Subregion-specific decreases in hippocampal serotonin transporter protein expression and function associated with endophenotypes of depression
ABSTRACT Stress influences the development of depression, and depression is associated with structural and functional changes in the hippocampus. The current study sought to determine whether chronic corticosteroid (CORT) treatment influences serotonin transporter (5‐HTT) protein expression and func...
Saved in:
Published in | Hippocampus Vol. 24; no. 4; pp. 493 - 501 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Blackwell Publishing Ltd
01.04.2014
Wiley Subscription Services, Inc |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | ABSTRACT
Stress influences the development of depression, and depression is associated with structural and functional changes in the hippocampus. The current study sought to determine whether chronic corticosteroid (CORT) treatment influences serotonin transporter (5‐HTT) protein expression and function in the CA1, CA3, and dentate gyrus (DG) subregions of the hippocampus. Male CD‐1 mice were subcutaneously injected with CORT at a dose of 20 mg/kg once daily for 3 weeks. Behavioral state was assessed using sucrose preference, physical state of the coat, forced swimming test, and tail suspension test. We then determine 5‐HTT protein expression and synaptosomal 5‐HT uptake in the CA1, CA3 and DG subregions. CORT treatment induced anhedonia and behavioral despair, two core endophenotypes of clinical depression; 5‐HTT protein expression levels and synaptosomal 5‐HT uptake were both decreased in a subregion‐specific manner, with the greatest decrease observed in the DG, a moderate decrease in the CA3, and the CA1 showed no apparent change. In addition, a reduction in tissue mass was detected in the DG following the CORT treatment. These data indicate that subregion‐specific decreases in hippocampal 5‐HTT protein expression and function are associated with endophenotypes of depression. © 2014 Wiley Periodicals, Inc. |
---|---|
AbstractList | Stress influences the development of depression, and depression is associated with structural and functional changes in the hippocampus. The current study sought to determine whether chronic corticosteroid (CORT) treatment influences serotonin transporter (5-HTT) protein expression and function in the CA1, CA3, and dentate gyrus (DG) subregions of the hippocampus. Male CD-1 mice were subcutaneously injected with CORT at a dose of 20 mg/kg once daily for 3 weeks. Behavioral state was assessed using sucrose preference, physical state of the coat, forced swimming test, and tail suspension test. We then determine 5-HTT protein expression and synaptosomal 5-HT uptake in the CA1, CA3 and DG subregions. CORT treatment induced anhedonia and behavioral despair, two core endophenotypes of clinical depression; 5-HTT protein expression levels and synaptosomal 5-HT uptake were both decreased in a subregion-specific manner, with the greatest decrease observed in the DG, a moderate decrease in the CA3, and the CA1 showed no apparent change. In addition, a reduction in tissue mass was detected in the DG following the CORT treatment. These data indicate that subregion-specific decreases in hippocampal 5-HTT protein expression and function are associated with endophenotypes of depression.Stress influences the development of depression, and depression is associated with structural and functional changes in the hippocampus. The current study sought to determine whether chronic corticosteroid (CORT) treatment influences serotonin transporter (5-HTT) protein expression and function in the CA1, CA3, and dentate gyrus (DG) subregions of the hippocampus. Male CD-1 mice were subcutaneously injected with CORT at a dose of 20 mg/kg once daily for 3 weeks. Behavioral state was assessed using sucrose preference, physical state of the coat, forced swimming test, and tail suspension test. We then determine 5-HTT protein expression and synaptosomal 5-HT uptake in the CA1, CA3 and DG subregions. CORT treatment induced anhedonia and behavioral despair, two core endophenotypes of clinical depression; 5-HTT protein expression levels and synaptosomal 5-HT uptake were both decreased in a subregion-specific manner, with the greatest decrease observed in the DG, a moderate decrease in the CA3, and the CA1 showed no apparent change. In addition, a reduction in tissue mass was detected in the DG following the CORT treatment. These data indicate that subregion-specific decreases in hippocampal 5-HTT protein expression and function are associated with endophenotypes of depression. Stress influences the development of depression, and depression is associated with structural and functional changes in the hippocampus. The current study sought to determine whether chronic corticosteroid (CORT) treatment influences serotonin transporter (5-HTT) protein expression and function in the CA1, CA3, and dentate gyrus (DG) subregions of the hippocampus. Male CD-1 mice were subcutaneously injected with CORT at a dose of 20 mg/kg once daily for 3 weeks. Behavioral state was assessed using sucrose preference, physical state of the coat, forced swimming test, and tail suspension test. We then determine 5-HTT protein expression and synaptosomal 5-HT uptake in the CA1, CA3 and DG subregions. CORT treatment induced anhedonia and behavioral despair, two core endophenotypes of clinical depression; 5-HTT protein expression levels and synaptosomal 5-HT uptake were both decreased in a subregion-specific manner, with the greatest decrease observed in the DG, a moderate decrease in the CA3, and the CA1 showed no apparent change. In addition, a reduction in tissue mass was detected in the DG following the CORT treatment. These data indicate that subregion-specific decreases in hippocampal 5-HTT protein expression and function are associated with endophenotypes of depression. ABSTRACT Stress influences the development of depression, and depression is associated with structural and functional changes in the hippocampus. The current study sought to determine whether chronic corticosteroid (CORT) treatment influences serotonin transporter (5‐HTT) protein expression and function in the CA1, CA3, and dentate gyrus (DG) subregions of the hippocampus. Male CD‐1 mice were subcutaneously injected with CORT at a dose of 20 mg/kg once daily for 3 weeks. Behavioral state was assessed using sucrose preference, physical state of the coat, forced swimming test, and tail suspension test. We then determine 5‐HTT protein expression and synaptosomal 5‐HT uptake in the CA1, CA3 and DG subregions. CORT treatment induced anhedonia and behavioral despair, two core endophenotypes of clinical depression; 5‐HTT protein expression levels and synaptosomal 5‐HT uptake were both decreased in a subregion‐specific manner, with the greatest decrease observed in the DG, a moderate decrease in the CA3, and the CA1 showed no apparent change. In addition, a reduction in tissue mass was detected in the DG following the CORT treatment. These data indicate that subregion‐specific decreases in hippocampal 5‐HTT protein expression and function are associated with endophenotypes of depression. © 2014 Wiley Periodicals, Inc. Stress influences the development of depression, and depression is associated with structural and functional changes in the hippocampus. The current study sought to determine whether chronic corticosteroid (CORT) treatment influences serotonin transporter (5‐HTT) protein expression and function in the CA1, CA3, and dentate gyrus (DG) subregions of the hippocampus. Male CD‐1 mice were subcutaneously injected with CORT at a dose of 20 mg/kg once daily for 3 weeks. Behavioral state was assessed using sucrose preference, physical state of the coat, forced swimming test, and tail suspension test. We then determine 5‐HTT protein expression and synaptosomal 5‐HT uptake in the CA1, CA3 and DG subregions. CORT treatment induced anhedonia and behavioral despair, two core endophenotypes of clinical depression; 5‐HTT protein expression levels and synaptosomal 5‐HT uptake were both decreased in a subregion‐specific manner, with the greatest decrease observed in the DG, a moderate decrease in the CA3, and the CA1 showed no apparent change. In addition, a reduction in tissue mass was detected in the DG following the CORT treatment. These data indicate that subregion‐specific decreases in hippocampal 5‐HTT protein expression and function are associated with endophenotypes of depression. © 2014 Wiley Periodicals, Inc. Stress influences the development of depression, and depression is associated with structural and functional changes in the hippocampus. The current study sought to determine whether chronic corticosteroid (CORT) treatment influences serotonin transporter (5-HTT) protein expression and function in the CA1, CA3, and dentate gyrus (DG) subregions of the hippocampus. Male CD-1 mice were subcutaneously injected with CORT at a dose of 20 mg/kg once daily for 3 weeks. Behavioral state was assessed using sucrose preference, physical state of the coat, forced swimming test, and tail suspension test. We then determine 5-HTT protein expression and synaptosomal 5-HT uptake in the CA1, CA3 and DG subregions. CORT treatment induced anhedonia and behavioral despair, two core endophenotypes of clinical depression; 5-HTT protein expression levels and synaptosomal 5-HT uptake were both decreased in a subregion-specific manner, with the greatest decrease observed in the DG, a moderate decrease in the CA3, and the CA1 showed no apparent change. In addition, a reduction in tissue mass was detected in the DG following the CORT treatment. These data indicate that subregion-specific decreases in hippocampal 5-HTT protein expression and function are associated with endophenotypes of depression. © 2014 Wiley Periodicals, Inc. [PUBLICATION ABSTRACT] |
Author | Tang, Man He, Tao Sun, Xiao He, Xiao-Jing Chen, Lei Zhao, Shulei Diao, Yao Sang, Xiu-Bo Meng, Qing-Yan Lei, Jie-Yu |
Author_xml | – sequence: 1 givenname: Man surname: Tang fullname: Tang, Man email: matang88@hotmail.com organization: Department of Clinical Pharmacology, School of Pharmacy, China Medical University, Shenyang, China – sequence: 2 givenname: Tao surname: He fullname: He, Tao organization: Department of Clinical Pharmacology, School of Pharmacy, China Medical University, Shenyang, China – sequence: 3 givenname: Xiao surname: Sun fullname: Sun, Xiao organization: Department of Internal Medicine, Shenyang Medical College Affiliated Fengtian Hospital, Shenyang, China – sequence: 4 givenname: Qing-Yan surname: Meng fullname: Meng, Qing-Yan organization: Department of Burns, The Northern Hospital, Shenyang, China – sequence: 5 givenname: Yao surname: Diao fullname: Diao, Yao organization: Center of Experiment and Technology, China Medical University, Shenyang, China – sequence: 6 givenname: Jie-Yu surname: Lei fullname: Lei, Jie-Yu organization: Department of Clinical Pharmacology, School of Pharmacy, China Medical University, Shenyang, China – sequence: 7 givenname: Xiao-Jing surname: He fullname: He, Xiao-Jing organization: Department of Pharmacy, Shengjing Hospital of China Medical University, Shenyang, China – sequence: 8 givenname: Lei surname: Chen fullname: Chen, Lei organization: Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, China – sequence: 9 givenname: Xiu-Bo surname: Sang fullname: Sang, Xiu-Bo organization: Department of Seven-year Clinical Medicine, China Medical University, Shenyang, China – sequence: 10 givenname: Shulei surname: Zhao fullname: Zhao, Shulei organization: Section of Integrative Biology, School of Biological Sciences, University of Texas, Texas, Austin |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/24436084$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kd1qFTEUhYNU7I_e-AAS8EYKU5NM5u_SHrQtFluoUvAmZDI7ntQ5SUwytOcl-sxmenp6UcSr7Gy-tfZm7X20Y50FhN5SckQJYR-XxrsjxhhnL9AeJV1bUFKXO3NdkaKrS7qL9mO8IYTSipBXaJdxXtak5Xvo_mrqA_wyzhbRgzLaKDyACiAjRGwszubeKbnycsQRgkvO5m4K0kbvQoKAfW5C7sGdDxBjtsLSDlhPVqWHT4xOGZlgwLcmLTHYwfklWJfWPs9wOg_cKl-jl1qOEd48vgfox5fP3xenxfnFydni03mheF2xomWKcdLIRjI2NEOlekkJtIrWPfSsHWqgminVylbzHkDyamiU1lWvWd3zSpcH6MPGNy__Z4KYxMpEBeMoLbgpipxTy2nTdjSj75-hN24KNm83U01TdRnK1LtHaupXMAgfzEqGtdgmnYHDDaCCizGAfkIoEfMZxXxG8XDGDJNnsDJJzmnm4M34bwndSG7NCOv_mIvTs8uLrabYaExMcPekkeG3qJuyqcT1txNxfLmgP6-uv4qu_AsDS8Oh |
CODEN | HIPPEL |
CitedBy_id | crossref_primary_10_1016_j_brainres_2019_02_022 crossref_primary_10_1038_s41598_017_08953_4 crossref_primary_10_1016_j_bbr_2016_03_047 crossref_primary_10_3390_genes12040579 crossref_primary_10_1371_journal_pone_0119061 crossref_primary_10_1016_j_bbr_2020_112618 crossref_primary_10_1177_2470547020923711 crossref_primary_10_1021_acschemneuro_0c00334 crossref_primary_10_1038_s41380_023_02037_8 crossref_primary_10_1038_s41398_019_0416_7 crossref_primary_10_3389_fnbeh_2021_734054 crossref_primary_10_3389_fncel_2015_00299 crossref_primary_10_1016_j_pnpbp_2018_01_022 crossref_primary_10_1016_j_psychres_2018_12_015 crossref_primary_10_1017_S146114571400073X |
Cites_doi | 10.1038/nrn1846 10.1016/0003-2697(76)90527-3 10.1046/j.1460-9568.2003.02473.x 10.1016/j.yhbeh.2009.07.006 10.1111/j.1365-2826.1995.tb00784.x 10.1111/j.1749-6632.2000.tb06738.x 10.1016/j.coph.2011.02.003 10.1016/j.pscychresns.2011.12.015 10.1007/s12264-010-0323-7 10.1007/BF00428203 10.1016/S0006-3223(01)01351-8 10.1016/j.ejphar.2008.07.005 10.3109/07853891003769957 10.1016/S0306-4522(02)00289-0 10.1523/JNEUROSCI.2740-10.2010 10.1126/science.1083968 10.1016/j.yfrne.2007.04.001 10.1176/appi.ajp.161.4.598 10.1523/JNEUROSCI.19-23-10494.1999 10.1002/cne.901720104 10.1111/j.0953-816X.2004.03405.x 10.1016/j.expneurol.2011.10.032 10.1016/0165-1781(91)90084-3 10.1016/j.neuroscience.2012.04.031 10.1016/S0018-506X(02)00014-4 10.1007/s00213-002-1335-4 10.1007/s002130100694 10.1016/j.psyneuen.2007.05.005 10.1002/(SICI)1098-2396(199904)32:1<58::AID-SYN8>3.0.CO;2-R 10.1172/JCI25509 10.1523/JNEUROSCI.4710-03.2004 10.1016/j.ejphar.2007.12.005 10.1002/(SICI)1098-1063(1998)8:6<608::AID-HIPO3>3.0.CO;2-7 10.1038/nature07455 10.1001/archpsyc.57.10.925 10.1016/S0166-4328(03)00034-2 10.1016/j.ejphar.2007.11.064 10.1016/j.biopsych.2005.06.012 10.1126/science.1083328 10.1016/j.pscychresns.2006.08.001 10.1016/j.brainres.2013.03.042 10.1136/bmj.3.5613.285 10.1073/pnas.0337481100 10.1016/j.bbr.2009.09.003 10.1007/s00213-009-1660-y 10.1002/hipo.20155 10.1016/0165-1781(85)90088-5 10.1016/j.nbd.2012.06.001 10.1002/(SICI)1098-2396(200005)36:2<85::AID-SYN1>3.0.CO;2-Y 10.1016/j.neuron.2009.04.017 10.1186/1744-9081-7-9 10.1016/j.neuropharm.2008.08.026 10.1126/science.1144400 10.1111/j.1365-2826.2006.01422.x 10.1016/j.neuroscience.2011.03.020 10.1016/0006-8993(95)00523-S 10.1038/266730a0 10.1523/JNEUROSCI.22-15-06766.2002 10.1016/S0278-5846(03)00051-4 10.1007/s00213-007-1035-1 10.1210/en.2008-0103 10.1001/jama.289.23.3095 10.1007/s11095-007-9254-z 10.1176/appi.ajp.161.11.1957 10.1192/bjp.164.3.365 10.1097/00008877-200605000-00008 10.1176/ajp.2007.164.3.516 10.1176/appi.ajp.163.1.52 10.1176/appi.ajp.2007.06111933 10.1038/sj.mp.4001978 10.1007/s00213-010-1835-6 10.1038/npp.2010.116 |
ContentType | Journal Article |
Copyright | Copyright © 2014 Wiley Periodicals, Inc. |
Copyright_xml | – notice: Copyright © 2014 Wiley Periodicals, Inc. |
DBID | BSCLL AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QG 7TK K9. 7X8 |
DOI | 10.1002/hipo.22242 |
DatabaseName | Istex CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Animal Behavior Abstracts Neurosciences Abstracts ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest Health & Medical Complete (Alumni) Neurosciences Abstracts Animal Behavior Abstracts MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE CrossRef ProQuest Health & Medical Complete (Alumni) |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Anatomy & Physiology |
EISSN | 1098-1063 |
EndPage | 501 |
ExternalDocumentID | 3247745901 24436084 10_1002_hipo_22242 HIPO22242 ark_67375_WNG_BPC1ZSWK_9 |
Genre | article Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: Liaoning Provincial Natural Science Foundation of China funderid: 201102276 and 20092073 – fundername: Scientific Research Foundation for the Returned Overseas Chinese Scholars, State Education Ministry funderid: [2012]940 – fundername: Provincial Innovative and Entrepreneurship Training Program for College Students (2013) (to XB Sang) |
GroupedDBID | --- .3N .GA .GJ .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 31~ 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5RE 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AANLZ AAONW AASGY AAXRX AAZKR ABCQN ABCUV ABEML ABIJN ABIVO ABJNI ABLJU ABPVW ACAHQ ACBWZ ACCFJ ACCZN ACFBH ACGFS ACPOU ACPRK ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFNX AFFPM AFGKR AFPWT AFZJQ AHBTC AHMBA AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BSCLL BY8 C45 CS3 D-E D-F DCZOG DPXWK DR1 DR2 DRFUL DRSTM DU5 EBD EBS EJD EMOBN F00 F01 F04 F5P FEDTE G-S G.N GAKWD GNP GODZA H.T H.X HBH HF~ HGLYW HHY HHZ HVGLF HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M6M MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG OVD P2W P2X P4D PALCI PQQKQ Q.N Q11 QB0 QRW R.K RIWAO RJQFR ROL RWD RWI RX1 SAMSI SUPJJ SV3 TEORI TN5 UB1 V2E W8V W99 WBKPD WIB WIH WIK WJL WNSPC WOHZO WQJ WRC WUP WXSBR WYISQ XG1 XJT XPP XSW XV2 ZZTAW ~IA ~WT - 0R 31 3N AAPBV ABFLS ABHUG ABWRO ACXME ADAWD ADDAD AETEA AFVGU AGJLS GA GJ HZ IA IPNFZ NF P4A PQEST RIG SPW WT Y3 AAHQN AAMNL AANHP AAYCA AAYXX ACRPL ACYXJ ADNMO AEYWJ AFWVQ AGHNM AGQPQ AGYGG ALVPJ CITATION AAMMB AEFGJ AGXDD AIDQK AIDYY CGR CUY CVF ECM EIF NPM 7QG 7TK K9. 7X8 |
ID | FETCH-LOGICAL-c4652-82c2407a7a22d7d5cba10e8c16beb28d6e1f2cc8a8f4beea45d7cff5bf26b45f3 |
IEDL.DBID | DR2 |
ISSN | 1050-9631 1098-1063 |
IngestDate | Thu Jul 10 22:19:13 EDT 2025 Sun Jul 13 04:06:33 EDT 2025 Mon Jul 21 05:29:59 EDT 2025 Tue Jul 01 02:05:57 EDT 2025 Thu Apr 24 23:08:55 EDT 2025 Fri Apr 02 05:00:58 EDT 2021 Wed Oct 30 09:55:13 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | corticosteroid behavioral despair hippocampus synaptosomal 5-HT uptake anhedonia |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor Copyright © 2014 Wiley Periodicals, Inc. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4652-82c2407a7a22d7d5cba10e8c16beb28d6e1f2cc8a8f4beea45d7cff5bf26b45f3 |
Notes | Provincial Innovative and Entrepreneurship Training Program for College Students (2013) (to XB Sang) istex:9E55D6DEAA47543C09B1150A6BA048AE8782DD1D Scientific Research Foundation for the Returned Overseas Chinese Scholars, State Education Ministry - No. [2012]940 ArticleID:HIPO22242 ark:/67375/WNG-BPC1ZSWK-9 Liaoning Provincial Natural Science Foundation of China - No. 201102276 and 20092073 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
PMID | 24436084 |
PQID | 1507759913 |
PQPubID | 996349 |
PageCount | 9 |
ParticipantIDs | proquest_miscellaneous_1508417891 proquest_journals_1507759913 pubmed_primary_24436084 crossref_primary_10_1002_hipo_22242 crossref_citationtrail_10_1002_hipo_22242 wiley_primary_10_1002_hipo_22242_HIPO22242 istex_primary_ark_67375_WNG_BPC1ZSWK_9 |
ProviderPackageCode | 10A RJQFR A03 ADOZA BFHJK BROTX AMBMR DCZOG ~IA ACFBH ACAHQ LEEKS AFGKR 50Y 50Z AEUQT XG1 AAEVG MRSTM .3N MEWTI 1ZS H.T Q11 LP7 H.X LP6 WUP GAKWD 51W 51X ACXME WBKPD QB0 AJXKR ADMGS UB1 AEIMD GNP ATUGU WOHZO G-S O66 AZBYB 52M 3WU 52N 52O 52P ADEOM LATKE ZZTAW 52S 930 BAFTC 52T MK4 QRW SUPJJ 52U HHY 52W DRSTM 1L6 52X HHZ AFPWT 4ZD ALAGY DR1 DR2 G.N ACPOU AFZJQ ADAWD 702 7PT 66C NNB ADIZJ .GA AAONW LYRES GODZA HBH LUTES ALUQN AAZKR MSFUL LC2 AIURR LC3 RWD ABWRO AZVAB WNSPC RWI PALCI ABHUG KQQ RX1 ACXQS BMXJE R.K WIB WQJ MXFUL P2W W8V W99 WYISQ P2X WIH WIK JPC BDRZF BY8 MSSTM DPXWK 1OB AUFTA 1OC 3SF F01 F00 NF~ BRXPI WRC AFVGU F04 ADZMN 8UM ABCUV N05 N04 ADDAD WJL BNHUX ~WT 8-0 8-1 P4A 8-3 AGJLS 8-4 8-5 P4D IX1 BHBCM BMNLL LITHE SAMSI J0M MXSTM DRFUL 33P Q.N 05W XV2 AAESR LOXES MRFUL D-F D-E CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | April 2014 |
PublicationDateYYYYMMDD | 2014-04-01 |
PublicationDate_xml | – month: 04 year: 2014 text: April 2014 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Boston |
PublicationTitle | Hippocampus |
PublicationTitleAlternate | Hippocampus |
PublicationYear | 2014 |
Publisher | Blackwell Publishing Ltd Wiley Subscription Services, Inc |
Publisher_xml | – name: Blackwell Publishing Ltd – name: Wiley Subscription Services, Inc |
References | Maines LW, Keck BJ, Smith JE, Lakoski JM. 1999. Corticosterone regulation of serotonin transporter and 5-HT1A receptor expression in the aging brain. Synapse 32:58-66. Naumenko VS, Kondaurova EM, Bazovkina DV, Tsybko AS, Tikhonova MA, Kulikov AV, Popova NK. 2013. Effect of brain-derived neurotrophic factor on behavior and key members of the brain serotonin system in genetically predisposed to behavioral disorders mouse strains. Neuroscience 214:59-67. Parsey RV, Hastings RS, Oquendo MA, Huang YY, Simpson N, Arcement J, Huang Y, Ogden RT, Van Heertum RL, Arango V, Mann JJ. 2006. Lower serotonin transporter binding potential in the human brain during major depressive episodes. Am J Psychiatry 163:52-58. Fernandez F, Coomans V, Mormede P, Chaouloff F. 2001. Effects of corticosterone ingestion on hippocampal [(3)H]serotonin reuptake in inbred rat strains. Endocr Regul 35:119-126. Gould NF, Holmes MK, Fantie BD, Luckenbaugh DA, Pine DS, Gould TD, Burgess N, Manji HK, Zarate CA Jr. 2007. Performance on a virtual reality spatial memory navigation task in depressed patients. Am J Psychiatry 164:516-519. Swanson LW, Cowan WM. 1977. An autoradiographic study of the organization of the efferent connections of the hippocampal formation in the rat. J Comp Neurol 172:49-84. Berton O, Nestler EJ. 2006. New approaches to antidepressant drug discovery: Beyond monoamines. Nat Rev Neurosci 7:137-151. Sharp T, Cowen PJ. 2011. 5-HT and depression: is the glass half-full? Curr Opin Pharmacol 11:45-51. Joels M, Karst H, Krugers HJ, Lucassen PJ. 2007. Chronic stress: Implications for neuronal morphology, function and neurogenesis. Front Neuroendocrinol 28:72-96. Lein ES, Zhao X, Gage FH. 2004. Defining a molecular atlas of the hippocampus using DNA microarrays and high-throughput in situ hybridization. J Neurosci 24:3879-3889. Koepsell H, Lips K, Volk C. 2007. Polyspecific organic cation transporters: Structure, function, physiological roles, and biopharmaceutical implications. Pharm Res 24:1227-1251. Arango V, Underwood MD, Gubbi AV, Mann JJ. 1995. Localized alterations in pre- and postsynaptic serotonin binding sites in the ventrolateral prefrontal cortex of suicide victims. Brain Res 688:121-133. Newberg AB, Amsterdam JD, Wintering N, Ploessl K, Swanson RL, Shults J, Alavi A. 2005. 123I-ADAM binding to serotonin transporters in patients with major depression and healthy controls: a preliminary study. J Nucl Med 46:973-977. Porsolt RD, Le Pichon M, Jalfre M. 1977. Depression: A new animal model sensitive to antidepressant treatments. Nature 266:730-732. Zhao Y, Ma R, Shen J, Su H, Xing D, Du L. 2008. A mouse model of depression induced by repeated corticosterone injections. Eur J Pharmacol 581:113-120. Elizalde N, Garcia-Garcia AL, Totterdell S, Gendive N, Venzala E, Ramirez MJ, Del Rio J, Tordera RM. 2010. Sustained stress-induced changes in mice as a model for chronic depression. Psychopharmacology (Berl) 210:393-406. MacQueen GM, Campbell S, McEwen BS, Macdonald K, Amano S, Joffe RT, Nahmias C, Young LT. 2003. Course of illness, hippocampal function, and hippocampal volume in major depression. Proc Natl Acad Sci USA 100:1387-1392. Videbech P, Ravnkilde B. 2004. Hippocampal volume and depression: a meta-analysis of MRI studies. Am J Psychiatry 161:1957-1966. Zhu CB, Lindler KM, Owens AW, Daws LC, Blakely RD, Hewlett WA. 2010. Interleukin-1 receptor activation by systemic lipopolysaccharide induces behavioral despair linked to MAPK regulation of CNS serotonin transporters. Neuropsychopharmacology 35:2510-2520. Sapolsky RM. 2000. Glucocorticoids and hippocampal atrophy in neuropsychiatric disorders. Arch Gen Psychiatry 57:925-935. Dinan TG. 1994. Glucocorticoids and the genesis of depressive illness. A psychobiological model. Br J Psychiatry 164:365-371. Joels M. 2008. Functional actions of corticosteroids in the hippocampus. Eur J Pharmacol 583:312-321. Ago Y, Arikawa S, Yata M, Yano K, Abe M, Takuma K, Matsuda T. 2008. Antidepressant-like effects of the glucocorticoid receptor antagonist RU-43044 are associated with changes in prefrontal dopamine in mouse models of depression. Neuropharmacology 55:1355-1363. Benmansour S, Owens WA, Cecchi M, Morilak DA, Frazer A. 2002. Serotonin clearance in vivo is altered to a greater extent by antidepressant-induced downregulation of the serotonin transporter than by acute blockade of this transporter. J Neurosci 22:6766-6772. Macri S, Granstrem O, Shumilina M, Antunes Gomes dos Santos FJ, Berry A, Saso L, Laviola G. 2009. Resilience and vulnerability are dose-dependently related to neonatal stressors in mice. Horm Behav 56:391-398. Moser MB, Moser EI. 1998. Functional differentiation in the hippocampus. Hippocampus 8:608-619. Pollak DD, Rey CE, Monje FJ. 2010. Rodent models in depression research: Classical strategies and new directions. Ann Med 42:252-264. Fernandez F, Sarre S, Launay JM, Aguerre S, Guyonnet-Duperat V, Moisan MP, Ebinger G, Michotte Y, Mormede P, Chaouloff F. 2003. Rat strain differences in peripheral and central serotonin transporter protein expression and function. Eur J Neurosci 17:494-506. Daniele A, Divella R, Paradiso A, Mattioli V, Romito F, Giotta F, Casamassima P, Quaranta M. 2011. Serotonin transporter polymorphism in major depressive disorder (MDD), psychiatric disorders, and in MDD in response to stressful life events: Causes and treatment with antidepressant. In Vivo 25:895-901. Strekalova T, Couch Y, Kholod N, Boyks M, Malin D, Leprince P, Steinbusch HM. 2011. Update in the methodology of the chronic stress paradigm: internal control matters. Behav Brain Funct 7:9. Carroll BJ, Martin FI, Davies B. 1968. Resistance to suppression by dexamethasone of plasma 11-O.H.C.S. levels in severe depressive illness. Br Med J 3:285-287. Keeney A, Jessop DS, Harbuz MS, Marsden CA, Hogg S, Blackburn-Munro RE. 2006. Differential effects of acute and chronic social defeat stress on hypothalamic-pituitary-adrenal axis function and hippocampal serotonin release in mice. J Neuroendocrinol 18:330-338. Reus VI, Miner C. 1985. Evidence for physiological effects of hypercortisolemia in psychiatric patients. Psychiatry Res 14:47-56. Santarelli L, Saxe M, Gross C, Surget A, Battaglia F, Dulawa S, Weisstaub N, Lee J, Duman R, Arancio O, Belzung C, Hen R. 2003. Requirement of hippocampal neurogenesis for the behavioral effects of antidepressants. Science 301:805-809. Savitz JB, Drevets WC. 2012. Neuroreceptor imaging in depression. Neurobiol Dis 52:49-65. Baganz N, Horton R, Martin K, Holmes A, Daws LC. 2010. Repeated swim impairs serotonin clearance via a corticosterone-sensitive mechanism: Organic cation transporter 3, the smoking gun. J Neurosci 30:15185-15195. David DJ, Renard CE, Jolliet P, Hascoet M, Bourin M. 2003. Antidepressant-like effects in various mice strains in the forced swimming test. Psychopharmacology (Berl) 166:373-382. Joensuu M, Tolmunen T, Saarinen PI, Tiihonen J, Kuikka J, Ahola P, Vanninen R, Lehtonen J. 2007. Reduced midbrain serotonin transporter availability in drug-naive patients with depression measured by SERT-specific [(123)I] nor-beta-CIT SPECT imaging. Psychiatry Res 154:125-131. Kessler RC, Berglund P, Demler O, Jin R, Koretz D, Merikangas KR, Rush AJ, Walters EE, Wang PS. 2003. The epidemiology of major depressive disorder: Results from the National Comorbidity Survey Replication (NCS-R). JAMA 289:3095-3105. O'Hara R, Schroder CM, Mahadevan R, Schatzberg AF, Lindley S, Fox S, Weiner M, Kraemer HC, Noda A, Lin X, Gray HL, Hallmayer JF. 2007. Serotonin transporter polymorphism, memory and hippocampal volume in the elderly: association and interaction with cortisol. Mol Psychiatry 12:544-555. Elizalde N, Gil-Bea FJ, Ramirez MJ, Aisa B, Lasheras B, Del Rio J, Tordera RM. 2008. Long-lasting behavioral effects and recognition memory deficit induced by chronic mild stress in mice: Effect of antidepressant treatment. Psychopharmacology (Berl) 199:1-14. Thoeringer CK, Sillaber I, Roedel A, Erhardt A, Mueller MB, Ohl F, Holsboer F, Keck ME. 2007. The temporal dynamics of intrahippocampal corticosterone in response to stress-related stimuli with different emotional and physical load: An in vivo microdialysis study in C57BL/6 and DBA/2 inbred mice. Psychoneuroendocrinology 32:746-757. Droste SK, de Groote L, Atkinson HC, Lightman SL, Reul JM, Linthorst AC. 2008. Corticosterone levels in the brain show a distinct ultradian rhythm but a delayed response to forced swim stress. Endocrinology 149:3244-3253. Bradford MM. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248-254. Barr JL, Forster GL. 2011. Serotonergic neurotransmission in the ventral hippocampus is enhanced by corticosterone and altered by chronic amphetamine treatment. Neuroscience 182:105-114. Herman JP, Cullinan WE, Morano MI, Akil H, Watson SJ. 1995. Contribution of the ventral subiculum to inhibitory regulation of the hypothalamo-pituitary-adrenocortical axis. J Neuroendocrinol 7:475-482. Austin MC, Whitehead RE, Edgar CL, Janosky JE, Lewis DA. 2002. Localized decrease in serotonin transporter-immunoreactive axons in the prefrontal cortex of depressed subjects committing suicide. Neuroscience 114:807-815. Ducottet C, Griebel G, Belzung C. 2003. Effects of the selective nonpeptide corticotropin-releasing factor receptor 1 antagonist antalarmin in the chronic mild stress model of depression in mice. Prog Neuropsychopharmacol Biol Psychiatry 27:625-631. Steru L, Chermat R, Thierry B, Simon P. 1985. The tail suspension test: a new method for screening antidepressants in mice. Psychopharmacology (Berl) 85:367-370. Sugimoto Y, Kajiwara Y, Hirano K, Yamada S, Tagawa N, Kobayashi Y, Hotta Y, Yamada J. 2008. Mouse strain differences in immobility and sensitivity to fluvoxamine and desipramine in the forced swimming test: Analysis of serotonin and noradrenaline transporter binding. Eur J Pharmacol 592:116-122. Strekalova T, Gorenkova N, Schunk E, Dolgov O 1977; 172 2002; 51 1968; 3 2002; 114 2004; 161 2004; 24 2011; 11 2008; 149 2003; 17 2012; 202 2007; 32 2008; 583 2005; 1039 2008; 581 2012; 52 2007; 28 2009; 56 2010; 26 1999; 19 2000; 57 1976; 72 2006; 163 1995; 688 2011; 25 2008; 199 2003; 289 2010; 30 2003; 166 2007; 24 2008; 592 2003; 43 1985; 14 2011; 213 2009; 62 1991; 39 2010; 35 2010; 206 2006; 16 2005; 115 2006; 17 2000; 911 2007; 164 2006; 59 2006; 7 2006; 18 2008; 55 1985; 85 1977; 266 2007; 12 2011; 7 2005; 46 1995; 7 2001; 155 2010; 42 2007; 317 2012; 233 2000; 36 2007; 154 1994; 164 2013; 214 2002; 22 2010; 210 2003; 27 1999; 32 2008; 455 2013 2003; 301 2001; 35 2011; 182 2003; 100 2003; 143 1998; 8 e_1_2_6_51_1 e_1_2_6_74_1 e_1_2_6_53_1 e_1_2_6_76_1 e_1_2_6_32_1 e_1_2_6_70_1 e_1_2_6_30_1 e_1_2_6_72_1 Fernandez F (e_1_2_6_24_1) 2001; 35 e_1_2_6_19_1 e_1_2_6_13_1 e_1_2_6_36_1 e_1_2_6_59_1 e_1_2_6_11_1 e_1_2_6_34_1 e_1_2_6_17_1 e_1_2_6_55_1 e_1_2_6_15_1 e_1_2_6_38_1 e_1_2_6_57_1 e_1_2_6_62_1 Gould NF (e_1_2_6_26_1) 2007; 164 e_1_2_6_64_1 e_1_2_6_43_1 e_1_2_6_20_1 e_1_2_6_41_1 e_1_2_6_60_1 e_1_2_6_9_1 e_1_2_6_5_1 e_1_2_6_7_1 Benmansour S (e_1_2_6_8_1) 1999; 19 e_1_2_6_49_1 e_1_2_6_3_1 e_1_2_6_22_1 Newberg AB (e_1_2_6_48_1) 2005; 46 e_1_2_6_66_1 e_1_2_6_28_1 e_1_2_6_45_1 e_1_2_6_47_1 e_1_2_6_68_1 e_1_2_6_52_1 e_1_2_6_73_1 e_1_2_6_54_1 e_1_2_6_75_1 e_1_2_6_10_1 e_1_2_6_31_1 e_1_2_6_50_1 e_1_2_6_71_1 e_1_2_6_14_1 e_1_2_6_35_1 e_1_2_6_12_1 e_1_2_6_33_1 Daniele A (e_1_2_6_16_1) 2011; 25 e_1_2_6_18_1 e_1_2_6_39_1 e_1_2_6_56_1 e_1_2_6_37_1 e_1_2_6_58_1 e_1_2_6_63_1 e_1_2_6_42_1 e_1_2_6_65_1 e_1_2_6_21_1 e_1_2_6_40_1 e_1_2_6_61_1 e_1_2_6_4_1 e_1_2_6_6_1 e_1_2_6_25_1 e_1_2_6_23_1 e_1_2_6_2_1 e_1_2_6_29_1 e_1_2_6_44_1 e_1_2_6_67_1 e_1_2_6_27_1 e_1_2_6_46_1 e_1_2_6_69_1 |
References_xml | – reference: Selvaraj S, Murthy NV, Bhagwagar Z, Bose SK, Hinz R, Grasby PM, Cowen PJ. 2011. Diminished brain 5-HT transporter binding in major depression: A positron emission tomography study with [11C]DASB. Psychopharmacology (Berl) 213:555-562. – reference: Williams MT, Schaefer TL, Ehrman LA, Able JA, Gudelsky GA, Sah R, Vorhees CV. 2005. 3,4-Methylenedioxymethamphetamine administration on postnatal day 11 in rats increases pituitary-adrenal output and reduces striatal and hippocampal serotonin without altering SERT activity. Brain Res 1039:97-107. – reference: Zhao Y, Ma R, Shen J, Su H, Xing D, Du L. 2008. A mouse model of depression induced by repeated corticosterone injections. Eur J Pharmacol 581:113-120. – reference: Caspi A, Sugden K, Moffitt TE, Taylor A, Craig IW, Harrington H, McClay J, Mill J, Martin J, Braithwaite A, Poulton R. 2003. Influence of life stress on depression: Moderation by a polymorphism in the 5-HTT gene. Science 301:386-389. – reference: Keeney A, Jessop DS, Harbuz MS, Marsden CA, Hogg S, Blackburn-Munro RE. 2006. Differential effects of acute and chronic social defeat stress on hypothalamic-pituitary-adrenal axis function and hippocampal serotonin release in mice. J Neuroendocrinol 18:330-338. – reference: Ripoll N, David DJ, Dailly E, Hascoet M, Bourin M. 2003. Antidepressant-like effects in various mice strains in the tail suspension test. Behav Brain Res 143:193-200. – reference: Joels M. 2008. Functional actions of corticosteroids in the hippocampus. Eur J Pharmacol 583:312-321. – reference: Benmansour S, Owens WA, Cecchi M, Morilak DA, Frazer A. 2002. Serotonin clearance in vivo is altered to a greater extent by antidepressant-induced downregulation of the serotonin transporter than by acute blockade of this transporter. J Neurosci 22:6766-6772. – reference: Heim C, Binder EB. 2012. Current research trends in early life stress and depression: review of human studies on sensitive periods, gene-environment interactions, and epigenetics. Exp Neurol 233:102-111. – reference: Yan HC, Cao X, Das M, Zhu XH, Gao TM. 2010. Behavioral animal models of depression. Neurosci Bull 26:327-337. – reference: Pitkanen A, Pikkarainen M, Nurminen N, Ylinen A. 2000. Reciprocal connections between the amygdala and the hippocampal formation, perirhinal cortex, and postrhinal cortex in rat. A review. Ann NY Acad Sci 911:369-391. – reference: Sugimoto Y, Kajiwara Y, Hirano K, Yamada S, Tagawa N, Kobayashi Y, Hotta Y, Yamada J. 2008. Mouse strain differences in immobility and sensitivity to fluvoxamine and desipramine in the forced swimming test: Analysis of serotonin and noradrenaline transporter binding. Eur J Pharmacol 592:116-122. – reference: Maines LW, Keck BJ, Smith JE, Lakoski JM. 1999. Corticosterone regulation of serotonin transporter and 5-HT1A receptor expression in the aging brain. Synapse 32:58-66. – reference: Mirescu C, Gould E. 2006. Stress and adult neurogenesis. Hippocampus 16:233-238. – reference: Strekalova T, Couch Y, Kholod N, Boyks M, Malin D, Leprince P, Steinbusch HM. 2011. Update in the methodology of the chronic stress paradigm: internal control matters. Behav Brain Funct 7:9. – reference: Campbell S, Marriott M, Nahmias C, MacQueen GM. 2004. Lower hippocampal volume in patients suffering from depression: a meta-analysis. Am J Psychiatry 161:598-607. – reference: Ago Y, Arikawa S, Yata M, Yano K, Abe M, Takuma K, Matsuda T. 2008. Antidepressant-like effects of the glucocorticoid receptor antagonist RU-43044 are associated with changes in prefrontal dopamine in mouse models of depression. Neuropharmacology 55:1355-1363. – reference: Lucki I, Dalvi A, Mayorga AJ. 2001. Sensitivity to the effects of pharmacologically selective antidepressants in different strains of mice. Psychopharmacology (Berl) 155:315-322. – reference: Tang M, Lei J, Sun X, Liu G, Zhao S. 2013. Stress-induced anhedonia correlates with lower hippocampal serotonin transporter protein expression. Brain Res. – reference: Berton O, Nestler EJ. 2006. New approaches to antidepressant drug discovery: Beyond monoamines. Nat Rev Neurosci 7:137-151. – reference: Bhagwagar Z, Murthy N, Selvaraj S, Hinz R, Taylor M, Fancy S, Grasby P, Cowen P. 2007. 5-HTT binding in recovered depressed patients and healthy volunteers: A positron emission tomography study with [11C]DASB. Am J Psychiatry 164:1858-1865. – reference: Barr JL, Forster GL. 2011. Serotonergic neurotransmission in the ventral hippocampus is enhanced by corticosterone and altered by chronic amphetamine treatment. Neuroscience 182:105-114. – reference: Stemmelin J, Cohen C, Yalcin I, Keane P, Griebel G. 2010. Implication of beta3-adrenoceptors in the antidepressant-like effects of amibegron using Adrb3 knockout mice in the chronic mild stress. Behav Brain Res 206:310-312. – reference: Pollak DD, Rey CE, Monje FJ. 2010. Rodent models in depression research: Classical strategies and new directions. Ann Med 42:252-264. – reference: Santarelli L, Saxe M, Gross C, Surget A, Battaglia F, Dulawa S, Weisstaub N, Lee J, Duman R, Arancio O, Belzung C, Hen R. 2003. Requirement of hippocampal neurogenesis for the behavioral effects of antidepressants. Science 301:805-809. – reference: Joensuu M, Tolmunen T, Saarinen PI, Tiihonen J, Kuikka J, Ahola P, Vanninen R, Lehtonen J. 2007. Reduced midbrain serotonin transporter availability in drug-naive patients with depression measured by SERT-specific [(123)I] nor-beta-CIT SPECT imaging. Psychiatry Res 154:125-131. – reference: Zhu CB, Lindler KM, Owens AW, Daws LC, Blakely RD, Hewlett WA. 2010. Interleukin-1 receptor activation by systemic lipopolysaccharide induces behavioral despair linked to MAPK regulation of CNS serotonin transporters. Neuropsychopharmacology 35:2510-2520. – reference: Porsolt RD, Le Pichon M, Jalfre M. 1977. Depression: A new animal model sensitive to antidepressant treatments. Nature 266:730-732. – reference: Videbech P, Ravnkilde B. 2004. Hippocampal volume and depression: a meta-analysis of MRI studies. Am J Psychiatry 161:1957-1966. – reference: Leake A, Fairbairn AF, McKeith IG, Ferrier IN. 1991. Studies on the serotonin uptake binding site in major depressive disorder and control post-mortem brain: neurochemical and clinical correlates. Psychiatry Res 39:155-165. – reference: Daniele A, Divella R, Paradiso A, Mattioli V, Romito F, Giotta F, Casamassima P, Quaranta M. 2011. Serotonin transporter polymorphism in major depressive disorder (MDD), psychiatric disorders, and in MDD in response to stressful life events: Causes and treatment with antidepressant. In Vivo 25:895-901. – reference: McKittrick CR, Magarinos AM, Blanchard DC, Blanchard RJ, McEwen BS, Sakai RR. 2000. Chronic social stress reduces dendritic arbors in CA3 of hippocampus and decreases binding to serotonin transporter sites. Synapse 36:85-94. – reference: Newberg AB, Amsterdam JD, Wintering N, Ploessl K, Swanson RL, Shults J, Alavi A. 2005. 123I-ADAM binding to serotonin transporters in patients with major depression and healthy controls: a preliminary study. J Nucl Med 46:973-977. – reference: Airan RD, Meltzer LA, Roy M, Gong Y, Chen H, Deisseroth K. 2007. High-speed imaging reveals neurophysiological links to behavior in an animal model of depression. Science 317:819-823. – reference: Newberg AB, Amsterdam JD, Wintering N, Shults J. 2012. Low brain serotonin transporter binding in major depressive disorder. Psychiatry Res 202:161-167. – reference: Naumenko VS, Kondaurova EM, Bazovkina DV, Tsybko AS, Tikhonova MA, Kulikov AV, Popova NK. 2013. Effect of brain-derived neurotrophic factor on behavior and key members of the brain serotonin system in genetically predisposed to behavioral disorders mouse strains. Neuroscience 214:59-67. – reference: Steru L, Chermat R, Thierry B, Simon P. 1985. The tail suspension test: a new method for screening antidepressants in mice. Psychopharmacology (Berl) 85:367-370. – reference: Dinan TG. 1994. Glucocorticoids and the genesis of depressive illness. A psychobiological model. Br J Psychiatry 164:365-371. – reference: Kessler RC, Berglund P, Demler O, Jin R, Koretz D, Merikangas KR, Rush AJ, Walters EE, Wang PS. 2003. The epidemiology of major depressive disorder: Results from the National Comorbidity Survey Replication (NCS-R). JAMA 289:3095-3105. – reference: Ducottet C, Griebel G, Belzung C. 2003. Effects of the selective nonpeptide corticotropin-releasing factor receptor 1 antagonist antalarmin in the chronic mild stress model of depression in mice. Prog Neuropsychopharmacol Biol Psychiatry 27:625-631. – reference: Arango V, Underwood MD, Gubbi AV, Mann JJ. 1995. Localized alterations in pre- and postsynaptic serotonin binding sites in the ventrolateral prefrontal cortex of suicide victims. Brain Res 688:121-133. – reference: Reus VI, Miner C. 1985. Evidence for physiological effects of hypercortisolemia in psychiatric patients. Psychiatry Res 14:47-56. – reference: Koepsell H, Lips K, Volk C. 2007. Polyspecific organic cation transporters: Structure, function, physiological roles, and biopharmaceutical implications. Pharm Res 24:1227-1251. – reference: Macri S, Granstrem O, Shumilina M, Antunes Gomes dos Santos FJ, Berry A, Saso L, Laviola G. 2009. Resilience and vulnerability are dose-dependently related to neonatal stressors in mice. Horm Behav 56:391-398. – reference: David DJ, Renard CE, Jolliet P, Hascoet M, Bourin M. 2003. Antidepressant-like effects in various mice strains in the forced swimming test. Psychopharmacology (Berl) 166:373-382. – reference: O'Hara R, Schroder CM, Mahadevan R, Schatzberg AF, Lindley S, Fox S, Weiner M, Kraemer HC, Noda A, Lin X, Gray HL, Hallmayer JF. 2007. Serotonin transporter polymorphism, memory and hippocampal volume in the elderly: association and interaction with cortisol. Mol Psychiatry 12:544-555. – reference: Swanson LW, Cowan WM. 1977. An autoradiographic study of the organization of the efferent connections of the hippocampal formation in the rat. J Comp Neurol 172:49-84. – reference: Ichimiya T, Suhara T, Sudo Y, Okubo Y, Nakayama K, Nankai M, Inoue M, Yasuno F, Takano A, Maeda J, Shibuya H. 2002. Serotonin transporter binding in patients with mood disorders: A PET study with [11C](+)McN5652. Biol Psychiatry 51:715-722. – reference: Staley JK, Sanacora G, Tamagnan G, Maciejewski PK, Malison RT, Berman RM, Vythilingam M, Kugaya A, Baldwin RM, Seibyl JP, Charney D, Innis RB. 2006. Sex differences in diencephalon serotonin transporter availability in major depression. Biol Psychiatry 59:40-47. – reference: Lein ES, Zhao X, Gage FH. 2004. Defining a molecular atlas of the hippocampus using DNA microarrays and high-throughput in situ hybridization. J Neurosci 24:3879-3889. – reference: Gould NF, Holmes MK, Fantie BD, Luckenbaugh DA, Pine DS, Gould TD, Burgess N, Manji HK, Zarate CA Jr. 2007. Performance on a virtual reality spatial memory navigation task in depressed patients. Am J Psychiatry 164:516-519. – reference: Thoeringer CK, Sillaber I, Roedel A, Erhardt A, Mueller MB, Ohl F, Holsboer F, Keck ME. 2007. The temporal dynamics of intrahippocampal corticosterone in response to stress-related stimuli with different emotional and physical load: An in vivo microdialysis study in C57BL/6 and DBA/2 inbred mice. Psychoneuroendocrinology 32:746-757. – reference: Droste SK, de Groote L, Atkinson HC, Lightman SL, Reul JM, Linthorst AC. 2008. Corticosterone levels in the brain show a distinct ultradian rhythm but a delayed response to forced swim stress. Endocrinology 149:3244-3253. – reference: David DJ, Samuels BA, Rainer Q, Wang JW, Marsteller D, Mendez I, Drew M, Craig DA, Guiard BP, Guilloux JP, Artymyshyn RP, Gardier AM, Gerald C, Antonijevic IA, Leonardo ED, Hen R. 2009. Neurogenesis-dependent and -independent effects of fluoxetine in an animal model of anxiety/depression. Neuron 62:479-493. – reference: Joels M, Karst H, Krugers HJ, Lucassen PJ. 2007. Chronic stress: Implications for neuronal morphology, function and neurogenesis. Front Neuroendocrinol 28:72-96. – reference: Krishnan V, Nestler EJ. 2008. The molecular neurobiology of depression. Nature 455:894-902. – reference: Austin MC, Whitehead RE, Edgar CL, Janosky JE, Lewis DA. 2002. Localized decrease in serotonin transporter-immunoreactive axons in the prefrontal cortex of depressed subjects committing suicide. Neuroscience 114:807-815. – reference: Benmansour S, Cecchi M, Morilak DA, Gerhardt GA, Javors MA, Gould GG, Frazer A. 1999. Effects of chronic antidepressant treatments on serotonin transporter function, density, and mRNA level. J Neurosci 19:10494-10501. – reference: Parsey RV, Hastings RS, Oquendo MA, Huang YY, Simpson N, Arcement J, Huang Y, Ogden RT, Van Heertum RL, Arango V, Mann JJ. 2006. Lower serotonin transporter binding potential in the human brain during major depressive episodes. Am J Psychiatry 163:52-58. – reference: Carroll BJ, Martin FI, Davies B. 1968. Resistance to suppression by dexamethasone of plasma 11-O.H.C.S. levels in severe depressive illness. Br Med J 3:285-287. – reference: Jiang W, Zhang Y, Xiao L, Van Cleemput J, Ji SP, Bai G, Zhang X. 2005. Cannabinoids promote embryonic and adult hippocampus neurogenesis and produce anxiolytic- and antidepressant-like effects. J Clin Invest 115:3104-3116. – reference: Sapolsky RM. 2000. Glucocorticoids and hippocampal atrophy in neuropsychiatric disorders. Arch Gen Psychiatry 57:925-935. – reference: Herman JP, Cullinan WE, Morano MI, Akil H, Watson SJ. 1995. Contribution of the ventral subiculum to inhibitory regulation of the hypothalamo-pituitary-adrenocortical axis. J Neuroendocrinol 7:475-482. – reference: Fernandez F, Sarre S, Launay JM, Aguerre S, Guyonnet-Duperat V, Moisan MP, Ebinger G, Michotte Y, Mormede P, Chaouloff F. 2003. Rat strain differences in peripheral and central serotonin transporter protein expression and function. Eur J Neurosci 17:494-506. – reference: Moser MB, Moser EI. 1998. Functional differentiation in the hippocampus. Hippocampus 8:608-619. – reference: Savitz JB, Drevets WC. 2012. Neuroreceptor imaging in depression. Neurobiol Dis 52:49-65. – reference: MacQueen GM, Campbell S, McEwen BS, Macdonald K, Amano S, Joffe RT, Nahmias C, Young LT. 2003. Course of illness, hippocampal function, and hippocampal volume in major depression. Proc Natl Acad Sci USA 100:1387-1392. – reference: Baganz N, Horton R, Martin K, Holmes A, Daws LC. 2010. Repeated swim impairs serotonin clearance via a corticosterone-sensitive mechanism: Organic cation transporter 3, the smoking gun. J Neurosci 30:15185-15195. – reference: Elizalde N, Gil-Bea FJ, Ramirez MJ, Aisa B, Lasheras B, Del Rio J, Tordera RM. 2008. Long-lasting behavioral effects and recognition memory deficit induced by chronic mild stress in mice: Effect of antidepressant treatment. Psychopharmacology (Berl) 199:1-14. – reference: Fernandez F, Coomans V, Mormede P, Chaouloff F. 2001. Effects of corticosterone ingestion on hippocampal [(3)H]serotonin reuptake in inbred rat strains. Endocr Regul 35:119-126. – reference: Summers TR, Matter JM, McKay JM, Ronan PJ, Larson ET, Renner KJ, Summers CH. 2003. Rapid glucocorticoid stimulation and GABAergic inhibition of hippocampal serotonergic response: in vivo dialysis in the lizard anolis carolinensis. Horm Behav 43:245-253. – reference: Bradford MM. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248-254. – reference: Sharp T, Cowen PJ. 2011. 5-HT and depression: is the glass half-full? Curr Opin Pharmacol 11:45-51. – reference: Strekalova T, Gorenkova N, Schunk E, Dolgov O, Bartsch D. 2006. Selective effects of citalopram in a mouse model of stress-induced anhedonia with a control for chronic stress. Behav Pharmacol 17:271-287. – reference: Elizalde N, Garcia-Garcia AL, Totterdell S, Gendive N, Venzala E, Ramirez MJ, Del Rio J, Tordera RM. 2010. Sustained stress-induced changes in mice as a model for chronic depression. Psychopharmacology (Berl) 210:393-406. – volume: 164 start-page: 1858 year: 2007 end-page: 1865 article-title: 5‐HTT binding in recovered depressed patients and healthy volunteers: A positron emission tomography study with [11C]DASB publication-title: Am J Psychiatry – volume: 206 start-page: 310 year: 2010 end-page: 312 article-title: Implication of beta3‐adrenoceptors in the antidepressant‐like effects of amibegron using Adrb3 knockout mice in the chronic mild stress publication-title: Behav Brain Res – volume: 199 start-page: 1 year: 2008 end-page: 14 article-title: Long‐lasting behavioral effects and recognition memory deficit induced by chronic mild stress in mice: Effect of antidepressant treatment publication-title: Psychopharmacology (Berl) – volume: 28 start-page: 72 year: 2007 end-page: 96 article-title: Chronic stress: Implications for neuronal morphology, function and neurogenesis publication-title: Front Neuroendocrinol – volume: 32 start-page: 746 year: 2007 end-page: 757 article-title: The temporal dynamics of intrahippocampal corticosterone in response to stress‐related stimuli with different emotional and physical load: An in vivo microdialysis study in C57BL/6 and DBA/2 inbred mice publication-title: Psychoneuroendocrinology – volume: 12 start-page: 544 year: 2007 end-page: 555 article-title: Serotonin transporter polymorphism, memory and hippocampal volume in the elderly: association and interaction with cortisol publication-title: Mol Psychiatry – volume: 266 start-page: 730 year: 1977 end-page: 732 article-title: Depression: A new animal model sensitive to antidepressant treatments publication-title: Nature – volume: 164 start-page: 365 year: 1994 end-page: 371 article-title: Glucocorticoids and the genesis of depressive illness. A psychobiological model publication-title: Br J Psychiatry – volume: 18 start-page: 330 year: 2006 end-page: 338 article-title: Differential effects of acute and chronic social defeat stress on hypothalamic‐pituitary‐adrenal axis function and hippocampal serotonin release in mice publication-title: J Neuroendocrinol – volume: 39 start-page: 155 year: 1991 end-page: 165 article-title: Studies on the serotonin uptake binding site in major depressive disorder and control post‐mortem brain: neurochemical and clinical correlates publication-title: Psychiatry Res – volume: 22 start-page: 6766 year: 2002 end-page: 6772 article-title: Serotonin clearance in vivo is altered to a greater extent by antidepressant‐induced downregulation of the serotonin transporter than by acute blockade of this transporter publication-title: J Neurosci – volume: 317 start-page: 819 year: 2007 end-page: 823 article-title: High‐speed imaging reveals neurophysiological links to behavior in an animal model of depression publication-title: Science – volume: 36 start-page: 85 year: 2000 end-page: 94 article-title: Chronic social stress reduces dendritic arbors in CA3 of hippocampus and decreases binding to serotonin transporter sites publication-title: Synapse – volume: 46 start-page: 973 year: 2005 end-page: 977 article-title: 123I‐ADAM binding to serotonin transporters in patients with major depression and healthy controls: a preliminary study publication-title: J Nucl Med – volume: 35 start-page: 2510 year: 2010 end-page: 2520 article-title: Interleukin‐1 receptor activation by systemic lipopolysaccharide induces behavioral despair linked to MAPK regulation of CNS serotonin transporters publication-title: Neuropsychopharmacology – volume: 19 start-page: 10494 year: 1999 end-page: 10501 article-title: Effects of chronic antidepressant treatments on serotonin transporter function, density, and mRNA level publication-title: J Neurosci – volume: 161 start-page: 598 year: 2004 end-page: 607 article-title: Lower hippocampal volume in patients suffering from depression: a meta‐analysis publication-title: Am J Psychiatry – volume: 149 start-page: 3244 year: 2008 end-page: 3253 article-title: Corticosterone levels in the brain show a distinct ultradian rhythm but a delayed response to forced swim stress publication-title: Endocrinology – volume: 7 start-page: 9 year: 2011 article-title: Update in the methodology of the chronic stress paradigm: internal control matters publication-title: Behav Brain Funct – volume: 16 start-page: 233 year: 2006 end-page: 238 article-title: Stress and adult neurogenesis publication-title: Hippocampus – volume: 172 start-page: 49 year: 1977 end-page: 84 article-title: An autoradiographic study of the organization of the efferent connections of the hippocampal formation in the rat publication-title: J Comp Neurol – volume: 164 start-page: 516 year: 2007 end-page: 519 article-title: Performance on a virtual reality spatial memory navigation task in depressed patients publication-title: Am J Psychiatry – volume: 214 start-page: 59 year: 2013 end-page: 67 article-title: Effect of brain‐derived neurotrophic factor on behavior and key members of the brain serotonin system in genetically predisposed to behavioral disorders mouse strains publication-title: Neuroscience – volume: 32 start-page: 58 year: 1999 end-page: 66 article-title: Corticosterone regulation of serotonin transporter and 5‐HT1A receptor expression in the aging brain publication-title: Synapse – volume: 163 start-page: 52 year: 2006 end-page: 58 article-title: Lower serotonin transporter binding potential in the human brain during major depressive episodes publication-title: Am J Psychiatry – volume: 30 start-page: 15185 year: 2010 end-page: 15195 article-title: Repeated swim impairs serotonin clearance via a corticosterone‐sensitive mechanism: Organic cation transporter 3, the smoking gun publication-title: J Neurosci – volume: 26 start-page: 327 year: 2010 end-page: 337 article-title: Behavioral animal models of depression publication-title: Neurosci Bull – volume: 59 start-page: 40 year: 2006 end-page: 47 article-title: Sex differences in diencephalon serotonin transporter availability in major depression publication-title: Biol Psychiatry – volume: 35 start-page: 119 year: 2001 end-page: 126 article-title: Effects of corticosterone ingestion on hippocampal [(3)H]serotonin reuptake in inbred rat strains publication-title: Endocr Regul – volume: 17 start-page: 494 year: 2003 end-page: 506 article-title: Rat strain differences in peripheral and central serotonin transporter protein expression and function publication-title: Eur J Neurosci – volume: 72 start-page: 248 year: 1976 end-page: 254 article-title: A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein‐dye binding publication-title: Anal Biochem – volume: 688 start-page: 121 year: 1995 end-page: 133 article-title: Localized alterations in pre‐ and postsynaptic serotonin binding sites in the ventrolateral prefrontal cortex of suicide victims publication-title: Brain Res – volume: 52 start-page: 49 year: 2012 end-page: 65 article-title: Neuroreceptor imaging in depression publication-title: Neurobiol Dis – volume: 210 start-page: 393 year: 2010 end-page: 406 article-title: Sustained stress‐induced changes in mice as a model for chronic depression publication-title: Psychopharmacology (Berl) – volume: 55 start-page: 1355 year: 2008 end-page: 1363 article-title: Antidepressant‐like effects of the glucocorticoid receptor antagonist RU‐43044 are associated with changes in prefrontal dopamine in mouse models of depression publication-title: Neuropharmacology – volume: 17 start-page: 271 year: 2006 end-page: 287 article-title: Selective effects of citalopram in a mouse model of stress‐induced anhedonia with a control for chronic stress publication-title: Behav Pharmacol – volume: 455 start-page: 894 year: 2008 end-page: 902 article-title: The molecular neurobiology of depression publication-title: Nature – volume: 100 start-page: 1387 year: 2003 end-page: 1392 article-title: Course of illness, hippocampal function, and hippocampal volume in major depression publication-title: Proc Natl Acad Sci USA – volume: 42 start-page: 252 year: 2010 end-page: 264 article-title: Rodent models in depression research: Classical strategies and new directions publication-title: Ann Med – volume: 143 start-page: 193 year: 2003 end-page: 200 article-title: Antidepressant‐like effects in various mice strains in the tail suspension test publication-title: Behav Brain Res – volume: 166 start-page: 373 year: 2003 end-page: 382 article-title: Antidepressant‐like effects in various mice strains in the forced swimming test publication-title: Psychopharmacology (Berl) – volume: 27 start-page: 625 year: 2003 end-page: 631 article-title: Effects of the selective nonpeptide corticotropin‐releasing factor receptor 1 antagonist antalarmin in the chronic mild stress model of depression in mice publication-title: Prog Neuropsychopharmacol Biol Psychiatry – volume: 289 start-page: 3095 year: 2003 end-page: 3105 article-title: The epidemiology of major depressive disorder: Results from the National Comorbidity Survey Replication (NCS‐R) publication-title: JAMA – volume: 11 start-page: 45 year: 2011 end-page: 51 article-title: 5‐HT and depression: is the glass half‐full? publication-title: Curr Opin Pharmacol – volume: 301 start-page: 386 year: 2003 end-page: 389 article-title: Influence of life stress on depression: Moderation by a polymorphism in the 5‐HTT gene publication-title: Science – volume: 85 start-page: 367 year: 1985 end-page: 370 article-title: The tail suspension test: a new method for screening antidepressants in mice publication-title: Psychopharmacology (Berl) – year: 2013 article-title: Stress‐induced anhedonia correlates with lower hippocampal serotonin transporter protein expression publication-title: Brain Res – volume: 115 start-page: 3104 year: 2005 end-page: 3116 article-title: Cannabinoids promote embryonic and adult hippocampus neurogenesis and produce anxiolytic‐ and antidepressant‐like effects publication-title: J Clin Invest – volume: 202 start-page: 161 year: 2012 end-page: 167 article-title: Low brain serotonin transporter binding in major depressive disorder publication-title: Psychiatry Res – volume: 43 start-page: 245 year: 2003 end-page: 253 article-title: Rapid glucocorticoid stimulation and GABAergic inhibition of hippocampal serotonergic response: in vivo dialysis in the lizard anolis carolinensis publication-title: Horm Behav – volume: 583 start-page: 312 year: 2008 end-page: 321 article-title: Functional actions of corticosteroids in the hippocampus publication-title: Eur J Pharmacol – volume: 8 start-page: 608 year: 1998 end-page: 619 article-title: Functional differentiation in the hippocampus publication-title: Hippocampus – volume: 182 start-page: 105 year: 2011 end-page: 114 article-title: Serotonergic neurotransmission in the ventral hippocampus is enhanced by corticosterone and altered by chronic amphetamine treatment publication-title: Neuroscience – volume: 154 start-page: 125 year: 2007 end-page: 131 article-title: Reduced midbrain serotonin transporter availability in drug‐naive patients with depression measured by SERT‐specific [(123)I] nor‐beta‐CIT SPECT imaging publication-title: Psychiatry Res – volume: 62 start-page: 479 year: 2009 end-page: 493 article-title: Neurogenesis‐dependent and ‐independent effects of fluoxetine in an animal model of anxiety/depression publication-title: Neuron – volume: 24 start-page: 3879 year: 2004 end-page: 3889 article-title: Defining a molecular atlas of the hippocampus using DNA microarrays and high‐throughput in situ hybridization publication-title: J Neurosci – volume: 7 start-page: 137 year: 2006 end-page: 151 article-title: New approaches to antidepressant drug discovery: Beyond monoamines publication-title: Nat Rev Neurosci – volume: 213 start-page: 555 year: 2011 end-page: 562 article-title: Diminished brain 5‐HT transporter binding in major depression: A positron emission tomography study with [11C]DASB publication-title: Psychopharmacology (Berl) – volume: 7 start-page: 475 year: 1995 end-page: 482 article-title: Contribution of the ventral subiculum to inhibitory regulation of the hypothalamo‐pituitary‐adrenocortical axis publication-title: J Neuroendocrinol – volume: 57 start-page: 925 year: 2000 end-page: 935 article-title: Glucocorticoids and hippocampal atrophy in neuropsychiatric disorders publication-title: Arch Gen Psychiatry – volume: 233 start-page: 102 year: 2012 end-page: 111 article-title: Current research trends in early life stress and depression: review of human studies on sensitive periods, gene‐environment interactions, and epigenetics publication-title: Exp Neurol – volume: 911 start-page: 369 year: 2000 end-page: 391 article-title: Reciprocal connections between the amygdala and the hippocampal formation, perirhinal cortex, and postrhinal cortex in rat publication-title: A review. Ann NY Acad Sci – volume: 25 start-page: 895 year: 2011 end-page: 901 article-title: Serotonin transporter polymorphism in major depressive disorder (MDD), psychiatric disorders, and in MDD in response to stressful life events: Causes and treatment with antidepressant publication-title: In Vivo – volume: 581 start-page: 113 year: 2008 end-page: 120 article-title: A mouse model of depression induced by repeated corticosterone injections publication-title: Eur J Pharmacol – volume: 301 start-page: 805 year: 2003 end-page: 809 article-title: Requirement of hippocampal neurogenesis for the behavioral effects of antidepressants publication-title: Science – volume: 155 start-page: 315 year: 2001 end-page: 322 article-title: Sensitivity to the effects of pharmacologically selective antidepressants in different strains of mice publication-title: Psychopharmacology (Berl) – volume: 161 start-page: 1957 year: 2004 end-page: 1966 article-title: Hippocampal volume and depression: a meta‐analysis of MRI studies publication-title: Am J Psychiatry – volume: 3 start-page: 285 year: 1968 end-page: 287 article-title: Resistance to suppression by dexamethasone of plasma 11‐O.H.C.S. levels in severe depressive illness publication-title: Br Med J – volume: 24 start-page: 1227 year: 2007 end-page: 1251 article-title: Polyspecific organic cation transporters: Structure, function, physiological roles, and biopharmaceutical implications publication-title: Pharm Res – volume: 56 start-page: 391 year: 2009 end-page: 398 article-title: Resilience and vulnerability are dose‐dependently related to neonatal stressors in mice publication-title: Horm Behav – volume: 592 start-page: 116 year: 2008 end-page: 122 article-title: Mouse strain differences in immobility and sensitivity to fluvoxamine and desipramine in the forced swimming test: Analysis of serotonin and noradrenaline transporter binding publication-title: Eur J Pharmacol – volume: 114 start-page: 807 year: 2002 end-page: 815 article-title: Localized decrease in serotonin transporter‐immunoreactive axons in the prefrontal cortex of depressed subjects committing suicide publication-title: Neuroscience – volume: 14 start-page: 47 year: 1985 end-page: 56 article-title: Evidence for physiological effects of hypercortisolemia in psychiatric patients publication-title: Psychiatry Res – volume: 1039 start-page: 97 year: 2005 end-page: 107 article-title: 3,4‐Methylenedioxymethamphetamine administration on postnatal day 11 in rats increases pituitary‐adrenal output and reduces striatal and hippocampal serotonin without altering SERT activity publication-title: Brain Res – volume: 51 start-page: 715 year: 2002 end-page: 722 article-title: Serotonin transporter binding in patients with mood disorders: A PET study with [11C](+)McN5652 publication-title: Biol Psychiatry – ident: e_1_2_6_10_1 doi: 10.1038/nrn1846 – ident: e_1_2_6_12_1 doi: 10.1016/0003-2697(76)90527-3 – ident: e_1_2_6_25_1 doi: 10.1046/j.1460-9568.2003.02473.x – ident: e_1_2_6_42_1 doi: 10.1016/j.yhbeh.2009.07.006 – ident: e_1_2_6_28_1 doi: 10.1111/j.1365-2826.1995.tb00784.x – ident: e_1_2_6_52_1 doi: 10.1111/j.1749-6632.2000.tb06738.x – ident: e_1_2_6_61_1 doi: 10.1016/j.coph.2011.02.003 – ident: e_1_2_6_49_1 doi: 10.1016/j.pscychresns.2011.12.015 – ident: e_1_2_6_74_1 doi: 10.1007/s12264-010-0323-7 – ident: e_1_2_6_64_1 doi: 10.1007/BF00428203 – ident: e_1_2_6_29_1 doi: 10.1016/S0006-3223(01)01351-8 – ident: e_1_2_6_67_1 doi: 10.1016/j.ejphar.2008.07.005 – ident: e_1_2_6_53_1 doi: 10.3109/07853891003769957 – ident: e_1_2_6_5_1 doi: 10.1016/S0306-4522(02)00289-0 – ident: e_1_2_6_6_1 doi: 10.1523/JNEUROSCI.2740-10.2010 – ident: e_1_2_6_15_1 doi: 10.1126/science.1083968 – ident: e_1_2_6_32_1 doi: 10.1016/j.yfrne.2007.04.001 – ident: e_1_2_6_13_1 doi: 10.1176/appi.ajp.161.4.598 – volume: 19 start-page: 10494 year: 1999 ident: e_1_2_6_8_1 article-title: Effects of chronic antidepressant treatments on serotonin transporter function, density, and mRNA level publication-title: J Neurosci doi: 10.1523/JNEUROSCI.19-23-10494.1999 – ident: e_1_2_6_69_1 doi: 10.1002/cne.901720104 – ident: e_1_2_6_73_1 doi: 10.1111/j.0953-816X.2004.03405.x – ident: e_1_2_6_27_1 doi: 10.1016/j.expneurol.2011.10.032 – volume: 35 start-page: 119 year: 2001 ident: e_1_2_6_24_1 article-title: Effects of corticosterone ingestion on hippocampal [(3)H]serotonin reuptake in inbred rat strains publication-title: Endocr Regul – ident: e_1_2_6_38_1 doi: 10.1016/0165-1781(91)90084-3 – ident: e_1_2_6_47_1 doi: 10.1016/j.neuroscience.2012.04.031 – ident: e_1_2_6_68_1 doi: 10.1016/S0018-506X(02)00014-4 – ident: e_1_2_6_17_1 doi: 10.1007/s00213-002-1335-4 – ident: e_1_2_6_40_1 doi: 10.1007/s002130100694 – ident: e_1_2_6_71_1 doi: 10.1016/j.psyneuen.2007.05.005 – ident: e_1_2_6_43_1 doi: 10.1002/(SICI)1098-2396(199904)32:1<58::AID-SYN8>3.0.CO;2-R – ident: e_1_2_6_30_1 doi: 10.1172/JCI25509 – ident: e_1_2_6_39_1 doi: 10.1523/JNEUROSCI.4710-03.2004 – ident: e_1_2_6_75_1 doi: 10.1016/j.ejphar.2007.12.005 – ident: e_1_2_6_46_1 doi: 10.1002/(SICI)1098-1063(1998)8:6<608::AID-HIPO3>3.0.CO;2-7 – ident: e_1_2_6_37_1 doi: 10.1038/nature07455 – ident: e_1_2_6_58_1 doi: 10.1001/archpsyc.57.10.925 – volume: 25 start-page: 895 year: 2011 ident: e_1_2_6_16_1 article-title: Serotonin transporter polymorphism in major depressive disorder (MDD), psychiatric disorders, and in MDD in response to stressful life events: Causes and treatment with antidepressant publication-title: In Vivo – ident: e_1_2_6_56_1 doi: 10.1016/S0166-4328(03)00034-2 – ident: e_1_2_6_31_1 doi: 10.1016/j.ejphar.2007.11.064 – ident: e_1_2_6_62_1 doi: 10.1016/j.biopsych.2005.06.012 – ident: e_1_2_6_57_1 doi: 10.1126/science.1083328 – ident: e_1_2_6_33_1 doi: 10.1016/j.pscychresns.2006.08.001 – ident: e_1_2_6_70_1 doi: 10.1016/j.brainres.2013.03.042 – ident: e_1_2_6_14_1 doi: 10.1136/bmj.3.5613.285 – ident: e_1_2_6_41_1 doi: 10.1073/pnas.0337481100 – ident: e_1_2_6_63_1 doi: 10.1016/j.bbr.2009.09.003 – ident: e_1_2_6_60_1 doi: 10.1007/s00213-009-1660-y – ident: e_1_2_6_45_1 doi: 10.1002/hipo.20155 – ident: e_1_2_6_55_1 doi: 10.1016/0165-1781(85)90088-5 – ident: e_1_2_6_59_1 doi: 10.1016/j.nbd.2012.06.001 – ident: e_1_2_6_44_1 doi: 10.1002/(SICI)1098-2396(200005)36:2<85::AID-SYN1>3.0.CO;2-Y – ident: e_1_2_6_18_1 doi: 10.1016/j.neuron.2009.04.017 – ident: e_1_2_6_65_1 doi: 10.1186/1744-9081-7-9 – ident: e_1_2_6_2_1 doi: 10.1016/j.neuropharm.2008.08.026 – ident: e_1_2_6_3_1 doi: 10.1126/science.1144400 – ident: e_1_2_6_34_1 doi: 10.1111/j.1365-2826.2006.01422.x – ident: e_1_2_6_7_1 doi: 10.1016/j.neuroscience.2011.03.020 – ident: e_1_2_6_4_1 doi: 10.1016/0006-8993(95)00523-S – ident: e_1_2_6_54_1 doi: 10.1038/266730a0 – ident: e_1_2_6_9_1 doi: 10.1523/JNEUROSCI.22-15-06766.2002 – ident: e_1_2_6_21_1 doi: 10.1016/S0278-5846(03)00051-4 – volume: 46 start-page: 973 year: 2005 ident: e_1_2_6_48_1 article-title: 123I‐ADAM binding to serotonin transporters in patients with major depression and healthy controls: a preliminary study publication-title: J Nucl Med – ident: e_1_2_6_23_1 doi: 10.1007/s00213-007-1035-1 – ident: e_1_2_6_20_1 doi: 10.1210/en.2008-0103 – ident: e_1_2_6_35_1 doi: 10.1001/jama.289.23.3095 – ident: e_1_2_6_36_1 doi: 10.1007/s11095-007-9254-z – ident: e_1_2_6_72_1 doi: 10.1176/appi.ajp.161.11.1957 – ident: e_1_2_6_19_1 doi: 10.1192/bjp.164.3.365 – ident: e_1_2_6_66_1 doi: 10.1097/00008877-200605000-00008 – volume: 164 start-page: 516 year: 2007 ident: e_1_2_6_26_1 article-title: Performance on a virtual reality spatial memory navigation task in depressed patients publication-title: Am J Psychiatry doi: 10.1176/ajp.2007.164.3.516 – ident: e_1_2_6_51_1 doi: 10.1176/appi.ajp.163.1.52 – ident: e_1_2_6_11_1 doi: 10.1176/appi.ajp.2007.06111933 – ident: e_1_2_6_50_1 doi: 10.1038/sj.mp.4001978 – ident: e_1_2_6_22_1 doi: 10.1007/s00213-010-1835-6 – ident: e_1_2_6_76_1 doi: 10.1038/npp.2010.116 |
SSID | ssj0011500 |
Score | 2.202575 |
Snippet | ABSTRACT
Stress influences the development of depression, and depression is associated with structural and functional changes in the hippocampus. The current... Stress influences the development of depression, and depression is associated with structural and functional changes in the hippocampus. The current study... |
SourceID | proquest pubmed crossref wiley istex |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 493 |
SubjectTerms | Adrenal Cortex Hormones anhedonia Anhedonia - physiology Animals behavioral despair CA1 Region, Hippocampal - metabolism CA3 Region, Hippocampal - metabolism corticosteroid Dentate Gyrus - metabolism Dentate Gyrus - pathology Depressive Disorder - metabolism Depressive Disorder - pathology Disease Models, Animal Endophenotypes hippocampus Hippocampus - metabolism Male Mice Mice, Inbred Strains Organ Size Random Allocation Serotonin - metabolism Serotonin Plasma Membrane Transport Proteins - metabolism synaptosomal 5-HT uptake Synaptosomes - metabolism |
Title | Subregion-specific decreases in hippocampal serotonin transporter protein expression and function associated with endophenotypes of depression |
URI | https://api.istex.fr/ark:/67375/WNG-BPC1ZSWK-9/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002/hipo.22242 https://www.ncbi.nlm.nih.gov/pubmed/24436084 https://www.proquest.com/docview/1507759913 https://www.proquest.com/docview/1508417891 |
Volume | 24 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3bbtQwELVQkRAvXFougYKMQJVAyrLJ2o73sVSUBdRSAVUreLB8i6hanNVuVio88Qn9Rr6EGccbUVQhwVsuEzlxxjNnxuNjQp5YJmwNric3XI5zZmyRQ5xlIWqttNBjiCjiKtedXTHZZ28O-WGqqsS1MB0_RJ9ww5ER7TUOcG3maV6_fP7laNoMwLcxNL9YqoV46H3PHIU4pyMi4MMcmit6ZtLfHz3niy5jt55eBDTP49boeLavk8_LV-7qTY4Hi9YM7Pc_2Bz_75tukGsJj9LNToFukks-rJK1zQCx-NdvdIPGCtGYel8lV3bSRPwaOQODg3s6NOHnjzNcrYkVR9RFDDr3c3oUKLQzBUcJ5uaEgp43LSZ-aduTqc9o5IiAa_40VeMGqoOj6GrbeJJUxzuK6WLqg0MWhNBg3nhOm5r2dbzhFtnffvlxa5KnzR1yUA8OVri0GEzqSpelqxy3RhdDL20hDAT70glf1KW1UsuaGe81466ydc1NXQrDeD26TVZCE_xdQiU8w4WTWpeOWS1wZbwWQ6MraYz0LCNPl79Z2cR8jhtwnKiOs7lU2PMq9nxGHvey047v40KpjagtvYieHWOFXMXVwe4r9WJvq_j04eCtGmdkfalOKhmHuUIMXnEA5qOMPOpvw7DGuRodfLOIMpIVlRwXGbnTqWHfGCCykYDbGXkWlekvL6omr_fexaN7_yJ8n1wFYJgqlNbJSjtb-AcAvlrzMA6zX4gJMHA |
linkProvider | Wiley-Blackwell |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Subregion-specific+decreases+in+hippocampal+serotonin+transporter+protein+expression+and+function+associated+with+endophenotypes+of+depression&rft.jtitle=Hippocampus&rft.au=Tang%2C+Man&rft.au=He%2C+Tao&rft.au=Sun%2C+Xiao&rft.au=Meng%2C+Qing-Yan&rft.date=2014-04-01&rft.issn=1098-1063&rft.eissn=1098-1063&rft.volume=24&rft.issue=4&rft.spage=493&rft_id=info:doi/10.1002%2Fhipo.22242&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1050-9631&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1050-9631&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1050-9631&client=summon |