Cortico-cortical drive in a coupled premotor-primary motor cortex dynamical system
In the conventional view of sensorimotor control, the premotor cortex (PM) plans actions that are executed by the primary motor cortex (M1). This notion arises in part from many experiments that have imposed a preparatory “planning” period, during which PM becomes active without M1. But during many...
Saved in:
Published in | Cell reports (Cambridge) Vol. 41; no. 12; p. 111849 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
20.12.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In the conventional view of sensorimotor control, the premotor cortex (PM) plans actions that are executed by the primary motor cortex (M1). This notion arises in part from many experiments that have imposed a preparatory “planning” period, during which PM becomes active without M1. But during many natural movements, PM and M1 are co-activated, making it difficult to distinguish their functional roles. We leverage coupled dynamical systems models (cDSMs) to uncover interactions between PM and M1 during movements performed with no preparatory period. We build cDSMs using neural and behavioral data recorded from two non-human primates as they performed a reach-grasp-manipulate task. PM and M1 interact dynamically throughout these movements. Whereas PM drives the M1 in some situations, in other situations, M1 drives PM activity, contrary to the conventional assumption. Our DSM framework provides additional predictions differentiating the roles of PM and M1 in controlling movement.
[Display omitted]
•Use a coupled dynamical systems model to uncover interactions between motor cortices•Contrary to convention, primary motor cortex can drive activity in premotor•Movement similarity is more related to similarity of cortical drivers than activity
Dynamic interactions both within and between cortical areas that are not experimentally measurable are evaluated using a coupled dynamical systems model (cDSM). D’Aleo et al. have utilized a cDSM to explore the interactive roles of premotor and primary motor cortex across subjects. |
---|---|
AbstractList | In the conventional view of sensorimotor control, the premotor cortex (PM) plans actions that are executed by the primary motor cortex (M1). This notion arises in part from many experiments that have imposed a preparatory "planning" period, during which PM becomes active without M1. But during many natural movements, PM and M1 are co-activated, making it difficult to distinguish their functional roles. We leverage coupled dynamical systems models (cDSMs) to uncover interactions between PM and M1 during movements performed with no preparatory period. We build cDSMs using neural and behavioral data recorded from two non-human primates as they performed a reach-grasp-manipulate task. PM and M1 interact dynamically throughout these movements. Whereas PM drives the M1 in some situations, in other situations, M1 drives PM activity, contrary to the conventional assumption. Our DSM framework provides additional predictions differentiating the roles of PM and M1 in controlling movement.In the conventional view of sensorimotor control, the premotor cortex (PM) plans actions that are executed by the primary motor cortex (M1). This notion arises in part from many experiments that have imposed a preparatory "planning" period, during which PM becomes active without M1. But during many natural movements, PM and M1 are co-activated, making it difficult to distinguish their functional roles. We leverage coupled dynamical systems models (cDSMs) to uncover interactions between PM and M1 during movements performed with no preparatory period. We build cDSMs using neural and behavioral data recorded from two non-human primates as they performed a reach-grasp-manipulate task. PM and M1 interact dynamically throughout these movements. Whereas PM drives the M1 in some situations, in other situations, M1 drives PM activity, contrary to the conventional assumption. Our DSM framework provides additional predictions differentiating the roles of PM and M1 in controlling movement. In the conventional view of sensorimotor control, the premotor cortex (PM) plans actions that are executed by the primary motor cortex (M1). This notion arises in part from many experiments that have imposed a preparatory “planning” period, during which PM becomes active without M1. But during many natural movements, PM and M1 are co-activated, making it difficult to distinguish their functional roles. We leverage coupled dynamical systems models (cDSMs) to uncover interactions between PM and M1 during movements performed with no preparatory period. We build cDSMs using neural and behavioral data recorded from two non-human primates as they performed a reach-grasp-manipulate task. PM and M1 interact dynamically throughout these movements. Whereas PM drives the M1 in some situations, in other situations, M1 drives PM activity, contrary to the conventional assumption. Our DSM framework provides additional predictions differentiating the roles of PM and M1 in controlling movement. Dynamic interactions both within and between cortical areas that are not experimentally measurable are evaluated using a coupled dynamical systems model (cDSM). D’Aleo et al. have utilized a cDSM to explore the interactive roles of premotor and primary motor cortex across subjects. In the conventional view of sensorimotor control, the premotor cortex (PM) plans actions that are executed by the primary motor cortex (M1). This notion arises in part from many experiments that have imposed a preparatory "planning" period, during which PM becomes active without M1. But during many natural movements, PM and M1 are co-activated, making it difficult to distinguish their functional roles. We leverage coupled dynamical systems models (cDSMs) to uncover interactions between PM and M1 during movements performed with no preparatory period. We build cDSMs using neural and behavioral data recorded from two non-human primates as they performed a reach-grasp-manipulate task. PM and M1 interact dynamically throughout these movements. Whereas PM drives the M1 in some situations, in other situations, M1 drives PM activity, contrary to the conventional assumption. Our DSM framework provides additional predictions differentiating the roles of PM and M1 in controlling movement. In the conventional view of sensorimotor control, the premotor cortex (PM) plans actions that are executed by the primary motor cortex (M1). This notion arises in part from many experiments that have imposed a preparatory “planning” period, during which PM becomes active without M1. But during many natural movements, PM and M1 are co-activated, making it difficult to distinguish their functional roles. We leverage coupled dynamical systems models (cDSMs) to uncover interactions between PM and M1 during movements performed with no preparatory period. We build cDSMs using neural and behavioral data recorded from two non-human primates as they performed a reach-grasp-manipulate task. PM and M1 interact dynamically throughout these movements. Whereas PM drives the M1 in some situations, in other situations, M1 drives PM activity, contrary to the conventional assumption. Our DSM framework provides additional predictions differentiating the roles of PM and M1 in controlling movement. [Display omitted] •Use a coupled dynamical systems model to uncover interactions between motor cortices•Contrary to convention, primary motor cortex can drive activity in premotor•Movement similarity is more related to similarity of cortical drivers than activity Dynamic interactions both within and between cortical areas that are not experimentally measurable are evaluated using a coupled dynamical systems model (cDSM). D’Aleo et al. have utilized a cDSM to explore the interactive roles of premotor and primary motor cortex across subjects. |
ArticleNumber | 111849 |
Author | Schieber, Marc H. Sarma, Sridevi V. Rouse, Adam G. D’Aleo, Raina |
AuthorAffiliation | 1 Department of Neuroscience, The Johns Hopkins University, Baltimore, MD 21218, USA 4 Department of Neurology, University of Rochester, Rochester, NY 14642, USA 6 Lead contact 3 Department of Neuroscience, University of Rochester, Rochester, NY 14642, USA 2 Department of Neurosurgery, University of Kansas, Kansas City, KS 66160, USA 5 Institute for Computational Medicine, Department of Biomedical Engineering, The Johns Hopkins University, Baltimore, MD 21218, USA |
AuthorAffiliation_xml | – name: 1 Department of Neuroscience, The Johns Hopkins University, Baltimore, MD 21218, USA – name: 4 Department of Neurology, University of Rochester, Rochester, NY 14642, USA – name: 5 Institute for Computational Medicine, Department of Biomedical Engineering, The Johns Hopkins University, Baltimore, MD 21218, USA – name: 2 Department of Neurosurgery, University of Kansas, Kansas City, KS 66160, USA – name: 6 Lead contact – name: 3 Department of Neuroscience, University of Rochester, Rochester, NY 14642, USA |
Author_xml | – sequence: 1 givenname: Raina surname: D’Aleo fullname: D’Aleo, Raina email: rdaleo1@alumni.jh.edu organization: Department of Neuroscience, The Johns Hopkins University, Baltimore, MD 21218, USA – sequence: 2 givenname: Adam G. orcidid: 0000-0003-3785-1442 surname: Rouse fullname: Rouse, Adam G. organization: Department of Neurosurgery, University of Kansas, Kansas City, KS 66160, USA – sequence: 3 givenname: Marc H. surname: Schieber fullname: Schieber, Marc H. organization: Department of Neuroscience, University of Rochester, Rochester, NY 14642, USA – sequence: 4 givenname: Sridevi V. surname: Sarma fullname: Sarma, Sridevi V. email: ssarma2@jhu.edu organization: Institute for Computational Medicine, Department of Biomedical Engineering, The Johns Hopkins University, Baltimore, MD 21218, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/36543147$$D View this record in MEDLINE/PubMed |
BookMark | eNqFUV1P2zAUtSbQyqD_AE155CVdruPEyR42TdUGk5CQEDxbjn0NrpI4s91q_fdLm4IYD-CXa8vnwz7nEznqXY-EnEO2gAzKL6uFwtbjsKAZpQsAqFj9gZxQCpACZfzoxX5G5iGssnGVGUDNPpJZXhYsB8ZPyO3S-WiVS9V-yjbR3m4wsX0iE-XWQ4s6GTx2LjqfDt520m-T_SnZUfBvore97PbUsA0RuzNybGQbcH6Yp-T-18-75VV6fXP5e_njOlWsZDE1uqqRg9FYMJU3VSUbWvFalcYo2uQIXMuC8sY0WQWFKnIKtaJ5gdX4V5Ob_JR8n3SHddOhVthHL1txeKNw0or_b3r7KB7cRgBQDiWvRoWLg4J3f9YYouhsGINtZY9uHQTlBc8KxjmM0M8vzZ5dnpIcAV8ngPIuBI9GKBtltG7nbVsBmdg1J1Ziak7smhNTcyOZvSI_6b9D-zbRcIx5Y9GLoCz2CrX1qKLQzr4t8A9FgLY3 |
CitedBy_id | crossref_primary_10_1073_pnas_2319313121 crossref_primary_10_3389_fnins_2024_1330280 crossref_primary_10_1002_cne_25489 crossref_primary_10_1002_hbm_26723 |
Cites_doi | 10.1016/j.conb.2011.05.021 10.1016/j.neuron.2018.09.030 10.1126/science.3749885 10.1126/science.aaa8035 10.1007/BF00247902 10.1016/S0166-4328(05)80264-5 10.1152/jn.90941.2008 10.1093/brain/112.3.649 10.1371/journal.pcbi.1005164 10.1007/BF00274982 10.1371/journal.pcbi.1005175 10.1113/jphysiol.2009.186858 10.1093/cercor/bhr267 10.1002/cne.902510302 10.1523/JNEUROSCI.02-09-01329.1982 10.1038/nn.3643 10.1152/jn.1993.70.5.2097 10.1152/jn.00652.2003 10.1038/s41598-019-54220-z 10.1152/jn.1976.39.5.1062 10.1152/jn.00095.2007 10.1523/JNEUROSCI.09-06-02080.1989 10.1152/jn.00892.2011 10.1523/JNEUROSCI.2999-11.2011 10.1038/ncomms8759 10.1002/cne.903380109 10.1038/nn.3776 10.1126/science.1149774 10.1016/j.neuron.2005.01.027 10.1523/ENEURO.0085-16.2016 10.1016/j.neuron.2013.11.003 10.1038/386167a0 10.1523/JNEUROSCI.02-11-01527.1982 10.1093/cercor/bhq260 10.1016/j.neuron.2014.04.045 10.1126/science.186.4163.545 10.1016/j.brs.2017.09.014 10.1523/JNEUROSCI.1777-11.2011 10.1016/S0013-4694(98)00022-4 10.1152/jn.1999.82.6.3488 10.1016/j.conb.2006.03.014 10.1007/s00221-010-2315-2 10.7554/eLife.07436 10.1152/jn.01038.2011 10.1038/ncomms13239 10.1016/0166-4328(85)90070-1 10.1146/annurev.ne.08.030185.000245 10.1016/j.neuron.2019.01.026 10.1152/jn.1966.29.6.1011 10.1016/S0896-6273(02)01028-0 10.1101/sqb.2014.79.024703 10.1007/s00221-007-0901-8 10.1126/science.285.5436.2136 10.1007/s00221-002-1166-x 10.1523/JNEUROSCI.4302-14.2015 10.1152/jn.00231.2009 10.1523/JNEUROSCI.2643-14.2015 10.1038/nature11129 10.1007/s00429-005-0025-5 10.1152/jn.00575.2018 10.1038/s41467-019-10772-2 10.1046/j.1460-9568.2003.02906.x |
ContentType | Journal Article |
Copyright | 2022 The Author(s) Copyright © 2022 The Author(s). Published by Elsevier Inc. All rights reserved. |
Copyright_xml | – notice: 2022 The Author(s) – notice: Copyright © 2022 The Author(s). Published by Elsevier Inc. All rights reserved. |
DBID | 6I. AAFTH AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM |
DOI | 10.1016/j.celrep.2022.111849 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2211-1247 |
EndPage | 111849 |
ExternalDocumentID | PMC11271678 36543147 10_1016_j_celrep_2022_111849 S2211124722017417 |
Genre | Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NINDS NIH HHS grantid: R01 NS079664 – fundername: NINDS NIH HHS grantid: R01 NS102343 – fundername: NINDS NIH HHS grantid: R00 NS101127 – fundername: NINDS NIH HHS grantid: R01 NS110423 – fundername: NINDS NIH HHS grantid: K99 NS101127 – fundername: NIGMS NIH HHS grantid: K12 GM123914 |
GroupedDBID | 0R~ 0SF 4.4 457 53G 5VS 6I. AACTN AAEDT AAEDW AAFTH AAIKJ AAKRW AALRI AAUCE AAXUO ABMAC ABMWF ACGFO ACGFS ADBBV ADEZE AENEX AEXQZ AFTJW AGHFR AITUG ALKID ALMA_UNASSIGNED_HOLDINGS AMRAJ BAWUL BCNDV DIK EBS EJD FCP FDB FRP GROUPED_DOAJ GX1 IXB KQ8 M41 M48 NCXOZ O-L O9- OK1 RCE ROL SSZ AAMRU AAYWO AAYXX ACVFH ADCNI ADVLN AEUPX AFPUW AIGII AKBMS AKRWK AKYEP APXCP CITATION HZ~ IPNFZ RIG CGR CUY CVF ECM EIF NPM 7X8 5PM |
ID | FETCH-LOGICAL-c464t-fd89e71fde54c3b88ab2879c6ffc2b3e17da527bfb0815c53219c235e8849f3f3 |
IEDL.DBID | M48 |
ISSN | 2211-1247 |
IngestDate | Thu Aug 21 18:34:11 EDT 2025 Fri Jul 11 15:32:27 EDT 2025 Tue Aug 05 11:42:38 EDT 2025 Thu Apr 24 22:58:02 EDT 2025 Tue Jul 01 02:59:32 EDT 2025 Tue Jul 25 20:57:16 EDT 2023 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 12 |
Keywords | non-human primate dynamical systems model CP: Neuroscience reach to grasp premotor cortex motor control primary motor cortex |
Language | English |
License | This is an open access article under the CC BY-NC-ND license. Copyright © 2022 The Author(s). Published by Elsevier Inc. All rights reserved. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c464t-fd89e71fde54c3b88ab2879c6ffc2b3e17da527bfb0815c53219c235e8849f3f3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 AUTHOR CONTRIBUTIONS M.H.S. and A.G.R. conducted the experiments; R.D. analyzed the dataset; and R.D., S.V.S., and M.H.S. wrote the paper. |
ORCID | 0000-0003-3785-1442 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S2211124722017417 |
PMID | 36543147 |
PQID | 2757054771 |
PQPubID | 23479 |
PageCount | 1 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_11271678 proquest_miscellaneous_2757054771 pubmed_primary_36543147 crossref_citationtrail_10_1016_j_celrep_2022_111849 crossref_primary_10_1016_j_celrep_2022_111849 elsevier_sciencedirect_doi_10_1016_j_celrep_2022_111849 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-12-20 |
PublicationDateYYYYMMDD | 2022-12-20 |
PublicationDate_xml | – month: 12 year: 2022 text: 2022-12-20 day: 20 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Cell reports (Cambridge) |
PublicationTitleAlternate | Cell Rep |
PublicationYear | 2022 |
Publisher | Elsevier Inc |
Publisher_xml | – name: Elsevier Inc |
References | Luppino, Matelli, Camarda, Rizzolatti (bib41) 1993; 338 Semedo, Zandvakili, Machens, Yu, Kohn (bib57) 2019; 102 Davidson, Chan, O’Dell, Schieber (bib16) 2007; 318 Agarwal, Thakor, Sarma, Massaquoi (bib1) 2015; 35 Wise, Weinrich, Mauritz (bib65) 1986; 64 Georgopoulos, Kalaska, Caminiti, Massey (bib23) 1982; 2 Churchland, Shenoy (bib10) 2007; 97 Fu, Suarez, Ebner (bib22) 1993; 70 Weinrich, Wise (bib62) 1982; 2 Godschalk, Lemon, Kuypers, Van Der Steen (bib27) 1985; 18 Feldman (bib20) 2019; 121 D’Aleo, Rouse, Schieber, Sarma (bib14) 2019 Gharbawie, Stepniewska, Kaas (bib25) 2011; 21 Ninomiya, Inoue, Hoshi, Takada (bib45) 2019; 9 Kaufman, Churchland, Ryu, Shenoy (bib35) 2014; 17 Michaels, Dann, Scherberger (bib43) 2016; 12 Amunts, Kedo, Kindler, Pieperhoff, Mohlberg, Shah, Habel, Schneider, Zilles (bib5) 2005; 210 Elsayed, Lara, Kaufman, Churchland, Cunningham (bib18) 2016; 7 Overduin, d’Avella, Roh, Carmena, Bizzi (bib46) 2015; 35 Davare, Kraskov, Rothwell, Lemon (bib15) 2011; 21 Fetz (bib21) 1992; 15 Wise (bib63) 1985; 8 Kaufman, Seely, Sussillo, Ryu, Shenoy, Churchland (bib38) 2016; 3 Pandarinath, Gilja, Blabe, Nuyujukian, Sarma, Sorice, Eskandar, Hochberg, Henderson, Shenoy (bib48) 2015; 4 Cisek, Kalaska (bib11) 2005; 45 Griffin, Hoffman, Strick (bib29) 2015; 350 Ames, Ryu, Shenoy (bib4) 2014; 81 Briggman, Abarbanel, Kristan (bib7) 2006; 16 Matelli, Camarda, Glickstein, Rizzolatti (bib42) 1986; 251 Mollazadeh, Aggarwal, Davidson, Law, Thakor, Schieber (bib44) 2011; 31 Holdefer, Miller (bib31) 2002; 146 Hennequin, Vogels, Gerstner (bib30) 2014; 82 Kao, Nuyujukian, Ryu, Churchland, Cunningham, Shenoy (bib34) 2015; 6 Rizzolatti, Luppino, Matelli (bib55) 1998; 106 Ames, Ryu, Shenoy (bib3) 2019; 10 Shalit, Zinger, Joshua, Prut (bib58) 2012; 22 Kaufman, Churchland, Santhanam, Yu, Afshar, Ryu, Shenoy (bib36) 2010; 104 Georgopoulos, Schwartz, Kettner (bib24) 1986; 233 Perich, Gallego, Miller (bib49) 2018; 100 Kalaska, Cohen, Hyde, Prud’homme (bib33) 1989; 9 Kakei, Hoffman, Strick (bib32) 1999; 285 Churchland, Cunningham, Kaufman, Foster, Nuyujukian, Ryu, Shenoy (bib9) 2012; 487 Kurata (bib39) 1989; 77 Riehle, Requin (bib54) 1993; 53 Cunningham, Yu (bib13) 2014; 17 Poliakov, Schieber (bib52) 1999; 82 Wise, Weinrich, Mauritz (bib64) 1983; 260 Pilon, De Serres, Feldman (bib51) 2007; 181 Seely, Kaufman, Ryu, Shenoy, Cunningham, Churchland (bib56) 2016; 12 Yu, Cunningham, Santhanam, Ryu, Shenoy, Sahani (bib66) 2009; 102 Day, Rothwell, Thompson, Maertens de Noordhout, Nakashima, Shannon, Marsden (bib17) 1989; 112 Aggarwal, Mollazadeh, Davidson, Schieber, Thakor (bib2) 2013; 109 Grafton (bib28) 2010; 204 Crammond, Kalaska (bib12) 1989; 76 Raptis, Burtet, Forget, Feldman (bib53) 2010; 588 van Beers, Haggard, Wolpert (bib61) 2004; 91 Kaufman, Churchland, Shenoy (bib37) 2013; 110 Snyder, Batista, Andersen (bib59) 1997; 386 Bastian, Schöner, Riehle (bib6) 2003; 18 Gharbawie, Stepniewska, Qi, Kaas (bib26) 2011; 31 Kutas, Donchin (bib40) 1974; 186 Tanji, Evarts (bib60) 1976; 39 Churchland, Cunningham (bib8) 2014; 79 Evarts (bib19) 1966; 29 Padoa-Schioppa, Li, Bizzi (bib47) 2002; 36 Perruchoud, Fiorio, Cesari, Ionta (bib50) 2018; 11 Matelli (10.1016/j.celrep.2022.111849_bib42) 1986; 251 Overduin (10.1016/j.celrep.2022.111849_bib46) 2015; 35 Kaufman (10.1016/j.celrep.2022.111849_bib38) 2016; 3 Perruchoud (10.1016/j.celrep.2022.111849_bib50) 2018; 11 Fu (10.1016/j.celrep.2022.111849_bib22) 1993; 70 Wise (10.1016/j.celrep.2022.111849_bib63) 1985; 8 Rizzolatti (10.1016/j.celrep.2022.111849_bib55) 1998; 106 Aggarwal (10.1016/j.celrep.2022.111849_bib2) 2013; 109 Shalit (10.1016/j.celrep.2022.111849_bib58) 2012; 22 Perich (10.1016/j.celrep.2022.111849_bib49) 2018; 100 Semedo (10.1016/j.celrep.2022.111849_bib57) 2019; 102 Churchland (10.1016/j.celrep.2022.111849_bib10) 2007; 97 Feldman (10.1016/j.celrep.2022.111849_bib20) 2019; 121 Bastian (10.1016/j.celrep.2022.111849_bib6) 2003; 18 Cunningham (10.1016/j.celrep.2022.111849_bib13) 2014; 17 Kurata (10.1016/j.celrep.2022.111849_bib39) 1989; 77 Poliakov (10.1016/j.celrep.2022.111849_bib52) 1999; 82 Hennequin (10.1016/j.celrep.2022.111849_bib30) 2014; 82 Kutas (10.1016/j.celrep.2022.111849_bib40) 1974; 186 Davare (10.1016/j.celrep.2022.111849_bib15) 2011; 21 Snyder (10.1016/j.celrep.2022.111849_bib59) 1997; 386 Pandarinath (10.1016/j.celrep.2022.111849_bib48) 2015; 4 Pilon (10.1016/j.celrep.2022.111849_bib51) 2007; 181 Gharbawie (10.1016/j.celrep.2022.111849_bib26) 2011; 31 Kaufman (10.1016/j.celrep.2022.111849_bib37) 2013; 110 Luppino (10.1016/j.celrep.2022.111849_bib41) 1993; 338 Crammond (10.1016/j.celrep.2022.111849_bib12) 1989; 76 Michaels (10.1016/j.celrep.2022.111849_bib43) 2016; 12 Churchland (10.1016/j.celrep.2022.111849_bib9) 2012; 487 Grafton (10.1016/j.celrep.2022.111849_bib28) 2010; 204 Evarts (10.1016/j.celrep.2022.111849_bib19) 1966; 29 Elsayed (10.1016/j.celrep.2022.111849_bib18) 2016; 7 Ninomiya (10.1016/j.celrep.2022.111849_bib45) 2019; 9 Ames (10.1016/j.celrep.2022.111849_bib3) 2019; 10 Wise (10.1016/j.celrep.2022.111849_bib64) 1983; 260 Mollazadeh (10.1016/j.celrep.2022.111849_bib44) 2011; 31 Agarwal (10.1016/j.celrep.2022.111849_bib1) 2015; 35 Fetz (10.1016/j.celrep.2022.111849_bib21) 1992; 15 Churchland (10.1016/j.celrep.2022.111849_bib8) 2014; 79 Kao (10.1016/j.celrep.2022.111849_bib34) 2015; 6 Yu (10.1016/j.celrep.2022.111849_bib66) 2009; 102 Griffin (10.1016/j.celrep.2022.111849_bib29) 2015; 350 van Beers (10.1016/j.celrep.2022.111849_bib61) 2004; 91 Kakei (10.1016/j.celrep.2022.111849_bib32) 1999; 285 Kalaska (10.1016/j.celrep.2022.111849_bib33) 1989; 9 Ames (10.1016/j.celrep.2022.111849_bib4) 2014; 81 Kaufman (10.1016/j.celrep.2022.111849_bib36) 2010; 104 Padoa-Schioppa (10.1016/j.celrep.2022.111849_bib47) 2002; 36 Georgopoulos (10.1016/j.celrep.2022.111849_bib23) 1982; 2 Day (10.1016/j.celrep.2022.111849_bib17) 1989; 112 Davidson (10.1016/j.celrep.2022.111849_bib16) 2007; 318 Holdefer (10.1016/j.celrep.2022.111849_bib31) 2002; 146 Briggman (10.1016/j.celrep.2022.111849_bib7) 2006; 16 Raptis (10.1016/j.celrep.2022.111849_bib53) 2010; 588 Godschalk (10.1016/j.celrep.2022.111849_bib27) 1985; 18 Seely (10.1016/j.celrep.2022.111849_bib56) 2016; 12 Wise (10.1016/j.celrep.2022.111849_bib65) 1986; 64 D’Aleo (10.1016/j.celrep.2022.111849_bib14) 2019 Gharbawie (10.1016/j.celrep.2022.111849_bib25) 2011; 21 Riehle (10.1016/j.celrep.2022.111849_bib54) 1993; 53 Weinrich (10.1016/j.celrep.2022.111849_bib62) 1982; 2 Cisek (10.1016/j.celrep.2022.111849_bib11) 2005; 45 Kaufman (10.1016/j.celrep.2022.111849_bib35) 2014; 17 Amunts (10.1016/j.celrep.2022.111849_bib5) 2005; 210 Georgopoulos (10.1016/j.celrep.2022.111849_bib24) 1986; 233 Tanji (10.1016/j.celrep.2022.111849_bib60) 1976; 39 |
References_xml | – volume: 204 start-page: 475 year: 2010 end-page: 491 ident: bib28 article-title: The cognitive neuroscience of prehension: recent developments publication-title: Exp. Brain Res. – volume: 285 start-page: 2136 year: 1999 end-page: 2139 ident: bib32 article-title: Muscle and movement representations in the primary motor cortex publication-title: Science – volume: 260 start-page: 301 year: 1983 end-page: 305 ident: bib64 article-title: Motor aspects of cue-related neuronal activity in premotor cortex of the rhesus monkey publication-title: Brain Res. – volume: 112 start-page: 649 year: 1989 end-page: 663 ident: bib17 article-title: Delay in the execution of the voluntary movement by electrical or magnetic brain stimulation in intact man publication-title: Brain – volume: 77 start-page: 245 year: 1989 end-page: 256 ident: bib39 article-title: Distribution of neurons with set- and movement-related activity before hand and foot movements in the premotor cortex of rhesus monkeys publication-title: Exp. Brain Res. – volume: 7 year: 2016 ident: bib18 article-title: Reorganization between preparatory and movement population responses in motor cortex publication-title: Nat. Commun. – volume: 31 start-page: 15531 year: 2011 end-page: 15543 ident: bib44 article-title: Spatiotemporal variation of multiple neurophysiological signals in the primary motor cortex during dexterous reach-to-grasp movements publication-title: J. Neurosci. – volume: 29 start-page: 1011 year: 1966 end-page: 1027 ident: bib19 article-title: Pyramidal tract activity associated with a conditioned hand movement in the monkey publication-title: J. Neurophysiol. – volume: 12 year: 2016 ident: bib56 article-title: Tensor analysis reveals distinct population structure that parallels the different computational roles of areas M1 and V1 publication-title: PLoS Comput. Biol. – volume: 21 start-page: 1981 year: 2011 end-page: 2002 ident: bib25 article-title: Cortical connections of functional zones in posterior parietal cortex and frontal cortex motor regions in new world monkeys publication-title: Cerebr. Cortex – volume: 318 start-page: 1934 year: 2007 end-page: 1937 ident: bib16 article-title: Rapid changes in throughput from single motor cortex neurons to muscle activity publication-title: Science – volume: 45 start-page: 801 year: 2005 end-page: 814 ident: bib11 article-title: Neural correlates of reaching decisions in dorsal premotor cortex: specification of multiple direction choices and final selection of action publication-title: Neuron – volume: 2 start-page: 1527 year: 1982 end-page: 1537 ident: bib23 article-title: On the relations between the direction of two-dimensional arm movements and cell discharge in primate motor cortex publication-title: J. Neurosci. – volume: 2 start-page: 1329 year: 1982 end-page: 1345 ident: bib62 article-title: The premotor cortex of the monkey publication-title: J. Neurosci. – volume: 102 start-page: 614 year: 2009 end-page: 635 ident: bib66 article-title: Gaussian-process factor analysis for low-dimensional single-trial analysis of neural population activity publication-title: J. Neurophysiol. – volume: 104 start-page: 799 year: 2010 end-page: 810 ident: bib36 article-title: Roles of monkey premotor neuron classes in movement preparation and execution publication-title: J. Neurophysiol. – volume: 386 start-page: 167 year: 1997 end-page: 170 ident: bib59 article-title: Coding of intention in the posterior parietal cortex publication-title: Nature – volume: 487 start-page: 51 year: 2012 end-page: 56 ident: bib9 article-title: Neural population dynamics during reaching publication-title: Nature – volume: 82 start-page: 3488 year: 1999 end-page: 3505 ident: bib52 article-title: Limited functional grouping of neurons in the motor cortex hand area during individuated finger movements: a cluster analysis publication-title: J. Neurophysiol. – volume: 35 start-page: 9508 year: 2015 end-page: 9525 ident: bib1 article-title: PMv neuronal firing may be driven by a movement command trajectory within multidimensional Gaussian fields publication-title: J. Neurosci. – volume: 110 start-page: 817 year: 2013 end-page: 825 ident: bib37 article-title: The roles of monkey M1 neuron classes in movement preparation and execution publication-title: J. Neurophysiol. – volume: 6 start-page: 7759 year: 2015 ident: bib34 article-title: Single-trial dynamics of motor cortex and their applications to brain-machine interfaces publication-title: Nat. Commun. – volume: 121 start-page: 823 year: 2019 end-page: 841 ident: bib20 article-title: Indirect, referent control of motor actions underlies directional tuning of neurons publication-title: J. Neurophysiol. – volume: 251 start-page: 281 year: 1986 end-page: 298 ident: bib42 article-title: Afferent and efferent projections of the inferior area 6 in the macaque monkey publication-title: J. Comp. Neurol. – volume: 8 start-page: 1 year: 1985 end-page: 19 ident: bib63 article-title: The primate premotor cortex: past, present, and preparatory publication-title: Annu. Rev. Neurosci. – volume: 18 start-page: 143 year: 1985 end-page: 157 ident: bib27 article-title: The involvement of monkey premotor cortex neurones in preparation of visually cued arm movements publication-title: Behav. Brain Res. – volume: 338 start-page: 114 year: 1993 end-page: 140 ident: bib41 article-title: Corticocortical connections of area F3 (SMA-proper) and area F6 (pre-SMA) in the macaque monkey publication-title: J. Comp. Neurol. – volume: 233 start-page: 1416 year: 1986 end-page: 1419 ident: bib24 article-title: Neuronal population coding of movement direction publication-title: Science – volume: 79 start-page: 67 year: 2014 end-page: 80 ident: bib8 article-title: A dynamical basis set for generating reaches publication-title: Cold Spring Harbor Symp. Quant. Biol. – start-page: 1960 year: 2019 end-page: 1964 ident: bib14 article-title: Quantifying interactions between neural populations during behavior using dynamical systems models publication-title: 2019 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC) – volume: 70 start-page: 2097 year: 1993 end-page: 2116 ident: bib22 article-title: Neuronal specification of direction and distance during reaching movements in the superior precentral premotor area and primary motor cortex of monkeys publication-title: J. Neurophysiol. – volume: 9 start-page: 2080 year: 1989 end-page: 2102 ident: bib33 article-title: A comparison of movement direction-related versus load direction- related activity in primate motor cortex, using a two-dimensional reaching task publication-title: J. Neurosci. – volume: 16 start-page: 135 year: 2006 end-page: 144 ident: bib7 article-title: From crawling to cognition: analyzing the dynamical interactions among populations of neurons publication-title: Curr. Opin. Neurobiol. – volume: 17 start-page: 440 year: 2014 end-page: 448 ident: bib35 article-title: Cortical activity in the null space: permitting preparation without movement publication-title: Nat. Neurosci. – volume: 31 start-page: 11660 year: 2011 end-page: 11677 ident: bib26 article-title: Multiple parietal–frontal pathways mediate grasping in macaque monkeys publication-title: J. Neurosci. – volume: 21 start-page: 565 year: 2011 end-page: 570 ident: bib15 article-title: Interactions between areas of the cortical grasping network publication-title: Curr. Opin. Neurobiol. – volume: 181 start-page: 49 year: 2007 end-page: 67 ident: bib51 article-title: Threshold position control of arm movement with anticipatory increase in grip force publication-title: Exp. Brain Res. – volume: 12 year: 2016 ident: bib43 article-title: Neural population dynamics during reaching are better explained by a dynamical system than representational tuning publication-title: PLoS Comput. Biol. – volume: 35 start-page: 12615 year: 2015 end-page: 12624 ident: bib46 article-title: Representation of muscle synergies in the primate brain publication-title: J. Neurosci. – volume: 64 start-page: 117 year: 1986 end-page: 131 ident: bib65 article-title: Movement-related activity in the premotor cortex of rhesus macaques publication-title: The Oculomotor and Skeletalmotor Systems: Differences and Similarities – volume: 15 start-page: 679 year: 1992 end-page: 690 ident: bib21 article-title: Are movement parameters recognizably coded in the activity of single neurons? publication-title: Behav. Brain Sci. – volume: 100 start-page: 964 year: 2018 end-page: 976.e7 ident: bib49 article-title: A neural population mechanism for rapid learning publication-title: Neuron – volume: 18 start-page: 2047 year: 2003 end-page: 2058 ident: bib6 article-title: Preshaping and continuous evolution of motor cortical representations during movement preparation publication-title: Eur. J. Neurosci. – volume: 22 start-page: 1904 year: 2012 end-page: 1914 ident: bib58 article-title: Descending systems translate transient cortical commands into a sustained muscle activation signal publication-title: Cerebr. Cortex – volume: 102 start-page: 249 year: 2019 end-page: 259.e4 ident: bib57 article-title: Cortical areas interact through a communication subspace publication-title: Neuron – volume: 39 start-page: 1062 year: 1976 end-page: 1068 ident: bib60 article-title: Anticipatory activity of motor cortex neurons in relation to direction of an intended movement publication-title: J. Neurophysiol. – volume: 11 start-page: 175 year: 2018 end-page: 180 ident: bib50 article-title: Beyond variability: subjective timing and the neurophysiology of motor cognition publication-title: Brain Stimul. – volume: 81 start-page: 438 year: 2014 end-page: 451 ident: bib4 article-title: Neural dynamics of reaching following incorrect or absent motor preparation publication-title: Neuron – volume: 210 start-page: 343 year: 2005 end-page: 352 ident: bib5 article-title: Cytoarchitectonic mapping of the human amygdala, hippocampal region and entorhinal cortex: intersubject variability and probability maps publication-title: Anat. Embryol. – volume: 106 start-page: 283 year: 1998 end-page: 296 ident: bib55 article-title: The organization of the cortical motor system: new concepts publication-title: Electroencephalogr. Clin. Neurophysiol. – volume: 91 start-page: 1050 year: 2004 end-page: 1063 ident: bib61 article-title: The role of execution noise in movement variability publication-title: J. Neurophysiol. – volume: 76 start-page: 458 year: 1989 end-page: 462 ident: bib12 article-title: Neuronal activity in primate parietal cortex area 5 varies with intended movement direction during an instructed-delay period publication-title: Exp. Brain Res. – volume: 4 year: 2015 ident: bib48 article-title: Neural population dynamics in human motor cortex during movements in people with ALS publication-title: Elife – volume: 588 start-page: 1551 year: 2010 end-page: 1570 ident: bib53 article-title: Control of wrist position and muscle relaxation by shifting spatial frames of reference for motoneuronal recruitment: possible involvement of corticospinal pathways publication-title: J. Physiol. – volume: 186 start-page: 545 year: 1974 end-page: 548 ident: bib40 article-title: Studies of squeezing: handedness, responding hand, response force, and asymmetry of readiness potential publication-title: Science – volume: 109 start-page: 3067 year: 2013 end-page: 3081 ident: bib2 article-title: State-based decoding of hand and finger kinematics using neuronal ensemble and LFP activity during dexterous reach-to-grasp movements publication-title: J. Neurophysiol. – volume: 3 year: 2016 ident: bib38 article-title: The largest response component in the motor cortex reflects movement timing but not movement type publication-title: eneuro – volume: 97 start-page: 4235 year: 2007 end-page: 4257 ident: bib10 article-title: Temporal complexity and heterogeneity of single-neuron activity in premotor and motor cortex publication-title: J. Neurophysiol. – volume: 9 year: 2019 ident: bib45 article-title: Layer specificity of inputs from supplementary motor area and dorsal premotor cortex to primary motor cortex in macaque monkeys publication-title: Sci. Rep. – volume: 53 start-page: 35 year: 1993 end-page: 49 ident: bib54 article-title: The predictive value for performance speed of preparatory changes in neuronal activity of the monkey motor and premotor cortex publication-title: Behav. Brain Res. – volume: 82 start-page: 1394 year: 2014 end-page: 1406 ident: bib30 article-title: Optimal control of transient dynamics in balanced networks supports generation of complex movements publication-title: Neuron – volume: 36 start-page: 751 year: 2002 end-page: 765 ident: bib47 article-title: Neuronal correlates of kinematics-to-dynamics transformation in the supplementary motor area publication-title: Neuron – volume: 10 start-page: 2718 year: 2019 ident: bib3 article-title: Simultaneous motor preparation and execution in a last-moment reach correction task publication-title: Nat. Commun. – volume: 17 start-page: 1500 year: 2014 end-page: 1509 ident: bib13 article-title: Dimensionality reduction for large-scale neural recordings publication-title: Nat. Neurosci. – volume: 350 start-page: 667 year: 2015 end-page: 670 ident: bib29 article-title: Corticomotoneuronal cells are “functionally tuned” publication-title: Science – volume: 146 start-page: 233 year: 2002 end-page: 243 ident: bib31 article-title: Primary motor cortical neurons encode functional muscle synergies publication-title: Exp. Brain Res. – volume: 21 start-page: 565 year: 2011 ident: 10.1016/j.celrep.2022.111849_bib15 article-title: Interactions between areas of the cortical grasping network publication-title: Curr. Opin. Neurobiol. doi: 10.1016/j.conb.2011.05.021 – volume: 100 start-page: 964 year: 2018 ident: 10.1016/j.celrep.2022.111849_bib49 article-title: A neural population mechanism for rapid learning publication-title: Neuron doi: 10.1016/j.neuron.2018.09.030 – volume: 233 start-page: 1416 year: 1986 ident: 10.1016/j.celrep.2022.111849_bib24 article-title: Neuronal population coding of movement direction publication-title: Science doi: 10.1126/science.3749885 – volume: 350 start-page: 667 year: 2015 ident: 10.1016/j.celrep.2022.111849_bib29 article-title: Corticomotoneuronal cells are “functionally tuned” publication-title: Science doi: 10.1126/science.aaa8035 – volume: 76 start-page: 458 year: 1989 ident: 10.1016/j.celrep.2022.111849_bib12 article-title: Neuronal activity in primate parietal cortex area 5 varies with intended movement direction during an instructed-delay period publication-title: Exp. Brain Res. doi: 10.1007/BF00247902 – volume: 53 start-page: 35 year: 1993 ident: 10.1016/j.celrep.2022.111849_bib54 article-title: The predictive value for performance speed of preparatory changes in neuronal activity of the monkey motor and premotor cortex publication-title: Behav. Brain Res. doi: 10.1016/S0166-4328(05)80264-5 – volume: 102 start-page: 614 year: 2009 ident: 10.1016/j.celrep.2022.111849_bib66 article-title: Gaussian-process factor analysis for low-dimensional single-trial analysis of neural population activity publication-title: J. Neurophysiol. doi: 10.1152/jn.90941.2008 – volume: 112 start-page: 649 year: 1989 ident: 10.1016/j.celrep.2022.111849_bib17 article-title: Delay in the execution of the voluntary movement by electrical or magnetic brain stimulation in intact man publication-title: Brain doi: 10.1093/brain/112.3.649 – volume: 12 year: 2016 ident: 10.1016/j.celrep.2022.111849_bib56 article-title: Tensor analysis reveals distinct population structure that parallels the different computational roles of areas M1 and V1 publication-title: PLoS Comput. Biol. doi: 10.1371/journal.pcbi.1005164 – volume: 77 start-page: 245 year: 1989 ident: 10.1016/j.celrep.2022.111849_bib39 article-title: Distribution of neurons with set- and movement-related activity before hand and foot movements in the premotor cortex of rhesus monkeys publication-title: Exp. Brain Res. doi: 10.1007/BF00274982 – volume: 12 year: 2016 ident: 10.1016/j.celrep.2022.111849_bib43 article-title: Neural population dynamics during reaching are better explained by a dynamical system than representational tuning publication-title: PLoS Comput. Biol. doi: 10.1371/journal.pcbi.1005175 – volume: 588 start-page: 1551 year: 2010 ident: 10.1016/j.celrep.2022.111849_bib53 article-title: Control of wrist position and muscle relaxation by shifting spatial frames of reference for motoneuronal recruitment: possible involvement of corticospinal pathways publication-title: J. Physiol. doi: 10.1113/jphysiol.2009.186858 – volume: 22 start-page: 1904 year: 2012 ident: 10.1016/j.celrep.2022.111849_bib58 article-title: Descending systems translate transient cortical commands into a sustained muscle activation signal publication-title: Cerebr. Cortex doi: 10.1093/cercor/bhr267 – volume: 251 start-page: 281 year: 1986 ident: 10.1016/j.celrep.2022.111849_bib42 article-title: Afferent and efferent projections of the inferior area 6 in the macaque monkey publication-title: J. Comp. Neurol. doi: 10.1002/cne.902510302 – volume: 2 start-page: 1329 year: 1982 ident: 10.1016/j.celrep.2022.111849_bib62 article-title: The premotor cortex of the monkey publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.02-09-01329.1982 – volume: 17 start-page: 440 year: 2014 ident: 10.1016/j.celrep.2022.111849_bib35 article-title: Cortical activity in the null space: permitting preparation without movement publication-title: Nat. Neurosci. doi: 10.1038/nn.3643 – volume: 70 start-page: 2097 year: 1993 ident: 10.1016/j.celrep.2022.111849_bib22 article-title: Neuronal specification of direction and distance during reaching movements in the superior precentral premotor area and primary motor cortex of monkeys publication-title: J. Neurophysiol. doi: 10.1152/jn.1993.70.5.2097 – volume: 91 start-page: 1050 year: 2004 ident: 10.1016/j.celrep.2022.111849_bib61 article-title: The role of execution noise in movement variability publication-title: J. Neurophysiol. doi: 10.1152/jn.00652.2003 – volume: 15 start-page: 679 year: 1992 ident: 10.1016/j.celrep.2022.111849_bib21 article-title: Are movement parameters recognizably coded in the activity of single neurons? publication-title: Behav. Brain Sci. – volume: 9 year: 2019 ident: 10.1016/j.celrep.2022.111849_bib45 article-title: Layer specificity of inputs from supplementary motor area and dorsal premotor cortex to primary motor cortex in macaque monkeys publication-title: Sci. Rep. doi: 10.1038/s41598-019-54220-z – volume: 39 start-page: 1062 year: 1976 ident: 10.1016/j.celrep.2022.111849_bib60 article-title: Anticipatory activity of motor cortex neurons in relation to direction of an intended movement publication-title: J. Neurophysiol. doi: 10.1152/jn.1976.39.5.1062 – volume: 97 start-page: 4235 year: 2007 ident: 10.1016/j.celrep.2022.111849_bib10 article-title: Temporal complexity and heterogeneity of single-neuron activity in premotor and motor cortex publication-title: J. Neurophysiol. doi: 10.1152/jn.00095.2007 – volume: 9 start-page: 2080 year: 1989 ident: 10.1016/j.celrep.2022.111849_bib33 article-title: A comparison of movement direction-related versus load direction- related activity in primate motor cortex, using a two-dimensional reaching task publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.09-06-02080.1989 – volume: 110 start-page: 817 year: 2013 ident: 10.1016/j.celrep.2022.111849_bib37 article-title: The roles of monkey M1 neuron classes in movement preparation and execution publication-title: J. Neurophysiol. doi: 10.1152/jn.00892.2011 – volume: 31 start-page: 15531 year: 2011 ident: 10.1016/j.celrep.2022.111849_bib44 article-title: Spatiotemporal variation of multiple neurophysiological signals in the primary motor cortex during dexterous reach-to-grasp movements publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.2999-11.2011 – volume: 6 start-page: 7759 year: 2015 ident: 10.1016/j.celrep.2022.111849_bib34 article-title: Single-trial dynamics of motor cortex and their applications to brain-machine interfaces publication-title: Nat. Commun. doi: 10.1038/ncomms8759 – volume: 64 start-page: 117 year: 1986 ident: 10.1016/j.celrep.2022.111849_bib65 article-title: Movement-related activity in the premotor cortex of rhesus macaques – volume: 338 start-page: 114 year: 1993 ident: 10.1016/j.celrep.2022.111849_bib41 article-title: Corticocortical connections of area F3 (SMA-proper) and area F6 (pre-SMA) in the macaque monkey publication-title: J. Comp. Neurol. doi: 10.1002/cne.903380109 – volume: 17 start-page: 1500 year: 2014 ident: 10.1016/j.celrep.2022.111849_bib13 article-title: Dimensionality reduction for large-scale neural recordings publication-title: Nat. Neurosci. doi: 10.1038/nn.3776 – volume: 318 start-page: 1934 year: 2007 ident: 10.1016/j.celrep.2022.111849_bib16 article-title: Rapid changes in throughput from single motor cortex neurons to muscle activity publication-title: Science doi: 10.1126/science.1149774 – volume: 45 start-page: 801 year: 2005 ident: 10.1016/j.celrep.2022.111849_bib11 article-title: Neural correlates of reaching decisions in dorsal premotor cortex: specification of multiple direction choices and final selection of action publication-title: Neuron doi: 10.1016/j.neuron.2005.01.027 – volume: 3 year: 2016 ident: 10.1016/j.celrep.2022.111849_bib38 article-title: The largest response component in the motor cortex reflects movement timing but not movement type publication-title: eneuro doi: 10.1523/ENEURO.0085-16.2016 – volume: 81 start-page: 438 year: 2014 ident: 10.1016/j.celrep.2022.111849_bib4 article-title: Neural dynamics of reaching following incorrect or absent motor preparation publication-title: Neuron doi: 10.1016/j.neuron.2013.11.003 – volume: 386 start-page: 167 year: 1997 ident: 10.1016/j.celrep.2022.111849_bib59 article-title: Coding of intention in the posterior parietal cortex publication-title: Nature doi: 10.1038/386167a0 – volume: 2 start-page: 1527 year: 1982 ident: 10.1016/j.celrep.2022.111849_bib23 article-title: On the relations between the direction of two-dimensional arm movements and cell discharge in primate motor cortex publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.02-11-01527.1982 – volume: 21 start-page: 1981 year: 2011 ident: 10.1016/j.celrep.2022.111849_bib25 article-title: Cortical connections of functional zones in posterior parietal cortex and frontal cortex motor regions in new world monkeys publication-title: Cerebr. Cortex doi: 10.1093/cercor/bhq260 – volume: 82 start-page: 1394 year: 2014 ident: 10.1016/j.celrep.2022.111849_bib30 article-title: Optimal control of transient dynamics in balanced networks supports generation of complex movements publication-title: Neuron doi: 10.1016/j.neuron.2014.04.045 – volume: 186 start-page: 545 year: 1974 ident: 10.1016/j.celrep.2022.111849_bib40 article-title: Studies of squeezing: handedness, responding hand, response force, and asymmetry of readiness potential publication-title: Science doi: 10.1126/science.186.4163.545 – volume: 11 start-page: 175 year: 2018 ident: 10.1016/j.celrep.2022.111849_bib50 article-title: Beyond variability: subjective timing and the neurophysiology of motor cognition publication-title: Brain Stimul. doi: 10.1016/j.brs.2017.09.014 – volume: 31 start-page: 11660 year: 2011 ident: 10.1016/j.celrep.2022.111849_bib26 article-title: Multiple parietal–frontal pathways mediate grasping in macaque monkeys publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.1777-11.2011 – start-page: 1960 year: 2019 ident: 10.1016/j.celrep.2022.111849_bib14 article-title: Quantifying interactions between neural populations during behavior using dynamical systems models – volume: 106 start-page: 283 year: 1998 ident: 10.1016/j.celrep.2022.111849_bib55 article-title: The organization of the cortical motor system: new concepts publication-title: Electroencephalogr. Clin. Neurophysiol. doi: 10.1016/S0013-4694(98)00022-4 – volume: 82 start-page: 3488 year: 1999 ident: 10.1016/j.celrep.2022.111849_bib52 article-title: Limited functional grouping of neurons in the motor cortex hand area during individuated finger movements: a cluster analysis publication-title: J. Neurophysiol. doi: 10.1152/jn.1999.82.6.3488 – volume: 16 start-page: 135 year: 2006 ident: 10.1016/j.celrep.2022.111849_bib7 article-title: From crawling to cognition: analyzing the dynamical interactions among populations of neurons publication-title: Curr. Opin. Neurobiol. doi: 10.1016/j.conb.2006.03.014 – volume: 204 start-page: 475 year: 2010 ident: 10.1016/j.celrep.2022.111849_bib28 article-title: The cognitive neuroscience of prehension: recent developments publication-title: Exp. Brain Res. doi: 10.1007/s00221-010-2315-2 – volume: 4 year: 2015 ident: 10.1016/j.celrep.2022.111849_bib48 article-title: Neural population dynamics in human motor cortex during movements in people with ALS publication-title: Elife doi: 10.7554/eLife.07436 – volume: 109 start-page: 3067 year: 2013 ident: 10.1016/j.celrep.2022.111849_bib2 article-title: State-based decoding of hand and finger kinematics using neuronal ensemble and LFP activity during dexterous reach-to-grasp movements publication-title: J. Neurophysiol. doi: 10.1152/jn.01038.2011 – volume: 7 year: 2016 ident: 10.1016/j.celrep.2022.111849_bib18 article-title: Reorganization between preparatory and movement population responses in motor cortex publication-title: Nat. Commun. doi: 10.1038/ncomms13239 – volume: 260 start-page: 301 year: 1983 ident: 10.1016/j.celrep.2022.111849_bib64 article-title: Motor aspects of cue-related neuronal activity in premotor cortex of the rhesus monkey publication-title: Brain Res. – volume: 18 start-page: 143 year: 1985 ident: 10.1016/j.celrep.2022.111849_bib27 article-title: The involvement of monkey premotor cortex neurones in preparation of visually cued arm movements publication-title: Behav. Brain Res. doi: 10.1016/0166-4328(85)90070-1 – volume: 8 start-page: 1 year: 1985 ident: 10.1016/j.celrep.2022.111849_bib63 article-title: The primate premotor cortex: past, present, and preparatory publication-title: Annu. Rev. Neurosci. doi: 10.1146/annurev.ne.08.030185.000245 – volume: 102 start-page: 249 year: 2019 ident: 10.1016/j.celrep.2022.111849_bib57 article-title: Cortical areas interact through a communication subspace publication-title: Neuron doi: 10.1016/j.neuron.2019.01.026 – volume: 29 start-page: 1011 year: 1966 ident: 10.1016/j.celrep.2022.111849_bib19 article-title: Pyramidal tract activity associated with a conditioned hand movement in the monkey publication-title: J. Neurophysiol. doi: 10.1152/jn.1966.29.6.1011 – volume: 36 start-page: 751 year: 2002 ident: 10.1016/j.celrep.2022.111849_bib47 article-title: Neuronal correlates of kinematics-to-dynamics transformation in the supplementary motor area publication-title: Neuron doi: 10.1016/S0896-6273(02)01028-0 – volume: 79 start-page: 67 year: 2014 ident: 10.1016/j.celrep.2022.111849_bib8 article-title: A dynamical basis set for generating reaches publication-title: Cold Spring Harbor Symp. Quant. Biol. doi: 10.1101/sqb.2014.79.024703 – volume: 181 start-page: 49 year: 2007 ident: 10.1016/j.celrep.2022.111849_bib51 article-title: Threshold position control of arm movement with anticipatory increase in grip force publication-title: Exp. Brain Res. doi: 10.1007/s00221-007-0901-8 – volume: 285 start-page: 2136 year: 1999 ident: 10.1016/j.celrep.2022.111849_bib32 article-title: Muscle and movement representations in the primary motor cortex publication-title: Science doi: 10.1126/science.285.5436.2136 – volume: 146 start-page: 233 year: 2002 ident: 10.1016/j.celrep.2022.111849_bib31 article-title: Primary motor cortical neurons encode functional muscle synergies publication-title: Exp. Brain Res. doi: 10.1007/s00221-002-1166-x – volume: 35 start-page: 12615 year: 2015 ident: 10.1016/j.celrep.2022.111849_bib46 article-title: Representation of muscle synergies in the primate brain publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.4302-14.2015 – volume: 104 start-page: 799 year: 2010 ident: 10.1016/j.celrep.2022.111849_bib36 article-title: Roles of monkey premotor neuron classes in movement preparation and execution publication-title: J. Neurophysiol. doi: 10.1152/jn.00231.2009 – volume: 35 start-page: 9508 year: 2015 ident: 10.1016/j.celrep.2022.111849_bib1 article-title: PMv neuronal firing may be driven by a movement command trajectory within multidimensional Gaussian fields publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.2643-14.2015 – volume: 487 start-page: 51 year: 2012 ident: 10.1016/j.celrep.2022.111849_bib9 article-title: Neural population dynamics during reaching publication-title: Nature doi: 10.1038/nature11129 – volume: 210 start-page: 343 year: 2005 ident: 10.1016/j.celrep.2022.111849_bib5 article-title: Cytoarchitectonic mapping of the human amygdala, hippocampal region and entorhinal cortex: intersubject variability and probability maps publication-title: Anat. Embryol. doi: 10.1007/s00429-005-0025-5 – volume: 121 start-page: 823 year: 2019 ident: 10.1016/j.celrep.2022.111849_bib20 article-title: Indirect, referent control of motor actions underlies directional tuning of neurons publication-title: J. Neurophysiol. doi: 10.1152/jn.00575.2018 – volume: 10 start-page: 2718 year: 2019 ident: 10.1016/j.celrep.2022.111849_bib3 article-title: Simultaneous motor preparation and execution in a last-moment reach correction task publication-title: Nat. Commun. doi: 10.1038/s41467-019-10772-2 – volume: 18 start-page: 2047 year: 2003 ident: 10.1016/j.celrep.2022.111849_bib6 article-title: Preshaping and continuous evolution of motor cortical representations during movement preparation publication-title: Eur. J. Neurosci. doi: 10.1046/j.1460-9568.2003.02906.x |
SSID | ssj0000601194 |
Score | 2.3973534 |
Snippet | In the conventional view of sensorimotor control, the premotor cortex (PM) plans actions that are executed by the primary motor cortex (M1). This notion arises... |
SourceID | pubmedcentral proquest pubmed crossref elsevier |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 111849 |
SubjectTerms | Animals dynamical systems model Hand Strength motor control Motor Cortex Movement non-human primate premotor cortex primary motor cortex Psychomotor Performance reach to grasp |
SummonAdditionalLinks | – databaseName: Elsevier ScienceDirect Open Access Journals dbid: IXB link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9swEBelMOjLaPeZtisa7FUk1oelPLZhoRS2h22FvAlJllhGsIObwPbf986yw9INAn0ysu-MfD_57mTfByGfQjImAu6sNBPBZHKGOWMkc1xzUaXkJyXmO3_5Wt7ey7uFWhyR2ZALg2GVve7POr3T1v2ZcS_N8Xq5HH_nsHcB66Q52DCwi5hRLqTpkvgWN7vvLFhvpOj6ISI9Q4Yhg64L8wpx1UYsXMk5qg-DRTX_b6H-9UCfBlL-ZZnmp-Rl71LS6zzrM3IU61fkRW4y-ec1-TZr8ErDQncEyqoFFUeXNXU0NNv1KlZ03UbArGnZOlefoN2IIkv8Tavcth5Yc-HnN-R-_vnH7Jb1nRRYkKXcsFSZadRFqqKSQXhjnIed0jSUKQXuRSx05RTXHqAxhQpKgB4LXKgIsE2TSOItOa6bOr4n1AgnsVNopQOHe0-9BwfLRyEUMCTlRkQM0rOhLzOO3S5Wdogn-2WzzC3K3GaZjwjbcfUPeoBeD8DYveViwRIc4Pw44GjhTcLfI66OzfbBcq00OLBaFyPyLuO6m4vAFNxC6hExe4jvCLBK9_6Vevmzq9YNaxT2pNqcP3vKF-QERxhEwyeX5HjTbuMHcIU2_qpb64-jkAhs priority: 102 providerName: Elsevier |
Title | Cortico-cortical drive in a coupled premotor-primary motor cortex dynamical system |
URI | https://dx.doi.org/10.1016/j.celrep.2022.111849 https://www.ncbi.nlm.nih.gov/pubmed/36543147 https://www.proquest.com/docview/2757054771 https://pubmed.ncbi.nlm.nih.gov/PMC11271678 |
Volume | 41 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1La9wwEB7SlJZcQt_ZtA0q9Kqy1sOSD6G0oSEtpIfShb0JSZZoymJvnF1I_n1Glr1t2oRcbIw0Qp5vJH2yRzMA733UOiDutNRTTkW0mlqtBbVMMV7H6KZlOu98-r08mYlvcznfgjFn66DAi1u3dimf1KxbfLg8v_qIA_7wj6-WD4supOiTjKU5QIvqATzEtUmloXo6EP48N6cYZ2I8Q3eH8A485unMZZGSrty-XP1PR__1qvxrmTp-ArsDvySfskE8ha3QPINHOePk1XP4cdSmkpb6_o416w7nO3LWEEt8u14uQk2WXUAA244ucygK0j-RJBIuSZ1z2KNojgL9AmbHX34endAhrQL1ohQrGmtdBVXEOkjhudPaOtw2Vb6M0TPHQ6FqK5lyiJMupJccJzXPuAyIYRV55C9hu2mbsAdEcytS2tBaeYZtV84h23KBc4kCUdoJ8FF7xg8xx1Pqi4UZnct-m6x-k9RvsvonQDdSw4veU1-NwJiBN2Q-YNBK7pF8N-JocFilfyW2Ce36wjAlFbJZpYoJvMq4bvoy2sYE9A3ENxVSyO6bJc3Zrz50N7Jb3KAqvX9no69hJ3Uwecyw6RvYXnXr8BZ5z8od9N8L8Pp1_vmgN-trB6MDrg |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwED-NIQQviM-t48tIvFpt7Dh2H6Fi6mDbA2xS36zYsUVRlVShleC_312cVBSQJvEUJfZFzv2cu3Ny_h3AOx-NCYg7L8xE8jyWhpfG5LwUWsgqRjcpaL_zxWUxv84_LdTiAGbDXhhKq-xtf7LpnbXur4x7bY7Xy-X4q8C1C3onLdCHoV_Ud-AuRgOa6jecLT7sPrQQ4UjWFUQkAU4Swxa6Ls_Lh1UbiLlSCLIfhlg1_-2i_g5B_8yk_M01nT6Ch31Myd6nYT-Gg1A_gXupyuSvp_Bl1lBLw313xJ5VizaOLWtWMt9s16tQsXUbELSm5etEP8G6M0Yi4SerUt16FE3Mz8_g-vTj1WzO-1IK3OdFvuGxMtOgs1gFlXvpjCkdLpWmvojRCydDpqtSCe0QG5MpryQaMi-kCojbNMoon8Nh3dThGJiRZU6lQivtBd576hxGWC5IqVAgqnIEctCe9T3POJW7WNkhoey7TTq3pHObdD4CvpPqH_SW_noAxu7NF4uu4BbJtwOOFl8l-j9S1qHZ_rBCK40RrNbZCI4SrruxSNqDm-V6BGYP8V0Houneb6mX3zq6bpykuCjV5uS_h_wG7s-vLs7t-dnl5xfwgFooo0ZMXsLhpt2GVxgXbdzrbt7fAOxDC4s |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Cortico-cortical+drive+in+a+coupled+premotor-primary+motor+cortex+dynamical+system&rft.jtitle=Cell+reports+%28Cambridge%29&rft.au=D%27Aleo%2C+Raina&rft.au=Rouse%2C+Adam+G&rft.au=Schieber%2C+Marc+H&rft.au=Sarma%2C+Sridevi+V&rft.date=2022-12-20&rft.eissn=2211-1247&rft.volume=41&rft.issue=12&rft.spage=111849&rft_id=info:doi/10.1016%2Fj.celrep.2022.111849&rft_id=info%3Apmid%2F36543147&rft.externalDocID=36543147 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2211-1247&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2211-1247&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2211-1247&client=summon |