Multiple mechanisms generate a universal scaling with dissipation for the air‐water gas transfer velocity
A large corpus of field and laboratory experiments support the finding that the water side transfer velocity kL of sparingly soluble gases near air‐water interfaces scales as kL∼(νε)1/4, where ν is the kinematic water viscosity and ε is the mean turbulent kinetic energy dissipation rate. Originally...
Saved in:
Published in | Geophysical research letters Vol. 44; no. 4; pp. 1892 - 1898 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Washington
John Wiley & Sons, Inc
28.02.2017
American Geophysical Union |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | A large corpus of field and laboratory experiments support the finding that the water side transfer velocity kL of sparingly soluble gases near air‐water interfaces scales as kL∼(νε)1/4, where ν is the kinematic water viscosity and ε is the mean turbulent kinetic energy dissipation rate. Originally predicted from surface renewal theory, this scaling appears to hold for marine and coastal systems and across many environmental conditions. It is shown that multiple approaches to representing the effects of turbulence on kL lead to this expression when the Kolmogorov microscale is assumed to be the most efficient transporting eddy near the interface. The approaches considered range from simplified surface renewal schemes with distinct models for renewal durations, scaling and dimensional considerations, and a new structure function approach derived using analogies between scalar and momentum transfer. The work offers a new perspective as to why the aforementioned 1/4 scaling is robust.
Key Points
Scaling laws empirically describing gas transfer velocity kL across marine and coastal systems are theoretically explained
New theory predicts kL using Kolmogorov's universal structure function scaling laws for turbulence instead of surface renewal theory
Work shows how multiple mechanisms with different assumptions subject to eddy turnover time constraint lead to similar scaling laws for kL |
---|---|
AbstractList | A large corpus of field and laboratory experiments support the finding that the water side transfer velocity
k
L
of sparingly soluble gases near air‐water interfaces scales as
k
L
∼(
ν
ε
)
1/4
, where
ν
is the kinematic water viscosity and
ε
is the mean turbulent kinetic energy dissipation rate. Originally predicted from surface renewal theory, this scaling appears to hold for marine and coastal systems and across many environmental conditions. It is shown that multiple approaches to representing the effects of turbulence on
k
L
lead to this expression when the Kolmogorov microscale is assumed to be the most efficient transporting eddy near the interface. The approaches considered range from simplified surface renewal schemes with distinct models for renewal durations, scaling and dimensional considerations, and a new structure function approach derived using analogies between scalar and momentum transfer. The work offers a new perspective as to why the aforementioned 1/4 scaling is robust.
Scaling laws empirically describing gas transfer velocity
k
L
across marine and coastal systems are theoretically explained
New theory predicts
k
L
using Kolmogorov's universal structure function scaling laws for turbulence instead of surface renewal theory
Work shows how multiple mechanisms with different assumptions subject to eddy turnover time constraint lead to similar scaling laws for
k
L A large corpus of field and laboratory experiments support the finding that the water side transfer velocity kL of sparingly soluble gases near air-water interfaces scales as kL( nu epsilon ) super(1/4), where nu is the kinematic water viscosity and epsilon is the mean turbulent kinetic energy dissipation rate. Originally predicted from surface renewal theory, this scaling appears to hold for marine and coastal systems and across many environmental conditions. It is shown that multiple approaches to representing the effects of turbulence on kL lead to this expression when the Kolmogorov microscale is assumed to be the most efficient transporting eddy near the interface. The approaches considered range from simplified surface renewal schemes with distinct models for renewal durations, scaling and dimensional considerations, and a new structure function approach derived using analogies between scalar and momentum transfer. The work offers a new perspective as to why the aforementioned 1/4 scaling is robust. Key Points * Scaling laws empirically describing gas transfer velocity kL across marine and coastal systems are theoretically explained * New theory predicts kL using Kolmogorov's universal structure function scaling laws for turbulence instead of surface renewal theory * Work shows how multiple mechanisms with different assumptions subject to eddy turnover time constraint lead to similar scaling laws for kL A large corpus of field and laboratory experiments support the finding that the water side transfer velocity kL of sparingly soluble gases near air-water interfaces scales as kL(ν[epsi])1/4, where ν is the kinematic water viscosity and [epsi] is the mean turbulent kinetic energy dissipation rate. Originally predicted from surface renewal theory, this scaling appears to hold for marine and coastal systems and across many environmental conditions. It is shown that multiple approaches to representing the effects of turbulence on kL lead to this expression when the Kolmogorov microscale is assumed to be the most efficient transporting eddy near the interface. The approaches considered range from simplified surface renewal schemes with distinct models for renewal durations, scaling and dimensional considerations, and a new structure function approach derived using analogies between scalar and momentum transfer. The work offers a new perspective as to why the aforementioned 1/4 scaling is robust. A large corpus of field and laboratory experiments support the finding that the water side transfer velocity kL of sparingly soluble gases near air‐water interfaces scales as kL∼(νε)1/4, where ν is the kinematic water viscosity and ε is the mean turbulent kinetic energy dissipation rate. Originally predicted from surface renewal theory, this scaling appears to hold for marine and coastal systems and across many environmental conditions. It is shown that multiple approaches to representing the effects of turbulence on kL lead to this expression when the Kolmogorov microscale is assumed to be the most efficient transporting eddy near the interface. The approaches considered range from simplified surface renewal schemes with distinct models for renewal durations, scaling and dimensional considerations, and a new structure function approach derived using analogies between scalar and momentum transfer. The work offers a new perspective as to why the aforementioned 1/4 scaling is robust. Key Points Scaling laws empirically describing gas transfer velocity kL across marine and coastal systems are theoretically explained New theory predicts kL using Kolmogorov's universal structure function scaling laws for turbulence instead of surface renewal theory Work shows how multiple mechanisms with different assumptions subject to eddy turnover time constraint lead to similar scaling laws for kL A large corpus of field and laboratory experiments support the finding that the water side transfer velocity kL of sparingly soluble gases near air‐water interfaces scales as kL∼(νε)1/4, where ν is the kinematic water viscosity and ε is the mean turbulent kinetic energy dissipation rate. Originally predicted from surface renewal theory, this scaling appears to hold for marine and coastal systems and across many environmental conditions. It is shown that multiple approaches to representing the effects of turbulence on kL lead to this expression when the Kolmogorov microscale is assumed to be the most efficient transporting eddy near the interface. The approaches considered range from simplified surface renewal schemes with distinct models for renewal durations, scaling and dimensional considerations, and a new structure function approach derived using analogies between scalar and momentum transfer. The work offers a new perspective as to why the aforementioned 1/4 scaling is robust. A large corpus of field and laboratory experiments support the finding that the water side transfer velocity kL of sparingly soluble gases near air-water interfaces scales as kL~(νε)1/4, where ν is the kinematic water viscosity and ε is the mean turbulent kinetic energy dissipation rate. Originally predicted from surface renewal theory, this scaling appears to hold for marine and coastal systems and across many environmental conditions. It is shown that multiple approaches to representing the effects of turbulence on kL lead to this expression when the Kolmogorov microscale is assumed to be the most efficient transporting eddy near the interface. The approaches considered range from simplified surface renewal schemes with distinct models for renewal durations, scaling and dimensional considerations, and a new structure function approach derived using analogies between scalar and momentum transfer. The work offers a new perspective as to why the aforementioned 1/4 scaling is robust. |
Author | Liu, Heping Katul, Gabriel |
Author_xml | – sequence: 1 givenname: Gabriel orcidid: 0000-0001-9768-3693 surname: Katul fullname: Katul, Gabriel email: gaby@duke.edu organization: Duke University – sequence: 2 givenname: Heping orcidid: 0000-0002-2184-6924 surname: Liu fullname: Liu, Heping organization: Washington State University |
BackLink | https://www.osti.gov/servlets/purl/1465345$$D View this record in Osti.gov |
BookMark | eNqNkc-KkzEUxYOMYGd05wME3biwepN8-fMtZdAqVATRdcikSZsxTWqSb0p3PoLP6JOY2lnIgIOr3MDv3MM59xydpZwcQk8JvCIA9DUFIhZLkJRy8QDNyDgMcwUgz9AMYOwzleIROq_1GgAYMDJD3z5OsYVddHjr7MakULcVr11yxTSHDZ5SuHGlmoirNTGkNd6HtsGrUGvYmRZywj4X3DYdDuXXj5_7rit4bSpuxaTq--fGxWxDOzxGD72J1T25fS_Q13dvv1y-ny8_LT5cvlnO7SA4n6_AM28G72Egkq-8IXDFmaJsdJJL4r2iDryh3FqhlGVSGC5HcjWoFXGDJ-wCPTvtzbUFXbt1j2ZzSs42TboHG3iHXpygXcnfJ1eb3oZqXYwmuTxVTdTIRmCjGP8DVUQKSkfa0ed30Os8ldTTHhdyEIwwdT8lFXDKyTEGPVG25FqL87on-VN5bzZETUAfr67_vnoXvbwj2pWwNeXwL_zWYx-iO9zL6sXnJee8t_cbVN29DA |
CitedBy_id | crossref_primary_10_1016_j_jhydrol_2019_01_016 crossref_primary_10_5194_bg_20_3261_2023 crossref_primary_10_1002_wat2_1336 crossref_primary_10_1002_mma_8190 crossref_primary_10_1017_jfm_2021_447 crossref_primary_10_1371_journal_pone_0299998 crossref_primary_10_1029_2018GL078758 crossref_primary_10_1063_5_0263332 crossref_primary_10_1029_2020WR028757 crossref_primary_10_1029_2018WR022731 crossref_primary_10_1002_2017JC013525 crossref_primary_10_1029_2020WR027721 crossref_primary_10_1002_lno_11927 crossref_primary_10_1002_2017GL072864 crossref_primary_10_5194_esd_12_1169_2021 crossref_primary_10_1029_2020WR027939 crossref_primary_10_1051_e3sconf_20184005018 crossref_primary_10_1002_2017JC013380 crossref_primary_10_1002_wat2_1391 crossref_primary_10_1007_s10652_023_09964_8 |
Cites_doi | 10.1016/0009-2509(61)87005-X 10.1175/JPO2903.1 10.1002/2014JC010253 10.1016/0009-2509(62)80026-8 10.1088/1748-9326/11/6/064001 10.1146/annurev.marine.010908.163742 10.1017/S002211205900009X 10.1017/S0022112082002560 10.1021/ie50498a055 10.1017/CBO9781139164672 10.1016/0009-2509(61)80039-0 10.1029/2008GL037050 10.1146/annurev.fluid.30.1.443 10.4319/lom.2010.8.285 10.1029/JZ070i020p05017 10.1063/1.2936312 10.2307/1352954 10.1017/S002211207800227X 10.1029/2006GL028790 10.1029/94JD01679 10.1146/annurev.fluid.35.101101.161220 10.1029/JC095iC01p00749 10.1088/1755-1315/35/1/012005 10.1029/2003JC001802 10.1007/978-3-642-25643-1_2 10.1029/2012GL051886 10.1063/1.1699986 10.1175/1520-0485(1994)024<1339:POTCSO>2.0.CO;2 10.1029/2010GL045581 10.1002/aic.690160403 10.1017/S0022112094001370 10.1029/2010GL044164 10.1086/432589 10.1098/rspa.1938.0013 |
ContentType | Journal Article |
Copyright | 2017. American Geophysical Union. All Rights Reserved. |
Copyright_xml | – notice: 2017. American Geophysical Union. All Rights Reserved. |
CorporateAuthor | Duke Univ., Durham, NC (United States) |
CorporateAuthor_xml | – name: Duke Univ., Durham, NC (United States) |
DBID | AAYXX CITATION 7TG 7TN 8FD F1W FR3 H8D H96 KL. KR7 L.G L7M OIOZB OTOTI |
DOI | 10.1002/2016GL072256 |
DatabaseName | CrossRef Meteorological & Geoastrophysical Abstracts Oceanic Abstracts Technology Research Database ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Aerospace Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Meteorological & Geoastrophysical Abstracts - Academic Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Advanced Technologies Database with Aerospace OSTI.GOV - Hybrid OSTI.GOV |
DatabaseTitle | CrossRef Aerospace Database Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Meteorological & Geoastrophysical Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Oceanic Abstracts Technology Research Database ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Meteorological & Geoastrophysical Abstracts - Academic |
DatabaseTitleList | CrossRef Aquatic Science & Fisheries Abstracts (ASFA) Professional Aerospace Database Aerospace Database Aerospace Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geology Physics Environmental Sciences |
EISSN | 1944-8007 |
EndPage | 1898 |
ExternalDocumentID | 1465345 4320914487 10_1002_2016GL072256 GRL55565 |
Genre | article |
GrantInformation_xml | – fundername: U.S. Department of Energy (DOE) – fundername: office of Biological and Environmental Research (BER) Terrestrial Ecosystem Science (TES) Program funderid: DE-SC0006967; DE-SC0011461 – fundername: National Science Foundation funderid: NSF-EAR-1344703; NSF-DGE-1068871; NSF-AGS-1112938 |
GroupedDBID | -DZ -~X 05W 0R~ 1OB 1OC 24P 33P 50Y 5GY 5VS 702 8-1 8R4 8R5 A00 AAESR AAHHS AAIHA AASGY AAXRX AAZKR ABCUV ABPPZ ACAHQ ACCFJ ACCZN ACGFO ACGFS ACGOD ACIWK ACNCT ACPOU ACXBN ACXQS ADBBV ADEOM ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AENEX AEQDE AEUQT AFBPY AFGKR AFPWT AFRAH AIURR AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN ALXUD AMYDB AVUZU AZFZN AZVAB BENPR BFHJK BMXJE BRXPI CS3 DCZOG DPXWK DRFUL DRSTM DU5 EBS EJD F5P G-S GODZA HZ~ LATKE LEEKS LITHE LOXES LUTES LYRES MEWTI MSFUL MSSTM MXFUL MXSTM MY~ O9- OK1 P-X P2P P2W PYCSY Q2X R.K RNS ROL SUPJJ TN5 TWZ UPT WBKPD WH7 WIH WIN WXSBR WYJ XSW ZZTAW ~02 ~OA ~~A AAFWJ AAYXX ACTHY CITATION 7TG 7TN 8FD AAMMB AEFGJ AFPKN AGXDD AIDQK AIDYY F1W FR3 H8D H96 KL. KR7 L.G L7M AAJUZ AAPBV ABCVL ABHUG ADAWD ADDAD AEFZC AFVGU AGJLS ARAPS OIOZB OTOTI WN4 |
ID | FETCH-LOGICAL-c4655-d0f3fa4ff04175dfa10b538239e7571ff82e0fa25cc688c376a5791b48d1e4f13 |
ISSN | 0094-8276 |
IngestDate | Fri May 19 01:10:11 EDT 2023 Fri Jul 11 15:57:56 EDT 2025 Thu Jul 10 23:58:36 EDT 2025 Fri Jul 25 10:44:20 EDT 2025 Fri Jul 25 10:26:27 EDT 2025 Thu Apr 24 23:01:48 EDT 2025 Tue Jul 01 01:40:38 EDT 2025 Wed Jan 22 16:27:29 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#am http://onlinelibrary.wiley.com/termsAndConditions#vor |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c4655-d0f3fa4ff04175dfa10b538239e7571ff82e0fa25cc688c376a5791b48d1e4f13 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 SC0006967; SC0011461; NSF-EAR-1344703; NSF-DGE-1068871; NSF-AGS-1112938 National Science Foundation (NSF) USDOE Office of Science (SC), Biological and Environmental Research (BER) |
ORCID | 0000-0001-9768-3693 0000-0002-2184-6924 0000000221846924 0000000197683693 |
OpenAccessLink | https://www.osti.gov/servlets/purl/1465345 |
PQID | 1878052511 |
PQPubID | 54723 |
PageCount | 7 |
ParticipantIDs | osti_scitechconnect_1465345 proquest_miscellaneous_1893903969 proquest_miscellaneous_1881762292 proquest_journals_1895063138 proquest_journals_1878052511 crossref_citationtrail_10_1002_2016GL072256 crossref_primary_10_1002_2016GL072256 wiley_primary_10_1002_2016GL072256_GRL55565 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 28 February 2017 |
PublicationDateYYYYMMDD | 2017-02-28 |
PublicationDate_xml | – month: 02 year: 2017 text: 28 February 2017 day: 28 |
PublicationDecade | 2010 |
PublicationPlace | Washington |
PublicationPlace_xml | – name: Washington – name: United States |
PublicationTitle | Geophysical research letters |
PublicationYear | 2017 |
Publisher | John Wiley & Sons, Inc American Geophysical Union |
Publisher_xml | – name: John Wiley & Sons, Inc – name: American Geophysical Union |
References | 1990; 95 2010; 37 2015; 92 1965; 70 2006; 36 2015; 120 2003; 35 1962; 17 1951; 22 1951; 43 1994; 24 2012; 39 1982; 124 2004; 109 2011; 38 2001; 24 2007; 34 1970; 16 1961; 16 2016; 35 1959; 5 2016; 11 1941; 30 2009; 36 1938; 164 1994; 268 2001 1978; 88 2005; 166 1994; 99 2014 2008; 20 1998; 30 2009; 1 2010; 8 e_1_2_6_32_1 e_1_2_6_10_1 e_1_2_6_31_1 e_1_2_6_30_1 Katul G. (e_1_2_6_19_1) 2015; 92 e_1_2_6_13_1 e_1_2_6_36_1 e_1_2_6_14_1 e_1_2_6_35_1 e_1_2_6_11_1 e_1_2_6_34_1 e_1_2_6_12_1 e_1_2_6_33_1 e_1_2_6_17_1 e_1_2_6_18_1 e_1_2_6_15_1 e_1_2_6_16_1 e_1_2_6_37_1 e_1_2_6_21_1 e_1_2_6_20_1 Kolmogorov A. N. (e_1_2_6_22_1) 1941; 30 e_1_2_6_9_1 e_1_2_6_8_1 e_1_2_6_5_1 e_1_2_6_4_1 e_1_2_6_7_1 e_1_2_6_6_1 e_1_2_6_25_1 e_1_2_6_24_1 e_1_2_6_3_1 e_1_2_6_23_1 e_1_2_6_2_1 e_1_2_6_29_1 e_1_2_6_28_1 e_1_2_6_27_1 e_1_2_6_26_1 |
References_xml | – volume: 11 issue: 6 year: 2016 article-title: Large CO effluxes at night and during synoptic weather events significantly contribute to CO emissions from a reservoir publication-title: Environ. Res. Lett. – volume: 30 start-page: 301 year: 1941 end-page: 305 article-title: The local structure of turbulence in incompressible viscous fluid for very large Reynolds numbers publication-title: Dokl. Akad. Nauk SSSR – volume: 35 start-page: 3733 issue: 1 year: 2003 end-page: 412 article-title: Small‐scale hydrodynamics in lakes publication-title: Annu. Rev. Fluid Mech. – volume: 5 start-page: 113 issue: 1 year: 1959 end-page: 133 article-title: Small‐scale variation of convected quantities like temperature in turbulent fluid: Part 1. General discussion and the case of small conductivity publication-title: J. Fluid Mech. – volume: 36 start-page: 955 issue: 5 year: 2006 end-page: 961 article-title: Toward a unified scaling relation for interfacial fluxes publication-title: J. Phys. Oceanogr. – year: 2001 – volume: 124 start-page: 411 year: 1982 end-page: 437 article-title: A comparative assessment of spectral closures as applied to passive scalar diffusion publication-title: J. Fluid Mech. – volume: 16 start-page: 39 issue: 1 year: 1961 end-page: 54 article-title: The continuous phase heat and mass‐transfer properties of dispersions publication-title: Chem. Eng. Sci. – volume: 164 start-page: 192 year: 1938 end-page: 216 article-title: On the statistical theory of isotropic turbulence publication-title: Proc. R. Soc. A – volume: 16 start-page: 513 issue: 4 year: 1970 end-page: 519 article-title: An eddy cell model of mass transfer into the surface of a turbulent liquid publication-title: AIChE J. – volume: 1 start-page: 213 year: 2009 end-page: 244 article-title: Advances in quantifying air‐sea gas exchange and environmental forcing publication-title: Annu. Rev. Mar. Sci. – volume: 70 start-page: 5017 issue: 20 year: 1965 end-page: 5024 article-title: A model for evaporation as a molecular diffusion process into a turbulent atmosphere publication-title: J. Geophys. Res. – volume: 95 start-page: 749 issue: C1 year: 1990 end-page: 759 article-title: The role of breaking wavelets in air‐sea gas transfer publication-title: J. Geophys. Res. – volume: 35 year: 2016 article-title: The relationship between ocean surface turbulence and air‐sea gas transfer velocity: An in‐situ evaluation publication-title: IOP Conf. Ser.: Earth Environ. Sci. – volume: 39 year: 2012 article-title: Lake‐size dependency of wind shear and convection as controls on gas exchange publication-title: Geophys. Res. Lett. – volume: 8 start-page: 285 issue: 6 year: 2010 end-page: 293 article-title: Multiple approaches to estimating air‐water gas exchange in small lakes publication-title: Limnol. Oceanogr. Methods – volume: 24 start-page: 312 issue: 2 year: 2001 end-page: 317 article-title: Gas exchange in rivers and estuaries: Choosing a gas transfer velocity publication-title: Estuaries Coasts – volume: 36 year: 2009 article-title: Surface age of surface renewal in turbulent interfacial transport publication-title: Geophys. Res. Lett. – volume: 30 start-page: 443 issue: 1 year: 1998 end-page: 468 article-title: Air‐water gas exchange publication-title: Annu. Rev. Fluid Mech. – volume: 109 year: 2004 article-title: A surface renewal model to analyze infrared image sequences of the ocean surface for the study of air‐sea heat and gas exchange publication-title: J. Geophys. Res. – volume: 16 start-page: 287 issue: 3 year: 1961 end-page: 296 article-title: Surface‐renewal models in mass transfer publication-title: Chem. Eng. Sci. – volume: 24 start-page: 1339 issue: 6 year: 1994 end-page: 1346 article-title: Parameterization of the cool skin of the ocean and of the air‐ocean gas transfer on the basis of modeling surface renewal publication-title: J. Phys. Oceanogr. – volume: 22 start-page: 469 issue: 4 year: 1951 end-page: 473 article-title: On the spectrum of isotropic temperature fluctuations in an isotropic turbulence publication-title: J. Appl. Phys. – volume: 92 issue: 3 year: 2015 article-title: Bottlenecks in turbulent kinetic energy spectra predicted from structure function inflections using the von Kármán‐Howarth equation publication-title: Physi. Rev. E – volume: 43 start-page: 1460 issue: 6 year: 1951 end-page: 1467 article-title: Significance of liquid‐film coefficients in gas absorption publication-title: Ind. Eng. Chem. – start-page: 55 year: 2014 end-page: 112 – volume: 37 year: 2010 article-title: Buoyancy flux, turbulence, and the gas transfer coefficient in a stratified lake publication-title: Geophys. Res. Lett. – volume: 20 issue: 6 year: 2008 article-title: A functional form for the energy spectrum parameterizing bottleneck and intermittency effects publication-title: Phys. Fluids – volume: 268 start-page: 333 year: 1994 end-page: 372 article-title: Local isotropy in turbulent boundary layers at high Reynolds number publication-title: J. Fluid Mech. – volume: 34 year: 2007 article-title: Environmental turbulent mixing controls on air‐water gas exchange in marine and aquatic systems publication-title: Geophys. Res. Lett. – volume: 120 start-page: 2129 year: 2015 end-page: 2146 article-title: On the coefficients of small eddy and surface divergence models for the air‐water gas transfer velocity publication-title: J. Geophys. Res. Oceans – volume: 38 year: 2011 article-title: Oceanic convective mixing and the impact on air‐sea gas transfer velocity publication-title: Geophys. Res. Lett. – volume: 166 start-page: 368 issue: 3 year: 2005 end-page: 381 article-title: Mechanistic analytical models for long‐distance seed dispersal by wind publication-title: Am. Nat. – volume: 17 start-page: 149 issue: 3 year: 1962 end-page: 154 article-title: A random eddy modification of the penetration theory publication-title: Chem. Eng. Sci. – volume: 99 start-page: 22,869 issue: D11 year: 1994 end-page: 22,876 article-title: Conditional sampling, bursting, and the intermittent structure of sensible heat flux publication-title: J. Geophys. Res. – volume: 88 start-page: 541 year: 1978 end-page: 562 article-title: Models of the scalar spectrum for turbulent advection publication-title: J. Fluid Mech. – ident: e_1_2_6_4_1 doi: 10.1016/0009-2509(61)87005-X – ident: e_1_2_6_25_1 doi: 10.1175/JPO2903.1 – ident: e_1_2_6_34_1 doi: 10.1002/2014JC010253 – ident: e_1_2_6_13_1 doi: 10.1016/0009-2509(62)80026-8 – ident: e_1_2_6_24_1 doi: 10.1088/1748-9326/11/6/064001 – ident: e_1_2_6_35_1 doi: 10.1146/annurev.marine.010908.163742 – ident: e_1_2_6_2_1 doi: 10.1017/S002211205900009X – ident: e_1_2_6_14_1 doi: 10.1017/S0022112082002560 – ident: e_1_2_6_9_1 doi: 10.1021/ie50498a055 – ident: e_1_2_6_8_1 doi: 10.1017/CBO9781139164672 – ident: e_1_2_6_28_1 doi: 10.1016/0009-2509(61)80039-0 – ident: e_1_2_6_21_1 doi: 10.1029/2008GL037050 – ident: e_1_2_6_16_1 doi: 10.1146/annurev.fluid.30.1.443 – ident: e_1_2_6_5_1 doi: 10.4319/lom.2010.8.285 – ident: e_1_2_6_3_1 doi: 10.1029/JZ070i020p05017 – volume: 92 issue: 3 year: 2015 ident: e_1_2_6_19_1 article-title: Bottlenecks in turbulent kinetic energy spectra predicted from structure function inflections using the von Kármán‐Howarth equation publication-title: Physi. Rev. E – ident: e_1_2_6_27_1 doi: 10.1063/1.2936312 – ident: e_1_2_6_29_1 doi: 10.2307/1352954 – ident: e_1_2_6_15_1 doi: 10.1017/S002211207800227X – ident: e_1_2_6_37_1 doi: 10.1029/2006GL028790 – ident: e_1_2_6_20_1 doi: 10.1029/94JD01679 – ident: e_1_2_6_36_1 doi: 10.1146/annurev.fluid.35.101101.161220 – ident: e_1_2_6_7_1 doi: 10.1029/JC095iC01p00749 – ident: e_1_2_6_10_1 doi: 10.1088/1755-1315/35/1/012005 – ident: e_1_2_6_11_1 doi: 10.1029/2003JC001802 – ident: e_1_2_6_12_1 doi: 10.1007/978-3-642-25643-1_2 – ident: e_1_2_6_30_1 doi: 10.1029/2012GL051886 – ident: e_1_2_6_6_1 doi: 10.1063/1.1699986 – ident: e_1_2_6_33_1 doi: 10.1175/1520-0485(1994)024<1339:POTCSO>2.0.CO;2 – ident: e_1_2_6_31_1 doi: 10.1029/2010GL045581 – ident: e_1_2_6_23_1 doi: 10.1002/aic.690160403 – volume: 30 start-page: 301 year: 1941 ident: e_1_2_6_22_1 article-title: The local structure of turbulence in incompressible viscous fluid for very large Reynolds numbers publication-title: Dokl. Akad. Nauk SSSR – ident: e_1_2_6_32_1 doi: 10.1017/S0022112094001370 – ident: e_1_2_6_26_1 doi: 10.1029/2010GL044164 – ident: e_1_2_6_18_1 doi: 10.1086/432589 – ident: e_1_2_6_17_1 doi: 10.1098/rspa.1938.0013 |
SSID | ssj0003031 |
Score | 2.3481557 |
Snippet | A large corpus of field and laboratory experiments support the finding that the water side transfer velocity kL of sparingly soluble gases near air‐water... A large corpus of field and laboratory experiments support the finding that the water side transfer velocity k L of sparingly soluble gases near air‐water... A large corpus of field and laboratory experiments support the finding that the water side transfer velocity kL of sparingly soluble gases near air-water... |
SourceID | osti proquest crossref wiley |
SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1892 |
SubjectTerms | Air-water exchanges Air-water interface air‐water exchange Coastal zones Dissipation Eddies Energy dissipation Environmental conditions ENVIRONMENTAL SCIENCES gas transfer velocity Gases Geophysics Interfaces Kinematics Kinetic energy Kinetic energy dissipation Kinetics Kolmogorov scaling Laboratory experiments Marine environment Mathematical models Momentum transfer Scaling Scaling laws Simplified surfaces Structure-function relationships surface divergence surface renewal Turbulence Turbulent flow Turbulent kinetic energy Velocity Viscosity Water gas |
Title | Multiple mechanisms generate a universal scaling with dissipation for the air‐water gas transfer velocity |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2F2016GL072256 https://www.proquest.com/docview/1878052511 https://www.proquest.com/docview/1895063138 https://www.proquest.com/docview/1881762292 https://www.proquest.com/docview/1893903969 https://www.osti.gov/servlets/purl/1465345 |
Volume | 44 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fb9MwELagExIvCAYTZQMZCZ6qQOLYif04odEJdTygFU28RI5js0pdWy2JEPvrd46dH0VbBbxEqW05Se_L-S6--w6hdzyRYWGIrREmVEDTRAXCMBboiEkpaJykhf2gf_Y1OZ3TLxfsoq_f2WSXVPkHdXNnXsn_SBXaQK42S_YfJNtNCg1wDvKFI0gYjn8l47M2GvBK2wTeRXlV2pLIlidZT-SkdkEXTdqjXHZfXe0WvA-k7oIM5eI6-CUtYeJPWdq6EWDNwg8bUKQW1dbW71SvN61wPVXQ5WTZZAX1G0Oyql3lLpmDL95FccwWtVvrNu2K6T84wCLWJ3D3Mf6gfIaXAwPZo8jrWUEDTlJPcu1Uq6DQFroat63uddyPHmP0TpXuKGLhRpLpLExB_fzBnO1cGUsTR9lDtEfAXSAjtHf8ff5j3q3JsFC72on-vnwKBMz9cTjzlnEyWoOS3XI8hu5LY3-cP0VPvOOAjx0KnqEHerWPDk76PEXo9Iq63EePpk3F5t9w1sT4qvI5WrRwwT1ccAsXLHEHF-zhgi1c8AAuGOCCAS64gwsGuOAWLriFyws0_3xy_uk08JU2AmX584IiNLGR1JiQgjlZGBmFObM7xEKnLI2M4USHRhKmVMK5gkVJslREOeVFpKmJ4gM0Wq1X-iXCMfjDYCLztMgVNZRxISOtSapTsIyJMWM0af_iTHkaelsNZZk5Am2SDQUyRu-70RtHv3LPuEMrrQzMRst9rGyQmKoyD4sxOmqFmPnXt8wi3pTzAIfjnm7BwHyPYj5Gb7tu0L12Q02u9Lq2Y3gExgQRZNcYEYswFomAJ2_ws_NBsum3GWPgZb3a-USH6HH_ah6hUXVd69dgHVf5Gw_9W7x1u00 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlZ3NbtQwEIAt2ArBBfErlhYwEpxQ1Njx77FCdBfY7QF1UcUl8jp2VUF30SYrxI1H4Bl5EmYcd9keWolboowjxfZ4vozHM4S8MsqVTeRYI8z6QmjlCxulLAKTzllRKd2gQ396pMYz8eFEnuQ6p3gWps8PsXG4oWak9RoVHB3S-_-yhoLpUqNJqWFGqptkB8HGDMjOwefZl9lmMYYVui-aZ0VhuFY59h3esL_d_pJVGixBuy4R5za3JsNzeI_czcRID_ohvk9uhMUDcmuUKvL-hKsUw-nbh-TrNAcH0vOA53nP2vOWnqa00l2gjq77GAx4VwsDAyaLohOW4o58jqumQLAUiJC6s9WfX79_QLsVPXUt7RLewg1GGHkA90dkdvju-O24yLUUCo8Z0oqmjFV0IsZSADA00bFyLnEP0AYtNYvR8FBGx6X3yhgPy46T2rK5MA0LIrLqMRkslovwhNAK_ngAgoxu5l5EIY11LASugwb24TEOyZuLvqx9TjSO9S6-1X2KZF5v9_yQvN5If-8TbFwht4vDUgMYYHZbj2FAvsM_F1kJOSR7F6NVZyVsa2ZSwQZAyiseWwmAxiozJC83j0G7cMvELcJyjTKGgbngll8nYytbVlZZ-PI0Ua79kHr0aSIlcPTT_5J-QW6Pj6eTevL-6OMuucORLtLJ-j0y6Fbr8AzYqJs_z_P_L8qEBIw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NbhMxELYgFYgL4leEFjASnNCq67-1fayApEBaIURQxWXleO2qgiZVdiPEjUfgGXkSZrxuSA-txG1XHluyPeP5bI-_IeSFqVzZRI45wqwvpK58YaNSRWDKOStFpRs80D84rPan8v2ROsoHbvgWpueHWB-4oWWk9RoN_KyJu_9IQ8FzVeNJqUEhq-tkC4nyQKu39r5Mv07XazEs0H3OPCsLw3WVQ9-hhd3N-hec0mABxnUBcG7C1uR3RnfI7QwY6V4_w3fJtTC_R26MU0Len_CVQjh9e598O8ixgfQ04HPek_a0pceJVboL1NFVH4IBbbUwL-CxKJ7BUryQz2HVFAAsBUBI3cnyz6_fP6Dekh67lnYJ3cIPBhh5wO0PyHT09vPr_SKnUig8EqQVTRlFdDLGUgJeaKJj5UzhFaANWmkWo-GhjI4r7ytjPKw6TmnLZtI0LMjIxEMymC_m4RGhAjY8gIGMbmZeRqmMdSwEroMG6MNjHJJX52NZ-8wzjukuvtc9QzKvN0d-SF6upc96fo1L5LZxWmrABUhu6zEKyHe4cVFCqiHZOZ-tOttgWzOT8jUAoryk2ILOCCbMkDxfF4Nx4Y2Jm4fFCmUMA2_BLb9KxgpbCltZ6HlSlCs7Uo8_TZQCGP34v6SfkZsf34zqybvDD9vkFkdskd7V75BBt1yFJ4CMutnTrP5_ASFlA7U |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multiple+mechanisms+generate+a+universal+scaling+with+dissipation+for+the+air-water+gas+transfer+velocity&rft.jtitle=Geophysical+research+letters&rft.au=Katul%2C+Gabriel&rft.au=Liu%2C+Heping&rft.date=2017-02-28&rft.pub=American+Geophysical+Union&rft.issn=0094-8276&rft.eissn=1944-8007&rft.volume=44&rft.issue=4&rft_id=info:doi/10.1002%2F2016GL072256&rft.externalDocID=1465345 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0094-8276&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0094-8276&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0094-8276&client=summon |