Effects of Vacuum-assisted Closure on Wound Microcirculation: An Experimental Study
To study the mechanism through which vacuum-assisted closure (VAC) induces an increase in blood flow and reduces oedema on skin wounds. Thirty-two Japanese large-ear white rabbits were used. A round full-thickness skin defect (retaining the perichondrium), 2 cm in diameter, was created on each dorsa...
Saved in:
Published in | Asian journal of surgery Vol. 28; no. 3; pp. 211 - 217 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
China
Elsevier B.V
01.07.2005
Elsevier |
Subjects | |
Online Access | Get full text |
ISSN | 1015-9584 |
DOI | 10.1016/S1015-9584(09)60346-8 |
Cover
Abstract | To study the mechanism through which vacuum-assisted closure (VAC) induces an increase in blood flow and reduces oedema on skin wounds.
Thirty-two Japanese large-ear white rabbits were used. A round full-thickness skin defect (retaining the perichondrium), 2 cm in diameter, was created on each dorsal ear. The wound on the left ear was assigned to the experimental group, and the wound on the right ear to the control group. In the experimental group, the sterile foam dressing was trimmed to the appropriate size and geometry for the given wound and placed into the wound defect. The surface of the wound containing the foam dressing was covered with an adhesive drape to create an airtight seal. Afterwards, negative pressures of −5, −10, −15 and −20 kPa were exerted on the same wound, each lasting for 20 minutes, at intervals of 10 minutes. In the control group, the wound was treated with petrolatum gauze only. At different time points, the microcirculation microscope and image pattern analysis were used to observe the variation in wound microcirculation through a detective window.
It was found that VAC promoted capillary blood flow velocity, increased capillary calibre and blood volume, stimulated endothelial proliferation and angiogenesis, narrowed endothelial spaces, and restored the integrity of the capillary basement membrane.
By increasing capillary calibre and blood volume and by stimulating angiogenesis, VAC could improve blood circulation in wounds. By narrowing endothelial spaces and by restoring the integrity of capillary basement membranes, VAC could decrease the permeability of blood vessels and wound oedema. |
---|---|
AbstractList | To study the mechanism through which vacuum-assisted closure (VAC) induces an increase in blood flow and reduces oedema on skin wounds.
Thirty-two Japanese large-ear white rabbits were used. A round full-thickness skin defect (retaining the perichondrium), 2 cm in diameter, was created on each dorsal ear. The wound on the left ear was assigned to the experimental group, and the wound on the right ear to the control group. In the experimental group, the sterile foam dressing was trimmed to the appropriate size and geometry for the given wound and placed into the wound defect. The surface of the wound containing the foam dressing was covered with an adhesive drape to create an airtight seal. Afterwards, negative pressures of −5, −10, −15 and −20 kPa were exerted on the same wound, each lasting for 20 minutes, at intervals of 10 minutes. In the control group, the wound was treated with petrolatum gauze only. At different time points, the microcirculation microscope and image pattern analysis were used to observe the variation in wound microcirculation through a detective window.
It was found that VAC promoted capillary blood flow velocity, increased capillary calibre and blood volume, stimulated endothelial proliferation and angiogenesis, narrowed endothelial spaces, and restored the integrity of the capillary basement membrane.
By increasing capillary calibre and blood volume and by stimulating angiogenesis, VAC could improve blood circulation in wounds. By narrowing endothelial spaces and by restoring the integrity of capillary basement membranes, VAC could decrease the permeability of blood vessels and wound oedema. To study the mechanism through which vacuum-assisted closure (VAC) induces an increase in blood flow and reduces oedema on skin wounds. Thirty-two Japanese large-ear white rabbits were used. A round full-thickness skin defect (retaining the perichondrium), 2 cm in diameter, was created on each dorsal ear. The wound on the left ear was assigned to the experimental group, and the wound on the right ear to the control group. In the experimental group, the sterile foam dressing was trimmed to the appropriate size and geometry for the given wound and placed into the wound defect. The surface of the wound containing the foam dressing was covered with an adhesive drape to create an airtight seal. Afterwards, negative pressures of -5, -10, -15 and -20 kPa were exerted on the same wound, each lasting for 20 minutes, at intervals of 10 minutes. In the control group, the wound was treated with petrolatum gauze only. At different time points, the microcirculation microscope and image pattern analysis were used to observe the variation in wound microcirculation through a detective window. It was found that VAC promoted capillary blood flow velocity, increased capillary calibre and blood volume, stimulated endothelial proliferation and angiogenesis, narrowed endothelial spaces, and restored the integrity of the capillary basement membrane. By increasing capillary calibre and blood volume and by stimulating angiogenesis, VAC could improve blood circulation in wounds. By narrowing endothelial spaces and by restoring the integrity of capillary basement membranes, VAC could decrease the permeability of blood vessels and wound oedema. To study the mechanism through which vacuum-assisted closure (VAC) induces an increase in blood flow and reduces oedema on skin wounds.OBJECTIVETo study the mechanism through which vacuum-assisted closure (VAC) induces an increase in blood flow and reduces oedema on skin wounds.Thirty-two Japanese large-ear white rabbits were used. A round full-thickness skin defect (retaining the perichondrium), 2 cm in diameter, was created on each dorsal ear. The wound on the left ear was assigned to the experimental group, and the wound on the right ear to the control group. In the experimental group, the sterile foam dressing was trimmed to the appropriate size and geometry for the given wound and placed into the wound defect. The surface of the wound containing the foam dressing was covered with an adhesive drape to create an airtight seal. Afterwards, negative pressures of -5, -10, -15 and -20 kPa were exerted on the same wound, each lasting for 20 minutes, at intervals of 10 minutes. In the control group, the wound was treated with petrolatum gauze only. At different time points, the microcirculation microscope and image pattern analysis were used to observe the variation in wound microcirculation through a detective window.METHODSThirty-two Japanese large-ear white rabbits were used. A round full-thickness skin defect (retaining the perichondrium), 2 cm in diameter, was created on each dorsal ear. The wound on the left ear was assigned to the experimental group, and the wound on the right ear to the control group. In the experimental group, the sterile foam dressing was trimmed to the appropriate size and geometry for the given wound and placed into the wound defect. The surface of the wound containing the foam dressing was covered with an adhesive drape to create an airtight seal. Afterwards, negative pressures of -5, -10, -15 and -20 kPa were exerted on the same wound, each lasting for 20 minutes, at intervals of 10 minutes. In the control group, the wound was treated with petrolatum gauze only. At different time points, the microcirculation microscope and image pattern analysis were used to observe the variation in wound microcirculation through a detective window.It was found that VAC promoted capillary blood flow velocity, increased capillary calibre and blood volume, stimulated endothelial proliferation and angiogenesis, narrowed endothelial spaces, and restored the integrity of the capillary basement membrane.RESULTSIt was found that VAC promoted capillary blood flow velocity, increased capillary calibre and blood volume, stimulated endothelial proliferation and angiogenesis, narrowed endothelial spaces, and restored the integrity of the capillary basement membrane.By increasing capillary calibre and blood volume and by stimulating angiogenesis, VAC could improve blood circulation in wounds. By narrowing endothelial spaces and by restoring the integrity of capillary basement membranes, VAC could decrease the permeability of blood vessels and wound oedema.CONCLUSIONBy increasing capillary calibre and blood volume and by stimulating angiogenesis, VAC could improve blood circulation in wounds. By narrowing endothelial spaces and by restoring the integrity of capillary basement membranes, VAC could decrease the permeability of blood vessels and wound oedema. To study the mechanism through which vacuum-assisted closure (VAC) induces an increase in blood flow and reduces oedema on skin wounds. Methods: Thirty-two Japanese large-ear white rabbits were used. A round full-thickness skin defect (retaining the perichondrium), 2 cm in diameter, was created on each dorsal ear. The wound on the left ear was assigned to the experimental group, and the wound on the right ear to the control group. In the experimental group, the sterile foam dressing was trimmed to the appropriate size and geometry for the given wound and placed into the wound defect. The surface of the wound containing the foam dressing was covered with an adhesive drape to create an airtight seal. Afterwards, negative pressures of −5, −10, −15 and −20 kPa were exerted on the same wound, each lasting for 20 minutes, at intervals of 10 minutes. In the control group, the wound was treated with petrolatum gauze only. At different time points, the microcirculation microscope and image pattern analysis were used to observe the variation in wound microcirculation through a detective window. Results: It was found that VAC promoted capillary blood flow velocity, increased capillary calibre and blood volume, stimulated endothelial proliferation and angiogenesis, narrowed endothelial spaces, and restored the integrity of the capillary basement membrane. Conclusion: By increasing capillary calibre and blood volume and by stimulating angiogenesis, VAC could improve blood circulation in wounds. By narrowing endothelial spaces and by restoring the integrity of capillary basement membranes, VAC could decrease the permeability of blood vessels and wound oedema. |
Author | Li, Xue-Yong Chen, Shao-Zong Li, Jing Xu, Long-Shun |
Author_xml | – sequence: 1 givenname: Shao-Zong surname: Chen fullname: Chen, Shao-Zong email: cszong@fmmu.edu.cn – sequence: 2 givenname: Jing surname: Li fullname: Li, Jing – sequence: 3 givenname: Xue-Yong surname: Li fullname: Li, Xue-Yong – sequence: 4 givenname: Long-Shun surname: Xu fullname: Xu, Long-Shun |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/16024319$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkUtvEzEUhb0oog_4CaBZIVgMeDKeGxuEUBUFqFTEIjyWlse-Ri6OndoeRP49TlKK1E3Z2PLVOd-1zjklRyEGJORJR192tINXq3oOrRg4e07FC6A9g5YfkZPb8TE5zfmK1ifv-ENy3AGdsb4TJ2S1tBZ1yU20zTelp2ndqpxdLmiahY95StjE0HyPUzDNJ6dT1C7pyaviYnjdnIdm-XuDya0xFOWbVZnM9hF5YJXP-PjmPiNf3y-_LD62l58_XCzOL1vNgJXWMmHBwLzrmRko0HFAZYWa48wqLoyxA4xUd1RzzgBGPXIc-_m8NzDMRypYf0YuDlwT1ZXc1E-otJVRObkfxPRDqlSc9igt6B4qjA9iZMb0YhQCBOBsplGIDirr2YG1SfF6wlzk2mWN3quAccoSOO2BDbwKn94Ip3GN5nbt30irYDgIalY5J7T_JFTu6pL7uuSuF0mF3Ncld-A3d3zalX3MJSnn73W_O7ixBv7LYZJZOwwajUu135qIu5fw9g5BexecVv4nbv_D_wfUHMMl |
CitedBy_id | crossref_primary_10_1177_155698450700200503 crossref_primary_10_17116_hirurgia2016473_80 crossref_primary_10_1089_wound_2013_0491 crossref_primary_10_1016_j_jescts_2017_01_003 crossref_primary_10_1016_j_bjps_2008_03_024 crossref_primary_10_1089_ten_teb_2016_0200 crossref_primary_10_1111_j_1742_481X_2012_01029_x crossref_primary_10_3892_mmr_2013_1536 crossref_primary_10_5999_aps_2014_41_6_668 crossref_primary_10_1088_1742_6596_2854_1_012025 crossref_primary_10_1590_1413_785220172502169053 crossref_primary_10_3233_CH_180536 crossref_primary_10_1016_j_bjps_2011_08_016 crossref_primary_10_1080_14017430801939225 crossref_primary_10_1016_j_jtv_2021_01_009 crossref_primary_10_1016_j_avsg_2017_10_018 crossref_primary_10_3892_ijmm_2017_2919 crossref_primary_10_3400_avd_oa_17_00052 crossref_primary_10_1016_j_wndm_2016_02_001 crossref_primary_10_1111_jocs_12126 crossref_primary_10_17116_hirurgia2016239_44 crossref_primary_10_1016_j_addr_2018_03_012 crossref_primary_10_1097_01_prs_0000233130_93861_15 crossref_primary_10_1586_17469872_3_2_235 crossref_primary_10_1016_j_bjps_2024_11_054 crossref_primary_10_1016_j_jss_2020_04_025 crossref_primary_10_1016_j_semcdb_2012_09_009 crossref_primary_10_3892_etm_2016_3008 crossref_primary_10_1016_j_surg_2022_01_037 crossref_primary_10_1016_j_bjps_2011_06_023 crossref_primary_10_1097_01_sap_0000202831_43294_02 crossref_primary_10_1111_j_1742_481X_2011_00805_x crossref_primary_10_12968_jowc_2021_30_3_192 crossref_primary_10_1021_acsbiomaterials_8b01554 crossref_primary_10_1016_j_jss_2018_09_065 crossref_primary_10_1097_GOX_0000000000002739 crossref_primary_10_2478_v10035_010_0062_5 crossref_primary_10_1111_j_1532_950X_2013_12005_x crossref_primary_10_1111_wrr_12168 crossref_primary_10_1002_dmrr_2243 crossref_primary_10_1007_s00068_015_0509_9 crossref_primary_10_7759_cureus_17720 crossref_primary_10_12968_jowc_2008_17_7_30521 crossref_primary_10_2995_jacsurg_30_545 crossref_primary_10_1097_PRS_0b013e3181fed52a crossref_primary_10_1111_odi_13421 crossref_primary_10_1016_j_amsu_2018_10_007 crossref_primary_10_3892_etm_2016_3083 crossref_primary_10_1097_PRS_0b013e318196ba00 crossref_primary_10_52504_001c_7755 crossref_primary_10_1016_j_cvsm_2017_06_006 crossref_primary_10_1016_j_jcot_2021_101668 crossref_primary_10_1002_micr_22178 crossref_primary_10_1016_j_yasu_2007_05_001 crossref_primary_10_1007_s00383_015_3716_x crossref_primary_10_1177_1534734613483769 crossref_primary_10_12968_jowc_2022_31_8_624 crossref_primary_10_1016_j_athoracsur_2007_02_066 crossref_primary_10_1097_GOX_0000000000004752 crossref_primary_10_1007_s00266_018_1246_3 crossref_primary_10_1016_j_bjps_2007_09_031 crossref_primary_10_1111_wrr_12971 crossref_primary_10_1016_j_jcot_2016_05_007 crossref_primary_10_1016_j_bjps_2008_05_017 crossref_primary_10_1007_s11892_006_0077_9 crossref_primary_10_12968_jowc_2009_18_4_41608 crossref_primary_10_1097_PSN_0b013e318219778b crossref_primary_10_1097_WON_0000000000000914 crossref_primary_10_1590_0100_69912017001001 crossref_primary_10_1016_j_bjps_2008_08_037 crossref_primary_10_1097_BOT_0b013e3181ec45ba crossref_primary_10_1002_jbm_a_35120 crossref_primary_10_1097_TA_0b013e31825aa9ea crossref_primary_10_3390_jcm13175261 crossref_primary_10_1016_j_cps_2012_04_002 crossref_primary_10_1007_s10029_013_1069_8 crossref_primary_10_4103_ortho_IJOrtho_220_16 crossref_primary_10_1016_j_wneu_2021_12_063 crossref_primary_10_1007_s11892_024_01556_0 crossref_primary_10_1186_1471_2261_8_14 crossref_primary_10_1097_PRS_0000000000007622 crossref_primary_10_1111_wrr_12104 crossref_primary_10_1186_s13018_019_1418_0 crossref_primary_10_7759_cureus_8849 crossref_primary_10_1016_j_joms_2015_09_012 crossref_primary_10_12968_jowc_2012_21_3_120 crossref_primary_10_1186_s13049_015_0092_4 crossref_primary_10_1188_06_CJON_825_826 crossref_primary_10_5999_aps_2015_42_2_150 crossref_primary_10_1308_003588409X12486167520993 crossref_primary_10_1097_SLA_0b013e318269d1ca crossref_primary_10_1016_j_ygyno_2008_07_054 crossref_primary_10_1111_j_1742_481X_2012_01008_x crossref_primary_10_1111_iwj_12810 crossref_primary_10_2460_javma_243_6_863 crossref_primary_10_1111_wrr_12079 crossref_primary_10_2106_JBJS_RVW_17_00042 crossref_primary_10_1016_j_cvex_2019_06_002 crossref_primary_10_1097_BCO_0b013e3181b67500 crossref_primary_10_1097_PRS_0000000000000080 crossref_primary_10_1111_jsap_12055 crossref_primary_10_1002_micr_22282 crossref_primary_10_1159_000365954 crossref_primary_10_7759_cureus_14389 crossref_primary_10_1097_SAP_0000000000002937 crossref_primary_10_12968_jowc_2020_29_4_206 crossref_primary_10_1007_s10195_013_0236_0 crossref_primary_10_1097_01_ASW_0000305452_79434_d9 crossref_primary_10_12968_jowc_2016_25_6_350 crossref_primary_10_1016_j_injury_2007_10_029 crossref_primary_10_1097_BOT_0b013e3181a2e2b6 crossref_primary_10_1089_wound_2023_0096 crossref_primary_10_1097_SLA_0b013e31820563a8 crossref_primary_10_1111_iwj_12143 crossref_primary_10_1177_1938640019863267 crossref_primary_10_12968_jowc_2021_30_2_121 crossref_primary_10_1097_SAP_0b013e3181ba578a crossref_primary_10_1089_wound_2023_0133 crossref_primary_10_1097_GOX_0000000000004964 crossref_primary_10_1097_SAP_0b013e31826eab9e crossref_primary_10_1097_00129334_200511000_00013 crossref_primary_10_1016_j_jpedsurg_2014_02_040 crossref_primary_10_1097_BOT_0000000000000259 crossref_primary_10_1016_j_jtv_2019_12_004 crossref_primary_10_1111_iwj_12544 crossref_primary_10_1097_BSD_0000000000000853 crossref_primary_10_1097_BCO_0000000000000585 crossref_primary_10_4236_ss_2019_106022 crossref_primary_10_1111_j_1742_481X_2008_00429_x crossref_primary_10_17116_hirurgia202104153 crossref_primary_10_1111_iwj_12309 crossref_primary_10_1111_j_1532_950X_2014_12218_x crossref_primary_10_1016_j_bjps_2007_10_080 crossref_primary_10_1111_j_1524_475X_2011_00741_x crossref_primary_10_1097_01_prs_0000279326_84535_2d crossref_primary_10_1016_j_bjps_2015_11_010 crossref_primary_10_1016_j_jss_2019_03_033 crossref_primary_10_12968_bjcn_2014_19_Sup3_S14 crossref_primary_10_12968_jowc_2017_26_Sup3_S1 crossref_primary_10_1007_s43465_023_00861_2 crossref_primary_10_1097_SAP_0b013e31819ae01b crossref_primary_10_1097_SAP_0b013e3181f77bd6 crossref_primary_10_1097_SLA_0b013e3182365864 crossref_primary_10_1111_j_1445_2197_2008_04609_x crossref_primary_10_2147_CCID_S334248 crossref_primary_10_1128_JCM_01102_16 crossref_primary_10_1111_j_1742_481X_2008_00437_x crossref_primary_10_1053_j_jfas_2010_07_001 crossref_primary_10_1111_j_1742_481X_2012_01098_x crossref_primary_10_1001_jama_2020_13361 crossref_primary_10_1097_PRS_0000000000008628 crossref_primary_10_1111_j_1742_481X_2007_00425_x crossref_primary_10_1186_s12917_015_0593_4 crossref_primary_10_1016_j_amjsurg_2010_04_029 crossref_primary_10_1016_j_jtcvs_2007_09_070 crossref_primary_10_3390_electronics9010138 crossref_primary_10_1016_j_asjsur_2020_12_033 crossref_primary_10_12968_coan_2014_19_10_526 crossref_primary_10_1097_imi_0b013e31816207b3 crossref_primary_10_1111_j_1742_481X_2010_00706_x crossref_primary_10_7759_cureus_9327 crossref_primary_10_1097_DCR_0000000000001453 crossref_primary_10_1016_j_jss_2006_03_005 crossref_primary_10_1097_BOT_0b013e318216b1e5 crossref_primary_10_1186_s12891_021_04340_3 crossref_primary_10_1186_1749_8090_2_53 crossref_primary_10_1186_1749_8090_4_5 crossref_primary_10_1590_S1516_31802009000300010 crossref_primary_10_1097_01_prs_0000225450_12593_12 crossref_primary_10_1016_j_ijsu_2015_03_008 crossref_primary_10_1016_j_bjps_2011_06_001 crossref_primary_10_1097_PRS_0b013e31829f4ad9 crossref_primary_10_1089_wound_2014_0624 crossref_primary_10_1007_s10353_008_0381_5 crossref_primary_10_4103_0019_5413_62067 crossref_primary_10_1016_j_carrev_2007_09_001 crossref_primary_10_1586_17469872_1_5_701 crossref_primary_10_1097_PRS_0b013e3181c82e1f crossref_primary_10_1111_iwj_12444 crossref_primary_10_1186_1477_7819_5_138 crossref_primary_10_12968_bjcn_2015_20_Sup6_S28 crossref_primary_10_12968_bjon_2015_24_2_98 crossref_primary_10_3892_ijmm_2017_3131 crossref_primary_10_1038_s41598_021_00369_5 crossref_primary_10_1002_jbm_b_33649 crossref_primary_10_1186_1749_8090_6_90 crossref_primary_10_1007_s12262_012_0490_z crossref_primary_10_1002_micr_30027 crossref_primary_10_1055_a_2287_6535 crossref_primary_10_1111_j_1742_481X_2011_00772_x crossref_primary_10_1007_s00464_023_10647_0 crossref_primary_10_1097_BPB_0b013e32832d83c9 |
Cites_doi | 10.1016/0741-5214(87)90037-1 10.1113/jphysiol.1956.sp005462 10.1097/00000637-199706000-00002 10.1097/00000637-199803000-00004 10.1016/0007-1226(88)90049-5 10.1115/1.2895465 10.1016/S1010-7940(00)00349-3 10.1161/01.CIR.88.1.193 10.1097/00000637-199706000-00001 |
ContentType | Journal Article |
Copyright | 2005 Asian Surgical Association |
Copyright_xml | – notice: 2005 Asian Surgical Association |
DBID | 6I. AAFTH AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 DOA |
DOI | 10.1016/S1015-9584(09)60346-8 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
EndPage | 217 |
ExternalDocumentID | oai_doaj_org_article_f6c360c1859b4dd39b99696e22ce9916 16024319 10_1016_S1015_9584_09_60346_8 S1015958409603468 |
Genre | Journal Article Comparative Study |
GroupedDBID | --K .1- .FO .~1 0R~ 1B1 1P~ 1~. 1~5 23N 4.4 457 4G. 53G 5GY 5VS 6J9 7-5 71M 8P~ AABNK AAEDW AAIKJ AALRI AAQFI AAXUO AAYWO ABBQC ABFNM ABMAC ABWVN ABXDB ACGFS ACRPL ACVFH ADBBV ADCNI ADMUD ADNMO ADVLN AEKER AENEX AEUPX AEVXI AEXQZ AFPUW AFRHN AFTJW AGHFR AGYEJ AIGII AITUG AJRQY AJUYK AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ BCNDV BGNMA C1A CS3 EBS EJD EO8 EO9 EP2 EP3 FDB FEDTE FIRID FNPLU FRP GBLVA GROUPED_DOAJ GX1 HVGLF HZ~ IHE IPNFZ J1W LAS M41 M4Y MO0 N9A NU0 O-L O9- OK- OK1 OW- OZT P-8 P-9 P2P P6G PC. Q38 RIG ROL RPZ SDF SDG SDH SEL SES SSZ TR2 Z5R 0SF 6I. AACTN AAFTH AFCTW LCYCR NCXOZ AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 |
ID | FETCH-LOGICAL-c464t-f49f6d67134d5060b5eaf9a7e2fa89ddf56b0c10c88466bcb8eb3773d657b0943 |
IEDL.DBID | .~1 |
ISSN | 1015-9584 |
IngestDate | Mon Sep 08 19:52:58 EDT 2025 Thu Sep 04 18:23:46 EDT 2025 Thu Jan 02 22:09:50 EST 2025 Tue Jul 01 01:02:52 EDT 2025 Thu Apr 24 23:12:10 EDT 2025 Fri Feb 23 02:24:17 EST 2024 Tue Aug 26 16:34:38 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | blood flow velocity vacuum-assisted closure wound oedema microcirculation |
Language | English |
License | http://www.elsevier.com/open-access/userlicense/1.0 https://www.elsevier.com/tdm/userlicense/1.0 https://www.elsevier.com/open-access/userlicense/1.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c464t-f49f6d67134d5060b5eaf9a7e2fa89ddf56b0c10c88466bcb8eb3773d657b0943 |
Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S1015958409603468 |
PMID | 16024319 |
PQID | 68036458 |
PQPubID | 23479 |
PageCount | 7 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_f6c360c1859b4dd39b99696e22ce9916 proquest_miscellaneous_68036458 pubmed_primary_16024319 crossref_primary_10_1016_S1015_9584_09_60346_8 crossref_citationtrail_10_1016_S1015_9584_09_60346_8 elsevier_sciencedirect_doi_10_1016_S1015_9584_09_60346_8 elsevier_clinicalkey_doi_10_1016_S1015_9584_09_60346_8 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2005-Jul |
PublicationDateYYYYMMDD | 2005-07-01 |
PublicationDate_xml | – month: 07 year: 2005 text: 2005-Jul |
PublicationDecade | 2000 |
PublicationPlace | China |
PublicationPlace_xml | – name: China |
PublicationTitle | Asian journal of surgery |
PublicationTitleAlternate | Asian J Surg |
PublicationYear | 2005 |
Publisher | Elsevier B.V Elsevier |
Publisher_xml | – name: Elsevier B.V – name: Elsevier |
References | Sumpio, Bane, Levin (bib15) 1987; 6 Qiu (bib6) 2003 Vandenburgh (bib13) 1992; 262 Ohno, Gibbons, Dzau, Cooke (bib11) 1993; 88 Fang, Liu (bib17) 1983; 115 Lu, Chen, Li (bib18) 2003; 7 Koller, Kaley (bib10) 1991 Coles, Poles (bib9) 1956; 131 Genecov, Schneider, Morykwas (bib4) 1998; 40 Song (bib16) 1999; 9 Fleischmann, Strecker, Bombelli, Kinzl (bib1) 1993; 96 Argenta, Morykwas (bib2) 1997; 38 Knighton, Silver, Hunt (bib14) 1981; 90 Xu, Chen, Qiao (bib8) 2000; 21 Tang, Ohri, Haw (bib5) 2000; 17 Chen, Xu (bib7) 2000; 4 Urschel, Scott, Williams (bib12) 1988; 41 Morykwas, Argenta, Shelton-Brown, McGuirt (bib3) 1997; 38 Fleischmann (10.1016/S1015-9584(09)60346-8_bib1) 1993; 96 Coles (10.1016/S1015-9584(09)60346-8_bib9) 1956; 131 Argenta (10.1016/S1015-9584(09)60346-8_bib2) 1997; 38 Qiu (10.1016/S1015-9584(09)60346-8_bib6) 2003 Fang (10.1016/S1015-9584(09)60346-8_bib17) 1983; 115 Chen (10.1016/S1015-9584(09)60346-8_bib7) 2000; 4 Xu (10.1016/S1015-9584(09)60346-8_bib8) 2000; 21 Tang (10.1016/S1015-9584(09)60346-8_bib5) 2000; 17 Vandenburgh (10.1016/S1015-9584(09)60346-8_bib13) 1992; 262 Genecov (10.1016/S1015-9584(09)60346-8_bib4) 1998; 40 Song (10.1016/S1015-9584(09)60346-8_bib16) 1999; 9 Morykwas (10.1016/S1015-9584(09)60346-8_bib3) 1997; 38 Ohno (10.1016/S1015-9584(09)60346-8_bib11) 1993; 88 Urschel (10.1016/S1015-9584(09)60346-8_bib12) 1988; 41 Koller (10.1016/S1015-9584(09)60346-8_bib10) 1991 Knighton (10.1016/S1015-9584(09)60346-8_bib14) 1981; 90 Sumpio (10.1016/S1015-9584(09)60346-8_bib15) 1987; 6 Lu (10.1016/S1015-9584(09)60346-8_bib18) 2003; 7 |
References_xml | – volume: 38 start-page: 553 year: 1997 end-page: 562 ident: bib3 article-title: Vacuum-assisted closure: a new method for wound control and treatment: animal studies and basic foundation publication-title: Ann Plast Surg – volume: 40 start-page: 219 year: 1998 end-page: 225 ident: bib4 article-title: A controlled subatmospheric pressure dressing increases the rate of skin graft donor site reepithelialization publication-title: Ann Plast Surg – volume: 41 start-page: 182 year: 1988 end-page: 186 ident: bib12 article-title: The effect of mechanical stress on soft and hard tissue repair: a review publication-title: Br J Plast Surg – volume: 90 start-page: 262 year: 1981 end-page: 269 ident: bib14 article-title: Regulation of wound healing angiogenesis: effect of oxygen gradient and inspired oxygen concentration publication-title: Surgery – volume: 96 start-page: 488 year: 1993 end-page: 492 ident: bib1 article-title: Vacuum sealing as treatment of soft tissue damage in open fractures publication-title: Unfallchirurg – volume: 9 start-page: 36 year: 1999 end-page: 38 ident: bib16 article-title: Effects of shear stress on cytoskeletal structure of endothelium and its mechanism publication-title: Chinese Journal of Microcirculation – volume: 38 start-page: 563 year: 1997 end-page: 577 ident: bib2 article-title: Vacuum-assisted closure: a new method for wound control and treatment: clinical experience publication-title: Ann Plast Surg – year: 2003 ident: bib6 publication-title: Vacuum Sealing Drainage – volume: 4 start-page: 1882 year: 2000 end-page: 1883 ident: bib7 article-title: Vacuum-assisted closure wound control publication-title: Modern Rehabilitation – volume: 88 start-page: 193 year: 1993 end-page: 197 ident: bib11 article-title: Shear stress elevates endothelial cGMP. Role of a potassium channel and G protein coupling publication-title: Circulation – volume: 21 start-page: 976 year: 2000 end-page: 978 ident: bib8 article-title: Effects of negative pressure on wound blood flow publication-title: Journal of the Fourth Military Medical University – volume: 6 start-page: 252 year: 1987 end-page: 256 ident: bib15 article-title: Mechanical stress stimulates aortic endothelial cells to proliferate publication-title: J Vasc Surg – volume: 17 start-page: 482 year: 2000 end-page: 484 ident: bib5 article-title: Novel application of vacuum assisted closure technique to the treatment of sternotomy wound infection publication-title: Eur J Cardiothorac Surg – volume: 115 start-page: 1 year: 1983 end-page: 12 ident: bib17 article-title: Elementary mechanics of the endothelium of blood vessels publication-title: J Biomech Eng – volume: 262 start-page: R350 year: 1992 end-page: R355 ident: bib13 article-title: Mechanical forces and their second messengers in stimulating cell growth publication-title: Am J Physiol – volume: 131 start-page: 277 year: 1956 ident: bib9 article-title: The reaction of the blood vessels of the hand during increase in transmural pressure publication-title: J Physiol – year: 1991 ident: bib10 article-title: Endothelial regulation of wall shear stress and blood flow in skeletal muscle microcirculation publication-title: Am J Physiol – volume: 7 start-page: 1244 year: 2003 end-page: 1245 ident: bib18 article-title: The experimental study of the effects of vacuum-assisted closure on edema and vessel permeability of the wound publication-title: Chinese Journal of Clinical Rehabilitation – volume: 6 start-page: 252 year: 1987 ident: 10.1016/S1015-9584(09)60346-8_bib15 article-title: Mechanical stress stimulates aortic endothelial cells to proliferate publication-title: J Vasc Surg doi: 10.1016/0741-5214(87)90037-1 – volume: 131 start-page: 277 year: 1956 ident: 10.1016/S1015-9584(09)60346-8_bib9 article-title: The reaction of the blood vessels of the hand during increase in transmural pressure publication-title: J Physiol doi: 10.1113/jphysiol.1956.sp005462 – volume: 262 start-page: R350 year: 1992 ident: 10.1016/S1015-9584(09)60346-8_bib13 article-title: Mechanical forces and their second messengers in stimulating cell growth in vitro publication-title: Am J Physiol – volume: 96 start-page: 488 year: 1993 ident: 10.1016/S1015-9584(09)60346-8_bib1 article-title: Vacuum sealing as treatment of soft tissue damage in open fractures publication-title: Unfallchirurg – year: 1991 ident: 10.1016/S1015-9584(09)60346-8_bib10 article-title: Endothelial regulation of wall shear stress and blood flow in skeletal muscle microcirculation publication-title: Am J Physiol – volume: 90 start-page: 262 year: 1981 ident: 10.1016/S1015-9584(09)60346-8_bib14 article-title: Regulation of wound healing angiogenesis: effect of oxygen gradient and inspired oxygen concentration publication-title: Surgery – volume: 38 start-page: 563 year: 1997 ident: 10.1016/S1015-9584(09)60346-8_bib2 article-title: Vacuum-assisted closure: a new method for wound control and treatment: clinical experience publication-title: Ann Plast Surg doi: 10.1097/00000637-199706000-00002 – volume: 40 start-page: 219 year: 1998 ident: 10.1016/S1015-9584(09)60346-8_bib4 article-title: A controlled subatmospheric pressure dressing increases the rate of skin graft donor site reepithelialization publication-title: Ann Plast Surg doi: 10.1097/00000637-199803000-00004 – volume: 41 start-page: 182 year: 1988 ident: 10.1016/S1015-9584(09)60346-8_bib12 article-title: The effect of mechanical stress on soft and hard tissue repair: a review publication-title: Br J Plast Surg doi: 10.1016/0007-1226(88)90049-5 – volume: 115 start-page: 1 year: 1983 ident: 10.1016/S1015-9584(09)60346-8_bib17 article-title: Elementary mechanics of the endothelium of blood vessels publication-title: J Biomech Eng doi: 10.1115/1.2895465 – volume: 17 start-page: 482 year: 2000 ident: 10.1016/S1015-9584(09)60346-8_bib5 article-title: Novel application of vacuum assisted closure technique to the treatment of sternotomy wound infection publication-title: Eur J Cardiothorac Surg doi: 10.1016/S1010-7940(00)00349-3 – year: 2003 ident: 10.1016/S1015-9584(09)60346-8_bib6 – volume: 4 start-page: 1882 year: 2000 ident: 10.1016/S1015-9584(09)60346-8_bib7 article-title: Vacuum-assisted closure wound control publication-title: Modern Rehabilitation – volume: 21 start-page: 976 year: 2000 ident: 10.1016/S1015-9584(09)60346-8_bib8 article-title: Effects of negative pressure on wound blood flow publication-title: Journal of the Fourth Military Medical University – volume: 88 start-page: 193 year: 1993 ident: 10.1016/S1015-9584(09)60346-8_bib11 article-title: Shear stress elevates endothelial cGMP. Role of a potassium channel and G protein coupling publication-title: Circulation doi: 10.1161/01.CIR.88.1.193 – volume: 7 start-page: 1244 year: 2003 ident: 10.1016/S1015-9584(09)60346-8_bib18 article-title: The experimental study of the effects of vacuum-assisted closure on edema and vessel permeability of the wound publication-title: Chinese Journal of Clinical Rehabilitation – volume: 9 start-page: 36 year: 1999 ident: 10.1016/S1015-9584(09)60346-8_bib16 article-title: Effects of shear stress on cytoskeletal structure of endothelium and its mechanism publication-title: Chinese Journal of Microcirculation – volume: 38 start-page: 553 year: 1997 ident: 10.1016/S1015-9584(09)60346-8_bib3 article-title: Vacuum-assisted closure: a new method for wound control and treatment: animal studies and basic foundation publication-title: Ann Plast Surg doi: 10.1097/00000637-199706000-00001 |
SSID | ssj0015818 |
Score | 2.1603673 |
Snippet | To study the mechanism through which vacuum-assisted closure (VAC) induces an increase in blood flow and reduces oedema on skin wounds.
Thirty-two Japanese... To study the mechanism through which vacuum-assisted closure (VAC) induces an increase in blood flow and reduces oedema on skin wounds.OBJECTIVETo study the... To study the mechanism through which vacuum-assisted closure (VAC) induces an increase in blood flow and reduces oedema on skin wounds. Methods: Thirty-two... |
SourceID | doaj proquest pubmed crossref elsevier |
SourceType | Open Website Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 211 |
SubjectTerms | Animals Blood Flow Velocity Disease Models, Animal Female Male microcirculation Microcirculation - physiology Occlusive Dressings oedema Probability Rabbits Reference Values Sensitivity and Specificity Skin - blood supply Vacuum vacuum-assisted closure wound Wound Healing - physiology Wounds and Injuries - therapy |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07TxwxELYiKhoEgpCDkLhIAYWD9-wd2-kIOnRCgoaQ0Fl-rYREdiO4K_j3ePYFFOhS0FqefcyMPd-uZ74h5FsRpok74VkqtGHSKWBOeWCFk5gTJUqlsN754hLm1_L8prx50eoLc8I6euBOcccVBAE85LBivIxRGG-Q0CVNpyEhtsHdlxs-fEz15welLroiuKJkJsfY59qd46tx8JCbI-BCAtOvolJL3v8qOL0FPtsgdLZJNnr0SE-6p94iH1K9Ta46BuIH2lT0twvL5V-WETGaL9LTuwZ_AdKmpn-wgRK9wAS8cHsf-rZdP-hJTWcvaP4pZhY-7pDrs9mv0znreyWwIEEuWCVNBRGwMjQiZ6Avk6uMU2laOW1irErwWYs86Aw4wAev81e0UiJCqTxmF34ka3VTp0-Eljz4mGGYcpBkMk4nISrIBpBSAGg-IXLQlQ09kTj2s7izY8YYqtiiii03tlWx1RPyfRT71zFprBL4iYYYJyMRdjuQ3cP27mFXuceEwGBGO9Sa5t0xX-h21d31KNiDkQ5k_I_o18FfbF6seALj6tQsH2zWHh775hm7nRs9awKQGrIwe-_x0vtkvWWYbbOKP5O1xf0yHWTstPBf2mXyBFRYDIk priority: 102 providerName: Directory of Open Access Journals |
Title | Effects of Vacuum-assisted Closure on Wound Microcirculation: An Experimental Study |
URI | https://www.clinicalkey.com/#!/content/1-s2.0-S1015958409603468 https://dx.doi.org/10.1016/S1015-9584(09)60346-8 https://www.ncbi.nlm.nih.gov/pubmed/16024319 https://www.proquest.com/docview/68036458 https://doaj.org/article/f6c360c1859b4dd39b99696e22ce9916 |
Volume | 28 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07bxQxELai0NAgEK_jcbiggMK53Vt7bNMdp0QRUSgIIeksvxadFHajy11Bw2_H432EK1AQreWxd8fjmbE98w0hb0s_j4WtHIul0oxbCcxKB6y0HGOiKiEl5juffobjc_7pUlzukeWQC4Nhlb3u73R61tZ9y6zn5ux6tZqdJWESWuABBYqKAyb8ci5R1g9-jWEepVBllw5XCoa9b7N4uhFy47tCv8-DMLVjnzKM_46Z-psbms3R0UPyoPcj6aL71EdkLzaPyVmHRXxD25p-s367_cGSb4wLGejyqsXLQNo29AJLKdFTDMXzq7XvC3h9oIuGHv4B-E8xxvDnE3J-dPh1ecz6qgnMc-AbVnNdQwDMEQ2IHuhEtLW2Ms5rq3QItQBX-LLwKrke4LxT6TwtZRVASIdxhk_JftM28TmhovAuJIdMWog8aqtiVdWQLDznFYAqJoQPvDK-hxTHyhZXZowdQxYbZLEptMksNmpCDkay6w5T4y6Cj7gQY2eExM4N7fq76WXC1OArSD-mhHY8hEo7jcg_cT73EZ3gCYFhGc2QdZr0ZBpoddfsaiTcEc1_IX0zyItJ2xbfYmwT2-2NSdzDB-DU41knRrecAASJLPWL_5_2JbmfEWZzVPErsr9Zb-Pr5Dtt3DRvjim5tzj5cnEyzTcQvwFqrg-4 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZKOcAFgXgtr_rAAQ7uJmt7bHMrq1YLdHtpC71ZtuOglUpSbXcPXPjteJxkyx5QEVfLj2Q8npnE33xDyNsyTGLhuGex1IYJp4A55YGVTiAmikulMN95fgKzc_H5Ql7skOmQC4Owyt72dzY9W-u-ZdxLc3y1WIxPkzJJI_EDBQouQN8hd4XkCnF9-782OI9S6rLLhyslw-43aTzdFLnxXWHe51mY3nJQmcd_y0_9LQ7N_ujoIXnQB5L0oHvWR2QnNo_JaUdGfE3bmn51Yb3-wVJwjDtZ0elli38DadvQb1hLic4RixcWy9BX8PpADxp6-AfjP0WQ4c8n5Pzo8Gw6Y33ZBBYEiBWrhamhAkwSrZA-0MvoauNUnNROm6qqJfgilEXQKfYAH7xOH9RK8Qqk8gg0fEp2m7aJzwmVRfBVisiUgyiicTpyXkNy8UJwAF2MiBhkZUPPKY6lLS7tBjyGIrYoYlsYm0Vs9Yjsb4ZddaQatw34iBux6Yyc2LmhXX63vVLYGgKH9GJaGi-qihtvkPonTiYhYhQ8IjBsox3STpOhTBMtbltdbwZu6ea_DN0b9MWmc4uXMa6J7fraJunhDXDq8axToxtJALJElubF_y-7R-7NzubH9vjTyZeX5H6mm80Q41dkd7Vcx9cpkFr5N_mg_AYynRBB |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Effects+of+Vacuum-assisted+Closure+on+Wound+Microcirculation%3A+An+Experimental+Study&rft.jtitle=Asian+journal+of+surgery&rft.au=Chen%2C+Shao-Zong&rft.au=Li%2C+Jing&rft.au=Li%2C+Xue-Yong&rft.au=Xu%2C+Long-Shun&rft.date=2005-07-01&rft.pub=Elsevier+B.V&rft.issn=1015-9584&rft.volume=28&rft.issue=3&rft.spage=211&rft.epage=217&rft_id=info:doi/10.1016%2FS1015-9584%2809%2960346-8&rft.externalDocID=S1015958409603468 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1015-9584&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1015-9584&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1015-9584&client=summon |