Subregion-specific decreases in hippocampal serotonin transporter protein expression and function associated with endophenotypes of depression

ABSTRACT Stress influences the development of depression, and depression is associated with structural and functional changes in the hippocampus. The current study sought to determine whether chronic corticosteroid (CORT) treatment influences serotonin transporter (5‐HTT) protein expression and func...

Full description

Saved in:
Bibliographic Details
Published inHippocampus Vol. 24; no. 4; pp. 493 - 501
Main Authors Tang, Man, He, Tao, Sun, Xiao, Meng, Qing-Yan, Diao, Yao, Lei, Jie-Yu, He, Xiao-Jing, Chen, Lei, Sang, Xiu-Bo, Zhao, Shulei
Format Journal Article
LanguageEnglish
Published United States Blackwell Publishing Ltd 01.04.2014
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text

Cover

Loading…
Abstract ABSTRACT Stress influences the development of depression, and depression is associated with structural and functional changes in the hippocampus. The current study sought to determine whether chronic corticosteroid (CORT) treatment influences serotonin transporter (5‐HTT) protein expression and function in the CA1, CA3, and dentate gyrus (DG) subregions of the hippocampus. Male CD‐1 mice were subcutaneously injected with CORT at a dose of 20 mg/kg once daily for 3 weeks. Behavioral state was assessed using sucrose preference, physical state of the coat, forced swimming test, and tail suspension test. We then determine 5‐HTT protein expression and synaptosomal 5‐HT uptake in the CA1, CA3 and DG subregions. CORT treatment induced anhedonia and behavioral despair, two core endophenotypes of clinical depression; 5‐HTT protein expression levels and synaptosomal 5‐HT uptake were both decreased in a subregion‐specific manner, with the greatest decrease observed in the DG, a moderate decrease in the CA3, and the CA1 showed no apparent change. In addition, a reduction in tissue mass was detected in the DG following the CORT treatment. These data indicate that subregion‐specific decreases in hippocampal 5‐HTT protein expression and function are associated with endophenotypes of depression. © 2014 Wiley Periodicals, Inc.
AbstractList Stress influences the development of depression, and depression is associated with structural and functional changes in the hippocampus. The current study sought to determine whether chronic corticosteroid (CORT) treatment influences serotonin transporter (5-HTT) protein expression and function in the CA1, CA3, and dentate gyrus (DG) subregions of the hippocampus. Male CD-1 mice were subcutaneously injected with CORT at a dose of 20 mg/kg once daily for 3 weeks. Behavioral state was assessed using sucrose preference, physical state of the coat, forced swimming test, and tail suspension test. We then determine 5-HTT protein expression and synaptosomal 5-HT uptake in the CA1, CA3 and DG subregions. CORT treatment induced anhedonia and behavioral despair, two core endophenotypes of clinical depression; 5-HTT protein expression levels and synaptosomal 5-HT uptake were both decreased in a subregion-specific manner, with the greatest decrease observed in the DG, a moderate decrease in the CA3, and the CA1 showed no apparent change. In addition, a reduction in tissue mass was detected in the DG following the CORT treatment. These data indicate that subregion-specific decreases in hippocampal 5-HTT protein expression and function are associated with endophenotypes of depression.Stress influences the development of depression, and depression is associated with structural and functional changes in the hippocampus. The current study sought to determine whether chronic corticosteroid (CORT) treatment influences serotonin transporter (5-HTT) protein expression and function in the CA1, CA3, and dentate gyrus (DG) subregions of the hippocampus. Male CD-1 mice were subcutaneously injected with CORT at a dose of 20 mg/kg once daily for 3 weeks. Behavioral state was assessed using sucrose preference, physical state of the coat, forced swimming test, and tail suspension test. We then determine 5-HTT protein expression and synaptosomal 5-HT uptake in the CA1, CA3 and DG subregions. CORT treatment induced anhedonia and behavioral despair, two core endophenotypes of clinical depression; 5-HTT protein expression levels and synaptosomal 5-HT uptake were both decreased in a subregion-specific manner, with the greatest decrease observed in the DG, a moderate decrease in the CA3, and the CA1 showed no apparent change. In addition, a reduction in tissue mass was detected in the DG following the CORT treatment. These data indicate that subregion-specific decreases in hippocampal 5-HTT protein expression and function are associated with endophenotypes of depression.
Stress influences the development of depression, and depression is associated with structural and functional changes in the hippocampus. The current study sought to determine whether chronic corticosteroid (CORT) treatment influences serotonin transporter (5-HTT) protein expression and function in the CA1, CA3, and dentate gyrus (DG) subregions of the hippocampus. Male CD-1 mice were subcutaneously injected with CORT at a dose of 20 mg/kg once daily for 3 weeks. Behavioral state was assessed using sucrose preference, physical state of the coat, forced swimming test, and tail suspension test. We then determine 5-HTT protein expression and synaptosomal 5-HT uptake in the CA1, CA3 and DG subregions. CORT treatment induced anhedonia and behavioral despair, two core endophenotypes of clinical depression; 5-HTT protein expression levels and synaptosomal 5-HT uptake were both decreased in a subregion-specific manner, with the greatest decrease observed in the DG, a moderate decrease in the CA3, and the CA1 showed no apparent change. In addition, a reduction in tissue mass was detected in the DG following the CORT treatment. These data indicate that subregion-specific decreases in hippocampal 5-HTT protein expression and function are associated with endophenotypes of depression.
ABSTRACT Stress influences the development of depression, and depression is associated with structural and functional changes in the hippocampus. The current study sought to determine whether chronic corticosteroid (CORT) treatment influences serotonin transporter (5‐HTT) protein expression and function in the CA1, CA3, and dentate gyrus (DG) subregions of the hippocampus. Male CD‐1 mice were subcutaneously injected with CORT at a dose of 20 mg/kg once daily for 3 weeks. Behavioral state was assessed using sucrose preference, physical state of the coat, forced swimming test, and tail suspension test. We then determine 5‐HTT protein expression and synaptosomal 5‐HT uptake in the CA1, CA3 and DG subregions. CORT treatment induced anhedonia and behavioral despair, two core endophenotypes of clinical depression; 5‐HTT protein expression levels and synaptosomal 5‐HT uptake were both decreased in a subregion‐specific manner, with the greatest decrease observed in the DG, a moderate decrease in the CA3, and the CA1 showed no apparent change. In addition, a reduction in tissue mass was detected in the DG following the CORT treatment. These data indicate that subregion‐specific decreases in hippocampal 5‐HTT protein expression and function are associated with endophenotypes of depression. © 2014 Wiley Periodicals, Inc.
Stress influences the development of depression, and depression is associated with structural and functional changes in the hippocampus. The current study sought to determine whether chronic corticosteroid (CORT) treatment influences serotonin transporter (5‐HTT) protein expression and function in the CA1, CA3, and dentate gyrus (DG) subregions of the hippocampus. Male CD‐1 mice were subcutaneously injected with CORT at a dose of 20 mg/kg once daily for 3 weeks. Behavioral state was assessed using sucrose preference, physical state of the coat, forced swimming test, and tail suspension test. We then determine 5‐HTT protein expression and synaptosomal 5‐HT uptake in the CA1, CA3 and DG subregions. CORT treatment induced anhedonia and behavioral despair, two core endophenotypes of clinical depression; 5‐HTT protein expression levels and synaptosomal 5‐HT uptake were both decreased in a subregion‐specific manner, with the greatest decrease observed in the DG, a moderate decrease in the CA3, and the CA1 showed no apparent change. In addition, a reduction in tissue mass was detected in the DG following the CORT treatment. These data indicate that subregion‐specific decreases in hippocampal 5‐HTT protein expression and function are associated with endophenotypes of depression. © 2014 Wiley Periodicals, Inc.
Stress influences the development of depression, and depression is associated with structural and functional changes in the hippocampus. The current study sought to determine whether chronic corticosteroid (CORT) treatment influences serotonin transporter (5-HTT) protein expression and function in the CA1, CA3, and dentate gyrus (DG) subregions of the hippocampus. Male CD-1 mice were subcutaneously injected with CORT at a dose of 20 mg/kg once daily for 3 weeks. Behavioral state was assessed using sucrose preference, physical state of the coat, forced swimming test, and tail suspension test. We then determine 5-HTT protein expression and synaptosomal 5-HT uptake in the CA1, CA3 and DG subregions. CORT treatment induced anhedonia and behavioral despair, two core endophenotypes of clinical depression; 5-HTT protein expression levels and synaptosomal 5-HT uptake were both decreased in a subregion-specific manner, with the greatest decrease observed in the DG, a moderate decrease in the CA3, and the CA1 showed no apparent change. In addition, a reduction in tissue mass was detected in the DG following the CORT treatment. These data indicate that subregion-specific decreases in hippocampal 5-HTT protein expression and function are associated with endophenotypes of depression. © 2014 Wiley Periodicals, Inc. [PUBLICATION ABSTRACT]
Author Tang, Man
He, Tao
Sun, Xiao
He, Xiao-Jing
Chen, Lei
Zhao, Shulei
Diao, Yao
Sang, Xiu-Bo
Meng, Qing-Yan
Lei, Jie-Yu
Author_xml – sequence: 1
  givenname: Man
  surname: Tang
  fullname: Tang, Man
  email: matang88@hotmail.com
  organization: Department of Clinical Pharmacology, School of Pharmacy, China Medical University, Shenyang, China
– sequence: 2
  givenname: Tao
  surname: He
  fullname: He, Tao
  organization: Department of Clinical Pharmacology, School of Pharmacy, China Medical University, Shenyang, China
– sequence: 3
  givenname: Xiao
  surname: Sun
  fullname: Sun, Xiao
  organization: Department of Internal Medicine, Shenyang Medical College Affiliated Fengtian Hospital, Shenyang, China
– sequence: 4
  givenname: Qing-Yan
  surname: Meng
  fullname: Meng, Qing-Yan
  organization: Department of Burns, The Northern Hospital, Shenyang, China
– sequence: 5
  givenname: Yao
  surname: Diao
  fullname: Diao, Yao
  organization: Center of Experiment and Technology, China Medical University, Shenyang, China
– sequence: 6
  givenname: Jie-Yu
  surname: Lei
  fullname: Lei, Jie-Yu
  organization: Department of Clinical Pharmacology, School of Pharmacy, China Medical University, Shenyang, China
– sequence: 7
  givenname: Xiao-Jing
  surname: He
  fullname: He, Xiao-Jing
  organization: Department of Pharmacy, Shengjing Hospital of China Medical University, Shenyang, China
– sequence: 8
  givenname: Lei
  surname: Chen
  fullname: Chen, Lei
  organization: Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, China
– sequence: 9
  givenname: Xiu-Bo
  surname: Sang
  fullname: Sang, Xiu-Bo
  organization: Department of Seven-year Clinical Medicine, China Medical University, Shenyang, China
– sequence: 10
  givenname: Shulei
  surname: Zhao
  fullname: Zhao, Shulei
  organization: Section of Integrative Biology, School of Biological Sciences, University of Texas, Texas, Austin
BackLink https://www.ncbi.nlm.nih.gov/pubmed/24436084$$D View this record in MEDLINE/PubMed
BookMark eNp9kd1qFTEUhYNU7I_e-AAS8EYKU5NM5u_SHrQtFluoUvAmZDI7ntQ5SUwytOcl-sxmenp6UcSr7Gy-tfZm7X20Y50FhN5SckQJYR-XxrsjxhhnL9AeJV1bUFKXO3NdkaKrS7qL9mO8IYTSipBXaJdxXtak5Xvo_mrqA_wyzhbRgzLaKDyACiAjRGwszubeKbnycsQRgkvO5m4K0kbvQoKAfW5C7sGdDxBjtsLSDlhPVqWHT4xOGZlgwLcmLTHYwfklWJfWPs9wOg_cKl-jl1qOEd48vgfox5fP3xenxfnFydni03mheF2xomWKcdLIRjI2NEOlekkJtIrWPfSsHWqgminVylbzHkDyamiU1lWvWd3zSpcH6MPGNy__Z4KYxMpEBeMoLbgpipxTy2nTdjSj75-hN24KNm83U01TdRnK1LtHaupXMAgfzEqGtdgmnYHDDaCCizGAfkIoEfMZxXxG8XDGDJNnsDJJzmnm4M34bwndSG7NCOv_mIvTs8uLrabYaExMcPekkeG3qJuyqcT1txNxfLmgP6-uv4qu_AsDS8Oh
CODEN HIPPEL
CitedBy_id crossref_primary_10_1016_j_brainres_2019_02_022
crossref_primary_10_1038_s41598_017_08953_4
crossref_primary_10_1016_j_bbr_2016_03_047
crossref_primary_10_3390_genes12040579
crossref_primary_10_1371_journal_pone_0119061
crossref_primary_10_1016_j_bbr_2020_112618
crossref_primary_10_1177_2470547020923711
crossref_primary_10_1021_acschemneuro_0c00334
crossref_primary_10_1038_s41380_023_02037_8
crossref_primary_10_1038_s41398_019_0416_7
crossref_primary_10_3389_fnbeh_2021_734054
crossref_primary_10_3389_fncel_2015_00299
crossref_primary_10_1016_j_pnpbp_2018_01_022
crossref_primary_10_1016_j_psychres_2018_12_015
crossref_primary_10_1017_S146114571400073X
Cites_doi 10.1038/nrn1846
10.1016/0003-2697(76)90527-3
10.1046/j.1460-9568.2003.02473.x
10.1016/j.yhbeh.2009.07.006
10.1111/j.1365-2826.1995.tb00784.x
10.1111/j.1749-6632.2000.tb06738.x
10.1016/j.coph.2011.02.003
10.1016/j.pscychresns.2011.12.015
10.1007/s12264-010-0323-7
10.1007/BF00428203
10.1016/S0006-3223(01)01351-8
10.1016/j.ejphar.2008.07.005
10.3109/07853891003769957
10.1016/S0306-4522(02)00289-0
10.1523/JNEUROSCI.2740-10.2010
10.1126/science.1083968
10.1016/j.yfrne.2007.04.001
10.1176/appi.ajp.161.4.598
10.1523/JNEUROSCI.19-23-10494.1999
10.1002/cne.901720104
10.1111/j.0953-816X.2004.03405.x
10.1016/j.expneurol.2011.10.032
10.1016/0165-1781(91)90084-3
10.1016/j.neuroscience.2012.04.031
10.1016/S0018-506X(02)00014-4
10.1007/s00213-002-1335-4
10.1007/s002130100694
10.1016/j.psyneuen.2007.05.005
10.1002/(SICI)1098-2396(199904)32:1<58::AID-SYN8>3.0.CO;2-R
10.1172/JCI25509
10.1523/JNEUROSCI.4710-03.2004
10.1016/j.ejphar.2007.12.005
10.1002/(SICI)1098-1063(1998)8:6<608::AID-HIPO3>3.0.CO;2-7
10.1038/nature07455
10.1001/archpsyc.57.10.925
10.1016/S0166-4328(03)00034-2
10.1016/j.ejphar.2007.11.064
10.1016/j.biopsych.2005.06.012
10.1126/science.1083328
10.1016/j.pscychresns.2006.08.001
10.1016/j.brainres.2013.03.042
10.1136/bmj.3.5613.285
10.1073/pnas.0337481100
10.1016/j.bbr.2009.09.003
10.1007/s00213-009-1660-y
10.1002/hipo.20155
10.1016/0165-1781(85)90088-5
10.1016/j.nbd.2012.06.001
10.1002/(SICI)1098-2396(200005)36:2<85::AID-SYN1>3.0.CO;2-Y
10.1016/j.neuron.2009.04.017
10.1186/1744-9081-7-9
10.1016/j.neuropharm.2008.08.026
10.1126/science.1144400
10.1111/j.1365-2826.2006.01422.x
10.1016/j.neuroscience.2011.03.020
10.1016/0006-8993(95)00523-S
10.1038/266730a0
10.1523/JNEUROSCI.22-15-06766.2002
10.1016/S0278-5846(03)00051-4
10.1007/s00213-007-1035-1
10.1210/en.2008-0103
10.1001/jama.289.23.3095
10.1007/s11095-007-9254-z
10.1176/appi.ajp.161.11.1957
10.1192/bjp.164.3.365
10.1097/00008877-200605000-00008
10.1176/ajp.2007.164.3.516
10.1176/appi.ajp.163.1.52
10.1176/appi.ajp.2007.06111933
10.1038/sj.mp.4001978
10.1007/s00213-010-1835-6
10.1038/npp.2010.116
ContentType Journal Article
Copyright Copyright © 2014 Wiley Periodicals, Inc.
Copyright_xml – notice: Copyright © 2014 Wiley Periodicals, Inc.
DBID BSCLL
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QG
7TK
K9.
7X8
DOI 10.1002/hipo.22242
DatabaseName Istex
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Animal Behavior Abstracts
Neurosciences Abstracts
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest Health & Medical Complete (Alumni)
Neurosciences Abstracts
Animal Behavior Abstracts
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE

CrossRef
ProQuest Health & Medical Complete (Alumni)
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Anatomy & Physiology
EISSN 1098-1063
EndPage 501
ExternalDocumentID 3247745901
24436084
10_1002_hipo_22242
HIPO22242
ark_67375_WNG_BPC1ZSWK_9
Genre article
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Liaoning Provincial Natural Science Foundation of China
  funderid: 201102276 and 20092073
– fundername: Scientific Research Foundation for the Returned Overseas Chinese Scholars, State Education Ministry
  funderid: [2012]940
– fundername: Provincial Innovative and Entrepreneurship Training Program for College Students (2013) (to XB Sang)
GroupedDBID ---
.3N
.GA
.GJ
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
31~
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5RE
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABIVO
ABJNI
ABLJU
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACFBH
ACGFS
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFNX
AFFPM
AFGKR
AFPWT
AFZJQ
AHBTC
AHMBA
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BY8
C45
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
DU5
EBD
EBS
EJD
EMOBN
F00
F01
F04
F5P
FEDTE
G-S
G.N
GAKWD
GNP
GODZA
H.T
H.X
HBH
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M6M
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
OVD
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RIWAO
RJQFR
ROL
RWD
RWI
RX1
SAMSI
SUPJJ
SV3
TEORI
TN5
UB1
V2E
W8V
W99
WBKPD
WIB
WIH
WIK
WJL
WNSPC
WOHZO
WQJ
WRC
WUP
WXSBR
WYISQ
XG1
XJT
XPP
XSW
XV2
ZZTAW
~IA
~WT
-
0R
31
3N
AAPBV
ABFLS
ABHUG
ABWRO
ACXME
ADAWD
ADDAD
AETEA
AFVGU
AGJLS
GA
GJ
HZ
IA
IPNFZ
NF
P4A
PQEST
RIG
SPW
WT
Y3
AAHQN
AAMNL
AANHP
AAYCA
AAYXX
ACRPL
ACYXJ
ADNMO
AEYWJ
AFWVQ
AGHNM
AGQPQ
AGYGG
ALVPJ
CITATION
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
CGR
CUY
CVF
ECM
EIF
NPM
7QG
7TK
K9.
7X8
ID FETCH-LOGICAL-c4652-82c2407a7a22d7d5cba10e8c16beb28d6e1f2cc8a8f4beea45d7cff5bf26b45f3
IEDL.DBID DR2
ISSN 1050-9631
1098-1063
IngestDate Thu Jul 10 22:19:13 EDT 2025
Sun Jul 13 04:06:33 EDT 2025
Mon Jul 21 05:29:59 EDT 2025
Tue Jul 01 02:05:57 EDT 2025
Thu Apr 24 23:08:55 EDT 2025
Fri Apr 02 05:00:58 EDT 2021
Wed Oct 30 09:55:13 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords corticosteroid
behavioral despair
hippocampus
synaptosomal 5-HT uptake
anhedonia
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
Copyright © 2014 Wiley Periodicals, Inc.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4652-82c2407a7a22d7d5cba10e8c16beb28d6e1f2cc8a8f4beea45d7cff5bf26b45f3
Notes Provincial Innovative and Entrepreneurship Training Program for College Students (2013) (to XB Sang)
istex:9E55D6DEAA47543C09B1150A6BA048AE8782DD1D
Scientific Research Foundation for the Returned Overseas Chinese Scholars, State Education Ministry - No. [2012]940
ArticleID:HIPO22242
ark:/67375/WNG-BPC1ZSWK-9
Liaoning Provincial Natural Science Foundation of China - No. 201102276 and 20092073
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PMID 24436084
PQID 1507759913
PQPubID 996349
PageCount 9
ParticipantIDs proquest_miscellaneous_1508417891
proquest_journals_1507759913
pubmed_primary_24436084
crossref_primary_10_1002_hipo_22242
crossref_citationtrail_10_1002_hipo_22242
wiley_primary_10_1002_hipo_22242_HIPO22242
istex_primary_ark_67375_WNG_BPC1ZSWK_9
ProviderPackageCode 10A
RJQFR
A03
ADOZA
BFHJK
BROTX
AMBMR
DCZOG
~IA
ACFBH
ACAHQ
LEEKS
AFGKR
50Y
50Z
AEUQT
XG1
AAEVG
MRSTM
.3N
MEWTI
1ZS
H.T
Q11
LP7
H.X
LP6
WUP
GAKWD
51W
51X
ACXME
WBKPD
QB0
AJXKR
ADMGS
UB1
AEIMD
GNP
ATUGU
WOHZO
G-S
O66
AZBYB
52M
3WU
52N
52O
52P
ADEOM
LATKE
ZZTAW
52S
930
BAFTC
52T
MK4
QRW
SUPJJ
52U
HHY
52W
DRSTM
1L6
52X
HHZ
AFPWT
4ZD
ALAGY
DR1
DR2
G.N
ACPOU
AFZJQ
ADAWD
702
7PT
66C
NNB
ADIZJ
.GA
AAONW
LYRES
GODZA
HBH
LUTES
ALUQN
AAZKR
MSFUL
LC2
AIURR
LC3
RWD
ABWRO
AZVAB
WNSPC
RWI
PALCI
ABHUG
KQQ
RX1
ACXQS
BMXJE
R.K
WIB
WQJ
MXFUL
P2W
W8V
W99
WYISQ
P2X
WIH
WIK
JPC
BDRZF
BY8
MSSTM
DPXWK
1OB
AUFTA
1OC
3SF
F01
F00
NF~
BRXPI
WRC
AFVGU
F04
ADZMN
8UM
ABCUV
N05
N04
ADDAD
WJL
BNHUX
~WT
8-0
8-1
P4A
8-3
AGJLS
8-4
8-5
P4D
IX1
BHBCM
BMNLL
LITHE
SAMSI
J0M
MXSTM
DRFUL
33P
Q.N
05W
XV2
AAESR
LOXES
MRFUL
D-F
D-E
CITATION
AAYXX
PublicationCentury 2000
PublicationDate April 2014
PublicationDateYYYYMMDD 2014-04-01
PublicationDate_xml – month: 04
  year: 2014
  text: April 2014
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Boston
PublicationTitle Hippocampus
PublicationTitleAlternate Hippocampus
PublicationYear 2014
Publisher Blackwell Publishing Ltd
Wiley Subscription Services, Inc
Publisher_xml – name: Blackwell Publishing Ltd
– name: Wiley Subscription Services, Inc
References Maines LW, Keck BJ, Smith JE, Lakoski JM. 1999. Corticosterone regulation of serotonin transporter and 5-HT1A receptor expression in the aging brain. Synapse 32:58-66.
Naumenko VS, Kondaurova EM, Bazovkina DV, Tsybko AS, Tikhonova MA, Kulikov AV, Popova NK. 2013. Effect of brain-derived neurotrophic factor on behavior and key members of the brain serotonin system in genetically predisposed to behavioral disorders mouse strains. Neuroscience 214:59-67.
Parsey RV, Hastings RS, Oquendo MA, Huang YY, Simpson N, Arcement J, Huang Y, Ogden RT, Van Heertum RL, Arango V, Mann JJ. 2006. Lower serotonin transporter binding potential in the human brain during major depressive episodes. Am J Psychiatry 163:52-58.
Fernandez F, Coomans V, Mormede P, Chaouloff F. 2001. Effects of corticosterone ingestion on hippocampal [(3)H]serotonin reuptake in inbred rat strains. Endocr Regul 35:119-126.
Gould NF, Holmes MK, Fantie BD, Luckenbaugh DA, Pine DS, Gould TD, Burgess N, Manji HK, Zarate CA Jr. 2007. Performance on a virtual reality spatial memory navigation task in depressed patients. Am J Psychiatry 164:516-519.
Swanson LW, Cowan WM. 1977. An autoradiographic study of the organization of the efferent connections of the hippocampal formation in the rat. J Comp Neurol 172:49-84.
Berton O, Nestler EJ. 2006. New approaches to antidepressant drug discovery: Beyond monoamines. Nat Rev Neurosci 7:137-151.
Sharp T, Cowen PJ. 2011. 5-HT and depression: is the glass half-full? Curr Opin Pharmacol 11:45-51.
Joels M, Karst H, Krugers HJ, Lucassen PJ. 2007. Chronic stress: Implications for neuronal morphology, function and neurogenesis. Front Neuroendocrinol 28:72-96.
Lein ES, Zhao X, Gage FH. 2004. Defining a molecular atlas of the hippocampus using DNA microarrays and high-throughput in situ hybridization. J Neurosci 24:3879-3889.
Koepsell H, Lips K, Volk C. 2007. Polyspecific organic cation transporters: Structure, function, physiological roles, and biopharmaceutical implications. Pharm Res 24:1227-1251.
Arango V, Underwood MD, Gubbi AV, Mann JJ. 1995. Localized alterations in pre- and postsynaptic serotonin binding sites in the ventrolateral prefrontal cortex of suicide victims. Brain Res 688:121-133.
Newberg AB, Amsterdam JD, Wintering N, Ploessl K, Swanson RL, Shults J, Alavi A. 2005. 123I-ADAM binding to serotonin transporters in patients with major depression and healthy controls: a preliminary study. J Nucl Med 46:973-977.
Porsolt RD, Le Pichon M, Jalfre M. 1977. Depression: A new animal model sensitive to antidepressant treatments. Nature 266:730-732.
Zhao Y, Ma R, Shen J, Su H, Xing D, Du L. 2008. A mouse model of depression induced by repeated corticosterone injections. Eur J Pharmacol 581:113-120.
Elizalde N, Garcia-Garcia AL, Totterdell S, Gendive N, Venzala E, Ramirez MJ, Del Rio J, Tordera RM. 2010. Sustained stress-induced changes in mice as a model for chronic depression. Psychopharmacology (Berl) 210:393-406.
MacQueen GM, Campbell S, McEwen BS, Macdonald K, Amano S, Joffe RT, Nahmias C, Young LT. 2003. Course of illness, hippocampal function, and hippocampal volume in major depression. Proc Natl Acad Sci USA 100:1387-1392.
Videbech P, Ravnkilde B. 2004. Hippocampal volume and depression: a meta-analysis of MRI studies. Am J Psychiatry 161:1957-1966.
Zhu CB, Lindler KM, Owens AW, Daws LC, Blakely RD, Hewlett WA. 2010. Interleukin-1 receptor activation by systemic lipopolysaccharide induces behavioral despair linked to MAPK regulation of CNS serotonin transporters. Neuropsychopharmacology 35:2510-2520.
Sapolsky RM. 2000. Glucocorticoids and hippocampal atrophy in neuropsychiatric disorders. Arch Gen Psychiatry 57:925-935.
Dinan TG. 1994. Glucocorticoids and the genesis of depressive illness. A psychobiological model. Br J Psychiatry 164:365-371.
Joels M. 2008. Functional actions of corticosteroids in the hippocampus. Eur J Pharmacol 583:312-321.
Ago Y, Arikawa S, Yata M, Yano K, Abe M, Takuma K, Matsuda T. 2008. Antidepressant-like effects of the glucocorticoid receptor antagonist RU-43044 are associated with changes in prefrontal dopamine in mouse models of depression. Neuropharmacology 55:1355-1363.
Benmansour S, Owens WA, Cecchi M, Morilak DA, Frazer A. 2002. Serotonin clearance in vivo is altered to a greater extent by antidepressant-induced downregulation of the serotonin transporter than by acute blockade of this transporter. J Neurosci 22:6766-6772.
Macri S, Granstrem O, Shumilina M, Antunes Gomes dos Santos FJ, Berry A, Saso L, Laviola G. 2009. Resilience and vulnerability are dose-dependently related to neonatal stressors in mice. Horm Behav 56:391-398.
Moser MB, Moser EI. 1998. Functional differentiation in the hippocampus. Hippocampus 8:608-619.
Pollak DD, Rey CE, Monje FJ. 2010. Rodent models in depression research: Classical strategies and new directions. Ann Med 42:252-264.
Fernandez F, Sarre S, Launay JM, Aguerre S, Guyonnet-Duperat V, Moisan MP, Ebinger G, Michotte Y, Mormede P, Chaouloff F. 2003. Rat strain differences in peripheral and central serotonin transporter protein expression and function. Eur J Neurosci 17:494-506.
Daniele A, Divella R, Paradiso A, Mattioli V, Romito F, Giotta F, Casamassima P, Quaranta M. 2011. Serotonin transporter polymorphism in major depressive disorder (MDD), psychiatric disorders, and in MDD in response to stressful life events: Causes and treatment with antidepressant. In Vivo 25:895-901.
Strekalova T, Couch Y, Kholod N, Boyks M, Malin D, Leprince P, Steinbusch HM. 2011. Update in the methodology of the chronic stress paradigm: internal control matters. Behav Brain Funct 7:9.
Carroll BJ, Martin FI, Davies B. 1968. Resistance to suppression by dexamethasone of plasma 11-O.H.C.S. levels in severe depressive illness. Br Med J 3:285-287.
Keeney A, Jessop DS, Harbuz MS, Marsden CA, Hogg S, Blackburn-Munro RE. 2006. Differential effects of acute and chronic social defeat stress on hypothalamic-pituitary-adrenal axis function and hippocampal serotonin release in mice. J Neuroendocrinol 18:330-338.
Reus VI, Miner C. 1985. Evidence for physiological effects of hypercortisolemia in psychiatric patients. Psychiatry Res 14:47-56.
Santarelli L, Saxe M, Gross C, Surget A, Battaglia F, Dulawa S, Weisstaub N, Lee J, Duman R, Arancio O, Belzung C, Hen R. 2003. Requirement of hippocampal neurogenesis for the behavioral effects of antidepressants. Science 301:805-809.
Savitz JB, Drevets WC. 2012. Neuroreceptor imaging in depression. Neurobiol Dis 52:49-65.
Baganz N, Horton R, Martin K, Holmes A, Daws LC. 2010. Repeated swim impairs serotonin clearance via a corticosterone-sensitive mechanism: Organic cation transporter 3, the smoking gun. J Neurosci 30:15185-15195.
David DJ, Renard CE, Jolliet P, Hascoet M, Bourin M. 2003. Antidepressant-like effects in various mice strains in the forced swimming test. Psychopharmacology (Berl) 166:373-382.
Joensuu M, Tolmunen T, Saarinen PI, Tiihonen J, Kuikka J, Ahola P, Vanninen R, Lehtonen J. 2007. Reduced midbrain serotonin transporter availability in drug-naive patients with depression measured by SERT-specific [(123)I] nor-beta-CIT SPECT imaging. Psychiatry Res 154:125-131.
Kessler RC, Berglund P, Demler O, Jin R, Koretz D, Merikangas KR, Rush AJ, Walters EE, Wang PS. 2003. The epidemiology of major depressive disorder: Results from the National Comorbidity Survey Replication (NCS-R). JAMA 289:3095-3105.
O'Hara R, Schroder CM, Mahadevan R, Schatzberg AF, Lindley S, Fox S, Weiner M, Kraemer HC, Noda A, Lin X, Gray HL, Hallmayer JF. 2007. Serotonin transporter polymorphism, memory and hippocampal volume in the elderly: association and interaction with cortisol. Mol Psychiatry 12:544-555.
Elizalde N, Gil-Bea FJ, Ramirez MJ, Aisa B, Lasheras B, Del Rio J, Tordera RM. 2008. Long-lasting behavioral effects and recognition memory deficit induced by chronic mild stress in mice: Effect of antidepressant treatment. Psychopharmacology (Berl) 199:1-14.
Thoeringer CK, Sillaber I, Roedel A, Erhardt A, Mueller MB, Ohl F, Holsboer F, Keck ME. 2007. The temporal dynamics of intrahippocampal corticosterone in response to stress-related stimuli with different emotional and physical load: An in vivo microdialysis study in C57BL/6 and DBA/2 inbred mice. Psychoneuroendocrinology 32:746-757.
Droste SK, de Groote L, Atkinson HC, Lightman SL, Reul JM, Linthorst AC. 2008. Corticosterone levels in the brain show a distinct ultradian rhythm but a delayed response to forced swim stress. Endocrinology 149:3244-3253.
Bradford MM. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248-254.
Barr JL, Forster GL. 2011. Serotonergic neurotransmission in the ventral hippocampus is enhanced by corticosterone and altered by chronic amphetamine treatment. Neuroscience 182:105-114.
Herman JP, Cullinan WE, Morano MI, Akil H, Watson SJ. 1995. Contribution of the ventral subiculum to inhibitory regulation of the hypothalamo-pituitary-adrenocortical axis. J Neuroendocrinol 7:475-482.
Austin MC, Whitehead RE, Edgar CL, Janosky JE, Lewis DA. 2002. Localized decrease in serotonin transporter-immunoreactive axons in the prefrontal cortex of depressed subjects committing suicide. Neuroscience 114:807-815.
Ducottet C, Griebel G, Belzung C. 2003. Effects of the selective nonpeptide corticotropin-releasing factor receptor 1 antagonist antalarmin in the chronic mild stress model of depression in mice. Prog Neuropsychopharmacol Biol Psychiatry 27:625-631.
Steru L, Chermat R, Thierry B, Simon P. 1985. The tail suspension test: a new method for screening antidepressants in mice. Psychopharmacology (Berl) 85:367-370.
Sugimoto Y, Kajiwara Y, Hirano K, Yamada S, Tagawa N, Kobayashi Y, Hotta Y, Yamada J. 2008. Mouse strain differences in immobility and sensitivity to fluvoxamine and desipramine in the forced swimming test: Analysis of serotonin and noradrenaline transporter binding. Eur J Pharmacol 592:116-122.
Strekalova T, Gorenkova N, Schunk E, Dolgov O
1977; 172
2002; 51
1968; 3
2002; 114
2004; 161
2004; 24
2011; 11
2008; 149
2003; 17
2012; 202
2007; 32
2008; 583
2005; 1039
2008; 581
2012; 52
2007; 28
2009; 56
2010; 26
1999; 19
2000; 57
1976; 72
2006; 163
1995; 688
2011; 25
2008; 199
2003; 289
2010; 30
2003; 166
2007; 24
2008; 592
2003; 43
1985; 14
2011; 213
2009; 62
1991; 39
2010; 35
2010; 206
2006; 16
2005; 115
2006; 17
2000; 911
2007; 164
2006; 59
2006; 7
2006; 18
2008; 55
1985; 85
1977; 266
2007; 12
2011; 7
2005; 46
1995; 7
2001; 155
2010; 42
2007; 317
2012; 233
2000; 36
2007; 154
1994; 164
2013; 214
2002; 22
2010; 210
2003; 27
1999; 32
2008; 455
2013
2003; 301
2001; 35
2011; 182
2003; 100
2003; 143
1998; 8
e_1_2_6_51_1
e_1_2_6_74_1
e_1_2_6_53_1
e_1_2_6_76_1
e_1_2_6_32_1
e_1_2_6_70_1
e_1_2_6_30_1
e_1_2_6_72_1
Fernandez F (e_1_2_6_24_1) 2001; 35
e_1_2_6_19_1
e_1_2_6_13_1
e_1_2_6_36_1
e_1_2_6_59_1
e_1_2_6_11_1
e_1_2_6_34_1
e_1_2_6_17_1
e_1_2_6_55_1
e_1_2_6_15_1
e_1_2_6_38_1
e_1_2_6_57_1
e_1_2_6_62_1
Gould NF (e_1_2_6_26_1) 2007; 164
e_1_2_6_64_1
e_1_2_6_43_1
e_1_2_6_20_1
e_1_2_6_41_1
e_1_2_6_60_1
e_1_2_6_9_1
e_1_2_6_5_1
e_1_2_6_7_1
Benmansour S (e_1_2_6_8_1) 1999; 19
e_1_2_6_49_1
e_1_2_6_3_1
e_1_2_6_22_1
Newberg AB (e_1_2_6_48_1) 2005; 46
e_1_2_6_66_1
e_1_2_6_28_1
e_1_2_6_45_1
e_1_2_6_47_1
e_1_2_6_68_1
e_1_2_6_52_1
e_1_2_6_73_1
e_1_2_6_54_1
e_1_2_6_75_1
e_1_2_6_10_1
e_1_2_6_31_1
e_1_2_6_50_1
e_1_2_6_71_1
e_1_2_6_14_1
e_1_2_6_35_1
e_1_2_6_12_1
e_1_2_6_33_1
Daniele A (e_1_2_6_16_1) 2011; 25
e_1_2_6_18_1
e_1_2_6_39_1
e_1_2_6_56_1
e_1_2_6_37_1
e_1_2_6_58_1
e_1_2_6_63_1
e_1_2_6_42_1
e_1_2_6_65_1
e_1_2_6_21_1
e_1_2_6_40_1
e_1_2_6_61_1
e_1_2_6_4_1
e_1_2_6_6_1
e_1_2_6_25_1
e_1_2_6_23_1
e_1_2_6_2_1
e_1_2_6_29_1
e_1_2_6_44_1
e_1_2_6_67_1
e_1_2_6_27_1
e_1_2_6_46_1
e_1_2_6_69_1
References_xml – reference: Selvaraj S, Murthy NV, Bhagwagar Z, Bose SK, Hinz R, Grasby PM, Cowen PJ. 2011. Diminished brain 5-HT transporter binding in major depression: A positron emission tomography study with [11C]DASB. Psychopharmacology (Berl) 213:555-562.
– reference: Williams MT, Schaefer TL, Ehrman LA, Able JA, Gudelsky GA, Sah R, Vorhees CV. 2005. 3,4-Methylenedioxymethamphetamine administration on postnatal day 11 in rats increases pituitary-adrenal output and reduces striatal and hippocampal serotonin without altering SERT activity. Brain Res 1039:97-107.
– reference: Zhao Y, Ma R, Shen J, Su H, Xing D, Du L. 2008. A mouse model of depression induced by repeated corticosterone injections. Eur J Pharmacol 581:113-120.
– reference: Caspi A, Sugden K, Moffitt TE, Taylor A, Craig IW, Harrington H, McClay J, Mill J, Martin J, Braithwaite A, Poulton R. 2003. Influence of life stress on depression: Moderation by a polymorphism in the 5-HTT gene. Science 301:386-389.
– reference: Keeney A, Jessop DS, Harbuz MS, Marsden CA, Hogg S, Blackburn-Munro RE. 2006. Differential effects of acute and chronic social defeat stress on hypothalamic-pituitary-adrenal axis function and hippocampal serotonin release in mice. J Neuroendocrinol 18:330-338.
– reference: Ripoll N, David DJ, Dailly E, Hascoet M, Bourin M. 2003. Antidepressant-like effects in various mice strains in the tail suspension test. Behav Brain Res 143:193-200.
– reference: Joels M. 2008. Functional actions of corticosteroids in the hippocampus. Eur J Pharmacol 583:312-321.
– reference: Benmansour S, Owens WA, Cecchi M, Morilak DA, Frazer A. 2002. Serotonin clearance in vivo is altered to a greater extent by antidepressant-induced downregulation of the serotonin transporter than by acute blockade of this transporter. J Neurosci 22:6766-6772.
– reference: Heim C, Binder EB. 2012. Current research trends in early life stress and depression: review of human studies on sensitive periods, gene-environment interactions, and epigenetics. Exp Neurol 233:102-111.
– reference: Yan HC, Cao X, Das M, Zhu XH, Gao TM. 2010. Behavioral animal models of depression. Neurosci Bull 26:327-337.
– reference: Pitkanen A, Pikkarainen M, Nurminen N, Ylinen A. 2000. Reciprocal connections between the amygdala and the hippocampal formation, perirhinal cortex, and postrhinal cortex in rat. A review. Ann NY Acad Sci 911:369-391.
– reference: Sugimoto Y, Kajiwara Y, Hirano K, Yamada S, Tagawa N, Kobayashi Y, Hotta Y, Yamada J. 2008. Mouse strain differences in immobility and sensitivity to fluvoxamine and desipramine in the forced swimming test: Analysis of serotonin and noradrenaline transporter binding. Eur J Pharmacol 592:116-122.
– reference: Maines LW, Keck BJ, Smith JE, Lakoski JM. 1999. Corticosterone regulation of serotonin transporter and 5-HT1A receptor expression in the aging brain. Synapse 32:58-66.
– reference: Mirescu C, Gould E. 2006. Stress and adult neurogenesis. Hippocampus 16:233-238.
– reference: Strekalova T, Couch Y, Kholod N, Boyks M, Malin D, Leprince P, Steinbusch HM. 2011. Update in the methodology of the chronic stress paradigm: internal control matters. Behav Brain Funct 7:9.
– reference: Campbell S, Marriott M, Nahmias C, MacQueen GM. 2004. Lower hippocampal volume in patients suffering from depression: a meta-analysis. Am J Psychiatry 161:598-607.
– reference: Ago Y, Arikawa S, Yata M, Yano K, Abe M, Takuma K, Matsuda T. 2008. Antidepressant-like effects of the glucocorticoid receptor antagonist RU-43044 are associated with changes in prefrontal dopamine in mouse models of depression. Neuropharmacology 55:1355-1363.
– reference: Lucki I, Dalvi A, Mayorga AJ. 2001. Sensitivity to the effects of pharmacologically selective antidepressants in different strains of mice. Psychopharmacology (Berl) 155:315-322.
– reference: Tang M, Lei J, Sun X, Liu G, Zhao S. 2013. Stress-induced anhedonia correlates with lower hippocampal serotonin transporter protein expression. Brain Res.
– reference: Berton O, Nestler EJ. 2006. New approaches to antidepressant drug discovery: Beyond monoamines. Nat Rev Neurosci 7:137-151.
– reference: Bhagwagar Z, Murthy N, Selvaraj S, Hinz R, Taylor M, Fancy S, Grasby P, Cowen P. 2007. 5-HTT binding in recovered depressed patients and healthy volunteers: A positron emission tomography study with [11C]DASB. Am J Psychiatry 164:1858-1865.
– reference: Barr JL, Forster GL. 2011. Serotonergic neurotransmission in the ventral hippocampus is enhanced by corticosterone and altered by chronic amphetamine treatment. Neuroscience 182:105-114.
– reference: Stemmelin J, Cohen C, Yalcin I, Keane P, Griebel G. 2010. Implication of beta3-adrenoceptors in the antidepressant-like effects of amibegron using Adrb3 knockout mice in the chronic mild stress. Behav Brain Res 206:310-312.
– reference: Pollak DD, Rey CE, Monje FJ. 2010. Rodent models in depression research: Classical strategies and new directions. Ann Med 42:252-264.
– reference: Santarelli L, Saxe M, Gross C, Surget A, Battaglia F, Dulawa S, Weisstaub N, Lee J, Duman R, Arancio O, Belzung C, Hen R. 2003. Requirement of hippocampal neurogenesis for the behavioral effects of antidepressants. Science 301:805-809.
– reference: Joensuu M, Tolmunen T, Saarinen PI, Tiihonen J, Kuikka J, Ahola P, Vanninen R, Lehtonen J. 2007. Reduced midbrain serotonin transporter availability in drug-naive patients with depression measured by SERT-specific [(123)I] nor-beta-CIT SPECT imaging. Psychiatry Res 154:125-131.
– reference: Zhu CB, Lindler KM, Owens AW, Daws LC, Blakely RD, Hewlett WA. 2010. Interleukin-1 receptor activation by systemic lipopolysaccharide induces behavioral despair linked to MAPK regulation of CNS serotonin transporters. Neuropsychopharmacology 35:2510-2520.
– reference: Porsolt RD, Le Pichon M, Jalfre M. 1977. Depression: A new animal model sensitive to antidepressant treatments. Nature 266:730-732.
– reference: Videbech P, Ravnkilde B. 2004. Hippocampal volume and depression: a meta-analysis of MRI studies. Am J Psychiatry 161:1957-1966.
– reference: Leake A, Fairbairn AF, McKeith IG, Ferrier IN. 1991. Studies on the serotonin uptake binding site in major depressive disorder and control post-mortem brain: neurochemical and clinical correlates. Psychiatry Res 39:155-165.
– reference: Daniele A, Divella R, Paradiso A, Mattioli V, Romito F, Giotta F, Casamassima P, Quaranta M. 2011. Serotonin transporter polymorphism in major depressive disorder (MDD), psychiatric disorders, and in MDD in response to stressful life events: Causes and treatment with antidepressant. In Vivo 25:895-901.
– reference: McKittrick CR, Magarinos AM, Blanchard DC, Blanchard RJ, McEwen BS, Sakai RR. 2000. Chronic social stress reduces dendritic arbors in CA3 of hippocampus and decreases binding to serotonin transporter sites. Synapse 36:85-94.
– reference: Newberg AB, Amsterdam JD, Wintering N, Ploessl K, Swanson RL, Shults J, Alavi A. 2005. 123I-ADAM binding to serotonin transporters in patients with major depression and healthy controls: a preliminary study. J Nucl Med 46:973-977.
– reference: Airan RD, Meltzer LA, Roy M, Gong Y, Chen H, Deisseroth K. 2007. High-speed imaging reveals neurophysiological links to behavior in an animal model of depression. Science 317:819-823.
– reference: Newberg AB, Amsterdam JD, Wintering N, Shults J. 2012. Low brain serotonin transporter binding in major depressive disorder. Psychiatry Res 202:161-167.
– reference: Naumenko VS, Kondaurova EM, Bazovkina DV, Tsybko AS, Tikhonova MA, Kulikov AV, Popova NK. 2013. Effect of brain-derived neurotrophic factor on behavior and key members of the brain serotonin system in genetically predisposed to behavioral disorders mouse strains. Neuroscience 214:59-67.
– reference: Steru L, Chermat R, Thierry B, Simon P. 1985. The tail suspension test: a new method for screening antidepressants in mice. Psychopharmacology (Berl) 85:367-370.
– reference: Dinan TG. 1994. Glucocorticoids and the genesis of depressive illness. A psychobiological model. Br J Psychiatry 164:365-371.
– reference: Kessler RC, Berglund P, Demler O, Jin R, Koretz D, Merikangas KR, Rush AJ, Walters EE, Wang PS. 2003. The epidemiology of major depressive disorder: Results from the National Comorbidity Survey Replication (NCS-R). JAMA 289:3095-3105.
– reference: Ducottet C, Griebel G, Belzung C. 2003. Effects of the selective nonpeptide corticotropin-releasing factor receptor 1 antagonist antalarmin in the chronic mild stress model of depression in mice. Prog Neuropsychopharmacol Biol Psychiatry 27:625-631.
– reference: Arango V, Underwood MD, Gubbi AV, Mann JJ. 1995. Localized alterations in pre- and postsynaptic serotonin binding sites in the ventrolateral prefrontal cortex of suicide victims. Brain Res 688:121-133.
– reference: Reus VI, Miner C. 1985. Evidence for physiological effects of hypercortisolemia in psychiatric patients. Psychiatry Res 14:47-56.
– reference: Koepsell H, Lips K, Volk C. 2007. Polyspecific organic cation transporters: Structure, function, physiological roles, and biopharmaceutical implications. Pharm Res 24:1227-1251.
– reference: Macri S, Granstrem O, Shumilina M, Antunes Gomes dos Santos FJ, Berry A, Saso L, Laviola G. 2009. Resilience and vulnerability are dose-dependently related to neonatal stressors in mice. Horm Behav 56:391-398.
– reference: David DJ, Renard CE, Jolliet P, Hascoet M, Bourin M. 2003. Antidepressant-like effects in various mice strains in the forced swimming test. Psychopharmacology (Berl) 166:373-382.
– reference: O'Hara R, Schroder CM, Mahadevan R, Schatzberg AF, Lindley S, Fox S, Weiner M, Kraemer HC, Noda A, Lin X, Gray HL, Hallmayer JF. 2007. Serotonin transporter polymorphism, memory and hippocampal volume in the elderly: association and interaction with cortisol. Mol Psychiatry 12:544-555.
– reference: Swanson LW, Cowan WM. 1977. An autoradiographic study of the organization of the efferent connections of the hippocampal formation in the rat. J Comp Neurol 172:49-84.
– reference: Ichimiya T, Suhara T, Sudo Y, Okubo Y, Nakayama K, Nankai M, Inoue M, Yasuno F, Takano A, Maeda J, Shibuya H. 2002. Serotonin transporter binding in patients with mood disorders: A PET study with [11C](+)McN5652. Biol Psychiatry 51:715-722.
– reference: Staley JK, Sanacora G, Tamagnan G, Maciejewski PK, Malison RT, Berman RM, Vythilingam M, Kugaya A, Baldwin RM, Seibyl JP, Charney D, Innis RB. 2006. Sex differences in diencephalon serotonin transporter availability in major depression. Biol Psychiatry 59:40-47.
– reference: Lein ES, Zhao X, Gage FH. 2004. Defining a molecular atlas of the hippocampus using DNA microarrays and high-throughput in situ hybridization. J Neurosci 24:3879-3889.
– reference: Gould NF, Holmes MK, Fantie BD, Luckenbaugh DA, Pine DS, Gould TD, Burgess N, Manji HK, Zarate CA Jr. 2007. Performance on a virtual reality spatial memory navigation task in depressed patients. Am J Psychiatry 164:516-519.
– reference: Thoeringer CK, Sillaber I, Roedel A, Erhardt A, Mueller MB, Ohl F, Holsboer F, Keck ME. 2007. The temporal dynamics of intrahippocampal corticosterone in response to stress-related stimuli with different emotional and physical load: An in vivo microdialysis study in C57BL/6 and DBA/2 inbred mice. Psychoneuroendocrinology 32:746-757.
– reference: Droste SK, de Groote L, Atkinson HC, Lightman SL, Reul JM, Linthorst AC. 2008. Corticosterone levels in the brain show a distinct ultradian rhythm but a delayed response to forced swim stress. Endocrinology 149:3244-3253.
– reference: David DJ, Samuels BA, Rainer Q, Wang JW, Marsteller D, Mendez I, Drew M, Craig DA, Guiard BP, Guilloux JP, Artymyshyn RP, Gardier AM, Gerald C, Antonijevic IA, Leonardo ED, Hen R. 2009. Neurogenesis-dependent and -independent effects of fluoxetine in an animal model of anxiety/depression. Neuron 62:479-493.
– reference: Joels M, Karst H, Krugers HJ, Lucassen PJ. 2007. Chronic stress: Implications for neuronal morphology, function and neurogenesis. Front Neuroendocrinol 28:72-96.
– reference: Krishnan V, Nestler EJ. 2008. The molecular neurobiology of depression. Nature 455:894-902.
– reference: Austin MC, Whitehead RE, Edgar CL, Janosky JE, Lewis DA. 2002. Localized decrease in serotonin transporter-immunoreactive axons in the prefrontal cortex of depressed subjects committing suicide. Neuroscience 114:807-815.
– reference: Benmansour S, Cecchi M, Morilak DA, Gerhardt GA, Javors MA, Gould GG, Frazer A. 1999. Effects of chronic antidepressant treatments on serotonin transporter function, density, and mRNA level. J Neurosci 19:10494-10501.
– reference: Parsey RV, Hastings RS, Oquendo MA, Huang YY, Simpson N, Arcement J, Huang Y, Ogden RT, Van Heertum RL, Arango V, Mann JJ. 2006. Lower serotonin transporter binding potential in the human brain during major depressive episodes. Am J Psychiatry 163:52-58.
– reference: Carroll BJ, Martin FI, Davies B. 1968. Resistance to suppression by dexamethasone of plasma 11-O.H.C.S. levels in severe depressive illness. Br Med J 3:285-287.
– reference: Jiang W, Zhang Y, Xiao L, Van Cleemput J, Ji SP, Bai G, Zhang X. 2005. Cannabinoids promote embryonic and adult hippocampus neurogenesis and produce anxiolytic- and antidepressant-like effects. J Clin Invest 115:3104-3116.
– reference: Sapolsky RM. 2000. Glucocorticoids and hippocampal atrophy in neuropsychiatric disorders. Arch Gen Psychiatry 57:925-935.
– reference: Herman JP, Cullinan WE, Morano MI, Akil H, Watson SJ. 1995. Contribution of the ventral subiculum to inhibitory regulation of the hypothalamo-pituitary-adrenocortical axis. J Neuroendocrinol 7:475-482.
– reference: Fernandez F, Sarre S, Launay JM, Aguerre S, Guyonnet-Duperat V, Moisan MP, Ebinger G, Michotte Y, Mormede P, Chaouloff F. 2003. Rat strain differences in peripheral and central serotonin transporter protein expression and function. Eur J Neurosci 17:494-506.
– reference: Moser MB, Moser EI. 1998. Functional differentiation in the hippocampus. Hippocampus 8:608-619.
– reference: Savitz JB, Drevets WC. 2012. Neuroreceptor imaging in depression. Neurobiol Dis 52:49-65.
– reference: MacQueen GM, Campbell S, McEwen BS, Macdonald K, Amano S, Joffe RT, Nahmias C, Young LT. 2003. Course of illness, hippocampal function, and hippocampal volume in major depression. Proc Natl Acad Sci USA 100:1387-1392.
– reference: Baganz N, Horton R, Martin K, Holmes A, Daws LC. 2010. Repeated swim impairs serotonin clearance via a corticosterone-sensitive mechanism: Organic cation transporter 3, the smoking gun. J Neurosci 30:15185-15195.
– reference: Elizalde N, Gil-Bea FJ, Ramirez MJ, Aisa B, Lasheras B, Del Rio J, Tordera RM. 2008. Long-lasting behavioral effects and recognition memory deficit induced by chronic mild stress in mice: Effect of antidepressant treatment. Psychopharmacology (Berl) 199:1-14.
– reference: Fernandez F, Coomans V, Mormede P, Chaouloff F. 2001. Effects of corticosterone ingestion on hippocampal [(3)H]serotonin reuptake in inbred rat strains. Endocr Regul 35:119-126.
– reference: Summers TR, Matter JM, McKay JM, Ronan PJ, Larson ET, Renner KJ, Summers CH. 2003. Rapid glucocorticoid stimulation and GABAergic inhibition of hippocampal serotonergic response: in vivo dialysis in the lizard anolis carolinensis. Horm Behav 43:245-253.
– reference: Bradford MM. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248-254.
– reference: Sharp T, Cowen PJ. 2011. 5-HT and depression: is the glass half-full? Curr Opin Pharmacol 11:45-51.
– reference: Strekalova T, Gorenkova N, Schunk E, Dolgov O, Bartsch D. 2006. Selective effects of citalopram in a mouse model of stress-induced anhedonia with a control for chronic stress. Behav Pharmacol 17:271-287.
– reference: Elizalde N, Garcia-Garcia AL, Totterdell S, Gendive N, Venzala E, Ramirez MJ, Del Rio J, Tordera RM. 2010. Sustained stress-induced changes in mice as a model for chronic depression. Psychopharmacology (Berl) 210:393-406.
– volume: 164
  start-page: 1858
  year: 2007
  end-page: 1865
  article-title: 5‐HTT binding in recovered depressed patients and healthy volunteers: A positron emission tomography study with [11C]DASB
  publication-title: Am J Psychiatry
– volume: 206
  start-page: 310
  year: 2010
  end-page: 312
  article-title: Implication of beta3‐adrenoceptors in the antidepressant‐like effects of amibegron using Adrb3 knockout mice in the chronic mild stress
  publication-title: Behav Brain Res
– volume: 199
  start-page: 1
  year: 2008
  end-page: 14
  article-title: Long‐lasting behavioral effects and recognition memory deficit induced by chronic mild stress in mice: Effect of antidepressant treatment
  publication-title: Psychopharmacology (Berl)
– volume: 28
  start-page: 72
  year: 2007
  end-page: 96
  article-title: Chronic stress: Implications for neuronal morphology, function and neurogenesis
  publication-title: Front Neuroendocrinol
– volume: 32
  start-page: 746
  year: 2007
  end-page: 757
  article-title: The temporal dynamics of intrahippocampal corticosterone in response to stress‐related stimuli with different emotional and physical load: An in vivo microdialysis study in C57BL/6 and DBA/2 inbred mice
  publication-title: Psychoneuroendocrinology
– volume: 12
  start-page: 544
  year: 2007
  end-page: 555
  article-title: Serotonin transporter polymorphism, memory and hippocampal volume in the elderly: association and interaction with cortisol
  publication-title: Mol Psychiatry
– volume: 266
  start-page: 730
  year: 1977
  end-page: 732
  article-title: Depression: A new animal model sensitive to antidepressant treatments
  publication-title: Nature
– volume: 164
  start-page: 365
  year: 1994
  end-page: 371
  article-title: Glucocorticoids and the genesis of depressive illness. A psychobiological model
  publication-title: Br J Psychiatry
– volume: 18
  start-page: 330
  year: 2006
  end-page: 338
  article-title: Differential effects of acute and chronic social defeat stress on hypothalamic‐pituitary‐adrenal axis function and hippocampal serotonin release in mice
  publication-title: J Neuroendocrinol
– volume: 39
  start-page: 155
  year: 1991
  end-page: 165
  article-title: Studies on the serotonin uptake binding site in major depressive disorder and control post‐mortem brain: neurochemical and clinical correlates
  publication-title: Psychiatry Res
– volume: 22
  start-page: 6766
  year: 2002
  end-page: 6772
  article-title: Serotonin clearance in vivo is altered to a greater extent by antidepressant‐induced downregulation of the serotonin transporter than by acute blockade of this transporter
  publication-title: J Neurosci
– volume: 317
  start-page: 819
  year: 2007
  end-page: 823
  article-title: High‐speed imaging reveals neurophysiological links to behavior in an animal model of depression
  publication-title: Science
– volume: 36
  start-page: 85
  year: 2000
  end-page: 94
  article-title: Chronic social stress reduces dendritic arbors in CA3 of hippocampus and decreases binding to serotonin transporter sites
  publication-title: Synapse
– volume: 46
  start-page: 973
  year: 2005
  end-page: 977
  article-title: 123I‐ADAM binding to serotonin transporters in patients with major depression and healthy controls: a preliminary study
  publication-title: J Nucl Med
– volume: 35
  start-page: 2510
  year: 2010
  end-page: 2520
  article-title: Interleukin‐1 receptor activation by systemic lipopolysaccharide induces behavioral despair linked to MAPK regulation of CNS serotonin transporters
  publication-title: Neuropsychopharmacology
– volume: 19
  start-page: 10494
  year: 1999
  end-page: 10501
  article-title: Effects of chronic antidepressant treatments on serotonin transporter function, density, and mRNA level
  publication-title: J Neurosci
– volume: 161
  start-page: 598
  year: 2004
  end-page: 607
  article-title: Lower hippocampal volume in patients suffering from depression: a meta‐analysis
  publication-title: Am J Psychiatry
– volume: 149
  start-page: 3244
  year: 2008
  end-page: 3253
  article-title: Corticosterone levels in the brain show a distinct ultradian rhythm but a delayed response to forced swim stress
  publication-title: Endocrinology
– volume: 7
  start-page: 9
  year: 2011
  article-title: Update in the methodology of the chronic stress paradigm: internal control matters
  publication-title: Behav Brain Funct
– volume: 16
  start-page: 233
  year: 2006
  end-page: 238
  article-title: Stress and adult neurogenesis
  publication-title: Hippocampus
– volume: 172
  start-page: 49
  year: 1977
  end-page: 84
  article-title: An autoradiographic study of the organization of the efferent connections of the hippocampal formation in the rat
  publication-title: J Comp Neurol
– volume: 164
  start-page: 516
  year: 2007
  end-page: 519
  article-title: Performance on a virtual reality spatial memory navigation task in depressed patients
  publication-title: Am J Psychiatry
– volume: 214
  start-page: 59
  year: 2013
  end-page: 67
  article-title: Effect of brain‐derived neurotrophic factor on behavior and key members of the brain serotonin system in genetically predisposed to behavioral disorders mouse strains
  publication-title: Neuroscience
– volume: 32
  start-page: 58
  year: 1999
  end-page: 66
  article-title: Corticosterone regulation of serotonin transporter and 5‐HT1A receptor expression in the aging brain
  publication-title: Synapse
– volume: 163
  start-page: 52
  year: 2006
  end-page: 58
  article-title: Lower serotonin transporter binding potential in the human brain during major depressive episodes
  publication-title: Am J Psychiatry
– volume: 30
  start-page: 15185
  year: 2010
  end-page: 15195
  article-title: Repeated swim impairs serotonin clearance via a corticosterone‐sensitive mechanism: Organic cation transporter 3, the smoking gun
  publication-title: J Neurosci
– volume: 26
  start-page: 327
  year: 2010
  end-page: 337
  article-title: Behavioral animal models of depression
  publication-title: Neurosci Bull
– volume: 59
  start-page: 40
  year: 2006
  end-page: 47
  article-title: Sex differences in diencephalon serotonin transporter availability in major depression
  publication-title: Biol Psychiatry
– volume: 35
  start-page: 119
  year: 2001
  end-page: 126
  article-title: Effects of corticosterone ingestion on hippocampal [(3)H]serotonin reuptake in inbred rat strains
  publication-title: Endocr Regul
– volume: 17
  start-page: 494
  year: 2003
  end-page: 506
  article-title: Rat strain differences in peripheral and central serotonin transporter protein expression and function
  publication-title: Eur J Neurosci
– volume: 72
  start-page: 248
  year: 1976
  end-page: 254
  article-title: A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein‐dye binding
  publication-title: Anal Biochem
– volume: 688
  start-page: 121
  year: 1995
  end-page: 133
  article-title: Localized alterations in pre‐ and postsynaptic serotonin binding sites in the ventrolateral prefrontal cortex of suicide victims
  publication-title: Brain Res
– volume: 52
  start-page: 49
  year: 2012
  end-page: 65
  article-title: Neuroreceptor imaging in depression
  publication-title: Neurobiol Dis
– volume: 210
  start-page: 393
  year: 2010
  end-page: 406
  article-title: Sustained stress‐induced changes in mice as a model for chronic depression
  publication-title: Psychopharmacology (Berl)
– volume: 55
  start-page: 1355
  year: 2008
  end-page: 1363
  article-title: Antidepressant‐like effects of the glucocorticoid receptor antagonist RU‐43044 are associated with changes in prefrontal dopamine in mouse models of depression
  publication-title: Neuropharmacology
– volume: 17
  start-page: 271
  year: 2006
  end-page: 287
  article-title: Selective effects of citalopram in a mouse model of stress‐induced anhedonia with a control for chronic stress
  publication-title: Behav Pharmacol
– volume: 455
  start-page: 894
  year: 2008
  end-page: 902
  article-title: The molecular neurobiology of depression
  publication-title: Nature
– volume: 100
  start-page: 1387
  year: 2003
  end-page: 1392
  article-title: Course of illness, hippocampal function, and hippocampal volume in major depression
  publication-title: Proc Natl Acad Sci USA
– volume: 42
  start-page: 252
  year: 2010
  end-page: 264
  article-title: Rodent models in depression research: Classical strategies and new directions
  publication-title: Ann Med
– volume: 143
  start-page: 193
  year: 2003
  end-page: 200
  article-title: Antidepressant‐like effects in various mice strains in the tail suspension test
  publication-title: Behav Brain Res
– volume: 166
  start-page: 373
  year: 2003
  end-page: 382
  article-title: Antidepressant‐like effects in various mice strains in the forced swimming test
  publication-title: Psychopharmacology (Berl)
– volume: 27
  start-page: 625
  year: 2003
  end-page: 631
  article-title: Effects of the selective nonpeptide corticotropin‐releasing factor receptor 1 antagonist antalarmin in the chronic mild stress model of depression in mice
  publication-title: Prog Neuropsychopharmacol Biol Psychiatry
– volume: 289
  start-page: 3095
  year: 2003
  end-page: 3105
  article-title: The epidemiology of major depressive disorder: Results from the National Comorbidity Survey Replication (NCS‐R)
  publication-title: JAMA
– volume: 11
  start-page: 45
  year: 2011
  end-page: 51
  article-title: 5‐HT and depression: is the glass half‐full?
  publication-title: Curr Opin Pharmacol
– volume: 301
  start-page: 386
  year: 2003
  end-page: 389
  article-title: Influence of life stress on depression: Moderation by a polymorphism in the 5‐HTT gene
  publication-title: Science
– volume: 85
  start-page: 367
  year: 1985
  end-page: 370
  article-title: The tail suspension test: a new method for screening antidepressants in mice
  publication-title: Psychopharmacology (Berl)
– year: 2013
  article-title: Stress‐induced anhedonia correlates with lower hippocampal serotonin transporter protein expression
  publication-title: Brain Res
– volume: 115
  start-page: 3104
  year: 2005
  end-page: 3116
  article-title: Cannabinoids promote embryonic and adult hippocampus neurogenesis and produce anxiolytic‐ and antidepressant‐like effects
  publication-title: J Clin Invest
– volume: 202
  start-page: 161
  year: 2012
  end-page: 167
  article-title: Low brain serotonin transporter binding in major depressive disorder
  publication-title: Psychiatry Res
– volume: 43
  start-page: 245
  year: 2003
  end-page: 253
  article-title: Rapid glucocorticoid stimulation and GABAergic inhibition of hippocampal serotonergic response: in vivo dialysis in the lizard anolis carolinensis
  publication-title: Horm Behav
– volume: 583
  start-page: 312
  year: 2008
  end-page: 321
  article-title: Functional actions of corticosteroids in the hippocampus
  publication-title: Eur J Pharmacol
– volume: 8
  start-page: 608
  year: 1998
  end-page: 619
  article-title: Functional differentiation in the hippocampus
  publication-title: Hippocampus
– volume: 182
  start-page: 105
  year: 2011
  end-page: 114
  article-title: Serotonergic neurotransmission in the ventral hippocampus is enhanced by corticosterone and altered by chronic amphetamine treatment
  publication-title: Neuroscience
– volume: 154
  start-page: 125
  year: 2007
  end-page: 131
  article-title: Reduced midbrain serotonin transporter availability in drug‐naive patients with depression measured by SERT‐specific [(123)I] nor‐beta‐CIT SPECT imaging
  publication-title: Psychiatry Res
– volume: 62
  start-page: 479
  year: 2009
  end-page: 493
  article-title: Neurogenesis‐dependent and ‐independent effects of fluoxetine in an animal model of anxiety/depression
  publication-title: Neuron
– volume: 24
  start-page: 3879
  year: 2004
  end-page: 3889
  article-title: Defining a molecular atlas of the hippocampus using DNA microarrays and high‐throughput in situ hybridization
  publication-title: J Neurosci
– volume: 7
  start-page: 137
  year: 2006
  end-page: 151
  article-title: New approaches to antidepressant drug discovery: Beyond monoamines
  publication-title: Nat Rev Neurosci
– volume: 213
  start-page: 555
  year: 2011
  end-page: 562
  article-title: Diminished brain 5‐HT transporter binding in major depression: A positron emission tomography study with [11C]DASB
  publication-title: Psychopharmacology (Berl)
– volume: 7
  start-page: 475
  year: 1995
  end-page: 482
  article-title: Contribution of the ventral subiculum to inhibitory regulation of the hypothalamo‐pituitary‐adrenocortical axis
  publication-title: J Neuroendocrinol
– volume: 57
  start-page: 925
  year: 2000
  end-page: 935
  article-title: Glucocorticoids and hippocampal atrophy in neuropsychiatric disorders
  publication-title: Arch Gen Psychiatry
– volume: 233
  start-page: 102
  year: 2012
  end-page: 111
  article-title: Current research trends in early life stress and depression: review of human studies on sensitive periods, gene‐environment interactions, and epigenetics
  publication-title: Exp Neurol
– volume: 911
  start-page: 369
  year: 2000
  end-page: 391
  article-title: Reciprocal connections between the amygdala and the hippocampal formation, perirhinal cortex, and postrhinal cortex in rat
  publication-title: A review. Ann NY Acad Sci
– volume: 25
  start-page: 895
  year: 2011
  end-page: 901
  article-title: Serotonin transporter polymorphism in major depressive disorder (MDD), psychiatric disorders, and in MDD in response to stressful life events: Causes and treatment with antidepressant
  publication-title: In Vivo
– volume: 581
  start-page: 113
  year: 2008
  end-page: 120
  article-title: A mouse model of depression induced by repeated corticosterone injections
  publication-title: Eur J Pharmacol
– volume: 301
  start-page: 805
  year: 2003
  end-page: 809
  article-title: Requirement of hippocampal neurogenesis for the behavioral effects of antidepressants
  publication-title: Science
– volume: 155
  start-page: 315
  year: 2001
  end-page: 322
  article-title: Sensitivity to the effects of pharmacologically selective antidepressants in different strains of mice
  publication-title: Psychopharmacology (Berl)
– volume: 161
  start-page: 1957
  year: 2004
  end-page: 1966
  article-title: Hippocampal volume and depression: a meta‐analysis of MRI studies
  publication-title: Am J Psychiatry
– volume: 3
  start-page: 285
  year: 1968
  end-page: 287
  article-title: Resistance to suppression by dexamethasone of plasma 11‐O.H.C.S. levels in severe depressive illness
  publication-title: Br Med J
– volume: 24
  start-page: 1227
  year: 2007
  end-page: 1251
  article-title: Polyspecific organic cation transporters: Structure, function, physiological roles, and biopharmaceutical implications
  publication-title: Pharm Res
– volume: 56
  start-page: 391
  year: 2009
  end-page: 398
  article-title: Resilience and vulnerability are dose‐dependently related to neonatal stressors in mice
  publication-title: Horm Behav
– volume: 592
  start-page: 116
  year: 2008
  end-page: 122
  article-title: Mouse strain differences in immobility and sensitivity to fluvoxamine and desipramine in the forced swimming test: Analysis of serotonin and noradrenaline transporter binding
  publication-title: Eur J Pharmacol
– volume: 114
  start-page: 807
  year: 2002
  end-page: 815
  article-title: Localized decrease in serotonin transporter‐immunoreactive axons in the prefrontal cortex of depressed subjects committing suicide
  publication-title: Neuroscience
– volume: 14
  start-page: 47
  year: 1985
  end-page: 56
  article-title: Evidence for physiological effects of hypercortisolemia in psychiatric patients
  publication-title: Psychiatry Res
– volume: 1039
  start-page: 97
  year: 2005
  end-page: 107
  article-title: 3,4‐Methylenedioxymethamphetamine administration on postnatal day 11 in rats increases pituitary‐adrenal output and reduces striatal and hippocampal serotonin without altering SERT activity
  publication-title: Brain Res
– volume: 51
  start-page: 715
  year: 2002
  end-page: 722
  article-title: Serotonin transporter binding in patients with mood disorders: A PET study with [11C](+)McN5652
  publication-title: Biol Psychiatry
– ident: e_1_2_6_10_1
  doi: 10.1038/nrn1846
– ident: e_1_2_6_12_1
  doi: 10.1016/0003-2697(76)90527-3
– ident: e_1_2_6_25_1
  doi: 10.1046/j.1460-9568.2003.02473.x
– ident: e_1_2_6_42_1
  doi: 10.1016/j.yhbeh.2009.07.006
– ident: e_1_2_6_28_1
  doi: 10.1111/j.1365-2826.1995.tb00784.x
– ident: e_1_2_6_52_1
  doi: 10.1111/j.1749-6632.2000.tb06738.x
– ident: e_1_2_6_61_1
  doi: 10.1016/j.coph.2011.02.003
– ident: e_1_2_6_49_1
  doi: 10.1016/j.pscychresns.2011.12.015
– ident: e_1_2_6_74_1
  doi: 10.1007/s12264-010-0323-7
– ident: e_1_2_6_64_1
  doi: 10.1007/BF00428203
– ident: e_1_2_6_29_1
  doi: 10.1016/S0006-3223(01)01351-8
– ident: e_1_2_6_67_1
  doi: 10.1016/j.ejphar.2008.07.005
– ident: e_1_2_6_53_1
  doi: 10.3109/07853891003769957
– ident: e_1_2_6_5_1
  doi: 10.1016/S0306-4522(02)00289-0
– ident: e_1_2_6_6_1
  doi: 10.1523/JNEUROSCI.2740-10.2010
– ident: e_1_2_6_15_1
  doi: 10.1126/science.1083968
– ident: e_1_2_6_32_1
  doi: 10.1016/j.yfrne.2007.04.001
– ident: e_1_2_6_13_1
  doi: 10.1176/appi.ajp.161.4.598
– volume: 19
  start-page: 10494
  year: 1999
  ident: e_1_2_6_8_1
  article-title: Effects of chronic antidepressant treatments on serotonin transporter function, density, and mRNA level
  publication-title: J Neurosci
  doi: 10.1523/JNEUROSCI.19-23-10494.1999
– ident: e_1_2_6_69_1
  doi: 10.1002/cne.901720104
– ident: e_1_2_6_73_1
  doi: 10.1111/j.0953-816X.2004.03405.x
– ident: e_1_2_6_27_1
  doi: 10.1016/j.expneurol.2011.10.032
– volume: 35
  start-page: 119
  year: 2001
  ident: e_1_2_6_24_1
  article-title: Effects of corticosterone ingestion on hippocampal [(3)H]serotonin reuptake in inbred rat strains
  publication-title: Endocr Regul
– ident: e_1_2_6_38_1
  doi: 10.1016/0165-1781(91)90084-3
– ident: e_1_2_6_47_1
  doi: 10.1016/j.neuroscience.2012.04.031
– ident: e_1_2_6_68_1
  doi: 10.1016/S0018-506X(02)00014-4
– ident: e_1_2_6_17_1
  doi: 10.1007/s00213-002-1335-4
– ident: e_1_2_6_40_1
  doi: 10.1007/s002130100694
– ident: e_1_2_6_71_1
  doi: 10.1016/j.psyneuen.2007.05.005
– ident: e_1_2_6_43_1
  doi: 10.1002/(SICI)1098-2396(199904)32:1<58::AID-SYN8>3.0.CO;2-R
– ident: e_1_2_6_30_1
  doi: 10.1172/JCI25509
– ident: e_1_2_6_39_1
  doi: 10.1523/JNEUROSCI.4710-03.2004
– ident: e_1_2_6_75_1
  doi: 10.1016/j.ejphar.2007.12.005
– ident: e_1_2_6_46_1
  doi: 10.1002/(SICI)1098-1063(1998)8:6<608::AID-HIPO3>3.0.CO;2-7
– ident: e_1_2_6_37_1
  doi: 10.1038/nature07455
– ident: e_1_2_6_58_1
  doi: 10.1001/archpsyc.57.10.925
– volume: 25
  start-page: 895
  year: 2011
  ident: e_1_2_6_16_1
  article-title: Serotonin transporter polymorphism in major depressive disorder (MDD), psychiatric disorders, and in MDD in response to stressful life events: Causes and treatment with antidepressant
  publication-title: In Vivo
– ident: e_1_2_6_56_1
  doi: 10.1016/S0166-4328(03)00034-2
– ident: e_1_2_6_31_1
  doi: 10.1016/j.ejphar.2007.11.064
– ident: e_1_2_6_62_1
  doi: 10.1016/j.biopsych.2005.06.012
– ident: e_1_2_6_57_1
  doi: 10.1126/science.1083328
– ident: e_1_2_6_33_1
  doi: 10.1016/j.pscychresns.2006.08.001
– ident: e_1_2_6_70_1
  doi: 10.1016/j.brainres.2013.03.042
– ident: e_1_2_6_14_1
  doi: 10.1136/bmj.3.5613.285
– ident: e_1_2_6_41_1
  doi: 10.1073/pnas.0337481100
– ident: e_1_2_6_63_1
  doi: 10.1016/j.bbr.2009.09.003
– ident: e_1_2_6_60_1
  doi: 10.1007/s00213-009-1660-y
– ident: e_1_2_6_45_1
  doi: 10.1002/hipo.20155
– ident: e_1_2_6_55_1
  doi: 10.1016/0165-1781(85)90088-5
– ident: e_1_2_6_59_1
  doi: 10.1016/j.nbd.2012.06.001
– ident: e_1_2_6_44_1
  doi: 10.1002/(SICI)1098-2396(200005)36:2<85::AID-SYN1>3.0.CO;2-Y
– ident: e_1_2_6_18_1
  doi: 10.1016/j.neuron.2009.04.017
– ident: e_1_2_6_65_1
  doi: 10.1186/1744-9081-7-9
– ident: e_1_2_6_2_1
  doi: 10.1016/j.neuropharm.2008.08.026
– ident: e_1_2_6_3_1
  doi: 10.1126/science.1144400
– ident: e_1_2_6_34_1
  doi: 10.1111/j.1365-2826.2006.01422.x
– ident: e_1_2_6_7_1
  doi: 10.1016/j.neuroscience.2011.03.020
– ident: e_1_2_6_4_1
  doi: 10.1016/0006-8993(95)00523-S
– ident: e_1_2_6_54_1
  doi: 10.1038/266730a0
– ident: e_1_2_6_9_1
  doi: 10.1523/JNEUROSCI.22-15-06766.2002
– ident: e_1_2_6_21_1
  doi: 10.1016/S0278-5846(03)00051-4
– volume: 46
  start-page: 973
  year: 2005
  ident: e_1_2_6_48_1
  article-title: 123I‐ADAM binding to serotonin transporters in patients with major depression and healthy controls: a preliminary study
  publication-title: J Nucl Med
– ident: e_1_2_6_23_1
  doi: 10.1007/s00213-007-1035-1
– ident: e_1_2_6_20_1
  doi: 10.1210/en.2008-0103
– ident: e_1_2_6_35_1
  doi: 10.1001/jama.289.23.3095
– ident: e_1_2_6_36_1
  doi: 10.1007/s11095-007-9254-z
– ident: e_1_2_6_72_1
  doi: 10.1176/appi.ajp.161.11.1957
– ident: e_1_2_6_19_1
  doi: 10.1192/bjp.164.3.365
– ident: e_1_2_6_66_1
  doi: 10.1097/00008877-200605000-00008
– volume: 164
  start-page: 516
  year: 2007
  ident: e_1_2_6_26_1
  article-title: Performance on a virtual reality spatial memory navigation task in depressed patients
  publication-title: Am J Psychiatry
  doi: 10.1176/ajp.2007.164.3.516
– ident: e_1_2_6_51_1
  doi: 10.1176/appi.ajp.163.1.52
– ident: e_1_2_6_11_1
  doi: 10.1176/appi.ajp.2007.06111933
– ident: e_1_2_6_50_1
  doi: 10.1038/sj.mp.4001978
– ident: e_1_2_6_22_1
  doi: 10.1007/s00213-010-1835-6
– ident: e_1_2_6_76_1
  doi: 10.1038/npp.2010.116
SSID ssj0011500
Score 2.202575
Snippet ABSTRACT Stress influences the development of depression, and depression is associated with structural and functional changes in the hippocampus. The current...
Stress influences the development of depression, and depression is associated with structural and functional changes in the hippocampus. The current study...
SourceID proquest
pubmed
crossref
wiley
istex
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 493
SubjectTerms Adrenal Cortex Hormones
anhedonia
Anhedonia - physiology
Animals
behavioral despair
CA1 Region, Hippocampal - metabolism
CA3 Region, Hippocampal - metabolism
corticosteroid
Dentate Gyrus - metabolism
Dentate Gyrus - pathology
Depressive Disorder - metabolism
Depressive Disorder - pathology
Disease Models, Animal
Endophenotypes
hippocampus
Hippocampus - metabolism
Male
Mice
Mice, Inbred Strains
Organ Size
Random Allocation
Serotonin - metabolism
Serotonin Plasma Membrane Transport Proteins - metabolism
synaptosomal 5-HT uptake
Synaptosomes - metabolism
Title Subregion-specific decreases in hippocampal serotonin transporter protein expression and function associated with endophenotypes of depression
URI https://api.istex.fr/ark:/67375/WNG-BPC1ZSWK-9/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002/hipo.22242
https://www.ncbi.nlm.nih.gov/pubmed/24436084
https://www.proquest.com/docview/1507759913
https://www.proquest.com/docview/1508417891
Volume 24
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3bbtQwELVQkRAvXFougYKMQJVAyrLJ2o73sVSUBdRSAVUreLB8i6hanNVuVio88Qn9Rr6EGccbUVQhwVsuEzlxxjNnxuNjQp5YJmwNric3XI5zZmyRQ5xlIWqttNBjiCjiKtedXTHZZ28O-WGqqsS1MB0_RJ9ww5ER7TUOcG3maV6_fP7laNoMwLcxNL9YqoV46H3PHIU4pyMi4MMcmit6ZtLfHz3niy5jt55eBDTP49boeLavk8_LV-7qTY4Hi9YM7Pc_2Bz_75tukGsJj9LNToFukks-rJK1zQCx-NdvdIPGCtGYel8lV3bSRPwaOQODg3s6NOHnjzNcrYkVR9RFDDr3c3oUKLQzBUcJ5uaEgp43LSZ-aduTqc9o5IiAa_40VeMGqoOj6GrbeJJUxzuK6WLqg0MWhNBg3nhOm5r2dbzhFtnffvlxa5KnzR1yUA8OVri0GEzqSpelqxy3RhdDL20hDAT70glf1KW1UsuaGe81466ydc1NXQrDeD26TVZCE_xdQiU8w4WTWpeOWS1wZbwWQ6MraYz0LCNPl79Z2cR8jhtwnKiOs7lU2PMq9nxGHvey047v40KpjagtvYieHWOFXMXVwe4r9WJvq_j04eCtGmdkfalOKhmHuUIMXnEA5qOMPOpvw7DGuRodfLOIMpIVlRwXGbnTqWHfGCCykYDbGXkWlekvL6omr_fexaN7_yJ8n1wFYJgqlNbJSjtb-AcAvlrzMA6zX4gJMHA
linkProvider Wiley-Blackwell
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Subregion-specific+decreases+in+hippocampal+serotonin+transporter+protein+expression+and+function+associated+with+endophenotypes+of+depression&rft.jtitle=Hippocampus&rft.au=Tang%2C+Man&rft.au=He%2C+Tao&rft.au=Sun%2C+Xiao&rft.au=Meng%2C+Qing-Yan&rft.date=2014-04-01&rft.issn=1098-1063&rft.eissn=1098-1063&rft.volume=24&rft.issue=4&rft.spage=493&rft_id=info:doi/10.1002%2Fhipo.22242&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1050-9631&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1050-9631&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1050-9631&client=summon