Hydrothermal conversion of xylose, glucose, and cellulose under the catalysis of transition metal sulfates

•Zn2+ and Ni2+ showed obvious effect on converting biomass into lactic acid.•Cu2+ and Fe3+ could accelerate the formations of levulinic acid and formic acid.•Positive correlations among xylose, glucose, and cellulose degradation were observed.•HTC of monosaccharide can be used to screen catalysts fo...

Full description

Saved in:
Bibliographic Details
Published inCarbohydrate polymers Vol. 118; pp. 44 - 51
Main Authors Cao, Xuefei, Peng, Xinwen, Sun, Shaoni, Zhong, Linxin, Chen, Wei, Wang, Sha, Sun, Run-Cang
Format Journal Article
LanguageEnglish
Published England Elsevier Ltd 15.03.2015
Subjects
Online AccessGet full text

Cover

Loading…
Abstract •Zn2+ and Ni2+ showed obvious effect on converting biomass into lactic acid.•Cu2+ and Fe3+ could accelerate the formations of levulinic acid and formic acid.•Positive correlations among xylose, glucose, and cellulose degradation were observed.•HTC of monosaccharide can be used to screen catalysts for biomass upgradation. Hydrothermal conversion (HTC) is an important thermochemical process to upgrade low-cost biomass into valuable chemicals or fuels. As compared with non-catalytic HTC, catalytic HTC shows high energy efficiency on biomass upgradation. In this work, the catalytic performances of various transition metal sulfates (Mn2+, Fe2+, Fe3+, Co2+, Ni2+, Cu2+, and Zn2+) in the HTCs of xylose, glucose, and cellulose under different conditions were explored. Among these catalysts, Zn2+ and Ni2+ showed obvious effects on the conversions of xylose, glucose, and cellulose into lactic acid, while Cu2+ and Fe3+, which could significantly accelerate the hydrolysis of cellulose into glucose at 200°C, displayed high efficiency on converting glucose and cellulose into levulinic acid and formic acid at high temperature. Additionally, significant positive correlative relationships among xylose, glucose, and cellulose degradations were observed. This study is helpful for screening appropriate catalysts for biomass upgradation through catalytic HTC of monosaccharide.
AbstractList •Zn2+ and Ni2+ showed obvious effect on converting biomass into lactic acid.•Cu2+ and Fe3+ could accelerate the formations of levulinic acid and formic acid.•Positive correlations among xylose, glucose, and cellulose degradation were observed.•HTC of monosaccharide can be used to screen catalysts for biomass upgradation. Hydrothermal conversion (HTC) is an important thermochemical process to upgrade low-cost biomass into valuable chemicals or fuels. As compared with non-catalytic HTC, catalytic HTC shows high energy efficiency on biomass upgradation. In this work, the catalytic performances of various transition metal sulfates (Mn2+, Fe2+, Fe3+, Co2+, Ni2+, Cu2+, and Zn2+) in the HTCs of xylose, glucose, and cellulose under different conditions were explored. Among these catalysts, Zn2+ and Ni2+ showed obvious effects on the conversions of xylose, glucose, and cellulose into lactic acid, while Cu2+ and Fe3+, which could significantly accelerate the hydrolysis of cellulose into glucose at 200°C, displayed high efficiency on converting glucose and cellulose into levulinic acid and formic acid at high temperature. Additionally, significant positive correlative relationships among xylose, glucose, and cellulose degradations were observed. This study is helpful for screening appropriate catalysts for biomass upgradation through catalytic HTC of monosaccharide.
Hydrothermal conversion (HTC) is an important thermochemical process to upgrade low-cost biomass into valuable chemicals or fuels. As compared with non-catalytic HTC, catalytic HTC shows high energy efficiency on biomass upgradation. In this work, the catalytic performances of various transition metal sulfates (Mn(2+), Fe(2+), Fe(3+), Co(2+), Ni(2+), Cu(2+), and Zn(2+)) in the HTCs of xylose, glucose, and cellulose under different conditions were explored. Among these catalysts, Zn(2+) and Ni(2+) showed obvious effects on the conversions of xylose, glucose, and cellulose into lactic acid, while Cu(2+) and Fe(3+), which could significantly accelerate the hydrolysis of cellulose into glucose at 200°C, displayed high efficiency on converting glucose and cellulose into levulinic acid and formic acid at high temperature. Additionally, significant positive correlative relationships among xylose, glucose, and cellulose degradations were observed. This study is helpful for screening appropriate catalysts for biomass upgradation through catalytic HTC of monosaccharide.Hydrothermal conversion (HTC) is an important thermochemical process to upgrade low-cost biomass into valuable chemicals or fuels. As compared with non-catalytic HTC, catalytic HTC shows high energy efficiency on biomass upgradation. In this work, the catalytic performances of various transition metal sulfates (Mn(2+), Fe(2+), Fe(3+), Co(2+), Ni(2+), Cu(2+), and Zn(2+)) in the HTCs of xylose, glucose, and cellulose under different conditions were explored. Among these catalysts, Zn(2+) and Ni(2+) showed obvious effects on the conversions of xylose, glucose, and cellulose into lactic acid, while Cu(2+) and Fe(3+), which could significantly accelerate the hydrolysis of cellulose into glucose at 200°C, displayed high efficiency on converting glucose and cellulose into levulinic acid and formic acid at high temperature. Additionally, significant positive correlative relationships among xylose, glucose, and cellulose degradations were observed. This study is helpful for screening appropriate catalysts for biomass upgradation through catalytic HTC of monosaccharide.
Hydrothermal conversion (HTC) is an important thermochemical process to upgrade low-cost biomass into valuable chemicals or fuels. As compared with non-catalytic HTC, catalytic HTC shows high energy efficiency on biomass upgradation. In this work, the catalytic performances of various transition metal sulfates (Mn2+, Fe2+, Fe3+, Co2+, Ni2+, Cu2+, and Zn2+) in the HTCs of xylose, glucose, and cellulose under different conditions were explored. Among these catalysts, Zn2+ and Ni2+ showed obvious effects on the conversions of xylose, glucose, and cellulose into lactic acid, while Cu2+ and Fe3+, which could significantly accelerate the hydrolysis of cellulose into glucose at 200°C, displayed high efficiency on converting glucose and cellulose into levulinic acid and formic acid at high temperature. Additionally, significant positive correlative relationships among xylose, glucose, and cellulose degradations were observed. This study is helpful for screening appropriate catalysts for biomass upgradation through catalytic HTC of monosaccharide.
Hydrothermal conversion (HTC) is an important thermochemical process to upgrade low-cost biomass into valuable chemicals or fuels. As compared with non-catalytic HTC, catalytic HTC shows high energy efficiency on biomass upgradation. In this work, the catalytic performances of various transition metal sulfates (Mn(2+), Fe(2+), Fe(3+), Co(2+), Ni(2+), Cu(2+), and Zn(2+)) in the HTCs of xylose, glucose, and cellulose under different conditions were explored. Among these catalysts, Zn(2+) and Ni(2+) showed obvious effects on the conversions of xylose, glucose, and cellulose into lactic acid, while Cu(2+) and Fe(3+), which could significantly accelerate the hydrolysis of cellulose into glucose at 200°C, displayed high efficiency on converting glucose and cellulose into levulinic acid and formic acid at high temperature. Additionally, significant positive correlative relationships among xylose, glucose, and cellulose degradations were observed. This study is helpful for screening appropriate catalysts for biomass upgradation through catalytic HTC of monosaccharide.
Author Chen, Wei
Peng, Xinwen
Wang, Sha
Cao, Xuefei
Zhong, Linxin
Sun, Shaoni
Sun, Run-Cang
Author_xml – sequence: 1
  givenname: Xuefei
  surname: Cao
  fullname: Cao, Xuefei
  organization: State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China
– sequence: 2
  givenname: Xinwen
  surname: Peng
  fullname: Peng, Xinwen
  organization: State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China
– sequence: 3
  givenname: Shaoni
  surname: Sun
  fullname: Sun, Shaoni
  organization: Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China
– sequence: 4
  givenname: Linxin
  surname: Zhong
  fullname: Zhong, Linxin
  email: lxzhong0611@scut.edu.cn
  organization: State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China
– sequence: 5
  givenname: Wei
  surname: Chen
  fullname: Chen, Wei
  organization: State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China
– sequence: 6
  givenname: Sha
  surname: Wang
  fullname: Wang, Sha
  organization: State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China
– sequence: 7
  givenname: Run-Cang
  surname: Sun
  fullname: Sun, Run-Cang
  email: rcsun3@bjfu.edu.cn
  organization: State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/25542106$$D View this record in MEDLINE/PubMed
BookMark eNqFkUFv3CAUhFGVqtkk_QmtOPZQbwFjbCuHKoqaplKkXpozwvDcsMKwAbzK_vvi7qaHXpYLaJh5evrmAp354AGhD5SsKaHiy2atVRy2wa0ZobxoayL6N2hFu7avaM35GVqVD151grbn6CKlDSlHUPIOnbOm4YwSsUKb-72JIT9BnJTDOvgdxGSDx2HEL3sXEnzGv92s_z6UN1iDc_Oi49kbiLhEsVZZuX2yaUnlqHyyeZkxQdFxmt2oMqQr9HZULsH7432JHu--_bq9rx5-fv9xe_NQaS54rsZB8Kbph5EIbWomaE-MahkTQpiuJU3XqQF4R3oQpuatHnVbCLT1yAdFilRfok-HudsYnmdIWU42LWsrD2FOkhUMrO1qyk5aqeAFdkdZU6wfj9Z5mMDIbbSTinv5irIYmoNBx5BShPGfhRK5VCY38liZXCpb5FJZyV3_l9M2q4VfIWndyfTXQxoK0Z2FKJO24DUYG0FnaYI9MeEPJXy1yQ
CitedBy_id crossref_primary_10_1016_j_apcata_2015_05_038
crossref_primary_10_1515_revce_2017_0071
crossref_primary_10_1007_s13726_020_00805_9
crossref_primary_10_1002_ente_201901476
crossref_primary_10_1016_j_biortech_2018_03_073
crossref_primary_10_1007_s10570_024_05755_6
crossref_primary_10_1016_j_biombioe_2024_107106
crossref_primary_10_1002_jctb_6172
crossref_primary_10_1016_j_indcrop_2021_114101
crossref_primary_10_1007_s13399_022_03650_3
crossref_primary_10_1021_acs_jpcc_0c00943
crossref_primary_10_1016_j_rser_2018_06_016
crossref_primary_10_1016_j_apcata_2019_117126
crossref_primary_10_1016_j_carbpol_2020_117164
crossref_primary_10_1007_s11814_017_0030_4
crossref_primary_10_1016_j_carbpol_2021_118936
crossref_primary_10_3390_polym16182633
crossref_primary_10_1016_j_jhazmat_2016_01_081
crossref_primary_10_1016_j_biombioe_2024_107182
crossref_primary_10_1021_acs_iecr_7b02663
crossref_primary_10_3389_fmats_2022_1093164
crossref_primary_10_1007_s10853_018_3135_1
crossref_primary_10_1016_j_rser_2022_112130
crossref_primary_10_1016_j_biortech_2021_126035
crossref_primary_10_1016_j_fuel_2016_09_019
crossref_primary_10_1016_j_jallcom_2023_168994
crossref_primary_10_3390_molecules26082208
crossref_primary_10_1007_s10562_022_04151_8
crossref_primary_10_3390_catal14020141
crossref_primary_10_3390_catal6120196
crossref_primary_10_1021_acssuschemeng_6b00623
crossref_primary_10_1016_j_algal_2020_101819
crossref_primary_10_1016_j_scitotenv_2022_154968
crossref_primary_10_3390_polym14081621
crossref_primary_10_1016_j_ces_2018_01_014
crossref_primary_10_1016_j_carbpol_2021_119050
crossref_primary_10_1007_s13399_022_03152_2
crossref_primary_10_3390_catal14020132
crossref_primary_10_3390_catal10091006
crossref_primary_10_5004_dwt_2018_22221
crossref_primary_10_1016_j_cattod_2017_01_007
crossref_primary_10_1021_acsomega_0c02491
crossref_primary_10_1002_jctb_7721
crossref_primary_10_1016_j_jaap_2021_105225
crossref_primary_10_1007_s13399_019_00488_0
crossref_primary_10_1002_cssc_201501181
crossref_primary_10_1016_j_scitotenv_2021_150997
crossref_primary_10_1007_s11051_021_05319_w
crossref_primary_10_1007_s12649_024_02459_7
crossref_primary_10_1039_C7NJ03146G
crossref_primary_10_3390_pr8070843
crossref_primary_10_1039_D0SE00798F
crossref_primary_10_1016_j_pecs_2016_04_004
crossref_primary_10_1016_j_jhazmat_2021_126961
crossref_primary_10_1016_j_apsusc_2023_157552
crossref_primary_10_1016_j_scp_2023_101216
crossref_primary_10_1016_j_fuproc_2019_106162
crossref_primary_10_1021_acsomega_1c00106
crossref_primary_10_1627_jpi_60_101
crossref_primary_10_1016_j_watres_2021_117186
crossref_primary_10_1021_acs_energyfuels_7b01558
crossref_primary_10_1016_j_apcata_2021_118327
crossref_primary_10_1039_D2SE00386D
crossref_primary_10_3389_fchem_2019_00504
crossref_primary_10_3390_su122410601
crossref_primary_10_1021_acssuschemeng_6b03194
crossref_primary_10_1016_j_cattod_2016_03_052
crossref_primary_10_1002_ese3_173
crossref_primary_10_1016_j_cej_2022_137838
crossref_primary_10_1021_acssuschemeng_8b06162
Cites_doi 10.1021/ie801387v
10.1002/cssc.201000341
10.1021/ef3007454
10.1021/ie9806390
10.1002/chem.200802097
10.1016/j.supflu.2012.08.016
10.1002/anie.200604274
10.1016/j.cej.2014.07.036
10.1002/anie.201302575
10.1016/j.carbpol.2012.05.083
10.1016/S1004-9541(07)60143-8
10.1126/science.1141199
10.1016/j.supflu.2010.08.013
10.1021/cs200461t
10.1016/S0896-8446(98)00060-6
10.1021/ie0202773
10.1016/j.carres.2004.04.018
10.1016/0008-6215(93)80027-C
10.1007/s11164-012-0572-3
10.1016/j.apenergy.2011.10.041
10.1038/ncomms3141
10.1016/S0040-4039(00)94793-2
10.3390/molecules15085258
10.1016/j.biombioe.2011.06.015
10.1002/cssc.201300092
ContentType Journal Article
Copyright 2014 Elsevier Ltd
Copyright © 2014 Elsevier Ltd. All rights reserved.
Copyright_xml – notice: 2014 Elsevier Ltd
– notice: Copyright © 2014 Elsevier Ltd. All rights reserved.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
DOI 10.1016/j.carbpol.2014.10.069
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
MEDLINE - Academic
AGRICOLA
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1879-1344
EndPage 51
ExternalDocumentID 25542106
10_1016_j_carbpol_2014_10_069
S014486171401114X
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID --K
--M
.~1
0R~
1B1
1RT
1~.
1~5
29B
4.4
457
4G.
5GY
5VS
6J9
7-5
71M
8P~
9JM
9JN
AABNK
AABVA
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARLI
AATLK
AAXUO
ABFNM
ABFRF
ABGRD
ABGSF
ABJNI
ABMAC
ABUDA
ABYKQ
ACDAQ
ACGFO
ACGFS
ACIUM
ACRLP
ADBBV
ADECG
ADEZE
ADQTV
ADUVX
AEBSH
AEFWE
AEHWI
AEKER
AENEX
AEQOU
AFKWA
AFTJW
AFXIZ
AFZHZ
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AJSZI
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLXMC
CBWCG
CS3
DOVZS
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FLBIZ
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
KOM
LW9
M24
M2Y
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
RNS
ROL
RPZ
SAB
SDF
SDG
SDP
SES
SPC
SPCBC
SSA
SSK
SSU
SSZ
T5K
Y6R
~G-
~KM
53G
AAHBH
AALCJ
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ABXDB
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRDE
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
FEDTE
FGOYB
G-2
HLV
HMS
HVGLF
HZ~
R2-
SCB
SEW
SMS
SOC
SSH
WUQ
XPP
CGR
CUY
CVF
ECM
EIF
NPM
7X8
EFKBS
7S9
L.6
ID FETCH-LOGICAL-c464t-fb64559bf06cd326190da722666d870588abe4809e6d347cfc720173f4ba06d33
IEDL.DBID .~1
ISSN 0144-8617
1879-1344
IngestDate Thu Jul 10 22:46:04 EDT 2025
Tue Aug 05 10:12:06 EDT 2025
Thu Apr 03 07:08:00 EDT 2025
Tue Jul 01 04:14:48 EDT 2025
Thu Apr 24 23:04:04 EDT 2025
Fri Feb 23 02:23:20 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Hydrothermal conversion
Glucose
Degradation correlation
Cellulose
Transition metal sulfates
Language English
License Copyright © 2014 Elsevier Ltd. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c464t-fb64559bf06cd326190da722666d870588abe4809e6d347cfc720173f4ba06d33
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 25542106
PQID 1641018125
PQPubID 23479
PageCount 8
ParticipantIDs proquest_miscellaneous_2000278312
proquest_miscellaneous_1641018125
pubmed_primary_25542106
crossref_primary_10_1016_j_carbpol_2014_10_069
crossref_citationtrail_10_1016_j_carbpol_2014_10_069
elsevier_sciencedirect_doi_10_1016_j_carbpol_2014_10_069
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2015-03-15
PublicationDateYYYYMMDD 2015-03-15
PublicationDate_xml – month: 03
  year: 2015
  text: 2015-03-15
  day: 15
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Carbohydrate polymers
PublicationTitleAlternate Carbohydr Polym
PublicationYear 2015
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Kabyemela, Adschiri, Malaluan, Arai (bib0050) 1999; 38
Jing, Lü (bib0045) 2007; 15
Kruse, Gawlik (bib0060) 2002; 42
Knežević, van Swaaij, Kersten (bib0055) 2009; 48
Tekin, Karagoez (bib0115) 2013; 39
Chheda, Huber, Dumesic (bib0020) 2007; 46
Möller, Nilges, Harnisch, Schröder (bib0070) 2011; 4
Patil, Heltzel, Lund (bib0075) 2012; 26
Yin, Tan (bib0125) 2012; 92
Tekin, Karagöz, Bektaş (bib0110) 2012; 72
Zhao, Holladay, Brown, Zhang (bib0130) 2007; 316
Bui, Luo, Gunther, Román-Leshkov (bib0010) 2013; 52
Ding, Shi, Xiao, Gu, Zheng, Wang (bib0030) 2012; 90
Pińkowska, Wolak, Złocińska (bib0085) 2011; 35
Sasaki, Kabyemela, Malaluan, Hirose, Takeda, Adschiri (bib0095) 1998; 13
Luijkx, van Rantwijk, van Bekkum (bib0065) 1993; 242
Sevilla, Fuertes (bib0100) 2009; 15
Horvat, Klaić, Metelko, Šunjić (bib0040) 1985; 26
Aida, Shiraishi, Kubo, Watanabe, Smith (bib0005) 2010; 55
Esposito, Antonietti (bib0035) 2013; 6
Chamnankid, Ratanatawanate, Faungnawakij (bib0015) 2014; 258
Sasaki, Hayakawa, Arai, Adschiri (bib0090) 2003
Srokol, Bouche, van Estrik, Strik, Maschmeyer, Peters (bib0105) 2004; 339
Choudhary, Pinar, Sandler, Vlachos, Lobo (bib0025) 2011; 1
Peng, Lin, Zhang, Zhuang, Zhang, Gong (bib0080) 2010; 15
Wang, Deng, Wang, Zhang, Wan, Tang (bib0120) 2013; 4
Horvat (10.1016/j.carbpol.2014.10.069_bib0040) 1985; 26
Chheda (10.1016/j.carbpol.2014.10.069_bib0020) 2007; 46
Kruse (10.1016/j.carbpol.2014.10.069_bib0060) 2002; 42
Pińkowska (10.1016/j.carbpol.2014.10.069_bib0085) 2011; 35
Tekin (10.1016/j.carbpol.2014.10.069_bib0115) 2013; 39
Bui (10.1016/j.carbpol.2014.10.069_bib0010) 2013; 52
Möller (10.1016/j.carbpol.2014.10.069_bib0070) 2011; 4
Choudhary (10.1016/j.carbpol.2014.10.069_bib0025) 2011; 1
Sasaki (10.1016/j.carbpol.2014.10.069_bib0095) 1998; 13
Ding (10.1016/j.carbpol.2014.10.069_bib0030) 2012; 90
Esposito (10.1016/j.carbpol.2014.10.069_bib0035) 2013; 6
Sevilla (10.1016/j.carbpol.2014.10.069_bib0100) 2009; 15
Tekin (10.1016/j.carbpol.2014.10.069_bib0110) 2012; 72
Jing (10.1016/j.carbpol.2014.10.069_bib0045) 2007; 15
Zhao (10.1016/j.carbpol.2014.10.069_bib0130) 2007; 316
Wang (10.1016/j.carbpol.2014.10.069_bib0120) 2013; 4
Yin (10.1016/j.carbpol.2014.10.069_bib0125) 2012; 92
Aida (10.1016/j.carbpol.2014.10.069_bib0005) 2010; 55
Peng (10.1016/j.carbpol.2014.10.069_bib0080) 2010; 15
Patil (10.1016/j.carbpol.2014.10.069_bib0075) 2012; 26
Luijkx (10.1016/j.carbpol.2014.10.069_bib0065) 1993; 242
Srokol (10.1016/j.carbpol.2014.10.069_bib0105) 2004; 339
Kabyemela (10.1016/j.carbpol.2014.10.069_bib0050) 1999; 38
Knežević (10.1016/j.carbpol.2014.10.069_bib0055) 2009; 48
Sasaki (10.1016/j.carbpol.2014.10.069_bib0090) 2003
Chamnankid (10.1016/j.carbpol.2014.10.069_bib0015) 2014; 258
References_xml – volume: 52
  start-page: 8022
  year: 2013
  end-page: 8025
  ident: bib0010
  article-title: Domino reaction catalyzed by zeolites with Brønsted and Lewis acid sites for the production of γ-valerolactone from furfural
  publication-title: Angewandte Chemie International Edition
– volume: 35
  start-page: 3902
  year: 2011
  end-page: 3912
  ident: bib0085
  article-title: Hydrothermal decomposition of xylan as a model substance for plant biomass waste—Hydrothermolysis in subcritical water
  publication-title: Biomass and Bioenergy
– volume: 72
  start-page: 134
  year: 2012
  end-page: 139
  ident: bib0110
  article-title: Hydrothermal liquefaction of beech wood using a natural calcium borate mineral
  publication-title: The Journal of Supercritical Fluids
– volume: 92
  start-page: 234
  year: 2012
  end-page: 239
  ident: bib0125
  article-title: Hydrothermal liquefaction of cellulose to bio-oil under acidic, neutral and alkaline conditions
  publication-title: Applied Energy
– volume: 6
  start-page: 989
  year: 2013
  end-page: 992
  ident: bib0035
  article-title: Chemical conversion of sugars to lactic acid by alkaline hydrothermal processes
  publication-title: ChemSusChem
– volume: 242
  start-page: 131
  year: 1993
  end-page: 139
  ident: bib0065
  article-title: Hydrothermal formation of 1,2,4-benzenetriol from 5-hydroxymethyl-2-furaldehyde and
  publication-title: Carbohydrate Research
– volume: 339
  start-page: 1717
  year: 2004
  end-page: 1726
  ident: bib0105
  article-title: Hydrothermal upgrading of biomass to biofuel: Studies on some monosaccharide model compounds
  publication-title: Carbohydrate Research
– volume: 39
  start-page: 485
  year: 2013
  end-page: 498
  ident: bib0115
  article-title: Non-catalytic and catalytic hydrothermal liquefaction of biomass
  publication-title: Research on Chemical Intermediates
– volume: 316
  start-page: 1597
  year: 2007
  end-page: 1600
  ident: bib0130
  article-title: Metal chlorides in ionic liquid solvents convert sugars to 5-hydroxymethylfurfural
  publication-title: Science
– volume: 90
  start-page: 792
  year: 2012
  end-page: 798
  ident: bib0030
  article-title: Catalytic conversion of cellulose to 5-hydroxymethyl furfural using acidic ionic liquids and co-catalyst
  publication-title: Carbohydrate Polymers
– volume: 15
  start-page: 666
  year: 2007
  end-page: 669
  ident: bib0045
  article-title: Kinetics of non-catalyzed decomposition of
  publication-title: Chinese Journal of Chemical Engineering
– volume: 258
  start-page: 341
  year: 2014
  end-page: 347
  ident: bib0015
  article-title: Conversion of xylose to levulinic acid over modified acid functions of alkaline-treated zeolite Y in hot-compressed water
  publication-title: Chemical Engineering Journal
– volume: 15
  start-page: 5258
  year: 2010
  end-page: 5272
  ident: bib0080
  article-title: Catalytic conversion of cellulose to levulinic acid by metal chlorides
  publication-title: Molecules
– volume: 42
  start-page: 267
  year: 2002
  end-page: 279
  ident: bib0060
  article-title: Biomass conversion in water at 330–410
  publication-title: Industrial & Engineering Chemistry Research
– volume: 55
  start-page: 208
  year: 2010
  end-page: 216
  ident: bib0005
  article-title: Reaction kinetics of
  publication-title: The Journal of Supercritical Fluids
– volume: 15
  start-page: 4195
  year: 2009
  end-page: 4203
  ident: bib0100
  article-title: Chemical and structural properties of carbonaceous products obtained by hydrothermal carbonization of saccharides
  publication-title: Chemistry—A European Journal
– volume: 48
  start-page: 4731
  year: 2009
  end-page: 4743
  ident: bib0055
  article-title: Hydrothermal conversion of biomass: I, Glucose conversion in hot compressed water
  publication-title: Industrial & Engineering Chemistry Research
– volume: 4
  start-page: 2141
  year: 2013
  ident: bib0120
  article-title: Chemical synthesis of lactic acid from cellulose catalysed by lead(II) ions in water
  publication-title: Nature Communications
– volume: 1
  start-page: 1724
  year: 2011
  end-page: 1728
  ident: bib0025
  article-title: Xylose isomerization to xylulose and its dehydration to furfural in aqueous media
  publication-title: ACS Catalysis
– volume: 26
  start-page: 2111
  year: 1985
  end-page: 2114
  ident: bib0040
  article-title: Mechanism of levulinic acid formation
  publication-title: Tetrahedron Letters
– volume: 38
  start-page: 2888
  year: 1999
  end-page: 2895
  ident: bib0050
  article-title: Glucose and fructose decomposition in subcritical and supercritical water: Detailed reaction pathway, mechanisms, and kinetics
  publication-title: Industrial & Engineering Chemistry Research
– start-page: 169
  year: 2003
  end-page: 176
  ident: bib0090
  article-title: Measurement of the rate of retro-aldol condensation of
– volume: 26
  start-page: 5281
  year: 2012
  end-page: 5293
  ident: bib0075
  article-title: Comparison of structural features of humins formed catalytically from glucose, fructose, and 5-hydroxymethylfurfuraldehyde
  publication-title: Energy & Fuels
– volume: 46
  start-page: 7164
  year: 2007
  end-page: 7183
  ident: bib0020
  article-title: Liquid-phase catalytic processing of biomass-derived oxygenated hydrocarbons to fuels and chemicals
  publication-title: Angewandte Chemie-International Edition
– volume: 13
  start-page: 261
  year: 1998
  end-page: 268
  ident: bib0095
  article-title: Cellulose hydrolysis in subcritical and supercritical water
  publication-title: The Journal of Supercritical Fluids
– volume: 4
  start-page: 566
  year: 2011
  end-page: 579
  ident: bib0070
  article-title: Subcritical water as reaction environment: Fundamentals of hydrothermal biomass transformation
  publication-title: ChemSusChem
– volume: 48
  start-page: 4731
  issue: 10
  year: 2009
  ident: 10.1016/j.carbpol.2014.10.069_bib0055
  article-title: Hydrothermal conversion of biomass: I, Glucose conversion in hot compressed water
  publication-title: Industrial & Engineering Chemistry Research
  doi: 10.1021/ie801387v
– volume: 4
  start-page: 566
  issue: 5
  year: 2011
  ident: 10.1016/j.carbpol.2014.10.069_bib0070
  article-title: Subcritical water as reaction environment: Fundamentals of hydrothermal biomass transformation
  publication-title: ChemSusChem
  doi: 10.1002/cssc.201000341
– volume: 26
  start-page: 5281
  issue: 8
  year: 2012
  ident: 10.1016/j.carbpol.2014.10.069_bib0075
  article-title: Comparison of structural features of humins formed catalytically from glucose, fructose, and 5-hydroxymethylfurfuraldehyde
  publication-title: Energy & Fuels
  doi: 10.1021/ef3007454
– volume: 38
  start-page: 2888
  issue: 8
  year: 1999
  ident: 10.1016/j.carbpol.2014.10.069_bib0050
  article-title: Glucose and fructose decomposition in subcritical and supercritical water: Detailed reaction pathway, mechanisms, and kinetics
  publication-title: Industrial & Engineering Chemistry Research
  doi: 10.1021/ie9806390
– volume: 15
  start-page: 4195
  issue: 16
  year: 2009
  ident: 10.1016/j.carbpol.2014.10.069_bib0100
  article-title: Chemical and structural properties of carbonaceous products obtained by hydrothermal carbonization of saccharides
  publication-title: Chemistry—A European Journal
  doi: 10.1002/chem.200802097
– volume: 72
  start-page: 134
  issue: 0
  year: 2012
  ident: 10.1016/j.carbpol.2014.10.069_bib0110
  article-title: Hydrothermal liquefaction of beech wood using a natural calcium borate mineral
  publication-title: The Journal of Supercritical Fluids
  doi: 10.1016/j.supflu.2012.08.016
– volume: 46
  start-page: 7164
  issue: 38
  year: 2007
  ident: 10.1016/j.carbpol.2014.10.069_bib0020
  article-title: Liquid-phase catalytic processing of biomass-derived oxygenated hydrocarbons to fuels and chemicals
  publication-title: Angewandte Chemie-International Edition
  doi: 10.1002/anie.200604274
– volume: 258
  start-page: 341
  issue: 0
  year: 2014
  ident: 10.1016/j.carbpol.2014.10.069_bib0015
  article-title: Conversion of xylose to levulinic acid over modified acid functions of alkaline-treated zeolite Y in hot-compressed water
  publication-title: Chemical Engineering Journal
  doi: 10.1016/j.cej.2014.07.036
– volume: 52
  start-page: 8022
  issue: 31
  year: 2013
  ident: 10.1016/j.carbpol.2014.10.069_bib0010
  article-title: Domino reaction catalyzed by zeolites with Brønsted and Lewis acid sites for the production of γ-valerolactone from furfural
  publication-title: Angewandte Chemie International Edition
  doi: 10.1002/anie.201302575
– start-page: 169
  year: 2003
  ident: 10.1016/j.carbpol.2014.10.069_bib0090
– volume: 90
  start-page: 792
  issue: 2
  year: 2012
  ident: 10.1016/j.carbpol.2014.10.069_bib0030
  article-title: Catalytic conversion of cellulose to 5-hydroxymethyl furfural using acidic ionic liquids and co-catalyst
  publication-title: Carbohydrate Polymers
  doi: 10.1016/j.carbpol.2012.05.083
– volume: 15
  start-page: 666
  issue: 5
  year: 2007
  ident: 10.1016/j.carbpol.2014.10.069_bib0045
  article-title: Kinetics of non-catalyzed decomposition of d-xylose in high temperature liquid water
  publication-title: Chinese Journal of Chemical Engineering
  doi: 10.1016/S1004-9541(07)60143-8
– volume: 316
  start-page: 1597
  issue: 5831
  year: 2007
  ident: 10.1016/j.carbpol.2014.10.069_bib0130
  article-title: Metal chlorides in ionic liquid solvents convert sugars to 5-hydroxymethylfurfural
  publication-title: Science
  doi: 10.1126/science.1141199
– volume: 55
  start-page: 208
  issue: 1
  year: 2010
  ident: 10.1016/j.carbpol.2014.10.069_bib0005
  article-title: Reaction kinetics of d-xylose in sub- and supercritical water
  publication-title: The Journal of Supercritical Fluids
  doi: 10.1016/j.supflu.2010.08.013
– volume: 1
  start-page: 1724
  issue: 12
  year: 2011
  ident: 10.1016/j.carbpol.2014.10.069_bib0025
  article-title: Xylose isomerization to xylulose and its dehydration to furfural in aqueous media
  publication-title: ACS Catalysis
  doi: 10.1021/cs200461t
– volume: 13
  start-page: 261
  year: 1998
  ident: 10.1016/j.carbpol.2014.10.069_bib0095
  article-title: Cellulose hydrolysis in subcritical and supercritical water
  publication-title: The Journal of Supercritical Fluids
  doi: 10.1016/S0896-8446(98)00060-6
– volume: 42
  start-page: 267
  issue: 2
  year: 2002
  ident: 10.1016/j.carbpol.2014.10.069_bib0060
  article-title: Biomass conversion in water at 330–410°C and 30–50MPa. Identification of key compounds for indicating different chemical reaction pathways
  publication-title: Industrial & Engineering Chemistry Research
  doi: 10.1021/ie0202773
– volume: 339
  start-page: 1717
  issue: 10
  year: 2004
  ident: 10.1016/j.carbpol.2014.10.069_bib0105
  article-title: Hydrothermal upgrading of biomass to biofuel: Studies on some monosaccharide model compounds
  publication-title: Carbohydrate Research
  doi: 10.1016/j.carres.2004.04.018
– volume: 242
  start-page: 131
  issue: 0
  year: 1993
  ident: 10.1016/j.carbpol.2014.10.069_bib0065
  article-title: Hydrothermal formation of 1,2,4-benzenetriol from 5-hydroxymethyl-2-furaldehyde and d-fructose
  publication-title: Carbohydrate Research
  doi: 10.1016/0008-6215(93)80027-C
– volume: 39
  start-page: 485
  issue: 2
  year: 2013
  ident: 10.1016/j.carbpol.2014.10.069_bib0115
  article-title: Non-catalytic and catalytic hydrothermal liquefaction of biomass
  publication-title: Research on Chemical Intermediates
  doi: 10.1007/s11164-012-0572-3
– volume: 92
  start-page: 234
  issue: 0
  year: 2012
  ident: 10.1016/j.carbpol.2014.10.069_bib0125
  article-title: Hydrothermal liquefaction of cellulose to bio-oil under acidic, neutral and alkaline conditions
  publication-title: Applied Energy
  doi: 10.1016/j.apenergy.2011.10.041
– volume: 4
  start-page: 2141
  year: 2013
  ident: 10.1016/j.carbpol.2014.10.069_bib0120
  article-title: Chemical synthesis of lactic acid from cellulose catalysed by lead(II) ions in water
  publication-title: Nature Communications
  doi: 10.1038/ncomms3141
– volume: 26
  start-page: 2111
  issue: 17
  year: 1985
  ident: 10.1016/j.carbpol.2014.10.069_bib0040
  article-title: Mechanism of levulinic acid formation
  publication-title: Tetrahedron Letters
  doi: 10.1016/S0040-4039(00)94793-2
– volume: 15
  start-page: 5258
  issue: 8
  year: 2010
  ident: 10.1016/j.carbpol.2014.10.069_bib0080
  article-title: Catalytic conversion of cellulose to levulinic acid by metal chlorides
  publication-title: Molecules
  doi: 10.3390/molecules15085258
– volume: 35
  start-page: 3902
  issue: 9
  year: 2011
  ident: 10.1016/j.carbpol.2014.10.069_bib0085
  article-title: Hydrothermal decomposition of xylan as a model substance for plant biomass waste—Hydrothermolysis in subcritical water
  publication-title: Biomass and Bioenergy
  doi: 10.1016/j.biombioe.2011.06.015
– volume: 6
  start-page: 989
  issue: 6
  year: 2013
  ident: 10.1016/j.carbpol.2014.10.069_bib0035
  article-title: Chemical conversion of sugars to lactic acid by alkaline hydrothermal processes
  publication-title: ChemSusChem
  doi: 10.1002/cssc.201300092
SSID ssj0000610
Score 2.4220104
Snippet •Zn2+ and Ni2+ showed obvious effect on converting biomass into lactic acid.•Cu2+ and Fe3+ could accelerate the formations of levulinic acid and formic...
Hydrothermal conversion (HTC) is an important thermochemical process to upgrade low-cost biomass into valuable chemicals or fuels. As compared with...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 44
SubjectTerms biomass
Catalysis
catalysts
catalytic activity
Cellulose
Cellulose - chemistry
cobalt
Cobalt - chemistry
copper
Copper - chemistry
Degradation correlation
energy efficiency
formic acid
fuels
Glucose
Glucose - chemistry
hydrolysis
Hydrothermal conversion
iron
Iron - chemistry
lactic acid
levulinic acid
manganese
nickel
Nickel - chemistry
screening
sulfates
Sulfates - chemistry
temperature
Transition Elements - chemistry
Transition metal sulfates
xylose
Xylose - chemistry
zinc
Zinc - chemistry
Title Hydrothermal conversion of xylose, glucose, and cellulose under the catalysis of transition metal sulfates
URI https://dx.doi.org/10.1016/j.carbpol.2014.10.069
https://www.ncbi.nlm.nih.gov/pubmed/25542106
https://www.proquest.com/docview/1641018125
https://www.proquest.com/docview/2000278312
Volume 118
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF5ED3oR39ZHWcFj0-Yx2cSjFKUqerLQW8hmd8GiaUkb0Iu_3ZlNUhUsBY8ZdmCZncxj95sZxi517GnlQeToyAhKUKSTCuE7Qgs3SMGTRlKB8-OTGAzhfhSO1li_qYUhWGVt-yubbq11TenV0uxNX156BEuCWNAAb5qXDiOqYIeItLz76f2wxrYjAS12aPV3FU9vjClgIacTeoHwoEsgL8I9_-2flsWf1g_d7rDtOoDk19Ued9mazvfYZr-Z27bPxoMPVdi6qjdcZ1Hl9kqMTwx_x_R8pju8Bqp3eJorTnf3JdE5FZQVHFm5vdWhZiXENSd_ZqFd_E0jnc_KV0Mx6gEb3t489wdOPVHByUDA3DFSAKYQ0rgiUwElT65KI4zAhFD444ZxnEoNsXulhQogykwWoWiiwIBMXSQFh2w9n-T6mHF5FQZUwmdcjUFfrKQJYwWBbzzIfIjCFoNGjklWtxunqRevSYMrGye1-BMSP5FR_C3WXbBNq34bqxji5pCSX4qToE9YxXrRHGqCZ0TSTnM9KWcJ5pBVJ7Nw-Rq_erUNPL_FjiqNWOwY8zTAXFqc_H9zp2wLv0KCu3nhGVufF6U-x_hnLttWwdts4_ruYfD0BTskBhA
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VcigXRHl1gYKR4Nbs5jFx0kMPVaHa0seplfYW4tiWutomq32o3Qt_ij_IjOMUkKgqIfU6yUTWjDMP-5sZgE8mj4yOMAtMZiUnKCoopYwDaWSYlBgpq7jA-fRMDi_w2ygdrcHPrhaGYZXe9rc23VlrTxl4aQ6ml5cDhiVhLnmAN89Lx5FHVh6b1TXlbfO9oy-k5M9xfPj1_GAY-NECQYUSF4FVEimWVjaUlU44iwh1mVEoIqWmHZzmeakM5uGukTrBrLJVRp4ySyyqMiRSQt99BI-RzAWPTej_iP4w_64FAq8u4OX9LhsajCnnnKlpw1ceEfYZVcZA6387xLsCXuf4Dp_BUx-xiv1WKJuwZurnsHHQDYp7AePhSs9cIdcVvedg7O4MTjRW3KwmzdzsCI-M3xFlrQVfFiyZLriCbSaIVbhjJO6OwlwLdqAOSyauDNHFfDmxHBS_hIsHkfMrWK-b2myBULtpwjWDNjQUZeZa2TTXmMQ2wirGLO0BdnIsKt_fnMdsTIoOyDYuvPgLFj-TSfw96N-yTdsGH_cx5J2Sir92akFO6D7Wj51SC9IRS7usTbOcF5S0tq3T0rvfidtr4iSKe_C63RG3K6bEECl5l2_-f3EfYGN4fnpSnBydHb-FJ_QkZaxdlL6D9cVsabYp-Fqo926zC_j-0H_XLyOFQGo
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hydrothermal+conversion+of+xylose%2C+glucose%2C+and+cellulose+under+the+catalysis+of+transition+metal+sulfates&rft.jtitle=Carbohydrate+polymers&rft.au=Cao%2C+Xuefei&rft.au=Peng%2C+Xinwen&rft.au=Sun%2C+Shaoni&rft.au=Zhong%2C+Linxin&rft.date=2015-03-15&rft.eissn=1879-1344&rft.volume=118&rft.spage=44&rft_id=info:doi/10.1016%2Fj.carbpol.2014.10.069&rft_id=info%3Apmid%2F25542106&rft.externalDocID=25542106
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0144-8617&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0144-8617&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0144-8617&client=summon