has previously been justified by taking all estimated variances as known and using a different pivotal quantity to the more conventional one when making inferences about the average effect. We provide a new conceptual framework for, and justification of, the Hartung-Knapp method. Specifically, we show that inferences from fitted random-effects models, using both the conventional and the Hartung-Knapp method, are equivalent to those from closely related intercept only weighted least squares regression models. This observation provides a new link between Hartung and Knapp's methodology for meta-analysis and standard linear models, where it can be seen that the Hartung-Knapp method can be justified by a linear model that makes a slightly weaker assumption than taking all variances as known. This provides intuition for why the Hartung-Knapp method has been found to perform better than the conventional one in simulation studies. Furthermore, our new findings give more credence to ad hoc adjustments of confidence intervals from the Hartung-Knapp method that ensure these are at least as wide as more conventional confidence intervals. The conceptual basis for the Hartung-Knapp method that we present here should replace the established one because it more clearly illustrates the potential benefit of using it.
The Hartung-Knapp method for random-effects meta-analysis, that was also independently proposed by Sidik and Jonkman, is becoming advocated for general use. This method has previously been justified by taking all estimated variances as known and using a different pivotal quantity to the more conventional one when making inferences about the average effect. We provide a new conceptual framework for, and justification of, the Hartung-Knapp method. Specifically, we show that inferences from fitted random-effects models, using both the conventional and the Hartung-Knapp method, are equivalent to those from closely related intercept only weighted least squares regression models. This observation provides a new link between Hartung and Knapp's methodology for meta-analysis and standard linear models, where it can be seen that the Hartung-Knapp method can be justified by a linear model that makes a slightly weaker assumption than taking all variances as known. This provides intuition for why the Hartung-Knapp method has been found to perform better than the conventional one in simulation studies. Furthermore, our new findings give more credence to ad hoc adjustments of confidence intervals from the Hartung-Knapp method that ensure these are at least as wide as more conventional confidence intervals. The conceptual basis for the Hartung-Knapp method that we present here should replace the established one because it more clearly illustrates the potential benefit of using it.The Hartung-Knapp method for random-effects meta-analysis, that was also independently proposed by Sidik and Jonkman, is becoming advocated for general use. This method has previously been justified by taking all estimated variances as known and using a different pivotal quantity to the more conventional one when making inferences about the average effect. We provide a new conceptual framework for, and justification of, the Hartung-Knapp method. Specifically, we show that inferences from fitted random-effects models, using both the conventional and the Hartung-Knapp method, are equivalent to those from closely related intercept only weighted least squares regression models. This observation provides a new link between Hartung and Knapp's methodology for meta-analysis and standard linear models, where it can be seen that the Hartung-Knapp method can be justified by a linear model that makes a slightly weaker assumption than taking all variances as known. This provides intuition for why the Hartung-Knapp method has been found to perform better than the conventional one in simulation studies. Furthermore, our new findings give more credence to ad hoc adjustments of confidence intervals from the Hartung-Knapp method that ensure these are at least as wide as more conventional confidence intervals. The conceptual basis for the Hartung-Knapp method that we present here should replace the established one because it more clearly illustrates the potential benefit of using it.
Author Jackson, Dan
Aert, Robbie C. M.
AuthorAffiliation 2 Statistical Innovation Group, Advanced Analytics Centre AstraZeneca Cambridge United Kingdom
1 Methodology and Statistics Tilburg University Tilburg Netherlands
AuthorAffiliation_xml – name: 1 Methodology and Statistics Tilburg University Tilburg Netherlands
– name: 2 Statistical Innovation Group, Advanced Analytics Centre AstraZeneca Cambridge United Kingdom
Author_xml – sequence: 1
  givenname: Robbie C. M.
  orcidid: 0000-0001-6187-0665
  surname: Aert
  fullname: Aert, Robbie C. M.
  email: R.C.M.vanAert@tilburguniversity.edu
  organization: Tilburg University
– sequence: 2
  givenname: Dan
  orcidid: 0000-0002-4963-8123
  surname: Jackson
  fullname: Jackson, Dan
  organization: AstraZeneca
BackLink http://eric.ed.gov/ERICWebPortal/detail?accno=EJ1255427$$DView record in ERIC
https://www.ncbi.nlm.nih.gov/pubmed/31111673$$D View this record in MEDLINE/PubMed
BookMark eNp1kstuEzEUhkeoiF7oggcAWWIDi7S-zNgzG6SqKpRShMRlbXk8x4mjGTu1PUTZlTfgGXkSnCaNoIKz8bH-7_y-nHNY7DnvoCieEXxCMKan8xCHE8Iq_qg4IKJqJrSuxd4uF81-cRzjHOdgDadcPCn2GcnBBTsofpwhB0s0H2OyxmqVrHfIG5RmgC5VSKOb_rr9-cGpxQINkGa-Q8YHFJTr_JAVMAZ0imtN5a1yql9FG1GrInQoey3BTmcp5z2omFC8GVWAiAJM8xLzaU-Lx0b1EY6361Hx7e3F1_PLyfWnd-_Pz64nuuQVn5BGm5phRRSlusWEEyEEoaYrccVaXjEgWLSqLmvCTV0rrOuyawwVWBvBq4YdFW82vouxHaDT4FJQvVwEO6iwkl5Z-bfi7ExO_XfJG8EwLbPBq61B8DcjxCQHGzX0vXLgxygpZRTXhJUkoy8foHM_hvw3mWIs94qVosrUiz9vtLvKfXcy8HwDQLB6J19cEVpVJRVZP93oOvgYAxipbbprYX6A7SXBcj0icj0icj0iueL1g4p713-xW_el7WH1f1Beff7y8a7iN9nYzqE
CitedBy_id crossref_primary_10_1007_s10648_023_09753_1
crossref_primary_10_1093_ckj_sfae279
crossref_primary_10_3390_antibiotics10081014
crossref_primary_10_1200_JCO_23_00057
crossref_primary_10_3390_nu15153414
crossref_primary_10_1080_09637486_2023_2276033
crossref_primary_10_1111_jocn_16861
crossref_primary_10_1177_20503121241253957
crossref_primary_10_1002_sim_9626
crossref_primary_10_1002_jrsm_1471
crossref_primary_10_1016_j_talanta_2025_127515
crossref_primary_10_1111_bjop_12768
crossref_primary_10_1186_s12874_022_01779_3
crossref_primary_10_1016_j_kint_2021_03_041
crossref_primary_10_1016_j_ccr_2022_214608
crossref_primary_10_1210_clinem_dgaf112
crossref_primary_10_1007_s12630_024_02696_3
crossref_primary_10_1016_j_tate_2021_103521
crossref_primary_10_1183_16000617_0003_2024
crossref_primary_10_32872_cpe_13717
crossref_primary_10_5334_pb_1182
crossref_primary_10_1016_j_jpain_2020_03_006
crossref_primary_10_1111_joes_12472
crossref_primary_10_1088_1748_9326_ac9b50
crossref_primary_10_1186_s12876_023_03053_2
crossref_primary_10_1080_17437199_2022_2090411
crossref_primary_10_1097_HJH_0000000000003557
crossref_primary_10_1136_bmjmilitary_2021_001955
crossref_primary_10_1016_j_wneu_2024_123570
crossref_primary_10_1021_acs_inorgchem_1c01319
crossref_primary_10_1177_10600280241260754
crossref_primary_10_1016_j_jpain_2023_09_002
crossref_primary_10_1016_j_psychres_2022_115010
crossref_primary_10_1016_j_jmig_2024_02_011
crossref_primary_10_1016_j_bja_2021_08_035
crossref_primary_10_1016_j_talanta_2022_123394
crossref_primary_10_1016_j_cpr_2021_102046
crossref_primary_10_1111_2041_210X_14377
crossref_primary_10_1016_j_jad_2024_02_049
crossref_primary_10_1002_jrsm_1697
crossref_primary_10_1002_jrsm_1654
crossref_primary_10_1016_j_psychres_2024_116272
crossref_primary_10_3390_tropicalmed8020083
crossref_primary_10_1002_phar_2925
crossref_primary_10_1016_j_phrs_2021_106053
crossref_primary_10_1186_s40249_025_01274_z
crossref_primary_10_1002_jrsm_1490
crossref_primary_10_1186_s12902_025_01896_2
crossref_primary_10_3390_s21020479
crossref_primary_10_1002_sim_8516
crossref_primary_10_1007_s10916_023_01935_2
crossref_primary_10_1097_COC_0000000000000998
crossref_primary_10_1016_S1473_3099_22_00811_8
crossref_primary_10_1016_j_numecd_2021_09_003
crossref_primary_10_1089_jicm_2022_0606
crossref_primary_10_5853_jos_2019_03335
crossref_primary_10_1093_ckj_sfae177
crossref_primary_10_1097_j_pain_0000000000003199
crossref_primary_10_1007_s10776_021_00518_7
crossref_primary_10_1007_s11104_022_05305_8
crossref_primary_10_3389_fpubh_2025_1481002
crossref_primary_10_1111_gcb_15829
crossref_primary_10_3758_s13423_021_01918_9
crossref_primary_10_1111_obr_13697
crossref_primary_10_1089_jicm_2024_0348
crossref_primary_10_1016_j_rmed_2025_107985
crossref_primary_10_3390_biomedinformatics1020005
Cites_doi 10.1186/1471-2288-14-25
10.1002/sim.1186
10.1002/sim.1009
10.1198/sbr.2009.0009
10.1002/sim.4040
10.1002/jrsm.1079
10.1002/sim.6632
10.1002/jrsm.11
10.1371/journal.pone.0069930
10.1002/bimj.201500236
10.1002/sim.1482
10.1007/978-3-8348-9813-5
10.1002/jrsm.1081
10.1002/(SICI)1521-4036(199912)41:8<901::AID-BIMJ901>3.0.CO;2-W
10.1002/sim.1262
10.3102/10769986006002107
10.1002/9780470743386
10.18637/jss.v036.i03
10.1002/jrsm.1065
10.1002/sim.1040
10.1002/jrsm.1297
10.1002/sim.2514
10.1002/sim.6844
10.1002/sim.791
10.1002/sim.5957
10.1002/(SICI)1097-0258(19991030)18:20<2693::AID-SIM235>3.0.CO;2-V
10.1002/sim.1729
10.1111/j.0006-341X.1999.00732.x
10.1002/jrsm.1211
10.1007/978-3-642-34333-9
10.1080/00031305.2016.1165735
10.1186/s12874-015-0091-1
10.1002/sim.6879
10.1002/sim.7411
10.1136/bmj.322.7300.1479
10.1002/jrsm.1198
10.1037/met0000023
10.1002/jrsm.1205
10.1002/sim.2897
10.1002/sim.7588
10.1002/sim.2688
10.1142/6986
10.1007/s10729-007-9041-8
10.1002/sim.5821
10.1002/jrsm.1164
10.1002/bimj.201800071
ContentType Journal Article
Copyright 2019 The Authors Research Synthesis Methods Published by John Wiley & Sons Ltd
2019 The Authors Research Synthesis Methods Published by John Wiley & Sons Ltd.
2019 John Wiley & Sons, Ltd.
Copyright_xml – notice: 2019 The Authors Research Synthesis Methods Published by John Wiley & Sons Ltd
– notice: 2019 The Authors Research Synthesis Methods Published by John Wiley & Sons Ltd.
– notice: 2019 John Wiley & Sons, Ltd.
DBID 24P
AAYXX
CITATION
7SW
BJH
BNH
BNI
BNJ
BNO
ERI
PET
REK
WWN
CGR
CUY
CVF
ECM
EIF
NPM
AHOVV
7X8
5PM
DOI 10.1002/jrsm.1356
DatabaseName Wiley Online Library Open Access (Activated by CARLI)
CrossRef
ERIC
ERIC (Ovid)
ERIC
ERIC
ERIC (Legacy Platform)
ERIC( SilverPlatter )
ERIC
ERIC PlusText (Legacy Platform)
Education Resources Information Center (ERIC)
ERIC
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Education Research Index
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
ERIC
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic



CrossRef
ERIC
Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: ERI
  name: ERIC
  url: https://eric.ed.gov/
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
DocumentTitleAlternate VAN AERT AND JACKSON
EISSN 1759-2887
ERIC EJ1255427
EndPage 527
ExternalDocumentID PMC6973024
31111673
EJ1255427
10_1002_jrsm_1356
JRSM1356
Genre article
Journal Article
GrantInformation_xml – fundername: European Research Council
  funderid: 726361 (IMPROVE)
– fundername: Netherlands Organization for Scientific Research (NWO)
  funderid: 406-13-050
– fundername: Netherlands Organization for Scientific Research (NWO)
  grantid: 406-13-050
– fundername: European Research Council
  grantid: 726361 (IMPROVE)
– fundername: ;
  grantid: 726361 (IMPROVE)
GroupedDBID 05W
09C
0R~
1OC
24P
31~
33P
4.4
50Y
5DZ
8-0
8-1
8UM
A00
AAESR
AAHHS
AANHP
AANLZ
AAYCA
AAZKR
ABCUV
ABDBF
ABIVO
ABJNI
ABLJU
ACBWZ
ACCFJ
ACCZN
ACDLN
ACGFS
ACIWK
ACPOU
ACRPL
ACUHS
ACXQS
ACYXJ
ADBBV
ADKYN
ADNMO
ADXAS
ADZMN
AEEZP
AEIGN
AENEX
AEQDE
AEUYR
AFBPY
AFFPM
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMYDB
ASPBG
AVWKF
AZFZN
AZVAB
BDRZF
BFHJK
BMXJE
BRXPI
D-A
DCZOG
EBS
EJD
FEDTE
G-S
GODZA
HGLYW
HVGLF
HZ~
LATKE
LEEKS
LH4
LITHE
LOXES
LUTES
LW6
LYRES
MEWTI
MY.
MY~
O9-
P2W
P4E
PQQKQ
RCA
ROL
RX1
SUPJJ
WBKPD
WOHZO
WXSBR
WYJ
ZZTAW
AAYXX
ABGDZ
ABXHF
AGHNM
AGQPQ
AGTDA
CITATION
IPYYG
7SW
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
BJH
BNH
BNI
BNJ
BNO
ERI
PET
REK
WWN
CGR
CUY
CVF
ECM
EIF
NPM
AHOVV
7X8
5PM
ID FETCH-LOGICAL-c4656-19cf830a1a22cb016177712fd4053b653e107ba84816f88a0c84d9f270cf76593
IEDL.DBID 24P
ISSN 1759-2879
1759-2887
IngestDate Thu Aug 21 14:09:20 EDT 2025
Fri Jul 11 16:26:46 EDT 2025
Sat Aug 23 13:29:55 EDT 2025
Mon Jul 21 05:40:54 EDT 2025
Tue Sep 02 18:53:19 EDT 2025
Tue Jul 01 02:24:48 EDT 2025
Thu Apr 24 23:04:49 EDT 2025
Wed Jan 22 16:36:58 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords Hartung-Knapp modification
meta-analysis
random-effects weighted least squares regression
meta-regression
Language English
License Attribution
2019 The Authors Research Synthesis Methods Published by John Wiley & Sons Ltd.
This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4656-19cf830a1a22cb016177712fd4053b653e107ba84816f88a0c84d9f270cf76593
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
The copyright line for this article was changed on 15 August 2019 after original online publication.
ORCID 0000-0002-4963-8123
0000-0001-6187-0665
OpenAccessLink https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fjrsm.1356
PMID 31111673
PQID 2333563475
PQPubID 1046372
PageCount 13
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_6973024
proquest_miscellaneous_2232081341
proquest_journals_2333563475
pubmed_primary_31111673
eric_primary_EJ1255427
crossref_citationtrail_10_1002_jrsm_1356
crossref_primary_10_1002_jrsm_1356
wiley_primary_10_1002_jrsm_1356_JRSM1356
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate December 2019
PublicationDateYYYYMMDD 2019-12-01
PublicationDate_xml – month: 12
  year: 2019
  text: December 2019
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
– name: Chichester
– name: Hoboken
PublicationTitle Research synthesis methods
PublicationTitleAlternate Res Synth Methods
PublicationYear 2019
Publisher Wiley-Blackwell
Wiley Subscription Services, Inc
John Wiley and Sons Inc
Publisher_xml – name: Wiley-Blackwell
– name: Wiley Subscription Services, Inc
– name: John Wiley and Sons Inc
References 2015; 15
2001; 322
2017; 8
2013; 4
2010; 36
2011
2004; 23
2009
1981; 6
2007
2005
1999; 41
2008; 11
1971
2016; 70
2018; 60
2013; 8
2016; 35
2001; 20
2018; 9
2016; 7
36
2010; 1
2017; 59
2013; 32
2010; 29
1999; 18
2015; 20
2002; 21
2008; 27
2014; 14
2018
1985
1999; 55
2016
2015
2013
2009; 1
2016; 8
2014; 33
2018; 37
2007; 26
2003; 22
e_1_2_10_23_1
e_1_2_10_46_1
Raudenbush SW (e_1_2_10_2_1) 2009
e_1_2_10_21_1
e_1_2_10_44_1
e_1_2_10_42_1
e_1_2_10_40_1
Hedges LV (e_1_2_10_45_1) 1985
e_1_2_10_4_1
e_1_2_10_18_1
e_1_2_10_53_1
e_1_2_10_6_1
e_1_2_10_16_1
e_1_2_10_55_1
e_1_2_10_8_1
e_1_2_10_14_1
e_1_2_10_37_1
e_1_2_10_57_1
e_1_2_10_13_1
e_1_2_10_11_1
e_1_2_10_32_1
e_1_2_10_30_1
e_1_2_10_51_1
Searle SR (e_1_2_10_36_1) 1971
Kulinskaya E (e_1_2_10_7_1) 2015; 15
e_1_2_10_29_1
e_1_2_10_27_1
e_1_2_10_25_1
e_1_2_10_48_1
e_1_2_10_24_1
e_1_2_10_22_1
e_1_2_10_43_1
e_1_2_10_41_1
SAS Institute Inc. (e_1_2_10_39_1) 2015
Kutner MH (e_1_2_10_34_1) 2005
e_1_2_10_52_1
e_1_2_10_3_1
e_1_2_10_19_1
e_1_2_10_54_1
e_1_2_10_5_1
e_1_2_10_17_1
e_1_2_10_38_1
e_1_2_10_56_1
e_1_2_10_15_1
e_1_2_10_12_1
e_1_2_10_9_1
e_1_2_10_10_1
Jackson D. (e_1_2_10_20_1); 36
e_1_2_10_33_1
e_1_2_10_31_1
Moberley S. (e_1_2_10_47_1); 2013
e_1_2_10_50_1
Gelman A (e_1_2_10_35_1) 2007
e_1_2_10_28_1
e_1_2_10_49_1
e_1_2_10_26_1
References_xml – year: 2011
– volume: 20
  start-page: 360
  issue: 3
  year: 2015
  end-page: 374
  article-title: A comparison of procedures to test for moderators in mixed‐effects meta‐regression models
  publication-title: Psychol Methods
– year: 1985
– year: 2009
– volume: 36
  start-page: 1
  issue: 3
  year: 2010
  end-page: 48
  article-title: Conducting meta‐analyses in R with the metafor package
  publication-title: J Stat Softw
– volume: 26
  start-page: 37
  issue: 1
  year: 2007
  end-page: 52
  article-title: Confidence intervals for the amount of heterogeneity in meta‐analysis
  publication-title: Stat Med
– volume: 27
  start-page: 418
  issue: 3
  year: 2008
  end-page: 434
  article-title: Flexible parametric models for random‐effects distributions
  publication-title: Stat Med
– volume: 4
  start-page: 220
  issue: 3
  year: 2013
  end-page: 229
  article-title: Confidence intervals for the between‐study variance in random effects meta‐analysis using generalised Cochran heterogeneity statistics
  publication-title: Res Synth Methods
– start-page: 295
  year: 2009
  end-page: 315
– year: 2005
– volume: 37
  start-page: 1059
  year: 2018
  end-page: 1085
  article-title: A comparison of 7 random‐effects models for meta‐analyses that estimate the summary odds ratio
  publication-title: Stat Med
– volume: 26
  start-page: 1964
  issue: 9
  year: 2007
  end-page: 1981
  article-title: A comparison of heterogeneity variance estimators in combining results of studies
  publication-title: Stat Med
– volume: 18
  start-page: 2693
  issue: 20
  year: 1999
  end-page: 2708
  article-title: Explaining heterogeneity in meta‐analysis: a comparison of methods
  publication-title: Stat Med
– volume: 9
  start-page: 382
  issue: 3
  year: 2018
  end-page: 392
  article-title: Methods for evidence synthesis in the case of very few studies
  publication-title: Res Synth Methods
– year: 1971
– volume: 21
  start-page: 3153
  issue: 21
  year: 2002
  end-page: 3159
  article-title: A simple confidence interval for meta‐analysis
  publication-title: Stat Med
– volume: 22
  start-page: 2693
  issue: 17
  year: 2003
  end-page: 2710
  article-title: Improved tests for a random effects meta‐regression with a single covariate
  publication-title: Stat Med
– year: 2018
– volume: 1
  start-page: 112
  issue: 2
  year: 2010
  end-page: 125
  article-title: Outlier and influence diagnostics for meta‐analysis
  publication-title: Res Synth Methods
– volume: 1
  start-page: 92
  issue: 1
  year: 2009
  end-page: 100
  article-title: The significance level of the standard test for a treatment effect in meta‐analysis
  publication-title: Stat Biopharm Res
– volume: 322
  start-page: 1479
  issue: 7300
  year: 2001
  end-page: 1480
  article-title: Forest plots: trying to see the wood and the trees
  publication-title: BMJ
– volume: 7
  start-page: 459
  issue: 4
  year: 2016
  end-page: 461
  article-title: Shortcomings of an approximate confidence interval for moment‐based estimators of the between‐study variance in random‐effects meta‐analysis
  publication-title: Res Synth Methods
– volume: 60
  start-page: 1040
  issue: 6
  year: 2018
  end-page: 1058
  article-title: When should meta‐analysis avoid making hidden normality assumptions?
  publication-title: Biom J
– volume: 20
  start-page: 3875
  issue: 24
  year: 2001
  end-page: 3889
  article-title: A refined method for the meta‐analysis of controlled clinical trials with binary outcome
  publication-title: Stat Med
– volume: 8
  issue: 7
  year: 2013
  article-title: A re‐analysis of the Cochrane Library data: the dangers of unobserved heterogeneity in meta‐analyses
  publication-title: PloS one
– volume: 15
  start-page: 99
  year: 2015
  article-title: Hartung‐Knapp‐Sidik‐Jonkman approach and its modification for random‐effects meta‐analysis with few studies
  publication-title: BMC Med Res Methodol
– volume: 4
  start-page: 109
  issue: 2
  year: 2013
  end-page: 124
  article-title: Meta‐analysis inside and outside particle physics: two traditions that should converge?
  publication-title: Res Synth Methods
– year: 2015
– volume: 21
  start-page: 589
  issue: 4
  year: 2002
  end-page: 624
  article-title: Advanced methods in meta‐analysis: multivariate approach and meta‐regression
  publication-title: Stat Med
– volume: 7
  start-page: 55
  issue: 1
  year: 2016
  end-page: 79
  article-title: Methods to estimate the between‐study variance and its uncertainty in meta‐analysis
  publication-title: Res Synth Methods
– volume: 15
  start-page: 1
  issue: 49
  year: 2015
  end-page: 19
  article-title: An accurate test for homogeneity of odds ratios based on Cochran's Q‐statistic
  publication-title: BMC Med Res Method
– volume: 70
  start-page: 385
  issue: 4
  year: 2016
  end-page: 394
  article-title: Weighing evidence “steampunk” style via the meta‐analyser
  publication-title: Am Stat
– volume: 55
  start-page: 732
  issue: 3
  year: 1999
  end-page: 737
  article-title: Valid inference in random effects meta‐analysis
  publication-title: Biometrics
– volume: 6
  start-page: 107
  issue: 2
  year: 1981
  end-page: 128
  article-title: Distribution theory for Glass's estimator of effect size and related estimators
  publication-title: J Educ Stat
– volume: 35
  start-page: 2467
  issue: 14
  year: 2016
  end-page: 2478
  article-title: Low‐event‐rate meta‐analyses of clinical trials: implementing good practices
  publication-title: Stat Med
– year: 2007
– volume: 8
  start-page: 181
  issue: 2
  year: 2016
  end-page: 198
  article-title: Comparative performance of heterogeneity variance estimators in meta‐analysis: A review of simulation studies
  publication-title: Res Synth Methods
– volume: 32
  start-page: 4071
  issue: 23
  year: 2013
  end-page: 4089
  article-title: Avoiding zero between‐study variance estimates in random‐effects meta‐analysis
  publication-title: Stat Med
– volume: 33
  start-page: 541
  issue: 4
  year: 2014
  end-page: 554
  article-title: A refined method for multivariate meta‐analysis and meta‐regression
  publication-title: Stat Med
– year: 2016
– volume: 59
  start-page: 658
  issue: 4
  year: 2017
  end-page: 671
  article-title: Meta‐analysis of two studies in the presence of heterogeneity with applications in rare diseases
  publication-title: Biom J
– volume: 20
  start-page: 1771
  issue: 12
  year: 2001
  end-page: 1782
  article-title: On tests of the overall treatment effect in meta‐analysis with normally distributed responses
  publication-title: Stat Med
– volume: 41
  start-page: 901
  issue: 8
  year: 1999
  end-page: 916
  article-title: An alternative method for meta‐analysis
  publication-title: Biom J
– volume: 35
  start-page: 2503
  issue: 15
  year: 2016
  end-page: 2515
  article-title: Hartung‐Knapp method is not always conservative compared with fixed‐effect meta‐analysis
  publication-title: Stat Med
– volume: 23
  start-page: 159
  issue: 1
  year: 2004
  end-page: 162
  article-title: Authors' reply
  publication-title: Stat Med
– volume: 21
  start-page: 1539
  issue: 11
  year: 2002
  end-page: 1558
  article-title: Quantifying heterogeneity in a meta‐analysis
  publication-title: Stat Med
– volume: 2013
  start-page: 1
  issue: 1
  end-page: 82
  article-title: Vaccines for preventing pneumococcal infection in adults
  publication-title: Cochrane Database of Systematic Reviews
– volume: 4
  start-page: 125
  issue: 2
  year: 2013
  end-page: 126
  article-title: Meta‐analysis inside and outside particle physics: convergence using the path of least resistance?
  publication-title: Res Synth Methods
– volume: 35
  start-page: 485
  issue: 4
  year: 2016
  end-page: 495
  article-title: Misunderstandings about Q and 'Cochran's Q test' in meta‐analysis
  publication-title: Stat Med
– volume: 29
  start-page: 3046
  issue: 29
  year: 2010
  end-page: 3067
  article-title: Random effects meta‐analysis of event outcome in the framework of the generalized linear mixed model with applications in sparse data
  publication-title: Stat Med
– volume: 36
  start-page: 3923
  issue: 25
  end-page: 3934
  article-title: The Hartung‐Knapp modification for random‐effects meta‐analysis: A useful refinement but are there any residual concerns?
  publication-title: Statistics in Medicine
– volume: 8
  start-page: 19
  issue: 1
  year: 2017
  end-page: 42
  article-title: Neither fixed nor random: weighted least squares meta‐regression
  publication-title: Res Synth Methods
– volume: 11
  start-page: 121
  issue: 2
  year: 2008
  end-page: 131
  article-title: A new approach to outliers in meta‐analysis
  publication-title: Health Care Manag Sci
– volume: 14
  start-page: 25
  year: 2014
  article-title: The Hartung‐Knapp‐Sidik‐Jonkman method for random effects meta‐analysis is straightforward and considerably outperforms the standard DerSimonian‐Laird method
  publication-title: BMC Med Res Methodol
– year: 2013
– ident: e_1_2_10_16_1
  doi: 10.1186/1471-2288-14-25
– ident: e_1_2_10_30_1
  doi: 10.1002/sim.1186
– ident: e_1_2_10_14_1
  doi: 10.1002/sim.1009
– start-page: 295
  volume-title: The Handbook of Research Synthesis and Meta‐Analysis
  year: 2009
  ident: e_1_2_10_2_1
– ident: e_1_2_10_31_1
  doi: 10.1198/sbr.2009.0009
– ident: e_1_2_10_55_1
  doi: 10.1002/sim.4040
– volume-title: Data Analysis Using Regression and Multilevel/Hierarchical Models
  year: 2007
  ident: e_1_2_10_35_1
– ident: e_1_2_10_50_1
  doi: 10.1002/jrsm.1079
– ident: e_1_2_10_8_1
  doi: 10.1002/sim.6632
– ident: e_1_2_10_52_1
  doi: 10.1002/jrsm.11
– ident: e_1_2_10_5_1
  doi: 10.1371/journal.pone.0069930
– ident: e_1_2_10_29_1
  doi: 10.1002/bimj.201500236
– ident: e_1_2_10_21_1
  doi: 10.1002/sim.1482
– ident: e_1_2_10_37_1
  doi: 10.1007/978-3-8348-9813-5
– ident: e_1_2_10_23_1
  doi: 10.1002/jrsm.1081
– volume-title: Statistical Methods for Meta‐Analysis
  year: 1985
  ident: e_1_2_10_45_1
– ident: e_1_2_10_12_1
  doi: 10.1002/(SICI)1521-4036(199912)41:8<901::AID-BIMJ901>3.0.CO;2-W
– ident: e_1_2_10_15_1
  doi: 10.1002/sim.1262
– ident: e_1_2_10_46_1
  doi: 10.3102/10769986006002107
– ident: e_1_2_10_3_1
  doi: 10.1002/9780470743386
– ident: e_1_2_10_44_1
  doi: 10.18637/jss.v036.i03
– ident: e_1_2_10_49_1
  doi: 10.1002/jrsm.1065
– ident: e_1_2_10_42_1
  doi: 10.1002/sim.1040
– ident: e_1_2_10_28_1
  doi: 10.1002/jrsm.1297
– ident: e_1_2_10_22_1
  doi: 10.1002/sim.2514
– volume: 2013
  start-page: 1
  issue: 1
  ident: e_1_2_10_47_1
  article-title: Vaccines for preventing pneumococcal infection in adults
  publication-title: Cochrane Database of Systematic Reviews
– ident: e_1_2_10_10_1
  doi: 10.1002/sim.6844
– ident: e_1_2_10_13_1
  doi: 10.1002/sim.791
– ident: e_1_2_10_48_1
  doi: 10.1002/sim.5957
– ident: e_1_2_10_41_1
  doi: 10.1002/(SICI)1097-0258(19991030)18:20<2693::AID-SIM235>3.0.CO;2-V
– ident: e_1_2_10_19_1
  doi: 10.1002/sim.1729
– ident: e_1_2_10_57_1
  doi: 10.1111/j.0006-341X.1999.00732.x
– ident: e_1_2_10_51_1
  doi: 10.1002/jrsm.1211
– volume: 15
  start-page: 1
  issue: 49
  year: 2015
  ident: e_1_2_10_7_1
  article-title: An accurate test for homogeneity of odds ratios based on Cochran's Q‐statistic
  publication-title: BMC Med Res Method
– ident: e_1_2_10_32_1
  doi: 10.1007/978-3-642-34333-9
– ident: e_1_2_10_54_1
  doi: 10.1080/00031305.2016.1165735
– ident: e_1_2_10_18_1
  doi: 10.1186/s12874-015-0091-1
– volume-title: Linear Models
  year: 1971
  ident: e_1_2_10_36_1
– ident: e_1_2_10_17_1
  doi: 10.1002/sim.6879
– volume: 36
  start-page: 3923
  issue: 25
  ident: e_1_2_10_20_1
  article-title: The Hartung‐Knapp modification for random‐effects meta‐analysis: A useful refinement but are there any residual concerns?
  publication-title: Statistics in Medicine
  doi: 10.1002/sim.7411
– ident: e_1_2_10_38_1
– ident: e_1_2_10_40_1
– ident: e_1_2_10_53_1
  doi: 10.1136/bmj.322.7300.1479
– ident: e_1_2_10_27_1
  doi: 10.1002/jrsm.1198
– ident: e_1_2_10_43_1
  doi: 10.1037/met0000023
– ident: e_1_2_10_9_1
  doi: 10.1002/jrsm.1205
– ident: e_1_2_10_24_1
  doi: 10.1002/sim.2897
– volume-title: SAS/IML 14.1 User's Guide
  year: 2015
  ident: e_1_2_10_39_1
– ident: e_1_2_10_56_1
  doi: 10.1002/sim.7588
– ident: e_1_2_10_6_1
  doi: 10.1002/sim.2688
– ident: e_1_2_10_33_1
  doi: 10.1142/6986
– ident: e_1_2_10_25_1
  doi: 10.1007/s10729-007-9041-8
– ident: e_1_2_10_4_1
  doi: 10.1002/sim.5821
– ident: e_1_2_10_26_1
  doi: 10.1002/jrsm.1164
– ident: e_1_2_10_11_1
  doi: 10.1002/bimj.201800071
– volume-title: Applied Linear Statistical Models
  year: 2005
  ident: e_1_2_10_34_1
SSID ssj0000396267
Score 2.4499938
Snippet The Hartung‐Knapp method for random‐effects meta‐analysis, that was also independently proposed by Sidik and Jonkman, is becoming advocated for general use....
The Hartung-Knapp method for random-effects meta-analysis, that was also independently proposed by Sidik and Jonkman, is becoming advocated for general use....
SourceID pubmedcentral
proquest
pubmed
eric
crossref
wiley
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 515
SubjectTerms Algorithms
Comparative Analysis
Computer Simulation
Confidence intervals
Data Interpretation, Statistical
Guidelines
Hartung‐Knapp modification
Inferences
Least squares method
Least Squares Statistics
Least-Squares Analysis
Linear Models
Medical Research
Meta Analysis
Meta-Analysis as Topic
meta‐regression
Outcomes of Treatment
random‐effects weighted least squares regression
Regression analysis
Regression models
Research Design
Sample Size
Simulation
Statistical analysis
Title A new justification of the Hartung‐Knapp method for random‐effects meta‐analysis based on weighted least squares regression
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fjrsm.1356
http://eric.ed.gov/ERICWebPortal/detail?accno=EJ1255427
https://www.ncbi.nlm.nih.gov/pubmed/31111673
https://www.proquest.com/docview/2333563475
https://www.proquest.com/docview/2232081341
https://pubmed.ncbi.nlm.nih.gov/PMC6973024
Volume 10
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3BbtQwEB2V9sIFUaAQKCuDOJRD1MRO4kScttDVahEIAZV6i2zHLlRtdtl0xRX-gG_kS5hxvKErQOKWyJNE2fFknmfH7wE8M1bYJi9V3Bhh4yy1eUzNULF2yvBSkeiVZ_t8W0xPstlpfroFL9Z7YXp-iKHgRpHhv9cU4Ep3h79JQ8-X3SWpNhQ3YIe21hJxPs_eDQWWRFQI1r24isyrGFcG1ZpZKOGHw9Ub-Wiz5fka1vyzZfI6lPW5aHIbbgUQyca913dhy7Z3YDeEaccOApf087vwfcwQN7Nz0uxyoTzH5o4h7GNTnDUY6j-__XjdqsWC9WLSDFEswwTWzC9xJLR70JjCUxUoTBglv4bhvb760ioeX5AIEOu-rGhDE1vas77Btr0HJ5Pjjy-ncVBdiA1xp8VpZVwpEpUqzo0mRCilTLlrENoJXeTC4opRK6LhL1xZqsSUWVM5LhPjZJFXYg-223lrHwDjWmuRCkXa9JnF9SquDbXOdIXPsIl1ERysf_vaBEpyUsa4qHsyZV6Tm2pyUwRPB9NFz8PxN6M9cuBgcDxD-JZnXEawv3ZpHWK0q7kQeI3IZB7Bk2EYo4v-MlGtna_QBgEngiZM9RHc72fAcHdB2aaQIgK5MTcGA2Lu3hxpP3_yDN5FhR9WnuH7-1n07zeqZ-8_vKGDh_9v-ghuIqqr-p6bfdi-Wq7sY0ROV3rkI2QEO-OjV0eTka8V_AKajBuv
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Nb9QwEB2VcoALokAhpVCDOJRD1MR24ljqpUKtlu2HELRSb5Gd2IWqzW53u-IK_4Df2F_CTOJNuwIkbok8SZSMJ_M8mbwH8K5ywtVZYeK6Ei6WqctiaoaKrTcVLwyJXrVsn0f54EQOT7PTJdie_wvT8UP0BTeKjPZ9TQFOBemtW9bQ88n0kmQb8ntwX-ZcUVhy-amvsCRCI1pv1VVUpmNcGug5tVDCt_qjFxLSYs_zHbD5Z8_kXSzbJqO9x_AooEi207l9BZZc8wRWQpxO2WYgk37_FH7uMATO7JxEu3yoz7GRZ4j72ACnDcb6zY9f-40Zj1mnJs0QxjLMYPXoEkdCvweNGdw1gcOEUfarGZ7re1tbxe0LUgFi06sZ_dHEJu6s67BtnsHJ3u7xh0EcZBfiisjT4lRXvhCJSQ3nlSVIqJRKua8R2wmbZ8LhktEa4uHPfVGYpCpkrT1XSeVVnmmxCsvNqHEvgHFrrUiFIXF66XDBiotDa6XVeA2XOB_B5vzZl1XgJCdpjIuyY1PmJbmpJDdF8LY3HXdEHH8zWiUH9ga7Q8RvmeQqgvW5S8sQpNOSC4HHCKmyCN70wxhe9M3ENG40QxtEnIiaMNdH8LybAf3ZBaWbXIkI1MLc6A2IuntxpPn2taXwzjW-WbnE-29n0b_vqBx-_nJIG2v_b7oBDwbHhwflwcej_ZfwECGe7hpw1mH5ejJzrxBGXdvXbbT8BkXCHKg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3BbtQwEB2VIiEuVQsUUgoYxKEcoiZ2EsfiVEFXyxaqCqjUW2QnNlC12WW3q17bP-Ab-RJmHG_oCpC4JfI4UTKezLMzfg_gZW2FbfJSx00tbJylNo-pGCo2Tte81CR65dk-D4vhcTY6yU9W4PViL0zHD9EvuFFk-O81Bfikcbu_SUNPp7NzUm0obsFt_7OPaJ2zo36BJREKwboXV5G5inFmoBbMQgnf7Xsv5aPlkucbWPPPksmbUNbnosE6rAUQyfY6r2_Aim3vwUYI0xnbCVzSr-7D9R5D3MxOSbPLheU5NnYMYR8b4qjBUP959eOg1ZMJ68SkGaJYhgmsGZ9jSyj3oDaNpzpQmDBKfg3Da136pVU8PiMRIDb7PqcNTWxqv3QFtu0DOB7sf34zjIPqQlwTd1qcqtqVItGp5rw2hAillCl3DUI7YYpcWJwxGk00_IUrS53UZdYox2VSO1nkSmzCajtu7SNg3BgjUqFJmz6zOF_FuaExmVF4D5tYF8HO4t1XdaAkJ2WMs6ojU-YVuakiN0XwojeddDwcfzPaJAf2BvsjhG95xmUE2wuXViFGZxUXAvuITOYRPO-bMbrol4lu7XiONgg4ETRhqo_gYTcC-qsLyjaFFBHIpbHRGxBz93JL--2rZ_AuFH5YeYbP70fRv5-oGn389IEOtv7f9BncOXo7qN6_Ozx4DHcR4Kmu_GYbVi-mc_sEQdSFeeqD5ReMvBva
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+new+justification+of+the+Hartung%E2%80%90Knapp+method+for+random%E2%80%90effects+meta%E2%80%90analysis+based+on+weighted+least+squares+regression&rft.jtitle=Research+synthesis+methods&rft.au=Aert%2C+Robbie+C.+M.&rft.au=Jackson%2C+Dan&rft.date=2019-12-01&rft.issn=1759-2879&rft.eissn=1759-2887&rft.volume=10&rft.issue=4&rft.spage=515&rft.epage=527&rft_id=info:doi/10.1002%2Fjrsm.1356&rft.externalDBID=10.1002%252Fjrsm.1356&rft.externalDocID=JRSM1356
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1759-2879&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1759-2879&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1759-2879&client=summon