Hydrothermal conversion of xylose, glucose, and cellulose under the catalysis of transition metal sulfates
•Zn2+ and Ni2+ showed obvious effect on converting biomass into lactic acid.•Cu2+ and Fe3+ could accelerate the formations of levulinic acid and formic acid.•Positive correlations among xylose, glucose, and cellulose degradation were observed.•HTC of monosaccharide can be used to screen catalysts fo...
Saved in:
Published in | Carbohydrate polymers Vol. 118; pp. 44 - 51 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
England
Elsevier Ltd
15.03.2015
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | •Zn2+ and Ni2+ showed obvious effect on converting biomass into lactic acid.•Cu2+ and Fe3+ could accelerate the formations of levulinic acid and formic acid.•Positive correlations among xylose, glucose, and cellulose degradation were observed.•HTC of monosaccharide can be used to screen catalysts for biomass upgradation.
Hydrothermal conversion (HTC) is an important thermochemical process to upgrade low-cost biomass into valuable chemicals or fuels. As compared with non-catalytic HTC, catalytic HTC shows high energy efficiency on biomass upgradation. In this work, the catalytic performances of various transition metal sulfates (Mn2+, Fe2+, Fe3+, Co2+, Ni2+, Cu2+, and Zn2+) in the HTCs of xylose, glucose, and cellulose under different conditions were explored. Among these catalysts, Zn2+ and Ni2+ showed obvious effects on the conversions of xylose, glucose, and cellulose into lactic acid, while Cu2+ and Fe3+, which could significantly accelerate the hydrolysis of cellulose into glucose at 200°C, displayed high efficiency on converting glucose and cellulose into levulinic acid and formic acid at high temperature. Additionally, significant positive correlative relationships among xylose, glucose, and cellulose degradations were observed. This study is helpful for screening appropriate catalysts for biomass upgradation through catalytic HTC of monosaccharide. |
---|---|
AbstractList | •Zn2+ and Ni2+ showed obvious effect on converting biomass into lactic acid.•Cu2+ and Fe3+ could accelerate the formations of levulinic acid and formic acid.•Positive correlations among xylose, glucose, and cellulose degradation were observed.•HTC of monosaccharide can be used to screen catalysts for biomass upgradation.
Hydrothermal conversion (HTC) is an important thermochemical process to upgrade low-cost biomass into valuable chemicals or fuels. As compared with non-catalytic HTC, catalytic HTC shows high energy efficiency on biomass upgradation. In this work, the catalytic performances of various transition metal sulfates (Mn2+, Fe2+, Fe3+, Co2+, Ni2+, Cu2+, and Zn2+) in the HTCs of xylose, glucose, and cellulose under different conditions were explored. Among these catalysts, Zn2+ and Ni2+ showed obvious effects on the conversions of xylose, glucose, and cellulose into lactic acid, while Cu2+ and Fe3+, which could significantly accelerate the hydrolysis of cellulose into glucose at 200°C, displayed high efficiency on converting glucose and cellulose into levulinic acid and formic acid at high temperature. Additionally, significant positive correlative relationships among xylose, glucose, and cellulose degradations were observed. This study is helpful for screening appropriate catalysts for biomass upgradation through catalytic HTC of monosaccharide. Hydrothermal conversion (HTC) is an important thermochemical process to upgrade low-cost biomass into valuable chemicals or fuels. As compared with non-catalytic HTC, catalytic HTC shows high energy efficiency on biomass upgradation. In this work, the catalytic performances of various transition metal sulfates (Mn(2+), Fe(2+), Fe(3+), Co(2+), Ni(2+), Cu(2+), and Zn(2+)) in the HTCs of xylose, glucose, and cellulose under different conditions were explored. Among these catalysts, Zn(2+) and Ni(2+) showed obvious effects on the conversions of xylose, glucose, and cellulose into lactic acid, while Cu(2+) and Fe(3+), which could significantly accelerate the hydrolysis of cellulose into glucose at 200°C, displayed high efficiency on converting glucose and cellulose into levulinic acid and formic acid at high temperature. Additionally, significant positive correlative relationships among xylose, glucose, and cellulose degradations were observed. This study is helpful for screening appropriate catalysts for biomass upgradation through catalytic HTC of monosaccharide.Hydrothermal conversion (HTC) is an important thermochemical process to upgrade low-cost biomass into valuable chemicals or fuels. As compared with non-catalytic HTC, catalytic HTC shows high energy efficiency on biomass upgradation. In this work, the catalytic performances of various transition metal sulfates (Mn(2+), Fe(2+), Fe(3+), Co(2+), Ni(2+), Cu(2+), and Zn(2+)) in the HTCs of xylose, glucose, and cellulose under different conditions were explored. Among these catalysts, Zn(2+) and Ni(2+) showed obvious effects on the conversions of xylose, glucose, and cellulose into lactic acid, while Cu(2+) and Fe(3+), which could significantly accelerate the hydrolysis of cellulose into glucose at 200°C, displayed high efficiency on converting glucose and cellulose into levulinic acid and formic acid at high temperature. Additionally, significant positive correlative relationships among xylose, glucose, and cellulose degradations were observed. This study is helpful for screening appropriate catalysts for biomass upgradation through catalytic HTC of monosaccharide. Hydrothermal conversion (HTC) is an important thermochemical process to upgrade low-cost biomass into valuable chemicals or fuels. As compared with non-catalytic HTC, catalytic HTC shows high energy efficiency on biomass upgradation. In this work, the catalytic performances of various transition metal sulfates (Mn2+, Fe2+, Fe3+, Co2+, Ni2+, Cu2+, and Zn2+) in the HTCs of xylose, glucose, and cellulose under different conditions were explored. Among these catalysts, Zn2+ and Ni2+ showed obvious effects on the conversions of xylose, glucose, and cellulose into lactic acid, while Cu2+ and Fe3+, which could significantly accelerate the hydrolysis of cellulose into glucose at 200°C, displayed high efficiency on converting glucose and cellulose into levulinic acid and formic acid at high temperature. Additionally, significant positive correlative relationships among xylose, glucose, and cellulose degradations were observed. This study is helpful for screening appropriate catalysts for biomass upgradation through catalytic HTC of monosaccharide. Hydrothermal conversion (HTC) is an important thermochemical process to upgrade low-cost biomass into valuable chemicals or fuels. As compared with non-catalytic HTC, catalytic HTC shows high energy efficiency on biomass upgradation. In this work, the catalytic performances of various transition metal sulfates (Mn(2+), Fe(2+), Fe(3+), Co(2+), Ni(2+), Cu(2+), and Zn(2+)) in the HTCs of xylose, glucose, and cellulose under different conditions were explored. Among these catalysts, Zn(2+) and Ni(2+) showed obvious effects on the conversions of xylose, glucose, and cellulose into lactic acid, while Cu(2+) and Fe(3+), which could significantly accelerate the hydrolysis of cellulose into glucose at 200°C, displayed high efficiency on converting glucose and cellulose into levulinic acid and formic acid at high temperature. Additionally, significant positive correlative relationships among xylose, glucose, and cellulose degradations were observed. This study is helpful for screening appropriate catalysts for biomass upgradation through catalytic HTC of monosaccharide. |
Author | Chen, Wei Peng, Xinwen Wang, Sha Cao, Xuefei Zhong, Linxin Sun, Shaoni Sun, Run-Cang |
Author_xml | – sequence: 1 givenname: Xuefei surname: Cao fullname: Cao, Xuefei organization: State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China – sequence: 2 givenname: Xinwen surname: Peng fullname: Peng, Xinwen organization: State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China – sequence: 3 givenname: Shaoni surname: Sun fullname: Sun, Shaoni organization: Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China – sequence: 4 givenname: Linxin surname: Zhong fullname: Zhong, Linxin email: lxzhong0611@scut.edu.cn organization: State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China – sequence: 5 givenname: Wei surname: Chen fullname: Chen, Wei organization: State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China – sequence: 6 givenname: Sha surname: Wang fullname: Wang, Sha organization: State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China – sequence: 7 givenname: Run-Cang surname: Sun fullname: Sun, Run-Cang email: rcsun3@bjfu.edu.cn organization: State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/25542106$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkUFv3CAUhFGVqtkk_QmtOPZQbwFjbCuHKoqaplKkXpozwvDcsMKwAbzK_vvi7qaHXpYLaJh5evrmAp354AGhD5SsKaHiy2atVRy2wa0ZobxoayL6N2hFu7avaM35GVqVD151grbn6CKlDSlHUPIOnbOm4YwSsUKb-72JIT9BnJTDOvgdxGSDx2HEL3sXEnzGv92s_z6UN1iDc_Oi49kbiLhEsVZZuX2yaUnlqHyyeZkxQdFxmt2oMqQr9HZULsH7432JHu--_bq9rx5-fv9xe_NQaS54rsZB8Kbph5EIbWomaE-MahkTQpiuJU3XqQF4R3oQpuatHnVbCLT1yAdFilRfok-HudsYnmdIWU42LWsrD2FOkhUMrO1qyk5aqeAFdkdZU6wfj9Z5mMDIbbSTinv5irIYmoNBx5BShPGfhRK5VCY38liZXCpb5FJZyV3_l9M2q4VfIWndyfTXQxoK0Z2FKJO24DUYG0FnaYI9MeEPJXy1yQ |
CitedBy_id | crossref_primary_10_1016_j_apcata_2015_05_038 crossref_primary_10_1515_revce_2017_0071 crossref_primary_10_1007_s13726_020_00805_9 crossref_primary_10_1002_ente_201901476 crossref_primary_10_1016_j_biortech_2018_03_073 crossref_primary_10_1007_s10570_024_05755_6 crossref_primary_10_1016_j_biombioe_2024_107106 crossref_primary_10_1002_jctb_6172 crossref_primary_10_1016_j_indcrop_2021_114101 crossref_primary_10_1007_s13399_022_03650_3 crossref_primary_10_1021_acs_jpcc_0c00943 crossref_primary_10_1016_j_rser_2018_06_016 crossref_primary_10_1016_j_apcata_2019_117126 crossref_primary_10_1016_j_carbpol_2020_117164 crossref_primary_10_1007_s11814_017_0030_4 crossref_primary_10_1016_j_carbpol_2021_118936 crossref_primary_10_3390_polym16182633 crossref_primary_10_1016_j_jhazmat_2016_01_081 crossref_primary_10_1016_j_biombioe_2024_107182 crossref_primary_10_1021_acs_iecr_7b02663 crossref_primary_10_3389_fmats_2022_1093164 crossref_primary_10_1007_s10853_018_3135_1 crossref_primary_10_1016_j_rser_2022_112130 crossref_primary_10_1016_j_biortech_2021_126035 crossref_primary_10_1016_j_fuel_2016_09_019 crossref_primary_10_1016_j_jallcom_2023_168994 crossref_primary_10_3390_molecules26082208 crossref_primary_10_1007_s10562_022_04151_8 crossref_primary_10_3390_catal14020141 crossref_primary_10_3390_catal6120196 crossref_primary_10_1021_acssuschemeng_6b00623 crossref_primary_10_1016_j_algal_2020_101819 crossref_primary_10_1016_j_scitotenv_2022_154968 crossref_primary_10_3390_polym14081621 crossref_primary_10_1016_j_ces_2018_01_014 crossref_primary_10_1016_j_carbpol_2021_119050 crossref_primary_10_1007_s13399_022_03152_2 crossref_primary_10_3390_catal14020132 crossref_primary_10_3390_catal10091006 crossref_primary_10_5004_dwt_2018_22221 crossref_primary_10_1016_j_cattod_2017_01_007 crossref_primary_10_1021_acsomega_0c02491 crossref_primary_10_1002_jctb_7721 crossref_primary_10_1016_j_jaap_2021_105225 crossref_primary_10_1007_s13399_019_00488_0 crossref_primary_10_1002_cssc_201501181 crossref_primary_10_1016_j_scitotenv_2021_150997 crossref_primary_10_1007_s11051_021_05319_w crossref_primary_10_1007_s12649_024_02459_7 crossref_primary_10_1039_C7NJ03146G crossref_primary_10_3390_pr8070843 crossref_primary_10_1039_D0SE00798F crossref_primary_10_1016_j_pecs_2016_04_004 crossref_primary_10_1016_j_jhazmat_2021_126961 crossref_primary_10_1016_j_apsusc_2023_157552 crossref_primary_10_1016_j_scp_2023_101216 crossref_primary_10_1016_j_fuproc_2019_106162 crossref_primary_10_1021_acsomega_1c00106 crossref_primary_10_1627_jpi_60_101 crossref_primary_10_1016_j_watres_2021_117186 crossref_primary_10_1021_acs_energyfuels_7b01558 crossref_primary_10_1016_j_apcata_2021_118327 crossref_primary_10_1039_D2SE00386D crossref_primary_10_3389_fchem_2019_00504 crossref_primary_10_3390_su122410601 crossref_primary_10_1021_acssuschemeng_6b03194 crossref_primary_10_1016_j_cattod_2016_03_052 crossref_primary_10_1002_ese3_173 crossref_primary_10_1016_j_cej_2022_137838 crossref_primary_10_1021_acssuschemeng_8b06162 |
Cites_doi | 10.1021/ie801387v 10.1002/cssc.201000341 10.1021/ef3007454 10.1021/ie9806390 10.1002/chem.200802097 10.1016/j.supflu.2012.08.016 10.1002/anie.200604274 10.1016/j.cej.2014.07.036 10.1002/anie.201302575 10.1016/j.carbpol.2012.05.083 10.1016/S1004-9541(07)60143-8 10.1126/science.1141199 10.1016/j.supflu.2010.08.013 10.1021/cs200461t 10.1016/S0896-8446(98)00060-6 10.1021/ie0202773 10.1016/j.carres.2004.04.018 10.1016/0008-6215(93)80027-C 10.1007/s11164-012-0572-3 10.1016/j.apenergy.2011.10.041 10.1038/ncomms3141 10.1016/S0040-4039(00)94793-2 10.3390/molecules15085258 10.1016/j.biombioe.2011.06.015 10.1002/cssc.201300092 |
ContentType | Journal Article |
Copyright | 2014 Elsevier Ltd Copyright © 2014 Elsevier Ltd. All rights reserved. |
Copyright_xml | – notice: 2014 Elsevier Ltd – notice: Copyright © 2014 Elsevier Ltd. All rights reserved. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 |
DOI | 10.1016/j.carbpol.2014.10.069 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE - Academic AGRICOLA MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1879-1344 |
EndPage | 51 |
ExternalDocumentID | 25542106 10_1016_j_carbpol_2014_10_069 S014486171401114X |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --K --M .~1 0R~ 1B1 1RT 1~. 1~5 29B 4.4 457 4G. 5GY 5VS 6J9 7-5 71M 8P~ 9JM 9JN AABNK AABVA AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARLI AATLK AAXUO ABFNM ABFRF ABGRD ABGSF ABJNI ABMAC ABUDA ABYKQ ACDAQ ACGFO ACGFS ACIUM ACRLP ADBBV ADECG ADEZE ADQTV ADUVX AEBSH AEFWE AEHWI AEKER AENEX AEQOU AFKWA AFTJW AFXIZ AFZHZ AGHFR AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AJBFU AJOXV AJSZI ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLXMC CBWCG CS3 DOVZS DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FIRID FLBIZ FNPLU FYGXN G-Q GBLVA IHE J1W KOM LW9 M24 M2Y M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG RNS ROL RPZ SAB SDF SDG SDP SES SPC SPCBC SSA SSK SSU SSZ T5K Y6R ~G- ~KM 53G AAHBH AALCJ AAQXK AATTM AAXKI AAYWO AAYXX ABWVN ABXDB ACNNM ACRPL ACVFH ADCNI ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRDE AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION FEDTE FGOYB G-2 HLV HMS HVGLF HZ~ R2- SCB SEW SMS SOC SSH WUQ XPP CGR CUY CVF ECM EIF NPM 7X8 EFKBS 7S9 L.6 |
ID | FETCH-LOGICAL-c464t-fb64559bf06cd326190da722666d870588abe4809e6d347cfc720173f4ba06d33 |
IEDL.DBID | .~1 |
ISSN | 0144-8617 1879-1344 |
IngestDate | Thu Jul 10 22:46:04 EDT 2025 Tue Aug 05 10:12:06 EDT 2025 Thu Apr 03 07:08:00 EDT 2025 Tue Jul 01 04:14:48 EDT 2025 Thu Apr 24 23:04:04 EDT 2025 Fri Feb 23 02:23:20 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Hydrothermal conversion Glucose Degradation correlation Cellulose Transition metal sulfates |
Language | English |
License | Copyright © 2014 Elsevier Ltd. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c464t-fb64559bf06cd326190da722666d870588abe4809e6d347cfc720173f4ba06d33 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 25542106 |
PQID | 1641018125 |
PQPubID | 23479 |
PageCount | 8 |
ParticipantIDs | proquest_miscellaneous_2000278312 proquest_miscellaneous_1641018125 pubmed_primary_25542106 crossref_primary_10_1016_j_carbpol_2014_10_069 crossref_citationtrail_10_1016_j_carbpol_2014_10_069 elsevier_sciencedirect_doi_10_1016_j_carbpol_2014_10_069 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2015-03-15 |
PublicationDateYYYYMMDD | 2015-03-15 |
PublicationDate_xml | – month: 03 year: 2015 text: 2015-03-15 day: 15 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Carbohydrate polymers |
PublicationTitleAlternate | Carbohydr Polym |
PublicationYear | 2015 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Kabyemela, Adschiri, Malaluan, Arai (bib0050) 1999; 38 Jing, Lü (bib0045) 2007; 15 Kruse, Gawlik (bib0060) 2002; 42 Knežević, van Swaaij, Kersten (bib0055) 2009; 48 Tekin, Karagoez (bib0115) 2013; 39 Chheda, Huber, Dumesic (bib0020) 2007; 46 Möller, Nilges, Harnisch, Schröder (bib0070) 2011; 4 Patil, Heltzel, Lund (bib0075) 2012; 26 Yin, Tan (bib0125) 2012; 92 Tekin, Karagöz, Bektaş (bib0110) 2012; 72 Zhao, Holladay, Brown, Zhang (bib0130) 2007; 316 Bui, Luo, Gunther, Román-Leshkov (bib0010) 2013; 52 Ding, Shi, Xiao, Gu, Zheng, Wang (bib0030) 2012; 90 Pińkowska, Wolak, Złocińska (bib0085) 2011; 35 Sasaki, Kabyemela, Malaluan, Hirose, Takeda, Adschiri (bib0095) 1998; 13 Luijkx, van Rantwijk, van Bekkum (bib0065) 1993; 242 Sevilla, Fuertes (bib0100) 2009; 15 Horvat, Klaić, Metelko, Šunjić (bib0040) 1985; 26 Aida, Shiraishi, Kubo, Watanabe, Smith (bib0005) 2010; 55 Esposito, Antonietti (bib0035) 2013; 6 Chamnankid, Ratanatawanate, Faungnawakij (bib0015) 2014; 258 Sasaki, Hayakawa, Arai, Adschiri (bib0090) 2003 Srokol, Bouche, van Estrik, Strik, Maschmeyer, Peters (bib0105) 2004; 339 Choudhary, Pinar, Sandler, Vlachos, Lobo (bib0025) 2011; 1 Peng, Lin, Zhang, Zhuang, Zhang, Gong (bib0080) 2010; 15 Wang, Deng, Wang, Zhang, Wan, Tang (bib0120) 2013; 4 Horvat (10.1016/j.carbpol.2014.10.069_bib0040) 1985; 26 Chheda (10.1016/j.carbpol.2014.10.069_bib0020) 2007; 46 Kruse (10.1016/j.carbpol.2014.10.069_bib0060) 2002; 42 Pińkowska (10.1016/j.carbpol.2014.10.069_bib0085) 2011; 35 Tekin (10.1016/j.carbpol.2014.10.069_bib0115) 2013; 39 Bui (10.1016/j.carbpol.2014.10.069_bib0010) 2013; 52 Möller (10.1016/j.carbpol.2014.10.069_bib0070) 2011; 4 Choudhary (10.1016/j.carbpol.2014.10.069_bib0025) 2011; 1 Sasaki (10.1016/j.carbpol.2014.10.069_bib0095) 1998; 13 Ding (10.1016/j.carbpol.2014.10.069_bib0030) 2012; 90 Esposito (10.1016/j.carbpol.2014.10.069_bib0035) 2013; 6 Sevilla (10.1016/j.carbpol.2014.10.069_bib0100) 2009; 15 Tekin (10.1016/j.carbpol.2014.10.069_bib0110) 2012; 72 Jing (10.1016/j.carbpol.2014.10.069_bib0045) 2007; 15 Zhao (10.1016/j.carbpol.2014.10.069_bib0130) 2007; 316 Wang (10.1016/j.carbpol.2014.10.069_bib0120) 2013; 4 Yin (10.1016/j.carbpol.2014.10.069_bib0125) 2012; 92 Aida (10.1016/j.carbpol.2014.10.069_bib0005) 2010; 55 Peng (10.1016/j.carbpol.2014.10.069_bib0080) 2010; 15 Patil (10.1016/j.carbpol.2014.10.069_bib0075) 2012; 26 Luijkx (10.1016/j.carbpol.2014.10.069_bib0065) 1993; 242 Srokol (10.1016/j.carbpol.2014.10.069_bib0105) 2004; 339 Kabyemela (10.1016/j.carbpol.2014.10.069_bib0050) 1999; 38 Knežević (10.1016/j.carbpol.2014.10.069_bib0055) 2009; 48 Sasaki (10.1016/j.carbpol.2014.10.069_bib0090) 2003 Chamnankid (10.1016/j.carbpol.2014.10.069_bib0015) 2014; 258 |
References_xml | – volume: 52 start-page: 8022 year: 2013 end-page: 8025 ident: bib0010 article-title: Domino reaction catalyzed by zeolites with Brønsted and Lewis acid sites for the production of γ-valerolactone from furfural publication-title: Angewandte Chemie International Edition – volume: 35 start-page: 3902 year: 2011 end-page: 3912 ident: bib0085 article-title: Hydrothermal decomposition of xylan as a model substance for plant biomass waste—Hydrothermolysis in subcritical water publication-title: Biomass and Bioenergy – volume: 72 start-page: 134 year: 2012 end-page: 139 ident: bib0110 article-title: Hydrothermal liquefaction of beech wood using a natural calcium borate mineral publication-title: The Journal of Supercritical Fluids – volume: 92 start-page: 234 year: 2012 end-page: 239 ident: bib0125 article-title: Hydrothermal liquefaction of cellulose to bio-oil under acidic, neutral and alkaline conditions publication-title: Applied Energy – volume: 6 start-page: 989 year: 2013 end-page: 992 ident: bib0035 article-title: Chemical conversion of sugars to lactic acid by alkaline hydrothermal processes publication-title: ChemSusChem – volume: 242 start-page: 131 year: 1993 end-page: 139 ident: bib0065 article-title: Hydrothermal formation of 1,2,4-benzenetriol from 5-hydroxymethyl-2-furaldehyde and publication-title: Carbohydrate Research – volume: 339 start-page: 1717 year: 2004 end-page: 1726 ident: bib0105 article-title: Hydrothermal upgrading of biomass to biofuel: Studies on some monosaccharide model compounds publication-title: Carbohydrate Research – volume: 39 start-page: 485 year: 2013 end-page: 498 ident: bib0115 article-title: Non-catalytic and catalytic hydrothermal liquefaction of biomass publication-title: Research on Chemical Intermediates – volume: 316 start-page: 1597 year: 2007 end-page: 1600 ident: bib0130 article-title: Metal chlorides in ionic liquid solvents convert sugars to 5-hydroxymethylfurfural publication-title: Science – volume: 90 start-page: 792 year: 2012 end-page: 798 ident: bib0030 article-title: Catalytic conversion of cellulose to 5-hydroxymethyl furfural using acidic ionic liquids and co-catalyst publication-title: Carbohydrate Polymers – volume: 15 start-page: 666 year: 2007 end-page: 669 ident: bib0045 article-title: Kinetics of non-catalyzed decomposition of publication-title: Chinese Journal of Chemical Engineering – volume: 258 start-page: 341 year: 2014 end-page: 347 ident: bib0015 article-title: Conversion of xylose to levulinic acid over modified acid functions of alkaline-treated zeolite Y in hot-compressed water publication-title: Chemical Engineering Journal – volume: 15 start-page: 5258 year: 2010 end-page: 5272 ident: bib0080 article-title: Catalytic conversion of cellulose to levulinic acid by metal chlorides publication-title: Molecules – volume: 42 start-page: 267 year: 2002 end-page: 279 ident: bib0060 article-title: Biomass conversion in water at 330–410 publication-title: Industrial & Engineering Chemistry Research – volume: 55 start-page: 208 year: 2010 end-page: 216 ident: bib0005 article-title: Reaction kinetics of publication-title: The Journal of Supercritical Fluids – volume: 15 start-page: 4195 year: 2009 end-page: 4203 ident: bib0100 article-title: Chemical and structural properties of carbonaceous products obtained by hydrothermal carbonization of saccharides publication-title: Chemistry—A European Journal – volume: 48 start-page: 4731 year: 2009 end-page: 4743 ident: bib0055 article-title: Hydrothermal conversion of biomass: I, Glucose conversion in hot compressed water publication-title: Industrial & Engineering Chemistry Research – volume: 4 start-page: 2141 year: 2013 ident: bib0120 article-title: Chemical synthesis of lactic acid from cellulose catalysed by lead(II) ions in water publication-title: Nature Communications – volume: 1 start-page: 1724 year: 2011 end-page: 1728 ident: bib0025 article-title: Xylose isomerization to xylulose and its dehydration to furfural in aqueous media publication-title: ACS Catalysis – volume: 26 start-page: 2111 year: 1985 end-page: 2114 ident: bib0040 article-title: Mechanism of levulinic acid formation publication-title: Tetrahedron Letters – volume: 38 start-page: 2888 year: 1999 end-page: 2895 ident: bib0050 article-title: Glucose and fructose decomposition in subcritical and supercritical water: Detailed reaction pathway, mechanisms, and kinetics publication-title: Industrial & Engineering Chemistry Research – start-page: 169 year: 2003 end-page: 176 ident: bib0090 article-title: Measurement of the rate of retro-aldol condensation of – volume: 26 start-page: 5281 year: 2012 end-page: 5293 ident: bib0075 article-title: Comparison of structural features of humins formed catalytically from glucose, fructose, and 5-hydroxymethylfurfuraldehyde publication-title: Energy & Fuels – volume: 46 start-page: 7164 year: 2007 end-page: 7183 ident: bib0020 article-title: Liquid-phase catalytic processing of biomass-derived oxygenated hydrocarbons to fuels and chemicals publication-title: Angewandte Chemie-International Edition – volume: 13 start-page: 261 year: 1998 end-page: 268 ident: bib0095 article-title: Cellulose hydrolysis in subcritical and supercritical water publication-title: The Journal of Supercritical Fluids – volume: 4 start-page: 566 year: 2011 end-page: 579 ident: bib0070 article-title: Subcritical water as reaction environment: Fundamentals of hydrothermal biomass transformation publication-title: ChemSusChem – volume: 48 start-page: 4731 issue: 10 year: 2009 ident: 10.1016/j.carbpol.2014.10.069_bib0055 article-title: Hydrothermal conversion of biomass: I, Glucose conversion in hot compressed water publication-title: Industrial & Engineering Chemistry Research doi: 10.1021/ie801387v – volume: 4 start-page: 566 issue: 5 year: 2011 ident: 10.1016/j.carbpol.2014.10.069_bib0070 article-title: Subcritical water as reaction environment: Fundamentals of hydrothermal biomass transformation publication-title: ChemSusChem doi: 10.1002/cssc.201000341 – volume: 26 start-page: 5281 issue: 8 year: 2012 ident: 10.1016/j.carbpol.2014.10.069_bib0075 article-title: Comparison of structural features of humins formed catalytically from glucose, fructose, and 5-hydroxymethylfurfuraldehyde publication-title: Energy & Fuels doi: 10.1021/ef3007454 – volume: 38 start-page: 2888 issue: 8 year: 1999 ident: 10.1016/j.carbpol.2014.10.069_bib0050 article-title: Glucose and fructose decomposition in subcritical and supercritical water: Detailed reaction pathway, mechanisms, and kinetics publication-title: Industrial & Engineering Chemistry Research doi: 10.1021/ie9806390 – volume: 15 start-page: 4195 issue: 16 year: 2009 ident: 10.1016/j.carbpol.2014.10.069_bib0100 article-title: Chemical and structural properties of carbonaceous products obtained by hydrothermal carbonization of saccharides publication-title: Chemistry—A European Journal doi: 10.1002/chem.200802097 – volume: 72 start-page: 134 issue: 0 year: 2012 ident: 10.1016/j.carbpol.2014.10.069_bib0110 article-title: Hydrothermal liquefaction of beech wood using a natural calcium borate mineral publication-title: The Journal of Supercritical Fluids doi: 10.1016/j.supflu.2012.08.016 – volume: 46 start-page: 7164 issue: 38 year: 2007 ident: 10.1016/j.carbpol.2014.10.069_bib0020 article-title: Liquid-phase catalytic processing of biomass-derived oxygenated hydrocarbons to fuels and chemicals publication-title: Angewandte Chemie-International Edition doi: 10.1002/anie.200604274 – volume: 258 start-page: 341 issue: 0 year: 2014 ident: 10.1016/j.carbpol.2014.10.069_bib0015 article-title: Conversion of xylose to levulinic acid over modified acid functions of alkaline-treated zeolite Y in hot-compressed water publication-title: Chemical Engineering Journal doi: 10.1016/j.cej.2014.07.036 – volume: 52 start-page: 8022 issue: 31 year: 2013 ident: 10.1016/j.carbpol.2014.10.069_bib0010 article-title: Domino reaction catalyzed by zeolites with Brønsted and Lewis acid sites for the production of γ-valerolactone from furfural publication-title: Angewandte Chemie International Edition doi: 10.1002/anie.201302575 – start-page: 169 year: 2003 ident: 10.1016/j.carbpol.2014.10.069_bib0090 – volume: 90 start-page: 792 issue: 2 year: 2012 ident: 10.1016/j.carbpol.2014.10.069_bib0030 article-title: Catalytic conversion of cellulose to 5-hydroxymethyl furfural using acidic ionic liquids and co-catalyst publication-title: Carbohydrate Polymers doi: 10.1016/j.carbpol.2012.05.083 – volume: 15 start-page: 666 issue: 5 year: 2007 ident: 10.1016/j.carbpol.2014.10.069_bib0045 article-title: Kinetics of non-catalyzed decomposition of d-xylose in high temperature liquid water publication-title: Chinese Journal of Chemical Engineering doi: 10.1016/S1004-9541(07)60143-8 – volume: 316 start-page: 1597 issue: 5831 year: 2007 ident: 10.1016/j.carbpol.2014.10.069_bib0130 article-title: Metal chlorides in ionic liquid solvents convert sugars to 5-hydroxymethylfurfural publication-title: Science doi: 10.1126/science.1141199 – volume: 55 start-page: 208 issue: 1 year: 2010 ident: 10.1016/j.carbpol.2014.10.069_bib0005 article-title: Reaction kinetics of d-xylose in sub- and supercritical water publication-title: The Journal of Supercritical Fluids doi: 10.1016/j.supflu.2010.08.013 – volume: 1 start-page: 1724 issue: 12 year: 2011 ident: 10.1016/j.carbpol.2014.10.069_bib0025 article-title: Xylose isomerization to xylulose and its dehydration to furfural in aqueous media publication-title: ACS Catalysis doi: 10.1021/cs200461t – volume: 13 start-page: 261 year: 1998 ident: 10.1016/j.carbpol.2014.10.069_bib0095 article-title: Cellulose hydrolysis in subcritical and supercritical water publication-title: The Journal of Supercritical Fluids doi: 10.1016/S0896-8446(98)00060-6 – volume: 42 start-page: 267 issue: 2 year: 2002 ident: 10.1016/j.carbpol.2014.10.069_bib0060 article-title: Biomass conversion in water at 330–410°C and 30–50MPa. Identification of key compounds for indicating different chemical reaction pathways publication-title: Industrial & Engineering Chemistry Research doi: 10.1021/ie0202773 – volume: 339 start-page: 1717 issue: 10 year: 2004 ident: 10.1016/j.carbpol.2014.10.069_bib0105 article-title: Hydrothermal upgrading of biomass to biofuel: Studies on some monosaccharide model compounds publication-title: Carbohydrate Research doi: 10.1016/j.carres.2004.04.018 – volume: 242 start-page: 131 issue: 0 year: 1993 ident: 10.1016/j.carbpol.2014.10.069_bib0065 article-title: Hydrothermal formation of 1,2,4-benzenetriol from 5-hydroxymethyl-2-furaldehyde and d-fructose publication-title: Carbohydrate Research doi: 10.1016/0008-6215(93)80027-C – volume: 39 start-page: 485 issue: 2 year: 2013 ident: 10.1016/j.carbpol.2014.10.069_bib0115 article-title: Non-catalytic and catalytic hydrothermal liquefaction of biomass publication-title: Research on Chemical Intermediates doi: 10.1007/s11164-012-0572-3 – volume: 92 start-page: 234 issue: 0 year: 2012 ident: 10.1016/j.carbpol.2014.10.069_bib0125 article-title: Hydrothermal liquefaction of cellulose to bio-oil under acidic, neutral and alkaline conditions publication-title: Applied Energy doi: 10.1016/j.apenergy.2011.10.041 – volume: 4 start-page: 2141 year: 2013 ident: 10.1016/j.carbpol.2014.10.069_bib0120 article-title: Chemical synthesis of lactic acid from cellulose catalysed by lead(II) ions in water publication-title: Nature Communications doi: 10.1038/ncomms3141 – volume: 26 start-page: 2111 issue: 17 year: 1985 ident: 10.1016/j.carbpol.2014.10.069_bib0040 article-title: Mechanism of levulinic acid formation publication-title: Tetrahedron Letters doi: 10.1016/S0040-4039(00)94793-2 – volume: 15 start-page: 5258 issue: 8 year: 2010 ident: 10.1016/j.carbpol.2014.10.069_bib0080 article-title: Catalytic conversion of cellulose to levulinic acid by metal chlorides publication-title: Molecules doi: 10.3390/molecules15085258 – volume: 35 start-page: 3902 issue: 9 year: 2011 ident: 10.1016/j.carbpol.2014.10.069_bib0085 article-title: Hydrothermal decomposition of xylan as a model substance for plant biomass waste—Hydrothermolysis in subcritical water publication-title: Biomass and Bioenergy doi: 10.1016/j.biombioe.2011.06.015 – volume: 6 start-page: 989 issue: 6 year: 2013 ident: 10.1016/j.carbpol.2014.10.069_bib0035 article-title: Chemical conversion of sugars to lactic acid by alkaline hydrothermal processes publication-title: ChemSusChem doi: 10.1002/cssc.201300092 |
SSID | ssj0000610 |
Score | 2.4220104 |
Snippet | •Zn2+ and Ni2+ showed obvious effect on converting biomass into lactic acid.•Cu2+ and Fe3+ could accelerate the formations of levulinic acid and formic... Hydrothermal conversion (HTC) is an important thermochemical process to upgrade low-cost biomass into valuable chemicals or fuels. As compared with... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 44 |
SubjectTerms | biomass Catalysis catalysts catalytic activity Cellulose Cellulose - chemistry cobalt Cobalt - chemistry copper Copper - chemistry Degradation correlation energy efficiency formic acid fuels Glucose Glucose - chemistry hydrolysis Hydrothermal conversion iron Iron - chemistry lactic acid levulinic acid manganese nickel Nickel - chemistry screening sulfates Sulfates - chemistry temperature Transition Elements - chemistry Transition metal sulfates xylose Xylose - chemistry zinc Zinc - chemistry |
Title | Hydrothermal conversion of xylose, glucose, and cellulose under the catalysis of transition metal sulfates |
URI | https://dx.doi.org/10.1016/j.carbpol.2014.10.069 https://www.ncbi.nlm.nih.gov/pubmed/25542106 https://www.proquest.com/docview/1641018125 https://www.proquest.com/docview/2000278312 |
Volume | 118 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF5ED3oR39ZHWcFj0-Yx2cSjFKUqerLQW8hmd8GiaUkb0Iu_3ZlNUhUsBY8ZdmCZncxj95sZxi517GnlQeToyAhKUKSTCuE7Qgs3SMGTRlKB8-OTGAzhfhSO1li_qYUhWGVt-yubbq11TenV0uxNX156BEuCWNAAb5qXDiOqYIeItLz76f2wxrYjAS12aPV3FU9vjClgIacTeoHwoEsgL8I9_-2flsWf1g_d7rDtOoDk19Ued9mazvfYZr-Z27bPxoMPVdi6qjdcZ1Hl9kqMTwx_x_R8pju8Bqp3eJorTnf3JdE5FZQVHFm5vdWhZiXENSd_ZqFd_E0jnc_KV0Mx6gEb3t489wdOPVHByUDA3DFSAKYQ0rgiUwElT65KI4zAhFD444ZxnEoNsXulhQogykwWoWiiwIBMXSQFh2w9n-T6mHF5FQZUwmdcjUFfrKQJYwWBbzzIfIjCFoNGjklWtxunqRevSYMrGye1-BMSP5FR_C3WXbBNq34bqxji5pCSX4qToE9YxXrRHGqCZ0TSTnM9KWcJ5pBVJ7Nw-Rq_erUNPL_FjiqNWOwY8zTAXFqc_H9zp2wLv0KCu3nhGVufF6U-x_hnLttWwdts4_ruYfD0BTskBhA |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VcigXRHl1gYKR4Nbs5jFx0kMPVaHa0seplfYW4tiWutomq32o3Qt_ij_IjOMUkKgqIfU6yUTWjDMP-5sZgE8mj4yOMAtMZiUnKCoopYwDaWSYlBgpq7jA-fRMDi_w2ygdrcHPrhaGYZXe9rc23VlrTxl4aQ6ml5cDhiVhLnmAN89Lx5FHVh6b1TXlbfO9oy-k5M9xfPj1_GAY-NECQYUSF4FVEimWVjaUlU44iwh1mVEoIqWmHZzmeakM5uGukTrBrLJVRp4ySyyqMiRSQt99BI-RzAWPTej_iP4w_64FAq8u4OX9LhsajCnnnKlpw1ceEfYZVcZA6387xLsCXuf4Dp_BUx-xiv1WKJuwZurnsHHQDYp7AePhSs9cIdcVvedg7O4MTjRW3KwmzdzsCI-M3xFlrQVfFiyZLriCbSaIVbhjJO6OwlwLdqAOSyauDNHFfDmxHBS_hIsHkfMrWK-b2myBULtpwjWDNjQUZeZa2TTXmMQ2wirGLO0BdnIsKt_fnMdsTIoOyDYuvPgLFj-TSfw96N-yTdsGH_cx5J2Sir92akFO6D7Wj51SC9IRS7usTbOcF5S0tq3T0rvfidtr4iSKe_C63RG3K6bEECl5l2_-f3EfYGN4fnpSnBydHb-FJ_QkZaxdlL6D9cVsabYp-Fqo926zC_j-0H_XLyOFQGo |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hydrothermal+conversion+of+xylose%2C+glucose%2C+and+cellulose+under+the+catalysis+of+transition+metal+sulfates&rft.jtitle=Carbohydrate+polymers&rft.au=Cao%2C+Xuefei&rft.au=Peng%2C+Xinwen&rft.au=Sun%2C+Shaoni&rft.au=Zhong%2C+Linxin&rft.date=2015-03-15&rft.eissn=1879-1344&rft.volume=118&rft.spage=44&rft_id=info:doi/10.1016%2Fj.carbpol.2014.10.069&rft_id=info%3Apmid%2F25542106&rft.externalDocID=25542106 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0144-8617&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0144-8617&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0144-8617&client=summon |