Role of High-Fidelity Escherichia coli DNA Polymerase I in Replication Bypass of a Deoxyadenosine DNA-Peptide Cross-Link
Article Usage Stats Services JB Citing Articles Google Scholar PubMed Related Content Social Bookmarking CiteULike Delicious Digg Facebook Google+ Mendeley Reddit StumbleUpon Twitter current issue JB About JB Subscribers Authors Reviewers Advertisers Inquiries from the Press Permissions & Commer...
Saved in:
Published in | Journal of Bacteriology Vol. 193; no. 15; pp. 3815 - 3821 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Washington, DC
American Society for Microbiology
01.08.2011
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Article Usage Stats
Services
JB
Citing Articles
Google Scholar
PubMed
Related Content
Social Bookmarking
CiteULike
Delicious
Digg
Facebook
Google+
Mendeley
Reddit
StumbleUpon
Twitter
current issue
JB
About
JB
Subscribers
Authors
Reviewers
Advertisers
Inquiries from the Press
Permissions & Commercial Reprints
ASM Journals Public Access Policy
JB
RSS Feeds
1752 N Street N.W. • Washington DC 20036
202.737.3600 • 202.942.9355 fax • journals@asmusa.org
Print ISSN:
0021-9193
Online ISSN:
1098-5530
Copyright © 2014
by the
American Society for Microbiology.
For an alternate route to
JB
.asm.org, visit:
JB
|
---|---|
AbstractList | Article Usage Stats
Services
JB
Citing Articles
Google Scholar
PubMed
Related Content
Social Bookmarking
CiteULike
Delicious
Digg
Facebook
Google+
Mendeley
Reddit
StumbleUpon
Twitter
current issue
JB
About
JB
Subscribers
Authors
Reviewers
Advertisers
Inquiries from the Press
Permissions & Commercial Reprints
ASM Journals Public Access Policy
JB
RSS Feeds
1752 N Street N.W. • Washington DC 20036
202.737.3600 • 202.942.9355 fax • journals@asmusa.org
Print ISSN:
0021-9193
Online ISSN:
1098-5530
Copyright © 2014
by the
American Society for Microbiology.
For an alternate route to
JB
.asm.org, visit:
JB
Reaction of bifunctional electrophiles with DNA in the presence of peptides can result in DNA-peptide cross-links. In particular, the linkage can be formed in the major groove of DNA via the exocyclic amino group of adenine ( N 6 -dA). We previously demonstrated that an A family human polymerase, Pol ν, can efficiently and accurately synthesize DNA past N 6 -dA-linked peptides. Based on these results, we hypothesized that another member of that family, Escherichia coli polymerase I (Pol I), may also be able to bypass these large major groove DNA lesions. To test this, oligodeoxynucleotides containing a site-specific N 6 -dA dodecylpeptide cross-link were created and utilized for in vitro DNA replication assays using E. coli DNA polymerases. The results showed that Pol I and Pol II could efficiently and accurately bypass this adduct, while Pol III replicase, Pol IV, and Pol V were strongly inhibited. In addition, cellular studies were conducted using E. coli strains that were either wild type or deficient in all three DNA damage-inducible polymerases, i.e., Pol II, Pol IV, and Pol V. When single-stranded DNA vectors containing a site-specific N 6 -dA dodecylpeptide cross-link were replicated in these strains, the efficiencies of replication were comparable, and in both strains, intracellular bypass of the lesion occurred in an error-free manner. Collectively, these findings demonstrate that despite its constrained active site, Pol I can catalyze DNA synthesis past N 6 -dA-linked peptide cross-links and is likely to play an essential role in cellular bypass of large major groove DNA lesions. Reaction of bifunctional electrophiles with DNA in the presence of peptides can result in DNA-peptide cross-links. In particular, the linkage can be formed in the major groove of DNA via the exocyclic amino group of adenine (N⁶-dA). We previously demonstrated that an A family human polymerase, Pol ν, can efficiently and accurately synthesize DNA past N⁶-dA-linked peptides. Based on these results, we hypothesized that another member of that family, Escherichia coli polymerase I (Pol I), may also be able to bypass these large major groove DNA lesions. To test this, oligodeoxynucleotides containing a site-specific N⁶-dA dodecylpeptide cross-link were created and utilized for in vitro DNA replication assays using E. coli DNA polymerases. The results showed that Pol I and Pol II could efficiently and accurately bypass this adduct, while Pol III replicase, Pol IV, and Pol V were strongly inhibited. In addition, cellular studies were conducted using E. coli strains that were either wild type or deficient in all three DNA damage-inducible polymerases, i.e., Pol II, Pol IV, and Pol V. When single-stranded DNA vectors containing a site-specific N⁶-dA dodecylpeptide cross-link were replicated in these strains, the efficiencies of replication were comparable, and in both strains, intracellular bypass of the lesion occurred in an error-free manner. Collectively, these findings demonstrate that despite its constrained active site, Pol I can catalyze DNA synthesis past N⁶-dA-linked peptide cross-links and is likely to play an essential role in cellular bypass of large major groove DNA lesions. Reaction of bifunctional electrophiles with DNA in the presence of peptides can result in DNA-peptide cross-links. In particular, the linkage can be formed in the major groove of DNA via the exocyclic amino group of adenine (N...-dA). We previously demonstrated that an A family human polymerase, Pol ..., can efficiently and accurately synthesize DNA past N...-dA-linked peptides. Based on these results, we hypothesized that another member of that family, Escherichia coli polymerase I (Pol I), may also be able to bypass these large major groove DNA lesions. To test this, oligodeoxynucleotides containing a site-specific N...-dA dodecylpeptide cross-link were created and utilized for in vitro DNA replication assays using E. coli DNA polymerases. The results showed that Pol I and Pol II could efficiently and accurately bypass this adduct, while Pol III replicase, Pol IV, and Pol V were strongly inhibited. In addition, cellular studies were conducted using E. coli strains that were either wild type or deficient in all three DNA damage-inducible polymerases, i.e., Pol II, Pol IV, and Pol V. When single-stranded DNA vectors containing a site-specific N...-dA dodecylpeptide cross-link were replicated in these strains, the efficiencies of replication were comparable, and in both strains, intracellular bypass of the lesion occurred in an error-free manner. Collectively, these findings demonstrate that despite its constrained active site, Pol I can catalyze DNA synthesis past N...-dA-linked peptide cross-links and is likely to play an essential role in cellular bypass of large major groove DNA lesions. (ProQuest: ... denotes formulae/symbols omitted.) ABSTRACT Reaction of bifunctional electrophiles with DNA in the presence of peptides can result in DNA-peptide cross-links. In particular, the linkage can be formed in the major groove of DNA via the exocyclic amino group of adenine ( N 6 -dA). We previously demonstrated that an A family human polymerase, Pol ν, can efficiently and accurately synthesize DNA past N 6 -dA-linked peptides. Based on these results, we hypothesized that another member of that family, Escherichia coli polymerase I (Pol I), may also be able to bypass these large major groove DNA lesions. To test this, oligodeoxynucleotides containing a site-specific N 6 -dA dodecylpeptide cross-link were created and utilized for in vitro DNA replication assays using E. coli DNA polymerases. The results showed that Pol I and Pol II could efficiently and accurately bypass this adduct, while Pol III replicase, Pol IV, and Pol V were strongly inhibited. In addition, cellular studies were conducted using E. coli strains that were either wild type or deficient in all three DNA damage-inducible polymerases, i.e., Pol II, Pol IV, and Pol V. When single-stranded DNA vectors containing a site-specific N 6 -dA dodecylpeptide cross-link were replicated in these strains, the efficiencies of replication were comparable, and in both strains, intracellular bypass of the lesion occurred in an error-free manner. Collectively, these findings demonstrate that despite its constrained active site, Pol I can catalyze DNA synthesis past N 6 -dA-linked peptide cross-links and is likely to play an essential role in cellular bypass of large major groove DNA lesions. |
Author | R. Stephen Lloyd Steven E. Finkel Myron F. Goodman Irina G. Minko Kinrin Yamanaka |
Author_xml | – sequence: 1 givenname: Kinrin surname: YAMANAKA fullname: YAMANAKA, Kinrin organization: Center for Research on Occupational and Environmental Toxicology, Oregon Health & Science University, Portland, Oregon 97239, United States – sequence: 2 givenname: Irina G surname: MINKO fullname: MINKO, Irina G organization: Center for Research on Occupational and Environmental Toxicology, Oregon Health & Science University, Portland, Oregon 97239, United States – sequence: 3 givenname: Steven E surname: FINKEL fullname: FINKEL, Steven E organization: Department of Biological Sciences, Oregon Health & Science University, Portland, Oregon 97239, United States – sequence: 4 givenname: Myron F surname: GOODMAN fullname: GOODMAN, Myron F organization: Department of Biological Sciences, Oregon Health & Science University, Portland, Oregon 97239, United States – sequence: 5 givenname: R surname: STEPHEN LLOYD fullname: STEPHEN LLOYD, R organization: Center for Research on Occupational and Environmental Toxicology, Oregon Health & Science University, Portland, Oregon 97239, United States |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=24404536$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/21622737$$D View this record in MEDLINE/PubMed |
BookMark | eNpVkUFv1DAQhS1URLeFE3dkIXFCKXZsJ84FqbttaasVVBWcLceZNF6ydrCz0Px7HLq0cBrJ8_nNe3pH6MB5Bwi9puSE0lx-uF6eECoEySh5hhaUFGUmJcsP0IKQnGYVrdghOopxQwjlXOQv0GFOizwvWblA97e-B-xbfGnvuuzCNtDbccLn0XQQrOmsxsb3Fp99PsU3vp-2EHQEfIWtw7cw9Nbo0XqHl9OgY5yFND4Dfz_pBpyP1sH8NbuBYUzaeBV8jNnauu8v0fNW9xFe7ecx-nZx_nV1ma2_fLpana4zwws-ZibPuaw1raqaNDwF0ryuZNMYIkVJTVNA2zQpFdS0YKIAKdpakAII0LZsZMWO0ccH3WFXb6Ex4MagezUEu9VhUl5b9f_G2U7d-Z-KUV4KIpLA271A8D92EEe18bvgkmcly4qxglTzlfcPkJkDBmgfD1Ci5pbU9VL9aSk9JPrNv54e2b-1JODdHtDR6L4N2hkbnzjOCResePLWpfZ-2QBKx63a1Cp1rqhQTFLBfgMdM6bw |
CODEN | JOBAAY |
CitedBy_id | crossref_primary_10_1016_j_mrfmmm_2020_111702 crossref_primary_10_3390_ijms241310877 crossref_primary_10_1111_febs_14290 crossref_primary_10_1371_journal_pone_0198480 crossref_primary_10_1534_genetics_113_151837 crossref_primary_10_1074_jbc_M114_613638 crossref_primary_10_1021_bc400018u crossref_primary_10_1016_j_mrfmmm_2011_12_004 crossref_primary_10_1128_AAC_01415_16 crossref_primary_10_1016_j_jbc_2021_101124 crossref_primary_10_1128_AAC_01577_18 crossref_primary_10_1093_nar_gkad423 crossref_primary_10_1128_JB_00201_18 crossref_primary_10_1021_cb5001795 crossref_primary_10_1016_j_jbc_2021_100444 crossref_primary_10_1073_pnas_1703066114 crossref_primary_10_1074_jbc_M114_561563 crossref_primary_10_1074_jbc_M113_458802 |
Cites_doi | 10.1016/S0021-9258(19)69488-3 10.1016/j.mrfmmm.2007.08.001 10.1021/tx800174a 10.1021/tx00045a014 10.1074/jbc.M212012200 10.1016/S0021-9258(19)49928-6 10.1016/0076-6879(95)62004-4 10.1021/tx9000489 10.1021/bi980401f 10.1074/jbc.271.18.10767 10.1016/S0065-3233(04)71011-6 10.1021/bi100364f 10.1021/bi048244+ 10.1093/emboj/19.23.6536 10.1016/S0021-9258(18)99166-0 10.1006/jmbi.2001.4619 10.1146/annurev.biochem.71.083101.124707 10.1074/jbc.M204826200 10.1021/bi0478805 10.1073/pnas.042700399 10.1016/j.mrrev.2004.11.003 10.1371/journal.pone.0010862 10.1074/jbc.270.22.13348 10.1128/jb.179.7.2109-2115.1997 10.1093/nar/23.8.1398 10.1021/tx990167+ 10.1038/35010020 10.1073/pnas.092269199 10.1021/bi00126a006 10.1126/science.7681219 10.1128/MMBR.62.2.434-464.1998 10.1021/tx900449u |
ContentType | Journal Article |
Copyright | 2015 INIST-CNRS Copyright American Society for Microbiology Aug 2011 Copyright © 2011, American Society for Microbiology. All Rights Reserved. 2011 American Society for Microbiology |
Copyright_xml | – notice: 2015 INIST-CNRS – notice: Copyright American Society for Microbiology Aug 2011 – notice: Copyright © 2011, American Society for Microbiology. All Rights Reserved. 2011 American Society for Microbiology |
DBID | IQODW CGR CUY CVF ECM EIF NPM AAYXX CITATION 7QL 7TM 7U9 8FD C1K FR3 H94 M7N P64 RC3 5PM |
DOI | 10.1128/JB.01550-10 |
DatabaseName | Pascal-Francis Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed CrossRef Bacteriology Abstracts (Microbiology B) Nucleic Acids Abstracts Virology and AIDS Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database AIDS and Cancer Research Abstracts Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts PubMed Central (Full Participant titles) |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) CrossRef Genetics Abstracts Virology and AIDS Abstracts Technology Research Database Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) Nucleic Acids Abstracts AIDS and Cancer Research Abstracts Engineering Research Database Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management |
DatabaseTitleList | MEDLINE Genetics Abstracts CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1067-8832 1098-5530 |
EndPage | 3821 |
ExternalDocumentID | 2408237221 10_1128_JB_01550_10 21622737 24404536 jb_193_15_3815 |
Genre | Research Support, U.S. Gov't, Non-P.H.S Research Support, U.S. Gov't, P.H.S Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NIEHS NIH HHS grantid: R01 ES012259 – fundername: NIGMS NIH HHS grantid: R01 GM021422 – fundername: NIEHS NIH HHS grantid: P01 ES005355 – fundername: NCI NIH HHS grantid: R01 CA106858 – fundername: NIEHS NIH HHS grantid: ES012259 – fundername: NCI NIH HHS grantid: P01 CA160032 – fundername: NIGMS NIH HHS grantid: R37 GM021422 – fundername: NIEHS NIH HHS grantid: ES05355 – fundername: NCI NIH HHS grantid: CA106858 – fundername: NIGMS NIH HHS grantid: GM21422 |
GroupedDBID | --- -DZ -~X .55 .GJ 08R 0R~ 186 18M 1VV 29J 2WC 39C 3O- 4.4 53G 5GY 5RE 5VS 79B 85S 8WZ 9M8 A6W AAUGY ABPPZ ABPTK ABTAH ACGFO ACGOD ACNCT ACPRK ADBBV AENEX AFDAS AFFDN AFFNX AFMIJ AFRAH AGCDD AI. AIDAL AJUXI ALMA_UNASSIGNED_HOLDINGS AOIJS BAWUL BKOMP BTFSW C1A CJ0 CS3 DIK DU5 E3Z EBS EJD F20 F5P FRP GX1 H13 HYE HZ~ IH2 IQODW KQ8 L7B MVM NHB O9- OHT OK1 P-S P2P PQQKQ QZG RHF RHI RNS RPM RSF RXW TAE TAF TR2 UCJ UHB UKR UPT VH1 VQA W8F WH7 WHG WOQ X7M XFK Y6R YQT YR2 YZZ ZA5 ZCA ZCG ZGI ZXP ZY4 ~02 ~KM AGVNZ CGR CUY CVF ECM EIF NPM AAYXX CITATION 7QL 7TM 7U9 8FD C1K FR3 H94 M7N P64 RC3 5PM |
ID | FETCH-LOGICAL-c464t-c2248ba199b0d4002a4b98ddc08571cd6efdd445eb16356e85fb506e0e1f7d893 |
IEDL.DBID | RPM |
ISSN | 0021-9193 |
IngestDate | Tue Sep 17 21:26:46 EDT 2024 Thu Oct 10 18:01:54 EDT 2024 Thu Sep 12 19:42:59 EDT 2024 Sat Sep 28 07:49:02 EDT 2024 Sun Oct 22 16:08:59 EDT 2023 Wed May 18 15:26:48 EDT 2016 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 15 |
Keywords | Nucleotidyltransferases Peptides Enzyme Transferases Escherichia coli Bacteria Replication DNA-directed DNA polymerase Enterobacteriaceae |
Language | English |
License | CC BY 4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c464t-c2248ba199b0d4002a4b98ddc08571cd6efdd445eb16356e85fb506e0e1f7d893 |
OpenAccessLink | https://jb.asm.org/content/jb/193/15/3815.full.pdf |
PMID | 21622737 |
PQID | 879336099 |
PQPubID | 40724 |
PageCount | 7 |
ParticipantIDs | proquest_journals_879336099 pascalfrancis_primary_24404536 crossref_primary_10_1128_JB_01550_10 pubmed_primary_21622737 pubmedcentral_primary_oai_pubmedcentral_nih_gov_3147505 highwire_asm_jb_193_15_3815 |
PublicationCentury | 2000 |
PublicationDate | 2011-08-01 |
PublicationDateYYYYMMDD | 2011-08-01 |
PublicationDate_xml | – month: 08 year: 2011 text: 2011-08-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Washington, DC |
PublicationPlace_xml | – name: Washington, DC – name: United States – name: Washington – name: 1752 N St., N.W., Washington, DC |
PublicationTitle | Journal of Bacteriology |
PublicationTitleAlternate | J Bacteriol |
PublicationYear | 2011 |
Publisher | American Society for Microbiology |
Publisher_xml | – name: American Society for Microbiology |
References | 17868748 - Mutat Res. 2008 Jan 1;637(1-2):161-72 19019142 - Mol Microbiol. 2009 Jan;71(2):315-31 19397281 - Chem Res Toxicol. 2009 May;22(5):759-78 9665722 - Biochemistry. 1998 Jul 14;37(28):10164-72 10801133 - Nature. 2000 Apr 27;404(6781):1014-8 1550814 - Biochemistry. 1992 Mar 24;31(11):2879-86 15795165 - Mutat Res. 2005 Mar;589(2):111-35 18788757 - Chem Res Toxicol. 2008 Oct;21(10):1983-90 10813660 - Chem Res Toxicol. 2000 May;13(5):421-9 7012155 - J Biol Chem. 1981 May 10;256(9):4676-8 20523737 - PLoS One. 2010;5(5):e10862 11352575 - J Mol Biol. 2001 May 18;308(5):823-37 11101526 - EMBO J. 2000 Dec 1;19(23):6536-45 2040637 - J Biol Chem. 1991 Jun 15;266(17):11328-34 7768936 - J Biol Chem. 1995 Jun 2;270(22):13348-57 12097328 - J Biol Chem. 2002 Sep 13;277(37):34198-207 15779911 - Biochemistry. 2005 Mar 29;44(12):4850-60 16230118 - Adv Protein Chem. 2005;71:401-40 20604523 - Biochemistry. 2010 Jul 27;49(29):6155-64 9079893 - J Bacteriol. 1997 Apr;179(7):2109-15 15723543 - Biochemistry. 2005 Mar 1;44(8):3000-9 11842222 - Proc Natl Acad Sci U S A. 2002 Feb 19;99(4):1905-9 12060704 - Proc Natl Acad Sci U S A. 2002 Jun 25;99(13):8737-41 1534562 - J Biol Chem. 1992 Jun 5;267(16):11431-8 12502710 - J Biol Chem. 2003 Feb 21;278(8):5970-6 12045089 - Annu Rev Biochem. 2002;71:17-50 7753632 - Nucleic Acids Res. 1995 Apr 25;23(8):1398-405 7578929 - Chem Res Toxicol. 1995 Apr-May;8(3):422-30 20102227 - Chem Res Toxicol. 2010 Mar 15;23(3):689-95 7681219 - Science. 1993 Mar 19;259(5102):1757-60 8631887 - J Biol Chem. 1996 May 3;271(18):10767-74 9618448 - Microbiol Mol Biol Rev. 1998 Jun;62(2):434-64 8594343 - Methods Enzymol. 1995;262:13-21 Minko I. G. (e_1_3_2_20_2) 2008; 637 Pritchard A. E. (e_1_3_2_27_2) 2000; 19 Rothwell P. J. (e_1_3_2_28_2) 2005; 71 Bonner C. A. (e_1_3_2_3_2) 1992; 267 Hastings P. J. (e_1_3_2_12_2) 2010; 5 Tang M. (e_1_3_2_30_2) 2000; 404 Cai H. (e_1_3_2_5_2) 1995; 262 Yadav P. N. (e_1_3_2_31_2) 1992; 31 Minko I. G. (e_1_3_2_19_2) 2009; 22 Cox M. M. (e_1_3_2_7_2) 1981; 256 Fernandes A. (e_1_3_2_10_2) 1998; 37 Latham G. J. (e_1_3_2_18_2) 1995; 8 Chary P. (e_1_3_2_6_2) 1995; 23 Yamanaka K. (e_1_3_2_32_2) 2010; 23 Stukenberg P. T. (e_1_3_2_29_2) 1991; 266 e_1_3_2_9_2 e_1_3_2_16_2 Minko I. G. (e_1_3_2_23_2) 2002; 99 Bruck I. (e_1_3_2_4_2) 1996; 271 Goodman M. F (e_1_3_2_11_2) 2002; 71 Patel P. H. (e_1_3_2_26_2) 2001; 308 Minko I. G. (e_1_3_2_21_2) 2005; 44 Barker S. (e_1_3_2_2_2) 2005; 589 Kobayashi S. (e_1_3_2_15_2) 2002; 277 e_1_3_2_34_2 Yeiser B. (e_1_3_2_33_2) 2002; 99 Nechev L. V. (e_1_3_2_24_2) 2000; 13 Minko I. G. (e_1_3_2_22_2) 2008; 21 Onrust R. (e_1_3_2_25_2) 1995; 270 Hwang H. (e_1_3_2_14_2) 2005; 44 Curti E. (e_1_3_2_8_2) 2009; 71 Huang H. (e_1_3_2_13_2) 2010; 49 Kurtz A. J. (e_1_3_2_17_2) 2003; 278 |
References_xml | – volume: 256 start-page: 4676 year: 1981 ident: e_1_3_2_7_2 article-title: A simple and rapid procedure for the large scale purification of the recA protein of Escherichia coli publication-title: J. Biol. Chem. doi: 10.1016/S0021-9258(19)69488-3 contributor: fullname: Cox M. M. – volume: 637 start-page: 161 year: 2008 ident: e_1_3_2_20_2 article-title: Mutagenic potential of DNA-peptide crosslinks mediated by acrolein-derived DNA adducts publication-title: Mutat. Res. doi: 10.1016/j.mrfmmm.2007.08.001 contributor: fullname: Minko I. G. – volume: 21 start-page: 1983 year: 2008 ident: e_1_3_2_22_2 article-title: Replication bypass of the acrolein-mediated deoxyguanine DNA-peptide cross-links by DNA polymerases of the DinB family publication-title: Chem. Res. Toxicol. doi: 10.1021/tx800174a contributor: fullname: Minko I. G. – volume: 8 start-page: 422 year: 1995 ident: e_1_3_2_18_2 article-title: The efficiency of translesion synthesis past single styrene oxide DNA adducts in vitro is polymerase-specific publication-title: Chem. Res. Toxicol. doi: 10.1021/tx00045a014 contributor: fullname: Latham G. J. – volume: 278 start-page: 5970 year: 2003 ident: e_1_3_2_17_2 article-title: 1,N 2-Deoxyguanosine adducts of acrolein, crotonaldehyde, and trans-4-hydroxynonenal cross-link to peptides via Schiff base linkage publication-title: J. Biol. Chem. doi: 10.1074/jbc.M212012200 contributor: fullname: Kurtz A. J. – volume: 267 start-page: 11431 year: 1992 ident: e_1_3_2_3_2 article-title: Processive DNA synthesis by DNA polymerase II mediated by DNA polymerase III accessory proteins publication-title: J. Biol. Chem. doi: 10.1016/S0021-9258(19)49928-6 contributor: fullname: Bonner C. A. – volume: 262 start-page: 13 year: 1995 ident: e_1_3_2_5_2 article-title: Purification and properties of DNA polymerase II from Escherichia coli publication-title: Methods Enzymol. doi: 10.1016/0076-6879(95)62004-4 contributor: fullname: Cai H. – volume: 22 start-page: 759 year: 2009 ident: e_1_3_2_19_2 article-title: Chemistry and biology of DNA containing 1,N 2-deoxyguanosine adducts of the alpha, beta-unsaturated aldehydes acrolein, crotonaldehyde, and 4-hydroxynonenal publication-title: Chem. Res. Toxicol. doi: 10.1021/tx9000489 contributor: fullname: Minko I. G. – volume: 37 start-page: 10164 year: 1998 ident: e_1_3_2_10_2 article-title: Mutagenic potential of stereoisomeric bay region (+)- and (−)-cis-anti-benzo[a]pyrene diol epoxide-N 2-2′-deoxyguanosine adducts in Escherichia coli and simian kidney cells publication-title: Biochemistry doi: 10.1021/bi980401f contributor: fullname: Fernandes A. – volume: 271 start-page: 10767 year: 1996 ident: e_1_3_2_4_2 article-title: Purification of a soluble UmuD′C complex from Escherichia coli. Cooperative binding of UmuD′C to single-stranded DNA publication-title: J. Biol. Chem. doi: 10.1074/jbc.271.18.10767 contributor: fullname: Bruck I. – volume: 71 start-page: 401 year: 2005 ident: e_1_3_2_28_2 article-title: Structure and mechanism of DNA polymerases publication-title: Adv. Protein Chem. doi: 10.1016/S0065-3233(04)71011-6 contributor: fullname: Rothwell P. J. – volume: 71 start-page: 315 year: 2009 ident: e_1_3_2_8_2 article-title: DNA polymerase switching: effects on spontaneous mutagenesis in Escherichia coli publication-title: Microbiol. Mol. Biol. Rev. contributor: fullname: Curti E. – volume: 49 start-page: 6155 year: 2010 ident: e_1_3_2_13_2 article-title: Minor groove orientation of the KWKK peptide tethered via the N-terminal amine to the acrolein-derived 1, N 2-γ-hydroxypropanodeoxyguanosine lesion with a trimethylene linkage publication-title: Biochemistry doi: 10.1021/bi100364f contributor: fullname: Huang H. – volume: 44 start-page: 4850 year: 2005 ident: e_1_3_2_14_2 article-title: Evidence for Watson-Crick and not Hoogsteen or wobble base pairing in the selection of nucleotides for insertion opposite pyrimidines and a thymine dimer by yeast DNA pol η publication-title: Biochemistry doi: 10.1021/bi048244+ contributor: fullname: Hwang H. – volume: 19 start-page: 6536 year: 2000 ident: e_1_3_2_27_2 article-title: A novel assembly mechanism for the DNA polymerase III holoenzyme DnaX complex: association of δδ′ with DnaX4 forms DnaX3 δδ′ publication-title: EMBO J. doi: 10.1093/emboj/19.23.6536 contributor: fullname: Pritchard A. E. – volume: 266 start-page: 11328 year: 1991 ident: e_1_3_2_29_2 article-title: Mechanism of the sliding β-clamp of DNA polymerase III holoenzyme publication-title: J. Biol. Chem. doi: 10.1016/S0021-9258(18)99166-0 contributor: fullname: Stukenberg P. T. – volume: 308 start-page: 823 year: 2001 ident: e_1_3_2_26_2 article-title: Prokaryotic DNA polymerase I: evolution, structure, and “base flipping” mechanism for nucleotide selection publication-title: J. Mol. Biol. doi: 10.1006/jmbi.2001.4619 contributor: fullname: Patel P. H. – volume: 71 start-page: 17 year: 2002 ident: e_1_3_2_11_2 article-title: Error-prone repair DNA polymerases in prokaryotes and eukaryotes publication-title: Annu. Rev. Biochem. doi: 10.1146/annurev.biochem.71.083101.124707 contributor: fullname: Goodman M. F – volume: 277 start-page: 34198 year: 2002 ident: e_1_3_2_15_2 article-title: Fidelity of Escherichia coli DNA polymerase IV. Preferential generation of small deletion mutations by dNTP-stabilized misalignment publication-title: J. Biol. Chem. doi: 10.1074/jbc.M204826200 contributor: fullname: Kobayashi S. – volume: 44 start-page: 3000 year: 2005 ident: e_1_3_2_21_2 article-title: Initiation of repair of DNA-polypeptide cross-links by the UvrABC nuclease publication-title: Biochemistry doi: 10.1021/bi0478805 contributor: fullname: Minko I. G. – volume: 99 start-page: 1905 year: 2002 ident: e_1_3_2_23_2 article-title: Incision of DNA-protein crosslinks by UvrABC nuclease suggests a potential repair pathway involving nucleotide excision repair publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.042700399 contributor: fullname: Minko I. G. – volume: 589 start-page: 111 year: 2005 ident: e_1_3_2_2_2 article-title: DNA-protein crosslinks: their induction, repair, and biological consequences publication-title: Mutat. Res. doi: 10.1016/j.mrrev.2004.11.003 contributor: fullname: Barker S. – volume: 5 start-page: e10862 year: 2010 ident: e_1_3_2_12_2 article-title: Competition of Escherichia coli DNA polymerases I, II and III with DNA Pol IV in stressed cells publication-title: PLoS One doi: 10.1371/journal.pone.0010862 contributor: fullname: Hastings P. J. – volume: 270 start-page: 13348 year: 1995 ident: e_1_3_2_25_2 article-title: Assembly of a chromosomal replication machine: two DNA polymerases, a clamp loader, and sliding clamps in one holoenzyme particle. I. Organization of the clamp loader publication-title: J. Biol. Chem. doi: 10.1074/jbc.270.22.13348 contributor: fullname: Onrust R. – ident: e_1_3_2_16_2 doi: 10.1128/jb.179.7.2109-2115.1997 – volume: 23 start-page: 1398 year: 1995 ident: e_1_3_2_6_2 article-title: In vitro replication by prokaryotic and eukaryotic polymerases on DNA templates containing site-specific and stereospecific benzo[a]pyrene-7,8-dihydrodiol-9,10-epoxide adducts publication-title: Nucleic Acids Res. doi: 10.1093/nar/23.8.1398 contributor: fullname: Chary P. – volume: 13 start-page: 421 year: 2000 ident: e_1_3_2_24_2 article-title: Synthesis of nucleosides and oligonucleotides containing adducts of acrolein and vinyl chloride publication-title: Chem. Res. Toxicol. doi: 10.1021/tx990167+ contributor: fullname: Nechev L. V. – volume: 404 start-page: 1014 year: 2000 ident: e_1_3_2_30_2 article-title: Roles of E. coli DNA polymerases IV and V in lesion-targeted and untargeted SOS mutagenesis publication-title: Nature doi: 10.1038/35010020 contributor: fullname: Tang M. – volume: 99 start-page: 8737 year: 2002 ident: e_1_3_2_33_2 article-title: SOS-induced DNA polymerases enhance long-term survival and evolutionary fitness publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.092269199 contributor: fullname: Yeiser B. – volume: 31 start-page: 2879 year: 1992 ident: e_1_3_2_31_2 article-title: A molecular model of the complete three-dimensional structure of the Klenow fragment of Escherichia coli DNA polymerase I: binding of the dNTP substrate and template-primer publication-title: Biochemistry doi: 10.1021/bi00126a006 contributor: fullname: Yadav P. N. – ident: e_1_3_2_34_2 doi: 10.1126/science.7681219 – ident: e_1_3_2_9_2 doi: 10.1128/MMBR.62.2.434-464.1998 – volume: 23 start-page: 689 year: 2010 ident: e_1_3_2_32_2 article-title: Novel enzymatic function of DNA polymerase ν in translesion DNA synthesis past major groove DNA-peptide and DNA-DNA cross-links publication-title: Chem. Res. Toxicol. doi: 10.1021/tx900449u contributor: fullname: Yamanaka K. |
SSID | ssj0014452 |
Score | 2.1643388 |
Snippet | Article Usage Stats
Services
JB
Citing Articles
Google Scholar
PubMed
Related Content
Social Bookmarking
CiteULike
Delicious
Digg
Facebook
Google+
Mendeley... Reaction of bifunctional electrophiles with DNA in the presence of peptides can result in DNA-peptide cross-links. In particular, the linkage can be formed in... ABSTRACT Reaction of bifunctional electrophiles with DNA in the presence of peptides can result in DNA-peptide cross-links. In particular, the linkage can be... |
SourceID | pubmedcentral proquest crossref pubmed pascalfrancis highwire |
SourceType | Open Access Repository Aggregation Database Index Database Publisher |
StartPage | 3815 |
SubjectTerms | Bacteriology Biological and medical sciences Cells Cross-Linking Reagents - chemistry Deoxyadenosines - chemistry Deoxyadenosines - genetics DNA Adducts - chemistry DNA Adducts - genetics DNA Damage DNA Polymerase I - genetics DNA Polymerase I - metabolism DNA Repair DNA Replication DNA, Bacterial - chemistry DNA, Bacterial - genetics DNA, Single-Stranded - genetics E coli Escherichia coli - enzymology Escherichia coli - genetics Escherichia coli Proteins - genetics Escherichia coli Proteins - metabolism Fundamental and applied biological sciences. Psychology Genetics and Molecular Biology Microbiology Miscellaneous Peptides Peptides - chemistry |
Title | Role of High-Fidelity Escherichia coli DNA Polymerase I in Replication Bypass of a Deoxyadenosine DNA-Peptide Cross-Link |
URI | http://jb.asm.org/content/193/15/3815.abstract https://www.ncbi.nlm.nih.gov/pubmed/21622737 https://www.proquest.com/docview/879336099 https://pubmed.ncbi.nlm.nih.gov/PMC3147505 |
Volume | 193 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Pa9swFH60hcEuY91Pr13QoVcltiPJ9rFJG9qMljBW6E1IlsQ8ErvUGTT__Z5sq1vGTrvalrD1vR-f5KdPAGfWYiJQ6EgqSR1lmXZUx0VJRWzKjIscM4bfjXxzK67u2PKe3x8AD3thuqL9Ulfjer0Z19X3rrbyYVNOQp3YZHUznyYMEx2fHMIhGmiYog-_Dhjjg0R4gp5cTIdNeRiHJ8vZuKPkGHs6EWCRYvLO9jNSUAn2RZKqxXFy_QEX_2KgfxdS_pGZFq_h1UApyXn_6sdwYOs38KI_ZHL3Fp6-NmtLGkd8SQddeFkrZN7ksvVwVb7UmaAxVOTi9pysmvXOr1K1llyTqiZIz8OiHpnt8E1b35EiF7Z52injhcaRpfqmdOXLY4wlc_-R1E9x38Hd4vLb_IoO5y3Qkgm2pSWm81yrpCh0bNC3U8V0kRtTehX8pDTCOmNweDG8e1U7m3OneSxsbBOXGSQ-7-Gobmr7EUiRa4dkgitkH0xlTiGzUsgmLWcqT7WL4CyMuXzoZTVkNx1Jc7mcyQ4lvBDBScBDqnYjf2iJiMqESyQaPILRHkTPPaVe9JBPBTYPmMnBNVuZY0SaCiTGEXzo0fvdbrCICLI9XJ8f8Frc-3fQRDtN7sEkP_13yxN4GZar4-QUjraPP-1n5DtbPUKmf_1l1Fn5L598_sk |
link.rule.ids | 230,315,730,783,787,888,27936,27937,53804,53806 |
linkProvider | National Library of Medicine |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFD4aQwheEHfCYPhhr26T1M7lce1WdWWtKrRJe7Ps2BZBbTKRTlr__Y6TeFDEE69JbCX-zuWzc_wZ4MQYTAQSHUlGsaUsVZaqMC9oEuoi5UmGGcPtRl4sk9k1m9_wmwPgfi9MW7RfqHJQrTeDqvzR1lbeboqhrxMbrhaTUcQw0fHhE3iK_hoyP0nvfx4wxnuR8Ah9OR_12_IwEg_n40FLyjH6tDLASYzpO93PSV4n2JVJygZHynZHXPyLg_5dSvlHbpq-gpc9qSSn3cu_hgNTvYFn3TGTu7dw_71eG1Jb4oo66NQJWyH3JueNA6x0xc4EzaEkZ8tTsqrXO7dO1RhyQcqKIEH3y3pkvMM3bVxHkpyZ-n4ntZMaR57qmtKVK5DRhkzcR1I3yX0H19Pzq8mM9icu0IIlbEsLTOiZklGeq1Cjd8eSqTzTunA6-FGhE2O1xuHFAO907UzGreJhYkIT2VQj9XkPh1VdmY9A8kxZpBNcIv9gMrUSuZVEPmk4k1msbAAnfszFbSesIdoJSZyJ-Vi0KOGFAI48HkI2G_FTCURURFwg1eABHO9B9NhT7GQP-SjB5h4z0TtnIzKMSaMEqXEAHzr0frfrLSKAdA_XxwecGvf-HTTSVpW7N8pP_93yKzyfXS0uxeXF8tsRvPCL12H0GQ63v-7MF2Q_W3Xc2voDLjcBNQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFD6CIRAviDthMPywVzeX2k7yuLartsKqCjFpb5Yd2yKoTSpSpPXfc5zLWBFPvCY5VuJz--wcfwfg1FpMBAodScWJoyzVjuooL6iITJFykWHG8KeRr5bi4potbvjNvVZfbdF-octRtd6MqvJ7W1u53RThUCcWrq6m45hhouPh1rjwITxCn43EsFDvfyAwxnui8Bj9OR_3R_MwGoeLyagF5hiBWipgkWAKTw_z0sAV7EslVYOz5bo2F__CoX-XU97LT_Pn8KwHluSs-4AX8MBWL-Fx12py_wpuv9ZrS2pHfGEHnXtyK8Tf5LzxSit9wTNBkyjJbHlGVvV67_eqGksuSVkRBOnD1h6Z7PFNGz-QIjNb3-6V8XTjiFW9KF35IhljydR_JPUL3ddwPT__Nr2gfdcFWjDBdrTApJ5pFee5jgx6eKKYzjNjCs-FHxdGWGcMTi8Gec9tZzPuNI-EjWzsUoPw5w0cVXVl3wHJM-0QUnCFGISp1CnEVwoxpeVMZYl2AZwOcy63HbmGbBclSSYXE9lqCS8EcDzoQ6pmI39oiRqVMZcIN3gAJwcquhsp8dSHfCxQfNCZ7B20kRnGpbFAeBzA2057f-R6iwggPdDr3QOekfvwDhpqy8zdG-b7_5b8BE9Ws7n8crn8fAxPh_3rKP4AR7ufv-xHBEA7fdKa-m_p3wJI |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Role+of+High-Fidelity+Escherichia+coli+DNA+Polymerase+I+in+Replication+Bypass+of+a+Deoxyadenosine+DNA-Peptide+Cross-Link&rft.jtitle=Journal+of+Bacteriology&rft.au=Kinrin+Yamanaka&rft.au=Irina+G.+Minko&rft.au=Steven+E.+Finkel&rft.au=Myron+F.+Goodman&rft.date=2011-08-01&rft.pub=American+Society+for+Microbiology&rft.issn=0021-9193&rft.eissn=1067-8832&rft.volume=193&rft.issue=15&rft.spage=3815&rft_id=info:doi/10.1128%2FJB.01550-10&rft_id=info%3Apmid%2F21622737&rft.externalDBID=n%2Fa&rft.externalDocID=jb_193_15_3815 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9193&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9193&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9193&client=summon |