Energy efficient temporal load aware resource allocation in cloud computing datacenters

Cloud computing datacenters consume huge amounts of energy, which has high cost and large environmental impact. There has been significant amount of research on dynamic power management, which shuts down unutilized equipment in a datacenter to reduce energy consumption. The main consumers of power i...

Full description

Saved in:
Bibliographic Details
Published inJournal of cloud computing : advances, systems and applications Vol. 7; no. 1; pp. 1 - 24
Main Author Vakilinia, Shahin
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 08.01.2018
Springer Nature B.V
SpringerOpen
Subjects
Online AccessGet full text
ISSN2192-113X
2192-113X
DOI10.1186/s13677-017-0103-2

Cover

Loading…
Abstract Cloud computing datacenters consume huge amounts of energy, which has high cost and large environmental impact. There has been significant amount of research on dynamic power management, which shuts down unutilized equipment in a datacenter to reduce energy consumption. The main consumers of power in a datacenter are servers, communications network and the cooling system. Optimization of power in a datacenter is a difficult problem because of server resource constraints, network topology and bandwidth constraints, cost of VM migration, the heterogeneity of workloads and the servers. The arrival of new jobs and departure of completed jobs also create workload heterogeneity in time. As a result, most of the previous research has concentrated on partial optimization of power consumption, which optimizes either server and/or network power consumption through placement of VMs. Temporal load aware optimization, minimization of power consumption as a function of time has vastly been studied. When optimization also included migration, then solution had been divided into two steps, in the first step optimization of server and/or network power consumption is performed and in the second step migration of VMs has been taken care of, which is not an optimal solution. In this work, we develop joint optimization of power consumption of servers, network communications and cost of migration with workload and server heterogeneity subject to resource and bandwidth constraints through VM placement. Optimization results in an integer quadratic program (IQP) with linear/quadratic constraints in number of VMs assigned to a job on a server. IQP can only be solved for very small size systems, however, we have been able to decompose IQP to master and pricing sub-problems which may be solved through column generation technique for systems with larger sizes. Then, we have extended the optimization to manage temporal heterogeneity of the workload. It is assumed that time-axis is slotted and at the end of each slot jobs makes probabilistic complete/partial release of the VMs that they are holding and there will also be new job arrivals according to a Poisson process. The system will perform re-optimization of power consumption at the end of each slot that also includes the cost of VM migration. In the re-optimization, VMs of unfinished jobs may experience migration while new jobs are assigned VMs. We have obtained numerical results for optimal power consumption for the system as well as its power consumption due to two heuristic VM assignment algorithms. The results show optimization achieves significant power savings compared to the heuristic algorithms. We believe that our work advances state-of-the art in dynamic power management of datacenters and the results will be helpful to cloud service providers in achieving energy saving.
AbstractList Cloud computing datacenters consume huge amounts of energy, which has high cost and large environmental impact. There has been significant amount of research on dynamic power management, which shuts down unutilized equipment in a datacenter to reduce energy consumption. The main consumers of power in a datacenter are servers, communications network and the cooling system. Optimization of power in a datacenter is a difficult problem because of server resource constraints, network topology and bandwidth constraints, cost of VM migration, the heterogeneity of workloads and the servers. The arrival of new jobs and departure of completed jobs also create workload heterogeneity in time. As a result, most of the previous research has concentrated on partial optimization of power consumption, which optimizes either server and/or network power consumption through placement of VMs. Temporal load aware optimization, minimization of power consumption as a function of time has vastly been studied. When optimization also included migration, then solution had been divided into two steps, in the first step optimization of server and/or network power consumption is performed and in the second step migration of VMs has been taken care of, which is not an optimal solution. In this work, we develop joint optimization of power consumption of servers, network communications and cost of migration with workload and server heterogeneity subject to resource and bandwidth constraints through VM placement. Optimization results in an integer quadratic program (IQP) with linear/quadratic constraints in number of VMs assigned to a job on a server. IQP can only be solved for very small size systems, however, we have been able to decompose IQP to master and pricing sub-problems which may be solved through column generation technique for systems with larger sizes. Then, we have extended the optimization to manage temporal heterogeneity of the workload. It is assumed that time-axis is slotted and at the end of each slot jobs makes probabilistic complete/partial release of the VMs that they are holding and there will also be new job arrivals according to a Poisson process. The system will perform re-optimization of power consumption at the end of each slot that also includes the cost of VM migration. In the re-optimization, VMs of unfinished jobs may experience migration while new jobs are assigned VMs. We have obtained numerical results for optimal power consumption for the system as well as its power consumption due to two heuristic VM assignment algorithms. The results show optimization achieves significant power savings compared to the heuristic algorithms. We believe that our work advances state-of-the art in dynamic power management of datacenters and the results will be helpful to cloud service providers in achieving energy saving.
Abstract Cloud computing datacenters consume huge amounts of energy, which has high cost and large environmental impact. There has been significant amount of research on dynamic power management, which shuts down unutilized equipment in a datacenter to reduce energy consumption. The main consumers of power in a datacenter are servers, communications network and the cooling system. Optimization of power in a datacenter is a difficult problem because of server resource constraints, network topology and bandwidth constraints, cost of VM migration, the heterogeneity of workloads and the servers. The arrival of new jobs and departure of completed jobs also create workload heterogeneity in time. As a result, most of the previous research has concentrated on partial optimization of power consumption, which optimizes either server and/or network power consumption through placement of VMs. Temporal load aware optimization, minimization of power consumption as a function of time has vastly been studied. When optimization also included migration, then solution had been divided into two steps, in the first step optimization of server and/or network power consumption is performed and in the second step migration of VMs has been taken care of, which is not an optimal solution. In this work, we develop joint optimization of power consumption of servers, network communications and cost of migration with workload and server heterogeneity subject to resource and bandwidth constraints through VM placement. Optimization results in an integer quadratic program (IQP) with linear/quadratic constraints in number of VMs assigned to a job on a server. IQP can only be solved for very small size systems, however, we have been able to decompose IQP to master and pricing sub-problems which may be solved through column generation technique for systems with larger sizes. Then, we have extended the optimization to manage temporal heterogeneity of the workload. It is assumed that time-axis is slotted and at the end of each slot jobs makes probabilistic complete/partial release of the VMs that they are holding and there will also be new job arrivals according to a Poisson process. The system will perform re-optimization of power consumption at the end of each slot that also includes the cost of VM migration. In the re-optimization, VMs of unfinished jobs may experience migration while new jobs are assigned VMs. We have obtained numerical results for optimal power consumption for the system as well as its power consumption due to two heuristic VM assignment algorithms. The results show optimization achieves significant power savings compared to the heuristic algorithms. We believe that our work advances state-of-the art in dynamic power management of datacenters and the results will be helpful to cloud service providers in achieving energy saving.
ArticleNumber 2
Author Vakilinia, Shahin
Author_xml – sequence: 1
  givenname: Shahin
  surname: Vakilinia
  fullname: Vakilinia, Shahin
  email: Shahin.Vakilinia@gmail.com
  organization: Synchromedia Lab, ETS
BookMark eNp9Uc9rFDEUDlLBuvYP8BbwPJqXzE5mjlKqFgq9VPQWXjIvS5bZZE2ySP97sx1REfQQEh7fr7zvJbuIKRJjr0G8BRiHdwXUoHUn4HyE6uQzdilhkh2A-nrxx_sFuyplL0RDgVSjvmRfbiLl3SMn74MLFCuvdDimjAtfEs4cv2MmnqmkU3bEcVmSwxpS5CFyt6TTzF06HE81xB2fsaJrGpTLK_bc41Lo6ue9YZ8_3Dxcf-ru7j_eXr-_61w_9LXzpFWvtrNHmgTAQP2oXY_YwtrBS-r9drDocZDj1g2orHNCIjSsnYX1pDbsdtWdE-7NMYcD5keTMJinQco7g7kGt5DZWqHUMME4Wd23HYyid96TBSvIyua4YW9WrWNO305Uqtm3X8cW30iQGvSkJt1QsKJcTqVk8r9cQZhzHWatw7Q6zLkOIxtH_8VxoT6tsWYMy3-ZcmWW5hJ3lH9n-jfpB8OxoRo
CitedBy_id crossref_primary_10_1080_1206212X_2019_1649813
crossref_primary_10_1088_1742_6596_1533_2_022096
crossref_primary_10_1186_s13677_018_0120_9
crossref_primary_10_1155_2022_8716132
crossref_primary_10_1007_s00500_020_05240_9
crossref_primary_10_31580_ojst_v3i3_1668
crossref_primary_10_3390_electronics8020218
crossref_primary_10_3390_s18030689
crossref_primary_10_1007_s00779_019_01328_8
crossref_primary_10_3390_en14092382
crossref_primary_10_1088_1742_6596_1979_1_012036
crossref_primary_10_1007_s42401_020_00064_9
crossref_primary_10_1088_1757_899X_750_1_012221
crossref_primary_10_1007_s12652_018_1097_4
crossref_primary_10_1109_TPDS_2023_3288702
crossref_primary_10_1007_s11227_022_04782_z
crossref_primary_10_1088_1757_899X_569_5_052022
crossref_primary_10_3390_electronics7120389
crossref_primary_10_1142_S1793962319500259
crossref_primary_10_1177_15501477211018126
crossref_primary_10_1109_TE_2023_3330913
crossref_primary_10_1109_ACCESS_2023_3280930
crossref_primary_10_3390_en14217036
crossref_primary_10_1016_j_jksuci_2022_03_027
Cites_doi 10.1016/j.jnca.2015.12.018
10.1016/j.comnet.2015.08.030
10.1145/1594977.1592576
10.1016/j.comnet.2012.09.008
10.1109/TCC.2014.2306427
10.1145/1108956.1108957
10.1109/TCC.2013.12
10.1016/j.future.2013.06.009
10.1109/SURV.2012.090512.00043
10.1016/S0377-2217(02)00124-8
10.1145/1402946.1402967
10.1109/LCOMM.2012.090312.121543
10.1364/JOCN.1.000245
10.1287/opre.1050.0234
10.1109/MCOM.2010.5496876
10.1007/BF01539705
10.1016/j.comnet.2017.04.047
10.1145/2382553.2382556
10.1109/ACCESS.2016.2633558
10.1145/1402946.1402968
10.1145/1594977.1592577
10.1186/s13677-017-0085-0
10.1186/1687-1499-2013-59
10.1109/TIE.2010.2060453
10.1109/TPDS.2013.183
10.1016/0377-2217(80)90068-5
10.1109/TCC.2015.2481401
10.1109/TPDS.2014.2315204
10.1109/JSYST.2015.2476357
10.1109/Allerton.2011.6120299
10.1057/jors.1964.60
10.1145/1672308.1672325
10.1109/JSAC.2014.140102
10.1080/02331937908842561
10.1016/j.mcm.2012.11.021
10.1007/s11107-016-0643-2
10.1145/1879141.1879175
10.1016/j.future.2011.04.017
10.1109/MM.2003.1196112
10.1016/j.comnet.2009.10.004
10.1109/INFCOM.2009.5062153
10.1145/1644893.1644918
10.1145/1658939.1658943
10.1145/2318857.2254776
10.1007/978-3-642-33368-2_10
10.1002/9781118627372
10.1007/s10723-015-9337-8
10.1016/j.cor.2008.07.001
10.1109/TNET.2015.2475362
10.1145/1250662.1250665
10.1145/1880153.1880155
ContentType Journal Article
Copyright The Author(s) 2018
Journal of Cloud Computing is a copyright of Springer, (2018). All Rights Reserved. © 2018. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2018
– notice: Journal of Cloud Computing is a copyright of Springer, (2018). All Rights Reserved. © 2018. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
3V.
7RQ
7SC
7XB
8AL
8FD
8FE
8FG
8FK
8G5
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
GUQSH
HCIFZ
JQ2
K7-
L7M
L~C
L~D
M0N
M2O
MBDVC
P62
PADUT
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
U9A
DOA
DOI 10.1186/s13677-017-0103-2
DatabaseName Springer Nature OA Free Journals
CrossRef
ProQuest Central (Corporate)
Career & Technical Education Database
Computer and Information Systems Abstracts
ProQuest Central (purchase pre-March 2016)
Computing Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Research Library
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Technology collection
ProQuest One Community College
ProQuest Central Korea
ProQuest Central Student
ProQuest Research Library
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Computing Database
Proquest Research Library
Research Library (Corporate)
ProQuest Advanced Technologies & Aerospace Collection
Research Library China
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Research Library Prep
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
Research Library (Alumni Edition)
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Central Korea
ProQuest Research Library
ProQuest Central (New)
Research Library China
Advanced Technologies Database with Aerospace
Career and Technical Education (Alumni Edition)
Advanced Technologies & Aerospace Collection
ProQuest Computing
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
ProQuest Career and Technical Education
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
DatabaseTitleList

Publicly Available Content Database
Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 2192-113X
EndPage 24
ExternalDocumentID oai_doaj_org_article_5b03369189b74000804cffeb1b0eb211
10_1186_s13677_017_0103_2
GroupedDBID -A0
0R~
3V.
40G
5VS
7RQ
8FE
8FG
8G5
AAFWJ
AAJSJ
AAKKN
ABEEZ
ABFTD
ABUWG
ACACY
ACGFS
ACULB
ADBBV
ADINQ
AFGXO
AFKRA
AFPKN
AHBYD
AHYZX
ALMA_UNASSIGNED_HOLDINGS
AMKLP
ARAPS
AZQEC
BCNDV
BENPR
BGLVJ
BPHCQ
C24
C6C
CCPQU
DWQXO
EBLON
EBS
EJD
GNUQQ
GROUPED_DOAJ
GUQSH
HCIFZ
HZ~
IAO
ISR
ITC
K6V
K7-
KQ8
M0N
M2O
M~E
O9-
OK1
PADUT
PIMPY
PQQKQ
PROAC
RNS
RSV
SCO
SOJ
AASML
AAYXX
CITATION
ICD
IVC
PHGZM
PHGZT
7SC
7XB
8AL
8FD
8FK
JQ2
L7M
L~C
L~D
MBDVC
P62
PKEHL
PQEST
PQGLB
PQUKI
PRINS
Q9U
U9A
PUEGO
ID FETCH-LOGICAL-c464t-fe73435dfae90116e487c4aa113b6f2e4f56bafa6285c6a3bcc02a1901bd0bfe3
IEDL.DBID C6C
ISSN 2192-113X
IngestDate Wed Aug 27 01:29:11 EDT 2025
Fri Jul 25 02:37:44 EDT 2025
Tue Jul 01 00:38:07 EDT 2025
Thu Apr 24 23:11:33 EDT 2025
Fri Feb 21 02:34:18 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Cloud computing
Column generation
Datacenter power management
Integer quadratic programming
Resource allocation
Integer linear programming
Virtual machine placement
Optimization
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c464t-fe73435dfae90116e487c4aa113b6f2e4f56bafa6285c6a3bcc02a1901bd0bfe3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://doi.org/10.1186/s13677-017-0103-2
PQID 2127179397
PQPubID 2034894
PageCount 24
ParticipantIDs doaj_primary_oai_doaj_org_article_5b03369189b74000804cffeb1b0eb211
proquest_journals_2127179397
crossref_primary_10_1186_s13677_017_0103_2
crossref_citationtrail_10_1186_s13677_017_0103_2
springer_journals_10_1186_s13677_017_0103_2
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-01-08
PublicationDateYYYYMMDD 2018-01-08
PublicationDate_xml – month: 01
  year: 2018
  text: 2018-01-08
  day: 08
PublicationDecade 2010
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Heidelberg
PublicationSubtitle Advances, Systems and Applications
PublicationTitle Journal of cloud computing : advances, systems and applications
PublicationTitleAbbrev J Cloud Comp
PublicationYear 2018
Publisher Springer Berlin Heidelberg
Springer Nature B.V
SpringerOpen
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
– name: SpringerOpen
References LiDWuJJoint power optimization through VM placement and flow scheduling in data centersThe proceedings of IEEE international performance computing and communications conference (IPCCC)201418
VenkatachalamVFranzMPower reduction techniques for microprocessor systemsACM Comp Surv J CSUR200537319523710.1145/1108956.1108957
EnokidoTTakizawaMAn extended power consumption model for distributed applicationsProceeding of 26th IEEE international conference on advanced information networking and applications (AINA)2012912919
BensonTAnandAAkellaAZhangMMicroTE: fine grained traffic engineering for data centersProceedings of the seventh ACM conference on emerging networking experiments and technologies20118
de CarvalhoJVLP models for bin packing and cutting stock problemsEur J Oper Res20021412253273191547510.1016/S0377-2217(02)00124-81059.90095
AleksicS“Analysis of power consumption in future high-capacity network nodes”, IEEE/OSAJ Opt Commun Netw200913245258250178810.1364/JOCN.1.000245
PriesPRastinMJarschelMSchlosserDKlopfMTran-GiaPPower consumption analysis of data center architecturesGreen communications and networking2012Berlin HeidelbergSpringer11412410.1007/978-3-642-33368-2_10
XuHLiBCost efficient datacenter selection for cloud servicesThe proceedings of IEEE 1st international conference on Communications in China (ICCC)20125156
GuoCLuGLiDWuHZhangXShiYTianCZhangYLuSBcube: a high performance, server-centric network architecture for modular data centersACM SIGCOMM Comput Commun Rev2009394637410.1145/1594977.1592577
MillsKFillibenJDabrowskiCComparing vm-placement algorithms for on-demand cloudsThe proceedings of the cloud computing technology and science (CloudCom) conference20119198
Al-FaresMRadhakrishnanSRaghavanBHuangNVahdatAHedera: dynamic flow scheduling for data center networksNSDI20101919
YinJLuXZhaoXChenHLiuXBurse: a bursty and self-similar workload generator for cloud computingIEEE Trans Parallel Distrib Syst201526366868010.1109/TPDS.2014.2315204
CedricFLiuHKoleyBZhaoXKamalovVGillVFiber optic communication technologies: What's needed for datacenter network operationsIEEE Commun Mag2010487323910.1109/MCOM.2010.5496876
YoonMSKamalAEZhuZAdaptive data center activation with user request predictionComput Netw201712219120410.1016/j.comnet.2017.04.047
MobiusCDargieWSchillAPower consumption estimation models for processors, virtual machines, and serversIEEE Trans Parallel Distrib Syst20142561600161410.1109/TPDS.2013.183
GuoCWuHTanKShiLZhangYLuSDCell: a scalable and fault-tolerant network structure for data centersACM SIGCOMM Comput Commun Rev2008384758610.1145/1402946.1402968
CostaPCamCube: a key-based data center. Technical report MSR TR-2010-74, Microsoft Research2010
GuoJLiuFHuangXLuiJHuMOn efficient bandwidth allocation for traffic variability in datacentersProceeding of IEEE INFOCOM201415721580
JinHCheochernngarnTLevyDSmithAPangDLiuJPissinouNJoint host-network optimization for energy-efficient data center networking2013623634
OuZZhuangHLukyanenkoANurminenJHuiPMazalovVYla-JaaskiAIs the same instance type created equal? Exploiting heterogeneity of public cloudsIEEE Trans Cloud Comput20131120121410.1109/TCC.2013.12
BarrosoBAndréLDeanJHolzleUWeb search for a planet: the Google cluster architectureIEEE Micro2003232222810.1109/MM.2003.1196112
GreenbergAHamiltonJRJainNKandulaSKimCLahiriPMaltzDAPatelPSenguptaSVl2: a scalable and flexible data center networkSIGCOMM Comput Commun Rev2009394516210.1145/1594977.1592576
GandhiAHarchol-BalterMRaghunathanRKozuchMAAutoscale: Dynamic, robust capacity management for multi-tier data centersACM Trans Comput Syst2012304142610.1145/2382553.2382556
XuDLiuXNiuZJoint resource provisioning for internet datacenters with diverse and dynamic trafficIEEE Trans Cloud Comput2014716199114
PaulDZhongWDBoseSKDemand response in data centers through energy-efficient scheduling and simple incentivizationIEEE Syst J201711261362410.1109/JSYST.2015.2476357
ZhangXWangHXuZWangXPower attack: an increasing threat to data centersThe proceedings of the network and distributed system security symposium, NDSS2014132147
WangXYaoYWangXLuKCaoQCARPO: correlation-aware power optimization in data center networksThe proceedings of IEEE INFOCOM conference201211251133
EnokidoTAikebaierATakizawaMProcess allocation algorithms for saving power consumption in peer-to-peer systemsIEEE Trans Ind Electron20115862097210510.1109/TIE.2010.2060453
GhribiCHadjiMZeghlacheDEnergy efficient VM scheduling for cloud data centers: exact allocation and migration algorithmsThe proceedings of 13th IEEE/ACM international symposium on cluster, cloud, and grid computing2013671678
SuryavanshiMMComparative analysis of switch based data center network architecturesJ Multidiscip Eng Sci Technol (JMEST)20174924589403
VakiliniaSCherietMRajkumarJDynamic resource allocation of smart home workloads in the cloudProceeding of 12th IEEE international conference on network and service management (CNSM)2016367370
HinxmanAIThe trim-loss and assortment problems: a surveyEur J Oper Res19805181858231310.1016/0377-2217(80)90068-50442.90072
de PanneVCornelisCWhinstonAThe simplex and the dual method for quadratic programmingOper Res Q196415435538810.1057/jors.1964.60
MinasLEllisonBEnergy efficiency for information technology: how to reduce power consumption in servers and data centers2009USAIntel Press
MengXPappasVZhangLImproving the scalability of data center networks with traffic-aware virtual machine placementProceeding of IEEE INFOCOM201019
DaiXWangJMBensauBEnergy efficient virtual machines scheduling in multi-tenant data centersIEEE Trans Cloud Comput20164221022110.1109/TCC.2015.2481401
ChvatalVLinear programming. Macmillan1983New York - San FranciscoW. H. Freeman and Company0537.90067
HuangQGaoFWangRQiZPower consumption of virtual machine live migration in cloudsThe proceedings of the third international conference on communications and mobile computing (CMC)2011122125
VakiliniaSHeidarpourBCherietMEnergy efficient resource allocation in cloud computing environmentsIEEE Access201648544855710.1109/ACCESS.2016.2633558
BensonTAkellaAMaltzDANetwork traffic characteristics of data centers in the wildProceedings of the 10th ACM SIGCOMM conference on internet measurement2010267280
KusicDKephartJOHansonJEKandasamyNJiangGPower and performance management of virtualized computing environments via lookahead controlAutonomic computing, (ICAC), international conference on2008312
AikebaierAEnokidoTTakizawaMEnergy-efficient computation models for distributed systemsProc. of the 12th international conference on network-based information systems (NBiS)2009424431
LorSSVaqueroLMMurrayPIn-netdc: the cloud in core networksIEEE Commun Lett201216101703170610.1109/LCOMM.2012.090312.121543
LübbeckeAMarcoEDesrosiersJSelected topics in column generationOper Res200553610071023219387510.1287/opre.1050.02341165.90578
BariMFBoutabaREstevesRGranvilleLZPodlesnyMRabbaniMGData center network virtualization: a surveyIEEE Commun Surv Tutorials201315290992810.1109/SURV.2012.090512.00043
BeerKKäschelJColumn generation in quadratic programmingMath Operations Stat, Series Optimization197910217918454852610.1080/023319379088425610424.90053
VakiliniaSZhangXQiuDAnalysis and optimization of big-data stream processingProceeding of IEEE global communications conference (GLOBECOM)201616
Varasthe A, Goudarzi M (2015) “Server consolidation techniques in virtualized data centers: a survey”, accepted to publication. IEEE Syst J
InoueTAikebaierAEnokidoTTakizawaMPower consumption and processing models of servers in computation and storage based applicationsMath Comput Model20135851475148810.1016/j.mcm.2012.11.021
AbtsDMartyMRWellsPMKlauslerPLiuHEnergy proportional datacenter networksThe Proceedigs of ISCA2010338347
Li, Dan, et al. “FiConn: using backup port for server interconnection in data centers”, In Proceeding of IEEE INFOCOM, pp. 2276-2285, 2009
SankaranGCSivalingamKMA survey of hybrid optical data center network architecturesPhoton Netw Commun20173328710110.1007/s11107-016-0643-2
VakiliniaSMehmet-AliMQiuDModeling of the resource allocation in cloud computing centersComput Netw2015911445347010.1016/j.comnet.2015.08.030
KandulaSSenguptaSGreenbergAPatelPChaikenRThe nature of data center traffic: measurements & analysisProceedings of the 9th ACM SIGCOMM conference on internet measurement conference200920220810.1145/1644893.1644918
ZhangQBoutabaRHellersteinLDynamic heterogeneity-aware resource provisioning in the cloudIEEE Trans Cloud Comput201421142810.1109/TCC.2014.2306427
S. Srikantaiah, A. Kansal, and F. Zhao, “Energy aware consolidation for cloud computing”, in The proceedings of the power aware computing and systems conference, Berkeley, CA, USA, pp. 1-15, 2009
DalmazoBLVilelaJPCuradoMPredicting traffic in the cloud: a statistical approach, proceeding on IEEE cloud and green computing (CGC)2013121126
RedekoppMSimmhanYPrasannaVKOptimizations and analysis of bsp graph processing models on public cloudsProceeding of 27th international IEEE symposium on parallel & distributed processing (IPDPS)2013203214
Y. Min Sang, A. E. Kamal, and Z. Zhu. “Requests Prediction in Cloud with a Cyclic Window Learning Algorithm” Globecom Workshops (GC Wkshps), 2016 IEEE. IEEE, 2016
BensonTAnandAAkellaAZhangMUnderstanding data center traffic characteristicsACM SIGCOMM Comput Commun Rev2010401929910.1145/1672308.1672325
MalboubiMDecentralizing network inference problems with multiple-description fusion estimation (mdfe)IEEE/ACM Trans Networking20162442539255210.1109/TNET.2015.2475362
Al-FaresMohammadLoukissasAlexanderVahdatAminA scalable, commodity data center network architectureACM SIGCOMM Computer Communication Review20083846310.1145/1402946.1402967
GandhiAHarchol-BalterMHow data center size impacts the effectiveness of dynamic power management?The proceedings of 49th annual Allerton conference on communication, control, and computing, USA, Allerton201111641169
KantKData center evolution: a tutorial on state of the art, issues, and challengesComput Netw200953172939296510.1016/j.comnet.200
C Ghribi (103_CR2) 2013
T Inoue (103_CR89) 2013; 58
L Zhang (103_CR79) 2014
K Beer (103_CR21) 1979; 10
I Gomez-Miguelez (103_CR70) 2013; 1
AI Hinxman (103_CR28) 1980; 5
PT Phuong (103_CR67) 2017; 6
CM Wu (103_CR90) 2014; 37
K Kant (103_CR48) 2009; 53
D Kusic (103_CR91) 2008
T Benson (103_CR78) 2010
L Minas (103_CR82) 2009
S Vakilinia (103_CR66) 2016
S Vakilinia (103_CR59) 2016
T Enokido (103_CR86) 2010
A Gandhi (103_CR6) 2012; 30
103_CR55
103_CR53
M Redekopp (103_CR65) 2013
K Mills (103_CR39) 2011
103_CR1
C Guo (103_CR52) 2008; 38
L Wang (103_CR7) 2014; 32
D Kliazovich (103_CR63) 2016; 14
Z Ou (103_CR12) 2013; 1
SS Lor (103_CR71) 2012; 16
B Barroso (103_CR35) 2003; 23
G Wäscher (103_CR29) 1996; 18
X Wang (103_CR8) 2012
MS Yoon (103_CR45) 2017; 122
P Costa (103_CR51) 2010
Q Zhang (103_CR13) 2014; 2
A Beloglazov (103_CR33) 2012; 28
I Takouna (103_CR14) 2013
GL Nemhauser (103_CR17) 1988
J Zhang (103_CR22) 2016; 64
X Li (103_CR4) 2014
M Al-Fares (103_CR44) 2010
MM Suryavanshi (103_CR42) 2017; 4
A Greenberg (103_CR47) 2009; 39
A Aikebaier (103_CR85) 2009
Q Huang (103_CR27) 2011
103_CR49
103_CR46
BL Dalmazo (103_CR72) 2014
V de Panne (103_CR20) 1964; 15
S Vakilinia (103_CR34) 2015; 91
F Cedric (103_CR15) 2010; 48
T Enokido (103_CR88) 2012
V Chvatal (103_CR18) 1983
V Venkatachalam (103_CR81) 2005; 37
D Kliazovich (103_CR64) 2013
BL Dalmazo (103_CR73) 2013
P Pries (103_CR37) 2012
G Juve (103_CR40) 2009
X Zhang (103_CR26) 2014
Y Min Sang (103_CR75) 2017; 1
L Gyarmati (103_CR54) 2010; 40
S Kandula (103_CR77) 2009
C Mobius (103_CR92) 2014; 25
D Li (103_CR9) 2014
103_CR74
M Malboubi (103_CR68) 2016; 24
D Paul (103_CR84) 2017; 11
E Ataie (103_CR61) 2017; 6
H Jin (103_CR10) 2013
H Xu (103_CR24) 2012
S Vakilinia (103_CR80) 2016; 4
J Guo (103_CR57) 2014
S Aleksic (103_CR36) 2009; 1
GC Sankaran (103_CR41) 2017; 33
D Abts (103_CR3) 2010
H Ballani (103_CR16) 2011
103_CR32
W Fang (103_CR60) 2013; 57
KC Poldi (103_CR30) 2009; 36
C Guo (103_CR50) 2009; 39
T Benson (103_CR56) 2010; 40
A Bayati (103_CR69) 2016
MF Bari (103_CR43) 2013; 15
X Fan (103_CR83) 2007
K Kant (103_CR38) 2009
J Yin (103_CR76) 2015; 26
X Dai (103_CR11) 2016; 4
X Meng (103_CR58) 2010
T Enokido (103_CR87) 2011; 58
D Xu (103_CR23) 2014; 7161
T Benson (103_CR62) 2011
JV de Carvalho (103_CR31) 2002; 141
A Lübbecke (103_CR19) 2005; 53
A Gandhi (103_CR5) 2011
103_CR25
References_xml – reference: MalboubiMDecentralizing network inference problems with multiple-description fusion estimation (mdfe)IEEE/ACM Trans Networking20162442539255210.1109/TNET.2015.2475362
– reference: KantKPower control of high speed network interconnects in data centersThe proceedings of IEEE INFOCOM workshops200916
– reference: Li, Dan, et al. “FiConn: using backup port for server interconnection in data centers”, In Proceeding of IEEE INFOCOM, pp. 2276-2285, 2009
– reference: KliazovichDPeceroJETchernykhABouvryPKhanSUZomayaAYCA-DAG: modeling communication-aware applications for scheduling in cloud computingJ Grid Comput2016141233910.1007/s10723-015-9337-8
– reference: GandhiAHarchol-BalterMRaghunathanRKozuchMAAutoscale: Dynamic, robust capacity management for multi-tier data centersACM Trans Comput Syst2012304142610.1145/2382553.2382556
– reference: OuZZhuangHLukyanenkoANurminenJHuiPMazalovVYla-JaaskiAIs the same instance type created equal? Exploiting heterogeneity of public cloudsIEEE Trans Cloud Comput20131120121410.1109/TCC.2013.12
– reference: BariMFBoutabaREstevesRGranvilleLZPodlesnyMRabbaniMGData center network virtualization: a surveyIEEE Commun Surv Tutorials201315290992810.1109/SURV.2012.090512.00043
– reference: GyarmatiLTrinhTAScafida: a scale-free network inspired data center architectureACM SIGCOMM Comput Commun Rev201040541210.1145/1880153.1880155
– reference: ZhangQBoutabaRHellersteinLDynamic heterogeneity-aware resource provisioning in the cloudIEEE Trans Cloud Comput201421142810.1109/TCC.2014.2306427
– reference: PoldiKCNereu ArenalesMHeuristics for the one-dimensional cutting stock problem with limited multiple stock lengthsComput Oper Res20093662074208110.1016/j.cor.2008.07.0011179.90292
– reference: GuoJLiuFHuangXLuiJHuMOn efficient bandwidth allocation for traffic variability in datacentersProceeding of IEEE INFOCOM201415721580
– reference: de CarvalhoJVLP models for bin packing and cutting stock problemsEur J Oper Res20021412253273191547510.1016/S0377-2217(02)00124-81059.90095
– reference: JuveGDeelmanEKaran VahiVGaurangMBerrimanBBermanPMaechlingPScientific workflow applications on Amazon EC2The proceedings of 5th IEEE international conference on in E-science workshops20095966
– reference: Y. Min Sang, A. E. Kamal, and Z. Zhu. “Requests Prediction in Cloud with a Cyclic Window Learning Algorithm” Globecom Workshops (GC Wkshps), 2016 IEEE. IEEE, 2016
– reference: NemhauserGLWolseyLAInteger and combinatorial optimization1988New YorkWiley10.1002/97811186273720652.90067
– reference: TakounaIRojas-CessaRMeinelCCommunication aware and energy efficient Sceduling for parallel applications in virtualized data centersThe proceedings of IEEE/ACM 6th international conference on utility and cloud computing2013251255
– reference: HinxmanAIThe trim-loss and assortment problems: a surveyEur J Oper Res19805181858231310.1016/0377-2217(80)90068-50442.90072
– reference: SuryavanshiMMComparative analysis of switch based data center network architecturesJ Multidiscip Eng Sci Technol (JMEST)20174924589403
– reference: ChvatalVLinear programming. Macmillan1983New York - San FranciscoW. H. Freeman and Company0537.90067
– reference: FanXWeberWDBarrosoLAPower provisioning for a warehouse-sized computerProceedings of the 34th annual international symposium on computer architecture (ISCA)20071323
– reference: EnokidoTAikebaierATakizawaMProcess allocation algorithms for saving power consumption in peer-to-peer systemsIEEE Trans Ind Electron20115862097210510.1109/TIE.2010.2060453
– reference: MengXPappasVZhangLImproving the scalability of data center networks with traffic-aware virtual machine placementProceeding of IEEE INFOCOM201019
– reference: RedekoppMSimmhanYPrasannaVKOptimizations and analysis of bsp graph processing models on public cloudsProceeding of 27th international IEEE symposium on parallel & distributed processing (IPDPS)2013203214
– reference: PaulDZhongWDBoseSKDemand response in data centers through energy-efficient scheduling and simple incentivizationIEEE Syst J201711261362410.1109/JSYST.2015.2476357
– reference: LiDWuJJoint power optimization through VM placement and flow scheduling in data centersThe proceedings of IEEE international performance computing and communications conference (IPCCC)201418
– reference: AbtsDMartyMRWellsPMKlauslerPLiuHEnergy proportional datacenter networksThe Proceedigs of ISCA2010338347
– reference: LorSSVaqueroLMMurrayPIn-netdc: the cloud in core networksIEEE Commun Lett201216101703170610.1109/LCOMM.2012.090312.121543
– reference: KandulaSSenguptaSGreenbergAPatelPChaikenRThe nature of data center traffic: measurements & analysisProceedings of the 9th ACM SIGCOMM conference on internet measurement conference200920220810.1145/1644893.1644918
– reference: VenkatachalamVFranzMPower reduction techniques for microprocessor systemsACM Comp Surv J CSUR200537319523710.1145/1108956.1108957
– reference: GreenbergAHamiltonJRJainNKandulaSKimCLahiriPMaltzDAPatelPSenguptaSVl2: a scalable and flexible data center networkSIGCOMM Comput Commun Rev2009394516210.1145/1594977.1592576
– reference: FangWLiangXLiSChiaraviglioLXiongNVMPlanner: optimizing virtual machine placement and traffic flow routing to reduce network power costs in cloud data centersElsevier Comput Netw201357117919610.1016/j.comnet.2012.09.008
– reference: DalmazoBLVilelaJPCuradoMPredicting traffic in the cloud: a statistical approach, proceeding on IEEE cloud and green computing (CGC)2013121126
– reference: LiXWuJTangSLuSLet’s stay together: towards traffic aware virtual machine placement in data centersThe proceeding of the 33rd IEEE international conference on computer communications, INFOCOM2014
– reference: AleksicS“Analysis of power consumption in future high-capacity network nodes”, IEEE/OSAJ Opt Commun Netw200913245258250178810.1364/JOCN.1.000245
– reference: AikebaierAEnokidoTTakizawaMEnergy-efficient computation models for distributed systemsProc. of the 12th international conference on network-based information systems (NBiS)2009424431
– reference: de PanneVCornelisCWhinstonAThe simplex and the dual method for quadratic programmingOper Res Q196415435538810.1057/jors.1964.60
– reference: Singla, Ankit, et al. “Jellyfish: networking data centers randomly” 9th USENIX symposium on networked systems design and implementation (NSDI), vol. 12, pp. 17–17, 2012
– reference: Varasthe A, Goudarzi M (2015) “Server consolidation techniques in virtualized data centers: a survey”, accepted to publication. IEEE Syst J
– reference: BeloglazovAAbawajyJBuyyaREnergy-aware resource allocation heuristics for efficient management of data centers for cloud computingFutur Gener Comput Syst201228575576810.1016/j.future.2011.04.017
– reference: MillsKFillibenJDabrowskiCComparing vm-placement algorithms for on-demand cloudsThe proceedings of the cloud computing technology and science (CloudCom) conference20119198
– reference: KusicDKephartJOHansonJEKandasamyNJiangGPower and performance management of virtualized computing environments via lookahead controlAutonomic computing, (ICAC), international conference on2008312
– reference: YoonMSKamalAEZhuZAdaptive data center activation with user request predictionComput Netw201712219120410.1016/j.comnet.2017.04.047
– reference: Al-FaresMohammadLoukissasAlexanderVahdatAminA scalable, commodity data center network architectureACM SIGCOMM Computer Communication Review20083846310.1145/1402946.1402967
– reference: BensonTAnandAAkellaAZhangMMicroTE: fine grained traffic engineering for data centersProceedings of the seventh ACM conference on emerging networking experiments and technologies20118
– reference: WangLZhangFArocaJVasilakosAZhengKHouCLiDLiuZGreen DCN: a general framework for Acheving energy efficiency in data center NewtworksIEEE J Sel Areas Commun201432141510.1109/JSAC.2014.140102
– reference: HuangQGaoFWangRQiZPower consumption of virtual machine live migration in cloudsThe proceedings of the third international conference on communications and mobile computing (CMC)2011122125
– reference: CostaPCamCube: a key-based data center. Technical report MSR TR-2010-74, Microsoft Research2010
– reference: DaiXWangJMBensauBEnergy efficient virtual machines scheduling in multi-tenant data centersIEEE Trans Cloud Comput20164221022110.1109/TCC.2015.2481401
– reference: MinasLEllisonBEnergy efficiency for information technology: how to reduce power consumption in servers and data centers2009USAIntel Press
– reference: WäscherGGauTHeuristics for the integer one-dimensional cutting stock problem: a computational studyOper Res Spectrum199618313114410.1007/BF015397050853.90099
– reference: EnokidoTSuzukiKAikebaierATakizawaMProcess allocation algorithm for improving the energy efficiency in distributed systemsProc. of IEEE the 24th international conference on advanced information networking and applications (AINA)2010142149
– reference: WangXYaoYWangXLuKCaoQCARPO: correlation-aware power optimization in data center networksThe proceedings of IEEE INFOCOM conference201211251133
– reference: BensonTAnandAAkellaAZhangMUnderstanding data center traffic characteristicsACM SIGCOMM Comput Commun Rev2010401929910.1145/1672308.1672325
– reference: Min SangYKamalAEZhuZAdaptive data center activation with user request predictionComput Netw2017122191204
– reference: JinHCheochernngarnTLevyDSmithAPangDLiuJPissinouNJoint host-network optimization for energy-efficient data center networking2013623634
– reference: VakiliniaSMehmet-AliMQiuDModeling of the resource allocation in cloud computing centersComput Netw2015911445347010.1016/j.comnet.2015.08.030
– reference: VakiliniaSHeidarpourBCherietMEnergy efficient resource allocation in cloud computing environmentsIEEE Access201648544855710.1109/ACCESS.2016.2633558
– reference: InoueTAikebaierAEnokidoTTakizawaMPower consumption and processing models of servers in computation and storage based applicationsMath Comput Model20135851475148810.1016/j.mcm.2012.11.021
– reference: GhribiCHadjiMZeghlacheDEnergy efficient VM scheduling for cloud data centers: exact allocation and migration algorithmsThe proceedings of 13th IEEE/ACM international symposium on cluster, cloud, and grid computing2013671678
– reference: ZhangLLiZWuCChenMOnline algorithms for uploading deferrable big data to the cloudProceeding of IEEE INFOCOM201420222030
– reference: ZhangJHuangHWangXResource provision, on algorithms in cloud computing: a surveyJ Netw Comput Appl201664234210.1016/j.jnca.2015.12.018
– reference: BallaniHCostaPKaragiannisTRowstronATowards predictable datacenter networksACM SIGCOMM computer communication review, vol. 41, no. 42011242253
– reference: GandhiAHarchol-BalterMHow data center size impacts the effectiveness of dynamic power management?The proceedings of 49th annual Allerton conference on communication, control, and computing, USA, Allerton201111641169
– reference: NiuDiFengChenLiBaochunPricing cloud bandwidth reservations under demand uncertaintyACM SIGMETRICS Performance Evaluation Review201240115110.1145/2318857.2254776
– reference: MobiusCDargieWSchillAPower consumption estimation models for processors, virtual machines, and serversIEEE Trans Parallel Distrib Syst20142561600161410.1109/TPDS.2013.183
– reference: KliazovichDPeceroJETchernykhABouvryPKhanSUZomayaAYCA-DAG: communication-aware directed acyclic graphs for modeling cloud computing applicationsProceeding of IEEE sixth international conference on CLOUD computing (CLOUD)2013277284
– reference: VakiliniaSZhangXQiuDAnalysis and optimization of big-data stream processingProceeding of IEEE global communications conference (GLOBECOM)201616
– reference: Gomez-MiguelezIMarojevicVGelonchADeployment and management of SDR cloud computing resources: problem definition and fundamental limitsEURASIP J Wirel Commun Netw201311597210.1186/1687-1499-2013-59
– reference: SankaranGCSivalingamKMA survey of hybrid optical data center network architecturesPhoton Netw Commun20173328710110.1007/s11107-016-0643-2
– reference: BayatiAAsghariVNguyenKCherietMGaussian process regression based traffic modeling and prediction in high-speed networksProceeding of IEEE global communications conference (GLOBECOM)201617
– reference: BensonTAkellaAMaltzDANetwork traffic characteristics of data centers in the wildProceedings of the 10th ACM SIGCOMM conference on internet measurement2010267280
– reference: Al-FaresMRadhakrishnanSRaghavanBHuangNVahdatAHedera: dynamic flow scheduling for data center networksNSDI20101919
– reference: EnokidoTTakizawaMAn extended power consumption model for distributed applicationsProceeding of 26th IEEE international conference on advanced information networking and applications (AINA)2012912919
– reference: BeerKKäschelJColumn generation in quadratic programmingMath Operations Stat, Series Optimization197910217918454852610.1080/023319379088425610424.90053
– reference: XuHLiBCost efficient datacenter selection for cloud servicesThe proceedings of IEEE 1st international conference on Communications in China (ICCC)20125156
– reference: GuoCLuGLiDWuHZhangXShiYTianCZhangYLuSBcube: a high performance, server-centric network architecture for modular data centersACM SIGCOMM Comput Commun Rev2009394637410.1145/1594977.1592577
– reference: XuDLiuXNiuZJoint resource provisioning for internet datacenters with diverse and dynamic trafficIEEE Trans Cloud Comput2014716199114
– reference: DalmazoBLVilelaJPCuradoMOnlinetraffic prediction in the cloud: a dynamic window approach, proceeding on IEEE cloud and green computing (CGC)2014914
– reference: LübbeckeAMarcoEDesrosiersJSelected topics in column generationOper Res200553610071023219387510.1287/opre.1050.02341165.90578
– reference: YinJLuXZhaoXChenHLiuXBurse: a bursty and self-similar workload generator for cloud computingIEEE Trans Parallel Distrib Syst201526366868010.1109/TPDS.2014.2315204
– reference: S. Srikantaiah, A. Kansal, and F. Zhao, “Energy aware consolidation for cloud computing”, in The proceedings of the power aware computing and systems conference, Berkeley, CA, USA, pp. 1-15, 2009
– reference: BarrosoBAndréLDeanJHolzleUWeb search for a planet: the Google cluster architectureIEEE Micro2003232222810.1109/MM.2003.1196112
– reference: VakiliniaSCherietMRajkumarJDynamic resource allocation of smart home workloads in the cloudProceeding of 12th IEEE international conference on network and service management (CNSM)2016367370
– reference: ZhangXWangHXuZWangXPower attack: an increasing threat to data centersThe proceedings of the network and distributed system security symposium, NDSS2014132147
– reference: GuoCWuHTanKShiLZhangYLuSDCell: a scalable and fault-tolerant network structure for data centersACM SIGCOMM Comput Commun Rev2008384758610.1145/1402946.1402968
– reference: PriesPRastinMJarschelMSchlosserDKlopfMTran-GiaPPower consumption analysis of data center architecturesGreen communications and networking2012Berlin HeidelbergSpringer11412410.1007/978-3-642-33368-2_10
– reference: AtaieEEntezari-MalekiRRashidiLTrivediKSArdagnaDMovagharAHierarchical stochastic models for performance, availability, and power consumption analysis of IaaS cloudsIEEE Trans Cloud Comput201761122610.1186/s13677-017-0085-0
– reference: WuCMChangRSChanHYA green energy-efficient scheduling algorithm using the DVFS technique for cloud datacentersFutur Gener Comput Syst20143714114710.1016/j.future.2013.06.009
– reference: PhuongPTDurilloJJFahringerTPredicting workflow task execution time in the cloud using a two-stage machine learning approachIEEE Trans Cloud Comput201764121134
– reference: KantKData center evolution: a tutorial on state of the art, issues, and challengesComput Netw200953172939296510.1016/j.comnet.2009.10.004
– reference: Wu H, Lu G, Li D, Guo C, Zhang Y (2009) “MDCube: a high performance network structure for modular data center interconnection”, Proceedings of the 5th international ACM conference on Emerging networking experiments and technologies (CoNEXT). Rome, pp. 25–39
– reference: CedricFLiuHKoleyBZhaoXKamalovVGillVFiber optic communication technologies: What's needed for datacenter network operationsIEEE Commun Mag2010487323910.1109/MCOM.2010.5496876
– volume: 64
  start-page: 23
  year: 2016
  ident: 103_CR22
  publication-title: J Netw Comput Appl
  doi: 10.1016/j.jnca.2015.12.018
– start-page: 19
  volume-title: NSDI
  year: 2010
  ident: 103_CR44
– start-page: 59
  volume-title: The proceedings of 5th IEEE international conference on in E-science workshops
  year: 2009
  ident: 103_CR40
– ident: 103_CR74
– volume: 91
  start-page: 453
  issue: 14
  year: 2015
  ident: 103_CR34
  publication-title: Comput Netw
  doi: 10.1016/j.comnet.2015.08.030
– volume: 39
  start-page: 51
  issue: 4
  year: 2009
  ident: 103_CR47
  publication-title: SIGCOMM Comput Commun Rev
  doi: 10.1145/1594977.1592576
– volume: 57
  start-page: 179
  issue: 1
  year: 2013
  ident: 103_CR60
  publication-title: Elsevier Comput Netw
  doi: 10.1016/j.comnet.2012.09.008
– volume: 2
  start-page: 14
  issue: 1
  year: 2014
  ident: 103_CR13
  publication-title: IEEE Trans Cloud Comput
  doi: 10.1109/TCC.2014.2306427
– ident: 103_CR32
– ident: 103_CR55
– volume: 37
  start-page: 195
  issue: 3
  year: 2005
  ident: 103_CR81
  publication-title: ACM Comp Surv J CSUR
  doi: 10.1145/1108956.1108957
– volume: 1
  start-page: 201
  issue: 1
  year: 2013
  ident: 103_CR12
  publication-title: IEEE Trans Cloud Comput
  doi: 10.1109/TCC.2013.12
– start-page: 203
  volume-title: Proceeding of 27th international IEEE symposium on parallel & distributed processing (IPDPS)
  year: 2013
  ident: 103_CR65
– volume: 6
  start-page: 121
  issue: 4
  year: 2017
  ident: 103_CR67
  publication-title: IEEE Trans Cloud Comput
– volume: 37
  start-page: 141
  year: 2014
  ident: 103_CR90
  publication-title: Futur Gener Comput Syst
  doi: 10.1016/j.future.2013.06.009
– volume: 15
  start-page: 909
  issue: 2
  year: 2013
  ident: 103_CR43
  publication-title: IEEE Commun Surv Tutorials
  doi: 10.1109/SURV.2012.090512.00043
– volume: 141
  start-page: 253
  issue: 2
  year: 2002
  ident: 103_CR31
  publication-title: Eur J Oper Res
  doi: 10.1016/S0377-2217(02)00124-8
– ident: 103_CR46
  doi: 10.1145/1402946.1402967
– volume: 16
  start-page: 1703
  issue: 10
  year: 2012
  ident: 103_CR71
  publication-title: IEEE Commun Lett
  doi: 10.1109/LCOMM.2012.090312.121543
– start-page: 623
  volume-title: Joint host-network optimization for energy-efficient data center networking
  year: 2013
  ident: 103_CR10
– volume: 1
  start-page: 245
  issue: 3
  year: 2009
  ident: 103_CR36
  publication-title: J Opt Commun Netw
  doi: 10.1364/JOCN.1.000245
– start-page: 242
  volume-title: ACM SIGCOMM computer communication review, vol. 41, no. 4
  year: 2011
  ident: 103_CR16
– volume: 53
  start-page: 1007
  issue: 6
  year: 2005
  ident: 103_CR19
  publication-title: Oper Res
  doi: 10.1287/opre.1050.0234
– start-page: 1
  volume-title: The proceedings of IEEE INFOCOM workshops
  year: 2009
  ident: 103_CR38
– volume: 48
  start-page: 32
  issue: 7
  year: 2010
  ident: 103_CR15
  publication-title: IEEE Commun Mag
  doi: 10.1109/MCOM.2010.5496876
– start-page: 251
  volume-title: The proceedings of IEEE/ACM 6th international conference on utility and cloud computing
  year: 2013
  ident: 103_CR14
– volume: 18
  start-page: 131
  issue: 3
  year: 1996
  ident: 103_CR29
  publication-title: Oper Res Spectrum
  doi: 10.1007/BF01539705
– start-page: 142
  volume-title: Proc. of IEEE the 24th international conference on advanced information networking and applications (AINA)
  year: 2010
  ident: 103_CR86
– start-page: 671
  volume-title: The proceedings of 13th IEEE/ACM international symposium on cluster, cloud, and grid computing
  year: 2013
  ident: 103_CR2
– volume: 122
  start-page: 191
  year: 2017
  ident: 103_CR45
  publication-title: Comput Netw
  doi: 10.1016/j.comnet.2017.04.047
– volume: 30
  start-page: 14
  issue: 4
  year: 2012
  ident: 103_CR6
  publication-title: ACM Trans Comput Syst
  doi: 10.1145/2382553.2382556
– start-page: 1
  volume-title: Proceeding of IEEE global communications conference (GLOBECOM)
  year: 2016
  ident: 103_CR69
– volume: 4
  start-page: 8544
  year: 2016
  ident: 103_CR80
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2016.2633558
– volume: 38
  start-page: 75
  issue: 4
  year: 2008
  ident: 103_CR52
  publication-title: ACM SIGCOMM Comput Commun Rev
  doi: 10.1145/1402946.1402968
– volume: 4
  start-page: 2458
  issue: 9
  year: 2017
  ident: 103_CR42
  publication-title: J Multidiscip Eng Sci Technol (JMEST)
– volume: 39
  start-page: 63
  issue: 4
  year: 2009
  ident: 103_CR50
  publication-title: ACM SIGCOMM Comput Commun Rev
  doi: 10.1145/1594977.1592577
– volume: 6
  start-page: 12
  issue: 1
  year: 2017
  ident: 103_CR61
  publication-title: IEEE Trans Cloud Comput
  doi: 10.1186/s13677-017-0085-0
– volume: 1
  start-page: 59
  issue: 1
  year: 2013
  ident: 103_CR70
  publication-title: EURASIP J Wirel Commun Netw
  doi: 10.1186/1687-1499-2013-59
– volume: 58
  start-page: 2097
  issue: 6
  year: 2011
  ident: 103_CR87
  publication-title: IEEE Trans Ind Electron
  doi: 10.1109/TIE.2010.2060453
– volume: 1
  start-page: 191
  issue: 22
  year: 2017
  ident: 103_CR75
  publication-title: Comput Netw
– ident: 103_CR1
– volume: 25
  start-page: 1600
  issue: 6
  year: 2014
  ident: 103_CR92
  publication-title: IEEE Trans Parallel Distrib Syst
  doi: 10.1109/TPDS.2013.183
– volume: 5
  start-page: 8
  issue: 1
  year: 1980
  ident: 103_CR28
  publication-title: Eur J Oper Res
  doi: 10.1016/0377-2217(80)90068-5
– volume: 4
  start-page: 210
  issue: 2
  year: 2016
  ident: 103_CR11
  publication-title: IEEE Trans Cloud Comput
  doi: 10.1109/TCC.2015.2481401
– volume: 7161
  start-page: 1
  issue: 99
  year: 2014
  ident: 103_CR23
  publication-title: IEEE Trans Cloud Comput
– start-page: 121
  volume-title: Predicting traffic in the cloud: a statistical approach, proceeding on IEEE cloud and green computing (CGC)
  year: 2013
  ident: 103_CR73
– start-page: 367
  volume-title: Proceeding of 12th IEEE international conference on network and service management (CNSM)
  year: 2016
  ident: 103_CR59
– volume: 26
  start-page: 668
  issue: 3
  year: 2015
  ident: 103_CR76
  publication-title: IEEE Trans Parallel Distrib Syst
  doi: 10.1109/TPDS.2014.2315204
– volume: 11
  start-page: 613
  issue: 2
  year: 2017
  ident: 103_CR84
  publication-title: IEEE Syst J
  doi: 10.1109/JSYST.2015.2476357
– start-page: 1164
  volume-title: The proceedings of 49th annual Allerton conference on communication, control, and computing, USA, Allerton
  year: 2011
  ident: 103_CR5
  doi: 10.1109/Allerton.2011.6120299
– volume: 15
  start-page: 355
  issue: 4
  year: 1964
  ident: 103_CR20
  publication-title: Oper Res Q
  doi: 10.1057/jors.1964.60
– start-page: 122
  volume-title: The proceedings of the third international conference on communications and mobile computing (CMC)
  year: 2011
  ident: 103_CR27
– volume: 40
  start-page: 92
  issue: 1
  year: 2010
  ident: 103_CR56
  publication-title: ACM SIGCOMM Comput Commun Rev
  doi: 10.1145/1672308.1672325
– volume: 32
  start-page: 4
  issue: 1
  year: 2014
  ident: 103_CR7
  publication-title: IEEE J Sel Areas Commun
  doi: 10.1109/JSAC.2014.140102
– start-page: 8
  volume-title: Proceedings of the seventh ACM conference on emerging networking experiments and technologies
  year: 2011
  ident: 103_CR62
– volume: 10
  start-page: 179
  issue: 2
  year: 1979
  ident: 103_CR21
  publication-title: Math Operations Stat, Series Optimization
  doi: 10.1080/02331937908842561
– volume: 58
  start-page: 1475
  issue: 5
  year: 2013
  ident: 103_CR89
  publication-title: Math Comput Model
  doi: 10.1016/j.mcm.2012.11.021
– volume: 33
  start-page: 87
  issue: 2
  year: 2017
  ident: 103_CR41
  publication-title: Photon Netw Commun
  doi: 10.1007/s11107-016-0643-2
– start-page: 267
  volume-title: Proceedings of the 10th ACM SIGCOMM conference on internet measurement
  year: 2010
  ident: 103_CR78
  doi: 10.1145/1879141.1879175
– volume: 28
  start-page: 755
  issue: 5
  year: 2012
  ident: 103_CR33
  publication-title: Futur Gener Comput Syst
  doi: 10.1016/j.future.2011.04.017
– volume: 23
  start-page: 22
  issue: 2
  year: 2003
  ident: 103_CR35
  publication-title: IEEE Micro
  doi: 10.1109/MM.2003.1196112
– volume: 53
  start-page: 2939
  issue: 17
  year: 2009
  ident: 103_CR48
  publication-title: Comput Netw
  doi: 10.1016/j.comnet.2009.10.004
– start-page: 2022
  volume-title: Proceeding of IEEE INFOCOM
  year: 2014
  ident: 103_CR79
– start-page: 3
  volume-title: Autonomic computing, (ICAC), international conference on
  year: 2008
  ident: 103_CR91
– ident: 103_CR53
  doi: 10.1109/INFCOM.2009.5062153
– start-page: 51
  volume-title: The proceedings of IEEE 1st international conference on Communications in China (ICCC)
  year: 2012
  ident: 103_CR24
– start-page: 202
  volume-title: Proceedings of the 9th ACM SIGCOMM conference on internet measurement conference
  year: 2009
  ident: 103_CR77
  doi: 10.1145/1644893.1644918
– ident: 103_CR49
  doi: 10.1145/1658939.1658943
– start-page: 1
  volume-title: Proceeding of IEEE global communications conference (GLOBECOM)
  year: 2016
  ident: 103_CR66
– start-page: 1125
  volume-title: The proceedings of IEEE INFOCOM conference
  year: 2012
  ident: 103_CR8
– ident: 103_CR25
  doi: 10.1145/2318857.2254776
– start-page: 114
  volume-title: Green communications and networking
  year: 2012
  ident: 103_CR37
  doi: 10.1007/978-3-642-33368-2_10
– volume-title: Integer and combinatorial optimization
  year: 1988
  ident: 103_CR17
  doi: 10.1002/9781118627372
– volume: 14
  start-page: 23
  issue: 1
  year: 2016
  ident: 103_CR63
  publication-title: J Grid Comput
  doi: 10.1007/s10723-015-9337-8
– volume-title: Energy efficiency for information technology: how to reduce power consumption in servers and data centers
  year: 2009
  ident: 103_CR82
– volume-title: CamCube: a key-based data center. Technical report MSR TR-2010-74, Microsoft Research
  year: 2010
  ident: 103_CR51
– start-page: 277
  volume-title: Proceeding of IEEE sixth international conference on CLOUD computing (CLOUD)
  year: 2013
  ident: 103_CR64
– start-page: 9
  volume-title: Onlinetraffic prediction in the cloud: a dynamic window approach, proceeding on IEEE cloud and green computing (CGC)
  year: 2014
  ident: 103_CR72
– start-page: 1
  volume-title: The proceedings of IEEE international performance computing and communications conference (IPCCC)
  year: 2014
  ident: 103_CR9
– volume: 36
  start-page: 2074
  issue: 6
  year: 2009
  ident: 103_CR30
  publication-title: Comput Oper Res
  doi: 10.1016/j.cor.2008.07.001
– volume: 24
  start-page: 2539
  issue: 4
  year: 2016
  ident: 103_CR68
  publication-title: IEEE/ACM Trans Networking
  doi: 10.1109/TNET.2015.2475362
– start-page: 13
  volume-title: Proceedings of the 34th annual international symposium on computer architecture (ISCA)
  year: 2007
  ident: 103_CR83
  doi: 10.1145/1250662.1250665
– start-page: 338
  volume-title: The Proceedigs of ISCA
  year: 2010
  ident: 103_CR3
– start-page: 912
  volume-title: Proceeding of 26th IEEE international conference on advanced information networking and applications (AINA)
  year: 2012
  ident: 103_CR88
– volume-title: Linear programming. Macmillan
  year: 1983
  ident: 103_CR18
– start-page: 91
  volume-title: The proceedings of the cloud computing technology and science (CloudCom) conference
  year: 2011
  ident: 103_CR39
– start-page: 424
  volume-title: Proc. of the 12th international conference on network-based information systems (NBiS)
  year: 2009
  ident: 103_CR85
– volume: 40
  start-page: 4
  issue: 5
  year: 2010
  ident: 103_CR54
  publication-title: ACM SIGCOMM Comput Commun Rev
  doi: 10.1145/1880153.1880155
– start-page: 1572
  volume-title: Proceeding of IEEE INFOCOM
  year: 2014
  ident: 103_CR57
– volume-title: The proceeding of the 33rd IEEE international conference on computer communications, INFOCOM
  year: 2014
  ident: 103_CR4
– start-page: 132
  volume-title: The proceedings of the network and distributed system security symposium, NDSS
  year: 2014
  ident: 103_CR26
– start-page: 1
  volume-title: Proceeding of IEEE INFOCOM
  year: 2010
  ident: 103_CR58
SSID ssj0001012387
Score 2.2784543
Snippet Cloud computing datacenters consume huge amounts of energy, which has high cost and large environmental impact. There has been significant amount of research...
Abstract Cloud computing datacenters consume huge amounts of energy, which has high cost and large environmental impact. There has been significant amount of...
SourceID doaj
proquest
crossref
springer
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms Algorithms
Cloud computing
Communications systems
Computer Communication Networks
Computer Science
Computer System Implementation
Computer Systems Organization and Communication Networks
Computing costs
Consumption
Cooling systems
Cost control
Data centers
Employment
Energy conservation
Energy consumption
Energy management
Environmental impact
Heterogeneity
Information Systems Applications (incl.Internet)
Integer linear programming
Integer quadratic programming
Migration
Optimization
Placement
Poisson density functions
Power consumption
Power management
Resource allocation
Servers
Software Engineering/Programming and Operating Systems
Special Purpose and Application-Based Systems
Statistical analysis
Virtual machine placement
Workload
Workloads
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LSwMxEA7Skxff4mqVHDwpS3c3aTZ7VGkpgp4s9haSNAFhaaUP_PvOZNPaCurFw152kxAmk50vk5lvCLl2xpdaZ2Vqi7JIuWYiNRnsKzBOQoB9MoVGh_7TsxgM-eOoO9oo9YUxYQ09cCO4The6MlHlsjIlDwCHW-_hD2MyOBQ2Wb0w5sZhKnhXECrIMl5j5lJ05shNhlGW-GQsLbYMUeDr3wKZ3-5Fg7npH5C9iBPpXTO_Q7LjJkdkf1WDgcYteUxeeyF5j7pABQEWhEayqZrWUz2m-kPPHJ1FJz3Fa_bGSUffJtTW0-WY2jAozIJiuChGawIkPCHDfu_lYZDGYgmp5YIvUu9KBtBn7LXDbFLh4CRiudZ5zozwheO-K4z2GlMmrdDMWJsVGuGAGWfGO3ZKWpPpxJ0RmlkBQq44ICOJdOyyCyOVuS049GRaJiRbSU7ZyCSOBS1qFU4UUqhG2AqErVDYqkjIzbrLe0Oj8Vvje1yOdUNkwA4vQC9U1Av1l14kpL1aTBW35VwhnT3-kaoyIberBf76_OOMzv9jRhdkF9CWDP4b2SatxWzpLgHRLMxVUN5PCvDueQ
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LSyQxEC50vHjxLTuuSg6elMZ0dzqdOS0qIyIoIoreQpJOZGGY1pmR_ftblUk7KOihL50HoVKV-lJJvgI48jbUxvA6c0VdZMKUMrMc7Qqdk5Ton2xhKKB_cyuvHsX1c_WcAm7TdK2yWxPjQt20jmLkp8RETso0qP-8vmWUNYpOV1MKjWVYwXJV9WDlfHh7d7-IshBkUHU6zsyVPJ0SRxndtqSPl1nxySFF3v5PYPPL-Wh0O5cbsJbwIjubT_AmLPnxFqx3uRhYMs1teBrGR3zMR0oI9CQskU6N2Kg1DTP_zMSzSQrWMzpunwfr2N8xc6P2vWEudoqjYHRtlG5tIjTcgcfL4cPFVZaSJmROSDHLgq9LhEBNMJ5elUqPOxInjMnz0spQeBEqaU0w9HTSSVNa53hhCBbYhtvgy13ojdux_wWMO8mFGwhESIpo2VWFPdW5KwS2LI3qA-8kp11iFKfEFiMddxZK6rmwNQpbk7B10YfjjyavczqNnyqf03R8VCQm7PijnbzoZFi6QtUq5SBXA1uLCICFCwE9kOXe4u62D_vdZOpknlO9UKY-nHQTvCj-dkR7P3f2G1YRT6kYoVH70JtN3v0BYpaZPUyK-R_Uheg-
  priority: 102
  providerName: ProQuest
Title Energy efficient temporal load aware resource allocation in cloud computing datacenters
URI https://link.springer.com/article/10.1186/s13677-017-0103-2
https://www.proquest.com/docview/2127179397
https://doaj.org/article/5b03369189b74000804cffeb1b0eb211
Volume 7
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEA66Xrz4FtfHkoMnpZi2aZoeddl1ERQRRW8hSRMQll3ZB_59Z7KpL1Tw0EDTJIRJ0vkyk_lCyLEzvtSalYnNyizhOheJYbCuQDkJAfrJZBoN-tc3YvDAr56Kp0gWjbEwn_33qRRnU6QUw8OR-LA8gb_tSoF56JcV3Q9zCmIDWUa_5Y81v2ieQND_BVV-c4QG_dLfIGsRGNLzxUhukiU32iLrzaULNK7BbfLYC9F61AXuB1AZNLJLDelwrGuqX_XE0Um0ylP0qy-scvR5RO1wPK-pDY1CLyieD8XjmYABd8hDv3ffHSTxdoTEcsFniXdlDlin9tph-KhwsPWwXOs0zY3wmeO-EEZ7jTGSVujcWMsyjfrf1Mx4l--S1mg8cnuEMisYtxUHKCSRf10W0FKZ2oxDzVzLNmGN5JSN1OF4g8VQhS2EFGohbAXCVihslbXJyXuVlwVvxl-FL3A43gsi5XXIgJmg4gpSBcyhXFSprEzJA9Ll1ntQNYY5A9vYNjlsBlPFdThVyF-Pv6CqbJPTZoA_Pv_ao_1_lT4gq4CjZLDMyEPSmk3m7giwysx0yDJnl5DKPqQrF72b2zt462a8E-ZvJ9gA3gDzO-RH
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtQwEB6V9gAX_lEXCvgAF1DUxPE6zgFVFLba0naFUCt6M7ZjI6TVpuxuVfFSPGNnHKerItFbD7kk9igaz3g-z3hmAN54Gypj8ipzvOKZMKXMbI56hcZJSrRPlhty6B9N5PhEfDkdnq7B3z4Xhq5V9nti3Kib1pGPfJsqkZMw1dXO2e-MukZRdLVvodGJxYH_c4FHtsWH_c-4vm853xsdfxpnqatA5oQUyyz4qkSM0ATjKe1SeoTsThhTFKWVgXsRhtKaYCi30ElTWudybshu2ia3wZdI9w5sIIkatWhjdzT5-m3l1SGIoqoUPi2U3F5QTTS63UlPXmb8mgGMfQKugdt_4rHRzO09hPsJn7KPnUA9gjU_ewwP-t4PLG0FT-D7KCYNMh9LUKDlYqnI1ZRNW9Mwc2Hmns1TcIBReL9zDrJfM-am7XnDXCSKf8HomirdEkUo-hROboWdz2B91s78JrDcyVy4WiAiU1QGXg2RUlU4LnBmadQA8p5z2qUK5tRIY6rjSUZJ3TFbI7M1MVvzAby7mnLWle-4afAuLcfVQKq8HV-08586KbIeoiiXsi5UbSsRAbdwIaDFs7m3eJoewFa_mDptBwu9Et4BvO8XePX5v3_0_GZir-Hu-PjoUB_uTw5ewD3Ecip6h9QWrC_n5_4l4qWlfZWElMGP29aLSyPDJqo
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxEB6VVEJcylsECvgAF9Aqu17H6xxQ1dJELYWoQlT0ZmyvjSpF2ZKkqvhr_DpmvN5GRaK3Hvaya1ur8Xjm8zwB3ngbKmPyKnO84pkwpcxsjucKlZOUqJ8sN2TQ_zKVByfi0-nwdAP-dLkwFFbZycQoqOvGkY18QJXIiZlG1SCksIjj_cnO-a-MOkiRp7Vrp9GyyJH_fYnXt-WHw33c67ecT8bfPh5kqcNA5oQUqyz4qkS8UAfjKQVTeoTvThhTFKWVgXsRhtKaYCjP0ElTWudybkiH2jq3wZe47h3YrFArqh5s7o2nx1_XFh6CK6pKrtRCycGS6qNRpCc9eZnxa8ow9gy4BnT_8c1GlTd5AFsJq7LdlrkewoafP4L7XR8IlsTCY_g-jgmEzMdyFKjFWCp4NWOzxtTMXJqFZ4vkKGDk6m8NhexsztysuaiZi4viXzAKWaWIUYSlT-DkVsj5FHrzZu6fAcudzIUbCURnikrCqyGuVBWOC5xZGtWHvKOcdqmaOTXVmOl4q1FSt8TWSGxNxNa8D--uppy3pTxuGrxH23E1kKpwxxfN4qdOh1oPka1LOSrUyCILEPgWLgTUfjb3Fm_WfdjuNlMn0bDUa0buw_tug9ef__tHz29e7DXcxfOgPx9Oj17APYR1KhqK1Db0VosL_xKh08q-SjzK4MdtH4u_rQkq1g
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Energy+efficient+temporal+load+aware+resource+allocation+in+cloud+computing+datacenters&rft.jtitle=Journal+of+cloud+computing+%3A+advances%2C+systems+and+applications&rft.au=Vakilinia%2C+Shahin&rft.date=2018-01-08&rft.pub=Springer+Berlin+Heidelberg&rft.eissn=2192-113X&rft.volume=7&rft.issue=1&rft_id=info:doi/10.1186%2Fs13677-017-0103-2&rft.externalDocID=10_1186_s13677_017_0103_2
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2192-113X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2192-113X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2192-113X&client=summon