Mean Circulation and Structures of Tilted Ocean Deep Convection

Convection in a homogeneous ocean is investigated by numerically integrating the three-dimensional Boussinesq equations in a tilted, rotating frame ( f–F plane) subject to a negative buoyancy flux (cooling) at the surface. The study focuses on determining the influence of the angle (tilt) between th...

Full description

Saved in:
Bibliographic Details
Published inJournal of physical oceanography Vol. 38; no. 4; pp. 803 - 816
Main Authors Wirth, A., Barnier, B.
Format Journal Article
LanguageEnglish
Published Boston, MA American Meteorological Society 01.04.2008
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Convection in a homogeneous ocean is investigated by numerically integrating the three-dimensional Boussinesq equations in a tilted, rotating frame ( f–F plane) subject to a negative buoyancy flux (cooling) at the surface. The study focuses on determining the influence of the angle (tilt) between the axis of rotation and gravity on the convection process. To this end the following two essential parameters are varied: (i) the magnitude of the surface heat flux, and (ii) the angle (tilt) between the axis of rotation and gravity. The range of the parameters investigated is a subset of typical open-ocean deep convection events. It is demonstrated that when gravity and rotation vector are tilted with respect to each other (i) the Taylor–Proudman–Poincaré theorem leaves an imprint in the convective structures, (ii) a horizontal mean circulation is established, and (iii) the second-order moments involving horizontal velocity components are considerably increased. Tilted rotation thus leaves a substantial imprint in the dynamics of ocean convection.
Bibliography:SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
ISSN:0022-3670
1520-0485
DOI:10.1175/2007JPO3756.1