Multiple mechanisms generate a universal scaling with dissipation for the air‐water gas transfer velocity

A large corpus of field and laboratory experiments support the finding that the water side transfer velocity kL of sparingly soluble gases near air‐water interfaces scales as kL∼(νε)1/4, where ν is the kinematic water viscosity and ε is the mean turbulent kinetic energy dissipation rate. Originally...

Full description

Saved in:
Bibliographic Details
Published inGeophysical research letters Vol. 44; no. 4; pp. 1892 - 1898
Main Authors Katul, Gabriel, Liu, Heping
Format Journal Article
LanguageEnglish
Published Washington John Wiley & Sons, Inc 28.02.2017
American Geophysical Union
Subjects
Online AccessGet full text

Cover

Loading…
Abstract A large corpus of field and laboratory experiments support the finding that the water side transfer velocity kL of sparingly soluble gases near air‐water interfaces scales as kL∼(νε)1/4, where ν is the kinematic water viscosity and ε is the mean turbulent kinetic energy dissipation rate. Originally predicted from surface renewal theory, this scaling appears to hold for marine and coastal systems and across many environmental conditions. It is shown that multiple approaches to representing the effects of turbulence on kL lead to this expression when the Kolmogorov microscale is assumed to be the most efficient transporting eddy near the interface. The approaches considered range from simplified surface renewal schemes with distinct models for renewal durations, scaling and dimensional considerations, and a new structure function approach derived using analogies between scalar and momentum transfer. The work offers a new perspective as to why the aforementioned 1/4 scaling is robust. Key Points Scaling laws empirically describing gas transfer velocity kL across marine and coastal systems are theoretically explained New theory predicts kL using Kolmogorov's universal structure function scaling laws for turbulence instead of surface renewal theory Work shows how multiple mechanisms with different assumptions subject to eddy turnover time constraint lead to similar scaling laws for kL
AbstractList A large corpus of field and laboratory experiments support the finding that the water side transfer velocity k L of sparingly soluble gases near air‐water interfaces scales as k L ∼( ν ε ) 1/4 , where ν is the kinematic water viscosity and ε is the mean turbulent kinetic energy dissipation rate. Originally predicted from surface renewal theory, this scaling appears to hold for marine and coastal systems and across many environmental conditions. It is shown that multiple approaches to representing the effects of turbulence on k L lead to this expression when the Kolmogorov microscale is assumed to be the most efficient transporting eddy near the interface. The approaches considered range from simplified surface renewal schemes with distinct models for renewal durations, scaling and dimensional considerations, and a new structure function approach derived using analogies between scalar and momentum transfer. The work offers a new perspective as to why the aforementioned 1/4 scaling is robust. Scaling laws empirically describing gas transfer velocity k L across marine and coastal systems are theoretically explained New theory predicts k L using Kolmogorov's universal structure function scaling laws for turbulence instead of surface renewal theory Work shows how multiple mechanisms with different assumptions subject to eddy turnover time constraint lead to similar scaling laws for k L
A large corpus of field and laboratory experiments support the finding that the water side transfer velocity kL of sparingly soluble gases near air-water interfaces scales as kL( nu epsilon ) super(1/4), where nu is the kinematic water viscosity and epsilon is the mean turbulent kinetic energy dissipation rate. Originally predicted from surface renewal theory, this scaling appears to hold for marine and coastal systems and across many environmental conditions. It is shown that multiple approaches to representing the effects of turbulence on kL lead to this expression when the Kolmogorov microscale is assumed to be the most efficient transporting eddy near the interface. The approaches considered range from simplified surface renewal schemes with distinct models for renewal durations, scaling and dimensional considerations, and a new structure function approach derived using analogies between scalar and momentum transfer. The work offers a new perspective as to why the aforementioned 1/4 scaling is robust. Key Points * Scaling laws empirically describing gas transfer velocity kL across marine and coastal systems are theoretically explained * New theory predicts kL using Kolmogorov's universal structure function scaling laws for turbulence instead of surface renewal theory * Work shows how multiple mechanisms with different assumptions subject to eddy turnover time constraint lead to similar scaling laws for kL
A large corpus of field and laboratory experiments support the finding that the water side transfer velocity kL of sparingly soluble gases near air-water interfaces scales as kL(ν[epsi])1/4, where ν is the kinematic water viscosity and [epsi] is the mean turbulent kinetic energy dissipation rate. Originally predicted from surface renewal theory, this scaling appears to hold for marine and coastal systems and across many environmental conditions. It is shown that multiple approaches to representing the effects of turbulence on kL lead to this expression when the Kolmogorov microscale is assumed to be the most efficient transporting eddy near the interface. The approaches considered range from simplified surface renewal schemes with distinct models for renewal durations, scaling and dimensional considerations, and a new structure function approach derived using analogies between scalar and momentum transfer. The work offers a new perspective as to why the aforementioned 1/4 scaling is robust.
A large corpus of field and laboratory experiments support the finding that the water side transfer velocity kL of sparingly soluble gases near air‐water interfaces scales as kL∼(νε)1/4, where ν is the kinematic water viscosity and ε is the mean turbulent kinetic energy dissipation rate. Originally predicted from surface renewal theory, this scaling appears to hold for marine and coastal systems and across many environmental conditions. It is shown that multiple approaches to representing the effects of turbulence on kL lead to this expression when the Kolmogorov microscale is assumed to be the most efficient transporting eddy near the interface. The approaches considered range from simplified surface renewal schemes with distinct models for renewal durations, scaling and dimensional considerations, and a new structure function approach derived using analogies between scalar and momentum transfer. The work offers a new perspective as to why the aforementioned 1/4 scaling is robust. Key Points Scaling laws empirically describing gas transfer velocity kL across marine and coastal systems are theoretically explained New theory predicts kL using Kolmogorov's universal structure function scaling laws for turbulence instead of surface renewal theory Work shows how multiple mechanisms with different assumptions subject to eddy turnover time constraint lead to similar scaling laws for kL
A large corpus of field and laboratory experiments support the finding that the water side transfer velocity kL of sparingly soluble gases near air‐water interfaces scales as kL∼(νε)1/4, where ν is the kinematic water viscosity and ε is the mean turbulent kinetic energy dissipation rate. Originally predicted from surface renewal theory, this scaling appears to hold for marine and coastal systems and across many environmental conditions. It is shown that multiple approaches to representing the effects of turbulence on kL lead to this expression when the Kolmogorov microscale is assumed to be the most efficient transporting eddy near the interface. The approaches considered range from simplified surface renewal schemes with distinct models for renewal durations, scaling and dimensional considerations, and a new structure function approach derived using analogies between scalar and momentum transfer. The work offers a new perspective as to why the aforementioned 1/4 scaling is robust.
A large corpus of field and laboratory experiments support the finding that the water side transfer velocity kL of sparingly soluble gases near air-water interfaces scales as kL~(νε)1/4, where ν is the kinematic water viscosity and ε is the mean turbulent kinetic energy dissipation rate. Originally predicted from surface renewal theory, this scaling appears to hold for marine and coastal systems and across many environmental conditions. It is shown that multiple approaches to representing the effects of turbulence on kL lead to this expression when the Kolmogorov microscale is assumed to be the most efficient transporting eddy near the interface. The approaches considered range from simplified surface renewal schemes with distinct models for renewal durations, scaling and dimensional considerations, and a new structure function approach derived using analogies between scalar and momentum transfer. The work offers a new perspective as to why the aforementioned 1/4 scaling is robust.
Author Liu, Heping
Katul, Gabriel
Author_xml – sequence: 1
  givenname: Gabriel
  orcidid: 0000-0001-9768-3693
  surname: Katul
  fullname: Katul, Gabriel
  email: gaby@duke.edu
  organization: Duke University
– sequence: 2
  givenname: Heping
  orcidid: 0000-0002-2184-6924
  surname: Liu
  fullname: Liu, Heping
  organization: Washington State University
BackLink https://www.osti.gov/servlets/purl/1465345$$D View this record in Osti.gov
BookMark eNqNkc-KkzEUxYOMYGd05wME3biwepN8-fMtZdAqVATRdcikSZsxTWqSb0p3PoLP6JOY2lnIgIOr3MDv3MM59xydpZwcQk8JvCIA9DUFIhZLkJRy8QDNyDgMcwUgz9AMYOwzleIROq_1GgAYMDJD3z5OsYVddHjr7MakULcVr11yxTSHDZ5SuHGlmoirNTGkNd6HtsGrUGvYmRZywj4X3DYdDuXXj5_7rit4bSpuxaTq--fGxWxDOzxGD72J1T25fS_Q13dvv1y-ny8_LT5cvlnO7SA4n6_AM28G72Egkq-8IXDFmaJsdJJL4r2iDryh3FqhlGVSGC5HcjWoFXGDJ-wCPTvtzbUFXbt1j2ZzSs42TboHG3iHXpygXcnfJ1eb3oZqXYwmuTxVTdTIRmCjGP8DVUQKSkfa0ed30Os8ldTTHhdyEIwwdT8lFXDKyTEGPVG25FqL87on-VN5bzZETUAfr67_vnoXvbwj2pWwNeXwL_zWYx-iO9zL6sXnJee8t_cbVN29DA
CitedBy_id crossref_primary_10_1016_j_jhydrol_2019_01_016
crossref_primary_10_5194_bg_20_3261_2023
crossref_primary_10_1002_wat2_1336
crossref_primary_10_1002_mma_8190
crossref_primary_10_1017_jfm_2021_447
crossref_primary_10_1371_journal_pone_0299998
crossref_primary_10_1029_2018GL078758
crossref_primary_10_1063_5_0263332
crossref_primary_10_1029_2020WR028757
crossref_primary_10_1029_2018WR022731
crossref_primary_10_1002_2017JC013525
crossref_primary_10_1029_2020WR027721
crossref_primary_10_1002_lno_11927
crossref_primary_10_1002_2017GL072864
crossref_primary_10_5194_esd_12_1169_2021
crossref_primary_10_1029_2020WR027939
crossref_primary_10_1051_e3sconf_20184005018
crossref_primary_10_1002_2017JC013380
crossref_primary_10_1002_wat2_1391
crossref_primary_10_1007_s10652_023_09964_8
Cites_doi 10.1016/0009-2509(61)87005-X
10.1175/JPO2903.1
10.1002/2014JC010253
10.1016/0009-2509(62)80026-8
10.1088/1748-9326/11/6/064001
10.1146/annurev.marine.010908.163742
10.1017/S002211205900009X
10.1017/S0022112082002560
10.1021/ie50498a055
10.1017/CBO9781139164672
10.1016/0009-2509(61)80039-0
10.1029/2008GL037050
10.1146/annurev.fluid.30.1.443
10.4319/lom.2010.8.285
10.1029/JZ070i020p05017
10.1063/1.2936312
10.2307/1352954
10.1017/S002211207800227X
10.1029/2006GL028790
10.1029/94JD01679
10.1146/annurev.fluid.35.101101.161220
10.1029/JC095iC01p00749
10.1088/1755-1315/35/1/012005
10.1029/2003JC001802
10.1007/978-3-642-25643-1_2
10.1029/2012GL051886
10.1063/1.1699986
10.1175/1520-0485(1994)024<1339:POTCSO>2.0.CO;2
10.1029/2010GL045581
10.1002/aic.690160403
10.1017/S0022112094001370
10.1029/2010GL044164
10.1086/432589
10.1098/rspa.1938.0013
ContentType Journal Article
Copyright 2017. American Geophysical Union. All Rights Reserved.
Copyright_xml – notice: 2017. American Geophysical Union. All Rights Reserved.
CorporateAuthor Duke Univ., Durham, NC (United States)
CorporateAuthor_xml – name: Duke Univ., Durham, NC (United States)
DBID AAYXX
CITATION
7TG
7TN
8FD
F1W
FR3
H8D
H96
KL.
KR7
L.G
L7M
OIOZB
OTOTI
DOI 10.1002/2016GL072256
DatabaseName CrossRef
Meteorological & Geoastrophysical Abstracts
Oceanic Abstracts
Technology Research Database
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Meteorological & Geoastrophysical Abstracts - Academic
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Advanced Technologies Database with Aerospace
OSTI.GOV - Hybrid
OSTI.GOV
DatabaseTitle CrossRef
Aerospace Database
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Meteorological & Geoastrophysical Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Oceanic Abstracts
Technology Research Database
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Meteorological & Geoastrophysical Abstracts - Academic
DatabaseTitleList CrossRef
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Aerospace Database

Aerospace Database
Aerospace Database

DeliveryMethod fulltext_linktorsrc
Discipline Geology
Physics
Environmental Sciences
EISSN 1944-8007
EndPage 1898
ExternalDocumentID 1465345
4320914487
10_1002_2016GL072256
GRL55565
Genre article
GrantInformation_xml – fundername: U.S. Department of Energy (DOE)
– fundername: office of Biological and Environmental Research (BER) Terrestrial Ecosystem Science (TES) Program
  funderid: DE-SC0006967; DE-SC0011461
– fundername: National Science Foundation
  funderid: NSF-EAR-1344703; NSF-DGE-1068871; NSF-AGS-1112938
GroupedDBID -DZ
-~X
05W
0R~
1OB
1OC
24P
33P
50Y
5GY
5VS
702
8-1
8R4
8R5
A00
AAESR
AAHHS
AAIHA
AASGY
AAXRX
AAZKR
ABCUV
ABPPZ
ACAHQ
ACCFJ
ACCZN
ACGFO
ACGFS
ACGOD
ACIWK
ACNCT
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AENEX
AEQDE
AEUQT
AFBPY
AFGKR
AFPWT
AFRAH
AIURR
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALXUD
AMYDB
AVUZU
AZFZN
AZVAB
BENPR
BFHJK
BMXJE
BRXPI
CS3
DCZOG
DPXWK
DRFUL
DRSTM
DU5
EBS
EJD
F5P
G-S
GODZA
HZ~
LATKE
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
MSFUL
MSSTM
MXFUL
MXSTM
MY~
O9-
OK1
P-X
P2P
P2W
PYCSY
Q2X
R.K
RNS
ROL
SUPJJ
TN5
TWZ
UPT
WBKPD
WH7
WIH
WIN
WXSBR
WYJ
XSW
ZZTAW
~02
~OA
~~A
AAFWJ
AAYXX
ACTHY
CITATION
7TG
7TN
8FD
AAMMB
AEFGJ
AFPKN
AGXDD
AIDQK
AIDYY
F1W
FR3
H8D
H96
KL.
KR7
L.G
L7M
AAJUZ
AAPBV
ABCVL
ABHUG
ADAWD
ADDAD
AEFZC
AFVGU
AGJLS
ARAPS
OIOZB
OTOTI
WN4
ID FETCH-LOGICAL-c4655-d0f3fa4ff04175dfa10b538239e7571ff82e0fa25cc688c376a5791b48d1e4f13
ISSN 0094-8276
IngestDate Fri May 19 01:10:11 EDT 2023
Fri Jul 11 15:57:56 EDT 2025
Thu Jul 10 23:58:36 EDT 2025
Fri Jul 25 10:44:20 EDT 2025
Fri Jul 25 10:26:27 EDT 2025
Thu Apr 24 23:01:48 EDT 2025
Tue Jul 01 01:40:38 EDT 2025
Wed Jan 22 16:27:29 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#am
http://onlinelibrary.wiley.com/termsAndConditions#vor
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c4655-d0f3fa4ff04175dfa10b538239e7571ff82e0fa25cc688c376a5791b48d1e4f13
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
SC0006967; SC0011461; NSF-EAR-1344703; NSF-DGE-1068871; NSF-AGS-1112938
National Science Foundation (NSF)
USDOE Office of Science (SC), Biological and Environmental Research (BER)
ORCID 0000-0001-9768-3693
0000-0002-2184-6924
0000000221846924
0000000197683693
OpenAccessLink https://www.osti.gov/servlets/purl/1465345
PQID 1878052511
PQPubID 54723
PageCount 7
ParticipantIDs osti_scitechconnect_1465345
proquest_miscellaneous_1893903969
proquest_miscellaneous_1881762292
proquest_journals_1895063138
proquest_journals_1878052511
crossref_citationtrail_10_1002_2016GL072256
crossref_primary_10_1002_2016GL072256
wiley_primary_10_1002_2016GL072256_GRL55565
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 28 February 2017
PublicationDateYYYYMMDD 2017-02-28
PublicationDate_xml – month: 02
  year: 2017
  text: 28 February 2017
  day: 28
PublicationDecade 2010
PublicationPlace Washington
PublicationPlace_xml – name: Washington
– name: United States
PublicationTitle Geophysical research letters
PublicationYear 2017
Publisher John Wiley & Sons, Inc
American Geophysical Union
Publisher_xml – name: John Wiley & Sons, Inc
– name: American Geophysical Union
References 1990; 95
2010; 37
2015; 92
1965; 70
2006; 36
2015; 120
2003; 35
1962; 17
1951; 22
1951; 43
1994; 24
2012; 39
1982; 124
2004; 109
2011; 38
2001; 24
2007; 34
1970; 16
1961; 16
2016; 35
1959; 5
2016; 11
1941; 30
2009; 36
1938; 164
1994; 268
2001
1978; 88
2005; 166
1994; 99
2014
2008; 20
1998; 30
2009; 1
2010; 8
e_1_2_6_32_1
e_1_2_6_10_1
e_1_2_6_31_1
e_1_2_6_30_1
Katul G. (e_1_2_6_19_1) 2015; 92
e_1_2_6_13_1
e_1_2_6_36_1
e_1_2_6_14_1
e_1_2_6_35_1
e_1_2_6_11_1
e_1_2_6_34_1
e_1_2_6_12_1
e_1_2_6_33_1
e_1_2_6_17_1
e_1_2_6_18_1
e_1_2_6_15_1
e_1_2_6_16_1
e_1_2_6_37_1
e_1_2_6_21_1
e_1_2_6_20_1
Kolmogorov A. N. (e_1_2_6_22_1) 1941; 30
e_1_2_6_9_1
e_1_2_6_8_1
e_1_2_6_5_1
e_1_2_6_4_1
e_1_2_6_7_1
e_1_2_6_6_1
e_1_2_6_25_1
e_1_2_6_24_1
e_1_2_6_3_1
e_1_2_6_23_1
e_1_2_6_2_1
e_1_2_6_29_1
e_1_2_6_28_1
e_1_2_6_27_1
e_1_2_6_26_1
References_xml – volume: 11
  issue: 6
  year: 2016
  article-title: Large CO effluxes at night and during synoptic weather events significantly contribute to CO emissions from a reservoir
  publication-title: Environ. Res. Lett.
– volume: 30
  start-page: 301
  year: 1941
  end-page: 305
  article-title: The local structure of turbulence in incompressible viscous fluid for very large Reynolds numbers
  publication-title: Dokl. Akad. Nauk SSSR
– volume: 35
  start-page: 3733
  issue: 1
  year: 2003
  end-page: 412
  article-title: Small‐scale hydrodynamics in lakes
  publication-title: Annu. Rev. Fluid Mech.
– volume: 5
  start-page: 113
  issue: 1
  year: 1959
  end-page: 133
  article-title: Small‐scale variation of convected quantities like temperature in turbulent fluid: Part 1. General discussion and the case of small conductivity
  publication-title: J. Fluid Mech.
– volume: 36
  start-page: 955
  issue: 5
  year: 2006
  end-page: 961
  article-title: Toward a unified scaling relation for interfacial fluxes
  publication-title: J. Phys. Oceanogr.
– year: 2001
– volume: 124
  start-page: 411
  year: 1982
  end-page: 437
  article-title: A comparative assessment of spectral closures as applied to passive scalar diffusion
  publication-title: J. Fluid Mech.
– volume: 16
  start-page: 39
  issue: 1
  year: 1961
  end-page: 54
  article-title: The continuous phase heat and mass‐transfer properties of dispersions
  publication-title: Chem. Eng. Sci.
– volume: 164
  start-page: 192
  year: 1938
  end-page: 216
  article-title: On the statistical theory of isotropic turbulence
  publication-title: Proc. R. Soc. A
– volume: 16
  start-page: 513
  issue: 4
  year: 1970
  end-page: 519
  article-title: An eddy cell model of mass transfer into the surface of a turbulent liquid
  publication-title: AIChE J.
– volume: 1
  start-page: 213
  year: 2009
  end-page: 244
  article-title: Advances in quantifying air‐sea gas exchange and environmental forcing
  publication-title: Annu. Rev. Mar. Sci.
– volume: 70
  start-page: 5017
  issue: 20
  year: 1965
  end-page: 5024
  article-title: A model for evaporation as a molecular diffusion process into a turbulent atmosphere
  publication-title: J. Geophys. Res.
– volume: 95
  start-page: 749
  issue: C1
  year: 1990
  end-page: 759
  article-title: The role of breaking wavelets in air‐sea gas transfer
  publication-title: J. Geophys. Res.
– volume: 35
  year: 2016
  article-title: The relationship between ocean surface turbulence and air‐sea gas transfer velocity: An in‐situ evaluation
  publication-title: IOP Conf. Ser.: Earth Environ. Sci.
– volume: 39
  year: 2012
  article-title: Lake‐size dependency of wind shear and convection as controls on gas exchange
  publication-title: Geophys. Res. Lett.
– volume: 8
  start-page: 285
  issue: 6
  year: 2010
  end-page: 293
  article-title: Multiple approaches to estimating air‐water gas exchange in small lakes
  publication-title: Limnol. Oceanogr. Methods
– volume: 24
  start-page: 312
  issue: 2
  year: 2001
  end-page: 317
  article-title: Gas exchange in rivers and estuaries: Choosing a gas transfer velocity
  publication-title: Estuaries Coasts
– volume: 36
  year: 2009
  article-title: Surface age of surface renewal in turbulent interfacial transport
  publication-title: Geophys. Res. Lett.
– volume: 30
  start-page: 443
  issue: 1
  year: 1998
  end-page: 468
  article-title: Air‐water gas exchange
  publication-title: Annu. Rev. Fluid Mech.
– volume: 109
  year: 2004
  article-title: A surface renewal model to analyze infrared image sequences of the ocean surface for the study of air‐sea heat and gas exchange
  publication-title: J. Geophys. Res.
– volume: 16
  start-page: 287
  issue: 3
  year: 1961
  end-page: 296
  article-title: Surface‐renewal models in mass transfer
  publication-title: Chem. Eng. Sci.
– volume: 24
  start-page: 1339
  issue: 6
  year: 1994
  end-page: 1346
  article-title: Parameterization of the cool skin of the ocean and of the air‐ocean gas transfer on the basis of modeling surface renewal
  publication-title: J. Phys. Oceanogr.
– volume: 22
  start-page: 469
  issue: 4
  year: 1951
  end-page: 473
  article-title: On the spectrum of isotropic temperature fluctuations in an isotropic turbulence
  publication-title: J. Appl. Phys.
– volume: 92
  issue: 3
  year: 2015
  article-title: Bottlenecks in turbulent kinetic energy spectra predicted from structure function inflections using the von Kármán‐Howarth equation
  publication-title: Physi. Rev. E
– volume: 43
  start-page: 1460
  issue: 6
  year: 1951
  end-page: 1467
  article-title: Significance of liquid‐film coefficients in gas absorption
  publication-title: Ind. Eng. Chem.
– start-page: 55
  year: 2014
  end-page: 112
– volume: 37
  year: 2010
  article-title: Buoyancy flux, turbulence, and the gas transfer coefficient in a stratified lake
  publication-title: Geophys. Res. Lett.
– volume: 20
  issue: 6
  year: 2008
  article-title: A functional form for the energy spectrum parameterizing bottleneck and intermittency effects
  publication-title: Phys. Fluids
– volume: 268
  start-page: 333
  year: 1994
  end-page: 372
  article-title: Local isotropy in turbulent boundary layers at high Reynolds number
  publication-title: J. Fluid Mech.
– volume: 34
  year: 2007
  article-title: Environmental turbulent mixing controls on air‐water gas exchange in marine and aquatic systems
  publication-title: Geophys. Res. Lett.
– volume: 120
  start-page: 2129
  year: 2015
  end-page: 2146
  article-title: On the coefficients of small eddy and surface divergence models for the air‐water gas transfer velocity
  publication-title: J. Geophys. Res. Oceans
– volume: 38
  year: 2011
  article-title: Oceanic convective mixing and the impact on air‐sea gas transfer velocity
  publication-title: Geophys. Res. Lett.
– volume: 166
  start-page: 368
  issue: 3
  year: 2005
  end-page: 381
  article-title: Mechanistic analytical models for long‐distance seed dispersal by wind
  publication-title: Am. Nat.
– volume: 17
  start-page: 149
  issue: 3
  year: 1962
  end-page: 154
  article-title: A random eddy modification of the penetration theory
  publication-title: Chem. Eng. Sci.
– volume: 99
  start-page: 22,869
  issue: D11
  year: 1994
  end-page: 22,876
  article-title: Conditional sampling, bursting, and the intermittent structure of sensible heat flux
  publication-title: J. Geophys. Res.
– volume: 88
  start-page: 541
  year: 1978
  end-page: 562
  article-title: Models of the scalar spectrum for turbulent advection
  publication-title: J. Fluid Mech.
– ident: e_1_2_6_4_1
  doi: 10.1016/0009-2509(61)87005-X
– ident: e_1_2_6_25_1
  doi: 10.1175/JPO2903.1
– ident: e_1_2_6_34_1
  doi: 10.1002/2014JC010253
– ident: e_1_2_6_13_1
  doi: 10.1016/0009-2509(62)80026-8
– ident: e_1_2_6_24_1
  doi: 10.1088/1748-9326/11/6/064001
– ident: e_1_2_6_35_1
  doi: 10.1146/annurev.marine.010908.163742
– ident: e_1_2_6_2_1
  doi: 10.1017/S002211205900009X
– ident: e_1_2_6_14_1
  doi: 10.1017/S0022112082002560
– ident: e_1_2_6_9_1
  doi: 10.1021/ie50498a055
– ident: e_1_2_6_8_1
  doi: 10.1017/CBO9781139164672
– ident: e_1_2_6_28_1
  doi: 10.1016/0009-2509(61)80039-0
– ident: e_1_2_6_21_1
  doi: 10.1029/2008GL037050
– ident: e_1_2_6_16_1
  doi: 10.1146/annurev.fluid.30.1.443
– ident: e_1_2_6_5_1
  doi: 10.4319/lom.2010.8.285
– ident: e_1_2_6_3_1
  doi: 10.1029/JZ070i020p05017
– volume: 92
  issue: 3
  year: 2015
  ident: e_1_2_6_19_1
  article-title: Bottlenecks in turbulent kinetic energy spectra predicted from structure function inflections using the von Kármán‐Howarth equation
  publication-title: Physi. Rev. E
– ident: e_1_2_6_27_1
  doi: 10.1063/1.2936312
– ident: e_1_2_6_29_1
  doi: 10.2307/1352954
– ident: e_1_2_6_15_1
  doi: 10.1017/S002211207800227X
– ident: e_1_2_6_37_1
  doi: 10.1029/2006GL028790
– ident: e_1_2_6_20_1
  doi: 10.1029/94JD01679
– ident: e_1_2_6_36_1
  doi: 10.1146/annurev.fluid.35.101101.161220
– ident: e_1_2_6_7_1
  doi: 10.1029/JC095iC01p00749
– ident: e_1_2_6_10_1
  doi: 10.1088/1755-1315/35/1/012005
– ident: e_1_2_6_11_1
  doi: 10.1029/2003JC001802
– ident: e_1_2_6_12_1
  doi: 10.1007/978-3-642-25643-1_2
– ident: e_1_2_6_30_1
  doi: 10.1029/2012GL051886
– ident: e_1_2_6_6_1
  doi: 10.1063/1.1699986
– ident: e_1_2_6_33_1
  doi: 10.1175/1520-0485(1994)024<1339:POTCSO>2.0.CO;2
– ident: e_1_2_6_31_1
  doi: 10.1029/2010GL045581
– ident: e_1_2_6_23_1
  doi: 10.1002/aic.690160403
– volume: 30
  start-page: 301
  year: 1941
  ident: e_1_2_6_22_1
  article-title: The local structure of turbulence in incompressible viscous fluid for very large Reynolds numbers
  publication-title: Dokl. Akad. Nauk SSSR
– ident: e_1_2_6_32_1
  doi: 10.1017/S0022112094001370
– ident: e_1_2_6_26_1
  doi: 10.1029/2010GL044164
– ident: e_1_2_6_18_1
  doi: 10.1086/432589
– ident: e_1_2_6_17_1
  doi: 10.1098/rspa.1938.0013
SSID ssj0003031
Score 2.3481557
Snippet A large corpus of field and laboratory experiments support the finding that the water side transfer velocity kL of sparingly soluble gases near air‐water...
A large corpus of field and laboratory experiments support the finding that the water side transfer velocity k L of sparingly soluble gases near air‐water...
A large corpus of field and laboratory experiments support the finding that the water side transfer velocity kL of sparingly soluble gases near air-water...
SourceID osti
proquest
crossref
wiley
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1892
SubjectTerms Air-water exchanges
Air-water interface
air‐water exchange
Coastal zones
Dissipation
Eddies
Energy dissipation
Environmental conditions
ENVIRONMENTAL SCIENCES
gas transfer velocity
Gases
Geophysics
Interfaces
Kinematics
Kinetic energy
Kinetic energy dissipation
Kinetics
Kolmogorov scaling
Laboratory experiments
Marine environment
Mathematical models
Momentum transfer
Scaling
Scaling laws
Simplified surfaces
Structure-function relationships
surface divergence
surface renewal
Turbulence
Turbulent flow
Turbulent kinetic energy
Velocity
Viscosity
Water gas
Title Multiple mechanisms generate a universal scaling with dissipation for the air‐water gas transfer velocity
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2F2016GL072256
https://www.proquest.com/docview/1878052511
https://www.proquest.com/docview/1895063138
https://www.proquest.com/docview/1881762292
https://www.proquest.com/docview/1893903969
https://www.osti.gov/servlets/purl/1465345
Volume 44
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fb9MwELagExIvCAYTZQMZCZ6qQOLYif04odEJdTygFU28RI5js0pdWy2JEPvrd46dH0VbBbxEqW05Se_L-S6--w6hdzyRYWGIrREmVEDTRAXCMBboiEkpaJykhf2gf_Y1OZ3TLxfsoq_f2WSXVPkHdXNnXsn_SBXaQK42S_YfJNtNCg1wDvKFI0gYjn8l47M2GvBK2wTeRXlV2pLIlidZT-SkdkEXTdqjXHZfXe0WvA-k7oIM5eI6-CUtYeJPWdq6EWDNwg8bUKQW1dbW71SvN61wPVXQ5WTZZAX1G0Oyql3lLpmDL95FccwWtVvrNu2K6T84wCLWJ3D3Mf6gfIaXAwPZo8jrWUEDTlJPcu1Uq6DQFroat63uddyPHmP0TpXuKGLhRpLpLExB_fzBnO1cGUsTR9lDtEfAXSAjtHf8ff5j3q3JsFC72on-vnwKBMz9cTjzlnEyWoOS3XI8hu5LY3-cP0VPvOOAjx0KnqEHerWPDk76PEXo9Iq63EePpk3F5t9w1sT4qvI5WrRwwT1ccAsXLHEHF-zhgi1c8AAuGOCCAS64gwsGuOAWLriFyws0_3xy_uk08JU2AmX584IiNLGR1JiQgjlZGBmFObM7xEKnLI2M4USHRhKmVMK5gkVJslREOeVFpKmJ4gM0Wq1X-iXCMfjDYCLztMgVNZRxISOtSapTsIyJMWM0af_iTHkaelsNZZk5Am2SDQUyRu-70RtHv3LPuEMrrQzMRst9rGyQmKoyD4sxOmqFmPnXt8wi3pTzAIfjnm7BwHyPYj5Gb7tu0L12Q02u9Lq2Y3gExgQRZNcYEYswFomAJ2_ws_NBsum3GWPgZb3a-USH6HH_ah6hUXVd69dgHVf5Gw_9W7x1u00
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlZ3NbtQwEIAt2ArBBfErlhYwEpxQ1Njx77FCdBfY7QF1UcUl8jp2VUF30SYrxI1H4Bl5EmYcd9keWolboowjxfZ4vozHM4S8MsqVTeRYI8z6QmjlCxulLAKTzllRKd2gQ396pMYz8eFEnuQ6p3gWps8PsXG4oWak9RoVHB3S-_-yhoLpUqNJqWFGqptkB8HGDMjOwefZl9lmMYYVui-aZ0VhuFY59h3esL_d_pJVGixBuy4R5za3JsNzeI_czcRID_ohvk9uhMUDcmuUKvL-hKsUw-nbh-TrNAcH0vOA53nP2vOWnqa00l2gjq77GAx4VwsDAyaLohOW4o58jqumQLAUiJC6s9WfX79_QLsVPXUt7RLewg1GGHkA90dkdvju-O24yLUUCo8Z0oqmjFV0IsZSADA00bFyLnEP0AYtNYvR8FBGx6X3yhgPy46T2rK5MA0LIrLqMRkslovwhNAK_ngAgoxu5l5EIY11LASugwb24TEOyZuLvqx9TjSO9S6-1X2KZF5v9_yQvN5If-8TbFwht4vDUgMYYHZbj2FAvsM_F1kJOSR7F6NVZyVsa2ZSwQZAyiseWwmAxiozJC83j0G7cMvELcJyjTKGgbngll8nYytbVlZZ-PI0Ua79kHr0aSIlcPTT_5J-QW6Pj6eTevL-6OMuucORLtLJ-j0y6Fbr8AzYqJs_z_P_L8qEBIw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NbhMxELYgFYgL4leEFjASnNCq67-1fayApEBaIURQxWXleO2qgiZVdiPEjUfgGXkSZrxuSA-txG1XHluyPeP5bI-_IeSFqVzZRI45wqwvpK58YaNSRWDKOStFpRs80D84rPan8v2ROsoHbvgWpueHWB-4oWWk9RoN_KyJu_9IQ8FzVeNJqUEhq-tkC4nyQKu39r5Mv07XazEs0H3OPCsLw3WVQ9-hhd3N-hec0mABxnUBcG7C1uR3RnfI7QwY6V4_w3fJtTC_R26MU0Len_CVQjh9e598O8ixgfQ04HPek_a0pceJVboL1NFVH4IBbbUwL-CxKJ7BUryQz2HVFAAsBUBI3cnyz6_fP6Dekh67lnYJ3cIPBhh5wO0PyHT09vPr_SKnUig8EqQVTRlFdDLGUgJeaKJj5UzhFaANWmkWo-GhjI4r7ytjPKw6TmnLZtI0LMjIxEMymC_m4RGhAjY8gIGMbmZeRqmMdSwEroMG6MNjHJJX52NZ-8wzjukuvtc9QzKvN0d-SF6upc96fo1L5LZxWmrABUhu6zEKyHe4cVFCqiHZOZ-tOttgWzOT8jUAoryk2ILOCCbMkDxfF4Nx4Y2Jm4fFCmUMA2_BLb9KxgpbCltZ6HlSlCs7Uo8_TZQCGP34v6SfkZsf34zqybvDD9vkFkdskd7V75BBt1yFJ4CMutnTrP5_ASFlA7U
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multiple+mechanisms+generate+a+universal+scaling+with+dissipation+for+the+air-water+gas+transfer+velocity&rft.jtitle=Geophysical+research+letters&rft.au=Katul%2C+Gabriel&rft.au=Liu%2C+Heping&rft.date=2017-02-28&rft.pub=American+Geophysical+Union&rft.issn=0094-8276&rft.eissn=1944-8007&rft.volume=44&rft.issue=4&rft_id=info:doi/10.1002%2F2016GL072256&rft.externalDocID=1465345
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0094-8276&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0094-8276&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0094-8276&client=summon