Gold nanoprism/Tollens’ reagent complex as plasmonic sensor in headspace single-drop microextraction for colorimetric detection of formaldehyde in food samples using smartphone readout

In this work, an assay with high sensitivity and selectivity for the detection of formaldehyde (FA) is presented. The assay applied a gold nanoprism/Tollens’ reagent (Au-np/TR) complex as the sensor used in headspace single-drop microextraction (HS-SDME). A surface plasmon resonance signal enhanceme...

Full description

Saved in:
Bibliographic Details
Published inTalanta (Oxford) Vol. 220; p. 121388
Main Authors Qi, Tong, Xu, Mengyuan, Yao, Yao, Chen, Wenhui, Xu, Mengchan, Tang, Sheng, Shen, Wei, Kong, Dezhao, Cai, Xingwei, Shi, Haiwei, Lee, Hian Kee
Format Journal Article
LanguageEnglish
Published Netherlands Elsevier B.V 01.12.2020
Subjects
Online AccessGet full text
ISSN0039-9140
1873-3573
1873-3573
DOI10.1016/j.talanta.2020.121388

Cover

Abstract In this work, an assay with high sensitivity and selectivity for the detection of formaldehyde (FA) is presented. The assay applied a gold nanoprism/Tollens’ reagent (Au-np/TR) complex as the sensor used in headspace single-drop microextraction (HS-SDME). A surface plasmon resonance signal enhancement as well as color change was caused by the formation of Au@Ag-np after a redox reaction between FA and TR during the HS-SDME process. With the utilization of smartphone nanocolorimetry (SNC), the FA could be detected and quantified. For HS-SDME-SNC, a linearity calibration curve ranging from 0.1 to 100 μM was obtained, and the limit of detection was determined to be 30 nM. Successful attempts to determine FA were demonstrated by analysis of the analyte in (adulterated) raw food samples (octopus and chicken flesh). Matrix effects from real samples were avoided by using HS-SDME, and only a 3-μL droplet of solvent was needed in the assay. [Display omitted] •Gold nanoprism/Tollens' reagent was complex applied as formaldehyde sensor.•Headspace single-drop microextraction was used to avoid matrix effect.•Smartphone nanocolorimetry was demonstrated as a detection method.
AbstractList In this work, an assay with high sensitivity and selectivity for the detection of formaldehyde (FA) is presented. The assay applied a gold nanoprism/Tollens' reagent (Au-np/TR) complex as the sensor used in headspace single-drop microextraction (HS-SDME). A surface plasmon resonance signal enhancement as well as color change was caused by the formation of Au@Ag-np after a redox reaction between FA and TR during the HS-SDME process. With the utilization of smartphone nanocolorimetry (SNC), the FA could be detected and quantified. For HS-SDME-SNC, a linearity calibration curve ranging from 0.1 to 100 μM was obtained, and the limit of detection was determined to be 30 nM. Successful attempts to determine FA were demonstrated by analysis of the analyte in (adulterated) raw food samples (octopus and chicken flesh). Matrix effects from real samples were avoided by using HS-SDME, and only a 3-μL droplet of solvent was needed in the assay.In this work, an assay with high sensitivity and selectivity for the detection of formaldehyde (FA) is presented. The assay applied a gold nanoprism/Tollens' reagent (Au-np/TR) complex as the sensor used in headspace single-drop microextraction (HS-SDME). A surface plasmon resonance signal enhancement as well as color change was caused by the formation of Au@Ag-np after a redox reaction between FA and TR during the HS-SDME process. With the utilization of smartphone nanocolorimetry (SNC), the FA could be detected and quantified. For HS-SDME-SNC, a linearity calibration curve ranging from 0.1 to 100 μM was obtained, and the limit of detection was determined to be 30 nM. Successful attempts to determine FA were demonstrated by analysis of the analyte in (adulterated) raw food samples (octopus and chicken flesh). Matrix effects from real samples were avoided by using HS-SDME, and only a 3-μL droplet of solvent was needed in the assay.
In this work, an assay with high sensitivity and selectivity for the detection of formaldehyde (FA) is presented. The assay applied a gold nanoprism/Tollens’ reagent (Au-np/TR) complex as the sensor used in headspace single-drop microextraction (HS-SDME). A surface plasmon resonance signal enhancement as well as color change was caused by the formation of Au@Ag-np after a redox reaction between FA and TR during the HS-SDME process. With the utilization of smartphone nanocolorimetry (SNC), the FA could be detected and quantified. For HS-SDME-SNC, a linearity calibration curve ranging from 0.1 to 100 μM was obtained, and the limit of detection was determined to be 30 nM. Successful attempts to determine FA were demonstrated by analysis of the analyte in (adulterated) raw food samples (octopus and chicken flesh). Matrix effects from real samples were avoided by using HS-SDME, and only a 3-μL droplet of solvent was needed in the assay. [Display omitted] •Gold nanoprism/Tollens' reagent was complex applied as formaldehyde sensor.•Headspace single-drop microextraction was used to avoid matrix effect.•Smartphone nanocolorimetry was demonstrated as a detection method.
In this work, an assay with high sensitivity and selectivity for the detection of formaldehyde (FA) is presented. The assay applied a gold nanoprism/Tollens' reagent (Au-np/TR) complex as the sensor used in headspace single-drop microextraction (HS-SDME). A surface plasmon resonance signal enhancement as well as color change was caused by the formation of Au@Ag-np after a redox reaction between FA and TR during the HS-SDME process. With the utilization of smartphone nanocolorimetry (SNC), the FA could be detected and quantified. For HS-SDME-SNC, a linearity calibration curve ranging from 0.1 to 100 μM was obtained, and the limit of detection was determined to be 30 nM. Successful attempts to determine FA were demonstrated by analysis of the analyte in (adulterated) raw food samples (octopus and chicken flesh). Matrix effects from real samples were avoided by using HS-SDME, and only a 3-μL droplet of solvent was needed in the assay.
In this work, an assay with high sensitivity and selectivity for the detection of formaldehyde (FA) is presented. The assay applied a gold nanoprism/Tollens’ reagent (Au-np/TR) complex as the sensor used in headspace single-drop microextraction (HS-SDME). A surface plasmon resonance signal enhancement as well as color change was caused by the formation of Au@Ag-np after a redox reaction between FA and TR during the HS-SDME process. With the utilization of smartphone nanocolorimetry (SNC), the FA could be detected and quantified. For HS-SDME-SNC, a linearity calibration curve ranging from 0.1 to 100 μM was obtained, and the limit of detection was determined to be 30 nM. Successful attempts to determine FA were demonstrated by analysis of the analyte in (adulterated) raw food samples (octopus and chicken flesh). Matrix effects from real samples were avoided by using HS-SDME, and only a 3-μL droplet of solvent was needed in the assay.
ArticleNumber 121388
Author Tang, Sheng
Lee, Hian Kee
Chen, Wenhui
Xu, Mengyuan
Yao, Yao
Xu, Mengchan
Kong, Dezhao
Shen, Wei
Cai, Xingwei
Qi, Tong
Shi, Haiwei
Author_xml – sequence: 1
  givenname: Tong
  surname: Qi
  fullname: Qi, Tong
  organization: School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212003, Jiangsu Province, PR China
– sequence: 2
  givenname: Mengyuan
  surname: Xu
  fullname: Xu, Mengyuan
  organization: School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212003, Jiangsu Province, PR China
– sequence: 3
  givenname: Yao
  surname: Yao
  fullname: Yao, Yao
  organization: School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212003, Jiangsu Province, PR China
– sequence: 4
  givenname: Wenhui
  surname: Chen
  fullname: Chen, Wenhui
  organization: School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212003, Jiangsu Province, PR China
– sequence: 5
  givenname: Mengchan
  surname: Xu
  fullname: Xu, Mengchan
  organization: School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212003, Jiangsu Province, PR China
– sequence: 6
  givenname: Sheng
  surname: Tang
  fullname: Tang, Sheng
  email: tangsheng.nju@gmail.com
  organization: School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212003, Jiangsu Province, PR China
– sequence: 7
  givenname: Wei
  surname: Shen
  fullname: Shen, Wei
  organization: School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212003, Jiangsu Province, PR China
– sequence: 8
  givenname: Dezhao
  surname: Kong
  fullname: Kong, Dezhao
  organization: School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang, 212003, Jiangsu Province, PR China
– sequence: 9
  givenname: Xingwei
  surname: Cai
  fullname: Cai, Xingwei
  organization: School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212003, Jiangsu Province, PR China
– sequence: 10
  givenname: Haiwei
  surname: Shi
  fullname: Shi, Haiwei
  organization: Jiangsu Institute for Food and Drug Control, Nanjing, 210019, Jiangsu Province, PR China
– sequence: 11
  givenname: Hian Kee
  surname: Lee
  fullname: Lee, Hian Kee
  email: chmleehk@nus.edu.sg, hiankeelee@u.nus.edu
  organization: Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Singapore
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32928410$$D View this record in MEDLINE/PubMed
BookMark eNqNksFu1DAQhi1URLeFRwD5yCVbO042sTggVEGLVIlLOVsTe9L1yrGD7UXtjdfgVXgcnqSOdnvhUk6WPP__j_3NnJETHzwS8pazNWd8c7FbZ3DgM6xrVpe7mou-f0FWvO9EJdpOnJAVY0JWkjfslJyltGOM1YKJV-RU1LLuG85W5M9VcIZ68GGONk0Xt8E59Onvr980Ityhz1SHaXZ4TyHR2UGagreapiIKkVpPtwgmzaCRJuvvHFYmhplOVseA9zmCzjZ4OhaxDi5EO2GOJcBgxkMpjEt1Amdw-2BwyRxDMDTB0jfR_ZJL0wQxz9sCYXmYCfv8mrwcwSV8czzPyfcvn28vr6ubb1dfLz_dVLrZNLlCJgBgbAYchrqXgvNBNtL0g8R-09Vj2wLIUjIAiH3XY8tH2EjD2wE7yUZxTt4fcucYfuwxZTXZpNEV-hj2SdVN123qhnXsP6RN4V6mIov03VG6HyY0quAvP3xQT6Mpgg8HQQGZUsRRaZthIVagWqc4U8siqJ06LoJaFkEdFqG423_cTw2e8308-LAQ_WkxqqQteo3GxjIvZYJ9JuERIOTXGQ
CitedBy_id crossref_primary_10_1016_j_bios_2023_115233
crossref_primary_10_1016_j_ijbiomac_2023_123570
crossref_primary_10_1016_j_talanta_2022_124169
crossref_primary_10_1016_j_foodcont_2022_109408
crossref_primary_10_1016_j_scp_2021_100478
crossref_primary_10_1002_elps_202100216
crossref_primary_10_1016_j_sampre_2023_100053
crossref_primary_10_1016_j_foodchem_2024_139973
crossref_primary_10_1080_10408398_2021_1958745
crossref_primary_10_3390_pr10071347
crossref_primary_10_1021_acs_analchem_2c05462
crossref_primary_10_1039_D2TA07966F
crossref_primary_10_1016_j_eti_2021_102053
crossref_primary_10_1016_j_saa_2023_122920
crossref_primary_10_1016_j_snb_2021_129708
crossref_primary_10_1039_D2AY00689H
crossref_primary_10_1021_acsami_0c22105
crossref_primary_10_1080_17415993_2023_2206967
crossref_primary_10_1142_S0217984921505242
crossref_primary_10_1016_j_aca_2021_338630
crossref_primary_10_1016_j_aca_2025_343918
crossref_primary_10_1016_j_foodchem_2023_136659
crossref_primary_10_1016_j_snb_2021_130082
crossref_primary_10_1016_j_talanta_2021_122335
crossref_primary_10_1007_s13367_021_0016_y
crossref_primary_10_1039_D4LC00966E
crossref_primary_10_1016_j_jhazmat_2020_124624
crossref_primary_10_1002_sscp_202300243
crossref_primary_10_1016_j_cclet_2023_109220
crossref_primary_10_1016_j_optcom_2022_128073
crossref_primary_10_1016_j_aca_2023_342132
crossref_primary_10_1021_acs_analchem_2c01768
crossref_primary_10_1016_j_foodchem_2024_139402
crossref_primary_10_1007_s12161_021_02021_4
crossref_primary_10_1016_j_bios_2020_112788
crossref_primary_10_3390_foods11091351
crossref_primary_10_1016_j_teac_2020_e00113
crossref_primary_10_1109_JLT_2022_3154929
crossref_primary_10_1039_D1AY02031E
crossref_primary_10_1016_j_cclet_2021_02_029
crossref_primary_10_3390_molecules27092953
crossref_primary_10_1016_j_biosx_2022_100173
crossref_primary_10_1007_s13738_023_02935_2
crossref_primary_10_1016_j_snb_2022_131993
Cites_doi 10.1021/acssensors.5b00236
10.1039/C9CC04411F
10.1021/cm2021966
10.1016/j.talanta.2018.06.040
10.1021/acs.analchem.9b00255
10.1021/acssensors.8b00835
10.1007/s00604-019-3506-6
10.1016/j.bioelechem.2009.06.016
10.1039/C5RA16266A
10.1016/j.microc.2017.01.032
10.1021/acssensors.6b00008
10.1021/acssensors.8b00664
10.1021/acs.analchem.6b02514
10.1016/j.talanta.2019.01.108
10.1016/j.jhazmat.2020.122403
10.1016/j.foodchem.2018.02.030
10.1039/C8CC09882D
10.1016/j.snb.2018.07.071
10.1016/j.aca.2019.10.045
10.1016/j.talanta.2019.05.004
10.3390/bios6030032
10.1016/j.talanta.2017.12.002
10.1021/acssensors.7b00896
10.1007/s13197-019-03635-7
10.1021/jacs.8b09794
10.1016/j.foodchem.2016.01.136
10.1016/j.snb.2014.12.043
10.1016/j.talanta.2016.08.010
10.1021/acs.inorgchem.8b02411
10.1016/j.snb.2018.05.089
10.1039/C4CC00914B
10.1016/j.bios.2017.09.010
10.1016/j.snb.2019.127451
10.1021/acs.analchem.6b01543
10.1021/acssensors.9b00917
10.1016/j.trac.2018.09.016
10.1021/acssensors.9b01204
10.1016/j.talanta.2019.120396
10.1007/s12274-018-2207-5
ContentType Journal Article
Copyright 2020 Elsevier B.V.
Copyright © 2020 Elsevier B.V. All rights reserved.
Copyright_xml – notice: 2020 Elsevier B.V.
– notice: Copyright © 2020 Elsevier B.V. All rights reserved.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
DOI 10.1016/j.talanta.2020.121388
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList MEDLINE - Academic

MEDLINE
AGRICOLA
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1873-3573
ExternalDocumentID 32928410
10_1016_j_talanta_2020_121388
S0039914020306792
Genre Journal Article
GroupedDBID --K
--M
-DZ
-~X
.~1
0R~
123
1B1
1RT
1~.
1~5
4.4
457
4G.
53G
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARLI
AAXUO
ABJNI
ABMAC
ABYKQ
ACDAQ
ACGFS
ACNCT
ACRLP
ADBBV
ADECG
ADEZE
AEBSH
AEKER
AENEX
AFKWA
AFTJW
AFZHZ
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AJOXV
AJSZI
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FLBIZ
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
K-O
KOM
M36
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RNS
ROL
RPZ
SCC
SCH
SDF
SDG
SDP
SES
SPC
SPCBC
SSK
SSZ
T5K
TN5
TWZ
WH7
XPP
YK3
YNT
ZMT
~02
~G-
29Q
3O-
AAHBH
AAQXK
AATTM
AAXKI
AAYJJ
AAYWO
AAYXX
ABDPE
ABEFU
ABFNM
ABWVN
ABXDB
ACNNM
ACRPL
ACVFH
ADCNI
ADIYS
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AJQLL
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
EJD
FEDTE
FGOYB
HMU
HVGLF
HZ~
R2-
RIG
SCB
SEW
SSH
WUQ
XOL
CGR
CUY
CVF
ECM
EFKBS
EIF
NPM
7X8
7S9
L.6
ID FETCH-LOGICAL-c464t-e03aaaf4bebb289311b949d8b9e8672f55aa9bb2daaee878e51fa69d15be790f3
IEDL.DBID AIKHN
ISSN 0039-9140
1873-3573
IngestDate Fri Sep 05 07:39:49 EDT 2025
Thu Sep 04 16:41:38 EDT 2025
Mon Jul 21 05:56:35 EDT 2025
Tue Jul 01 03:43:55 EDT 2025
Thu Apr 24 23:09:44 EDT 2025
Fri Feb 23 02:46:12 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Tollens' reagent
Gold nanoprism
Smartphone nanocolorimetry
Formaldehyde
Headspace single-drop microextraction
Language English
License Copyright © 2020 Elsevier B.V. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c464t-e03aaaf4bebb289311b949d8b9e8672f55aa9bb2daaee878e51fa69d15be790f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 32928410
PQID 2442840399
PQPubID 23479
ParticipantIDs proquest_miscellaneous_2477624070
proquest_miscellaneous_2442840399
pubmed_primary_32928410
crossref_citationtrail_10_1016_j_talanta_2020_121388
crossref_primary_10_1016_j_talanta_2020_121388
elsevier_sciencedirect_doi_10_1016_j_talanta_2020_121388
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-12-01
2020-12-00
2020-Dec-01
20201201
PublicationDateYYYYMMDD 2020-12-01
PublicationDate_xml – month: 12
  year: 2020
  text: 2020-12-01
  day: 01
PublicationDecade 2020
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
PublicationTitle Talanta (Oxford)
PublicationTitleAlternate Talanta
PublicationYear 2020
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Zeng, Fan, Zhao, Wang, Zhou, Chen, Yan, Li, Xing, Wang (bib14) 2014; 50
Kundu, Bhardwaj, Pandey, Krishnan, Kotnala, Sumana (bib41) 2019; 56
Wahed, Razzaq, Dharmapuri, Corrales (bib6) 2016; 202
Guo, Yin, Xu, Zheng, Fang, Chong, Zhou, Xu, Xu, Li, Li (bib15) 2019; 4
Hong, Choi, Park (bib31) 2011; 23
Zheng, Zhang, Wang, Cai, Du, Zhang (bib37) 2018; 188
Tian, Fan, Li, Ma (bib18) 2016; 1
Li, Wang, Zhang, Huo, Hou, Zhou, Luo, Yang (bib22) 2020; 1096
Li, Sun, Mao, Tang, Liu, Qi, Deng, Shen, Chen, Peng (bib33) 2019; 186
Nandi, Sharma, Trivedi, Biswas (bib34) 2018; 57
Wang, Hou, De, Gu, Han (bib17) 2018; 3
Liu, Zeng, Tian, Hou, Wu (bib21) 2019; 202
Chaiendoo, Sooksin, Kulchat, Promarak, Tuntulani, Ngeontae (bib38) 2018; 255
Zhou, Dong, Yan, Shi, Yu, Wei, Li (bib35) 2015; 209
Noor Aini, Siddiquee, Ampon (bib39) 2016; 6
Akshath, Bhatt (bib19) 2018; 100
Bareket, Rephaeli, Berkovitch, Nudelman, Rishpon (bib20) 2010; 77
Yao, Wang, Li (bib24) 2020; 305
Sanchez, Sanchez-Sanchez, Izquierdo, Mathieu, Ghanbaja, Berger, Celzard, Fierro (bib4) 2020; 208
Guo, binte Nawi, Lee (bib29) 2016; 88
Lin, Huang, Liu, Lin, Ma, Liu (bib23) 2015; 5
Shahvar, Saraji, Shamsaei (bib32) 2018; 273
Guntner, Koren, Chikkadi, Righettoni, Pratsinis (bib3) 2016; 1
Iarc (bib5) 2006
Pinto, Rocha, Richter, Munoz, Silva (bib8) 2019; 198
Xu, Zhang, Zeng, Liu, Kinsella, Sheng (bib2) 2016; 160
Zhao, Ji, Ma, Wu, Cheng, Yin (bib36) 2018; 3
Wang, Wang, Jiao, Hao, Wu, Wang, Wang (bib1) 2018; 179
Zheng, Zhang, Wang, Cai, Du, Zhang (bib25) 2018; 188
Ma, Gao, Zhu, Zhao, Lin (bib12) 2019; 55
Jahan, Zhang, Pratush, Xie, Xiao, Fan, Cao (bib30) 2016; 88
Kim, Kumar, Kwon, Kim (bib9) 2017; 132
Tang, Qi, Ansah, Nalouzebi Fouemina, Shen, Basheer, Lee (bib26) 2018; 108
Tang, Qi, Xia, Xu, Xu, Zhu, Shen, Lee (bib27) 2019; 91
Sun, Zhang, Hao, Zhai, Dong (bib7) 2019; 4
Zong, Zhang, Zhu, Zhao, Zhang, Zhu (bib40) 2018; 271
Li, Zhang, Zhang, Lu, Wang, Chen (bib13) 2018; 3
Xu, Xu, Ma, Chen, Huang, Chen, Gao, Wang, Lou, Wang (bib11) 2018; 140
Tegladza, Qi, Chen, Alorku, Tang, Shen, Kong, Yuan, Liu, Lee (bib28) 2020; 393
Kukkar, Vellingiri, Kaur, Bhardwaj, Deep, Kim (bib10) 2019; 12
Jeong, Kim, Jang, Kang, Kima, Kim (bib16) 2019; 55
Pinto (10.1016/j.talanta.2020.121388_bib8) 2019; 198
Li (10.1016/j.talanta.2020.121388_bib13) 2018; 3
Li (10.1016/j.talanta.2020.121388_bib22) 2020; 1096
Li (10.1016/j.talanta.2020.121388_bib33) 2019; 186
Ma (10.1016/j.talanta.2020.121388_bib12) 2019; 55
Nandi (10.1016/j.talanta.2020.121388_bib34) 2018; 57
Zhou (10.1016/j.talanta.2020.121388_bib35) 2015; 209
Jeong (10.1016/j.talanta.2020.121388_bib16) 2019; 55
Tegladza (10.1016/j.talanta.2020.121388_bib28) 2020; 393
Jahan (10.1016/j.talanta.2020.121388_bib30) 2016; 88
Zong (10.1016/j.talanta.2020.121388_bib40) 2018; 271
Zhao (10.1016/j.talanta.2020.121388_bib36) 2018; 3
Liu (10.1016/j.talanta.2020.121388_bib21) 2019; 202
Hong (10.1016/j.talanta.2020.121388_bib31) 2011; 23
Kukkar (10.1016/j.talanta.2020.121388_bib10) 2019; 12
Tang (10.1016/j.talanta.2020.121388_bib27) 2019; 91
Guo (10.1016/j.talanta.2020.121388_bib29) 2016; 88
Chaiendoo (10.1016/j.talanta.2020.121388_bib38) 2018; 255
Sanchez (10.1016/j.talanta.2020.121388_bib4) 2020; 208
Guo (10.1016/j.talanta.2020.121388_bib15) 2019; 4
Yao (10.1016/j.talanta.2020.121388_bib24) 2020; 305
Akshath (10.1016/j.talanta.2020.121388_bib19) 2018; 100
Zheng (10.1016/j.talanta.2020.121388_bib25) 2018; 188
Guntner (10.1016/j.talanta.2020.121388_bib3) 2016; 1
Wang (10.1016/j.talanta.2020.121388_bib17) 2018; 3
Shahvar (10.1016/j.talanta.2020.121388_bib32) 2018; 273
Kundu (10.1016/j.talanta.2020.121388_bib41) 2019; 56
Tang (10.1016/j.talanta.2020.121388_bib26) 2018; 108
Iarc (10.1016/j.talanta.2020.121388_bib5) 2006
Noor Aini (10.1016/j.talanta.2020.121388_bib39) 2016; 6
Xu (10.1016/j.talanta.2020.121388_bib11) 2018; 140
Kim (10.1016/j.talanta.2020.121388_bib9) 2017; 132
Xu (10.1016/j.talanta.2020.121388_bib2) 2016; 160
Zeng (10.1016/j.talanta.2020.121388_bib14) 2014; 50
Bareket (10.1016/j.talanta.2020.121388_bib20) 2010; 77
Wang (10.1016/j.talanta.2020.121388_bib1) 2018; 179
Zheng (10.1016/j.talanta.2020.121388_bib37) 2018; 188
Sun (10.1016/j.talanta.2020.121388_bib7) 2019; 4
Wahed (10.1016/j.talanta.2020.121388_bib6) 2016; 202
Tian (10.1016/j.talanta.2020.121388_bib18) 2016; 1
Lin (10.1016/j.talanta.2020.121388_bib23) 2015; 5
References_xml – volume: 1
  start-page: 243
  year: 2016
  end-page: 250
  ident: bib18
  article-title: Zeolitic imidazolate framework coated ZnO nanorods as molecular sieving to improve selectivity of formaldehyde gas sensor
  publication-title: ACS Sens.
– volume: 57
  start-page: 15149
  year: 2018
  end-page: 15157
  ident: bib34
  article-title: Metal-organic framework showing selective and sensitive detection of exogenous and endogenous formaldehyde
  publication-title: Inorg. Chem.
– volume: 50
  start-page: 8121
  year: 2014
  end-page: 8123
  ident: bib14
  article-title: A colorimetric agarose gel for formaldehyde measurement based on nanotechnology involving Tollens reaction
  publication-title: Chem. Commun.
– volume: 186
  start-page: 403
  year: 2019
  ident: bib33
  article-title: Antimony-doped tin oxide nanoparticles as peroxidase mimics for paper-based colorimetric detection of glucose using smartphone read-out
  publication-title: Microchim. Acta
– volume: 88
  start-page: 10490
  year: 2016
  end-page: 10498
  ident: bib30
  article-title: In-vial temperature gradient headspace single drop microextraction designed by multiphysics simulation
  publication-title: Anal. Chem.
– volume: 255
  start-page: 41
  year: 2018
  end-page: 48
  ident: bib38
  article-title: A new formaldehyde sensor from silver nanoclusters modified Tollens' reagent
  publication-title: Food Chem.
– volume: 100
  start-page: 201
  year: 2018
  end-page: 207
  ident: bib19
  article-title: Supramolecular nano-sniffers for ultrasensitive detection of formaldehyde
  publication-title: Biosens. Bioelectron.
– volume: 23
  start-page: 5375
  year: 2011
  end-page: 5378
  ident: bib31
  article-title: Shape control of Ag shell growth on Au nanodisks
  publication-title: Chem. Mater.
– start-page: 39
  year: 2006
  end-page: 325
  ident: bib5
  article-title: Formaldehyde, 2-butoxyethanol and 1-tert-butoxypropan-2-ol
  publication-title: IARC (Int. Agency Res. Cancer) Monogr. Eval. Carcinog. Risks Hum.
– volume: 202
  start-page: 274
  year: 2019
  end-page: 278
  ident: bib21
  article-title: Dynamic reaction regulated surface-enhanced Raman scattering for detection of trace formaldehyde
  publication-title: Talanta
– volume: 4
  start-page: 2724
  year: 2019
  end-page: 2729
  ident: bib15
  article-title: In situ generated plasmonic silver nanoparticle-sensitized amorphous titanium dioxide for ultrasensitive photoelectrochemical sensing of formaldehyde
  publication-title: ACS Sens.
– volume: 305
  start-page: 127451
  year: 2020
  ident: bib24
  article-title: Silver clusters based sensor for Low content formaldehyde detection in colorimetric and fluorometric dual Mode
  publication-title: Sensor. Actuator. B Chem.
– volume: 3
  start-page: 2112
  year: 2018
  end-page: 2117
  ident: bib36
  article-title: An aggregation-induced emission-based "Turn-On" fluorescent probe for facile detection of gaseous formaldehyde
  publication-title: ACS Sens.
– volume: 140
  start-page: 16408
  year: 2018
  end-page: 16412
  ident: bib11
  article-title: Analyte regeneration fluorescent probes for formaldehyde enabled by regiospecific formaldehyde-induced intramolecularity
  publication-title: J. Am. Chem. Soc.
– volume: 4
  start-page: 2631
  year: 2019
  end-page: 2637
  ident: bib7
  article-title: A self-powered biosensor with a flake electrochromic display for electrochemical and colorimetric formaldehyde detection
  publication-title: ACS Sens.
– volume: 55
  start-page: 11263
  year: 2019
  end-page: 11266
  ident: bib12
  article-title: Development of a unique reversible fluorescent probe for tracking endogenous sulfur dioxide and formaldehyde fluctuation in vivo
  publication-title: Chem. Commun.
– volume: 108
  start-page: 306
  year: 2018
  end-page: 313
  ident: bib26
  article-title: Single-drop microextraction
  publication-title: TrAC Trends Anal. Chem.
– volume: 5
  start-page: 99944
  year: 2015
  end-page: 99950
  ident: bib23
  article-title: Design of an ultra-sensitive gold nanorod colorimetric sensor and its application based on formaldehyde reducing Ag+
  publication-title: RSC Adv.
– volume: 91
  start-page: 5888
  year: 2019
  end-page: 5895
  ident: bib27
  article-title: Smartphone nanocolorimetric determination of hydrogen sulfide in biosamples after silver-gold core-shell nanoprism-based headspace single-drop microextraction
  publication-title: Anal. Chem.
– volume: 6
  start-page: 32
  year: 2016
  ident: bib39
  article-title: Development of formaldehyde biosensor for determination of formalin in fish samples; malabar red snapper (Lutjanus malabaricus) and longtail tuna (Thunnus tonggol)
  publication-title: Biosensors
– volume: 77
  start-page: 94
  year: 2010
  end-page: 99
  ident: bib20
  article-title: Carbon nanotubes based electrochemical biosensor for detection of formaldehyde released from a cancer cell line treated with formaldehyde-releasing anticancer prodrugs
  publication-title: Bioelectrochemistry
– volume: 188
  start-page: 630
  year: 2018
  end-page: 636
  ident: bib25
  article-title: Silver nanoparticles/activated carbon composite as a facile SERS substrate for highly sensitive detection of endogenous formaldehyde in human urine by catalytic reaction
  publication-title: Talanta
– volume: 393
  start-page: 122403
  year: 2020
  ident: bib28
  article-title: Direct immersion single-drop microextraction of semi-volatile organic compounds in environmental samples: a review
  publication-title: J. Hazard Mater.
– volume: 188
  start-page: 630
  year: 2018
  end-page: 636
  ident: bib37
  article-title: Silver nanoparticles/activated carbon composite as a facile SERS substrate for highly sensitive detection of endogenous formaldehyde in human urine by catalytic reaction
  publication-title: Talanta
– volume: 56
  start-page: 1829
  year: 2019
  end-page: 1840
  ident: bib41
  article-title: Development of electrochemical biosensor based on CNT-Fe3O4 nanocomposite to determine formaldehyde adulteration in orange juice
  publication-title: J. Food Sci. Technol.
– volume: 179
  start-page: 676
  year: 2018
  end-page: 684
  ident: bib1
  article-title: Preparation of magnetic mesoporous poly-melamine-formaldehyde composite for efficient extraction of chlorophenols
  publication-title: Talanta
– volume: 202
  start-page: 476
  year: 2016
  end-page: 483
  ident: bib6
  article-title: Determination of formaldehyde in food and feed by an in-house validated HPLC method
  publication-title: Food Chem.
– volume: 160
  start-page: 645
  year: 2016
  end-page: 652
  ident: bib2
  article-title: A simple naphthalene-based fluorescent probe for high selective detection of formaldehyde in toffees and HeLa cells via aza-Cope reaction
  publication-title: Talanta
– volume: 132
  start-page: 219
  year: 2017
  end-page: 226
  ident: bib9
  article-title: Metal-organic frameworks as superior media for thermal desorption-gas chromatography application: a critical assessment of MOF-5 for the quantitation of airborne formaldehyde
  publication-title: Microchem. J.
– volume: 3
  start-page: 2394
  year: 2018
  end-page: 2401
  ident: bib13
  article-title: Ultrafast and efficient detection of formaldehyde in aqueous solutions using chitosan-based fluorescent polymers
  publication-title: ACS Sens.
– volume: 55
  start-page: 3622
  year: 2019
  end-page: 3655
  ident: bib16
  article-title: Bio-inspired heterogeneous sensitization of bimetal oxides on SnO
  publication-title: Chem. Commun.
– volume: 209
  start-page: 664
  year: 2015
  end-page: 669
  ident: bib35
  article-title: HCHO-reactive molecule with dual-emission-enhancement property for quantitatively detecting HCHO in near 100% water solution
  publication-title: Sensor. Actuator. B Chem.
– volume: 1096
  start-page: 138
  year: 2020
  end-page: 147
  ident: bib22
  article-title: New application of old methods: development of colorimetric sensor array based on Tollen's reagent for the discrimination of aldehydes based on Tollen's reagent
  publication-title: Anal. Chim. Acta
– volume: 271
  start-page: 311
  year: 2018
  end-page: 320
  ident: bib40
  article-title: Rapid and highly selective detection of formaldehyde in food using quartz crystal microbalance sensors based on biomimetic poly-dopamine functionalized hollow mesoporous silica spheres
  publication-title: Sensor. Actuator. B Chem.
– volume: 12
  start-page: 225
  year: 2019
  end-page: 246
  ident: bib10
  article-title: Nanomaterials for sensing of formaldehyde in air: principles, applications, and performance evaluation
  publication-title: Nano Res
– volume: 1
  start-page: 528
  year: 2016
  end-page: 535
  ident: bib3
  article-title: E-nose sensing of low-ppb formaldehyde in gas mixtures at high relative humidity for breath screening of lung cancer
  publication-title: ACS Sens.
– volume: 88
  start-page: 8409
  year: 2016
  end-page: 8414
  ident: bib29
  article-title: Fully automated headspace bubble-in-drop microextraction
  publication-title: Anal. Chem.
– volume: 198
  start-page: 237
  year: 2019
  end-page: 241
  ident: bib8
  article-title: Indirect determination of formaldehyde by square-wave voltammetry based on the electrochemical oxidation of 3,5-diacetyl-1,4-dihydrolutidine using an unmodified glassy-carbon electrode
  publication-title: Talanta
– volume: 3
  start-page: 468
  year: 2018
  end-page: 475
  ident: bib17
  article-title: One-step synthesis of Co-doped In
  publication-title: ACS Sens.
– volume: 273
  start-page: 1474
  year: 2018
  end-page: 1478
  ident: bib32
  article-title: Headspace single drop microextraction combined with mobile phone-based on-drop sensing for the determination of formaldehyde
  publication-title: Sensor. Actuator. B Chem.
– volume: 208
  start-page: 120396
  year: 2020
  ident: bib4
  article-title: Nanostructured tin oxide materials for the sub-ppm detection of indoor formaldehyde pollution
  publication-title: Talanta
– volume: 1
  start-page: 243
  year: 2016
  ident: 10.1016/j.talanta.2020.121388_bib18
  article-title: Zeolitic imidazolate framework coated ZnO nanorods as molecular sieving to improve selectivity of formaldehyde gas sensor
  publication-title: ACS Sens.
  doi: 10.1021/acssensors.5b00236
– volume: 55
  start-page: 11263
  year: 2019
  ident: 10.1016/j.talanta.2020.121388_bib12
  article-title: Development of a unique reversible fluorescent probe for tracking endogenous sulfur dioxide and formaldehyde fluctuation in vivo
  publication-title: Chem. Commun.
  doi: 10.1039/C9CC04411F
– volume: 23
  start-page: 5375
  year: 2011
  ident: 10.1016/j.talanta.2020.121388_bib31
  article-title: Shape control of Ag shell growth on Au nanodisks
  publication-title: Chem. Mater.
  doi: 10.1021/cm2021966
– volume: 188
  start-page: 630
  year: 2018
  ident: 10.1016/j.talanta.2020.121388_bib25
  article-title: Silver nanoparticles/activated carbon composite as a facile SERS substrate for highly sensitive detection of endogenous formaldehyde in human urine by catalytic reaction
  publication-title: Talanta
  doi: 10.1016/j.talanta.2018.06.040
– volume: 91
  start-page: 5888
  year: 2019
  ident: 10.1016/j.talanta.2020.121388_bib27
  article-title: Smartphone nanocolorimetric determination of hydrogen sulfide in biosamples after silver-gold core-shell nanoprism-based headspace single-drop microextraction
  publication-title: Anal. Chem.
  doi: 10.1021/acs.analchem.9b00255
– volume: 3
  start-page: 2394
  year: 2018
  ident: 10.1016/j.talanta.2020.121388_bib13
  article-title: Ultrafast and efficient detection of formaldehyde in aqueous solutions using chitosan-based fluorescent polymers
  publication-title: ACS Sens.
  doi: 10.1021/acssensors.8b00835
– volume: 186
  start-page: 403
  year: 2019
  ident: 10.1016/j.talanta.2020.121388_bib33
  article-title: Antimony-doped tin oxide nanoparticles as peroxidase mimics for paper-based colorimetric detection of glucose using smartphone read-out
  publication-title: Microchim. Acta
  doi: 10.1007/s00604-019-3506-6
– volume: 77
  start-page: 94
  year: 2010
  ident: 10.1016/j.talanta.2020.121388_bib20
  article-title: Carbon nanotubes based electrochemical biosensor for detection of formaldehyde released from a cancer cell line treated with formaldehyde-releasing anticancer prodrugs
  publication-title: Bioelectrochemistry
  doi: 10.1016/j.bioelechem.2009.06.016
– volume: 5
  start-page: 99944
  year: 2015
  ident: 10.1016/j.talanta.2020.121388_bib23
  article-title: Design of an ultra-sensitive gold nanorod colorimetric sensor and its application based on formaldehyde reducing Ag+
  publication-title: RSC Adv.
  doi: 10.1039/C5RA16266A
– volume: 132
  start-page: 219
  year: 2017
  ident: 10.1016/j.talanta.2020.121388_bib9
  article-title: Metal-organic frameworks as superior media for thermal desorption-gas chromatography application: a critical assessment of MOF-5 for the quantitation of airborne formaldehyde
  publication-title: Microchem. J.
  doi: 10.1016/j.microc.2017.01.032
– volume: 1
  start-page: 528
  year: 2016
  ident: 10.1016/j.talanta.2020.121388_bib3
  article-title: E-nose sensing of low-ppb formaldehyde in gas mixtures at high relative humidity for breath screening of lung cancer
  publication-title: ACS Sens.
  doi: 10.1021/acssensors.6b00008
– volume: 3
  start-page: 2112
  year: 2018
  ident: 10.1016/j.talanta.2020.121388_bib36
  article-title: An aggregation-induced emission-based "Turn-On" fluorescent probe for facile detection of gaseous formaldehyde
  publication-title: ACS Sens.
  doi: 10.1021/acssensors.8b00664
– volume: 88
  start-page: 10490
  year: 2016
  ident: 10.1016/j.talanta.2020.121388_bib30
  article-title: In-vial temperature gradient headspace single drop microextraction designed by multiphysics simulation
  publication-title: Anal. Chem.
  doi: 10.1021/acs.analchem.6b02514
– volume: 198
  start-page: 237
  year: 2019
  ident: 10.1016/j.talanta.2020.121388_bib8
  article-title: Indirect determination of formaldehyde by square-wave voltammetry based on the electrochemical oxidation of 3,5-diacetyl-1,4-dihydrolutidine using an unmodified glassy-carbon electrode
  publication-title: Talanta
  doi: 10.1016/j.talanta.2019.01.108
– volume: 393
  start-page: 122403
  year: 2020
  ident: 10.1016/j.talanta.2020.121388_bib28
  article-title: Direct immersion single-drop microextraction of semi-volatile organic compounds in environmental samples: a review
  publication-title: J. Hazard Mater.
  doi: 10.1016/j.jhazmat.2020.122403
– volume: 255
  start-page: 41
  year: 2018
  ident: 10.1016/j.talanta.2020.121388_bib38
  article-title: A new formaldehyde sensor from silver nanoclusters modified Tollens' reagent
  publication-title: Food Chem.
  doi: 10.1016/j.foodchem.2018.02.030
– volume: 55
  start-page: 3622
  year: 2019
  ident: 10.1016/j.talanta.2020.121388_bib16
  article-title: Bio-inspired heterogeneous sensitization of bimetal oxides on SnO2 scaffolds for unparalleled formaldehyde detection
  publication-title: Chem. Commun.
  doi: 10.1039/C8CC09882D
– volume: 273
  start-page: 1474
  year: 2018
  ident: 10.1016/j.talanta.2020.121388_bib32
  article-title: Headspace single drop microextraction combined with mobile phone-based on-drop sensing for the determination of formaldehyde
  publication-title: Sensor. Actuator. B Chem.
  doi: 10.1016/j.snb.2018.07.071
– volume: 1096
  start-page: 138
  year: 2020
  ident: 10.1016/j.talanta.2020.121388_bib22
  article-title: New application of old methods: development of colorimetric sensor array based on Tollen's reagent for the discrimination of aldehydes based on Tollen's reagent
  publication-title: Anal. Chim. Acta
  doi: 10.1016/j.aca.2019.10.045
– volume: 202
  start-page: 274
  year: 2019
  ident: 10.1016/j.talanta.2020.121388_bib21
  article-title: Dynamic reaction regulated surface-enhanced Raman scattering for detection of trace formaldehyde
  publication-title: Talanta
  doi: 10.1016/j.talanta.2019.05.004
– volume: 6
  start-page: 32
  year: 2016
  ident: 10.1016/j.talanta.2020.121388_bib39
  article-title: Development of formaldehyde biosensor for determination of formalin in fish samples; malabar red snapper (Lutjanus malabaricus) and longtail tuna (Thunnus tonggol)
  publication-title: Biosensors
  doi: 10.3390/bios6030032
– volume: 179
  start-page: 676
  year: 2018
  ident: 10.1016/j.talanta.2020.121388_bib1
  article-title: Preparation of magnetic mesoporous poly-melamine-formaldehyde composite for efficient extraction of chlorophenols
  publication-title: Talanta
  doi: 10.1016/j.talanta.2017.12.002
– volume: 3
  start-page: 468
  year: 2018
  ident: 10.1016/j.talanta.2020.121388_bib17
  article-title: One-step synthesis of Co-doped In2O3 nanorods for high response of formaldehyde sensor at low temperature
  publication-title: ACS Sens.
  doi: 10.1021/acssensors.7b00896
– volume: 56
  start-page: 1829
  year: 2019
  ident: 10.1016/j.talanta.2020.121388_bib41
  article-title: Development of electrochemical biosensor based on CNT-Fe3O4 nanocomposite to determine formaldehyde adulteration in orange juice
  publication-title: J. Food Sci. Technol.
  doi: 10.1007/s13197-019-03635-7
– volume: 140
  start-page: 16408
  year: 2018
  ident: 10.1016/j.talanta.2020.121388_bib11
  article-title: Analyte regeneration fluorescent probes for formaldehyde enabled by regiospecific formaldehyde-induced intramolecularity
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.8b09794
– volume: 202
  start-page: 476
  year: 2016
  ident: 10.1016/j.talanta.2020.121388_bib6
  article-title: Determination of formaldehyde in food and feed by an in-house validated HPLC method
  publication-title: Food Chem.
  doi: 10.1016/j.foodchem.2016.01.136
– volume: 209
  start-page: 664
  year: 2015
  ident: 10.1016/j.talanta.2020.121388_bib35
  article-title: HCHO-reactive molecule with dual-emission-enhancement property for quantitatively detecting HCHO in near 100% water solution
  publication-title: Sensor. Actuator. B Chem.
  doi: 10.1016/j.snb.2014.12.043
– volume: 160
  start-page: 645
  year: 2016
  ident: 10.1016/j.talanta.2020.121388_bib2
  article-title: A simple naphthalene-based fluorescent probe for high selective detection of formaldehyde in toffees and HeLa cells via aza-Cope reaction
  publication-title: Talanta
  doi: 10.1016/j.talanta.2016.08.010
– volume: 57
  start-page: 15149
  year: 2018
  ident: 10.1016/j.talanta.2020.121388_bib34
  article-title: Metal-organic framework showing selective and sensitive detection of exogenous and endogenous formaldehyde
  publication-title: Inorg. Chem.
  doi: 10.1021/acs.inorgchem.8b02411
– volume: 271
  start-page: 311
  year: 2018
  ident: 10.1016/j.talanta.2020.121388_bib40
  article-title: Rapid and highly selective detection of formaldehyde in food using quartz crystal microbalance sensors based on biomimetic poly-dopamine functionalized hollow mesoporous silica spheres
  publication-title: Sensor. Actuator. B Chem.
  doi: 10.1016/j.snb.2018.05.089
– volume: 50
  start-page: 8121
  year: 2014
  ident: 10.1016/j.talanta.2020.121388_bib14
  article-title: A colorimetric agarose gel for formaldehyde measurement based on nanotechnology involving Tollens reaction
  publication-title: Chem. Commun.
  doi: 10.1039/C4CC00914B
– volume: 188
  start-page: 630
  year: 2018
  ident: 10.1016/j.talanta.2020.121388_bib37
  article-title: Silver nanoparticles/activated carbon composite as a facile SERS substrate for highly sensitive detection of endogenous formaldehyde in human urine by catalytic reaction
  publication-title: Talanta
  doi: 10.1016/j.talanta.2018.06.040
– volume: 100
  start-page: 201
  year: 2018
  ident: 10.1016/j.talanta.2020.121388_bib19
  article-title: Supramolecular nano-sniffers for ultrasensitive detection of formaldehyde
  publication-title: Biosens. Bioelectron.
  doi: 10.1016/j.bios.2017.09.010
– volume: 305
  start-page: 127451
  year: 2020
  ident: 10.1016/j.talanta.2020.121388_bib24
  article-title: Silver clusters based sensor for Low content formaldehyde detection in colorimetric and fluorometric dual Mode
  publication-title: Sensor. Actuator. B Chem.
  doi: 10.1016/j.snb.2019.127451
– volume: 88
  start-page: 8409
  year: 2016
  ident: 10.1016/j.talanta.2020.121388_bib29
  article-title: Fully automated headspace bubble-in-drop microextraction
  publication-title: Anal. Chem.
  doi: 10.1021/acs.analchem.6b01543
– start-page: 39
  year: 2006
  ident: 10.1016/j.talanta.2020.121388_bib5
  article-title: Formaldehyde, 2-butoxyethanol and 1-tert-butoxypropan-2-ol
  publication-title: IARC (Int. Agency Res. Cancer) Monogr. Eval. Carcinog. Risks Hum.
– volume: 4
  start-page: 2631
  year: 2019
  ident: 10.1016/j.talanta.2020.121388_bib7
  article-title: A self-powered biosensor with a flake electrochromic display for electrochemical and colorimetric formaldehyde detection
  publication-title: ACS Sens.
  doi: 10.1021/acssensors.9b00917
– volume: 108
  start-page: 306
  year: 2018
  ident: 10.1016/j.talanta.2020.121388_bib26
  article-title: Single-drop microextraction
  publication-title: TrAC Trends Anal. Chem.
  doi: 10.1016/j.trac.2018.09.016
– volume: 4
  start-page: 2724
  year: 2019
  ident: 10.1016/j.talanta.2020.121388_bib15
  article-title: In situ generated plasmonic silver nanoparticle-sensitized amorphous titanium dioxide for ultrasensitive photoelectrochemical sensing of formaldehyde
  publication-title: ACS Sens.
  doi: 10.1021/acssensors.9b01204
– volume: 208
  start-page: 120396
  year: 2020
  ident: 10.1016/j.talanta.2020.121388_bib4
  article-title: Nanostructured tin oxide materials for the sub-ppm detection of indoor formaldehyde pollution
  publication-title: Talanta
  doi: 10.1016/j.talanta.2019.120396
– volume: 12
  start-page: 225
  year: 2019
  ident: 10.1016/j.talanta.2020.121388_bib10
  article-title: Nanomaterials for sensing of formaldehyde in air: principles, applications, and performance evaluation
  publication-title: Nano Res
  doi: 10.1007/s12274-018-2207-5
SSID ssj0002303
Score 2.5247533
Snippet In this work, an assay with high sensitivity and selectivity for the detection of formaldehyde (FA) is presented. The assay applied a gold nanoprism/Tollens’...
In this work, an assay with high sensitivity and selectivity for the detection of formaldehyde (FA) is presented. The assay applied a gold nanoprism/Tollens'...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 121388
SubjectTerms calibration
chicken meat
color
Colorimetry
detection limit
droplets
Formaldehyde
Gold
Gold nanoprism
headspace analysis
Headspace single-drop microextraction
Indicators and Reagents
microextraction
mobile telephones
nanogold
nanoprisms
raw foods
redox reactions
Smartphone
Smartphone nanocolorimetry
solvents
surface plasmon resonance
Tollens' reagent
Title Gold nanoprism/Tollens’ reagent complex as plasmonic sensor in headspace single-drop microextraction for colorimetric detection of formaldehyde in food samples using smartphone readout
URI https://dx.doi.org/10.1016/j.talanta.2020.121388
https://www.ncbi.nlm.nih.gov/pubmed/32928410
https://www.proquest.com/docview/2442840399
https://www.proquest.com/docview/2477624070
Volume 220
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NbtNAEF6V9AAXRPkN0GqQuLqJ7V3be6wiSgDRUyv1Zo29Y0iV2FHsSHBBvAavwuPwJMz4J6gSpRJH2zv2emc98-165hulXueYOF51hZ7LfeNpBqyezTV6EbI7R18X2CaFfTyL5hf6_aW53FOzIRdGwip729_Z9NZa92cm_WhO1ouF5Piyc_Vl_SOw17Id3g9CG5mR2j9592F-tjPIjLJ77l3ricCfRJ7JlfAM8isIA1HQUi2EbQ2Wv7qomyBo64pOH6j7PYaEk66bB2qPyofq7mwo3fZI_XxbLR2UWFYty-HkXHYHyvrX9x_AGFGSqaANJacvgDWsGUCvhCEXam5UbWBRAptox7YmJ5C9hCV5blOtYSXRe2zNN102BDDgBWG9lhIBwvQPjhrqLlUFtHB46ejzV0dyz6KqHNQoz61B4u0_Qb3isZboeJKOuWrbPFYXp2_OZ3OvL9Lg5TrSjUfTEBELnVGW8eIt9P3MauuSzFISxUFhDKLlSw6RKIkTMn6BkXW-ySi20yJ8okYlP-aZAhfm1uYYUZQl2mFgDaGhKGbMiiE71bHSg17SvGcwl0Iay3QIVbtKe3Wmos60U-dYHe_E1h2Fx20CyaD09NpcTNnN3Cb6apgkKetcfr5gSdW2ThlGMRKQKfuvNjH7Jl5iT8fqaTfDdj0OA8vy_vT5_3fuhbonR10wzks1ajZbOmRI1WRH6s7xN_-o_3B-A7LnJ4c
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF5V5VAuiDfhOUhct4nj9WOPKKIEaHtKpd5WY-8YUiV2FDsSXBB_g7_Cz-GXMONHKySgElfvrr32rGe-tb_5RqlXOaaed12h9nkQacOAVdvcoI6RwzkGpsA2KezkNJ6fmffn0fmemg25MEKr7H1_59Nbb90fGfdPc7xZLiXHl4NrIPsfgb2W_fANE4WJ8PoOv17xPBhj98q7Vkv3qzSe8YWoDPINiP7QtBVaCNsKLH8MUH8DoG0gOrqtbvUIEl53k7yj9qi8qw5mQ-G2e-rH22rlocSyajUOxwv5NlDWP799B0aIkkoFLZGcPgPWsGH4vBZ9XKi5U7WFZQnsoD17mpxAviSsSPtttYG1cPfYl2-7XAhguAuieS0FAkTnHzw11DVVBbRgeOXp0xdPcs6iqjzUKNetQdj2H6Fe85MWbjzJxHy1a-6rs6M3i9lc9yUadG5i02iahIhYmIyyjLduYRBk1lifZpbSOJkWUYRouckjEqVJSlFQYGx9EGWU2EkRPlD7JV_mkQIf5tbmGFOcpcbj1EaEEcUJI1YMOaSOlBns4vJev1zKaKzcQFS7cL05nZjTdeYcqcPLYZtOwOO6AelgdPfbSnQcZK4b-nJYJI5tLr9esKRqVzsGUYwDZMH-q0_CkYk32JORetitsMsZh1PL44PJ4_-f3At1MF-cHLvjd6cfnqib0tLRcp6q_Wa7o2cMrprsefvy_AJGgChS
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Gold+nanoprism%2FTollens%E2%80%99+reagent+complex+as+plasmonic+sensor+in+headspace+single-drop+microextraction+for+colorimetric+detection+of+formaldehyde+in+food+samples+using+smartphone+readout&rft.jtitle=Talanta+%28Oxford%29&rft.au=Qi%2C+Tong&rft.au=Xu%2C+Mengyuan&rft.au=Yao%2C+Yao&rft.au=Chen%2C+Wenhui&rft.date=2020-12-01&rft.pub=Elsevier+B.V&rft.issn=0039-9140&rft.eissn=1873-3573&rft.volume=220&rft_id=info:doi/10.1016%2Fj.talanta.2020.121388&rft.externalDocID=S0039914020306792
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0039-9140&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0039-9140&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0039-9140&client=summon