Unsupervised Clustering of Hyperspectral Paper Data Using t-SNE

For a suspected forgery that involves the falsification of a document or its contents, the investigator will primarily analyze the document’s paper and ink in order to establish the authenticity of the subject under investigation. As a non-destructive and contactless technique, Hyperspectral Imaging...

Full description

Saved in:
Bibliographic Details
Published inJournal of imaging Vol. 6; no. 5; p. 29
Main Authors Melit Devassy, Binu, George, Sony, Nussbaum, Peter
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 05.05.2020
MDPI
Subjects
Online AccessGet full text

Cover

Loading…
Abstract For a suspected forgery that involves the falsification of a document or its contents, the investigator will primarily analyze the document’s paper and ink in order to establish the authenticity of the subject under investigation. As a non-destructive and contactless technique, Hyperspectral Imaging (HSI) is gaining popularity in the field of forensic document analysis. HSI returns more information compared to conventional three channel imaging systems due to the vast number of narrowband images recorded across the electromagnetic spectrum. As a result, HSI can provide better classification results. In this publication, we present results of an approach known as the t-Distributed Stochastic Neighbor Embedding (t-SNE) algorithm, which we have applied to HSI paper data analysis. Even though t-SNE has been widely accepted as a method for dimensionality reduction and visualization of high dimensional data, its usefulness has not yet been evaluated for the classification of paper data. In this research, we present a hyperspectral dataset of paper samples, and evaluate the clustering quality of the proposed method both visually and quantitatively. The t-SNE algorithm shows exceptional discrimination power when compared to traditional PCA with k-means clustering, in both visual and quantitative evaluations.
AbstractList For a suspected forgery that involves the falsification of a document or its contents, the investigator will primarily analyze the document’s paper and ink in order to establish the authenticity of the subject under investigation. As a non-destructive and contactless technique, Hyperspectral Imaging (HSI) is gaining popularity in the field of forensic document analysis. HSI returns more information compared to conventional three channel imaging systems due to the vast number of narrowband images recorded across the electromagnetic spectrum. As a result, HSI can provide better classification results. In this publication, we present results of an approach known as the t-Distributed Stochastic Neighbor Embedding (t-SNE) algorithm, which we have applied to HSI paper data analysis. Even though t-SNE has been widely accepted as a method for dimensionality reduction and visualization of high dimensional data, its usefulness has not yet been evaluated for the classification of paper data. In this research, we present a hyperspectral dataset of paper samples, and evaluate the clustering quality of the proposed method both visually and quantitatively. The t-SNE algorithm shows exceptional discrimination power when compared to traditional PCA with k-means clustering, in both visual and quantitative evaluations.
For a suspected forgery that involves the falsification of a document or its contents, the investigator will primarily analyze the document's paper and ink in order to establish the authenticity of the subject under investigation. As a non-destructive and contactless technique, Hyperspectral Imaging (HSI) is gaining popularity in the field of forensic document analysis. HSI returns more information compared to conventional three channel imaging systems due to the vast number of narrowband images recorded across the electromagnetic spectrum. As a result, HSI can provide better classification results. In this publication, we present results of an approach known as the t-Distributed Stochastic Neighbor Embedding (t-SNE) algorithm, which we have applied to HSI paper data analysis. Even though t-SNE has been widely accepted as a method for dimensionality reduction and visualization of high dimensional data, its usefulness has not yet been evaluated for the classification of paper data. In this research, we present a hyperspectral dataset of paper samples, and evaluate the clustering quality of the proposed method both visually and quantitatively. The t-SNE algorithm shows exceptional discrimination power when compared to traditional PCA with k-means clustering, in both visual and quantitative evaluations.For a suspected forgery that involves the falsification of a document or its contents, the investigator will primarily analyze the document's paper and ink in order to establish the authenticity of the subject under investigation. As a non-destructive and contactless technique, Hyperspectral Imaging (HSI) is gaining popularity in the field of forensic document analysis. HSI returns more information compared to conventional three channel imaging systems due to the vast number of narrowband images recorded across the electromagnetic spectrum. As a result, HSI can provide better classification results. In this publication, we present results of an approach known as the t-Distributed Stochastic Neighbor Embedding (t-SNE) algorithm, which we have applied to HSI paper data analysis. Even though t-SNE has been widely accepted as a method for dimensionality reduction and visualization of high dimensional data, its usefulness has not yet been evaluated for the classification of paper data. In this research, we present a hyperspectral dataset of paper samples, and evaluate the clustering quality of the proposed method both visually and quantitatively. The t-SNE algorithm shows exceptional discrimination power when compared to traditional PCA with k-means clustering, in both visual and quantitative evaluations.
Author George, Sony
Nussbaum, Peter
Melit Devassy, Binu
AuthorAffiliation Department of Computer Science, Norwegian University of Science and Technology, 2802 Gjøvik, Norway; sony.george@ntnu.no (S.G.); peter.nussbaum@ntnu.no (P.N.)
AuthorAffiliation_xml – name: Department of Computer Science, Norwegian University of Science and Technology, 2802 Gjøvik, Norway; sony.george@ntnu.no (S.G.); peter.nussbaum@ntnu.no (P.N.)
Author_xml – sequence: 1
  givenname: Binu
  orcidid: 0000-0003-1860-9749
  surname: Melit Devassy
  fullname: Melit Devassy, Binu
– sequence: 2
  givenname: Sony
  orcidid: 0000-0001-8436-3164
  surname: George
  fullname: George, Sony
– sequence: 3
  givenname: Peter
  surname: Nussbaum
  fullname: Nussbaum, Peter
BookMark eNp1kd9rFDEQx4NUbK199nXBF1_WJpn82H1R5Ky2UFTQA99CNjt75tjbnEm20P_erFfBHggJmWS-8xm-mefkZAoTEvKS0TcALb3c-p3d-GmjqKSUt0_IGQcGtQD4cfJPfEouUtpSSlnLy26fkVMQQlEN7Iy8W09p3mO88wn7ajXOKWMszCoM1fV9SaQ9uhztWH215VZ9sNlW67Qocv3t89UL8nSwY8KLh_OcrD9efV9d17dfPt2s3t_WTiiRawTRuX4YUDmhseWdsx1gay0oBo1Uijvg4BxjVg0t9ihtI7VwvR6sllLBObk5cPtgt2Yfi_V4b4L15s9DiBtjY_ZuRCN7ppHBgI1ohCq9KG2o09JRITrb9oX19sDaz90Oe4fTYvAR9HFm8j_NJtyZBjijXBfA6wdADL9mTNnsfHI4jnbCMCfDpdJtIwUs0ldH0m2Y41S-ynBRpsbLEkUlDyoXQ0oRB-N8ttmHpb8fDaNmmbg5mnipuzyq-2vifxW_AS00sFE
CitedBy_id crossref_primary_10_1155_2022_1173102
crossref_primary_10_1007_s13402_023_00880_z
crossref_primary_10_3390_math12152388
crossref_primary_10_3390_bdcc6020034
crossref_primary_10_1186_s12920_023_01727_0
crossref_primary_10_1016_j_compeleceng_2022_107770
crossref_primary_10_15212_CVIA_2023_0011
crossref_primary_10_3390_rs15040939
crossref_primary_10_1016_j_jss_2024_112205
crossref_primary_10_3389_fpsyg_2022_777656
crossref_primary_10_3390_electronics13193904
crossref_primary_10_1016_j_scijus_2023_04_003
crossref_primary_10_1255_jsi_2021_a3
crossref_primary_10_7717_peerj_cs_949
crossref_primary_10_1109_TUFFC_2024_3433407
crossref_primary_10_3390_math11030661
crossref_primary_10_1016_j_jvcir_2022_103690
crossref_primary_10_1177_00258172221105381
crossref_primary_10_1364_OE_470878
crossref_primary_10_3390_coatings13020450
crossref_primary_10_1183_13993003_03077_2021
crossref_primary_10_1039_D2AN00482H
crossref_primary_10_1016_j_culher_2024_06_004
crossref_primary_10_1007_s12665_023_10761_1
crossref_primary_10_3390_s24072297
crossref_primary_10_1145_3478075
crossref_primary_10_1039_D2AN01041K
crossref_primary_10_1038_s41598_021_85737_x
crossref_primary_10_1109_ACCESS_2021_3137869
crossref_primary_10_1002_cem_3387
crossref_primary_10_1021_acs_jproteome_3c00129
crossref_primary_10_1364_OPTCON_527576
crossref_primary_10_3390_forensicsci4030030
crossref_primary_10_3390_rs14112524
Cites_doi 10.2307/2346830
10.1371/journal.pone.0149853
10.1109/TMI.2017.2695523
10.1007/s11042-018-5715-0
10.1080/10408398.2010.543495
10.1073/pnas.1510227113
10.3390/rs10020271
10.1109/LGRS.2005.846011
10.1016/0377-0427(87)90125-7
10.1109/WCSP.2018.8555717
10.3390/rs10060864
10.1109/IIAI-AAI.2018.00084
10.1016/j.forsciint.2013.07.017
10.1198/jasa.2003.s308
10.1063/1.4954617
10.1016/j.rti.2005.04.003
10.1109/TGRS.2011.2165957
10.1016/j.forsciint.2012.09.012
10.1515/pac-2017-0907
10.1109/TGRS.2004.841417
10.1109/LGRS.2008.915736
10.1366/14-07663
10.1109/TGRS.2005.863297
10.1109/36.298007
10.1117/1.JBO.19.1.010901
10.1109/TGRS.2008.2005729
10.1179/sic.2006.51.Supplement-1.3
ContentType Journal Article
Copyright 2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2020 by the authors. 2020
Copyright_xml – notice: 2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2020 by the authors. 2020
DBID AAYXX
CITATION
8FE
8FG
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
P5Z
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7X8
5PM
DOA
DOI 10.3390/jimaging6050029
DatabaseName CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central Korea
SciTech Premium Collection
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest Publicly Available Content
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Advanced Technologies & Aerospace Collection
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
Advanced Technologies & Aerospace Database
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
MEDLINE - Academic
DatabaseTitleList Publicly Available Content Database
MEDLINE - Academic


CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2313-433X
ExternalDocumentID oai_doaj_org_article_5d17e13fe8484692b0080c75c044ba9d
PMC8321027
10_3390_jimaging6050029
GroupedDBID 5VS
8FE
8FG
AADQD
AAFWJ
AAYXX
ADBBV
ADMLS
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
ARAPS
ARCSS
BCNDV
BENPR
BGLVJ
CCPQU
CITATION
GROUPED_DOAJ
HCIFZ
KQ8
MODMG
M~E
OK1
P62
PGMZT
PHGZM
PHGZT
PIMPY
PROAC
RPM
ABUWG
AZQEC
DWQXO
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c464t-e34bcdffe6c47e92bcab3e9aa361385662c323cc11a6f9ede5a8574cd7fa75563
IEDL.DBID BENPR
ISSN 2313-433X
IngestDate Wed Aug 27 01:28:54 EDT 2025
Thu Aug 21 14:33:43 EDT 2025
Fri Jul 11 16:57:30 EDT 2025
Fri Jul 25 05:17:50 EDT 2025
Tue Jul 01 04:19:56 EDT 2025
Thu Apr 24 23:04:36 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
License https://creativecommons.org/licenses/by/4.0
Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c464t-e34bcdffe6c47e92bcab3e9aa361385662c323cc11a6f9ede5a8574cd7fa75563
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-1860-9749
0000-0001-8436-3164
OpenAccessLink https://www.proquest.com/docview/2400220224?pq-origsite=%requestingapplication%
PMID 34460731
PQID 2400220224
PQPubID 2059558
ParticipantIDs doaj_primary_oai_doaj_org_article_5d17e13fe8484692b0080c75c044ba9d
pubmedcentral_primary_oai_pubmedcentral_nih_gov_8321027
proquest_miscellaneous_2567985437
proquest_journals_2400220224
crossref_citationtrail_10_3390_jimaging6050029
crossref_primary_10_3390_jimaging6050029
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-05-05
PublicationDateYYYYMMDD 2020-05-05
PublicationDate_xml – month: 05
  year: 2020
  text: 2020-05-05
  day: 05
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Journal of imaging
PublicationYear 2020
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Tatzer (ref_10) 2005; 11
Ravi (ref_31) 2017; 36
ref_35
ref_12
Plaza (ref_21) 2005; 43
ref_34
ref_33
Timmerman (ref_14) 2003; 98
ref_32
Smith (ref_36) 1988; 17
ref_30
Farrell (ref_16) 2005; 2
Song (ref_29) 2019; 78
ref_39
ref_15
Hinton (ref_22) 2008; 9
Li (ref_20) 2012; 50
Harsanyi (ref_13) 1994; 32
Rosenberg (ref_40) 2007; 1
Abdelmoula (ref_23) 2016; 113
Havermans (ref_6) 2003; 24
ref_25
Mokrzycki (ref_5) 1999; 1
ref_24
Kumar (ref_1) 2015; 69
Hartigan (ref_37) 2006; 28
ref_41
Rousseeuw (ref_38) 1987; 20
ref_3
ref_2
Bandos (ref_18) 2009; 47
Braz (ref_4) 2013; 232
ref_27
Lu (ref_9) 2014; 19
ref_26
Edelman (ref_7) 2012; 223
Renard (ref_19) 2008; 5
Pouyet (ref_28) 2018; 90
ElMasry (ref_8) 2012; 52
Fischer (ref_11) 2014; 51
Wang (ref_17) 2006; 44
References_xml – volume: 28
  start-page: 100
  year: 2006
  ident: ref_37
  article-title: Algorithm AS 136: A K-means clustering algorithm
  publication-title: Appl. Stat.
  doi: 10.2307/2346830
– volume: 17
  start-page: 3157
  year: 1988
  ident: ref_36
  article-title: A tutorial on Principal Components Analysis
  publication-title: Commun. Stat. Theory Methods
– ident: ref_24
  doi: 10.1371/journal.pone.0149853
– ident: ref_32
– volume: 1
  start-page: 410
  year: 2007
  ident: ref_40
  article-title: V-measure: A conditional entropy-based external cluster evaluation measure
  publication-title: Comput. Linguist.
– volume: 36
  start-page: 1845
  year: 2017
  ident: ref_31
  article-title: Manifold embedding and semantic segmentation for intraoperative guidance with hyperspectral brain imaging
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2017.2695523
– ident: ref_34
– volume: 78
  start-page: 4311
  year: 2019
  ident: ref_29
  article-title: Improved t-SNE based manifold dimensional reduction for remote sensing data processing
  publication-title: Multimed. Tools Appl.
  doi: 10.1007/s11042-018-5715-0
– volume: 52
  start-page: 999
  year: 2012
  ident: ref_8
  article-title: Principles and applications of hyperspectral imaging in quality evaluation of agro-food products: A review
  publication-title: Crit. Rev. Food Sci. Nutr.
  doi: 10.1080/10408398.2010.543495
– volume: 113
  start-page: 12244
  year: 2016
  ident: ref_23
  article-title: Data-driven identification of prognostic tumor subpopulations using spatially mapped t-SNE of Mass spectrometry imaging data
  publication-title: Proc. Natl. Acad. Sci. USA.
  doi: 10.1073/pnas.1510227113
– ident: ref_39
– ident: ref_30
  doi: 10.3390/rs10020271
– volume: 2
  start-page: 192
  year: 2005
  ident: ref_16
  article-title: On the impact of PCA dimension reduction for hyperspectral detection of difficult targets
  publication-title: IEEE Geosci. Remote Sens. Lett.
  doi: 10.1109/LGRS.2005.846011
– ident: ref_35
– volume: 20
  start-page: 53
  year: 1987
  ident: ref_38
  article-title: Silhouettes: A graphical aid to the interpretation and validation of cluster analysis
  publication-title: J. Comput. Appl. Math.
  doi: 10.1016/0377-0427(87)90125-7
– ident: ref_27
  doi: 10.1109/WCSP.2018.8555717
– ident: ref_15
  doi: 10.3390/rs10060864
– ident: ref_26
  doi: 10.1109/IIAI-AAI.2018.00084
– volume: 232
  start-page: 206
  year: 2013
  ident: ref_4
  article-title: Raman spectroscopy for forensic analysis of inks in questioned documents
  publication-title: Forensic Sci. Int.
  doi: 10.1016/j.forsciint.2013.07.017
– volume: 1
  start-page: 1
  year: 1999
  ident: ref_5
  article-title: Advances in Document Examination: The video spectral comparator 2000
  publication-title: Forensic Sci. Commun.
– volume: 98
  start-page: 464
  year: 2003
  ident: ref_14
  article-title: Principal Component Analysis
  publication-title: J. Am. Stat. Assoc.
  doi: 10.1198/jasa.2003.s308
– ident: ref_3
  doi: 10.1063/1.4954617
– volume: 11
  start-page: 99
  year: 2005
  ident: ref_10
  article-title: Industrial application for inline material sorting using hyperspectral imaging in the NIR range
  publication-title: Real Time Imaging
  doi: 10.1016/j.rti.2005.04.003
– volume: 50
  start-page: 1185
  year: 2012
  ident: ref_20
  article-title: Locality-preserving dimensionality reduction and classification for hyperspectral image analysis
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2011.2165957
– volume: 24
  start-page: 55
  year: 2003
  ident: ref_6
  article-title: Non destructive detection of iron gall inks by means of multispectral imaging. Part 1: Development of the detection system
  publication-title: Restaurator
– ident: ref_25
– volume: 223
  start-page: 28
  year: 2012
  ident: ref_7
  article-title: Hyperspectral imaging for non-contact analysis of forensic traces
  publication-title: Forensic Sci. Int.
  doi: 10.1016/j.forsciint.2012.09.012
– ident: ref_33
– ident: ref_2
– volume: 90
  start-page: 493
  year: 2018
  ident: ref_28
  article-title: Innovative data reduction and visualization strategy for hyperspectral imaging datasets using t-SNE approach
  publication-title: Pure Appl. Chem.
  doi: 10.1515/pac-2017-0907
– ident: ref_12
– volume: 43
  start-page: 466
  year: 2005
  ident: ref_21
  article-title: Dimensionality reduction and classification of hyperspectral image data using sequences of extended morphological transformations
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2004.841417
– volume: 5
  start-page: 138
  year: 2008
  ident: ref_19
  article-title: Denoising and dimensionality reduction using multilinear tools for hyperspectral images
  publication-title: IEEE Geosci. Remote Sens. Lett.
  doi: 10.1109/LGRS.2008.915736
– volume: 69
  start-page: 714
  year: 2015
  ident: ref_1
  article-title: Discrimination of various paper types using diffuse reflectance ultraviolet-visible near-infrared (UV-Vis-NIR) spectroscopy: forensic application to questioned documents
  publication-title: Appl. Spectrosc.
  doi: 10.1366/14-07663
– volume: 44
  start-page: 1586
  year: 2006
  ident: ref_17
  article-title: Independent component analysis-based dimensionality reduction with applications in hyperspectral image analysis
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2005.863297
– ident: ref_41
– volume: 32
  start-page: 779
  year: 1994
  ident: ref_13
  article-title: Hyperspectral image classification and dimensionality reduction: An orthogonal subspace projection approach
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/36.298007
– volume: 9
  start-page: 2579
  year: 2008
  ident: ref_22
  article-title: Visualizing data using t-SNE
  publication-title: J. Mach. Learn. Res.
– volume: 19
  start-page: 010901
  year: 2014
  ident: ref_9
  article-title: Medical hyperspectral imaging: A review
  publication-title: J. Biomed. Opt.
  doi: 10.1117/1.JBO.19.1.010901
– volume: 47
  start-page: 862
  year: 2009
  ident: ref_18
  article-title: Classification of hyperspectral images with regularized linear discriminant analysis
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2008.2005729
– volume: 51
  start-page: 3
  year: 2014
  ident: ref_11
  article-title: Multispectral and hyperspectral imaging technologies in conservation: Current research and potential applications
  publication-title: Stud. Conserv.
  doi: 10.1179/sic.2006.51.Supplement-1.3
SSID ssj0001920199
Score 2.3716962
Snippet For a suspected forgery that involves the falsification of a document or its contents, the investigator will primarily analyze the document’s paper and ink in...
For a suspected forgery that involves the falsification of a document or its contents, the investigator will primarily analyze the document's paper and ink in...
SourceID doaj
pubmedcentral
proquest
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
StartPage 29
SubjectTerms Algorithms
Cameras
Classification
Cluster analysis
Clustering
Cultural heritage
Data analysis
Datasets
forensic document analysis
forensic paper analysis
Forensic sciences
Forgery
Fourier transforms
hyperspectral dimensionality reduction
Hyperspectral imaging
hyperspectral unsupervised clustering
Methods
Narrowband
Nondestructive testing
Software
Spectrum analysis
t-SNE
Vector quantization
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA7iSQ_iE9cXETx4qW5eTXsSnyyCIuiCt5InKtpd3O7_d6aty1YQLx56aJOW5Jum8w2ZfkPIkbYsSK1jwlmEAIVpn1hmskQZn3kweqo8_jt8d58OhvL2WT3PlfrCnLBGHrgB7lR5pgMTMWQSXGXOLXIcp5XrS2lN7vHrCz5vLph6a3gLHHmj5SMgrj99e_2oy_4AfcedqI4bqtX6OxSzmyA553FuVslKSxXpeTPENbIQynWyPCcguEHOhuVkOsblPgmeXr5PUfYAWugo0gFEmM2PlPBs-mDgjF6ZytA6S4BWyeP99SYZ3lw_XQ6StiRC4mQqqyQIaZ2PMaRO6gBoOGNFyI0R4JYzoGbcCS6cY8ykMQ8-KJMpLZ3X0WjUAtsii-WoDNuEpirvm8xGkfWjjNwY27cAtuBesjx63SMn3wgVrtULx7IV7wXEDQhp8QPSHjme3TBupDJ-73qBkM-6ocZ1fQEsX7SWL_6yfI_sfRusaBfepMCUWM6RmPTI4awZlgzug5gyjKbQR-HWk5IC5qg7hu4MqNtSvr7U4ttY2QlC-Z3_mMEuWeIYvmP-pNoji9XnNOwDx6nsQf06fwFg4fxd
  priority: 102
  providerName: Directory of Open Access Journals
Title Unsupervised Clustering of Hyperspectral Paper Data Using t-SNE
URI https://www.proquest.com/docview/2400220224
https://www.proquest.com/docview/2567985437
https://pubmed.ncbi.nlm.nih.gov/PMC8321027
https://doaj.org/article/5d17e13fe8484692b0080c75c044ba9d
Volume 6
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3db9MwELdY9wIPaHyJwqiMxAMvYU1sx_bTtI2WColqAirtLfLnGBpJWdP_n7vU7Rak7TGxk9h3Od-d7_w7Qj5ImwcuZcyKPIKDkkuf2dyoTBivPDC9FB7PDn-bl7MF_3ohLtKG2yqlVW7XxG6h9o3DPfIjzHUsCtQ4x8u_GVaNwuhqKqGxR_ZhCVZqQPZPJ_Pz77e7LBoUnNYbTB8G_v3R76s_XfkfMOMxItVTRx1qf8_U7CdK3tE80wPyNJmM9GTD42fkUaifkyd3gARfkONFvVovUexXwdOz6zXCH0ALbSKdgae5OVAJ76bnBq7oZ9Ma2mUL0Db7MZ-8JIvp5OfZLEulETLHS95mgXHrfIyhdFwGXVhnLAvaGAbqWYGJVjhWMOfy3JRRBx-EUUJy52U0EjHBXpFB3dThNaGl0GOjbGRqHHksjLFjKzw4qZ7nOno5JJ-2FKpcwg3H8hXXFfgPSNLqP5IOycfdA8sNZMb9XU-R5LtuiHXd3WhuLqskOhUMRoacxaA4GEswV7RynRRuzLk12g_J4ZZhVRLAVXX7uwzJ-10ziA7GQ0wdmjX0ERiCEpzBHGWP0b0B9Vvqq18dCDdWeAKX_s3DH39LHhfooGOGpDgkg_ZmHd6BFdPaEdlT0y-j9MOOur2Af5D-95Y
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3LbtQw0CrlABwQT7FQwEggcQlNHDuOD6iCtsuWtiskulJvqZ9QVJKlmxXip_hGZvLYNkhw6zGx49gzY8-M50XIS2kSz6UMEUsCKCiJdJFJdB4J7XIHSM-Ew9jhw2k2mfGPx-J4jfzuY2HQrbI_E5uD2lUW78g30deRMeQ4W_MfEVaNQutqX0KjJYt9_-snqGyLt3s7gN9XjI13j7YnUVdVILI843XkU26sC8FnlkuvmLHapF5pnQJny0G6YTZlqbVJorOgvPNC50Jy62TQEtNpwbjXyHWeAifHyPTxh4s7HQXsVKk2gxC0x5vfTr83xYZAaUD714D5NTUCBoLt0C3zEp8b3yG3OwGVvmsp6i5Z8-U9cutS2sL7ZGtWLpZzPGQW3tHtsyUmW4AWWgU6Ab22Dd-EseknDU90R9eaNr4JtI4-T3cfkNmVgOwhWS-r0j8iNBMq1rkJaR4HHpjWJjbCgUrseKKCkyPypodQYbss5Vgs46wAbQVBWvwF0hF5vfpg3ibo-HfX9wjyVTfMrN28qM6_FN1GLWAy0idp8DkH0QzWijK1lcLGnBut3Ihs9Agruu2-KC6Ic0RerJpho6L1RZe-WkIfgQYvwVNYoxwgejChYUt5-rVJ-Y31pGImH___58_JjcnR4UFxsDfdf0JuMrwaQN9MsUHW6_OlfwryU22eNURLyclV75I_FGYzBg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR1db9Mw0BqdhOAB8Sk6BgQJJF5CE8eO4wc0sbVVx6CqgEp7y_wJm0ZS1lSIv8av4y5NugUJ3vaY2HHs-_Dd-c53hLwUOnZMCB_S2IOBEgsb6lhlIVc2s4D0lFu8O_xxmk7m7P0xP94iv9u7MBhW2e6J9UZtS4Nn5AOMdaQUJc7AN2ERs-F4b_EjxApS6Glty2msSeTI_foJ5tvy7eEQcP2K0vHoy8EkbCoMhIalrApdwrSx3rvUMOEk1UbpxEmlEpByGWg61CQ0MSaOVeqls46rjAtmrPBKYGotGPcG2RZoFfXI9v5oOvt0ecIjQbhKuc4nlCQyGpydfq9LD4EJgd6wjiisKwZ01NxukOYVqTe-S-406mrwbk1f98iWK-6T21eSGD4ge_NiuVrglrN0Njg4X2HqBWgJSh9MwMpdX-aEsYOZgqdgqCoV1JEKQRV-no4ekvm1AO0R6RVl4R6TIOUyUpn2SRZ55qlSOtLcgoFsWSy9FX3ypoVQbpqc5Vg64zwH2wVBmv8F0j55vflgsU7X8e-u-wjyTTfMs12_KC--5g3b5jAZ4eLEu4yBogZrRQ3bCG4ixrSStk92W4TlDfMv80tS7ZMXm2ZgW_TFqMKVK-jD0f3FWQJrFB1EdybUbSlOv9UJwLG6VETFzv9__pzcBA7JPxxOj56QWxTPCTBQk--SXnWxck9Bmar0s4ZqA3Jy3YzyBxFKOJg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Unsupervised+Clustering+of+Hyperspectral+Paper+Data+Using+t-SNE&rft.jtitle=Journal+of+imaging&rft.au=Devassy%2C+Binu+Melit&rft.au=George%2C+Sony&rft.au=Nussbaum%2C+Peter&rft.date=2020-05-05&rft.pub=MDPI+AG&rft.eissn=2313-433X&rft.volume=6&rft.issue=5&rft.spage=29&rft_id=info:doi/10.3390%2Fjimaging6050029&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2313-433X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2313-433X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2313-433X&client=summon