Pluronics modified liposomes for curcumin encapsulation: Sustained release, stability and bioaccessibility

The present work evaluated the feasibility of different pluronics (F127, F87 and P85) utilized as modifiers to improve the stability and bioaccessibility of curcumin liposomes (cur-Lps). Pluronics modified curcumin liposomes (cur-pluronic-Lps) were prepared by thin film evaporation combined with dyn...

Full description

Saved in:
Bibliographic Details
Published inFood research international Vol. 108; pp. 246 - 253
Main Authors Li, Zi-ling, Peng, Sheng-feng, Chen, Xing, Zhu, Yu-qing, Zou, Li-qiang, Liu, Wei, Liu, Cheng-mei
Format Journal Article
LanguageEnglish
Published Canada Elsevier Ltd 01.06.2018
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The present work evaluated the feasibility of different pluronics (F127, F87 and P85) utilized as modifiers to improve the stability and bioaccessibility of curcumin liposomes (cur-Lps). Pluronics modified curcumin liposomes (cur-pluronic-Lps) were prepared by thin film evaporation combined with dynamic high pressure microfluidization. The particle size and polydispersity index of cur-pluronic-Lps was significantly lower than cur-Lps. Fourier transform infrared spectroscopy analysis revealed that curcumin was loaded in liposomes successfully and X-ray diffraction suggested that curcumin in the liposomes was in an amorphous state. In vitro release studies demonstrated that 73.4%, 63.9%, 66.7% and 58.9% curcumin released from cur-Lps, cur-F127-Lps, cur-F87-Lps and cur-P85-Lps, respectively. Compared with cur-Lps, cur-pluronic-Lps showed a slower release rate and lower cumulative release percentage for curcumin. Non-Fickian transport was the main release mechanism for cur-Lps, cur-F127-Lps and cur-F87-Lps, and typically the first-order model fitted cur-P85-Lps release. Stability studies (exposure to solutions of different pH and heat treatment) indicated that pluronics modification could enhance their pH stability and thermal stability. In vitro simulated gastrointestinal tract studies suggested that pluronics modification could significantly improve the absorption of cur-Lps. Bioaccessibility of curcumin liposomes increased in the following order: cur-Lps < cur-F87-Lps < cur-P85-Lps < cur-F127-Lps. These results may guide the potential application of pluronics modified liposomes as carriers of curcumin in nutraceutical and functional foods. [Display omitted] •Novel pluronics modified liposomes were prepared for curcumin encapsulation.•Pluronic modified curcumin liposomes showed sustained release.•Pluronics modified curcumin liposomes demonstrated improved thermal and pH stability.•Curcumin loaded in Pluronics modified liposomes possessed increased bioaccessibility.
AbstractList The present work evaluated the feasibility of different pluronics (F127, F87 and P85) utilized as modifiers to improve the stability and bioaccessibility of curcumin liposomes (cur-Lps). Pluronics modified curcumin liposomes (cur-pluronic-Lps) were prepared by thin film evaporation combined with dynamic high pressure microfluidization. The particle size and polydispersity index of cur-pluronic-Lps was significantly lower than cur-Lps. Fourier transform infrared spectroscopy analysis revealed that curcumin was loaded in liposomes successfully and X-ray diffraction suggested that curcumin in the liposomes was in an amorphous state. In vitro release studies demonstrated that 73.4%, 63.9%, 66.7% and 58.9% curcumin released from cur-Lps, cur-F127-Lps, cur-F87-Lps and cur-P85-Lps, respectively. Compared with cur-Lps, cur-pluronic-Lps showed a slower release rate and lower cumulative release percentage for curcumin. Non-Fickian transport was the main release mechanism for cur-Lps, cur-F127-Lps and cur-F87-Lps, and typically the first-order model fitted cur-P85-Lps release. Stability studies (exposure to solutions of different pH and heat treatment) indicated that pluronics modification could enhance their pH stability and thermal stability. In vitro simulated gastrointestinal tract studies suggested that pluronics modification could significantly improve the absorption of cur-Lps. Bioaccessibility of curcumin liposomes increased in the following order: cur-Lps < cur-F87-Lps < cur-P85-Lps < cur-F127-Lps. These results may guide the potential application of pluronics modified liposomes as carriers of curcumin in nutraceutical and functional foods.The present work evaluated the feasibility of different pluronics (F127, F87 and P85) utilized as modifiers to improve the stability and bioaccessibility of curcumin liposomes (cur-Lps). Pluronics modified curcumin liposomes (cur-pluronic-Lps) were prepared by thin film evaporation combined with dynamic high pressure microfluidization. The particle size and polydispersity index of cur-pluronic-Lps was significantly lower than cur-Lps. Fourier transform infrared spectroscopy analysis revealed that curcumin was loaded in liposomes successfully and X-ray diffraction suggested that curcumin in the liposomes was in an amorphous state. In vitro release studies demonstrated that 73.4%, 63.9%, 66.7% and 58.9% curcumin released from cur-Lps, cur-F127-Lps, cur-F87-Lps and cur-P85-Lps, respectively. Compared with cur-Lps, cur-pluronic-Lps showed a slower release rate and lower cumulative release percentage for curcumin. Non-Fickian transport was the main release mechanism for cur-Lps, cur-F127-Lps and cur-F87-Lps, and typically the first-order model fitted cur-P85-Lps release. Stability studies (exposure to solutions of different pH and heat treatment) indicated that pluronics modification could enhance their pH stability and thermal stability. In vitro simulated gastrointestinal tract studies suggested that pluronics modification could significantly improve the absorption of cur-Lps. Bioaccessibility of curcumin liposomes increased in the following order: cur-Lps < cur-F87-Lps < cur-P85-Lps < cur-F127-Lps. These results may guide the potential application of pluronics modified liposomes as carriers of curcumin in nutraceutical and functional foods.
The present work evaluated the feasibility of different pluronics (F127, F87 and P85) utilized as modifiers to improve the stability and bioaccessibility of curcumin liposomes (cur-Lps). Pluronics modified curcumin liposomes (cur-pluronic-Lps) were prepared by thin film evaporation combined with dynamic high pressure microfluidization. The particle size and polydispersity index of cur-pluronic-Lps was significantly lower than cur-Lps. Fourier transform infrared spectroscopy analysis revealed that curcumin was loaded in liposomes successfully and X-ray diffraction suggested that curcumin in the liposomes was in an amorphous state. In vitro release studies demonstrated that 73.4%, 63.9%, 66.7% and 58.9% curcumin released from cur-Lps, cur-F127-Lps, cur-F87-Lps and cur-P85-Lps, respectively. Compared with cur-Lps, cur-pluronic-Lps showed a slower release rate and lower cumulative release percentage for curcumin. Non-Fickian transport was the main release mechanism for cur-Lps, cur-F127-Lps and cur-F87-Lps, and typically the first-order model fitted cur-P85-Lps release. Stability studies (exposure to solutions of different pH and heat treatment) indicated that pluronics modification could enhance their pH stability and thermal stability. In vitro simulated gastrointestinal tract studies suggested that pluronics modification could significantly improve the absorption of cur-Lps. Bioaccessibility of curcumin liposomes increased in the following order: cur-Lps < cur-F87-Lps < cur-P85-Lps < cur-F127-Lps. These results may guide the potential application of pluronics modified liposomes as carriers of curcumin in nutraceutical and functional foods.
The present work evaluated the feasibility of different pluronics (F127, F87 and P85) utilized as modifiers to improve the stability and bioaccessibility of curcumin liposomes (cur-Lps). Pluronics modified curcumin liposomes (cur-pluronic-Lps) were prepared by thin film evaporation combined with dynamic high pressure microfluidization. The particle size and polydispersity index of cur-pluronic-Lps was significantly lower than cur-Lps. Fourier transform infrared spectroscopy analysis revealed that curcumin was loaded in liposomes successfully and X-ray diffraction suggested that curcumin in the liposomes was in an amorphous state. In vitro release studies demonstrated that 73.4%, 63.9%, 66.7% and 58.9% curcumin released from cur-Lps, cur-F127-Lps, cur-F87-Lps and cur-P85-Lps, respectively. Compared with cur-Lps, cur-pluronic-Lps showed a slower release rate and lower cumulative release percentage for curcumin. Non-Fickian transport was the main release mechanism for cur-Lps, cur-F127-Lps and cur-F87-Lps, and typically the first-order model fitted cur-P85-Lps release. Stability studies (exposure to solutions of different pH and heat treatment) indicated that pluronics modification could enhance their pH stability and thermal stability. In vitro simulated gastrointestinal tract studies suggested that pluronics modification could significantly improve the absorption of cur-Lps. Bioaccessibility of curcumin liposomes increased in the following order: cur-Lps < cur-F87-Lps < cur-P85-Lps < cur-F127-Lps. These results may guide the potential application of pluronics modified liposomes as carriers of curcumin in nutraceutical and functional foods. [Display omitted] •Novel pluronics modified liposomes were prepared for curcumin encapsulation.•Pluronic modified curcumin liposomes showed sustained release.•Pluronics modified curcumin liposomes demonstrated improved thermal and pH stability.•Curcumin loaded in Pluronics modified liposomes possessed increased bioaccessibility.
Author Zhu, Yu-qing
Zou, Li-qiang
Liu, Cheng-mei
Li, Zi-ling
Liu, Wei
Chen, Xing
Peng, Sheng-feng
Author_xml – sequence: 1
  givenname: Zi-ling
  surname: Li
  fullname: Li, Zi-ling
  organization: State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, Jiangxi, PR China
– sequence: 2
  givenname: Sheng-feng
  surname: Peng
  fullname: Peng, Sheng-feng
  organization: State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, Jiangxi, PR China
– sequence: 3
  givenname: Xing
  surname: Chen
  fullname: Chen, Xing
  organization: State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, Jiangxi, PR China
– sequence: 4
  givenname: Yu-qing
  surname: Zhu
  fullname: Zhu, Yu-qing
  organization: State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, Jiangxi, PR China
– sequence: 5
  givenname: Li-qiang
  surname: Zou
  fullname: Zou, Li-qiang
  organization: State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, Jiangxi, PR China
– sequence: 6
  givenname: Wei
  orcidid: 0000-0001-8211-034X
  surname: Liu
  fullname: Liu, Wei
  email: liuwei@ncu.edu.cn
  organization: State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, Jiangxi, PR China
– sequence: 7
  givenname: Cheng-mei
  surname: Liu
  fullname: Liu, Cheng-mei
  email: liuchengmei@aliyun.com
  organization: State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, Jiangxi, PR China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29735054$$D View this record in MEDLINE/PubMed
BookMark eNqFkU2L1EAQhhtZcWdXf4KSowcTK-mvRA-LLH7BgoJ6bjqVaqghSY_dibD_3qwzevAyp4Lied_D-1yJiznOJMTzGqoaavN6X4UYh0S5aqBuK5AVqPaR2NWtlaWtlb4QO-iMLLvOdJfiKuc9ABhtuyfisums1KDVTuy_jmuKM2MupjhwYBqKkQ8xx4lyEWIqcE24TjwXNKM_5HX0C8f5TfFtzYvneeMTjeQzvSq2R88jL_eFn4ei5-gRKWc-Pp-Kx8GPmZ6d7rX48eH999tP5d2Xj59v392VqIxaSsRgfRtA1lrbXrVoNGqNVoUAvVE9NK2xxstGkw1BUdN60wwdIqhOgfbyWrw89h5S_LlSXtzEGWkc_Uxxza5ppNV1C50-j4I0DWiQakNfnNC1n2hwh8STT_fu75QboI8ApphzovAPqcE9KHN7d1LmHpQ5kG5TtuXe_pdDXv5svCTP49n0zTFN26K_mJLLyJspGjgRLm6IfKbhN0-Stzw
CitedBy_id crossref_primary_10_1080_00914037_2023_2225117
crossref_primary_10_1016_j_carbpol_2023_121472
crossref_primary_10_1016_j_foodhyd_2022_107721
crossref_primary_10_1016_j_fbio_2023_103179
crossref_primary_10_1007_s10924_022_02642_8
crossref_primary_10_1016_j_fbio_2024_104660
crossref_primary_10_1021_acs_jafc_9b04009
crossref_primary_10_1021_acsabm_0c00190
crossref_primary_10_1021_acs_jafc_0c06680
crossref_primary_10_1016_j_foodres_2019_03_034
crossref_primary_10_1016_j_ijpharm_2021_120944
crossref_primary_10_1016_j_molliq_2022_120003
crossref_primary_10_3390_ph17121674
crossref_primary_10_3390_molecules25030694
crossref_primary_10_3390_ma17225454
crossref_primary_10_1016_j_foodhyd_2024_110465
crossref_primary_10_1016_j_lwt_2020_110558
crossref_primary_10_1016_j_lwt_2020_109446
crossref_primary_10_1016_j_foodhyd_2018_07_039
crossref_primary_10_1016_j_ijbiomac_2025_142202
crossref_primary_10_1080_01932691_2018_1489281
crossref_primary_10_3390_foods13162596
crossref_primary_10_1080_01932691_2020_1773849
crossref_primary_10_1021_acsanm_2c05272
crossref_primary_10_1038_s41538_025_00377_z
crossref_primary_10_1016_j_nanoso_2024_101321
crossref_primary_10_1016_j_colsurfb_2018_08_027
crossref_primary_10_3390_foods11101467
crossref_primary_10_1002_jsfa_11925
crossref_primary_10_1016_j_cis_2018_11_007
crossref_primary_10_3390_nano9020296
crossref_primary_10_1016_j_ijbiomac_2021_02_194
crossref_primary_10_1016_j_foodres_2018_07_062
crossref_primary_10_1016_j_foodchem_2024_139790
crossref_primary_10_1166_jbn_2022_3446
crossref_primary_10_3390_molecules29081687
crossref_primary_10_1016_j_ijbiomac_2023_125572
crossref_primary_10_1016_j_foodchem_2022_134328
crossref_primary_10_1016_j_colsurfb_2019_110460
crossref_primary_10_1007_s11483_022_09743_w
crossref_primary_10_2139_ssrn_3916202
crossref_primary_10_1016_j_foodhyd_2024_110165
crossref_primary_10_1016_j_addr_2021_113870
crossref_primary_10_1111_ijfs_17110
crossref_primary_10_1016_j_drudis_2018_11_001
crossref_primary_10_1111_ijfs_15694
crossref_primary_10_1021_acs_jafc_8b04136
crossref_primary_10_1080_01932691_2018_1562353
crossref_primary_10_3390_molecules26030560
crossref_primary_10_1016_j_fm_2023_104242
crossref_primary_10_1016_j_cis_2021_102563
crossref_primary_10_3390_md20080509
crossref_primary_10_3390_pharmaceutics14112269
crossref_primary_10_3390_polym13234207
crossref_primary_10_1016_j_lwt_2023_114489
crossref_primary_10_1016_j_lwt_2024_117139
crossref_primary_10_1016_j_foodres_2024_114948
crossref_primary_10_1177_0885328220949367
crossref_primary_10_1016_j_foodchem_2023_137683
crossref_primary_10_1016_j_jddst_2020_102082
crossref_primary_10_1016_j_foodchem_2023_138139
crossref_primary_10_1002_adhm_202400966
crossref_primary_10_1111_1541_4337_12660
crossref_primary_10_3390_colloids8020016
crossref_primary_10_1016_j_molliq_2018_11_060
crossref_primary_10_1016_j_molliq_2020_113591
crossref_primary_10_1111_1750_3841_15677
crossref_primary_10_1016_j_jddst_2024_105633
crossref_primary_10_1039_D0CE00750A
crossref_primary_10_1080_10408398_2024_2384646
crossref_primary_10_3390_colloids7020025
crossref_primary_10_1016_j_lwt_2023_115405
crossref_primary_10_3390_antiox11050854
crossref_primary_10_1016_j_molliq_2023_121410
crossref_primary_10_1080_10717544_2022_2053761
crossref_primary_10_2147_IJN_S285134
crossref_primary_10_1016_j_tifs_2021_07_005
crossref_primary_10_1111_jfbc_14012
crossref_primary_10_1016_j_foodchem_2021_130700
crossref_primary_10_1111_ijfs_16167
crossref_primary_10_1021_acs_molpharmaceut_4c00376
crossref_primary_10_3390_pharmaceutics17020181
crossref_primary_10_3390_foods9030325
crossref_primary_10_1080_02652048_2020_1720030
crossref_primary_10_1016_j_jtice_2021_10_020
crossref_primary_10_1557_s43578_020_00021_4
crossref_primary_10_1016_j_jddst_2022_103390
crossref_primary_10_1016_j_heliyon_2022_e09030
crossref_primary_10_1080_10408398_2022_2156474
crossref_primary_10_1080_01932691_2020_1776130
crossref_primary_10_3390_nano10112224
crossref_primary_10_1007_s13318_019_00545_z
crossref_primary_10_3390_polym16243451
crossref_primary_10_1016_j_foodres_2023_112608
crossref_primary_10_1016_j_ccr_2023_215233
crossref_primary_10_1016_j_fbp_2024_10_001
crossref_primary_10_1111_1541_4337_13017
crossref_primary_10_1080_02652048_2023_2209658
crossref_primary_10_1111_1750_3841_16548
crossref_primary_10_1002_cben_202300027
crossref_primary_10_1016_j_jddst_2021_102568
crossref_primary_10_1016_j_foodchem_2019_04_116
crossref_primary_10_1016_j_lwt_2023_115308
crossref_primary_10_1016_j_phymed_2022_154306
crossref_primary_10_1016_j_ifset_2021_102613
crossref_primary_10_1016_j_ijpharm_2023_122824
crossref_primary_10_1016_j_foodchem_2019_04_077
crossref_primary_10_1016_j_ijbiomac_2024_134841
crossref_primary_10_1002_app_56052
crossref_primary_10_1016_j_foodchem_2022_133553
crossref_primary_10_1016_j_foodchem_2022_135180
crossref_primary_10_3390_molecules26051263
crossref_primary_10_1016_j_foodhyd_2022_108089
crossref_primary_10_1016_j_biomaterials_2019_119649
crossref_primary_10_1016_j_jff_2019_05_015
crossref_primary_10_1007_s10311_021_01276_x
crossref_primary_10_1111_1750_3841_15489
crossref_primary_10_1016_j_ijbiomac_2022_05_146
crossref_primary_10_1016_j_ijpharm_2018_11_049
crossref_primary_10_1016_j_foodres_2020_109555
crossref_primary_10_1016_j_jfoodeng_2018_08_013
crossref_primary_10_1016_j_lwt_2022_114149
crossref_primary_10_1007_s11051_023_05921_0
crossref_primary_10_1016_j_cis_2022_102709
crossref_primary_10_3389_fbioe_2022_1097178
crossref_primary_10_3390_molecules26185510
crossref_primary_10_1208_s12249_019_1586_6
crossref_primary_10_1021_acs_jafc_9b01602
crossref_primary_10_1007_s11694_022_01786_4
crossref_primary_10_1080_02652048_2021_1993363
crossref_primary_10_1016_j_indcrop_2019_111620
crossref_primary_10_1016_j_matpr_2023_03_813
crossref_primary_10_1016_j_colsurfa_2024_133207
crossref_primary_10_1016_j_foodhyd_2020_105963
Cites_doi 10.1016/j.foodres.2014.12.015
10.1016/j.foodchem.2015.09.050
10.1016/j.colsurfb.2010.03.039
10.1016/j.jconrel.2004.01.005
10.1021/la990288+
10.1021/jf4039925
10.1186/1556-276X-8-102
10.1080/17458080.2016.1148273
10.1016/j.eurpolymj.2015.05.003
10.2217/nnm.16.9
10.1016/j.colsurfb.2016.07.043
10.1016/S0169-409X(01)00112-0
10.1021/ja070748i
10.1039/c3py00042g
10.3390/molecules200814293
10.1016/j.jcis.2004.03.013
10.1021/acs.jafc.6b04815
10.1016/j.biomaterials.2010.04.062
10.1016/j.ejps.2009.02.019
10.1016/j.carbpol.2016.09.060
10.1016/j.biomaterials.2013.12.090
10.1016/j.foodres.2015.12.035
10.1039/C7RA02861J
10.1016/j.ejps.2008.01.016
10.1177/0885328209357110
10.1039/c2fo30108c
10.1016/j.ijpharm.2013.01.071
10.1007/s00396-014-3414-6
10.1124/pr.110.004044
10.1016/j.foodres.2014.07.042
10.1021/la070051a
10.1049/mnl.2016.0690
10.1016/j.jcis.2016.09.003
10.1039/c3ra46396f
10.1021/jp906331m
10.1016/j.colsurfb.2014.02.036
10.1016/j.foodres.2015.04.024
10.3109/02652048.2011.599436
10.1016/j.foodres.2016.03.031
ContentType Journal Article
Copyright 2018 Elsevier Ltd
Copyright © 2018 Elsevier Ltd. All rights reserved.
Copyright_xml – notice: 2018 Elsevier Ltd
– notice: Copyright © 2018 Elsevier Ltd. All rights reserved.
DBID AAYXX
CITATION
NPM
7X8
7S9
L.6
DOI 10.1016/j.foodres.2018.03.048
DatabaseName CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList MEDLINE - Academic
PubMed
AGRICOLA

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Economics
Engineering
EISSN 1873-7145
EndPage 253
ExternalDocumentID 29735054
10_1016_j_foodres_2018_03_048
S0963996918302242
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID --K
--M
.GJ
.~1
0R~
1B1
1RT
1~.
1~5
29H
4.4
457
4G.
53G
5GY
5VS
7-5
71M
8P~
9JM
AABNK
AABVA
AACTN
AAEDT
AAEDW
AAIAV
AAIKC
AAIKJ
AAKOC
AALCJ
AALRI
AAMNW
AAOAW
AAQFI
AAQXK
AATLK
AAXUO
ABFNM
ABFRF
ABGRD
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFO
ACIUM
ACRLP
ADBBV
ADEZE
ADMUD
ADQTV
AEBSH
AEFWE
AEKER
AENEX
AEQOU
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CBWCG
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HLV
HVGLF
HZ~
IHE
J1W
K-O
KOM
LW9
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SAB
SDF
SDG
SDP
SES
SEW
SPCBC
SSA
SSZ
T5K
WUQ
Y6R
~G-
~KM
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
EFKBS
NPM
7X8
7S9
L.6
ID FETCH-LOGICAL-c464t-ccf7a8f031557b48c65c55c74ff0b64b028676a325e7ff4e28a62d9cc049405a3
IEDL.DBID .~1
ISSN 0963-9969
1873-7145
IngestDate Fri Jul 11 02:05:29 EDT 2025
Thu Jul 10 18:08:44 EDT 2025
Mon Jul 21 05:25:51 EDT 2025
Thu Apr 24 22:51:50 EDT 2025
Tue Jul 01 03:05:50 EDT 2025
Fri Feb 23 02:30:04 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Phospholipid
Sustained release
Bioaccessibility
Curcumin
Pluronics
Stability
Language English
License Copyright © 2018 Elsevier Ltd. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c464t-ccf7a8f031557b48c65c55c74ff0b64b028676a325e7ff4e28a62d9cc049405a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0001-8211-034X
PMID 29735054
PQID 2036205034
PQPubID 23479
PageCount 8
ParticipantIDs proquest_miscellaneous_2237518095
proquest_miscellaneous_2036205034
pubmed_primary_29735054
crossref_primary_10_1016_j_foodres_2018_03_048
crossref_citationtrail_10_1016_j_foodres_2018_03_048
elsevier_sciencedirect_doi_10_1016_j_foodres_2018_03_048
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate June 2018
2018-06-00
20180601
PublicationDateYYYYMMDD 2018-06-01
PublicationDate_xml – month: 06
  year: 2018
  text: June 2018
PublicationDecade 2010
PublicationPlace Canada
PublicationPlace_xml – name: Canada
PublicationTitle Food research international
PublicationTitleAlternate Food Res Int
PublicationYear 2018
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Sezgin, Yuksel, Baykara (bb0140) 2006; 64
Siepmann, Peppas (bb0150) 2001; 48
Yallapu, Jaggi, Chauhan (bb0185) 2010; 79
Venkateswarlu, Manjunath (bb0160) 2004; 95
Naksuriya, Okonogi, Schiffelers, Hennink (bb0090) 2014; 35
Ribas-Agusti, Martin-Belloso, Soliva-Fortuny, Elez-Martinez (bb0125) 2017
Wang, Liu, Sun, Huang, Long, Wang, Huang (bb0165) 2013; 4
Bergstrand, Edwards (bb0010) 2004; 276
Lee, Chen, Dettmer, O'Halloran, Nguyen (bb0060) 2007; 129
Peng, Dong, Wang, Zhang, Luo, Bai, Xiong (bb0100) 2013; 446
Salem, Rohani, Gillies (bb0135) 2014; 4
Zou, Zheng, Zhang, Zhang, Liu, Liu, McClements (bb0205) 2016; 81
Li, Huang, Xiong, Qin, Luo (bb0065) 2017; 12
Chen, Zou, Niu, Liu, Peng, Liu (bb0015) 2015; 20
Zou, Peng, Liu, Gan, Liu, Liang, Chen (bb0200) 2014; 64
Peng, Li, Ning, Yao, Luo, Zhu, Xiong (bb0105) 2014; 62
Cheng, Peng, Li, Zou, Liu, Liu (bb0020) 2017; 7
Liu, Liu, Ye, Peng, Wei, Liu, Han (bb0070) 2016; 196
Ramalingam, Yoo, Ko (bb0115) 2016; 84
Heger, van Golen, Broekgaarden, Michel (bb0040) 2014; 66
Zhou, Liu, Zou, Liu, Liu, Liang, Chen (bb0190) 2014; 117C
Shaikh, Ankola, Beniwal, Singh, Kumar (bb0145) 2009; 37
Song, Balakrishnan, Shim, Chung, Kim (bb0155) 2011; 28
Akbarzadeh, Rezaei-Sadabady, Davaran, Joo, Zarghami, Hanifehpour, Nejati-Koshki (bb0005) 2013; 8
Xiong, Qin, Li, Gong, Li (bb0180) 2015; 68
Wu, Lee (bb0175) 2009; 113
Manconi, Marongiu, Castangia, Manca, Caddeo, Tuberoso, Fadda (bb0080) 2016; 146
Emami, Azadmard-Damirchi, Peighambardoust, Valizadeh, Hesari (bb0025) 2016; 11
Gao, Ming, He, Fan, Gu, Zhang (bb0030) 2008; 34
Peng, Zou, Liu, Li, Liu, Hu, Liu (bb0110) 2017; 156
Nguyen, Huang, Gauthier, Yang, Wang (bb0095) 2016; 11
Raymond C Rowe, Owen (bb0120) 2006
Wang, Wang, Zhao, Ding, Li (bb0170) 2017; 485
Zou, Peng, Liu, Chen, Liu (bb0195) 2015; 69
Mao, McClements (bb0085) 2012; 3
Kharat, Du, Zhang, McClements (bb0055) 2017; 65
Hädicke, Blume (bb0035) 2014; 293
Sahu, Kasoju, Goswami, Bora (bb0130) 2011; 25
Liu, Liu, Zhu, Gan, Le (bb0075) 2015; 74
Johnsson, Silvander, Karlsson, Edwards (bb0050) 1999; 15
Mohanty, Sahoo (bb8888) 2010; 31
Jahn, Vreeland, DeVoe, Locascio, Gaitan (bb0045) 2007; 23
Siepmann (10.1016/j.foodres.2018.03.048_bb0150) 2001; 48
Heger (10.1016/j.foodres.2018.03.048_bb0040) 2014; 66
Emami (10.1016/j.foodres.2018.03.048_bb0025) 2016; 11
Ribas-Agusti (10.1016/j.foodres.2018.03.048_bb0125) 2017
Naksuriya (10.1016/j.foodres.2018.03.048_bb0090) 2014; 35
Ramalingam (10.1016/j.foodres.2018.03.048_bb0115) 2016; 84
Sahu (10.1016/j.foodres.2018.03.048_bb0130) 2011; 25
Kharat (10.1016/j.foodres.2018.03.048_bb0055) 2017; 65
Zou (10.1016/j.foodres.2018.03.048_bb0195) 2015; 69
Bergstrand (10.1016/j.foodres.2018.03.048_bb0010) 2004; 276
Xiong (10.1016/j.foodres.2018.03.048_bb0180) 2015; 68
Peng (10.1016/j.foodres.2018.03.048_bb0100) 2013; 446
Song (10.1016/j.foodres.2018.03.048_bb0155) 2011; 28
Peng (10.1016/j.foodres.2018.03.048_bb0110) 2017; 156
Lee (10.1016/j.foodres.2018.03.048_bb0060) 2007; 129
Gao (10.1016/j.foodres.2018.03.048_bb0030) 2008; 34
Salem (10.1016/j.foodres.2018.03.048_bb0135) 2014; 4
Zou (10.1016/j.foodres.2018.03.048_bb0205) 2016; 81
Mohanty (10.1016/j.foodres.2018.03.048_bb8888) 2010; 31
Liu (10.1016/j.foodres.2018.03.048_bb0075) 2015; 74
Johnsson (10.1016/j.foodres.2018.03.048_bb0050) 1999; 15
Zhou (10.1016/j.foodres.2018.03.048_bb0190) 2014; 117C
Nguyen (10.1016/j.foodres.2018.03.048_bb0095) 2016; 11
Chen (10.1016/j.foodres.2018.03.048_bb0015) 2015; 20
Wang (10.1016/j.foodres.2018.03.048_bb0170) 2017; 485
Manconi (10.1016/j.foodres.2018.03.048_bb0080) 2016; 146
Akbarzadeh (10.1016/j.foodres.2018.03.048_bb0005) 2013; 8
Venkateswarlu (10.1016/j.foodres.2018.03.048_bb0160) 2004; 95
Wu (10.1016/j.foodres.2018.03.048_bb0175) 2009; 113
Zou (10.1016/j.foodres.2018.03.048_bb0200) 2014; 64
Mao (10.1016/j.foodres.2018.03.048_bb0085) 2012; 3
Shaikh (10.1016/j.foodres.2018.03.048_bb0145) 2009; 37
Peng (10.1016/j.foodres.2018.03.048_bb0105) 2014; 62
Raymond C Rowe (10.1016/j.foodres.2018.03.048_bb0120) 2006
Yallapu (10.1016/j.foodres.2018.03.048_bb0185) 2010; 79
Sezgin (10.1016/j.foodres.2018.03.048_bb0140) 2006; 64
Wang (10.1016/j.foodres.2018.03.048_bb0165) 2013; 4
Liu (10.1016/j.foodres.2018.03.048_bb0070) 2016; 196
Cheng (10.1016/j.foodres.2018.03.048_bb0020) 2017; 7
Li (10.1016/j.foodres.2018.03.048_bb0065) 2017; 12
Hädicke (10.1016/j.foodres.2018.03.048_bb0035) 2014; 293
Jahn (10.1016/j.foodres.2018.03.048_bb0045) 2007; 23
References_xml – volume: 81
  start-page: 74
  year: 2016
  end-page: 82
  ident: bb0205
  article-title: Enhancing the bioaccessibility of hydrophobic bioactive agents using mixed colloidal dispersions: Curcumin-loaded zein nanoparticles plus digestible lipid nanoparticles
  publication-title: Food Research International
– volume: 4
  start-page: 2958
  year: 2013
  end-page: 2962
  ident: bb0165
  article-title: Pluronic L61 as a long-circulating modifier for enhanced liposomal delivery of cancer drugs
  publication-title: Polymer Chemistry
– volume: 156
  start-page: 322
  year: 2017
  end-page: 332
  ident: bb0110
  article-title: Hybrid liposomes composed of amphiphilic chitosan and phospholipid: Preparation, stability and bioavailability as a carrier for curcumin
  publication-title: Carbohydrate Polymers
– volume: 79
  start-page: 113
  year: 2010
  end-page: 125
  ident: bb0185
  article-title: Beta-Cyclodextrin-curcumin self-assembly enhances curcumin delivery in prostate cancer cells
  publication-title: Colloids and Surfaces B: Biointerfaces
– volume: 293
  start-page: 267
  year: 2014
  end-page: 276
  ident: bb0035
  article-title: Interactions of Pluronic block copolymers with lipid vesicles depend on lipid phase and Pluronic aggregation state
  publication-title: Colloid and Polymer Science
– volume: 3
  start-page: 1025
  year: 2012
  end-page: 1034
  ident: bb0085
  article-title: Influence of electrostatic heteroaggregation of lipid droplets on their stability and digestibility under simulated gastrointestinal conditions
  publication-title: Food & Function
– volume: 11
  start-page: 737
  year: 2016
  end-page: 759
  ident: bb0025
  article-title: Liposomes as carrier vehicles for functional compounds in food sector
  publication-title: Journal of Experimental Nanoscience
– volume: 20
  start-page: 14293
  year: 2015
  end-page: 14311
  ident: bb0015
  article-title: The stability, sustained release and cellular antioxidant activity of curcumin nanoliposomes
  publication-title: Molecules
– volume: 15
  start-page: 6314
  year: 1999
  end-page: 6325
  ident: bb0050
  article-title: Effect of PEO-PPO-PEO triblock copolymers on structure and stability of phosphatidylcholine liposomes
  publication-title: Langmuir
– volume: 68
  start-page: 233
  year: 2015
  end-page: 242
  ident: bb0180
  article-title: Synthesis, drug release and targeting behaviors of novel Folated Pluronic F87/poly(lactic acid) block copolymer
  publication-title: European Polymer Journal
– volume: 446
  start-page: 153
  year: 2013
  end-page: 159
  ident: bb0100
  article-title: A pH-responsive nano-carrier with mesoporous silica nanoparticles cores and poly(acrylic acid) shell-layers: Fabrication, characterization and properties for controlled release of salidroside
  publication-title: International Journal of Pharmaceutics
– volume: 12
  start-page: 191
  year: 2017
  end-page: 194
  ident: bb0065
  article-title: Synthesis, characterisation and in vitro release of paclitaxel-loaded polymeric micelles
  publication-title: Micro & Nano Letters
– volume: 23
  start-page: 6289
  year: 2007
  end-page: 6293
  ident: bb0045
  article-title: Microfluidic directed formation of liposomes of controlled size
  publication-title: Langmuir
– volume: 64
  start-page: 261
  year: 2006
  end-page: 268
  ident: bb0140
  article-title: Preparation and characterization of polymeric micelles for solubilization of poorly soluble anticancer drugs
  publication-title: Journal of Agricultural and Food Chemistry
– volume: 64
  start-page: 492
  year: 2014
  end-page: 499
  ident: bb0200
  article-title: Improved in vitro digestion stability of (−)-epigallocatechin gallate through nanoliposome encapsulation
  publication-title: Food Research International
– volume: 84
  start-page: 113
  year: 2016
  end-page: 119
  ident: bb0115
  article-title: Nanodelivery systems based on mucoadhesive polymer coated solid lipid nanoparticles to improve the oral intake of food curcumin
  publication-title: Food Research International
– volume: 8
  start-page: 102
  year: 2013
  ident: bb0005
  article-title: Liposome: Classification, preparation, and applications
  publication-title: Nanoscale Research Letters
– volume: 37
  start-page: 223
  year: 2009
  end-page: 230
  ident: bb0145
  article-title: Nanoparticle encapsulation improves oral bioavailability of curcumin by at least 9-fold when compared to curcumin administered with piperine as absorption enhancer
  publication-title: European Journal of Pharmaceutical Sciences
– volume: 48
  start-page: 139
  year: 2001
  end-page: 157
  ident: bb0150
  article-title: Modeling of drug release from delivery systems based on hydroxypropyl methylcellulose (HPMC)
  publication-title: Advanced Drug Delivery Reviews
– start-page: 535
  year: 2006
  end-page: 538
  ident: bb0120
  article-title: Handbook of pharmaceutical excipients
– volume: 69
  start-page: 114
  year: 2015
  end-page: 120
  ident: bb0195
  article-title: A novel delivery system dextran sulfate coated amphiphilic chitosan derivatives–based nanoliposome: Capacity to improve in vitro digestion stability of (−)–epigallocatechin gallate
  publication-title: Food Research International
– volume: 65
  start-page: 1525
  year: 2017
  end-page: 1532
  ident: bb0055
  article-title: Physical and chemical stability of curcumin in aqueous solutions and emulsions: Impact of pH, temperature, and molecular environment
  publication-title: Journal of Agricultural and Food Chemistry
– volume: 4
  year: 2014
  ident: bb0135
  article-title: Curcumin, a promising anti-cancer therapeutic: A review of its chemical properties, bioactivity and approaches to cancer cell delivery
  publication-title: RSC Advances
– volume: 31
  start-page: 6597
  year: 2010
  end-page: 6611
  ident: bb8888
  article-title: The in vitro stability and in vivo pharmacokinetics of curcumin prepared as an aqueous nanoparticulate formulation
  publication-title: Biomaterials
– volume: 117C
  start-page: 330
  year: 2014
  end-page: 337
  ident: bb0190
  article-title: Storage stability and skin permeation of vitamin C liposomes improved by pectin coating
  publication-title: Colloids and Surfaces B: Biointerfaces
– start-page: 1
  year: 2017
  end-page: 18
  ident: bb0125
  article-title: Food processing strategies to enhance phenolic compounds bioaccessibility and bioavailability in plant-based foods
  publication-title: Critical Reviews in Food Science and Nutrition
– volume: 34
  start-page: 85
  year: 2008
  end-page: 93
  ident: bb0030
  article-title: Preparation and characterization of novel polymeric micelles for 9-nitro-20(S)-camptothecin delivery
  publication-title: European Journal of Pharmaceutical Sciences
– volume: 74
  start-page: 97
  year: 2015
  end-page: 105
  ident: bb0075
  article-title: Temperature-dependent structure stability and in vitro release of chitosan-coated curcumin liposome
  publication-title: Food Research International
– volume: 196
  start-page: 396
  year: 2016
  end-page: 404
  ident: bb0070
  article-title: Environmental stress stability of microencapsules based on liposomes decorated with chitosan and sodium alginate
  publication-title: Food Chemistry
– volume: 113
  start-page: 15522
  year: 2009
  end-page: 15531
  ident: bb0175
  article-title: Interaction of poloxamers with liposomes: An isothermal titration calorimetry study
  publication-title: The Journal of Physical Chemistry B
– volume: 485
  start-page: 91
  year: 2017
  end-page: 98
  ident: bb0170
  article-title: A cost-effective method to prepare curcumin nanosuspensions with enhanced oral bioavailability
  publication-title: Journal of Colloid and Interface Science
– volume: 129
  start-page: 15096
  year: 2007
  end-page: 15097
  ident: bb0060
  article-title: Polymer-caged lipsomes: A pH-responsive delivery system with high stability
  publication-title: Journal of the American Chemical Society
– volume: 95
  start-page: 627
  year: 2004
  end-page: 638
  ident: bb0160
  article-title: Preparation, characterization and in vitro release kinetics of clozapine solid lipid nanoparticles
  publication-title: Journal of Controlled Release
– volume: 7
  start-page: 25978
  year: 2017
  end-page: 25986
  ident: bb0020
  article-title: Improved bioavailability of curcumin in liposomes prepared using a pH-driven, organic solvent-free, easily scalable process
  publication-title: RSC Advances
– volume: 25
  start-page: 619
  year: 2011
  end-page: 639
  ident: bb0130
  article-title: Encapsulation of curcumin in Pluronic block copolymer micelles for drug delivery applications
  publication-title: Journal of Biomaterials Applications
– volume: 11
  start-page: 1169
  year: 2016
  end-page: 1185
  ident: bb0095
  article-title: Recent advances in liposome surface modification for oral drug delivery
  publication-title: Nanomedicine
– volume: 276
  start-page: 400
  year: 2004
  end-page: 407
  ident: bb0010
  article-title: Effects of poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) triblock copolymers on structure and stability of liposomal dioleoylphosphatidylethanolamine
  publication-title: Journal of Colloid and Interface Science
– volume: 28
  start-page: 575
  year: 2011
  end-page: 581
  ident: bb0155
  article-title: Enhanced in vitro cellular uptake of P-gp substrate by poloxamer-modified liposomes (PMLs) in MDR cancer cells
  publication-title: Journal of Microencapsulation
– volume: 146
  start-page: 910
  year: 2016
  end-page: 917
  ident: bb0080
  article-title: Polymer-associated liposomes for the oral delivery of grape pomace extract
  publication-title: Colloids and Surfaces B: Biointerfaces
– volume: 35
  start-page: 3365
  year: 2014
  end-page: 3383
  ident: bb0090
  article-title: Curcumin nanoformulations: A review of pharmaceutical properties and preclinical studies and clinical data related to cancer treatment
  publication-title: Biomaterials
– volume: 66
  start-page: 222
  year: 2014
  end-page: 307
  ident: bb0040
  article-title: The molecular basis for the pharmacokinetics and pharmacodynamics of curcumin and its metabolites in relation to cancer
  publication-title: Pharmacological Reviews
– volume: 62
  start-page: 626
  year: 2014
  end-page: 633
  ident: bb0105
  article-title: Amphiphilic chitosan derivatives-based liposomes: Synthesis, development, and properties as a carrier for sustained release of salidroside
  publication-title: Journal of Agricultural and Food Chemistry
– volume: 69
  start-page: 114
  year: 2015
  ident: 10.1016/j.foodres.2018.03.048_bb0195
  article-title: A novel delivery system dextran sulfate coated amphiphilic chitosan derivatives–based nanoliposome: Capacity to improve in vitro digestion stability of (−)–epigallocatechin gallate
  publication-title: Food Research International
  doi: 10.1016/j.foodres.2014.12.015
– volume: 196
  start-page: 396
  year: 2016
  ident: 10.1016/j.foodres.2018.03.048_bb0070
  article-title: Environmental stress stability of microencapsules based on liposomes decorated with chitosan and sodium alginate
  publication-title: Food Chemistry
  doi: 10.1016/j.foodchem.2015.09.050
– volume: 79
  start-page: 113
  issue: 1
  year: 2010
  ident: 10.1016/j.foodres.2018.03.048_bb0185
  article-title: Beta-Cyclodextrin-curcumin self-assembly enhances curcumin delivery in prostate cancer cells
  publication-title: Colloids and Surfaces B: Biointerfaces
  doi: 10.1016/j.colsurfb.2010.03.039
– volume: 95
  start-page: 627
  issue: 3
  year: 2004
  ident: 10.1016/j.foodres.2018.03.048_bb0160
  article-title: Preparation, characterization and in vitro release kinetics of clozapine solid lipid nanoparticles
  publication-title: Journal of Controlled Release
  doi: 10.1016/j.jconrel.2004.01.005
– volume: 15
  start-page: 6314
  issue: 19
  year: 1999
  ident: 10.1016/j.foodres.2018.03.048_bb0050
  article-title: Effect of PEO-PPO-PEO triblock copolymers on structure and stability of phosphatidylcholine liposomes
  publication-title: Langmuir
  doi: 10.1021/la990288+
– volume: 62
  start-page: 626
  issue: 3
  year: 2014
  ident: 10.1016/j.foodres.2018.03.048_bb0105
  article-title: Amphiphilic chitosan derivatives-based liposomes: Synthesis, development, and properties as a carrier for sustained release of salidroside
  publication-title: Journal of Agricultural and Food Chemistry
  doi: 10.1021/jf4039925
– volume: 8
  start-page: 102
  issue: 1
  year: 2013
  ident: 10.1016/j.foodres.2018.03.048_bb0005
  article-title: Liposome: Classification, preparation, and applications
  publication-title: Nanoscale Research Letters
  doi: 10.1186/1556-276X-8-102
– volume: 11
  start-page: 737
  issue: 9
  year: 2016
  ident: 10.1016/j.foodres.2018.03.048_bb0025
  article-title: Liposomes as carrier vehicles for functional compounds in food sector
  publication-title: Journal of Experimental Nanoscience
  doi: 10.1080/17458080.2016.1148273
– volume: 68
  start-page: 233
  year: 2015
  ident: 10.1016/j.foodres.2018.03.048_bb0180
  article-title: Synthesis, drug release and targeting behaviors of novel Folated Pluronic F87/poly(lactic acid) block copolymer
  publication-title: European Polymer Journal
  doi: 10.1016/j.eurpolymj.2015.05.003
– volume: 11
  start-page: 1169
  issue: 9
  year: 2016
  ident: 10.1016/j.foodres.2018.03.048_bb0095
  article-title: Recent advances in liposome surface modification for oral drug delivery
  publication-title: Nanomedicine
  doi: 10.2217/nnm.16.9
– volume: 146
  start-page: 910
  year: 2016
  ident: 10.1016/j.foodres.2018.03.048_bb0080
  article-title: Polymer-associated liposomes for the oral delivery of grape pomace extract
  publication-title: Colloids and Surfaces B: Biointerfaces
  doi: 10.1016/j.colsurfb.2016.07.043
– volume: 48
  start-page: 139
  issue: 2–3
  year: 2001
  ident: 10.1016/j.foodres.2018.03.048_bb0150
  article-title: Modeling of drug release from delivery systems based on hydroxypropyl methylcellulose (HPMC)
  publication-title: Advanced Drug Delivery Reviews
  doi: 10.1016/S0169-409X(01)00112-0
– volume: 129
  start-page: 15096
  issue: 49
  year: 2007
  ident: 10.1016/j.foodres.2018.03.048_bb0060
  article-title: Polymer-caged lipsomes: A pH-responsive delivery system with high stability
  publication-title: Journal of the American Chemical Society
  doi: 10.1021/ja070748i
– volume: 4
  start-page: 2958
  issue: 10
  year: 2013
  ident: 10.1016/j.foodres.2018.03.048_bb0165
  article-title: Pluronic L61 as a long-circulating modifier for enhanced liposomal delivery of cancer drugs
  publication-title: Polymer Chemistry
  doi: 10.1039/c3py00042g
– volume: 20
  start-page: 14293
  issue: 8
  year: 2015
  ident: 10.1016/j.foodres.2018.03.048_bb0015
  article-title: The stability, sustained release and cellular antioxidant activity of curcumin nanoliposomes
  publication-title: Molecules
  doi: 10.3390/molecules200814293
– volume: 276
  start-page: 400
  issue: 2
  year: 2004
  ident: 10.1016/j.foodres.2018.03.048_bb0010
  article-title: Effects of poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) triblock copolymers on structure and stability of liposomal dioleoylphosphatidylethanolamine
  publication-title: Journal of Colloid and Interface Science
  doi: 10.1016/j.jcis.2004.03.013
– volume: 65
  start-page: 1525
  issue: 8
  year: 2017
  ident: 10.1016/j.foodres.2018.03.048_bb0055
  article-title: Physical and chemical stability of curcumin in aqueous solutions and emulsions: Impact of pH, temperature, and molecular environment
  publication-title: Journal of Agricultural and Food Chemistry
  doi: 10.1021/acs.jafc.6b04815
– volume: 31
  start-page: 6597
  issue: 25
  year: 2010
  ident: 10.1016/j.foodres.2018.03.048_bb8888
  article-title: The in vitro stability and in vivo pharmacokinetics of curcumin prepared as an aqueous nanoparticulate formulation
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2010.04.062
– volume: 64
  start-page: 261
  issue: 3
  year: 2006
  ident: 10.1016/j.foodres.2018.03.048_bb0140
  article-title: Preparation and characterization of polymeric micelles for solubilization of poorly soluble anticancer drugs
  publication-title: Journal of Agricultural and Food Chemistry
– volume: 37
  start-page: 223
  issue: 3–4
  year: 2009
  ident: 10.1016/j.foodres.2018.03.048_bb0145
  article-title: Nanoparticle encapsulation improves oral bioavailability of curcumin by at least 9-fold when compared to curcumin administered with piperine as absorption enhancer
  publication-title: European Journal of Pharmaceutical Sciences
  doi: 10.1016/j.ejps.2009.02.019
– volume: 156
  start-page: 322
  year: 2017
  ident: 10.1016/j.foodres.2018.03.048_bb0110
  article-title: Hybrid liposomes composed of amphiphilic chitosan and phospholipid: Preparation, stability and bioavailability as a carrier for curcumin
  publication-title: Carbohydrate Polymers
  doi: 10.1016/j.carbpol.2016.09.060
– volume: 35
  start-page: 3365
  issue: 10
  year: 2014
  ident: 10.1016/j.foodres.2018.03.048_bb0090
  article-title: Curcumin nanoformulations: A review of pharmaceutical properties and preclinical studies and clinical data related to cancer treatment
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2013.12.090
– volume: 81
  start-page: 74
  year: 2016
  ident: 10.1016/j.foodres.2018.03.048_bb0205
  article-title: Enhancing the bioaccessibility of hydrophobic bioactive agents using mixed colloidal dispersions: Curcumin-loaded zein nanoparticles plus digestible lipid nanoparticles
  publication-title: Food Research International
  doi: 10.1016/j.foodres.2015.12.035
– volume: 7
  start-page: 25978
  issue: 42
  year: 2017
  ident: 10.1016/j.foodres.2018.03.048_bb0020
  article-title: Improved bioavailability of curcumin in liposomes prepared using a pH-driven, organic solvent-free, easily scalable process
  publication-title: RSC Advances
  doi: 10.1039/C7RA02861J
– volume: 34
  start-page: 85
  issue: 2–3
  year: 2008
  ident: 10.1016/j.foodres.2018.03.048_bb0030
  article-title: Preparation and characterization of novel polymeric micelles for 9-nitro-20(S)-camptothecin delivery
  publication-title: European Journal of Pharmaceutical Sciences
  doi: 10.1016/j.ejps.2008.01.016
– volume: 25
  start-page: 619
  issue: 6
  year: 2011
  ident: 10.1016/j.foodres.2018.03.048_bb0130
  article-title: Encapsulation of curcumin in Pluronic block copolymer micelles for drug delivery applications
  publication-title: Journal of Biomaterials Applications
  doi: 10.1177/0885328209357110
– start-page: 1
  year: 2017
  ident: 10.1016/j.foodres.2018.03.048_bb0125
  article-title: Food processing strategies to enhance phenolic compounds bioaccessibility and bioavailability in plant-based foods
  publication-title: Critical Reviews in Food Science and Nutrition
– volume: 3
  start-page: 1025
  issue: 10
  year: 2012
  ident: 10.1016/j.foodres.2018.03.048_bb0085
  article-title: Influence of electrostatic heteroaggregation of lipid droplets on their stability and digestibility under simulated gastrointestinal conditions
  publication-title: Food & Function
  doi: 10.1039/c2fo30108c
– volume: 446
  start-page: 153
  issue: 1–2
  year: 2013
  ident: 10.1016/j.foodres.2018.03.048_bb0100
  article-title: A pH-responsive nano-carrier with mesoporous silica nanoparticles cores and poly(acrylic acid) shell-layers: Fabrication, characterization and properties for controlled release of salidroside
  publication-title: International Journal of Pharmaceutics
  doi: 10.1016/j.ijpharm.2013.01.071
– volume: 293
  start-page: 267
  issue: 1
  year: 2014
  ident: 10.1016/j.foodres.2018.03.048_bb0035
  article-title: Interactions of Pluronic block copolymers with lipid vesicles depend on lipid phase and Pluronic aggregation state
  publication-title: Colloid and Polymer Science
  doi: 10.1007/s00396-014-3414-6
– volume: 66
  start-page: 222
  issue: 1
  year: 2014
  ident: 10.1016/j.foodres.2018.03.048_bb0040
  article-title: The molecular basis for the pharmacokinetics and pharmacodynamics of curcumin and its metabolites in relation to cancer
  publication-title: Pharmacological Reviews
  doi: 10.1124/pr.110.004044
– start-page: 535
  year: 2006
  ident: 10.1016/j.foodres.2018.03.048_bb0120
– volume: 64
  start-page: 492
  issue: 0
  year: 2014
  ident: 10.1016/j.foodres.2018.03.048_bb0200
  article-title: Improved in vitro digestion stability of (−)-epigallocatechin gallate through nanoliposome encapsulation
  publication-title: Food Research International
  doi: 10.1016/j.foodres.2014.07.042
– volume: 23
  start-page: 6289
  issue: 11
  year: 2007
  ident: 10.1016/j.foodres.2018.03.048_bb0045
  article-title: Microfluidic directed formation of liposomes of controlled size
  publication-title: Langmuir
  doi: 10.1021/la070051a
– volume: 12
  start-page: 191
  issue: 3
  year: 2017
  ident: 10.1016/j.foodres.2018.03.048_bb0065
  article-title: Synthesis, characterisation and in vitro release of paclitaxel-loaded polymeric micelles
  publication-title: Micro & Nano Letters
  doi: 10.1049/mnl.2016.0690
– volume: 485
  start-page: 91
  year: 2017
  ident: 10.1016/j.foodres.2018.03.048_bb0170
  article-title: A cost-effective method to prepare curcumin nanosuspensions with enhanced oral bioavailability
  publication-title: Journal of Colloid and Interface Science
  doi: 10.1016/j.jcis.2016.09.003
– volume: 4
  issue: 21
  year: 2014
  ident: 10.1016/j.foodres.2018.03.048_bb0135
  article-title: Curcumin, a promising anti-cancer therapeutic: A review of its chemical properties, bioactivity and approaches to cancer cell delivery
  publication-title: RSC Advances
  doi: 10.1039/c3ra46396f
– volume: 113
  start-page: 15522
  issue: 47
  year: 2009
  ident: 10.1016/j.foodres.2018.03.048_bb0175
  article-title: Interaction of poloxamers with liposomes: An isothermal titration calorimetry study
  publication-title: The Journal of Physical Chemistry B
  doi: 10.1021/jp906331m
– volume: 117C
  start-page: 330
  year: 2014
  ident: 10.1016/j.foodres.2018.03.048_bb0190
  article-title: Storage stability and skin permeation of vitamin C liposomes improved by pectin coating
  publication-title: Colloids and Surfaces B: Biointerfaces
  doi: 10.1016/j.colsurfb.2014.02.036
– volume: 74
  start-page: 97
  issue: Supplement C
  year: 2015
  ident: 10.1016/j.foodres.2018.03.048_bb0075
  article-title: Temperature-dependent structure stability and in vitro release of chitosan-coated curcumin liposome
  publication-title: Food Research International
  doi: 10.1016/j.foodres.2015.04.024
– volume: 28
  start-page: 575
  issue: 6
  year: 2011
  ident: 10.1016/j.foodres.2018.03.048_bb0155
  article-title: Enhanced in vitro cellular uptake of P-gp substrate by poloxamer-modified liposomes (PMLs) in MDR cancer cells
  publication-title: Journal of Microencapsulation
  doi: 10.3109/02652048.2011.599436
– volume: 84
  start-page: 113
  year: 2016
  ident: 10.1016/j.foodres.2018.03.048_bb0115
  article-title: Nanodelivery systems based on mucoadhesive polymer coated solid lipid nanoparticles to improve the oral intake of food curcumin
  publication-title: Food Research International
  doi: 10.1016/j.foodres.2016.03.031
SSID ssj0006579
Score 2.577442
Snippet The present work evaluated the feasibility of different pluronics (F127, F87 and P85) utilized as modifiers to improve the stability and bioaccessibility of...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 246
SubjectTerms Bioaccessibility
bioavailability
Curcumin
encapsulation
evaporation
Fourier transform infrared spectroscopy
functional foods
gastrointestinal system
heat treatment
particle size
pH stability
Phospholipid
Pluronics
Stability
Sustained release
thermal stability
X-ray diffraction
Title Pluronics modified liposomes for curcumin encapsulation: Sustained release, stability and bioaccessibility
URI https://dx.doi.org/10.1016/j.foodres.2018.03.048
https://www.ncbi.nlm.nih.gov/pubmed/29735054
https://www.proquest.com/docview/2036205034
https://www.proquest.com/docview/2237518095
Volume 108
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fS9xAEB5EH1ofxKrVUytb8NHcxWR3k_gmUrm2IIIVfFv2RxZy3CXH3eXBF_92Z_JDW7AV-phlFjaZyc637DffAJwKjAmvYxuY0OmA20gEOjz3gfBSCO9Sl5qGbXEjx_f8x4N4WIOrvhaGaJXd3t_u6c1u3Y2Muq85mhfF6A7BN2ZXmZ2ThBVmGqpg5wlF-fDpleYhRae3J-OArF-reEaToa8qh6daYniljdYptQF6Oz_9DX82eeh6G7Y6AMku2zV-grW83IEPfX3xcgc2f5MY3IXJ7bRu5G-XbFa5wiPiZNNiXi2rWb5kiFiZrRe2nhUlw3fXeGZuyXEX7K4trUJ76quCye6M4UDDpX1kunTMFJVu2i22BNvHPbi__vbrahx0_RUCyyVfBdb6RKee-jyIxPDUSmGFsAn3PjSSG4QeMpE6jkSeeM_zKNUycpm1pCkTCh1_hvWyKvMDYDjOY5dFFs-HXIQm09wkqUXbOAp15gbA-6-qbCc-Tj0wpqpnmU1U5wxFzlBhrNAZAxi-TJu36hvvTUh7l6k_wkhhhnhv6tfexQp_Mbo30WVe1WSEWZ50c_g_bKKYLrAQsA5gv42PlxVTezAEmvzw_xd3BB_pqeWoHcP6alHnXxANrcxJE-4nsHH5_ef45hmXfAvq
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB5RONAeEKUtXR6tK_XY7IbEdhJuCIGWlqJKgMTN8iOWstpNVuzmwIXfzkweUKS2SL06Y8nx2J7P8jffAHwVuCa8jm1gQqcDbiMR6PDAB8JLIbxLXWoatsWFHF_z7zfiZgWO-1wYolV2Z397pjenddcy6mZzNC-K0SWCb4yuMjsgCSuMNK9gjeP2pTIGw_snnocUneCejAMyf0rjGU2GvqocXmuJ4pU2YqdUB-jPAepvALQJRKebsNEhSHbUDvItrOTlFqz3CcaLLXjzm8bgO5j8mtaN_u2CzSpXeIScbFrMq0U1yxcMISuz9a2tZ0XJ8Oc1Xppbdtwhu2xzq9CeCqtgtPvGsKEh094xXTpmiko39RZbhu3de7g-Pbk6HgddgYXAcsmXgbU-0amnQg8iMTy1UlghbMK9D43kBrGHTKSOI5En3vM8SrWMXGYticqEQscfYLWsyvwjMGznscsiixdELkKTaW6S1KJtHIU6cwPg_awq26mPUxGMqeppZhPVOUORM1QYK3TGAIaP3eat_MZLHdLeZerZOlIYIl7q-qV3scI9Rg8nusyrmowwzJNwDv-HTRTTCxYi1gFst-vjccRUHwyRJt_5_8F9hvXx1c9zdX528WMXXtOXlrC2B6vL2zrfR2i0NJ-apf8Al0ENeA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Pluronics+modified+liposomes+for+curcumin+encapsulation%3A+Sustained+release%2C+stability+and+bioaccessibility&rft.jtitle=Food+research+international&rft.au=Li%2C+Zi-Ling&rft.au=Peng%2C+Sheng-Feng&rft.au=Chen%2C+Xing&rft.au=Zhu%2C+Yu-Qing&rft.date=2018-06-01&rft.issn=1873-7145&rft.eissn=1873-7145&rft.volume=108&rft.spage=246&rft_id=info:doi/10.1016%2Fj.foodres.2018.03.048&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0963-9969&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0963-9969&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0963-9969&client=summon