Gold nanoprism/Tollens’ reagent complex as plasmonic sensor in headspace single-drop microextraction for colorimetric detection of formaldehyde in food samples using smartphone readout
In this work, an assay with high sensitivity and selectivity for the detection of formaldehyde (FA) is presented. The assay applied a gold nanoprism/Tollens’ reagent (Au-np/TR) complex as the sensor used in headspace single-drop microextraction (HS-SDME). A surface plasmon resonance signal enhanceme...
Saved in:
Published in | Talanta (Oxford) Vol. 220; p. 121388 |
---|---|
Main Authors | , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Netherlands
Elsevier B.V
01.12.2020
|
Subjects | |
Online Access | Get full text |
ISSN | 0039-9140 1873-3573 1873-3573 |
DOI | 10.1016/j.talanta.2020.121388 |
Cover
Abstract | In this work, an assay with high sensitivity and selectivity for the detection of formaldehyde (FA) is presented. The assay applied a gold nanoprism/Tollens’ reagent (Au-np/TR) complex as the sensor used in headspace single-drop microextraction (HS-SDME). A surface plasmon resonance signal enhancement as well as color change was caused by the formation of Au@Ag-np after a redox reaction between FA and TR during the HS-SDME process. With the utilization of smartphone nanocolorimetry (SNC), the FA could be detected and quantified. For HS-SDME-SNC, a linearity calibration curve ranging from 0.1 to 100 μM was obtained, and the limit of detection was determined to be 30 nM. Successful attempts to determine FA were demonstrated by analysis of the analyte in (adulterated) raw food samples (octopus and chicken flesh). Matrix effects from real samples were avoided by using HS-SDME, and only a 3-μL droplet of solvent was needed in the assay.
[Display omitted]
•Gold nanoprism/Tollens' reagent was complex applied as formaldehyde sensor.•Headspace single-drop microextraction was used to avoid matrix effect.•Smartphone nanocolorimetry was demonstrated as a detection method. |
---|---|
AbstractList | In this work, an assay with high sensitivity and selectivity for the detection of formaldehyde (FA) is presented. The assay applied a gold nanoprism/Tollens' reagent (Au-np/TR) complex as the sensor used in headspace single-drop microextraction (HS-SDME). A surface plasmon resonance signal enhancement as well as color change was caused by the formation of Au@Ag-np after a redox reaction between FA and TR during the HS-SDME process. With the utilization of smartphone nanocolorimetry (SNC), the FA could be detected and quantified. For HS-SDME-SNC, a linearity calibration curve ranging from 0.1 to 100 μM was obtained, and the limit of detection was determined to be 30 nM. Successful attempts to determine FA were demonstrated by analysis of the analyte in (adulterated) raw food samples (octopus and chicken flesh). Matrix effects from real samples were avoided by using HS-SDME, and only a 3-μL droplet of solvent was needed in the assay.In this work, an assay with high sensitivity and selectivity for the detection of formaldehyde (FA) is presented. The assay applied a gold nanoprism/Tollens' reagent (Au-np/TR) complex as the sensor used in headspace single-drop microextraction (HS-SDME). A surface plasmon resonance signal enhancement as well as color change was caused by the formation of Au@Ag-np after a redox reaction between FA and TR during the HS-SDME process. With the utilization of smartphone nanocolorimetry (SNC), the FA could be detected and quantified. For HS-SDME-SNC, a linearity calibration curve ranging from 0.1 to 100 μM was obtained, and the limit of detection was determined to be 30 nM. Successful attempts to determine FA were demonstrated by analysis of the analyte in (adulterated) raw food samples (octopus and chicken flesh). Matrix effects from real samples were avoided by using HS-SDME, and only a 3-μL droplet of solvent was needed in the assay. In this work, an assay with high sensitivity and selectivity for the detection of formaldehyde (FA) is presented. The assay applied a gold nanoprism/Tollens’ reagent (Au-np/TR) complex as the sensor used in headspace single-drop microextraction (HS-SDME). A surface plasmon resonance signal enhancement as well as color change was caused by the formation of Au@Ag-np after a redox reaction between FA and TR during the HS-SDME process. With the utilization of smartphone nanocolorimetry (SNC), the FA could be detected and quantified. For HS-SDME-SNC, a linearity calibration curve ranging from 0.1 to 100 μM was obtained, and the limit of detection was determined to be 30 nM. Successful attempts to determine FA were demonstrated by analysis of the analyte in (adulterated) raw food samples (octopus and chicken flesh). Matrix effects from real samples were avoided by using HS-SDME, and only a 3-μL droplet of solvent was needed in the assay. [Display omitted] •Gold nanoprism/Tollens' reagent was complex applied as formaldehyde sensor.•Headspace single-drop microextraction was used to avoid matrix effect.•Smartphone nanocolorimetry was demonstrated as a detection method. In this work, an assay with high sensitivity and selectivity for the detection of formaldehyde (FA) is presented. The assay applied a gold nanoprism/Tollens' reagent (Au-np/TR) complex as the sensor used in headspace single-drop microextraction (HS-SDME). A surface plasmon resonance signal enhancement as well as color change was caused by the formation of Au@Ag-np after a redox reaction between FA and TR during the HS-SDME process. With the utilization of smartphone nanocolorimetry (SNC), the FA could be detected and quantified. For HS-SDME-SNC, a linearity calibration curve ranging from 0.1 to 100 μM was obtained, and the limit of detection was determined to be 30 nM. Successful attempts to determine FA were demonstrated by analysis of the analyte in (adulterated) raw food samples (octopus and chicken flesh). Matrix effects from real samples were avoided by using HS-SDME, and only a 3-μL droplet of solvent was needed in the assay. In this work, an assay with high sensitivity and selectivity for the detection of formaldehyde (FA) is presented. The assay applied a gold nanoprism/Tollens’ reagent (Au-np/TR) complex as the sensor used in headspace single-drop microextraction (HS-SDME). A surface plasmon resonance signal enhancement as well as color change was caused by the formation of Au@Ag-np after a redox reaction between FA and TR during the HS-SDME process. With the utilization of smartphone nanocolorimetry (SNC), the FA could be detected and quantified. For HS-SDME-SNC, a linearity calibration curve ranging from 0.1 to 100 μM was obtained, and the limit of detection was determined to be 30 nM. Successful attempts to determine FA were demonstrated by analysis of the analyte in (adulterated) raw food samples (octopus and chicken flesh). Matrix effects from real samples were avoided by using HS-SDME, and only a 3-μL droplet of solvent was needed in the assay. |
ArticleNumber | 121388 |
Author | Tang, Sheng Lee, Hian Kee Chen, Wenhui Xu, Mengyuan Yao, Yao Xu, Mengchan Kong, Dezhao Shen, Wei Cai, Xingwei Qi, Tong Shi, Haiwei |
Author_xml | – sequence: 1 givenname: Tong surname: Qi fullname: Qi, Tong organization: School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212003, Jiangsu Province, PR China – sequence: 2 givenname: Mengyuan surname: Xu fullname: Xu, Mengyuan organization: School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212003, Jiangsu Province, PR China – sequence: 3 givenname: Yao surname: Yao fullname: Yao, Yao organization: School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212003, Jiangsu Province, PR China – sequence: 4 givenname: Wenhui surname: Chen fullname: Chen, Wenhui organization: School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212003, Jiangsu Province, PR China – sequence: 5 givenname: Mengchan surname: Xu fullname: Xu, Mengchan organization: School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212003, Jiangsu Province, PR China – sequence: 6 givenname: Sheng surname: Tang fullname: Tang, Sheng email: tangsheng.nju@gmail.com organization: School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212003, Jiangsu Province, PR China – sequence: 7 givenname: Wei surname: Shen fullname: Shen, Wei organization: School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212003, Jiangsu Province, PR China – sequence: 8 givenname: Dezhao surname: Kong fullname: Kong, Dezhao organization: School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang, 212003, Jiangsu Province, PR China – sequence: 9 givenname: Xingwei surname: Cai fullname: Cai, Xingwei organization: School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212003, Jiangsu Province, PR China – sequence: 10 givenname: Haiwei surname: Shi fullname: Shi, Haiwei organization: Jiangsu Institute for Food and Drug Control, Nanjing, 210019, Jiangsu Province, PR China – sequence: 11 givenname: Hian Kee surname: Lee fullname: Lee, Hian Kee email: chmleehk@nus.edu.sg, hiankeelee@u.nus.edu organization: Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Singapore |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32928410$$D View this record in MEDLINE/PubMed |
BookMark | eNqNksFu1DAQhi1URLeFRwD5yCVbO042sTggVEGLVIlLOVsTe9L1yrGD7UXtjdfgVXgcnqSOdnvhUk6WPP__j_3NnJETHzwS8pazNWd8c7FbZ3DgM6xrVpe7mou-f0FWvO9EJdpOnJAVY0JWkjfslJyltGOM1YKJV-RU1LLuG85W5M9VcIZ68GGONk0Xt8E59Onvr980Ityhz1SHaXZ4TyHR2UGagreapiIKkVpPtwgmzaCRJuvvHFYmhplOVseA9zmCzjZ4OhaxDi5EO2GOJcBgxkMpjEt1Amdw-2BwyRxDMDTB0jfR_ZJL0wQxz9sCYXmYCfv8mrwcwSV8czzPyfcvn28vr6ubb1dfLz_dVLrZNLlCJgBgbAYchrqXgvNBNtL0g8R-09Vj2wLIUjIAiH3XY8tH2EjD2wE7yUZxTt4fcucYfuwxZTXZpNEV-hj2SdVN123qhnXsP6RN4V6mIov03VG6HyY0quAvP3xQT6Mpgg8HQQGZUsRRaZthIVagWqc4U8siqJ06LoJaFkEdFqG423_cTw2e8308-LAQ_WkxqqQteo3GxjIvZYJ9JuERIOTXGQ |
CitedBy_id | crossref_primary_10_1016_j_bios_2023_115233 crossref_primary_10_1016_j_ijbiomac_2023_123570 crossref_primary_10_1016_j_talanta_2022_124169 crossref_primary_10_1016_j_foodcont_2022_109408 crossref_primary_10_1016_j_scp_2021_100478 crossref_primary_10_1002_elps_202100216 crossref_primary_10_1016_j_sampre_2023_100053 crossref_primary_10_1016_j_foodchem_2024_139973 crossref_primary_10_1080_10408398_2021_1958745 crossref_primary_10_3390_pr10071347 crossref_primary_10_1021_acs_analchem_2c05462 crossref_primary_10_1039_D2TA07966F crossref_primary_10_1016_j_eti_2021_102053 crossref_primary_10_1016_j_saa_2023_122920 crossref_primary_10_1016_j_snb_2021_129708 crossref_primary_10_1039_D2AY00689H crossref_primary_10_1021_acsami_0c22105 crossref_primary_10_1080_17415993_2023_2206967 crossref_primary_10_1142_S0217984921505242 crossref_primary_10_1016_j_aca_2021_338630 crossref_primary_10_1016_j_aca_2025_343918 crossref_primary_10_1016_j_foodchem_2023_136659 crossref_primary_10_1016_j_snb_2021_130082 crossref_primary_10_1016_j_talanta_2021_122335 crossref_primary_10_1007_s13367_021_0016_y crossref_primary_10_1039_D4LC00966E crossref_primary_10_1016_j_jhazmat_2020_124624 crossref_primary_10_1002_sscp_202300243 crossref_primary_10_1016_j_cclet_2023_109220 crossref_primary_10_1016_j_optcom_2022_128073 crossref_primary_10_1016_j_aca_2023_342132 crossref_primary_10_1021_acs_analchem_2c01768 crossref_primary_10_1016_j_foodchem_2024_139402 crossref_primary_10_1007_s12161_021_02021_4 crossref_primary_10_1016_j_bios_2020_112788 crossref_primary_10_3390_foods11091351 crossref_primary_10_1016_j_teac_2020_e00113 crossref_primary_10_1109_JLT_2022_3154929 crossref_primary_10_1039_D1AY02031E crossref_primary_10_1016_j_cclet_2021_02_029 crossref_primary_10_3390_molecules27092953 crossref_primary_10_1016_j_biosx_2022_100173 crossref_primary_10_1007_s13738_023_02935_2 crossref_primary_10_1016_j_snb_2022_131993 |
Cites_doi | 10.1021/acssensors.5b00236 10.1039/C9CC04411F 10.1021/cm2021966 10.1016/j.talanta.2018.06.040 10.1021/acs.analchem.9b00255 10.1021/acssensors.8b00835 10.1007/s00604-019-3506-6 10.1016/j.bioelechem.2009.06.016 10.1039/C5RA16266A 10.1016/j.microc.2017.01.032 10.1021/acssensors.6b00008 10.1021/acssensors.8b00664 10.1021/acs.analchem.6b02514 10.1016/j.talanta.2019.01.108 10.1016/j.jhazmat.2020.122403 10.1016/j.foodchem.2018.02.030 10.1039/C8CC09882D 10.1016/j.snb.2018.07.071 10.1016/j.aca.2019.10.045 10.1016/j.talanta.2019.05.004 10.3390/bios6030032 10.1016/j.talanta.2017.12.002 10.1021/acssensors.7b00896 10.1007/s13197-019-03635-7 10.1021/jacs.8b09794 10.1016/j.foodchem.2016.01.136 10.1016/j.snb.2014.12.043 10.1016/j.talanta.2016.08.010 10.1021/acs.inorgchem.8b02411 10.1016/j.snb.2018.05.089 10.1039/C4CC00914B 10.1016/j.bios.2017.09.010 10.1016/j.snb.2019.127451 10.1021/acs.analchem.6b01543 10.1021/acssensors.9b00917 10.1016/j.trac.2018.09.016 10.1021/acssensors.9b01204 10.1016/j.talanta.2019.120396 10.1007/s12274-018-2207-5 |
ContentType | Journal Article |
Copyright | 2020 Elsevier B.V. Copyright © 2020 Elsevier B.V. All rights reserved. |
Copyright_xml | – notice: 2020 Elsevier B.V. – notice: Copyright © 2020 Elsevier B.V. All rights reserved. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 |
DOI | 10.1016/j.talanta.2020.121388 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE AGRICOLA |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1873-3573 |
ExternalDocumentID | 32928410 10_1016_j_talanta_2020_121388 S0039914020306792 |
Genre | Journal Article |
GroupedDBID | --K --M -DZ -~X .~1 0R~ 123 1B1 1RT 1~. 1~5 4.4 457 4G. 53G 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARLI AAXUO ABJNI ABMAC ABYKQ ACDAQ ACGFS ACNCT ACRLP ADBBV ADECG ADEZE AEBSH AEKER AENEX AFKWA AFTJW AFZHZ AGHFR AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AJOXV AJSZI ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 F5P FDB FIRID FLBIZ FNPLU FYGXN G-Q GBLVA IHE J1W K-O KOM M36 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RNS ROL RPZ SCC SCH SDF SDG SDP SES SPC SPCBC SSK SSZ T5K TN5 TWZ WH7 XPP YK3 YNT ZMT ~02 ~G- 29Q 3O- AAHBH AAQXK AATTM AAXKI AAYJJ AAYWO AAYXX ABDPE ABEFU ABFNM ABWVN ABXDB ACNNM ACRPL ACVFH ADCNI ADIYS ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AJQLL AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION EJD FEDTE FGOYB HMU HVGLF HZ~ R2- RIG SCB SEW SSH WUQ XOL CGR CUY CVF ECM EFKBS EIF NPM 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-c464t-e03aaaf4bebb289311b949d8b9e8672f55aa9bb2daaee878e51fa69d15be790f3 |
IEDL.DBID | AIKHN |
ISSN | 0039-9140 1873-3573 |
IngestDate | Fri Sep 05 07:39:49 EDT 2025 Thu Sep 04 16:41:38 EDT 2025 Mon Jul 21 05:56:35 EDT 2025 Tue Jul 01 03:43:55 EDT 2025 Thu Apr 24 23:09:44 EDT 2025 Fri Feb 23 02:46:12 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Tollens' reagent Gold nanoprism Smartphone nanocolorimetry Formaldehyde Headspace single-drop microextraction |
Language | English |
License | Copyright © 2020 Elsevier B.V. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c464t-e03aaaf4bebb289311b949d8b9e8672f55aa9bb2daaee878e51fa69d15be790f3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 32928410 |
PQID | 2442840399 |
PQPubID | 23479 |
ParticipantIDs | proquest_miscellaneous_2477624070 proquest_miscellaneous_2442840399 pubmed_primary_32928410 crossref_citationtrail_10_1016_j_talanta_2020_121388 crossref_primary_10_1016_j_talanta_2020_121388 elsevier_sciencedirect_doi_10_1016_j_talanta_2020_121388 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-12-01 2020-12-00 2020-Dec-01 20201201 |
PublicationDateYYYYMMDD | 2020-12-01 |
PublicationDate_xml | – month: 12 year: 2020 text: 2020-12-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Netherlands |
PublicationPlace_xml | – name: Netherlands |
PublicationTitle | Talanta (Oxford) |
PublicationTitleAlternate | Talanta |
PublicationYear | 2020 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Zeng, Fan, Zhao, Wang, Zhou, Chen, Yan, Li, Xing, Wang (bib14) 2014; 50 Kundu, Bhardwaj, Pandey, Krishnan, Kotnala, Sumana (bib41) 2019; 56 Wahed, Razzaq, Dharmapuri, Corrales (bib6) 2016; 202 Guo, Yin, Xu, Zheng, Fang, Chong, Zhou, Xu, Xu, Li, Li (bib15) 2019; 4 Hong, Choi, Park (bib31) 2011; 23 Zheng, Zhang, Wang, Cai, Du, Zhang (bib37) 2018; 188 Tian, Fan, Li, Ma (bib18) 2016; 1 Li, Wang, Zhang, Huo, Hou, Zhou, Luo, Yang (bib22) 2020; 1096 Li, Sun, Mao, Tang, Liu, Qi, Deng, Shen, Chen, Peng (bib33) 2019; 186 Nandi, Sharma, Trivedi, Biswas (bib34) 2018; 57 Wang, Hou, De, Gu, Han (bib17) 2018; 3 Liu, Zeng, Tian, Hou, Wu (bib21) 2019; 202 Chaiendoo, Sooksin, Kulchat, Promarak, Tuntulani, Ngeontae (bib38) 2018; 255 Zhou, Dong, Yan, Shi, Yu, Wei, Li (bib35) 2015; 209 Noor Aini, Siddiquee, Ampon (bib39) 2016; 6 Akshath, Bhatt (bib19) 2018; 100 Bareket, Rephaeli, Berkovitch, Nudelman, Rishpon (bib20) 2010; 77 Yao, Wang, Li (bib24) 2020; 305 Sanchez, Sanchez-Sanchez, Izquierdo, Mathieu, Ghanbaja, Berger, Celzard, Fierro (bib4) 2020; 208 Guo, binte Nawi, Lee (bib29) 2016; 88 Lin, Huang, Liu, Lin, Ma, Liu (bib23) 2015; 5 Shahvar, Saraji, Shamsaei (bib32) 2018; 273 Guntner, Koren, Chikkadi, Righettoni, Pratsinis (bib3) 2016; 1 Iarc (bib5) 2006 Pinto, Rocha, Richter, Munoz, Silva (bib8) 2019; 198 Xu, Zhang, Zeng, Liu, Kinsella, Sheng (bib2) 2016; 160 Zhao, Ji, Ma, Wu, Cheng, Yin (bib36) 2018; 3 Wang, Wang, Jiao, Hao, Wu, Wang, Wang (bib1) 2018; 179 Zheng, Zhang, Wang, Cai, Du, Zhang (bib25) 2018; 188 Ma, Gao, Zhu, Zhao, Lin (bib12) 2019; 55 Jahan, Zhang, Pratush, Xie, Xiao, Fan, Cao (bib30) 2016; 88 Kim, Kumar, Kwon, Kim (bib9) 2017; 132 Tang, Qi, Ansah, Nalouzebi Fouemina, Shen, Basheer, Lee (bib26) 2018; 108 Tang, Qi, Xia, Xu, Xu, Zhu, Shen, Lee (bib27) 2019; 91 Sun, Zhang, Hao, Zhai, Dong (bib7) 2019; 4 Zong, Zhang, Zhu, Zhao, Zhang, Zhu (bib40) 2018; 271 Li, Zhang, Zhang, Lu, Wang, Chen (bib13) 2018; 3 Xu, Xu, Ma, Chen, Huang, Chen, Gao, Wang, Lou, Wang (bib11) 2018; 140 Tegladza, Qi, Chen, Alorku, Tang, Shen, Kong, Yuan, Liu, Lee (bib28) 2020; 393 Kukkar, Vellingiri, Kaur, Bhardwaj, Deep, Kim (bib10) 2019; 12 Jeong, Kim, Jang, Kang, Kima, Kim (bib16) 2019; 55 Pinto (10.1016/j.talanta.2020.121388_bib8) 2019; 198 Li (10.1016/j.talanta.2020.121388_bib13) 2018; 3 Li (10.1016/j.talanta.2020.121388_bib22) 2020; 1096 Li (10.1016/j.talanta.2020.121388_bib33) 2019; 186 Ma (10.1016/j.talanta.2020.121388_bib12) 2019; 55 Nandi (10.1016/j.talanta.2020.121388_bib34) 2018; 57 Zhou (10.1016/j.talanta.2020.121388_bib35) 2015; 209 Jeong (10.1016/j.talanta.2020.121388_bib16) 2019; 55 Tegladza (10.1016/j.talanta.2020.121388_bib28) 2020; 393 Jahan (10.1016/j.talanta.2020.121388_bib30) 2016; 88 Zong (10.1016/j.talanta.2020.121388_bib40) 2018; 271 Zhao (10.1016/j.talanta.2020.121388_bib36) 2018; 3 Liu (10.1016/j.talanta.2020.121388_bib21) 2019; 202 Hong (10.1016/j.talanta.2020.121388_bib31) 2011; 23 Kukkar (10.1016/j.talanta.2020.121388_bib10) 2019; 12 Tang (10.1016/j.talanta.2020.121388_bib27) 2019; 91 Guo (10.1016/j.talanta.2020.121388_bib29) 2016; 88 Chaiendoo (10.1016/j.talanta.2020.121388_bib38) 2018; 255 Sanchez (10.1016/j.talanta.2020.121388_bib4) 2020; 208 Guo (10.1016/j.talanta.2020.121388_bib15) 2019; 4 Yao (10.1016/j.talanta.2020.121388_bib24) 2020; 305 Akshath (10.1016/j.talanta.2020.121388_bib19) 2018; 100 Zheng (10.1016/j.talanta.2020.121388_bib25) 2018; 188 Guntner (10.1016/j.talanta.2020.121388_bib3) 2016; 1 Wang (10.1016/j.talanta.2020.121388_bib17) 2018; 3 Shahvar (10.1016/j.talanta.2020.121388_bib32) 2018; 273 Kundu (10.1016/j.talanta.2020.121388_bib41) 2019; 56 Tang (10.1016/j.talanta.2020.121388_bib26) 2018; 108 Iarc (10.1016/j.talanta.2020.121388_bib5) 2006 Noor Aini (10.1016/j.talanta.2020.121388_bib39) 2016; 6 Xu (10.1016/j.talanta.2020.121388_bib11) 2018; 140 Kim (10.1016/j.talanta.2020.121388_bib9) 2017; 132 Xu (10.1016/j.talanta.2020.121388_bib2) 2016; 160 Zeng (10.1016/j.talanta.2020.121388_bib14) 2014; 50 Bareket (10.1016/j.talanta.2020.121388_bib20) 2010; 77 Wang (10.1016/j.talanta.2020.121388_bib1) 2018; 179 Zheng (10.1016/j.talanta.2020.121388_bib37) 2018; 188 Sun (10.1016/j.talanta.2020.121388_bib7) 2019; 4 Wahed (10.1016/j.talanta.2020.121388_bib6) 2016; 202 Tian (10.1016/j.talanta.2020.121388_bib18) 2016; 1 Lin (10.1016/j.talanta.2020.121388_bib23) 2015; 5 |
References_xml | – volume: 1 start-page: 243 year: 2016 end-page: 250 ident: bib18 article-title: Zeolitic imidazolate framework coated ZnO nanorods as molecular sieving to improve selectivity of formaldehyde gas sensor publication-title: ACS Sens. – volume: 57 start-page: 15149 year: 2018 end-page: 15157 ident: bib34 article-title: Metal-organic framework showing selective and sensitive detection of exogenous and endogenous formaldehyde publication-title: Inorg. Chem. – volume: 50 start-page: 8121 year: 2014 end-page: 8123 ident: bib14 article-title: A colorimetric agarose gel for formaldehyde measurement based on nanotechnology involving Tollens reaction publication-title: Chem. Commun. – volume: 186 start-page: 403 year: 2019 ident: bib33 article-title: Antimony-doped tin oxide nanoparticles as peroxidase mimics for paper-based colorimetric detection of glucose using smartphone read-out publication-title: Microchim. Acta – volume: 88 start-page: 10490 year: 2016 end-page: 10498 ident: bib30 article-title: In-vial temperature gradient headspace single drop microextraction designed by multiphysics simulation publication-title: Anal. Chem. – volume: 255 start-page: 41 year: 2018 end-page: 48 ident: bib38 article-title: A new formaldehyde sensor from silver nanoclusters modified Tollens' reagent publication-title: Food Chem. – volume: 100 start-page: 201 year: 2018 end-page: 207 ident: bib19 article-title: Supramolecular nano-sniffers for ultrasensitive detection of formaldehyde publication-title: Biosens. Bioelectron. – volume: 23 start-page: 5375 year: 2011 end-page: 5378 ident: bib31 article-title: Shape control of Ag shell growth on Au nanodisks publication-title: Chem. Mater. – start-page: 39 year: 2006 end-page: 325 ident: bib5 article-title: Formaldehyde, 2-butoxyethanol and 1-tert-butoxypropan-2-ol publication-title: IARC (Int. Agency Res. Cancer) Monogr. Eval. Carcinog. Risks Hum. – volume: 202 start-page: 274 year: 2019 end-page: 278 ident: bib21 article-title: Dynamic reaction regulated surface-enhanced Raman scattering for detection of trace formaldehyde publication-title: Talanta – volume: 4 start-page: 2724 year: 2019 end-page: 2729 ident: bib15 article-title: In situ generated plasmonic silver nanoparticle-sensitized amorphous titanium dioxide for ultrasensitive photoelectrochemical sensing of formaldehyde publication-title: ACS Sens. – volume: 305 start-page: 127451 year: 2020 ident: bib24 article-title: Silver clusters based sensor for Low content formaldehyde detection in colorimetric and fluorometric dual Mode publication-title: Sensor. Actuator. B Chem. – volume: 3 start-page: 2112 year: 2018 end-page: 2117 ident: bib36 article-title: An aggregation-induced emission-based "Turn-On" fluorescent probe for facile detection of gaseous formaldehyde publication-title: ACS Sens. – volume: 140 start-page: 16408 year: 2018 end-page: 16412 ident: bib11 article-title: Analyte regeneration fluorescent probes for formaldehyde enabled by regiospecific formaldehyde-induced intramolecularity publication-title: J. Am. Chem. Soc. – volume: 4 start-page: 2631 year: 2019 end-page: 2637 ident: bib7 article-title: A self-powered biosensor with a flake electrochromic display for electrochemical and colorimetric formaldehyde detection publication-title: ACS Sens. – volume: 55 start-page: 11263 year: 2019 end-page: 11266 ident: bib12 article-title: Development of a unique reversible fluorescent probe for tracking endogenous sulfur dioxide and formaldehyde fluctuation in vivo publication-title: Chem. Commun. – volume: 108 start-page: 306 year: 2018 end-page: 313 ident: bib26 article-title: Single-drop microextraction publication-title: TrAC Trends Anal. Chem. – volume: 5 start-page: 99944 year: 2015 end-page: 99950 ident: bib23 article-title: Design of an ultra-sensitive gold nanorod colorimetric sensor and its application based on formaldehyde reducing Ag+ publication-title: RSC Adv. – volume: 91 start-page: 5888 year: 2019 end-page: 5895 ident: bib27 article-title: Smartphone nanocolorimetric determination of hydrogen sulfide in biosamples after silver-gold core-shell nanoprism-based headspace single-drop microextraction publication-title: Anal. Chem. – volume: 6 start-page: 32 year: 2016 ident: bib39 article-title: Development of formaldehyde biosensor for determination of formalin in fish samples; malabar red snapper (Lutjanus malabaricus) and longtail tuna (Thunnus tonggol) publication-title: Biosensors – volume: 77 start-page: 94 year: 2010 end-page: 99 ident: bib20 article-title: Carbon nanotubes based electrochemical biosensor for detection of formaldehyde released from a cancer cell line treated with formaldehyde-releasing anticancer prodrugs publication-title: Bioelectrochemistry – volume: 188 start-page: 630 year: 2018 end-page: 636 ident: bib25 article-title: Silver nanoparticles/activated carbon composite as a facile SERS substrate for highly sensitive detection of endogenous formaldehyde in human urine by catalytic reaction publication-title: Talanta – volume: 393 start-page: 122403 year: 2020 ident: bib28 article-title: Direct immersion single-drop microextraction of semi-volatile organic compounds in environmental samples: a review publication-title: J. Hazard Mater. – volume: 188 start-page: 630 year: 2018 end-page: 636 ident: bib37 article-title: Silver nanoparticles/activated carbon composite as a facile SERS substrate for highly sensitive detection of endogenous formaldehyde in human urine by catalytic reaction publication-title: Talanta – volume: 56 start-page: 1829 year: 2019 end-page: 1840 ident: bib41 article-title: Development of electrochemical biosensor based on CNT-Fe3O4 nanocomposite to determine formaldehyde adulteration in orange juice publication-title: J. Food Sci. Technol. – volume: 179 start-page: 676 year: 2018 end-page: 684 ident: bib1 article-title: Preparation of magnetic mesoporous poly-melamine-formaldehyde composite for efficient extraction of chlorophenols publication-title: Talanta – volume: 202 start-page: 476 year: 2016 end-page: 483 ident: bib6 article-title: Determination of formaldehyde in food and feed by an in-house validated HPLC method publication-title: Food Chem. – volume: 160 start-page: 645 year: 2016 end-page: 652 ident: bib2 article-title: A simple naphthalene-based fluorescent probe for high selective detection of formaldehyde in toffees and HeLa cells via aza-Cope reaction publication-title: Talanta – volume: 132 start-page: 219 year: 2017 end-page: 226 ident: bib9 article-title: Metal-organic frameworks as superior media for thermal desorption-gas chromatography application: a critical assessment of MOF-5 for the quantitation of airborne formaldehyde publication-title: Microchem. J. – volume: 3 start-page: 2394 year: 2018 end-page: 2401 ident: bib13 article-title: Ultrafast and efficient detection of formaldehyde in aqueous solutions using chitosan-based fluorescent polymers publication-title: ACS Sens. – volume: 55 start-page: 3622 year: 2019 end-page: 3655 ident: bib16 article-title: Bio-inspired heterogeneous sensitization of bimetal oxides on SnO publication-title: Chem. Commun. – volume: 209 start-page: 664 year: 2015 end-page: 669 ident: bib35 article-title: HCHO-reactive molecule with dual-emission-enhancement property for quantitatively detecting HCHO in near 100% water solution publication-title: Sensor. Actuator. B Chem. – volume: 1096 start-page: 138 year: 2020 end-page: 147 ident: bib22 article-title: New application of old methods: development of colorimetric sensor array based on Tollen's reagent for the discrimination of aldehydes based on Tollen's reagent publication-title: Anal. Chim. Acta – volume: 271 start-page: 311 year: 2018 end-page: 320 ident: bib40 article-title: Rapid and highly selective detection of formaldehyde in food using quartz crystal microbalance sensors based on biomimetic poly-dopamine functionalized hollow mesoporous silica spheres publication-title: Sensor. Actuator. B Chem. – volume: 12 start-page: 225 year: 2019 end-page: 246 ident: bib10 article-title: Nanomaterials for sensing of formaldehyde in air: principles, applications, and performance evaluation publication-title: Nano Res – volume: 1 start-page: 528 year: 2016 end-page: 535 ident: bib3 article-title: E-nose sensing of low-ppb formaldehyde in gas mixtures at high relative humidity for breath screening of lung cancer publication-title: ACS Sens. – volume: 88 start-page: 8409 year: 2016 end-page: 8414 ident: bib29 article-title: Fully automated headspace bubble-in-drop microextraction publication-title: Anal. Chem. – volume: 198 start-page: 237 year: 2019 end-page: 241 ident: bib8 article-title: Indirect determination of formaldehyde by square-wave voltammetry based on the electrochemical oxidation of 3,5-diacetyl-1,4-dihydrolutidine using an unmodified glassy-carbon electrode publication-title: Talanta – volume: 3 start-page: 468 year: 2018 end-page: 475 ident: bib17 article-title: One-step synthesis of Co-doped In publication-title: ACS Sens. – volume: 273 start-page: 1474 year: 2018 end-page: 1478 ident: bib32 article-title: Headspace single drop microextraction combined with mobile phone-based on-drop sensing for the determination of formaldehyde publication-title: Sensor. Actuator. B Chem. – volume: 208 start-page: 120396 year: 2020 ident: bib4 article-title: Nanostructured tin oxide materials for the sub-ppm detection of indoor formaldehyde pollution publication-title: Talanta – volume: 1 start-page: 243 year: 2016 ident: 10.1016/j.talanta.2020.121388_bib18 article-title: Zeolitic imidazolate framework coated ZnO nanorods as molecular sieving to improve selectivity of formaldehyde gas sensor publication-title: ACS Sens. doi: 10.1021/acssensors.5b00236 – volume: 55 start-page: 11263 year: 2019 ident: 10.1016/j.talanta.2020.121388_bib12 article-title: Development of a unique reversible fluorescent probe for tracking endogenous sulfur dioxide and formaldehyde fluctuation in vivo publication-title: Chem. Commun. doi: 10.1039/C9CC04411F – volume: 23 start-page: 5375 year: 2011 ident: 10.1016/j.talanta.2020.121388_bib31 article-title: Shape control of Ag shell growth on Au nanodisks publication-title: Chem. Mater. doi: 10.1021/cm2021966 – volume: 188 start-page: 630 year: 2018 ident: 10.1016/j.talanta.2020.121388_bib25 article-title: Silver nanoparticles/activated carbon composite as a facile SERS substrate for highly sensitive detection of endogenous formaldehyde in human urine by catalytic reaction publication-title: Talanta doi: 10.1016/j.talanta.2018.06.040 – volume: 91 start-page: 5888 year: 2019 ident: 10.1016/j.talanta.2020.121388_bib27 article-title: Smartphone nanocolorimetric determination of hydrogen sulfide in biosamples after silver-gold core-shell nanoprism-based headspace single-drop microextraction publication-title: Anal. Chem. doi: 10.1021/acs.analchem.9b00255 – volume: 3 start-page: 2394 year: 2018 ident: 10.1016/j.talanta.2020.121388_bib13 article-title: Ultrafast and efficient detection of formaldehyde in aqueous solutions using chitosan-based fluorescent polymers publication-title: ACS Sens. doi: 10.1021/acssensors.8b00835 – volume: 186 start-page: 403 year: 2019 ident: 10.1016/j.talanta.2020.121388_bib33 article-title: Antimony-doped tin oxide nanoparticles as peroxidase mimics for paper-based colorimetric detection of glucose using smartphone read-out publication-title: Microchim. Acta doi: 10.1007/s00604-019-3506-6 – volume: 77 start-page: 94 year: 2010 ident: 10.1016/j.talanta.2020.121388_bib20 article-title: Carbon nanotubes based electrochemical biosensor for detection of formaldehyde released from a cancer cell line treated with formaldehyde-releasing anticancer prodrugs publication-title: Bioelectrochemistry doi: 10.1016/j.bioelechem.2009.06.016 – volume: 5 start-page: 99944 year: 2015 ident: 10.1016/j.talanta.2020.121388_bib23 article-title: Design of an ultra-sensitive gold nanorod colorimetric sensor and its application based on formaldehyde reducing Ag+ publication-title: RSC Adv. doi: 10.1039/C5RA16266A – volume: 132 start-page: 219 year: 2017 ident: 10.1016/j.talanta.2020.121388_bib9 article-title: Metal-organic frameworks as superior media for thermal desorption-gas chromatography application: a critical assessment of MOF-5 for the quantitation of airborne formaldehyde publication-title: Microchem. J. doi: 10.1016/j.microc.2017.01.032 – volume: 1 start-page: 528 year: 2016 ident: 10.1016/j.talanta.2020.121388_bib3 article-title: E-nose sensing of low-ppb formaldehyde in gas mixtures at high relative humidity for breath screening of lung cancer publication-title: ACS Sens. doi: 10.1021/acssensors.6b00008 – volume: 3 start-page: 2112 year: 2018 ident: 10.1016/j.talanta.2020.121388_bib36 article-title: An aggregation-induced emission-based "Turn-On" fluorescent probe for facile detection of gaseous formaldehyde publication-title: ACS Sens. doi: 10.1021/acssensors.8b00664 – volume: 88 start-page: 10490 year: 2016 ident: 10.1016/j.talanta.2020.121388_bib30 article-title: In-vial temperature gradient headspace single drop microextraction designed by multiphysics simulation publication-title: Anal. Chem. doi: 10.1021/acs.analchem.6b02514 – volume: 198 start-page: 237 year: 2019 ident: 10.1016/j.talanta.2020.121388_bib8 article-title: Indirect determination of formaldehyde by square-wave voltammetry based on the electrochemical oxidation of 3,5-diacetyl-1,4-dihydrolutidine using an unmodified glassy-carbon electrode publication-title: Talanta doi: 10.1016/j.talanta.2019.01.108 – volume: 393 start-page: 122403 year: 2020 ident: 10.1016/j.talanta.2020.121388_bib28 article-title: Direct immersion single-drop microextraction of semi-volatile organic compounds in environmental samples: a review publication-title: J. Hazard Mater. doi: 10.1016/j.jhazmat.2020.122403 – volume: 255 start-page: 41 year: 2018 ident: 10.1016/j.talanta.2020.121388_bib38 article-title: A new formaldehyde sensor from silver nanoclusters modified Tollens' reagent publication-title: Food Chem. doi: 10.1016/j.foodchem.2018.02.030 – volume: 55 start-page: 3622 year: 2019 ident: 10.1016/j.talanta.2020.121388_bib16 article-title: Bio-inspired heterogeneous sensitization of bimetal oxides on SnO2 scaffolds for unparalleled formaldehyde detection publication-title: Chem. Commun. doi: 10.1039/C8CC09882D – volume: 273 start-page: 1474 year: 2018 ident: 10.1016/j.talanta.2020.121388_bib32 article-title: Headspace single drop microextraction combined with mobile phone-based on-drop sensing for the determination of formaldehyde publication-title: Sensor. Actuator. B Chem. doi: 10.1016/j.snb.2018.07.071 – volume: 1096 start-page: 138 year: 2020 ident: 10.1016/j.talanta.2020.121388_bib22 article-title: New application of old methods: development of colorimetric sensor array based on Tollen's reagent for the discrimination of aldehydes based on Tollen's reagent publication-title: Anal. Chim. Acta doi: 10.1016/j.aca.2019.10.045 – volume: 202 start-page: 274 year: 2019 ident: 10.1016/j.talanta.2020.121388_bib21 article-title: Dynamic reaction regulated surface-enhanced Raman scattering for detection of trace formaldehyde publication-title: Talanta doi: 10.1016/j.talanta.2019.05.004 – volume: 6 start-page: 32 year: 2016 ident: 10.1016/j.talanta.2020.121388_bib39 article-title: Development of formaldehyde biosensor for determination of formalin in fish samples; malabar red snapper (Lutjanus malabaricus) and longtail tuna (Thunnus tonggol) publication-title: Biosensors doi: 10.3390/bios6030032 – volume: 179 start-page: 676 year: 2018 ident: 10.1016/j.talanta.2020.121388_bib1 article-title: Preparation of magnetic mesoporous poly-melamine-formaldehyde composite for efficient extraction of chlorophenols publication-title: Talanta doi: 10.1016/j.talanta.2017.12.002 – volume: 3 start-page: 468 year: 2018 ident: 10.1016/j.talanta.2020.121388_bib17 article-title: One-step synthesis of Co-doped In2O3 nanorods for high response of formaldehyde sensor at low temperature publication-title: ACS Sens. doi: 10.1021/acssensors.7b00896 – volume: 56 start-page: 1829 year: 2019 ident: 10.1016/j.talanta.2020.121388_bib41 article-title: Development of electrochemical biosensor based on CNT-Fe3O4 nanocomposite to determine formaldehyde adulteration in orange juice publication-title: J. Food Sci. Technol. doi: 10.1007/s13197-019-03635-7 – volume: 140 start-page: 16408 year: 2018 ident: 10.1016/j.talanta.2020.121388_bib11 article-title: Analyte regeneration fluorescent probes for formaldehyde enabled by regiospecific formaldehyde-induced intramolecularity publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.8b09794 – volume: 202 start-page: 476 year: 2016 ident: 10.1016/j.talanta.2020.121388_bib6 article-title: Determination of formaldehyde in food and feed by an in-house validated HPLC method publication-title: Food Chem. doi: 10.1016/j.foodchem.2016.01.136 – volume: 209 start-page: 664 year: 2015 ident: 10.1016/j.talanta.2020.121388_bib35 article-title: HCHO-reactive molecule with dual-emission-enhancement property for quantitatively detecting HCHO in near 100% water solution publication-title: Sensor. Actuator. B Chem. doi: 10.1016/j.snb.2014.12.043 – volume: 160 start-page: 645 year: 2016 ident: 10.1016/j.talanta.2020.121388_bib2 article-title: A simple naphthalene-based fluorescent probe for high selective detection of formaldehyde in toffees and HeLa cells via aza-Cope reaction publication-title: Talanta doi: 10.1016/j.talanta.2016.08.010 – volume: 57 start-page: 15149 year: 2018 ident: 10.1016/j.talanta.2020.121388_bib34 article-title: Metal-organic framework showing selective and sensitive detection of exogenous and endogenous formaldehyde publication-title: Inorg. Chem. doi: 10.1021/acs.inorgchem.8b02411 – volume: 271 start-page: 311 year: 2018 ident: 10.1016/j.talanta.2020.121388_bib40 article-title: Rapid and highly selective detection of formaldehyde in food using quartz crystal microbalance sensors based on biomimetic poly-dopamine functionalized hollow mesoporous silica spheres publication-title: Sensor. Actuator. B Chem. doi: 10.1016/j.snb.2018.05.089 – volume: 50 start-page: 8121 year: 2014 ident: 10.1016/j.talanta.2020.121388_bib14 article-title: A colorimetric agarose gel for formaldehyde measurement based on nanotechnology involving Tollens reaction publication-title: Chem. Commun. doi: 10.1039/C4CC00914B – volume: 188 start-page: 630 year: 2018 ident: 10.1016/j.talanta.2020.121388_bib37 article-title: Silver nanoparticles/activated carbon composite as a facile SERS substrate for highly sensitive detection of endogenous formaldehyde in human urine by catalytic reaction publication-title: Talanta doi: 10.1016/j.talanta.2018.06.040 – volume: 100 start-page: 201 year: 2018 ident: 10.1016/j.talanta.2020.121388_bib19 article-title: Supramolecular nano-sniffers for ultrasensitive detection of formaldehyde publication-title: Biosens. Bioelectron. doi: 10.1016/j.bios.2017.09.010 – volume: 305 start-page: 127451 year: 2020 ident: 10.1016/j.talanta.2020.121388_bib24 article-title: Silver clusters based sensor for Low content formaldehyde detection in colorimetric and fluorometric dual Mode publication-title: Sensor. Actuator. B Chem. doi: 10.1016/j.snb.2019.127451 – volume: 88 start-page: 8409 year: 2016 ident: 10.1016/j.talanta.2020.121388_bib29 article-title: Fully automated headspace bubble-in-drop microextraction publication-title: Anal. Chem. doi: 10.1021/acs.analchem.6b01543 – start-page: 39 year: 2006 ident: 10.1016/j.talanta.2020.121388_bib5 article-title: Formaldehyde, 2-butoxyethanol and 1-tert-butoxypropan-2-ol publication-title: IARC (Int. Agency Res. Cancer) Monogr. Eval. Carcinog. Risks Hum. – volume: 4 start-page: 2631 year: 2019 ident: 10.1016/j.talanta.2020.121388_bib7 article-title: A self-powered biosensor with a flake electrochromic display for electrochemical and colorimetric formaldehyde detection publication-title: ACS Sens. doi: 10.1021/acssensors.9b00917 – volume: 108 start-page: 306 year: 2018 ident: 10.1016/j.talanta.2020.121388_bib26 article-title: Single-drop microextraction publication-title: TrAC Trends Anal. Chem. doi: 10.1016/j.trac.2018.09.016 – volume: 4 start-page: 2724 year: 2019 ident: 10.1016/j.talanta.2020.121388_bib15 article-title: In situ generated plasmonic silver nanoparticle-sensitized amorphous titanium dioxide for ultrasensitive photoelectrochemical sensing of formaldehyde publication-title: ACS Sens. doi: 10.1021/acssensors.9b01204 – volume: 208 start-page: 120396 year: 2020 ident: 10.1016/j.talanta.2020.121388_bib4 article-title: Nanostructured tin oxide materials for the sub-ppm detection of indoor formaldehyde pollution publication-title: Talanta doi: 10.1016/j.talanta.2019.120396 – volume: 12 start-page: 225 year: 2019 ident: 10.1016/j.talanta.2020.121388_bib10 article-title: Nanomaterials for sensing of formaldehyde in air: principles, applications, and performance evaluation publication-title: Nano Res doi: 10.1007/s12274-018-2207-5 |
SSID | ssj0002303 |
Score | 2.5247533 |
Snippet | In this work, an assay with high sensitivity and selectivity for the detection of formaldehyde (FA) is presented. The assay applied a gold nanoprism/Tollens’... In this work, an assay with high sensitivity and selectivity for the detection of formaldehyde (FA) is presented. The assay applied a gold nanoprism/Tollens'... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 121388 |
SubjectTerms | calibration chicken meat color Colorimetry detection limit droplets Formaldehyde Gold Gold nanoprism headspace analysis Headspace single-drop microextraction Indicators and Reagents microextraction mobile telephones nanogold nanoprisms raw foods redox reactions Smartphone Smartphone nanocolorimetry solvents surface plasmon resonance Tollens' reagent |
Title | Gold nanoprism/Tollens’ reagent complex as plasmonic sensor in headspace single-drop microextraction for colorimetric detection of formaldehyde in food samples using smartphone readout |
URI | https://dx.doi.org/10.1016/j.talanta.2020.121388 https://www.ncbi.nlm.nih.gov/pubmed/32928410 https://www.proquest.com/docview/2442840399 https://www.proquest.com/docview/2477624070 |
Volume | 220 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NbtNAEF6V9AAXRPkN0GqQuLqJ7V3be6wiSgDRUyv1Zo29Y0iV2FHsSHBBvAavwuPwJMz4J6gSpRJH2zv2emc98-165hulXueYOF51hZ7LfeNpBqyezTV6EbI7R18X2CaFfTyL5hf6_aW53FOzIRdGwip729_Z9NZa92cm_WhO1ouF5Piyc_Vl_SOw17Id3g9CG5mR2j9592F-tjPIjLJ77l3ricCfRJ7JlfAM8isIA1HQUi2EbQ2Wv7qomyBo64pOH6j7PYaEk66bB2qPyofq7mwo3fZI_XxbLR2UWFYty-HkXHYHyvrX9x_AGFGSqaANJacvgDWsGUCvhCEXam5UbWBRAptox7YmJ5C9hCV5blOtYSXRe2zNN102BDDgBWG9lhIBwvQPjhrqLlUFtHB46ejzV0dyz6KqHNQoz61B4u0_Qb3isZboeJKOuWrbPFYXp2_OZ3OvL9Lg5TrSjUfTEBELnVGW8eIt9P3MauuSzFISxUFhDKLlSw6RKIkTMn6BkXW-ySi20yJ8okYlP-aZAhfm1uYYUZQl2mFgDaGhKGbMiiE71bHSg17SvGcwl0Iay3QIVbtKe3Wmos60U-dYHe_E1h2Fx20CyaD09NpcTNnN3Cb6apgkKetcfr5gSdW2ThlGMRKQKfuvNjH7Jl5iT8fqaTfDdj0OA8vy_vT5_3fuhbonR10wzks1ajZbOmRI1WRH6s7xN_-o_3B-A7LnJ4c |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF5V5VAuiDfhOUhct4nj9WOPKKIEaHtKpd5WY-8YUiV2FDsSXBB_g7_Cz-GXMONHKySgElfvrr32rGe-tb_5RqlXOaaed12h9nkQacOAVdvcoI6RwzkGpsA2KezkNJ6fmffn0fmemg25MEKr7H1_59Nbb90fGfdPc7xZLiXHl4NrIPsfgb2W_fANE4WJ8PoOv17xPBhj98q7Vkv3qzSe8YWoDPINiP7QtBVaCNsKLH8MUH8DoG0gOrqtbvUIEl53k7yj9qi8qw5mQ-G2e-rH22rlocSyajUOxwv5NlDWP799B0aIkkoFLZGcPgPWsGH4vBZ9XKi5U7WFZQnsoD17mpxAviSsSPtttYG1cPfYl2-7XAhguAuieS0FAkTnHzw11DVVBbRgeOXp0xdPcs6iqjzUKNetQdj2H6Fe85MWbjzJxHy1a-6rs6M3i9lc9yUadG5i02iahIhYmIyyjLduYRBk1lifZpbSOJkWUYRouckjEqVJSlFQYGx9EGWU2EkRPlD7JV_mkQIf5tbmGFOcpcbj1EaEEcUJI1YMOaSOlBns4vJev1zKaKzcQFS7cL05nZjTdeYcqcPLYZtOwOO6AelgdPfbSnQcZK4b-nJYJI5tLr9esKRqVzsGUYwDZMH-q0_CkYk32JORetitsMsZh1PL44PJ4_-f3At1MF-cHLvjd6cfnqib0tLRcp6q_Wa7o2cMrprsefvy_AJGgChS |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Gold+nanoprism%2FTollens%E2%80%99+reagent+complex+as+plasmonic+sensor+in+headspace+single-drop+microextraction+for+colorimetric+detection+of+formaldehyde+in+food+samples+using+smartphone+readout&rft.jtitle=Talanta+%28Oxford%29&rft.au=Qi%2C+Tong&rft.au=Xu%2C+Mengyuan&rft.au=Yao%2C+Yao&rft.au=Chen%2C+Wenhui&rft.date=2020-12-01&rft.pub=Elsevier+B.V&rft.issn=0039-9140&rft.eissn=1873-3573&rft.volume=220&rft_id=info:doi/10.1016%2Fj.talanta.2020.121388&rft.externalDocID=S0039914020306792 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0039-9140&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0039-9140&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0039-9140&client=summon |