Cortico-cortical drive in a coupled premotor-primary motor cortex dynamical system

In the conventional view of sensorimotor control, the premotor cortex (PM) plans actions that are executed by the primary motor cortex (M1). This notion arises in part from many experiments that have imposed a preparatory “planning” period, during which PM becomes active without M1. But during many...

Full description

Saved in:
Bibliographic Details
Published inCell reports (Cambridge) Vol. 41; no. 12; p. 111849
Main Authors D’Aleo, Raina, Rouse, Adam G., Schieber, Marc H., Sarma, Sridevi V.
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 20.12.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In the conventional view of sensorimotor control, the premotor cortex (PM) plans actions that are executed by the primary motor cortex (M1). This notion arises in part from many experiments that have imposed a preparatory “planning” period, during which PM becomes active without M1. But during many natural movements, PM and M1 are co-activated, making it difficult to distinguish their functional roles. We leverage coupled dynamical systems models (cDSMs) to uncover interactions between PM and M1 during movements performed with no preparatory period. We build cDSMs using neural and behavioral data recorded from two non-human primates as they performed a reach-grasp-manipulate task. PM and M1 interact dynamically throughout these movements. Whereas PM drives the M1 in some situations, in other situations, M1 drives PM activity, contrary to the conventional assumption. Our DSM framework provides additional predictions differentiating the roles of PM and M1 in controlling movement. [Display omitted] •Use a coupled dynamical systems model to uncover interactions between motor cortices•Contrary to convention, primary motor cortex can drive activity in premotor•Movement similarity is more related to similarity of cortical drivers than activity Dynamic interactions both within and between cortical areas that are not experimentally measurable are evaluated using a coupled dynamical systems model (cDSM). D’Aleo et al. have utilized a cDSM to explore the interactive roles of premotor and primary motor cortex across subjects.
AbstractList In the conventional view of sensorimotor control, the premotor cortex (PM) plans actions that are executed by the primary motor cortex (M1). This notion arises in part from many experiments that have imposed a preparatory "planning" period, during which PM becomes active without M1. But during many natural movements, PM and M1 are co-activated, making it difficult to distinguish their functional roles. We leverage coupled dynamical systems models (cDSMs) to uncover interactions between PM and M1 during movements performed with no preparatory period. We build cDSMs using neural and behavioral data recorded from two non-human primates as they performed a reach-grasp-manipulate task. PM and M1 interact dynamically throughout these movements. Whereas PM drives the M1 in some situations, in other situations, M1 drives PM activity, contrary to the conventional assumption. Our DSM framework provides additional predictions differentiating the roles of PM and M1 in controlling movement.In the conventional view of sensorimotor control, the premotor cortex (PM) plans actions that are executed by the primary motor cortex (M1). This notion arises in part from many experiments that have imposed a preparatory "planning" period, during which PM becomes active without M1. But during many natural movements, PM and M1 are co-activated, making it difficult to distinguish their functional roles. We leverage coupled dynamical systems models (cDSMs) to uncover interactions between PM and M1 during movements performed with no preparatory period. We build cDSMs using neural and behavioral data recorded from two non-human primates as they performed a reach-grasp-manipulate task. PM and M1 interact dynamically throughout these movements. Whereas PM drives the M1 in some situations, in other situations, M1 drives PM activity, contrary to the conventional assumption. Our DSM framework provides additional predictions differentiating the roles of PM and M1 in controlling movement.
In the conventional view of sensorimotor control, the premotor cortex (PM) plans actions that are executed by the primary motor cortex (M1). This notion arises in part from many experiments that have imposed a preparatory “planning” period, during which PM becomes active without M1. But during many natural movements, PM and M1 are co-activated, making it difficult to distinguish their functional roles. We leverage coupled dynamical systems models (cDSMs) to uncover interactions between PM and M1 during movements performed with no preparatory period. We build cDSMs using neural and behavioral data recorded from two non-human primates as they performed a reach-grasp-manipulate task. PM and M1 interact dynamically throughout these movements. Whereas PM drives the M1 in some situations, in other situations, M1 drives PM activity, contrary to the conventional assumption. Our DSM framework provides additional predictions differentiating the roles of PM and M1 in controlling movement. Dynamic interactions both within and between cortical areas that are not experimentally measurable are evaluated using a coupled dynamical systems model (cDSM). D’Aleo et al. have utilized a cDSM to explore the interactive roles of premotor and primary motor cortex across subjects.
In the conventional view of sensorimotor control, the premotor cortex (PM) plans actions that are executed by the primary motor cortex (M1). This notion arises in part from many experiments that have imposed a preparatory "planning" period, during which PM becomes active without M1. But during many natural movements, PM and M1 are co-activated, making it difficult to distinguish their functional roles. We leverage coupled dynamical systems models (cDSMs) to uncover interactions between PM and M1 during movements performed with no preparatory period. We build cDSMs using neural and behavioral data recorded from two non-human primates as they performed a reach-grasp-manipulate task. PM and M1 interact dynamically throughout these movements. Whereas PM drives the M1 in some situations, in other situations, M1 drives PM activity, contrary to the conventional assumption. Our DSM framework provides additional predictions differentiating the roles of PM and M1 in controlling movement.
In the conventional view of sensorimotor control, the premotor cortex (PM) plans actions that are executed by the primary motor cortex (M1). This notion arises in part from many experiments that have imposed a preparatory “planning” period, during which PM becomes active without M1. But during many natural movements, PM and M1 are co-activated, making it difficult to distinguish their functional roles. We leverage coupled dynamical systems models (cDSMs) to uncover interactions between PM and M1 during movements performed with no preparatory period. We build cDSMs using neural and behavioral data recorded from two non-human primates as they performed a reach-grasp-manipulate task. PM and M1 interact dynamically throughout these movements. Whereas PM drives the M1 in some situations, in other situations, M1 drives PM activity, contrary to the conventional assumption. Our DSM framework provides additional predictions differentiating the roles of PM and M1 in controlling movement. [Display omitted] •Use a coupled dynamical systems model to uncover interactions between motor cortices•Contrary to convention, primary motor cortex can drive activity in premotor•Movement similarity is more related to similarity of cortical drivers than activity Dynamic interactions both within and between cortical areas that are not experimentally measurable are evaluated using a coupled dynamical systems model (cDSM). D’Aleo et al. have utilized a cDSM to explore the interactive roles of premotor and primary motor cortex across subjects.
ArticleNumber 111849
Author Schieber, Marc H.
Sarma, Sridevi V.
Rouse, Adam G.
D’Aleo, Raina
AuthorAffiliation 1 Department of Neuroscience, The Johns Hopkins University, Baltimore, MD 21218, USA
4 Department of Neurology, University of Rochester, Rochester, NY 14642, USA
6 Lead contact
3 Department of Neuroscience, University of Rochester, Rochester, NY 14642, USA
2 Department of Neurosurgery, University of Kansas, Kansas City, KS 66160, USA
5 Institute for Computational Medicine, Department of Biomedical Engineering, The Johns Hopkins University, Baltimore, MD 21218, USA
AuthorAffiliation_xml – name: 1 Department of Neuroscience, The Johns Hopkins University, Baltimore, MD 21218, USA
– name: 4 Department of Neurology, University of Rochester, Rochester, NY 14642, USA
– name: 5 Institute for Computational Medicine, Department of Biomedical Engineering, The Johns Hopkins University, Baltimore, MD 21218, USA
– name: 2 Department of Neurosurgery, University of Kansas, Kansas City, KS 66160, USA
– name: 6 Lead contact
– name: 3 Department of Neuroscience, University of Rochester, Rochester, NY 14642, USA
Author_xml – sequence: 1
  givenname: Raina
  surname: D’Aleo
  fullname: D’Aleo, Raina
  email: rdaleo1@alumni.jh.edu
  organization: Department of Neuroscience, The Johns Hopkins University, Baltimore, MD 21218, USA
– sequence: 2
  givenname: Adam G.
  orcidid: 0000-0003-3785-1442
  surname: Rouse
  fullname: Rouse, Adam G.
  organization: Department of Neurosurgery, University of Kansas, Kansas City, KS 66160, USA
– sequence: 3
  givenname: Marc H.
  surname: Schieber
  fullname: Schieber, Marc H.
  organization: Department of Neuroscience, University of Rochester, Rochester, NY 14642, USA
– sequence: 4
  givenname: Sridevi V.
  surname: Sarma
  fullname: Sarma, Sridevi V.
  email: ssarma2@jhu.edu
  organization: Institute for Computational Medicine, Department of Biomedical Engineering, The Johns Hopkins University, Baltimore, MD 21218, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36543147$$D View this record in MEDLINE/PubMed
BookMark eNqFUV1P2zAUtSbQyqD_AE155CVdruPEyR42TdUGk5CQEDxbjn0NrpI4s91q_fdLm4IYD-CXa8vnwz7nEznqXY-EnEO2gAzKL6uFwtbjsKAZpQsAqFj9gZxQCpACZfzoxX5G5iGssnGVGUDNPpJZXhYsB8ZPyO3S-WiVS9V-yjbR3m4wsX0iE-XWQ4s6GTx2LjqfDt520m-T_SnZUfBvore97PbUsA0RuzNybGQbcH6Yp-T-18-75VV6fXP5e_njOlWsZDE1uqqRg9FYMJU3VSUbWvFalcYo2uQIXMuC8sY0WQWFKnIKtaJ5gdX4V5Ob_JR8n3SHddOhVthHL1txeKNw0or_b3r7KB7cRgBQDiWvRoWLg4J3f9YYouhsGINtZY9uHQTlBc8KxjmM0M8vzZ5dnpIcAV8ngPIuBI9GKBtltG7nbVsBmdg1J1Ziak7smhNTcyOZvSI_6b9D-zbRcIx5Y9GLoCz2CrX1qKLQzr4t8A9FgLY3
CitedBy_id crossref_primary_10_1073_pnas_2319313121
crossref_primary_10_3389_fnins_2024_1330280
crossref_primary_10_1002_cne_25489
crossref_primary_10_1002_hbm_26723
Cites_doi 10.1016/j.conb.2011.05.021
10.1016/j.neuron.2018.09.030
10.1126/science.3749885
10.1126/science.aaa8035
10.1007/BF00247902
10.1016/S0166-4328(05)80264-5
10.1152/jn.90941.2008
10.1093/brain/112.3.649
10.1371/journal.pcbi.1005164
10.1007/BF00274982
10.1371/journal.pcbi.1005175
10.1113/jphysiol.2009.186858
10.1093/cercor/bhr267
10.1002/cne.902510302
10.1523/JNEUROSCI.02-09-01329.1982
10.1038/nn.3643
10.1152/jn.1993.70.5.2097
10.1152/jn.00652.2003
10.1038/s41598-019-54220-z
10.1152/jn.1976.39.5.1062
10.1152/jn.00095.2007
10.1523/JNEUROSCI.09-06-02080.1989
10.1152/jn.00892.2011
10.1523/JNEUROSCI.2999-11.2011
10.1038/ncomms8759
10.1002/cne.903380109
10.1038/nn.3776
10.1126/science.1149774
10.1016/j.neuron.2005.01.027
10.1523/ENEURO.0085-16.2016
10.1016/j.neuron.2013.11.003
10.1038/386167a0
10.1523/JNEUROSCI.02-11-01527.1982
10.1093/cercor/bhq260
10.1016/j.neuron.2014.04.045
10.1126/science.186.4163.545
10.1016/j.brs.2017.09.014
10.1523/JNEUROSCI.1777-11.2011
10.1016/S0013-4694(98)00022-4
10.1152/jn.1999.82.6.3488
10.1016/j.conb.2006.03.014
10.1007/s00221-010-2315-2
10.7554/eLife.07436
10.1152/jn.01038.2011
10.1038/ncomms13239
10.1016/0166-4328(85)90070-1
10.1146/annurev.ne.08.030185.000245
10.1016/j.neuron.2019.01.026
10.1152/jn.1966.29.6.1011
10.1016/S0896-6273(02)01028-0
10.1101/sqb.2014.79.024703
10.1007/s00221-007-0901-8
10.1126/science.285.5436.2136
10.1007/s00221-002-1166-x
10.1523/JNEUROSCI.4302-14.2015
10.1152/jn.00231.2009
10.1523/JNEUROSCI.2643-14.2015
10.1038/nature11129
10.1007/s00429-005-0025-5
10.1152/jn.00575.2018
10.1038/s41467-019-10772-2
10.1046/j.1460-9568.2003.02906.x
ContentType Journal Article
Copyright 2022 The Author(s)
Copyright © 2022 The Author(s). Published by Elsevier Inc. All rights reserved.
Copyright_xml – notice: 2022 The Author(s)
– notice: Copyright © 2022 The Author(s). Published by Elsevier Inc. All rights reserved.
DBID 6I.
AAFTH
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOI 10.1016/j.celrep.2022.111849
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

MEDLINE

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2211-1247
EndPage 111849
ExternalDocumentID PMC11271678
36543147
10_1016_j_celrep_2022_111849
S2211124722017417
Genre Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NINDS NIH HHS
  grantid: R01 NS079664
– fundername: NINDS NIH HHS
  grantid: R01 NS102343
– fundername: NINDS NIH HHS
  grantid: R00 NS101127
– fundername: NINDS NIH HHS
  grantid: R01 NS110423
– fundername: NINDS NIH HHS
  grantid: K99 NS101127
– fundername: NIGMS NIH HHS
  grantid: K12 GM123914
GroupedDBID 0R~
0SF
4.4
457
53G
5VS
6I.
AACTN
AAEDT
AAEDW
AAFTH
AAIKJ
AAKRW
AALRI
AAUCE
AAXUO
ABMAC
ABMWF
ACGFO
ACGFS
ADBBV
ADEZE
AENEX
AEXQZ
AFTJW
AGHFR
AITUG
ALKID
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
BAWUL
BCNDV
DIK
EBS
EJD
FCP
FDB
FRP
GROUPED_DOAJ
GX1
IXB
KQ8
M41
M48
NCXOZ
O-L
O9-
OK1
RCE
ROL
SSZ
AAMRU
AAYWO
AAYXX
ACVFH
ADCNI
ADVLN
AEUPX
AFPUW
AIGII
AKBMS
AKRWK
AKYEP
APXCP
CITATION
HZ~
IPNFZ
RIG
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
ID FETCH-LOGICAL-c464t-fd89e71fde54c3b88ab2879c6ffc2b3e17da527bfb0815c53219c235e8849f3f3
IEDL.DBID M48
ISSN 2211-1247
IngestDate Thu Aug 21 18:34:11 EDT 2025
Fri Jul 11 15:32:27 EDT 2025
Tue Aug 05 11:42:38 EDT 2025
Thu Apr 24 22:58:02 EDT 2025
Tue Jul 01 02:59:32 EDT 2025
Tue Jul 25 20:57:16 EDT 2023
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 12
Keywords non-human primate
dynamical systems model
CP: Neuroscience
reach to grasp
premotor cortex
motor control
primary motor cortex
Language English
License This is an open access article under the CC BY-NC-ND license.
Copyright © 2022 The Author(s). Published by Elsevier Inc. All rights reserved.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c464t-fd89e71fde54c3b88ab2879c6ffc2b3e17da527bfb0815c53219c235e8849f3f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
AUTHOR CONTRIBUTIONS
M.H.S. and A.G.R. conducted the experiments; R.D. analyzed the dataset; and R.D., S.V.S., and M.H.S. wrote the paper.
ORCID 0000-0003-3785-1442
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S2211124722017417
PMID 36543147
PQID 2757054771
PQPubID 23479
PageCount 1
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_11271678
proquest_miscellaneous_2757054771
pubmed_primary_36543147
crossref_citationtrail_10_1016_j_celrep_2022_111849
crossref_primary_10_1016_j_celrep_2022_111849
elsevier_sciencedirect_doi_10_1016_j_celrep_2022_111849
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-12-20
PublicationDateYYYYMMDD 2022-12-20
PublicationDate_xml – month: 12
  year: 2022
  text: 2022-12-20
  day: 20
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Cell reports (Cambridge)
PublicationTitleAlternate Cell Rep
PublicationYear 2022
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Luppino, Matelli, Camarda, Rizzolatti (bib41) 1993; 338
Semedo, Zandvakili, Machens, Yu, Kohn (bib57) 2019; 102
Davidson, Chan, O’Dell, Schieber (bib16) 2007; 318
Agarwal, Thakor, Sarma, Massaquoi (bib1) 2015; 35
Wise, Weinrich, Mauritz (bib65) 1986; 64
Georgopoulos, Kalaska, Caminiti, Massey (bib23) 1982; 2
Churchland, Shenoy (bib10) 2007; 97
Fu, Suarez, Ebner (bib22) 1993; 70
Weinrich, Wise (bib62) 1982; 2
Godschalk, Lemon, Kuypers, Van Der Steen (bib27) 1985; 18
Feldman (bib20) 2019; 121
D’Aleo, Rouse, Schieber, Sarma (bib14) 2019
Gharbawie, Stepniewska, Kaas (bib25) 2011; 21
Ninomiya, Inoue, Hoshi, Takada (bib45) 2019; 9
Kaufman, Churchland, Ryu, Shenoy (bib35) 2014; 17
Michaels, Dann, Scherberger (bib43) 2016; 12
Amunts, Kedo, Kindler, Pieperhoff, Mohlberg, Shah, Habel, Schneider, Zilles (bib5) 2005; 210
Elsayed, Lara, Kaufman, Churchland, Cunningham (bib18) 2016; 7
Overduin, d’Avella, Roh, Carmena, Bizzi (bib46) 2015; 35
Davare, Kraskov, Rothwell, Lemon (bib15) 2011; 21
Fetz (bib21) 1992; 15
Wise (bib63) 1985; 8
Kaufman, Seely, Sussillo, Ryu, Shenoy, Churchland (bib38) 2016; 3
Pandarinath, Gilja, Blabe, Nuyujukian, Sarma, Sorice, Eskandar, Hochberg, Henderson, Shenoy (bib48) 2015; 4
Cisek, Kalaska (bib11) 2005; 45
Griffin, Hoffman, Strick (bib29) 2015; 350
Ames, Ryu, Shenoy (bib4) 2014; 81
Briggman, Abarbanel, Kristan (bib7) 2006; 16
Matelli, Camarda, Glickstein, Rizzolatti (bib42) 1986; 251
Mollazadeh, Aggarwal, Davidson, Law, Thakor, Schieber (bib44) 2011; 31
Holdefer, Miller (bib31) 2002; 146
Hennequin, Vogels, Gerstner (bib30) 2014; 82
Kao, Nuyujukian, Ryu, Churchland, Cunningham, Shenoy (bib34) 2015; 6
Rizzolatti, Luppino, Matelli (bib55) 1998; 106
Ames, Ryu, Shenoy (bib3) 2019; 10
Shalit, Zinger, Joshua, Prut (bib58) 2012; 22
Kaufman, Churchland, Santhanam, Yu, Afshar, Ryu, Shenoy (bib36) 2010; 104
Georgopoulos, Schwartz, Kettner (bib24) 1986; 233
Perich, Gallego, Miller (bib49) 2018; 100
Kalaska, Cohen, Hyde, Prud’homme (bib33) 1989; 9
Kakei, Hoffman, Strick (bib32) 1999; 285
Churchland, Cunningham, Kaufman, Foster, Nuyujukian, Ryu, Shenoy (bib9) 2012; 487
Kurata (bib39) 1989; 77
Riehle, Requin (bib54) 1993; 53
Cunningham, Yu (bib13) 2014; 17
Poliakov, Schieber (bib52) 1999; 82
Wise, Weinrich, Mauritz (bib64) 1983; 260
Pilon, De Serres, Feldman (bib51) 2007; 181
Seely, Kaufman, Ryu, Shenoy, Cunningham, Churchland (bib56) 2016; 12
Yu, Cunningham, Santhanam, Ryu, Shenoy, Sahani (bib66) 2009; 102
Day, Rothwell, Thompson, Maertens de Noordhout, Nakashima, Shannon, Marsden (bib17) 1989; 112
Aggarwal, Mollazadeh, Davidson, Schieber, Thakor (bib2) 2013; 109
Grafton (bib28) 2010; 204
Crammond, Kalaska (bib12) 1989; 76
Raptis, Burtet, Forget, Feldman (bib53) 2010; 588
van Beers, Haggard, Wolpert (bib61) 2004; 91
Kaufman, Churchland, Shenoy (bib37) 2013; 110
Snyder, Batista, Andersen (bib59) 1997; 386
Bastian, Schöner, Riehle (bib6) 2003; 18
Gharbawie, Stepniewska, Qi, Kaas (bib26) 2011; 31
Kutas, Donchin (bib40) 1974; 186
Tanji, Evarts (bib60) 1976; 39
Churchland, Cunningham (bib8) 2014; 79
Evarts (bib19) 1966; 29
Padoa-Schioppa, Li, Bizzi (bib47) 2002; 36
Perruchoud, Fiorio, Cesari, Ionta (bib50) 2018; 11
Matelli (10.1016/j.celrep.2022.111849_bib42) 1986; 251
Overduin (10.1016/j.celrep.2022.111849_bib46) 2015; 35
Kaufman (10.1016/j.celrep.2022.111849_bib38) 2016; 3
Perruchoud (10.1016/j.celrep.2022.111849_bib50) 2018; 11
Fu (10.1016/j.celrep.2022.111849_bib22) 1993; 70
Wise (10.1016/j.celrep.2022.111849_bib63) 1985; 8
Rizzolatti (10.1016/j.celrep.2022.111849_bib55) 1998; 106
Aggarwal (10.1016/j.celrep.2022.111849_bib2) 2013; 109
Shalit (10.1016/j.celrep.2022.111849_bib58) 2012; 22
Perich (10.1016/j.celrep.2022.111849_bib49) 2018; 100
Semedo (10.1016/j.celrep.2022.111849_bib57) 2019; 102
Churchland (10.1016/j.celrep.2022.111849_bib10) 2007; 97
Feldman (10.1016/j.celrep.2022.111849_bib20) 2019; 121
Bastian (10.1016/j.celrep.2022.111849_bib6) 2003; 18
Cunningham (10.1016/j.celrep.2022.111849_bib13) 2014; 17
Kurata (10.1016/j.celrep.2022.111849_bib39) 1989; 77
Poliakov (10.1016/j.celrep.2022.111849_bib52) 1999; 82
Hennequin (10.1016/j.celrep.2022.111849_bib30) 2014; 82
Kutas (10.1016/j.celrep.2022.111849_bib40) 1974; 186
Davare (10.1016/j.celrep.2022.111849_bib15) 2011; 21
Snyder (10.1016/j.celrep.2022.111849_bib59) 1997; 386
Pandarinath (10.1016/j.celrep.2022.111849_bib48) 2015; 4
Pilon (10.1016/j.celrep.2022.111849_bib51) 2007; 181
Gharbawie (10.1016/j.celrep.2022.111849_bib26) 2011; 31
Kaufman (10.1016/j.celrep.2022.111849_bib37) 2013; 110
Luppino (10.1016/j.celrep.2022.111849_bib41) 1993; 338
Crammond (10.1016/j.celrep.2022.111849_bib12) 1989; 76
Michaels (10.1016/j.celrep.2022.111849_bib43) 2016; 12
Churchland (10.1016/j.celrep.2022.111849_bib9) 2012; 487
Grafton (10.1016/j.celrep.2022.111849_bib28) 2010; 204
Evarts (10.1016/j.celrep.2022.111849_bib19) 1966; 29
Elsayed (10.1016/j.celrep.2022.111849_bib18) 2016; 7
Ninomiya (10.1016/j.celrep.2022.111849_bib45) 2019; 9
Ames (10.1016/j.celrep.2022.111849_bib3) 2019; 10
Wise (10.1016/j.celrep.2022.111849_bib64) 1983; 260
Mollazadeh (10.1016/j.celrep.2022.111849_bib44) 2011; 31
Agarwal (10.1016/j.celrep.2022.111849_bib1) 2015; 35
Fetz (10.1016/j.celrep.2022.111849_bib21) 1992; 15
Churchland (10.1016/j.celrep.2022.111849_bib8) 2014; 79
Kao (10.1016/j.celrep.2022.111849_bib34) 2015; 6
Yu (10.1016/j.celrep.2022.111849_bib66) 2009; 102
Griffin (10.1016/j.celrep.2022.111849_bib29) 2015; 350
van Beers (10.1016/j.celrep.2022.111849_bib61) 2004; 91
Kakei (10.1016/j.celrep.2022.111849_bib32) 1999; 285
Kalaska (10.1016/j.celrep.2022.111849_bib33) 1989; 9
Ames (10.1016/j.celrep.2022.111849_bib4) 2014; 81
Kaufman (10.1016/j.celrep.2022.111849_bib36) 2010; 104
Padoa-Schioppa (10.1016/j.celrep.2022.111849_bib47) 2002; 36
Georgopoulos (10.1016/j.celrep.2022.111849_bib23) 1982; 2
Day (10.1016/j.celrep.2022.111849_bib17) 1989; 112
Davidson (10.1016/j.celrep.2022.111849_bib16) 2007; 318
Holdefer (10.1016/j.celrep.2022.111849_bib31) 2002; 146
Briggman (10.1016/j.celrep.2022.111849_bib7) 2006; 16
Raptis (10.1016/j.celrep.2022.111849_bib53) 2010; 588
Godschalk (10.1016/j.celrep.2022.111849_bib27) 1985; 18
Seely (10.1016/j.celrep.2022.111849_bib56) 2016; 12
Wise (10.1016/j.celrep.2022.111849_bib65) 1986; 64
D’Aleo (10.1016/j.celrep.2022.111849_bib14) 2019
Gharbawie (10.1016/j.celrep.2022.111849_bib25) 2011; 21
Riehle (10.1016/j.celrep.2022.111849_bib54) 1993; 53
Weinrich (10.1016/j.celrep.2022.111849_bib62) 1982; 2
Cisek (10.1016/j.celrep.2022.111849_bib11) 2005; 45
Kaufman (10.1016/j.celrep.2022.111849_bib35) 2014; 17
Amunts (10.1016/j.celrep.2022.111849_bib5) 2005; 210
Georgopoulos (10.1016/j.celrep.2022.111849_bib24) 1986; 233
Tanji (10.1016/j.celrep.2022.111849_bib60) 1976; 39
References_xml – volume: 204
  start-page: 475
  year: 2010
  end-page: 491
  ident: bib28
  article-title: The cognitive neuroscience of prehension: recent developments
  publication-title: Exp. Brain Res.
– volume: 285
  start-page: 2136
  year: 1999
  end-page: 2139
  ident: bib32
  article-title: Muscle and movement representations in the primary motor cortex
  publication-title: Science
– volume: 260
  start-page: 301
  year: 1983
  end-page: 305
  ident: bib64
  article-title: Motor aspects of cue-related neuronal activity in premotor cortex of the rhesus monkey
  publication-title: Brain Res.
– volume: 112
  start-page: 649
  year: 1989
  end-page: 663
  ident: bib17
  article-title: Delay in the execution of the voluntary movement by electrical or magnetic brain stimulation in intact man
  publication-title: Brain
– volume: 77
  start-page: 245
  year: 1989
  end-page: 256
  ident: bib39
  article-title: Distribution of neurons with set- and movement-related activity before hand and foot movements in the premotor cortex of rhesus monkeys
  publication-title: Exp. Brain Res.
– volume: 7
  year: 2016
  ident: bib18
  article-title: Reorganization between preparatory and movement population responses in motor cortex
  publication-title: Nat. Commun.
– volume: 31
  start-page: 15531
  year: 2011
  end-page: 15543
  ident: bib44
  article-title: Spatiotemporal variation of multiple neurophysiological signals in the primary motor cortex during dexterous reach-to-grasp movements
  publication-title: J. Neurosci.
– volume: 29
  start-page: 1011
  year: 1966
  end-page: 1027
  ident: bib19
  article-title: Pyramidal tract activity associated with a conditioned hand movement in the monkey
  publication-title: J. Neurophysiol.
– volume: 12
  year: 2016
  ident: bib56
  article-title: Tensor analysis reveals distinct population structure that parallels the different computational roles of areas M1 and V1
  publication-title: PLoS Comput. Biol.
– volume: 21
  start-page: 1981
  year: 2011
  end-page: 2002
  ident: bib25
  article-title: Cortical connections of functional zones in posterior parietal cortex and frontal cortex motor regions in new world monkeys
  publication-title: Cerebr. Cortex
– volume: 318
  start-page: 1934
  year: 2007
  end-page: 1937
  ident: bib16
  article-title: Rapid changes in throughput from single motor cortex neurons to muscle activity
  publication-title: Science
– volume: 45
  start-page: 801
  year: 2005
  end-page: 814
  ident: bib11
  article-title: Neural correlates of reaching decisions in dorsal premotor cortex: specification of multiple direction choices and final selection of action
  publication-title: Neuron
– volume: 2
  start-page: 1527
  year: 1982
  end-page: 1537
  ident: bib23
  article-title: On the relations between the direction of two-dimensional arm movements and cell discharge in primate motor cortex
  publication-title: J. Neurosci.
– volume: 2
  start-page: 1329
  year: 1982
  end-page: 1345
  ident: bib62
  article-title: The premotor cortex of the monkey
  publication-title: J. Neurosci.
– volume: 102
  start-page: 614
  year: 2009
  end-page: 635
  ident: bib66
  article-title: Gaussian-process factor analysis for low-dimensional single-trial analysis of neural population activity
  publication-title: J. Neurophysiol.
– volume: 104
  start-page: 799
  year: 2010
  end-page: 810
  ident: bib36
  article-title: Roles of monkey premotor neuron classes in movement preparation and execution
  publication-title: J. Neurophysiol.
– volume: 386
  start-page: 167
  year: 1997
  end-page: 170
  ident: bib59
  article-title: Coding of intention in the posterior parietal cortex
  publication-title: Nature
– volume: 487
  start-page: 51
  year: 2012
  end-page: 56
  ident: bib9
  article-title: Neural population dynamics during reaching
  publication-title: Nature
– volume: 82
  start-page: 3488
  year: 1999
  end-page: 3505
  ident: bib52
  article-title: Limited functional grouping of neurons in the motor cortex hand area during individuated finger movements: a cluster analysis
  publication-title: J. Neurophysiol.
– volume: 35
  start-page: 9508
  year: 2015
  end-page: 9525
  ident: bib1
  article-title: PMv neuronal firing may be driven by a movement command trajectory within multidimensional Gaussian fields
  publication-title: J. Neurosci.
– volume: 110
  start-page: 817
  year: 2013
  end-page: 825
  ident: bib37
  article-title: The roles of monkey M1 neuron classes in movement preparation and execution
  publication-title: J. Neurophysiol.
– volume: 6
  start-page: 7759
  year: 2015
  ident: bib34
  article-title: Single-trial dynamics of motor cortex and their applications to brain-machine interfaces
  publication-title: Nat. Commun.
– volume: 121
  start-page: 823
  year: 2019
  end-page: 841
  ident: bib20
  article-title: Indirect, referent control of motor actions underlies directional tuning of neurons
  publication-title: J. Neurophysiol.
– volume: 251
  start-page: 281
  year: 1986
  end-page: 298
  ident: bib42
  article-title: Afferent and efferent projections of the inferior area 6 in the macaque monkey
  publication-title: J. Comp. Neurol.
– volume: 8
  start-page: 1
  year: 1985
  end-page: 19
  ident: bib63
  article-title: The primate premotor cortex: past, present, and preparatory
  publication-title: Annu. Rev. Neurosci.
– volume: 18
  start-page: 143
  year: 1985
  end-page: 157
  ident: bib27
  article-title: The involvement of monkey premotor cortex neurones in preparation of visually cued arm movements
  publication-title: Behav. Brain Res.
– volume: 338
  start-page: 114
  year: 1993
  end-page: 140
  ident: bib41
  article-title: Corticocortical connections of area F3 (SMA-proper) and area F6 (pre-SMA) in the macaque monkey
  publication-title: J. Comp. Neurol.
– volume: 233
  start-page: 1416
  year: 1986
  end-page: 1419
  ident: bib24
  article-title: Neuronal population coding of movement direction
  publication-title: Science
– volume: 79
  start-page: 67
  year: 2014
  end-page: 80
  ident: bib8
  article-title: A dynamical basis set for generating reaches
  publication-title: Cold Spring Harbor Symp. Quant. Biol.
– start-page: 1960
  year: 2019
  end-page: 1964
  ident: bib14
  article-title: Quantifying interactions between neural populations during behavior using dynamical systems models
  publication-title: 2019 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC)
– volume: 70
  start-page: 2097
  year: 1993
  end-page: 2116
  ident: bib22
  article-title: Neuronal specification of direction and distance during reaching movements in the superior precentral premotor area and primary motor cortex of monkeys
  publication-title: J. Neurophysiol.
– volume: 9
  start-page: 2080
  year: 1989
  end-page: 2102
  ident: bib33
  article-title: A comparison of movement direction-related versus load direction- related activity in primate motor cortex, using a two-dimensional reaching task
  publication-title: J. Neurosci.
– volume: 16
  start-page: 135
  year: 2006
  end-page: 144
  ident: bib7
  article-title: From crawling to cognition: analyzing the dynamical interactions among populations of neurons
  publication-title: Curr. Opin. Neurobiol.
– volume: 17
  start-page: 440
  year: 2014
  end-page: 448
  ident: bib35
  article-title: Cortical activity in the null space: permitting preparation without movement
  publication-title: Nat. Neurosci.
– volume: 31
  start-page: 11660
  year: 2011
  end-page: 11677
  ident: bib26
  article-title: Multiple parietal–frontal pathways mediate grasping in macaque monkeys
  publication-title: J. Neurosci.
– volume: 21
  start-page: 565
  year: 2011
  end-page: 570
  ident: bib15
  article-title: Interactions between areas of the cortical grasping network
  publication-title: Curr. Opin. Neurobiol.
– volume: 181
  start-page: 49
  year: 2007
  end-page: 67
  ident: bib51
  article-title: Threshold position control of arm movement with anticipatory increase in grip force
  publication-title: Exp. Brain Res.
– volume: 12
  year: 2016
  ident: bib43
  article-title: Neural population dynamics during reaching are better explained by a dynamical system than representational tuning
  publication-title: PLoS Comput. Biol.
– volume: 35
  start-page: 12615
  year: 2015
  end-page: 12624
  ident: bib46
  article-title: Representation of muscle synergies in the primate brain
  publication-title: J. Neurosci.
– volume: 64
  start-page: 117
  year: 1986
  end-page: 131
  ident: bib65
  article-title: Movement-related activity in the premotor cortex of rhesus macaques
  publication-title: The Oculomotor and Skeletalmotor Systems: Differences and Similarities
– volume: 15
  start-page: 679
  year: 1992
  end-page: 690
  ident: bib21
  article-title: Are movement parameters recognizably coded in the activity of single neurons?
  publication-title: Behav. Brain Sci.
– volume: 100
  start-page: 964
  year: 2018
  end-page: 976.e7
  ident: bib49
  article-title: A neural population mechanism for rapid learning
  publication-title: Neuron
– volume: 18
  start-page: 2047
  year: 2003
  end-page: 2058
  ident: bib6
  article-title: Preshaping and continuous evolution of motor cortical representations during movement preparation
  publication-title: Eur. J. Neurosci.
– volume: 22
  start-page: 1904
  year: 2012
  end-page: 1914
  ident: bib58
  article-title: Descending systems translate transient cortical commands into a sustained muscle activation signal
  publication-title: Cerebr. Cortex
– volume: 102
  start-page: 249
  year: 2019
  end-page: 259.e4
  ident: bib57
  article-title: Cortical areas interact through a communication subspace
  publication-title: Neuron
– volume: 39
  start-page: 1062
  year: 1976
  end-page: 1068
  ident: bib60
  article-title: Anticipatory activity of motor cortex neurons in relation to direction of an intended movement
  publication-title: J. Neurophysiol.
– volume: 11
  start-page: 175
  year: 2018
  end-page: 180
  ident: bib50
  article-title: Beyond variability: subjective timing and the neurophysiology of motor cognition
  publication-title: Brain Stimul.
– volume: 81
  start-page: 438
  year: 2014
  end-page: 451
  ident: bib4
  article-title: Neural dynamics of reaching following incorrect or absent motor preparation
  publication-title: Neuron
– volume: 210
  start-page: 343
  year: 2005
  end-page: 352
  ident: bib5
  article-title: Cytoarchitectonic mapping of the human amygdala, hippocampal region and entorhinal cortex: intersubject variability and probability maps
  publication-title: Anat. Embryol.
– volume: 106
  start-page: 283
  year: 1998
  end-page: 296
  ident: bib55
  article-title: The organization of the cortical motor system: new concepts
  publication-title: Electroencephalogr. Clin. Neurophysiol.
– volume: 91
  start-page: 1050
  year: 2004
  end-page: 1063
  ident: bib61
  article-title: The role of execution noise in movement variability
  publication-title: J. Neurophysiol.
– volume: 76
  start-page: 458
  year: 1989
  end-page: 462
  ident: bib12
  article-title: Neuronal activity in primate parietal cortex area 5 varies with intended movement direction during an instructed-delay period
  publication-title: Exp. Brain Res.
– volume: 4
  year: 2015
  ident: bib48
  article-title: Neural population dynamics in human motor cortex during movements in people with ALS
  publication-title: Elife
– volume: 588
  start-page: 1551
  year: 2010
  end-page: 1570
  ident: bib53
  article-title: Control of wrist position and muscle relaxation by shifting spatial frames of reference for motoneuronal recruitment: possible involvement of corticospinal pathways
  publication-title: J. Physiol.
– volume: 186
  start-page: 545
  year: 1974
  end-page: 548
  ident: bib40
  article-title: Studies of squeezing: handedness, responding hand, response force, and asymmetry of readiness potential
  publication-title: Science
– volume: 109
  start-page: 3067
  year: 2013
  end-page: 3081
  ident: bib2
  article-title: State-based decoding of hand and finger kinematics using neuronal ensemble and LFP activity during dexterous reach-to-grasp movements
  publication-title: J. Neurophysiol.
– volume: 3
  year: 2016
  ident: bib38
  article-title: The largest response component in the motor cortex reflects movement timing but not movement type
  publication-title: eneuro
– volume: 97
  start-page: 4235
  year: 2007
  end-page: 4257
  ident: bib10
  article-title: Temporal complexity and heterogeneity of single-neuron activity in premotor and motor cortex
  publication-title: J. Neurophysiol.
– volume: 9
  year: 2019
  ident: bib45
  article-title: Layer specificity of inputs from supplementary motor area and dorsal premotor cortex to primary motor cortex in macaque monkeys
  publication-title: Sci. Rep.
– volume: 53
  start-page: 35
  year: 1993
  end-page: 49
  ident: bib54
  article-title: The predictive value for performance speed of preparatory changes in neuronal activity of the monkey motor and premotor cortex
  publication-title: Behav. Brain Res.
– volume: 82
  start-page: 1394
  year: 2014
  end-page: 1406
  ident: bib30
  article-title: Optimal control of transient dynamics in balanced networks supports generation of complex movements
  publication-title: Neuron
– volume: 36
  start-page: 751
  year: 2002
  end-page: 765
  ident: bib47
  article-title: Neuronal correlates of kinematics-to-dynamics transformation in the supplementary motor area
  publication-title: Neuron
– volume: 10
  start-page: 2718
  year: 2019
  ident: bib3
  article-title: Simultaneous motor preparation and execution in a last-moment reach correction task
  publication-title: Nat. Commun.
– volume: 17
  start-page: 1500
  year: 2014
  end-page: 1509
  ident: bib13
  article-title: Dimensionality reduction for large-scale neural recordings
  publication-title: Nat. Neurosci.
– volume: 350
  start-page: 667
  year: 2015
  end-page: 670
  ident: bib29
  article-title: Corticomotoneuronal cells are “functionally tuned”
  publication-title: Science
– volume: 146
  start-page: 233
  year: 2002
  end-page: 243
  ident: bib31
  article-title: Primary motor cortical neurons encode functional muscle synergies
  publication-title: Exp. Brain Res.
– volume: 21
  start-page: 565
  year: 2011
  ident: 10.1016/j.celrep.2022.111849_bib15
  article-title: Interactions between areas of the cortical grasping network
  publication-title: Curr. Opin. Neurobiol.
  doi: 10.1016/j.conb.2011.05.021
– volume: 100
  start-page: 964
  year: 2018
  ident: 10.1016/j.celrep.2022.111849_bib49
  article-title: A neural population mechanism for rapid learning
  publication-title: Neuron
  doi: 10.1016/j.neuron.2018.09.030
– volume: 233
  start-page: 1416
  year: 1986
  ident: 10.1016/j.celrep.2022.111849_bib24
  article-title: Neuronal population coding of movement direction
  publication-title: Science
  doi: 10.1126/science.3749885
– volume: 350
  start-page: 667
  year: 2015
  ident: 10.1016/j.celrep.2022.111849_bib29
  article-title: Corticomotoneuronal cells are “functionally tuned”
  publication-title: Science
  doi: 10.1126/science.aaa8035
– volume: 76
  start-page: 458
  year: 1989
  ident: 10.1016/j.celrep.2022.111849_bib12
  article-title: Neuronal activity in primate parietal cortex area 5 varies with intended movement direction during an instructed-delay period
  publication-title: Exp. Brain Res.
  doi: 10.1007/BF00247902
– volume: 53
  start-page: 35
  year: 1993
  ident: 10.1016/j.celrep.2022.111849_bib54
  article-title: The predictive value for performance speed of preparatory changes in neuronal activity of the monkey motor and premotor cortex
  publication-title: Behav. Brain Res.
  doi: 10.1016/S0166-4328(05)80264-5
– volume: 102
  start-page: 614
  year: 2009
  ident: 10.1016/j.celrep.2022.111849_bib66
  article-title: Gaussian-process factor analysis for low-dimensional single-trial analysis of neural population activity
  publication-title: J. Neurophysiol.
  doi: 10.1152/jn.90941.2008
– volume: 112
  start-page: 649
  year: 1989
  ident: 10.1016/j.celrep.2022.111849_bib17
  article-title: Delay in the execution of the voluntary movement by electrical or magnetic brain stimulation in intact man
  publication-title: Brain
  doi: 10.1093/brain/112.3.649
– volume: 12
  year: 2016
  ident: 10.1016/j.celrep.2022.111849_bib56
  article-title: Tensor analysis reveals distinct population structure that parallels the different computational roles of areas M1 and V1
  publication-title: PLoS Comput. Biol.
  doi: 10.1371/journal.pcbi.1005164
– volume: 77
  start-page: 245
  year: 1989
  ident: 10.1016/j.celrep.2022.111849_bib39
  article-title: Distribution of neurons with set- and movement-related activity before hand and foot movements in the premotor cortex of rhesus monkeys
  publication-title: Exp. Brain Res.
  doi: 10.1007/BF00274982
– volume: 12
  year: 2016
  ident: 10.1016/j.celrep.2022.111849_bib43
  article-title: Neural population dynamics during reaching are better explained by a dynamical system than representational tuning
  publication-title: PLoS Comput. Biol.
  doi: 10.1371/journal.pcbi.1005175
– volume: 588
  start-page: 1551
  year: 2010
  ident: 10.1016/j.celrep.2022.111849_bib53
  article-title: Control of wrist position and muscle relaxation by shifting spatial frames of reference for motoneuronal recruitment: possible involvement of corticospinal pathways
  publication-title: J. Physiol.
  doi: 10.1113/jphysiol.2009.186858
– volume: 22
  start-page: 1904
  year: 2012
  ident: 10.1016/j.celrep.2022.111849_bib58
  article-title: Descending systems translate transient cortical commands into a sustained muscle activation signal
  publication-title: Cerebr. Cortex
  doi: 10.1093/cercor/bhr267
– volume: 251
  start-page: 281
  year: 1986
  ident: 10.1016/j.celrep.2022.111849_bib42
  article-title: Afferent and efferent projections of the inferior area 6 in the macaque monkey
  publication-title: J. Comp. Neurol.
  doi: 10.1002/cne.902510302
– volume: 2
  start-page: 1329
  year: 1982
  ident: 10.1016/j.celrep.2022.111849_bib62
  article-title: The premotor cortex of the monkey
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.02-09-01329.1982
– volume: 17
  start-page: 440
  year: 2014
  ident: 10.1016/j.celrep.2022.111849_bib35
  article-title: Cortical activity in the null space: permitting preparation without movement
  publication-title: Nat. Neurosci.
  doi: 10.1038/nn.3643
– volume: 70
  start-page: 2097
  year: 1993
  ident: 10.1016/j.celrep.2022.111849_bib22
  article-title: Neuronal specification of direction and distance during reaching movements in the superior precentral premotor area and primary motor cortex of monkeys
  publication-title: J. Neurophysiol.
  doi: 10.1152/jn.1993.70.5.2097
– volume: 91
  start-page: 1050
  year: 2004
  ident: 10.1016/j.celrep.2022.111849_bib61
  article-title: The role of execution noise in movement variability
  publication-title: J. Neurophysiol.
  doi: 10.1152/jn.00652.2003
– volume: 15
  start-page: 679
  year: 1992
  ident: 10.1016/j.celrep.2022.111849_bib21
  article-title: Are movement parameters recognizably coded in the activity of single neurons?
  publication-title: Behav. Brain Sci.
– volume: 9
  year: 2019
  ident: 10.1016/j.celrep.2022.111849_bib45
  article-title: Layer specificity of inputs from supplementary motor area and dorsal premotor cortex to primary motor cortex in macaque monkeys
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-019-54220-z
– volume: 39
  start-page: 1062
  year: 1976
  ident: 10.1016/j.celrep.2022.111849_bib60
  article-title: Anticipatory activity of motor cortex neurons in relation to direction of an intended movement
  publication-title: J. Neurophysiol.
  doi: 10.1152/jn.1976.39.5.1062
– volume: 97
  start-page: 4235
  year: 2007
  ident: 10.1016/j.celrep.2022.111849_bib10
  article-title: Temporal complexity and heterogeneity of single-neuron activity in premotor and motor cortex
  publication-title: J. Neurophysiol.
  doi: 10.1152/jn.00095.2007
– volume: 9
  start-page: 2080
  year: 1989
  ident: 10.1016/j.celrep.2022.111849_bib33
  article-title: A comparison of movement direction-related versus load direction- related activity in primate motor cortex, using a two-dimensional reaching task
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.09-06-02080.1989
– volume: 110
  start-page: 817
  year: 2013
  ident: 10.1016/j.celrep.2022.111849_bib37
  article-title: The roles of monkey M1 neuron classes in movement preparation and execution
  publication-title: J. Neurophysiol.
  doi: 10.1152/jn.00892.2011
– volume: 31
  start-page: 15531
  year: 2011
  ident: 10.1016/j.celrep.2022.111849_bib44
  article-title: Spatiotemporal variation of multiple neurophysiological signals in the primary motor cortex during dexterous reach-to-grasp movements
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.2999-11.2011
– volume: 6
  start-page: 7759
  year: 2015
  ident: 10.1016/j.celrep.2022.111849_bib34
  article-title: Single-trial dynamics of motor cortex and their applications to brain-machine interfaces
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms8759
– volume: 64
  start-page: 117
  year: 1986
  ident: 10.1016/j.celrep.2022.111849_bib65
  article-title: Movement-related activity in the premotor cortex of rhesus macaques
– volume: 338
  start-page: 114
  year: 1993
  ident: 10.1016/j.celrep.2022.111849_bib41
  article-title: Corticocortical connections of area F3 (SMA-proper) and area F6 (pre-SMA) in the macaque monkey
  publication-title: J. Comp. Neurol.
  doi: 10.1002/cne.903380109
– volume: 17
  start-page: 1500
  year: 2014
  ident: 10.1016/j.celrep.2022.111849_bib13
  article-title: Dimensionality reduction for large-scale neural recordings
  publication-title: Nat. Neurosci.
  doi: 10.1038/nn.3776
– volume: 318
  start-page: 1934
  year: 2007
  ident: 10.1016/j.celrep.2022.111849_bib16
  article-title: Rapid changes in throughput from single motor cortex neurons to muscle activity
  publication-title: Science
  doi: 10.1126/science.1149774
– volume: 45
  start-page: 801
  year: 2005
  ident: 10.1016/j.celrep.2022.111849_bib11
  article-title: Neural correlates of reaching decisions in dorsal premotor cortex: specification of multiple direction choices and final selection of action
  publication-title: Neuron
  doi: 10.1016/j.neuron.2005.01.027
– volume: 3
  year: 2016
  ident: 10.1016/j.celrep.2022.111849_bib38
  article-title: The largest response component in the motor cortex reflects movement timing but not movement type
  publication-title: eneuro
  doi: 10.1523/ENEURO.0085-16.2016
– volume: 81
  start-page: 438
  year: 2014
  ident: 10.1016/j.celrep.2022.111849_bib4
  article-title: Neural dynamics of reaching following incorrect or absent motor preparation
  publication-title: Neuron
  doi: 10.1016/j.neuron.2013.11.003
– volume: 386
  start-page: 167
  year: 1997
  ident: 10.1016/j.celrep.2022.111849_bib59
  article-title: Coding of intention in the posterior parietal cortex
  publication-title: Nature
  doi: 10.1038/386167a0
– volume: 2
  start-page: 1527
  year: 1982
  ident: 10.1016/j.celrep.2022.111849_bib23
  article-title: On the relations between the direction of two-dimensional arm movements and cell discharge in primate motor cortex
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.02-11-01527.1982
– volume: 21
  start-page: 1981
  year: 2011
  ident: 10.1016/j.celrep.2022.111849_bib25
  article-title: Cortical connections of functional zones in posterior parietal cortex and frontal cortex motor regions in new world monkeys
  publication-title: Cerebr. Cortex
  doi: 10.1093/cercor/bhq260
– volume: 82
  start-page: 1394
  year: 2014
  ident: 10.1016/j.celrep.2022.111849_bib30
  article-title: Optimal control of transient dynamics in balanced networks supports generation of complex movements
  publication-title: Neuron
  doi: 10.1016/j.neuron.2014.04.045
– volume: 186
  start-page: 545
  year: 1974
  ident: 10.1016/j.celrep.2022.111849_bib40
  article-title: Studies of squeezing: handedness, responding hand, response force, and asymmetry of readiness potential
  publication-title: Science
  doi: 10.1126/science.186.4163.545
– volume: 11
  start-page: 175
  year: 2018
  ident: 10.1016/j.celrep.2022.111849_bib50
  article-title: Beyond variability: subjective timing and the neurophysiology of motor cognition
  publication-title: Brain Stimul.
  doi: 10.1016/j.brs.2017.09.014
– volume: 31
  start-page: 11660
  year: 2011
  ident: 10.1016/j.celrep.2022.111849_bib26
  article-title: Multiple parietal–frontal pathways mediate grasping in macaque monkeys
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.1777-11.2011
– start-page: 1960
  year: 2019
  ident: 10.1016/j.celrep.2022.111849_bib14
  article-title: Quantifying interactions between neural populations during behavior using dynamical systems models
– volume: 106
  start-page: 283
  year: 1998
  ident: 10.1016/j.celrep.2022.111849_bib55
  article-title: The organization of the cortical motor system: new concepts
  publication-title: Electroencephalogr. Clin. Neurophysiol.
  doi: 10.1016/S0013-4694(98)00022-4
– volume: 82
  start-page: 3488
  year: 1999
  ident: 10.1016/j.celrep.2022.111849_bib52
  article-title: Limited functional grouping of neurons in the motor cortex hand area during individuated finger movements: a cluster analysis
  publication-title: J. Neurophysiol.
  doi: 10.1152/jn.1999.82.6.3488
– volume: 16
  start-page: 135
  year: 2006
  ident: 10.1016/j.celrep.2022.111849_bib7
  article-title: From crawling to cognition: analyzing the dynamical interactions among populations of neurons
  publication-title: Curr. Opin. Neurobiol.
  doi: 10.1016/j.conb.2006.03.014
– volume: 204
  start-page: 475
  year: 2010
  ident: 10.1016/j.celrep.2022.111849_bib28
  article-title: The cognitive neuroscience of prehension: recent developments
  publication-title: Exp. Brain Res.
  doi: 10.1007/s00221-010-2315-2
– volume: 4
  year: 2015
  ident: 10.1016/j.celrep.2022.111849_bib48
  article-title: Neural population dynamics in human motor cortex during movements in people with ALS
  publication-title: Elife
  doi: 10.7554/eLife.07436
– volume: 109
  start-page: 3067
  year: 2013
  ident: 10.1016/j.celrep.2022.111849_bib2
  article-title: State-based decoding of hand and finger kinematics using neuronal ensemble and LFP activity during dexterous reach-to-grasp movements
  publication-title: J. Neurophysiol.
  doi: 10.1152/jn.01038.2011
– volume: 7
  year: 2016
  ident: 10.1016/j.celrep.2022.111849_bib18
  article-title: Reorganization between preparatory and movement population responses in motor cortex
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms13239
– volume: 260
  start-page: 301
  year: 1983
  ident: 10.1016/j.celrep.2022.111849_bib64
  article-title: Motor aspects of cue-related neuronal activity in premotor cortex of the rhesus monkey
  publication-title: Brain Res.
– volume: 18
  start-page: 143
  year: 1985
  ident: 10.1016/j.celrep.2022.111849_bib27
  article-title: The involvement of monkey premotor cortex neurones in preparation of visually cued arm movements
  publication-title: Behav. Brain Res.
  doi: 10.1016/0166-4328(85)90070-1
– volume: 8
  start-page: 1
  year: 1985
  ident: 10.1016/j.celrep.2022.111849_bib63
  article-title: The primate premotor cortex: past, present, and preparatory
  publication-title: Annu. Rev. Neurosci.
  doi: 10.1146/annurev.ne.08.030185.000245
– volume: 102
  start-page: 249
  year: 2019
  ident: 10.1016/j.celrep.2022.111849_bib57
  article-title: Cortical areas interact through a communication subspace
  publication-title: Neuron
  doi: 10.1016/j.neuron.2019.01.026
– volume: 29
  start-page: 1011
  year: 1966
  ident: 10.1016/j.celrep.2022.111849_bib19
  article-title: Pyramidal tract activity associated with a conditioned hand movement in the monkey
  publication-title: J. Neurophysiol.
  doi: 10.1152/jn.1966.29.6.1011
– volume: 36
  start-page: 751
  year: 2002
  ident: 10.1016/j.celrep.2022.111849_bib47
  article-title: Neuronal correlates of kinematics-to-dynamics transformation in the supplementary motor area
  publication-title: Neuron
  doi: 10.1016/S0896-6273(02)01028-0
– volume: 79
  start-page: 67
  year: 2014
  ident: 10.1016/j.celrep.2022.111849_bib8
  article-title: A dynamical basis set for generating reaches
  publication-title: Cold Spring Harbor Symp. Quant. Biol.
  doi: 10.1101/sqb.2014.79.024703
– volume: 181
  start-page: 49
  year: 2007
  ident: 10.1016/j.celrep.2022.111849_bib51
  article-title: Threshold position control of arm movement with anticipatory increase in grip force
  publication-title: Exp. Brain Res.
  doi: 10.1007/s00221-007-0901-8
– volume: 285
  start-page: 2136
  year: 1999
  ident: 10.1016/j.celrep.2022.111849_bib32
  article-title: Muscle and movement representations in the primary motor cortex
  publication-title: Science
  doi: 10.1126/science.285.5436.2136
– volume: 146
  start-page: 233
  year: 2002
  ident: 10.1016/j.celrep.2022.111849_bib31
  article-title: Primary motor cortical neurons encode functional muscle synergies
  publication-title: Exp. Brain Res.
  doi: 10.1007/s00221-002-1166-x
– volume: 35
  start-page: 12615
  year: 2015
  ident: 10.1016/j.celrep.2022.111849_bib46
  article-title: Representation of muscle synergies in the primate brain
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.4302-14.2015
– volume: 104
  start-page: 799
  year: 2010
  ident: 10.1016/j.celrep.2022.111849_bib36
  article-title: Roles of monkey premotor neuron classes in movement preparation and execution
  publication-title: J. Neurophysiol.
  doi: 10.1152/jn.00231.2009
– volume: 35
  start-page: 9508
  year: 2015
  ident: 10.1016/j.celrep.2022.111849_bib1
  article-title: PMv neuronal firing may be driven by a movement command trajectory within multidimensional Gaussian fields
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.2643-14.2015
– volume: 487
  start-page: 51
  year: 2012
  ident: 10.1016/j.celrep.2022.111849_bib9
  article-title: Neural population dynamics during reaching
  publication-title: Nature
  doi: 10.1038/nature11129
– volume: 210
  start-page: 343
  year: 2005
  ident: 10.1016/j.celrep.2022.111849_bib5
  article-title: Cytoarchitectonic mapping of the human amygdala, hippocampal region and entorhinal cortex: intersubject variability and probability maps
  publication-title: Anat. Embryol.
  doi: 10.1007/s00429-005-0025-5
– volume: 121
  start-page: 823
  year: 2019
  ident: 10.1016/j.celrep.2022.111849_bib20
  article-title: Indirect, referent control of motor actions underlies directional tuning of neurons
  publication-title: J. Neurophysiol.
  doi: 10.1152/jn.00575.2018
– volume: 10
  start-page: 2718
  year: 2019
  ident: 10.1016/j.celrep.2022.111849_bib3
  article-title: Simultaneous motor preparation and execution in a last-moment reach correction task
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-10772-2
– volume: 18
  start-page: 2047
  year: 2003
  ident: 10.1016/j.celrep.2022.111849_bib6
  article-title: Preshaping and continuous evolution of motor cortical representations during movement preparation
  publication-title: Eur. J. Neurosci.
  doi: 10.1046/j.1460-9568.2003.02906.x
SSID ssj0000601194
Score 2.3973534
Snippet In the conventional view of sensorimotor control, the premotor cortex (PM) plans actions that are executed by the primary motor cortex (M1). This notion arises...
SourceID pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 111849
SubjectTerms Animals
dynamical systems model
Hand Strength
motor control
Motor Cortex
Movement
non-human primate
premotor cortex
primary motor cortex
Psychomotor Performance
reach to grasp
SummonAdditionalLinks – databaseName: Elsevier ScienceDirect Open Access Journals
  dbid: IXB
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9swEBelMOjLaPeZtisa7FUk1oelPLZhoRS2h22FvAlJllhGsIObwPbf986yw9INAn0ysu-MfD_57mTfByGfQjImAu6sNBPBZHKGOWMkc1xzUaXkJyXmO3_5Wt7ey7uFWhyR2ZALg2GVve7POr3T1v2ZcS_N8Xq5HH_nsHcB66Q52DCwi5hRLqTpkvgWN7vvLFhvpOj6ISI9Q4Yhg64L8wpx1UYsXMk5qg-DRTX_b6H-9UCfBlL-ZZnmp-Rl71LS6zzrM3IU61fkRW4y-ec1-TZr8ErDQncEyqoFFUeXNXU0NNv1KlZ03UbArGnZOlefoN2IIkv8Tavcth5Yc-HnN-R-_vnH7Jb1nRRYkKXcsFSZadRFqqKSQXhjnIed0jSUKQXuRSx05RTXHqAxhQpKgB4LXKgIsE2TSOItOa6bOr4n1AgnsVNopQOHe0-9BwfLRyEUMCTlRkQM0rOhLzOO3S5Wdogn-2WzzC3K3GaZjwjbcfUPeoBeD8DYveViwRIc4Pw44GjhTcLfI66OzfbBcq00OLBaFyPyLuO6m4vAFNxC6hExe4jvCLBK9_6Vevmzq9YNaxT2pNqcP3vKF-QERxhEwyeX5HjTbuMHcIU2_qpb64-jkAhs
  priority: 102
  providerName: Elsevier
Title Cortico-cortical drive in a coupled premotor-primary motor cortex dynamical system
URI https://dx.doi.org/10.1016/j.celrep.2022.111849
https://www.ncbi.nlm.nih.gov/pubmed/36543147
https://www.proquest.com/docview/2757054771
https://pubmed.ncbi.nlm.nih.gov/PMC11271678
Volume 41
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1La9wwEB7SlJZcQt_ZtA0q9Kqy1sOSD6G0oSEtpIfShb0JSZZoymJvnF1I_n1Glr1t2oRcbIw0Qp5vJH2yRzMA733UOiDutNRTTkW0mlqtBbVMMV7H6KZlOu98-r08mYlvcznfgjFn66DAi1u3dimf1KxbfLg8v_qIA_7wj6-WD4supOiTjKU5QIvqATzEtUmloXo6EP48N6cYZ2I8Q3eH8A485unMZZGSrty-XP1PR__1qvxrmTp-ArsDvySfskE8ha3QPINHOePk1XP4cdSmkpb6_o416w7nO3LWEEt8u14uQk2WXUAA244ucygK0j-RJBIuSZ1z2KNojgL9AmbHX34endAhrQL1ohQrGmtdBVXEOkjhudPaOtw2Vb6M0TPHQ6FqK5lyiJMupJccJzXPuAyIYRV55C9hu2mbsAdEcytS2tBaeYZtV84h23KBc4kCUdoJ8FF7xg8xx1Pqi4UZnct-m6x-k9RvsvonQDdSw4veU1-NwJiBN2Q-YNBK7pF8N-JocFilfyW2Ce36wjAlFbJZpYoJvMq4bvoy2sYE9A3ENxVSyO6bJc3Zrz50N7Jb3KAqvX9no69hJ3Uwecyw6RvYXnXr8BZ5z8od9N8L8Pp1_vmgN-trB6MDrg
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwED-NIQQviM-t48tIvFpt7Dh2H6Fi6mDbA2xS36zYsUVRlVShleC_312cVBSQJvEUJfZFzv2cu3Ny_h3AOx-NCYg7L8xE8jyWhpfG5LwUWsgqRjcpaL_zxWUxv84_LdTiAGbDXhhKq-xtf7LpnbXur4x7bY7Xy-X4q8C1C3onLdCHoV_Ud-AuRgOa6jecLT7sPrQQ4UjWFUQkAU4Swxa6Ls_Lh1UbiLlSCLIfhlg1_-2i_g5B_8yk_M01nT6Ch31Myd6nYT-Gg1A_gXupyuSvp_Bl1lBLw313xJ5VizaOLWtWMt9s16tQsXUbELSm5etEP8G6M0Yi4SerUt16FE3Mz8_g-vTj1WzO-1IK3OdFvuGxMtOgs1gFlXvpjCkdLpWmvojRCydDpqtSCe0QG5MpryQaMi-kCojbNMoon8Nh3dThGJiRZU6lQivtBd576hxGWC5IqVAgqnIEctCe9T3POJW7WNkhoey7TTq3pHObdD4CvpPqH_SW_noAxu7NF4uu4BbJtwOOFl8l-j9S1qHZ_rBCK40RrNbZCI4SrruxSNqDm-V6BGYP8V0Houneb6mX3zq6bpykuCjV5uS_h_wG7s-vLs7t-dnl5xfwgFooo0ZMXsLhpt2GVxgXbdzrbt7fAOxDC4s
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Cortico-cortical+drive+in+a+coupled+premotor-primary+motor+cortex+dynamical+system&rft.jtitle=Cell+reports+%28Cambridge%29&rft.au=D%27Aleo%2C+Raina&rft.au=Rouse%2C+Adam+G&rft.au=Schieber%2C+Marc+H&rft.au=Sarma%2C+Sridevi+V&rft.date=2022-12-20&rft.eissn=2211-1247&rft.volume=41&rft.issue=12&rft.spage=111849&rft_id=info:doi/10.1016%2Fj.celrep.2022.111849&rft_id=info%3Apmid%2F36543147&rft.externalDocID=36543147
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2211-1247&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2211-1247&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2211-1247&client=summon