Unsupervised Clustering of Hyperspectral Paper Data Using t-SNE
For a suspected forgery that involves the falsification of a document or its contents, the investigator will primarily analyze the document’s paper and ink in order to establish the authenticity of the subject under investigation. As a non-destructive and contactless technique, Hyperspectral Imaging...
Saved in:
Published in | Journal of imaging Vol. 6; no. 5; p. 29 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
05.05.2020
MDPI |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | For a suspected forgery that involves the falsification of a document or its contents, the investigator will primarily analyze the document’s paper and ink in order to establish the authenticity of the subject under investigation. As a non-destructive and contactless technique, Hyperspectral Imaging (HSI) is gaining popularity in the field of forensic document analysis. HSI returns more information compared to conventional three channel imaging systems due to the vast number of narrowband images recorded across the electromagnetic spectrum. As a result, HSI can provide better classification results. In this publication, we present results of an approach known as the t-Distributed Stochastic Neighbor Embedding (t-SNE) algorithm, which we have applied to HSI paper data analysis. Even though t-SNE has been widely accepted as a method for dimensionality reduction and visualization of high dimensional data, its usefulness has not yet been evaluated for the classification of paper data. In this research, we present a hyperspectral dataset of paper samples, and evaluate the clustering quality of the proposed method both visually and quantitatively. The t-SNE algorithm shows exceptional discrimination power when compared to traditional PCA with k-means clustering, in both visual and quantitative evaluations. |
---|---|
AbstractList | For a suspected forgery that involves the falsification of a document or its contents, the investigator will primarily analyze the document’s paper and ink in order to establish the authenticity of the subject under investigation. As a non-destructive and contactless technique, Hyperspectral Imaging (HSI) is gaining popularity in the field of forensic document analysis. HSI returns more information compared to conventional three channel imaging systems due to the vast number of narrowband images recorded across the electromagnetic spectrum. As a result, HSI can provide better classification results. In this publication, we present results of an approach known as the t-Distributed Stochastic Neighbor Embedding (t-SNE) algorithm, which we have applied to HSI paper data analysis. Even though t-SNE has been widely accepted as a method for dimensionality reduction and visualization of high dimensional data, its usefulness has not yet been evaluated for the classification of paper data. In this research, we present a hyperspectral dataset of paper samples, and evaluate the clustering quality of the proposed method both visually and quantitatively. The t-SNE algorithm shows exceptional discrimination power when compared to traditional PCA with k-means clustering, in both visual and quantitative evaluations. For a suspected forgery that involves the falsification of a document or its contents, the investigator will primarily analyze the document's paper and ink in order to establish the authenticity of the subject under investigation. As a non-destructive and contactless technique, Hyperspectral Imaging (HSI) is gaining popularity in the field of forensic document analysis. HSI returns more information compared to conventional three channel imaging systems due to the vast number of narrowband images recorded across the electromagnetic spectrum. As a result, HSI can provide better classification results. In this publication, we present results of an approach known as the t-Distributed Stochastic Neighbor Embedding (t-SNE) algorithm, which we have applied to HSI paper data analysis. Even though t-SNE has been widely accepted as a method for dimensionality reduction and visualization of high dimensional data, its usefulness has not yet been evaluated for the classification of paper data. In this research, we present a hyperspectral dataset of paper samples, and evaluate the clustering quality of the proposed method both visually and quantitatively. The t-SNE algorithm shows exceptional discrimination power when compared to traditional PCA with k-means clustering, in both visual and quantitative evaluations.For a suspected forgery that involves the falsification of a document or its contents, the investigator will primarily analyze the document's paper and ink in order to establish the authenticity of the subject under investigation. As a non-destructive and contactless technique, Hyperspectral Imaging (HSI) is gaining popularity in the field of forensic document analysis. HSI returns more information compared to conventional three channel imaging systems due to the vast number of narrowband images recorded across the electromagnetic spectrum. As a result, HSI can provide better classification results. In this publication, we present results of an approach known as the t-Distributed Stochastic Neighbor Embedding (t-SNE) algorithm, which we have applied to HSI paper data analysis. Even though t-SNE has been widely accepted as a method for dimensionality reduction and visualization of high dimensional data, its usefulness has not yet been evaluated for the classification of paper data. In this research, we present a hyperspectral dataset of paper samples, and evaluate the clustering quality of the proposed method both visually and quantitatively. The t-SNE algorithm shows exceptional discrimination power when compared to traditional PCA with k-means clustering, in both visual and quantitative evaluations. |
Author | George, Sony Nussbaum, Peter Melit Devassy, Binu |
AuthorAffiliation | Department of Computer Science, Norwegian University of Science and Technology, 2802 Gjøvik, Norway; sony.george@ntnu.no (S.G.); peter.nussbaum@ntnu.no (P.N.) |
AuthorAffiliation_xml | – name: Department of Computer Science, Norwegian University of Science and Technology, 2802 Gjøvik, Norway; sony.george@ntnu.no (S.G.); peter.nussbaum@ntnu.no (P.N.) |
Author_xml | – sequence: 1 givenname: Binu orcidid: 0000-0003-1860-9749 surname: Melit Devassy fullname: Melit Devassy, Binu – sequence: 2 givenname: Sony orcidid: 0000-0001-8436-3164 surname: George fullname: George, Sony – sequence: 3 givenname: Peter surname: Nussbaum fullname: Nussbaum, Peter |
BookMark | eNp1kd9rFDEQx4NUbK199nXBF1_WJpn82H1R5Ky2UFTQA99CNjt75tjbnEm20P_erFfBHggJmWS-8xm-mefkZAoTEvKS0TcALb3c-p3d-GmjqKSUt0_IGQcGtQD4cfJPfEouUtpSSlnLy26fkVMQQlEN7Iy8W09p3mO88wn7ajXOKWMszCoM1fV9SaQ9uhztWH215VZ9sNlW67Qocv3t89UL8nSwY8KLh_OcrD9efV9d17dfPt2s3t_WTiiRawTRuX4YUDmhseWdsx1gay0oBo1Uijvg4BxjVg0t9ihtI7VwvR6sllLBObk5cPtgt2Yfi_V4b4L15s9DiBtjY_ZuRCN7ppHBgI1ohCq9KG2o09JRITrb9oX19sDaz90Oe4fTYvAR9HFm8j_NJtyZBjijXBfA6wdADL9mTNnsfHI4jnbCMCfDpdJtIwUs0ldH0m2Y41S-ynBRpsbLEkUlDyoXQ0oRB-N8ttmHpb8fDaNmmbg5mnipuzyq-2vifxW_AS00sFE |
CitedBy_id | crossref_primary_10_1155_2022_1173102 crossref_primary_10_1007_s13402_023_00880_z crossref_primary_10_3390_math12152388 crossref_primary_10_3390_bdcc6020034 crossref_primary_10_1186_s12920_023_01727_0 crossref_primary_10_1016_j_compeleceng_2022_107770 crossref_primary_10_15212_CVIA_2023_0011 crossref_primary_10_3390_rs15040939 crossref_primary_10_1016_j_jss_2024_112205 crossref_primary_10_3389_fpsyg_2022_777656 crossref_primary_10_3390_electronics13193904 crossref_primary_10_1016_j_scijus_2023_04_003 crossref_primary_10_1255_jsi_2021_a3 crossref_primary_10_7717_peerj_cs_949 crossref_primary_10_1109_TUFFC_2024_3433407 crossref_primary_10_3390_math11030661 crossref_primary_10_1016_j_jvcir_2022_103690 crossref_primary_10_1177_00258172221105381 crossref_primary_10_1364_OE_470878 crossref_primary_10_3390_coatings13020450 crossref_primary_10_1183_13993003_03077_2021 crossref_primary_10_1039_D2AN00482H crossref_primary_10_1016_j_culher_2024_06_004 crossref_primary_10_1007_s12665_023_10761_1 crossref_primary_10_3390_s24072297 crossref_primary_10_1145_3478075 crossref_primary_10_1039_D2AN01041K crossref_primary_10_1038_s41598_021_85737_x crossref_primary_10_1109_ACCESS_2021_3137869 crossref_primary_10_1002_cem_3387 crossref_primary_10_1021_acs_jproteome_3c00129 crossref_primary_10_1364_OPTCON_527576 crossref_primary_10_3390_forensicsci4030030 crossref_primary_10_3390_rs14112524 |
Cites_doi | 10.2307/2346830 10.1371/journal.pone.0149853 10.1109/TMI.2017.2695523 10.1007/s11042-018-5715-0 10.1080/10408398.2010.543495 10.1073/pnas.1510227113 10.3390/rs10020271 10.1109/LGRS.2005.846011 10.1016/0377-0427(87)90125-7 10.1109/WCSP.2018.8555717 10.3390/rs10060864 10.1109/IIAI-AAI.2018.00084 10.1016/j.forsciint.2013.07.017 10.1198/jasa.2003.s308 10.1063/1.4954617 10.1016/j.rti.2005.04.003 10.1109/TGRS.2011.2165957 10.1016/j.forsciint.2012.09.012 10.1515/pac-2017-0907 10.1109/TGRS.2004.841417 10.1109/LGRS.2008.915736 10.1366/14-07663 10.1109/TGRS.2005.863297 10.1109/36.298007 10.1117/1.JBO.19.1.010901 10.1109/TGRS.2008.2005729 10.1179/sic.2006.51.Supplement-1.3 |
ContentType | Journal Article |
Copyright | 2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2020 by the authors. 2020 |
Copyright_xml | – notice: 2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2020 by the authors. 2020 |
DBID | AAYXX CITATION 8FE 8FG ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO HCIFZ P5Z P62 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS 7X8 5PM DOA |
DOI | 10.3390/jimaging6050029 |
DatabaseName | CrossRef ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One Community College ProQuest Central Korea SciTech Premium Collection Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic ProQuest Publicly Available Content ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database Advanced Technologies & Aerospace Collection Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central China ProQuest Central Advanced Technologies & Aerospace Database ProQuest One Applied & Life Sciences ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) MEDLINE - Academic |
DatabaseTitleList | Publicly Available Content Database MEDLINE - Academic CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2313-433X |
ExternalDocumentID | oai_doaj_org_article_5d17e13fe8484692b0080c75c044ba9d PMC8321027 10_3390_jimaging6050029 |
GroupedDBID | 5VS 8FE 8FG AADQD AAFWJ AAYXX ADBBV ADMLS AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS ARAPS ARCSS BCNDV BENPR BGLVJ CCPQU CITATION GROUPED_DOAJ HCIFZ KQ8 MODMG M~E OK1 P62 PGMZT PHGZM PHGZT PIMPY PROAC RPM ABUWG AZQEC DWQXO PKEHL PQEST PQGLB PQQKQ PQUKI PRINS 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c464t-e34bcdffe6c47e92bcab3e9aa361385662c323cc11a6f9ede5a8574cd7fa75563 |
IEDL.DBID | BENPR |
ISSN | 2313-433X |
IngestDate | Wed Aug 27 01:28:54 EDT 2025 Thu Aug 21 14:33:43 EDT 2025 Fri Jul 11 16:57:30 EDT 2025 Fri Jul 25 05:17:50 EDT 2025 Tue Jul 01 04:19:56 EDT 2025 Thu Apr 24 23:04:36 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c464t-e34bcdffe6c47e92bcab3e9aa361385662c323cc11a6f9ede5a8574cd7fa75563 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0003-1860-9749 0000-0001-8436-3164 |
OpenAccessLink | https://www.proquest.com/docview/2400220224?pq-origsite=%requestingapplication% |
PMID | 34460731 |
PQID | 2400220224 |
PQPubID | 2059558 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_5d17e13fe8484692b0080c75c044ba9d pubmedcentral_primary_oai_pubmedcentral_nih_gov_8321027 proquest_miscellaneous_2567985437 proquest_journals_2400220224 crossref_citationtrail_10_3390_jimaging6050029 crossref_primary_10_3390_jimaging6050029 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-05-05 |
PublicationDateYYYYMMDD | 2020-05-05 |
PublicationDate_xml | – month: 05 year: 2020 text: 2020-05-05 day: 05 |
PublicationDecade | 2020 |
PublicationPlace | Basel |
PublicationPlace_xml | – name: Basel |
PublicationTitle | Journal of imaging |
PublicationYear | 2020 |
Publisher | MDPI AG MDPI |
Publisher_xml | – name: MDPI AG – name: MDPI |
References | Tatzer (ref_10) 2005; 11 Ravi (ref_31) 2017; 36 ref_35 ref_12 Plaza (ref_21) 2005; 43 ref_34 ref_33 Timmerman (ref_14) 2003; 98 ref_32 Smith (ref_36) 1988; 17 ref_30 Farrell (ref_16) 2005; 2 Song (ref_29) 2019; 78 ref_39 ref_15 Hinton (ref_22) 2008; 9 Li (ref_20) 2012; 50 Harsanyi (ref_13) 1994; 32 Rosenberg (ref_40) 2007; 1 Abdelmoula (ref_23) 2016; 113 Havermans (ref_6) 2003; 24 ref_25 Mokrzycki (ref_5) 1999; 1 ref_24 Kumar (ref_1) 2015; 69 Hartigan (ref_37) 2006; 28 ref_41 Rousseeuw (ref_38) 1987; 20 ref_3 ref_2 Bandos (ref_18) 2009; 47 Braz (ref_4) 2013; 232 ref_27 Lu (ref_9) 2014; 19 ref_26 Edelman (ref_7) 2012; 223 Renard (ref_19) 2008; 5 Pouyet (ref_28) 2018; 90 ElMasry (ref_8) 2012; 52 Fischer (ref_11) 2014; 51 Wang (ref_17) 2006; 44 |
References_xml | – volume: 28 start-page: 100 year: 2006 ident: ref_37 article-title: Algorithm AS 136: A K-means clustering algorithm publication-title: Appl. Stat. doi: 10.2307/2346830 – volume: 17 start-page: 3157 year: 1988 ident: ref_36 article-title: A tutorial on Principal Components Analysis publication-title: Commun. Stat. Theory Methods – ident: ref_24 doi: 10.1371/journal.pone.0149853 – ident: ref_32 – volume: 1 start-page: 410 year: 2007 ident: ref_40 article-title: V-measure: A conditional entropy-based external cluster evaluation measure publication-title: Comput. Linguist. – volume: 36 start-page: 1845 year: 2017 ident: ref_31 article-title: Manifold embedding and semantic segmentation for intraoperative guidance with hyperspectral brain imaging publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2017.2695523 – ident: ref_34 – volume: 78 start-page: 4311 year: 2019 ident: ref_29 article-title: Improved t-SNE based manifold dimensional reduction for remote sensing data processing publication-title: Multimed. Tools Appl. doi: 10.1007/s11042-018-5715-0 – volume: 52 start-page: 999 year: 2012 ident: ref_8 article-title: Principles and applications of hyperspectral imaging in quality evaluation of agro-food products: A review publication-title: Crit. Rev. Food Sci. Nutr. doi: 10.1080/10408398.2010.543495 – volume: 113 start-page: 12244 year: 2016 ident: ref_23 article-title: Data-driven identification of prognostic tumor subpopulations using spatially mapped t-SNE of Mass spectrometry imaging data publication-title: Proc. Natl. Acad. Sci. USA. doi: 10.1073/pnas.1510227113 – ident: ref_39 – ident: ref_30 doi: 10.3390/rs10020271 – volume: 2 start-page: 192 year: 2005 ident: ref_16 article-title: On the impact of PCA dimension reduction for hyperspectral detection of difficult targets publication-title: IEEE Geosci. Remote Sens. Lett. doi: 10.1109/LGRS.2005.846011 – ident: ref_35 – volume: 20 start-page: 53 year: 1987 ident: ref_38 article-title: Silhouettes: A graphical aid to the interpretation and validation of cluster analysis publication-title: J. Comput. Appl. Math. doi: 10.1016/0377-0427(87)90125-7 – ident: ref_27 doi: 10.1109/WCSP.2018.8555717 – ident: ref_15 doi: 10.3390/rs10060864 – ident: ref_26 doi: 10.1109/IIAI-AAI.2018.00084 – volume: 232 start-page: 206 year: 2013 ident: ref_4 article-title: Raman spectroscopy for forensic analysis of inks in questioned documents publication-title: Forensic Sci. Int. doi: 10.1016/j.forsciint.2013.07.017 – volume: 1 start-page: 1 year: 1999 ident: ref_5 article-title: Advances in Document Examination: The video spectral comparator 2000 publication-title: Forensic Sci. Commun. – volume: 98 start-page: 464 year: 2003 ident: ref_14 article-title: Principal Component Analysis publication-title: J. Am. Stat. Assoc. doi: 10.1198/jasa.2003.s308 – ident: ref_3 doi: 10.1063/1.4954617 – volume: 11 start-page: 99 year: 2005 ident: ref_10 article-title: Industrial application for inline material sorting using hyperspectral imaging in the NIR range publication-title: Real Time Imaging doi: 10.1016/j.rti.2005.04.003 – volume: 50 start-page: 1185 year: 2012 ident: ref_20 article-title: Locality-preserving dimensionality reduction and classification for hyperspectral image analysis publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2011.2165957 – volume: 24 start-page: 55 year: 2003 ident: ref_6 article-title: Non destructive detection of iron gall inks by means of multispectral imaging. Part 1: Development of the detection system publication-title: Restaurator – ident: ref_25 – volume: 223 start-page: 28 year: 2012 ident: ref_7 article-title: Hyperspectral imaging for non-contact analysis of forensic traces publication-title: Forensic Sci. Int. doi: 10.1016/j.forsciint.2012.09.012 – ident: ref_33 – ident: ref_2 – volume: 90 start-page: 493 year: 2018 ident: ref_28 article-title: Innovative data reduction and visualization strategy for hyperspectral imaging datasets using t-SNE approach publication-title: Pure Appl. Chem. doi: 10.1515/pac-2017-0907 – ident: ref_12 – volume: 43 start-page: 466 year: 2005 ident: ref_21 article-title: Dimensionality reduction and classification of hyperspectral image data using sequences of extended morphological transformations publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2004.841417 – volume: 5 start-page: 138 year: 2008 ident: ref_19 article-title: Denoising and dimensionality reduction using multilinear tools for hyperspectral images publication-title: IEEE Geosci. Remote Sens. Lett. doi: 10.1109/LGRS.2008.915736 – volume: 69 start-page: 714 year: 2015 ident: ref_1 article-title: Discrimination of various paper types using diffuse reflectance ultraviolet-visible near-infrared (UV-Vis-NIR) spectroscopy: forensic application to questioned documents publication-title: Appl. Spectrosc. doi: 10.1366/14-07663 – volume: 44 start-page: 1586 year: 2006 ident: ref_17 article-title: Independent component analysis-based dimensionality reduction with applications in hyperspectral image analysis publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2005.863297 – ident: ref_41 – volume: 32 start-page: 779 year: 1994 ident: ref_13 article-title: Hyperspectral image classification and dimensionality reduction: An orthogonal subspace projection approach publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/36.298007 – volume: 9 start-page: 2579 year: 2008 ident: ref_22 article-title: Visualizing data using t-SNE publication-title: J. Mach. Learn. Res. – volume: 19 start-page: 010901 year: 2014 ident: ref_9 article-title: Medical hyperspectral imaging: A review publication-title: J. Biomed. Opt. doi: 10.1117/1.JBO.19.1.010901 – volume: 47 start-page: 862 year: 2009 ident: ref_18 article-title: Classification of hyperspectral images with regularized linear discriminant analysis publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2008.2005729 – volume: 51 start-page: 3 year: 2014 ident: ref_11 article-title: Multispectral and hyperspectral imaging technologies in conservation: Current research and potential applications publication-title: Stud. Conserv. doi: 10.1179/sic.2006.51.Supplement-1.3 |
SSID | ssj0001920199 |
Score | 2.3716962 |
Snippet | For a suspected forgery that involves the falsification of a document or its contents, the investigator will primarily analyze the document’s paper and ink in... For a suspected forgery that involves the falsification of a document or its contents, the investigator will primarily analyze the document's paper and ink in... |
SourceID | doaj pubmedcentral proquest crossref |
SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database |
StartPage | 29 |
SubjectTerms | Algorithms Cameras Classification Cluster analysis Clustering Cultural heritage Data analysis Datasets forensic document analysis forensic paper analysis Forensic sciences Forgery Fourier transforms hyperspectral dimensionality reduction Hyperspectral imaging hyperspectral unsupervised clustering Methods Narrowband Nondestructive testing Software Spectrum analysis t-SNE Vector quantization |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA7iSQ_iE9cXETx4qW5eTXsSnyyCIuiCt5InKtpd3O7_d6aty1YQLx56aJOW5Jum8w2ZfkPIkbYsSK1jwlmEAIVpn1hmskQZn3kweqo8_jt8d58OhvL2WT3PlfrCnLBGHrgB7lR5pgMTMWQSXGXOLXIcp5XrS2lN7vHrCz5vLph6a3gLHHmj5SMgrj99e_2oy_4AfcedqI4bqtX6OxSzmyA553FuVslKSxXpeTPENbIQynWyPCcguEHOhuVkOsblPgmeXr5PUfYAWugo0gFEmM2PlPBs-mDgjF6ZytA6S4BWyeP99SYZ3lw_XQ6StiRC4mQqqyQIaZ2PMaRO6gBoOGNFyI0R4JYzoGbcCS6cY8ykMQ8-KJMpLZ3X0WjUAtsii-WoDNuEpirvm8xGkfWjjNwY27cAtuBesjx63SMn3wgVrtULx7IV7wXEDQhp8QPSHjme3TBupDJ-73qBkM-6ocZ1fQEsX7SWL_6yfI_sfRusaBfepMCUWM6RmPTI4awZlgzug5gyjKbQR-HWk5IC5qg7hu4MqNtSvr7U4ttY2QlC-Z3_mMEuWeIYvmP-pNoji9XnNOwDx6nsQf06fwFg4fxd priority: 102 providerName: Directory of Open Access Journals |
Title | Unsupervised Clustering of Hyperspectral Paper Data Using t-SNE |
URI | https://www.proquest.com/docview/2400220224 https://www.proquest.com/docview/2567985437 https://pubmed.ncbi.nlm.nih.gov/PMC8321027 https://doaj.org/article/5d17e13fe8484692b0080c75c044ba9d |
Volume | 6 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3db9MwELdY9wIPaHyJwqiMxAMvYU1sx_bTtI2WColqAirtLfLnGBpJWdP_n7vU7Rak7TGxk9h3Od-d7_w7Qj5ImwcuZcyKPIKDkkuf2dyoTBivPDC9FB7PDn-bl7MF_3ohLtKG2yqlVW7XxG6h9o3DPfIjzHUsCtQ4x8u_GVaNwuhqKqGxR_ZhCVZqQPZPJ_Pz77e7LBoUnNYbTB8G_v3R76s_XfkfMOMxItVTRx1qf8_U7CdK3tE80wPyNJmM9GTD42fkUaifkyd3gARfkONFvVovUexXwdOz6zXCH0ALbSKdgae5OVAJ76bnBq7oZ9Ma2mUL0Db7MZ-8JIvp5OfZLEulETLHS95mgXHrfIyhdFwGXVhnLAvaGAbqWYGJVjhWMOfy3JRRBx-EUUJy52U0EjHBXpFB3dThNaGl0GOjbGRqHHksjLFjKzw4qZ7nOno5JJ-2FKpcwg3H8hXXFfgPSNLqP5IOycfdA8sNZMb9XU-R5LtuiHXd3WhuLqskOhUMRoacxaA4GEswV7RynRRuzLk12g_J4ZZhVRLAVXX7uwzJ-10ziA7GQ0wdmjX0ERiCEpzBHGWP0b0B9Vvqq18dCDdWeAKX_s3DH39LHhfooGOGpDgkg_ZmHd6BFdPaEdlT0y-j9MOOur2Af5D-95Y |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3LbtQw0CrlABwQT7FQwEggcQlNHDuOD6iCtsuWtiskulJvqZ9QVJKlmxXip_hGZvLYNkhw6zGx49gzY8-M50XIS2kSz6UMEUsCKCiJdJFJdB4J7XIHSM-Ew9jhw2k2mfGPx-J4jfzuY2HQrbI_E5uD2lUW78g30deRMeQ4W_MfEVaNQutqX0KjJYt9_-snqGyLt3s7gN9XjI13j7YnUVdVILI843XkU26sC8FnlkuvmLHapF5pnQJny0G6YTZlqbVJorOgvPNC50Jy62TQEtNpwbjXyHWeAifHyPTxh4s7HQXsVKk2gxC0x5vfTr83xYZAaUD714D5NTUCBoLt0C3zEp8b3yG3OwGVvmsp6i5Z8-U9cutS2sL7ZGtWLpZzPGQW3tHtsyUmW4AWWgU6Ab22Dd-EseknDU90R9eaNr4JtI4-T3cfkNmVgOwhWS-r0j8iNBMq1rkJaR4HHpjWJjbCgUrseKKCkyPypodQYbss5Vgs46wAbQVBWvwF0hF5vfpg3ibo-HfX9wjyVTfMrN28qM6_FN1GLWAy0idp8DkH0QzWijK1lcLGnBut3Ihs9Agruu2-KC6Ic0RerJpho6L1RZe-WkIfgQYvwVNYoxwgejChYUt5-rVJ-Y31pGImH___58_JjcnR4UFxsDfdf0JuMrwaQN9MsUHW6_OlfwryU22eNURLyclV75I_FGYzBg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR1db9Mw0BqdhOAB8Sk6BgQJJF5CE8eO4wc0sbVVx6CqgEp7y_wJm0ZS1lSIv8av4y5NugUJ3vaY2HHs-_Dd-c53hLwUOnZMCB_S2IOBEgsb6lhlIVc2s4D0lFu8O_xxmk7m7P0xP94iv9u7MBhW2e6J9UZtS4Nn5AOMdaQUJc7AN2ERs-F4b_EjxApS6Glty2msSeTI_foJ5tvy7eEQcP2K0vHoy8EkbCoMhIalrApdwrSx3rvUMOEk1UbpxEmlEpByGWg61CQ0MSaOVeqls46rjAtmrPBKYGotGPcG2RZoFfXI9v5oOvt0ecIjQbhKuc4nlCQyGpydfq9LD4EJgd6wjiisKwZ01NxukOYVqTe-S-406mrwbk1f98iWK-6T21eSGD4ge_NiuVrglrN0Njg4X2HqBWgJSh9MwMpdX-aEsYOZgqdgqCoV1JEKQRV-no4ekvm1AO0R6RVl4R6TIOUyUpn2SRZ55qlSOtLcgoFsWSy9FX3ypoVQbpqc5Vg64zwH2wVBmv8F0j55vflgsU7X8e-u-wjyTTfMs12_KC--5g3b5jAZ4eLEu4yBogZrRQ3bCG4ixrSStk92W4TlDfMv80tS7ZMXm2ZgW_TFqMKVK-jD0f3FWQJrFB1EdybUbSlOv9UJwLG6VETFzv9__pzcBA7JPxxOj56QWxTPCTBQk--SXnWxck9Bmar0s4ZqA3Jy3YzyBxFKOJg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Unsupervised+Clustering+of+Hyperspectral+Paper+Data+Using+t-SNE&rft.jtitle=Journal+of+imaging&rft.au=Devassy%2C+Binu+Melit&rft.au=George%2C+Sony&rft.au=Nussbaum%2C+Peter&rft.date=2020-05-05&rft.pub=MDPI+AG&rft.eissn=2313-433X&rft.volume=6&rft.issue=5&rft.spage=29&rft_id=info:doi/10.3390%2Fjimaging6050029&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2313-433X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2313-433X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2313-433X&client=summon |