Pluronics modified liposomes for curcumin encapsulation: Sustained release, stability and bioaccessibility
The present work evaluated the feasibility of different pluronics (F127, F87 and P85) utilized as modifiers to improve the stability and bioaccessibility of curcumin liposomes (cur-Lps). Pluronics modified curcumin liposomes (cur-pluronic-Lps) were prepared by thin film evaporation combined with dyn...
Saved in:
Published in | Food research international Vol. 108; pp. 246 - 253 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Canada
Elsevier Ltd
01.06.2018
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The present work evaluated the feasibility of different pluronics (F127, F87 and P85) utilized as modifiers to improve the stability and bioaccessibility of curcumin liposomes (cur-Lps). Pluronics modified curcumin liposomes (cur-pluronic-Lps) were prepared by thin film evaporation combined with dynamic high pressure microfluidization. The particle size and polydispersity index of cur-pluronic-Lps was significantly lower than cur-Lps. Fourier transform infrared spectroscopy analysis revealed that curcumin was loaded in liposomes successfully and X-ray diffraction suggested that curcumin in the liposomes was in an amorphous state. In vitro release studies demonstrated that 73.4%, 63.9%, 66.7% and 58.9% curcumin released from cur-Lps, cur-F127-Lps, cur-F87-Lps and cur-P85-Lps, respectively. Compared with cur-Lps, cur-pluronic-Lps showed a slower release rate and lower cumulative release percentage for curcumin. Non-Fickian transport was the main release mechanism for cur-Lps, cur-F127-Lps and cur-F87-Lps, and typically the first-order model fitted cur-P85-Lps release. Stability studies (exposure to solutions of different pH and heat treatment) indicated that pluronics modification could enhance their pH stability and thermal stability. In vitro simulated gastrointestinal tract studies suggested that pluronics modification could significantly improve the absorption of cur-Lps. Bioaccessibility of curcumin liposomes increased in the following order: cur-Lps < cur-F87-Lps < cur-P85-Lps < cur-F127-Lps. These results may guide the potential application of pluronics modified liposomes as carriers of curcumin in nutraceutical and functional foods.
[Display omitted]
•Novel pluronics modified liposomes were prepared for curcumin encapsulation.•Pluronic modified curcumin liposomes showed sustained release.•Pluronics modified curcumin liposomes demonstrated improved thermal and pH stability.•Curcumin loaded in Pluronics modified liposomes possessed increased bioaccessibility. |
---|---|
AbstractList | The present work evaluated the feasibility of different pluronics (F127, F87 and P85) utilized as modifiers to improve the stability and bioaccessibility of curcumin liposomes (cur-Lps). Pluronics modified curcumin liposomes (cur-pluronic-Lps) were prepared by thin film evaporation combined with dynamic high pressure microfluidization. The particle size and polydispersity index of cur-pluronic-Lps was significantly lower than cur-Lps. Fourier transform infrared spectroscopy analysis revealed that curcumin was loaded in liposomes successfully and X-ray diffraction suggested that curcumin in the liposomes was in an amorphous state. In vitro release studies demonstrated that 73.4%, 63.9%, 66.7% and 58.9% curcumin released from cur-Lps, cur-F127-Lps, cur-F87-Lps and cur-P85-Lps, respectively. Compared with cur-Lps, cur-pluronic-Lps showed a slower release rate and lower cumulative release percentage for curcumin. Non-Fickian transport was the main release mechanism for cur-Lps, cur-F127-Lps and cur-F87-Lps, and typically the first-order model fitted cur-P85-Lps release. Stability studies (exposure to solutions of different pH and heat treatment) indicated that pluronics modification could enhance their pH stability and thermal stability. In vitro simulated gastrointestinal tract studies suggested that pluronics modification could significantly improve the absorption of cur-Lps. Bioaccessibility of curcumin liposomes increased in the following order: cur-Lps < cur-F87-Lps < cur-P85-Lps < cur-F127-Lps. These results may guide the potential application of pluronics modified liposomes as carriers of curcumin in nutraceutical and functional foods.The present work evaluated the feasibility of different pluronics (F127, F87 and P85) utilized as modifiers to improve the stability and bioaccessibility of curcumin liposomes (cur-Lps). Pluronics modified curcumin liposomes (cur-pluronic-Lps) were prepared by thin film evaporation combined with dynamic high pressure microfluidization. The particle size and polydispersity index of cur-pluronic-Lps was significantly lower than cur-Lps. Fourier transform infrared spectroscopy analysis revealed that curcumin was loaded in liposomes successfully and X-ray diffraction suggested that curcumin in the liposomes was in an amorphous state. In vitro release studies demonstrated that 73.4%, 63.9%, 66.7% and 58.9% curcumin released from cur-Lps, cur-F127-Lps, cur-F87-Lps and cur-P85-Lps, respectively. Compared with cur-Lps, cur-pluronic-Lps showed a slower release rate and lower cumulative release percentage for curcumin. Non-Fickian transport was the main release mechanism for cur-Lps, cur-F127-Lps and cur-F87-Lps, and typically the first-order model fitted cur-P85-Lps release. Stability studies (exposure to solutions of different pH and heat treatment) indicated that pluronics modification could enhance their pH stability and thermal stability. In vitro simulated gastrointestinal tract studies suggested that pluronics modification could significantly improve the absorption of cur-Lps. Bioaccessibility of curcumin liposomes increased in the following order: cur-Lps < cur-F87-Lps < cur-P85-Lps < cur-F127-Lps. These results may guide the potential application of pluronics modified liposomes as carriers of curcumin in nutraceutical and functional foods. The present work evaluated the feasibility of different pluronics (F127, F87 and P85) utilized as modifiers to improve the stability and bioaccessibility of curcumin liposomes (cur-Lps). Pluronics modified curcumin liposomes (cur-pluronic-Lps) were prepared by thin film evaporation combined with dynamic high pressure microfluidization. The particle size and polydispersity index of cur-pluronic-Lps was significantly lower than cur-Lps. Fourier transform infrared spectroscopy analysis revealed that curcumin was loaded in liposomes successfully and X-ray diffraction suggested that curcumin in the liposomes was in an amorphous state. In vitro release studies demonstrated that 73.4%, 63.9%, 66.7% and 58.9% curcumin released from cur-Lps, cur-F127-Lps, cur-F87-Lps and cur-P85-Lps, respectively. Compared with cur-Lps, cur-pluronic-Lps showed a slower release rate and lower cumulative release percentage for curcumin. Non-Fickian transport was the main release mechanism for cur-Lps, cur-F127-Lps and cur-F87-Lps, and typically the first-order model fitted cur-P85-Lps release. Stability studies (exposure to solutions of different pH and heat treatment) indicated that pluronics modification could enhance their pH stability and thermal stability. In vitro simulated gastrointestinal tract studies suggested that pluronics modification could significantly improve the absorption of cur-Lps. Bioaccessibility of curcumin liposomes increased in the following order: cur-Lps < cur-F87-Lps < cur-P85-Lps < cur-F127-Lps. These results may guide the potential application of pluronics modified liposomes as carriers of curcumin in nutraceutical and functional foods. The present work evaluated the feasibility of different pluronics (F127, F87 and P85) utilized as modifiers to improve the stability and bioaccessibility of curcumin liposomes (cur-Lps). Pluronics modified curcumin liposomes (cur-pluronic-Lps) were prepared by thin film evaporation combined with dynamic high pressure microfluidization. The particle size and polydispersity index of cur-pluronic-Lps was significantly lower than cur-Lps. Fourier transform infrared spectroscopy analysis revealed that curcumin was loaded in liposomes successfully and X-ray diffraction suggested that curcumin in the liposomes was in an amorphous state. In vitro release studies demonstrated that 73.4%, 63.9%, 66.7% and 58.9% curcumin released from cur-Lps, cur-F127-Lps, cur-F87-Lps and cur-P85-Lps, respectively. Compared with cur-Lps, cur-pluronic-Lps showed a slower release rate and lower cumulative release percentage for curcumin. Non-Fickian transport was the main release mechanism for cur-Lps, cur-F127-Lps and cur-F87-Lps, and typically the first-order model fitted cur-P85-Lps release. Stability studies (exposure to solutions of different pH and heat treatment) indicated that pluronics modification could enhance their pH stability and thermal stability. In vitro simulated gastrointestinal tract studies suggested that pluronics modification could significantly improve the absorption of cur-Lps. Bioaccessibility of curcumin liposomes increased in the following order: cur-Lps < cur-F87-Lps < cur-P85-Lps < cur-F127-Lps. These results may guide the potential application of pluronics modified liposomes as carriers of curcumin in nutraceutical and functional foods. [Display omitted] •Novel pluronics modified liposomes were prepared for curcumin encapsulation.•Pluronic modified curcumin liposomes showed sustained release.•Pluronics modified curcumin liposomes demonstrated improved thermal and pH stability.•Curcumin loaded in Pluronics modified liposomes possessed increased bioaccessibility. |
Author | Zhu, Yu-qing Zou, Li-qiang Liu, Cheng-mei Li, Zi-ling Liu, Wei Chen, Xing Peng, Sheng-feng |
Author_xml | – sequence: 1 givenname: Zi-ling surname: Li fullname: Li, Zi-ling organization: State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, Jiangxi, PR China – sequence: 2 givenname: Sheng-feng surname: Peng fullname: Peng, Sheng-feng organization: State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, Jiangxi, PR China – sequence: 3 givenname: Xing surname: Chen fullname: Chen, Xing organization: State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, Jiangxi, PR China – sequence: 4 givenname: Yu-qing surname: Zhu fullname: Zhu, Yu-qing organization: State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, Jiangxi, PR China – sequence: 5 givenname: Li-qiang surname: Zou fullname: Zou, Li-qiang organization: State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, Jiangxi, PR China – sequence: 6 givenname: Wei orcidid: 0000-0001-8211-034X surname: Liu fullname: Liu, Wei email: liuwei@ncu.edu.cn organization: State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, Jiangxi, PR China – sequence: 7 givenname: Cheng-mei surname: Liu fullname: Liu, Cheng-mei email: liuchengmei@aliyun.com organization: State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, Jiangxi, PR China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29735054$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkU2L1EAQhhtZcWdXf4KSowcTK-mvRA-LLH7BgoJ6bjqVaqghSY_dibD_3qwzevAyp4Lied_D-1yJiznOJMTzGqoaavN6X4UYh0S5aqBuK5AVqPaR2NWtlaWtlb4QO-iMLLvOdJfiKuc9ABhtuyfisums1KDVTuy_jmuKM2MupjhwYBqKkQ8xx4lyEWIqcE24TjwXNKM_5HX0C8f5TfFtzYvneeMTjeQzvSq2R88jL_eFn4ei5-gRKWc-Pp-Kx8GPmZ6d7rX48eH999tP5d2Xj59v392VqIxaSsRgfRtA1lrbXrVoNGqNVoUAvVE9NK2xxstGkw1BUdN60wwdIqhOgfbyWrw89h5S_LlSXtzEGWkc_Uxxza5ppNV1C50-j4I0DWiQakNfnNC1n2hwh8STT_fu75QboI8ApphzovAPqcE9KHN7d1LmHpQ5kG5TtuXe_pdDXv5svCTP49n0zTFN26K_mJLLyJspGjgRLm6IfKbhN0-Stzw |
CitedBy_id | crossref_primary_10_1080_00914037_2023_2225117 crossref_primary_10_1016_j_carbpol_2023_121472 crossref_primary_10_1016_j_foodhyd_2022_107721 crossref_primary_10_1016_j_fbio_2023_103179 crossref_primary_10_1007_s10924_022_02642_8 crossref_primary_10_1016_j_fbio_2024_104660 crossref_primary_10_1021_acs_jafc_9b04009 crossref_primary_10_1021_acsabm_0c00190 crossref_primary_10_1021_acs_jafc_0c06680 crossref_primary_10_1016_j_foodres_2019_03_034 crossref_primary_10_1016_j_ijpharm_2021_120944 crossref_primary_10_1016_j_molliq_2022_120003 crossref_primary_10_3390_ph17121674 crossref_primary_10_3390_molecules25030694 crossref_primary_10_3390_ma17225454 crossref_primary_10_1016_j_foodhyd_2024_110465 crossref_primary_10_1016_j_lwt_2020_110558 crossref_primary_10_1016_j_lwt_2020_109446 crossref_primary_10_1016_j_foodhyd_2018_07_039 crossref_primary_10_1016_j_ijbiomac_2025_142202 crossref_primary_10_1080_01932691_2018_1489281 crossref_primary_10_3390_foods13162596 crossref_primary_10_1080_01932691_2020_1773849 crossref_primary_10_1021_acsanm_2c05272 crossref_primary_10_1038_s41538_025_00377_z crossref_primary_10_1016_j_nanoso_2024_101321 crossref_primary_10_1016_j_colsurfb_2018_08_027 crossref_primary_10_3390_foods11101467 crossref_primary_10_1002_jsfa_11925 crossref_primary_10_1016_j_cis_2018_11_007 crossref_primary_10_3390_nano9020296 crossref_primary_10_1016_j_ijbiomac_2021_02_194 crossref_primary_10_1016_j_foodres_2018_07_062 crossref_primary_10_1016_j_foodchem_2024_139790 crossref_primary_10_1166_jbn_2022_3446 crossref_primary_10_3390_molecules29081687 crossref_primary_10_1016_j_ijbiomac_2023_125572 crossref_primary_10_1016_j_foodchem_2022_134328 crossref_primary_10_1016_j_colsurfb_2019_110460 crossref_primary_10_1007_s11483_022_09743_w crossref_primary_10_2139_ssrn_3916202 crossref_primary_10_1016_j_foodhyd_2024_110165 crossref_primary_10_1016_j_addr_2021_113870 crossref_primary_10_1111_ijfs_17110 crossref_primary_10_1016_j_drudis_2018_11_001 crossref_primary_10_1111_ijfs_15694 crossref_primary_10_1021_acs_jafc_8b04136 crossref_primary_10_1080_01932691_2018_1562353 crossref_primary_10_3390_molecules26030560 crossref_primary_10_1016_j_fm_2023_104242 crossref_primary_10_1016_j_cis_2021_102563 crossref_primary_10_3390_md20080509 crossref_primary_10_3390_pharmaceutics14112269 crossref_primary_10_3390_polym13234207 crossref_primary_10_1016_j_lwt_2023_114489 crossref_primary_10_1016_j_lwt_2024_117139 crossref_primary_10_1016_j_foodres_2024_114948 crossref_primary_10_1177_0885328220949367 crossref_primary_10_1016_j_foodchem_2023_137683 crossref_primary_10_1016_j_jddst_2020_102082 crossref_primary_10_1016_j_foodchem_2023_138139 crossref_primary_10_1002_adhm_202400966 crossref_primary_10_1111_1541_4337_12660 crossref_primary_10_3390_colloids8020016 crossref_primary_10_1016_j_molliq_2018_11_060 crossref_primary_10_1016_j_molliq_2020_113591 crossref_primary_10_1111_1750_3841_15677 crossref_primary_10_1016_j_jddst_2024_105633 crossref_primary_10_1039_D0CE00750A crossref_primary_10_1080_10408398_2024_2384646 crossref_primary_10_3390_colloids7020025 crossref_primary_10_1016_j_lwt_2023_115405 crossref_primary_10_3390_antiox11050854 crossref_primary_10_1016_j_molliq_2023_121410 crossref_primary_10_1080_10717544_2022_2053761 crossref_primary_10_2147_IJN_S285134 crossref_primary_10_1016_j_tifs_2021_07_005 crossref_primary_10_1111_jfbc_14012 crossref_primary_10_1016_j_foodchem_2021_130700 crossref_primary_10_1111_ijfs_16167 crossref_primary_10_1021_acs_molpharmaceut_4c00376 crossref_primary_10_3390_pharmaceutics17020181 crossref_primary_10_3390_foods9030325 crossref_primary_10_1080_02652048_2020_1720030 crossref_primary_10_1016_j_jtice_2021_10_020 crossref_primary_10_1557_s43578_020_00021_4 crossref_primary_10_1016_j_jddst_2022_103390 crossref_primary_10_1016_j_heliyon_2022_e09030 crossref_primary_10_1080_10408398_2022_2156474 crossref_primary_10_1080_01932691_2020_1776130 crossref_primary_10_3390_nano10112224 crossref_primary_10_1007_s13318_019_00545_z crossref_primary_10_3390_polym16243451 crossref_primary_10_1016_j_foodres_2023_112608 crossref_primary_10_1016_j_ccr_2023_215233 crossref_primary_10_1016_j_fbp_2024_10_001 crossref_primary_10_1111_1541_4337_13017 crossref_primary_10_1080_02652048_2023_2209658 crossref_primary_10_1111_1750_3841_16548 crossref_primary_10_1002_cben_202300027 crossref_primary_10_1016_j_jddst_2021_102568 crossref_primary_10_1016_j_foodchem_2019_04_116 crossref_primary_10_1016_j_lwt_2023_115308 crossref_primary_10_1016_j_phymed_2022_154306 crossref_primary_10_1016_j_ifset_2021_102613 crossref_primary_10_1016_j_ijpharm_2023_122824 crossref_primary_10_1016_j_foodchem_2019_04_077 crossref_primary_10_1016_j_ijbiomac_2024_134841 crossref_primary_10_1002_app_56052 crossref_primary_10_1016_j_foodchem_2022_133553 crossref_primary_10_1016_j_foodchem_2022_135180 crossref_primary_10_3390_molecules26051263 crossref_primary_10_1016_j_foodhyd_2022_108089 crossref_primary_10_1016_j_biomaterials_2019_119649 crossref_primary_10_1016_j_jff_2019_05_015 crossref_primary_10_1007_s10311_021_01276_x crossref_primary_10_1111_1750_3841_15489 crossref_primary_10_1016_j_ijbiomac_2022_05_146 crossref_primary_10_1016_j_ijpharm_2018_11_049 crossref_primary_10_1016_j_foodres_2020_109555 crossref_primary_10_1016_j_jfoodeng_2018_08_013 crossref_primary_10_1016_j_lwt_2022_114149 crossref_primary_10_1007_s11051_023_05921_0 crossref_primary_10_1016_j_cis_2022_102709 crossref_primary_10_3389_fbioe_2022_1097178 crossref_primary_10_3390_molecules26185510 crossref_primary_10_1208_s12249_019_1586_6 crossref_primary_10_1021_acs_jafc_9b01602 crossref_primary_10_1007_s11694_022_01786_4 crossref_primary_10_1080_02652048_2021_1993363 crossref_primary_10_1016_j_indcrop_2019_111620 crossref_primary_10_1016_j_matpr_2023_03_813 crossref_primary_10_1016_j_colsurfa_2024_133207 crossref_primary_10_1016_j_foodhyd_2020_105963 |
Cites_doi | 10.1016/j.foodres.2014.12.015 10.1016/j.foodchem.2015.09.050 10.1016/j.colsurfb.2010.03.039 10.1016/j.jconrel.2004.01.005 10.1021/la990288+ 10.1021/jf4039925 10.1186/1556-276X-8-102 10.1080/17458080.2016.1148273 10.1016/j.eurpolymj.2015.05.003 10.2217/nnm.16.9 10.1016/j.colsurfb.2016.07.043 10.1016/S0169-409X(01)00112-0 10.1021/ja070748i 10.1039/c3py00042g 10.3390/molecules200814293 10.1016/j.jcis.2004.03.013 10.1021/acs.jafc.6b04815 10.1016/j.biomaterials.2010.04.062 10.1016/j.ejps.2009.02.019 10.1016/j.carbpol.2016.09.060 10.1016/j.biomaterials.2013.12.090 10.1016/j.foodres.2015.12.035 10.1039/C7RA02861J 10.1016/j.ejps.2008.01.016 10.1177/0885328209357110 10.1039/c2fo30108c 10.1016/j.ijpharm.2013.01.071 10.1007/s00396-014-3414-6 10.1124/pr.110.004044 10.1016/j.foodres.2014.07.042 10.1021/la070051a 10.1049/mnl.2016.0690 10.1016/j.jcis.2016.09.003 10.1039/c3ra46396f 10.1021/jp906331m 10.1016/j.colsurfb.2014.02.036 10.1016/j.foodres.2015.04.024 10.3109/02652048.2011.599436 10.1016/j.foodres.2016.03.031 |
ContentType | Journal Article |
Copyright | 2018 Elsevier Ltd Copyright © 2018 Elsevier Ltd. All rights reserved. |
Copyright_xml | – notice: 2018 Elsevier Ltd – notice: Copyright © 2018 Elsevier Ltd. All rights reserved. |
DBID | AAYXX CITATION NPM 7X8 7S9 L.6 |
DOI | 10.1016/j.foodres.2018.03.048 |
DatabaseName | CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE - Academic PubMed AGRICOLA |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Economics Engineering |
EISSN | 1873-7145 |
EndPage | 253 |
ExternalDocumentID | 29735054 10_1016_j_foodres_2018_03_048 S0963996918302242 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --K --M .GJ .~1 0R~ 1B1 1RT 1~. 1~5 29H 4.4 457 4G. 53G 5GY 5VS 7-5 71M 8P~ 9JM AABNK AABVA AACTN AAEDT AAEDW AAIAV AAIKC AAIKJ AAKOC AALCJ AALRI AAMNW AAOAW AAQFI AAQXK AATLK AAXUO ABFNM ABFRF ABGRD ABMAC ABXDB ABYKQ ACDAQ ACGFO ACIUM ACRLP ADBBV ADEZE ADMUD ADQTV AEBSH AEFWE AEKER AENEX AEQOU AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC CBWCG CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HLV HVGLF HZ~ IHE J1W K-O KOM LW9 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SAB SDF SDG SDP SES SEW SPCBC SSA SSZ T5K WUQ Y6R ~G- ~KM AAHBH AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH EFKBS NPM 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-c464t-ccf7a8f031557b48c65c55c74ff0b64b028676a325e7ff4e28a62d9cc049405a3 |
IEDL.DBID | .~1 |
ISSN | 0963-9969 1873-7145 |
IngestDate | Fri Jul 11 02:05:29 EDT 2025 Thu Jul 10 18:08:44 EDT 2025 Mon Jul 21 05:25:51 EDT 2025 Thu Apr 24 22:51:50 EDT 2025 Tue Jul 01 03:05:50 EDT 2025 Fri Feb 23 02:30:04 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Phospholipid Sustained release Bioaccessibility Curcumin Pluronics Stability |
Language | English |
License | Copyright © 2018 Elsevier Ltd. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c464t-ccf7a8f031557b48c65c55c74ff0b64b028676a325e7ff4e28a62d9cc049405a3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0001-8211-034X |
PMID | 29735054 |
PQID | 2036205034 |
PQPubID | 23479 |
PageCount | 8 |
ParticipantIDs | proquest_miscellaneous_2237518095 proquest_miscellaneous_2036205034 pubmed_primary_29735054 crossref_primary_10_1016_j_foodres_2018_03_048 crossref_citationtrail_10_1016_j_foodres_2018_03_048 elsevier_sciencedirect_doi_10_1016_j_foodres_2018_03_048 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | June 2018 2018-06-00 20180601 |
PublicationDateYYYYMMDD | 2018-06-01 |
PublicationDate_xml | – month: 06 year: 2018 text: June 2018 |
PublicationDecade | 2010 |
PublicationPlace | Canada |
PublicationPlace_xml | – name: Canada |
PublicationTitle | Food research international |
PublicationTitleAlternate | Food Res Int |
PublicationYear | 2018 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Sezgin, Yuksel, Baykara (bb0140) 2006; 64 Siepmann, Peppas (bb0150) 2001; 48 Yallapu, Jaggi, Chauhan (bb0185) 2010; 79 Venkateswarlu, Manjunath (bb0160) 2004; 95 Naksuriya, Okonogi, Schiffelers, Hennink (bb0090) 2014; 35 Ribas-Agusti, Martin-Belloso, Soliva-Fortuny, Elez-Martinez (bb0125) 2017 Wang, Liu, Sun, Huang, Long, Wang, Huang (bb0165) 2013; 4 Bergstrand, Edwards (bb0010) 2004; 276 Lee, Chen, Dettmer, O'Halloran, Nguyen (bb0060) 2007; 129 Peng, Dong, Wang, Zhang, Luo, Bai, Xiong (bb0100) 2013; 446 Salem, Rohani, Gillies (bb0135) 2014; 4 Zou, Zheng, Zhang, Zhang, Liu, Liu, McClements (bb0205) 2016; 81 Li, Huang, Xiong, Qin, Luo (bb0065) 2017; 12 Chen, Zou, Niu, Liu, Peng, Liu (bb0015) 2015; 20 Zou, Peng, Liu, Gan, Liu, Liang, Chen (bb0200) 2014; 64 Peng, Li, Ning, Yao, Luo, Zhu, Xiong (bb0105) 2014; 62 Cheng, Peng, Li, Zou, Liu, Liu (bb0020) 2017; 7 Liu, Liu, Ye, Peng, Wei, Liu, Han (bb0070) 2016; 196 Ramalingam, Yoo, Ko (bb0115) 2016; 84 Heger, van Golen, Broekgaarden, Michel (bb0040) 2014; 66 Zhou, Liu, Zou, Liu, Liu, Liang, Chen (bb0190) 2014; 117C Shaikh, Ankola, Beniwal, Singh, Kumar (bb0145) 2009; 37 Song, Balakrishnan, Shim, Chung, Kim (bb0155) 2011; 28 Akbarzadeh, Rezaei-Sadabady, Davaran, Joo, Zarghami, Hanifehpour, Nejati-Koshki (bb0005) 2013; 8 Xiong, Qin, Li, Gong, Li (bb0180) 2015; 68 Wu, Lee (bb0175) 2009; 113 Manconi, Marongiu, Castangia, Manca, Caddeo, Tuberoso, Fadda (bb0080) 2016; 146 Emami, Azadmard-Damirchi, Peighambardoust, Valizadeh, Hesari (bb0025) 2016; 11 Gao, Ming, He, Fan, Gu, Zhang (bb0030) 2008; 34 Peng, Zou, Liu, Li, Liu, Hu, Liu (bb0110) 2017; 156 Nguyen, Huang, Gauthier, Yang, Wang (bb0095) 2016; 11 Raymond C Rowe, Owen (bb0120) 2006 Wang, Wang, Zhao, Ding, Li (bb0170) 2017; 485 Zou, Peng, Liu, Chen, Liu (bb0195) 2015; 69 Mao, McClements (bb0085) 2012; 3 Kharat, Du, Zhang, McClements (bb0055) 2017; 65 Hädicke, Blume (bb0035) 2014; 293 Sahu, Kasoju, Goswami, Bora (bb0130) 2011; 25 Liu, Liu, Zhu, Gan, Le (bb0075) 2015; 74 Johnsson, Silvander, Karlsson, Edwards (bb0050) 1999; 15 Mohanty, Sahoo (bb8888) 2010; 31 Jahn, Vreeland, DeVoe, Locascio, Gaitan (bb0045) 2007; 23 Siepmann (10.1016/j.foodres.2018.03.048_bb0150) 2001; 48 Heger (10.1016/j.foodres.2018.03.048_bb0040) 2014; 66 Emami (10.1016/j.foodres.2018.03.048_bb0025) 2016; 11 Ribas-Agusti (10.1016/j.foodres.2018.03.048_bb0125) 2017 Naksuriya (10.1016/j.foodres.2018.03.048_bb0090) 2014; 35 Ramalingam (10.1016/j.foodres.2018.03.048_bb0115) 2016; 84 Sahu (10.1016/j.foodres.2018.03.048_bb0130) 2011; 25 Kharat (10.1016/j.foodres.2018.03.048_bb0055) 2017; 65 Zou (10.1016/j.foodres.2018.03.048_bb0195) 2015; 69 Bergstrand (10.1016/j.foodres.2018.03.048_bb0010) 2004; 276 Xiong (10.1016/j.foodres.2018.03.048_bb0180) 2015; 68 Peng (10.1016/j.foodres.2018.03.048_bb0100) 2013; 446 Song (10.1016/j.foodres.2018.03.048_bb0155) 2011; 28 Peng (10.1016/j.foodres.2018.03.048_bb0110) 2017; 156 Lee (10.1016/j.foodres.2018.03.048_bb0060) 2007; 129 Gao (10.1016/j.foodres.2018.03.048_bb0030) 2008; 34 Salem (10.1016/j.foodres.2018.03.048_bb0135) 2014; 4 Zou (10.1016/j.foodres.2018.03.048_bb0205) 2016; 81 Mohanty (10.1016/j.foodres.2018.03.048_bb8888) 2010; 31 Liu (10.1016/j.foodres.2018.03.048_bb0075) 2015; 74 Johnsson (10.1016/j.foodres.2018.03.048_bb0050) 1999; 15 Zhou (10.1016/j.foodres.2018.03.048_bb0190) 2014; 117C Nguyen (10.1016/j.foodres.2018.03.048_bb0095) 2016; 11 Chen (10.1016/j.foodres.2018.03.048_bb0015) 2015; 20 Wang (10.1016/j.foodres.2018.03.048_bb0170) 2017; 485 Manconi (10.1016/j.foodres.2018.03.048_bb0080) 2016; 146 Akbarzadeh (10.1016/j.foodres.2018.03.048_bb0005) 2013; 8 Venkateswarlu (10.1016/j.foodres.2018.03.048_bb0160) 2004; 95 Wu (10.1016/j.foodres.2018.03.048_bb0175) 2009; 113 Zou (10.1016/j.foodres.2018.03.048_bb0200) 2014; 64 Mao (10.1016/j.foodres.2018.03.048_bb0085) 2012; 3 Shaikh (10.1016/j.foodres.2018.03.048_bb0145) 2009; 37 Peng (10.1016/j.foodres.2018.03.048_bb0105) 2014; 62 Raymond C Rowe (10.1016/j.foodres.2018.03.048_bb0120) 2006 Yallapu (10.1016/j.foodres.2018.03.048_bb0185) 2010; 79 Sezgin (10.1016/j.foodres.2018.03.048_bb0140) 2006; 64 Wang (10.1016/j.foodres.2018.03.048_bb0165) 2013; 4 Liu (10.1016/j.foodres.2018.03.048_bb0070) 2016; 196 Cheng (10.1016/j.foodres.2018.03.048_bb0020) 2017; 7 Li (10.1016/j.foodres.2018.03.048_bb0065) 2017; 12 Hädicke (10.1016/j.foodres.2018.03.048_bb0035) 2014; 293 Jahn (10.1016/j.foodres.2018.03.048_bb0045) 2007; 23 |
References_xml | – volume: 81 start-page: 74 year: 2016 end-page: 82 ident: bb0205 article-title: Enhancing the bioaccessibility of hydrophobic bioactive agents using mixed colloidal dispersions: Curcumin-loaded zein nanoparticles plus digestible lipid nanoparticles publication-title: Food Research International – volume: 4 start-page: 2958 year: 2013 end-page: 2962 ident: bb0165 article-title: Pluronic L61 as a long-circulating modifier for enhanced liposomal delivery of cancer drugs publication-title: Polymer Chemistry – volume: 156 start-page: 322 year: 2017 end-page: 332 ident: bb0110 article-title: Hybrid liposomes composed of amphiphilic chitosan and phospholipid: Preparation, stability and bioavailability as a carrier for curcumin publication-title: Carbohydrate Polymers – volume: 79 start-page: 113 year: 2010 end-page: 125 ident: bb0185 article-title: Beta-Cyclodextrin-curcumin self-assembly enhances curcumin delivery in prostate cancer cells publication-title: Colloids and Surfaces B: Biointerfaces – volume: 293 start-page: 267 year: 2014 end-page: 276 ident: bb0035 article-title: Interactions of Pluronic block copolymers with lipid vesicles depend on lipid phase and Pluronic aggregation state publication-title: Colloid and Polymer Science – volume: 3 start-page: 1025 year: 2012 end-page: 1034 ident: bb0085 article-title: Influence of electrostatic heteroaggregation of lipid droplets on their stability and digestibility under simulated gastrointestinal conditions publication-title: Food & Function – volume: 11 start-page: 737 year: 2016 end-page: 759 ident: bb0025 article-title: Liposomes as carrier vehicles for functional compounds in food sector publication-title: Journal of Experimental Nanoscience – volume: 20 start-page: 14293 year: 2015 end-page: 14311 ident: bb0015 article-title: The stability, sustained release and cellular antioxidant activity of curcumin nanoliposomes publication-title: Molecules – volume: 15 start-page: 6314 year: 1999 end-page: 6325 ident: bb0050 article-title: Effect of PEO-PPO-PEO triblock copolymers on structure and stability of phosphatidylcholine liposomes publication-title: Langmuir – volume: 68 start-page: 233 year: 2015 end-page: 242 ident: bb0180 article-title: Synthesis, drug release and targeting behaviors of novel Folated Pluronic F87/poly(lactic acid) block copolymer publication-title: European Polymer Journal – volume: 446 start-page: 153 year: 2013 end-page: 159 ident: bb0100 article-title: A pH-responsive nano-carrier with mesoporous silica nanoparticles cores and poly(acrylic acid) shell-layers: Fabrication, characterization and properties for controlled release of salidroside publication-title: International Journal of Pharmaceutics – volume: 12 start-page: 191 year: 2017 end-page: 194 ident: bb0065 article-title: Synthesis, characterisation and in vitro release of paclitaxel-loaded polymeric micelles publication-title: Micro & Nano Letters – volume: 23 start-page: 6289 year: 2007 end-page: 6293 ident: bb0045 article-title: Microfluidic directed formation of liposomes of controlled size publication-title: Langmuir – volume: 64 start-page: 261 year: 2006 end-page: 268 ident: bb0140 article-title: Preparation and characterization of polymeric micelles for solubilization of poorly soluble anticancer drugs publication-title: Journal of Agricultural and Food Chemistry – volume: 64 start-page: 492 year: 2014 end-page: 499 ident: bb0200 article-title: Improved in vitro digestion stability of (−)-epigallocatechin gallate through nanoliposome encapsulation publication-title: Food Research International – volume: 84 start-page: 113 year: 2016 end-page: 119 ident: bb0115 article-title: Nanodelivery systems based on mucoadhesive polymer coated solid lipid nanoparticles to improve the oral intake of food curcumin publication-title: Food Research International – volume: 8 start-page: 102 year: 2013 ident: bb0005 article-title: Liposome: Classification, preparation, and applications publication-title: Nanoscale Research Letters – volume: 37 start-page: 223 year: 2009 end-page: 230 ident: bb0145 article-title: Nanoparticle encapsulation improves oral bioavailability of curcumin by at least 9-fold when compared to curcumin administered with piperine as absorption enhancer publication-title: European Journal of Pharmaceutical Sciences – volume: 48 start-page: 139 year: 2001 end-page: 157 ident: bb0150 article-title: Modeling of drug release from delivery systems based on hydroxypropyl methylcellulose (HPMC) publication-title: Advanced Drug Delivery Reviews – start-page: 535 year: 2006 end-page: 538 ident: bb0120 article-title: Handbook of pharmaceutical excipients – volume: 69 start-page: 114 year: 2015 end-page: 120 ident: bb0195 article-title: A novel delivery system dextran sulfate coated amphiphilic chitosan derivatives–based nanoliposome: Capacity to improve in vitro digestion stability of (−)–epigallocatechin gallate publication-title: Food Research International – volume: 65 start-page: 1525 year: 2017 end-page: 1532 ident: bb0055 article-title: Physical and chemical stability of curcumin in aqueous solutions and emulsions: Impact of pH, temperature, and molecular environment publication-title: Journal of Agricultural and Food Chemistry – volume: 4 year: 2014 ident: bb0135 article-title: Curcumin, a promising anti-cancer therapeutic: A review of its chemical properties, bioactivity and approaches to cancer cell delivery publication-title: RSC Advances – volume: 31 start-page: 6597 year: 2010 end-page: 6611 ident: bb8888 article-title: The in vitro stability and in vivo pharmacokinetics of curcumin prepared as an aqueous nanoparticulate formulation publication-title: Biomaterials – volume: 117C start-page: 330 year: 2014 end-page: 337 ident: bb0190 article-title: Storage stability and skin permeation of vitamin C liposomes improved by pectin coating publication-title: Colloids and Surfaces B: Biointerfaces – start-page: 1 year: 2017 end-page: 18 ident: bb0125 article-title: Food processing strategies to enhance phenolic compounds bioaccessibility and bioavailability in plant-based foods publication-title: Critical Reviews in Food Science and Nutrition – volume: 34 start-page: 85 year: 2008 end-page: 93 ident: bb0030 article-title: Preparation and characterization of novel polymeric micelles for 9-nitro-20(S)-camptothecin delivery publication-title: European Journal of Pharmaceutical Sciences – volume: 74 start-page: 97 year: 2015 end-page: 105 ident: bb0075 article-title: Temperature-dependent structure stability and in vitro release of chitosan-coated curcumin liposome publication-title: Food Research International – volume: 196 start-page: 396 year: 2016 end-page: 404 ident: bb0070 article-title: Environmental stress stability of microencapsules based on liposomes decorated with chitosan and sodium alginate publication-title: Food Chemistry – volume: 113 start-page: 15522 year: 2009 end-page: 15531 ident: bb0175 article-title: Interaction of poloxamers with liposomes: An isothermal titration calorimetry study publication-title: The Journal of Physical Chemistry B – volume: 485 start-page: 91 year: 2017 end-page: 98 ident: bb0170 article-title: A cost-effective method to prepare curcumin nanosuspensions with enhanced oral bioavailability publication-title: Journal of Colloid and Interface Science – volume: 129 start-page: 15096 year: 2007 end-page: 15097 ident: bb0060 article-title: Polymer-caged lipsomes: A pH-responsive delivery system with high stability publication-title: Journal of the American Chemical Society – volume: 95 start-page: 627 year: 2004 end-page: 638 ident: bb0160 article-title: Preparation, characterization and in vitro release kinetics of clozapine solid lipid nanoparticles publication-title: Journal of Controlled Release – volume: 7 start-page: 25978 year: 2017 end-page: 25986 ident: bb0020 article-title: Improved bioavailability of curcumin in liposomes prepared using a pH-driven, organic solvent-free, easily scalable process publication-title: RSC Advances – volume: 25 start-page: 619 year: 2011 end-page: 639 ident: bb0130 article-title: Encapsulation of curcumin in Pluronic block copolymer micelles for drug delivery applications publication-title: Journal of Biomaterials Applications – volume: 11 start-page: 1169 year: 2016 end-page: 1185 ident: bb0095 article-title: Recent advances in liposome surface modification for oral drug delivery publication-title: Nanomedicine – volume: 276 start-page: 400 year: 2004 end-page: 407 ident: bb0010 article-title: Effects of poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) triblock copolymers on structure and stability of liposomal dioleoylphosphatidylethanolamine publication-title: Journal of Colloid and Interface Science – volume: 28 start-page: 575 year: 2011 end-page: 581 ident: bb0155 article-title: Enhanced in vitro cellular uptake of P-gp substrate by poloxamer-modified liposomes (PMLs) in MDR cancer cells publication-title: Journal of Microencapsulation – volume: 146 start-page: 910 year: 2016 end-page: 917 ident: bb0080 article-title: Polymer-associated liposomes for the oral delivery of grape pomace extract publication-title: Colloids and Surfaces B: Biointerfaces – volume: 35 start-page: 3365 year: 2014 end-page: 3383 ident: bb0090 article-title: Curcumin nanoformulations: A review of pharmaceutical properties and preclinical studies and clinical data related to cancer treatment publication-title: Biomaterials – volume: 66 start-page: 222 year: 2014 end-page: 307 ident: bb0040 article-title: The molecular basis for the pharmacokinetics and pharmacodynamics of curcumin and its metabolites in relation to cancer publication-title: Pharmacological Reviews – volume: 62 start-page: 626 year: 2014 end-page: 633 ident: bb0105 article-title: Amphiphilic chitosan derivatives-based liposomes: Synthesis, development, and properties as a carrier for sustained release of salidroside publication-title: Journal of Agricultural and Food Chemistry – volume: 69 start-page: 114 year: 2015 ident: 10.1016/j.foodres.2018.03.048_bb0195 article-title: A novel delivery system dextran sulfate coated amphiphilic chitosan derivatives–based nanoliposome: Capacity to improve in vitro digestion stability of (−)–epigallocatechin gallate publication-title: Food Research International doi: 10.1016/j.foodres.2014.12.015 – volume: 196 start-page: 396 year: 2016 ident: 10.1016/j.foodres.2018.03.048_bb0070 article-title: Environmental stress stability of microencapsules based on liposomes decorated with chitosan and sodium alginate publication-title: Food Chemistry doi: 10.1016/j.foodchem.2015.09.050 – volume: 79 start-page: 113 issue: 1 year: 2010 ident: 10.1016/j.foodres.2018.03.048_bb0185 article-title: Beta-Cyclodextrin-curcumin self-assembly enhances curcumin delivery in prostate cancer cells publication-title: Colloids and Surfaces B: Biointerfaces doi: 10.1016/j.colsurfb.2010.03.039 – volume: 95 start-page: 627 issue: 3 year: 2004 ident: 10.1016/j.foodres.2018.03.048_bb0160 article-title: Preparation, characterization and in vitro release kinetics of clozapine solid lipid nanoparticles publication-title: Journal of Controlled Release doi: 10.1016/j.jconrel.2004.01.005 – volume: 15 start-page: 6314 issue: 19 year: 1999 ident: 10.1016/j.foodres.2018.03.048_bb0050 article-title: Effect of PEO-PPO-PEO triblock copolymers on structure and stability of phosphatidylcholine liposomes publication-title: Langmuir doi: 10.1021/la990288+ – volume: 62 start-page: 626 issue: 3 year: 2014 ident: 10.1016/j.foodres.2018.03.048_bb0105 article-title: Amphiphilic chitosan derivatives-based liposomes: Synthesis, development, and properties as a carrier for sustained release of salidroside publication-title: Journal of Agricultural and Food Chemistry doi: 10.1021/jf4039925 – volume: 8 start-page: 102 issue: 1 year: 2013 ident: 10.1016/j.foodres.2018.03.048_bb0005 article-title: Liposome: Classification, preparation, and applications publication-title: Nanoscale Research Letters doi: 10.1186/1556-276X-8-102 – volume: 11 start-page: 737 issue: 9 year: 2016 ident: 10.1016/j.foodres.2018.03.048_bb0025 article-title: Liposomes as carrier vehicles for functional compounds in food sector publication-title: Journal of Experimental Nanoscience doi: 10.1080/17458080.2016.1148273 – volume: 68 start-page: 233 year: 2015 ident: 10.1016/j.foodres.2018.03.048_bb0180 article-title: Synthesis, drug release and targeting behaviors of novel Folated Pluronic F87/poly(lactic acid) block copolymer publication-title: European Polymer Journal doi: 10.1016/j.eurpolymj.2015.05.003 – volume: 11 start-page: 1169 issue: 9 year: 2016 ident: 10.1016/j.foodres.2018.03.048_bb0095 article-title: Recent advances in liposome surface modification for oral drug delivery publication-title: Nanomedicine doi: 10.2217/nnm.16.9 – volume: 146 start-page: 910 year: 2016 ident: 10.1016/j.foodres.2018.03.048_bb0080 article-title: Polymer-associated liposomes for the oral delivery of grape pomace extract publication-title: Colloids and Surfaces B: Biointerfaces doi: 10.1016/j.colsurfb.2016.07.043 – volume: 48 start-page: 139 issue: 2–3 year: 2001 ident: 10.1016/j.foodres.2018.03.048_bb0150 article-title: Modeling of drug release from delivery systems based on hydroxypropyl methylcellulose (HPMC) publication-title: Advanced Drug Delivery Reviews doi: 10.1016/S0169-409X(01)00112-0 – volume: 129 start-page: 15096 issue: 49 year: 2007 ident: 10.1016/j.foodres.2018.03.048_bb0060 article-title: Polymer-caged lipsomes: A pH-responsive delivery system with high stability publication-title: Journal of the American Chemical Society doi: 10.1021/ja070748i – volume: 4 start-page: 2958 issue: 10 year: 2013 ident: 10.1016/j.foodres.2018.03.048_bb0165 article-title: Pluronic L61 as a long-circulating modifier for enhanced liposomal delivery of cancer drugs publication-title: Polymer Chemistry doi: 10.1039/c3py00042g – volume: 20 start-page: 14293 issue: 8 year: 2015 ident: 10.1016/j.foodres.2018.03.048_bb0015 article-title: The stability, sustained release and cellular antioxidant activity of curcumin nanoliposomes publication-title: Molecules doi: 10.3390/molecules200814293 – volume: 276 start-page: 400 issue: 2 year: 2004 ident: 10.1016/j.foodres.2018.03.048_bb0010 article-title: Effects of poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) triblock copolymers on structure and stability of liposomal dioleoylphosphatidylethanolamine publication-title: Journal of Colloid and Interface Science doi: 10.1016/j.jcis.2004.03.013 – volume: 65 start-page: 1525 issue: 8 year: 2017 ident: 10.1016/j.foodres.2018.03.048_bb0055 article-title: Physical and chemical stability of curcumin in aqueous solutions and emulsions: Impact of pH, temperature, and molecular environment publication-title: Journal of Agricultural and Food Chemistry doi: 10.1021/acs.jafc.6b04815 – volume: 31 start-page: 6597 issue: 25 year: 2010 ident: 10.1016/j.foodres.2018.03.048_bb8888 article-title: The in vitro stability and in vivo pharmacokinetics of curcumin prepared as an aqueous nanoparticulate formulation publication-title: Biomaterials doi: 10.1016/j.biomaterials.2010.04.062 – volume: 64 start-page: 261 issue: 3 year: 2006 ident: 10.1016/j.foodres.2018.03.048_bb0140 article-title: Preparation and characterization of polymeric micelles for solubilization of poorly soluble anticancer drugs publication-title: Journal of Agricultural and Food Chemistry – volume: 37 start-page: 223 issue: 3–4 year: 2009 ident: 10.1016/j.foodres.2018.03.048_bb0145 article-title: Nanoparticle encapsulation improves oral bioavailability of curcumin by at least 9-fold when compared to curcumin administered with piperine as absorption enhancer publication-title: European Journal of Pharmaceutical Sciences doi: 10.1016/j.ejps.2009.02.019 – volume: 156 start-page: 322 year: 2017 ident: 10.1016/j.foodres.2018.03.048_bb0110 article-title: Hybrid liposomes composed of amphiphilic chitosan and phospholipid: Preparation, stability and bioavailability as a carrier for curcumin publication-title: Carbohydrate Polymers doi: 10.1016/j.carbpol.2016.09.060 – volume: 35 start-page: 3365 issue: 10 year: 2014 ident: 10.1016/j.foodres.2018.03.048_bb0090 article-title: Curcumin nanoformulations: A review of pharmaceutical properties and preclinical studies and clinical data related to cancer treatment publication-title: Biomaterials doi: 10.1016/j.biomaterials.2013.12.090 – volume: 81 start-page: 74 year: 2016 ident: 10.1016/j.foodres.2018.03.048_bb0205 article-title: Enhancing the bioaccessibility of hydrophobic bioactive agents using mixed colloidal dispersions: Curcumin-loaded zein nanoparticles plus digestible lipid nanoparticles publication-title: Food Research International doi: 10.1016/j.foodres.2015.12.035 – volume: 7 start-page: 25978 issue: 42 year: 2017 ident: 10.1016/j.foodres.2018.03.048_bb0020 article-title: Improved bioavailability of curcumin in liposomes prepared using a pH-driven, organic solvent-free, easily scalable process publication-title: RSC Advances doi: 10.1039/C7RA02861J – volume: 34 start-page: 85 issue: 2–3 year: 2008 ident: 10.1016/j.foodres.2018.03.048_bb0030 article-title: Preparation and characterization of novel polymeric micelles for 9-nitro-20(S)-camptothecin delivery publication-title: European Journal of Pharmaceutical Sciences doi: 10.1016/j.ejps.2008.01.016 – volume: 25 start-page: 619 issue: 6 year: 2011 ident: 10.1016/j.foodres.2018.03.048_bb0130 article-title: Encapsulation of curcumin in Pluronic block copolymer micelles for drug delivery applications publication-title: Journal of Biomaterials Applications doi: 10.1177/0885328209357110 – start-page: 1 year: 2017 ident: 10.1016/j.foodres.2018.03.048_bb0125 article-title: Food processing strategies to enhance phenolic compounds bioaccessibility and bioavailability in plant-based foods publication-title: Critical Reviews in Food Science and Nutrition – volume: 3 start-page: 1025 issue: 10 year: 2012 ident: 10.1016/j.foodres.2018.03.048_bb0085 article-title: Influence of electrostatic heteroaggregation of lipid droplets on their stability and digestibility under simulated gastrointestinal conditions publication-title: Food & Function doi: 10.1039/c2fo30108c – volume: 446 start-page: 153 issue: 1–2 year: 2013 ident: 10.1016/j.foodres.2018.03.048_bb0100 article-title: A pH-responsive nano-carrier with mesoporous silica nanoparticles cores and poly(acrylic acid) shell-layers: Fabrication, characterization and properties for controlled release of salidroside publication-title: International Journal of Pharmaceutics doi: 10.1016/j.ijpharm.2013.01.071 – volume: 293 start-page: 267 issue: 1 year: 2014 ident: 10.1016/j.foodres.2018.03.048_bb0035 article-title: Interactions of Pluronic block copolymers with lipid vesicles depend on lipid phase and Pluronic aggregation state publication-title: Colloid and Polymer Science doi: 10.1007/s00396-014-3414-6 – volume: 66 start-page: 222 issue: 1 year: 2014 ident: 10.1016/j.foodres.2018.03.048_bb0040 article-title: The molecular basis for the pharmacokinetics and pharmacodynamics of curcumin and its metabolites in relation to cancer publication-title: Pharmacological Reviews doi: 10.1124/pr.110.004044 – start-page: 535 year: 2006 ident: 10.1016/j.foodres.2018.03.048_bb0120 – volume: 64 start-page: 492 issue: 0 year: 2014 ident: 10.1016/j.foodres.2018.03.048_bb0200 article-title: Improved in vitro digestion stability of (−)-epigallocatechin gallate through nanoliposome encapsulation publication-title: Food Research International doi: 10.1016/j.foodres.2014.07.042 – volume: 23 start-page: 6289 issue: 11 year: 2007 ident: 10.1016/j.foodres.2018.03.048_bb0045 article-title: Microfluidic directed formation of liposomes of controlled size publication-title: Langmuir doi: 10.1021/la070051a – volume: 12 start-page: 191 issue: 3 year: 2017 ident: 10.1016/j.foodres.2018.03.048_bb0065 article-title: Synthesis, characterisation and in vitro release of paclitaxel-loaded polymeric micelles publication-title: Micro & Nano Letters doi: 10.1049/mnl.2016.0690 – volume: 485 start-page: 91 year: 2017 ident: 10.1016/j.foodres.2018.03.048_bb0170 article-title: A cost-effective method to prepare curcumin nanosuspensions with enhanced oral bioavailability publication-title: Journal of Colloid and Interface Science doi: 10.1016/j.jcis.2016.09.003 – volume: 4 issue: 21 year: 2014 ident: 10.1016/j.foodres.2018.03.048_bb0135 article-title: Curcumin, a promising anti-cancer therapeutic: A review of its chemical properties, bioactivity and approaches to cancer cell delivery publication-title: RSC Advances doi: 10.1039/c3ra46396f – volume: 113 start-page: 15522 issue: 47 year: 2009 ident: 10.1016/j.foodres.2018.03.048_bb0175 article-title: Interaction of poloxamers with liposomes: An isothermal titration calorimetry study publication-title: The Journal of Physical Chemistry B doi: 10.1021/jp906331m – volume: 117C start-page: 330 year: 2014 ident: 10.1016/j.foodres.2018.03.048_bb0190 article-title: Storage stability and skin permeation of vitamin C liposomes improved by pectin coating publication-title: Colloids and Surfaces B: Biointerfaces doi: 10.1016/j.colsurfb.2014.02.036 – volume: 74 start-page: 97 issue: Supplement C year: 2015 ident: 10.1016/j.foodres.2018.03.048_bb0075 article-title: Temperature-dependent structure stability and in vitro release of chitosan-coated curcumin liposome publication-title: Food Research International doi: 10.1016/j.foodres.2015.04.024 – volume: 28 start-page: 575 issue: 6 year: 2011 ident: 10.1016/j.foodres.2018.03.048_bb0155 article-title: Enhanced in vitro cellular uptake of P-gp substrate by poloxamer-modified liposomes (PMLs) in MDR cancer cells publication-title: Journal of Microencapsulation doi: 10.3109/02652048.2011.599436 – volume: 84 start-page: 113 year: 2016 ident: 10.1016/j.foodres.2018.03.048_bb0115 article-title: Nanodelivery systems based on mucoadhesive polymer coated solid lipid nanoparticles to improve the oral intake of food curcumin publication-title: Food Research International doi: 10.1016/j.foodres.2016.03.031 |
SSID | ssj0006579 |
Score | 2.577442 |
Snippet | The present work evaluated the feasibility of different pluronics (F127, F87 and P85) utilized as modifiers to improve the stability and bioaccessibility of... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 246 |
SubjectTerms | Bioaccessibility bioavailability Curcumin encapsulation evaporation Fourier transform infrared spectroscopy functional foods gastrointestinal system heat treatment particle size pH stability Phospholipid Pluronics Stability Sustained release thermal stability X-ray diffraction |
Title | Pluronics modified liposomes for curcumin encapsulation: Sustained release, stability and bioaccessibility |
URI | https://dx.doi.org/10.1016/j.foodres.2018.03.048 https://www.ncbi.nlm.nih.gov/pubmed/29735054 https://www.proquest.com/docview/2036205034 https://www.proquest.com/docview/2237518095 |
Volume | 108 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fS9xAEB5EH1ofxKrVUytb8NHcxWR3k_gmUrm2IIIVfFv2RxZy3CXH3eXBF_92Z_JDW7AV-phlFjaZyc637DffAJwKjAmvYxuY0OmA20gEOjz3gfBSCO9Sl5qGbXEjx_f8x4N4WIOrvhaGaJXd3t_u6c1u3Y2Muq85mhfF6A7BN2ZXmZ2ThBVmGqpg5wlF-fDpleYhRae3J-OArF-reEaToa8qh6daYniljdYptQF6Oz_9DX82eeh6G7Y6AMku2zV-grW83IEPfX3xcgc2f5MY3IXJ7bRu5G-XbFa5wiPiZNNiXi2rWb5kiFiZrRe2nhUlw3fXeGZuyXEX7K4trUJ76quCye6M4UDDpX1kunTMFJVu2i22BNvHPbi__vbrahx0_RUCyyVfBdb6RKee-jyIxPDUSmGFsAn3PjSSG4QeMpE6jkSeeM_zKNUycpm1pCkTCh1_hvWyKvMDYDjOY5dFFs-HXIQm09wkqUXbOAp15gbA-6-qbCc-Tj0wpqpnmU1U5wxFzlBhrNAZAxi-TJu36hvvTUh7l6k_wkhhhnhv6tfexQp_Mbo30WVe1WSEWZ50c_g_bKKYLrAQsA5gv42PlxVTezAEmvzw_xd3BB_pqeWoHcP6alHnXxANrcxJE-4nsHH5_ef45hmXfAvq |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB5RONAeEKUtXR6tK_XY7IbEdhJuCIGWlqJKgMTN8iOWstpNVuzmwIXfzkweUKS2SL06Y8nx2J7P8jffAHwVuCa8jm1gQqcDbiMR6PDAB8JLIbxLXWoatsWFHF_z7zfiZgWO-1wYolV2Z397pjenddcy6mZzNC-K0SWCb4yuMjsgCSuMNK9gjeP2pTIGw_snnocUneCejAMyf0rjGU2GvqocXmuJ4pU2YqdUB-jPAepvALQJRKebsNEhSHbUDvItrOTlFqz3CcaLLXjzm8bgO5j8mtaN_u2CzSpXeIScbFrMq0U1yxcMISuz9a2tZ0XJ8Oc1Xppbdtwhu2xzq9CeCqtgtPvGsKEh094xXTpmiko39RZbhu3de7g-Pbk6HgddgYXAcsmXgbU-0amnQg8iMTy1UlghbMK9D43kBrGHTKSOI5En3vM8SrWMXGYticqEQscfYLWsyvwjMGznscsiixdELkKTaW6S1KJtHIU6cwPg_awq26mPUxGMqeppZhPVOUORM1QYK3TGAIaP3eat_MZLHdLeZerZOlIYIl7q-qV3scI9Rg8nusyrmowwzJNwDv-HTRTTCxYi1gFst-vjccRUHwyRJt_5_8F9hvXx1c9zdX528WMXXtOXlrC2B6vL2zrfR2i0NJ-apf8Al0ENeA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Pluronics+modified+liposomes+for+curcumin+encapsulation%3A+Sustained+release%2C+stability+and+bioaccessibility&rft.jtitle=Food+research+international&rft.au=Li%2C+Zi-Ling&rft.au=Peng%2C+Sheng-Feng&rft.au=Chen%2C+Xing&rft.au=Zhu%2C+Yu-Qing&rft.date=2018-06-01&rft.issn=1873-7145&rft.eissn=1873-7145&rft.volume=108&rft.spage=246&rft_id=info:doi/10.1016%2Fj.foodres.2018.03.048&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0963-9969&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0963-9969&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0963-9969&client=summon |