Taking full advantage of ‘low-quality’ datasets in watershed modeling and management: From a perspective of parameter calibration

The quality of calibration datasets is critical for establishing well-calibrated models for reliable decision-making support. However, the analysis of the influence of calibration dataset quality and the discussion on how to use flawed and/or incomplete datasets are still far from sufficient. An eva...

Full description

Saved in:
Bibliographic Details
Published inJournal of environmental management Vol. 351; p. 119955
Main Authors Rong, Yi, Qin, Chengxin, Yen, Haw, Sun, Fu, Du, Pengfei, Zeng, Siyu
Format Journal Article
LanguageEnglish
Published England Elsevier Ltd 01.02.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The quality of calibration datasets is critical for establishing well-calibrated models for reliable decision-making support. However, the analysis of the influence of calibration dataset quality and the discussion on how to use flawed and/or incomplete datasets are still far from sufficient. An evaluation framework for the impact of model calibration data on parameter identifiability, sensitivity, and uncertainty (ISU) was established. Three quantitative and normalized indicators were designed to describe the magnitude of ISU. With the case study of the upper Daqing River watershed, China and the model SWAT (Soil and Water Assessment Tool), one ideal dataset without quality flaws and 79 datasets with different types of flaws including observation error, low monitoring frequency, short data duration and low data resolution were evaluated. The result showed that 4 of 13 parameters that control canopy, groundwater and channel processes have higher ISU values, indicating the high identifiability, high sensitivity, and low uncertainty. The largest gap of parameter ISU between dataset with quality flaw and ideal dataset was 0.61 due to short data duration, while the smallest gap was −0.28 due to low monitoring data frequency. Although some defective datasets caused unacceptable calibration results and model output, some defective datasets can still be valuable for model calibration which depends on the hydrological processes of interest when applying the model. Equivalent calibration results were yielded by the datasets with similar statistical properties. When using datasets with traditional defective issues for calibration, a new step checking the consistency among decision goal, representative system process, determinative parameters and calibration datasets is suggested. Practices including process-related data selection, dataset regrouping and risk self-reporting when using low-quality datasets are encouraged to increase the reliability of model-based watershed management. •An evaluation framework was designed for the influence of calibration data quality.•Three quantitative and normalized indicators were defined to measure parameter ISU.•Defective datasets are still process-dependently valuable for model calibration.•Datasets with similar statistical properties lead to equivalent calibration effects.•Consistency check is suggested when data quality is concerned for management.
AbstractList The quality of calibration datasets is critical for establishing well-calibrated models for reliable decision-making support. However, the analysis of the influence of calibration dataset quality and the discussion on how to use flawed and/or incomplete datasets are still far from sufficient. An evaluation framework for the impact of model calibration data on parameter identifiability, sensitivity, and uncertainty (ISU) was established. Three quantitative and normalized indicators were designed to describe the magnitude of ISU. With the case study of the upper Daqing River watershed, China and the model SWAT (Soil and Water Assessment Tool), one ideal dataset without quality flaws and 79 datasets with different types of flaws including observation error, low monitoring frequency, short data duration and low data resolution were evaluated. The result showed that 4 of 13 parameters that control canopy, groundwater and channel processes have higher ISU values, indicating the high identifiability, high sensitivity, and low uncertainty. The largest gap of parameter ISU between dataset with quality flaw and ideal dataset was 0.61 due to short data duration, while the smallest gap was -0.28 due to low monitoring data frequency. Although some defective datasets caused unacceptable calibration results and model output, some defective datasets can still be valuable for model calibration which depends on the hydrological processes of interest when applying the model. Equivalent calibration results were yielded by the datasets with similar statistical properties. When using datasets with traditional defective issues for calibration, a new step checking the consistency among decision goal, representative system process, determinative parameters and calibration datasets is suggested. Practices including process-related data selection, dataset regrouping and risk self-reporting when using low-quality datasets are encouraged to increase the reliability of model-based watershed management.
The quality of calibration datasets is critical for establishing well-calibrated models for reliable decision-making support. However, the analysis of the influence of calibration dataset quality and the discussion on how to use flawed and/or incomplete datasets are still far from sufficient. An evaluation framework for the impact of model calibration data on parameter identifiability, sensitivity, and uncertainty (ISU) was established. Three quantitative and normalized indicators were designed to describe the magnitude of ISU. With the case study of the upper Daqing River watershed, China and the model SWAT (Soil and Water Assessment Tool), one ideal dataset without quality flaws and 79 datasets with different types of flaws including observation error, low monitoring frequency, short data duration and low data resolution were evaluated. The result showed that 4 of 13 parameters that control canopy, groundwater and channel processes have higher ISU values, indicating the high identifiability, high sensitivity, and low uncertainty. The largest gap of parameter ISU between dataset with quality flaw and ideal dataset was 0.61 due to short data duration, while the smallest gap was -0.28 due to low monitoring data frequency. Although some defective datasets caused unacceptable calibration results and model output, some defective datasets can still be valuable for model calibration which depends on the hydrological processes of interest when applying the model. Equivalent calibration results were yielded by the datasets with similar statistical properties. When using datasets with traditional defective issues for calibration, a new step checking the consistency among decision goal, representative system process, determinative parameters and calibration datasets is suggested. Practices including process-related data selection, dataset regrouping and risk self-reporting when using low-quality datasets are encouraged to increase the reliability of model-based watershed management.The quality of calibration datasets is critical for establishing well-calibrated models for reliable decision-making support. However, the analysis of the influence of calibration dataset quality and the discussion on how to use flawed and/or incomplete datasets are still far from sufficient. An evaluation framework for the impact of model calibration data on parameter identifiability, sensitivity, and uncertainty (ISU) was established. Three quantitative and normalized indicators were designed to describe the magnitude of ISU. With the case study of the upper Daqing River watershed, China and the model SWAT (Soil and Water Assessment Tool), one ideal dataset without quality flaws and 79 datasets with different types of flaws including observation error, low monitoring frequency, short data duration and low data resolution were evaluated. The result showed that 4 of 13 parameters that control canopy, groundwater and channel processes have higher ISU values, indicating the high identifiability, high sensitivity, and low uncertainty. The largest gap of parameter ISU between dataset with quality flaw and ideal dataset was 0.61 due to short data duration, while the smallest gap was -0.28 due to low monitoring data frequency. Although some defective datasets caused unacceptable calibration results and model output, some defective datasets can still be valuable for model calibration which depends on the hydrological processes of interest when applying the model. Equivalent calibration results were yielded by the datasets with similar statistical properties. When using datasets with traditional defective issues for calibration, a new step checking the consistency among decision goal, representative system process, determinative parameters and calibration datasets is suggested. Practices including process-related data selection, dataset regrouping and risk self-reporting when using low-quality datasets are encouraged to increase the reliability of model-based watershed management.
The quality of calibration datasets is critical for establishing well-calibrated models for reliable decision-making support. However, the analysis of the influence of calibration dataset quality and the discussion on how to use flawed and/or incomplete datasets are still far from sufficient. An evaluation framework for the impact of model calibration data on parameter identifiability, sensitivity, and uncertainty (ISU) was established. Three quantitative and normalized indicators were designed to describe the magnitude of ISU. With the case study of the upper Daqing River watershed, China and the model SWAT (Soil and Water Assessment Tool), one ideal dataset without quality flaws and 79 datasets with different types of flaws including observation error, low monitoring frequency, short data duration and low data resolution were evaluated. The result showed that 4 of 13 parameters that control canopy, groundwater and channel processes have higher ISU values, indicating the high identifiability, high sensitivity, and low uncertainty. The largest gap of parameter ISU between dataset with quality flaw and ideal dataset was 0.61 due to short data duration, while the smallest gap was −0.28 due to low monitoring data frequency. Although some defective datasets caused unacceptable calibration results and model output, some defective datasets can still be valuable for model calibration which depends on the hydrological processes of interest when applying the model. Equivalent calibration results were yielded by the datasets with similar statistical properties. When using datasets with traditional defective issues for calibration, a new step checking the consistency among decision goal, representative system process, determinative parameters and calibration datasets is suggested. Practices including process-related data selection, dataset regrouping and risk self-reporting when using low-quality datasets are encouraged to increase the reliability of model-based watershed management.
The quality of calibration datasets is critical for establishing well-calibrated models for reliable decision-making support. However, the analysis of the influence of calibration dataset quality and the discussion on how to use flawed and/or incomplete datasets are still far from sufficient. An evaluation framework for the impact of model calibration data on parameter identifiability, sensitivity, and uncertainty (ISU) was established. Three quantitative and normalized indicators were designed to describe the magnitude of ISU. With the case study of the upper Daqing River watershed, China and the model SWAT (Soil and Water Assessment Tool), one ideal dataset without quality flaws and 79 datasets with different types of flaws including observation error, low monitoring frequency, short data duration and low data resolution were evaluated. The result showed that 4 of 13 parameters that control canopy, groundwater and channel processes have higher ISU values, indicating the high identifiability, high sensitivity, and low uncertainty. The largest gap of parameter ISU between dataset with quality flaw and ideal dataset was 0.61 due to short data duration, while the smallest gap was −0.28 due to low monitoring data frequency. Although some defective datasets caused unacceptable calibration results and model output, some defective datasets can still be valuable for model calibration which depends on the hydrological processes of interest when applying the model. Equivalent calibration results were yielded by the datasets with similar statistical properties. When using datasets with traditional defective issues for calibration, a new step checking the consistency among decision goal, representative system process, determinative parameters and calibration datasets is suggested. Practices including process-related data selection, dataset regrouping and risk self-reporting when using low-quality datasets are encouraged to increase the reliability of model-based watershed management. •An evaluation framework was designed for the influence of calibration data quality.•Three quantitative and normalized indicators were defined to measure parameter ISU.•Defective datasets are still process-dependently valuable for model calibration.•Datasets with similar statistical properties lead to equivalent calibration effects.•Consistency check is suggested when data quality is concerned for management.
ArticleNumber 119955
Author Sun, Fu
Rong, Yi
Du, Pengfei
Qin, Chengxin
Yen, Haw
Zeng, Siyu
Author_xml – sequence: 1
  givenname: Yi
  surname: Rong
  fullname: Rong, Yi
  organization: Tsinghua University, China
– sequence: 2
  givenname: Chengxin
  surname: Qin
  fullname: Qin, Chengxin
  organization: Tsinghua University, China
– sequence: 3
  givenname: Haw
  orcidid: 0000-0002-5509-8792
  surname: Yen
  fullname: Yen, Haw
  organization: Environmental Exposure Modeling, Regulatory Science North America, Bayer US Crop Science Division, Chesterfield, 63017, USA
– sequence: 4
  givenname: Fu
  surname: Sun
  fullname: Sun, Fu
  organization: Tsinghua University, China
– sequence: 5
  givenname: Pengfei
  surname: Du
  fullname: Du, Pengfei
  organization: Tsinghua University, China
– sequence: 6
  givenname: Siyu
  surname: Zeng
  fullname: Zeng, Siyu
  email: szeng@mail.tsinghua.edu.cn
  organization: Tsinghua University, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38169264$$D View this record in MEDLINE/PubMed
BookMark eNqFkc1u1DAUhS3Uik4LjwDykk0G_ySZBBYIVRSQKrEpa-vGvikeEju1nam664Z3gNfrk-DpTFmwmZV1pe87ls45JUfOOyTkFWdLznj9dr1co9uM4JaCCbnkvG2r6hlZcNZWRVNLdkQWTDJelKt2dUJOY1wzxqTgq-fkRDa8bkVdLsivK_hp3TXt52GgYDbgElwj9T19uP89-NviZobBpruH-z_UQIKIKVLr6C0kDPEHGjp6g8M2Alw-wGV9RJfe0YvgRwp0ytyEOtnNY-wEAUbMMtU5uAuQrHcvyHEPQ8SX-_eMfL_4dHX-pbj89vnr-cfLQpd1mQrNpTZCdIaLXney5SA6obGUFVSyqvlKyLIS0FemxLoHbEHXvNeNRtRNI7U8I292uVPwNzPGpEYbNQ4DOPRzVJKVLP8kpTiIijbPkDus24y-3qNzN6JRU7AjhDv11HIGqh2gg48xYP8P4Uxt11RrtV9TbddUuzWz9_4_T9v0WFgKYIeD9oedjbnRjcWgorboNBob8h7KeHsg4S-P98KT
CitedBy_id crossref_primary_10_1016_j_chaos_2024_114627
crossref_primary_10_3390_hydrology11090150
Cites_doi 10.1061/(ASCE)HE.1943-5584.0000991
10.1080/1369118X.2012.678878
10.1016/j.jhydrol.2006.03.029
10.1016/j.jhydrol.2008.05.012
10.1016/j.jhydrol.2011.10.040
10.1007/s40808-017-0328-6
10.1002/2015WR017635
10.1525/elementa.431
10.5194/hess-22-5001-2018
10.1029/WR011i003p00405
10.13031/2013.27886
10.1016/j.jhydrol.2021.127093
10.1061/(ASCE)HE.1943-5584.0000421
10.1049/rpg2.12027
10.1016/j.scitotenv.2020.141731
10.5194/hess-21-5293-2017
10.1111/j.1752-1688.1998.tb05961.x
10.5194/hess-13-883-2009
10.1080/02626667.2015.1031761
10.1007/s11269-021-02774-x
10.1016/j.envsoft.2019.07.007
10.5194/hess-21-3325-2017
10.1007/s40710-015-0064-8
10.1029/2009WR007706
10.1016/j.jhydrol.2019.124114
10.1007/s40808-020-00978-5
10.1080/02626667.2010.504677
10.1093/bioinformatics/btp358
10.1016/j.envsoft.2015.01.004
10.2166/nh.2017.197
10.1016/j.jhydrol.2018.09.027
10.1016/j.scitotenv.2017.01.041
10.1016/j.envsoft.2016.02.008
10.11648/j.wros.20200901.14
10.1007/s12665-012-2154-5
10.1016/j.envsoft.2021.105235
10.1007/s00267-015-0636-4
10.1002/hyp.7587
10.1016/j.envsoft.2018.03.001
10.1002/hyp.3360060305
10.1016/j.jcp.2019.06.032
10.1016/j.jhydrol.2021.126184
10.1016/j.jhydrol.2020.125098
10.1016/j.watres.2019.04.016
10.1016/j.envsoft.2014.01.004
10.2134/jeq2000.00472425002900040019x
10.1002/hyp.11300
10.1016/j.jhydrol.2019.05.084
ContentType Journal Article
Copyright 2023 Elsevier Ltd
Copyright © 2023 Elsevier Ltd. All rights reserved.
Copyright_xml – notice: 2023 Elsevier Ltd
– notice: Copyright © 2023 Elsevier Ltd. All rights reserved.
DBID AAYXX
CITATION
NPM
7X8
7S9
L.6
DOI 10.1016/j.jenvman.2023.119955
DatabaseName CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList PubMed
MEDLINE - Academic
AGRICOLA

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Economics
Environmental Sciences
EISSN 1095-8630
ExternalDocumentID 38169264
10_1016_j_jenvman_2023_119955
S0301479723027433
Genre Journal Article
GeographicLocations China
GeographicLocations_xml – name: China
GroupedDBID ---
--K
--M
-~X
.~1
0R~
1B1
1RT
1~.
1~5
29K
3EH
4.4
457
4G.
53G
5GY
5VS
7-5
71M
8P~
9JM
9JN
9JO
AABNK
AAEDT
AAEDW
AAFJI
AAHBH
AAHCO
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARJD
AATTM
AAXKI
AAXUO
AAYJJ
AAYWO
ABEFU
ABFRF
ABFYP
ABJNI
ABLST
ABMAC
ABMMH
ABWVN
ABXDB
ACDAQ
ACGFO
ACGFS
ACPRK
ACRLP
ACRPL
ADBBV
ADEZE
ADFGL
ADMUD
ADNMO
ADXHL
AEBSH
AEFWE
AEGFY
AEIPS
AEKER
AENEX
AFJKZ
AFRAH
AFTJW
AFXIZ
AGCQF
AGHFR
AGQPQ
AGRNS
AGUBO
AGYEJ
AHEUO
AHHHB
AHIDL
AI.
AIDBO
AIEXJ
AIIUN
AIKHN
AITUG
AKIFW
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
AOMHK
APXCP
ASPBG
AVARZ
AVWKF
AXJTR
AZFZN
BELTK
BKOJK
BKOMP
BLECG
BLXMC
BNPGV
CAG
COF
CS3
D-I
DM4
DU5
EBS
EFBJH
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HMC
HVGLF
HZ~
IHE
J1W
JARJE
KCYFY
KOM
LG5
LY8
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
PRBVW
Q38
R2-
RIG
ROL
RPZ
RXW
SCC
SDF
SDG
SDP
SEN
SES
SEW
SPC
SPCBC
SSB
SSH
SSJ
SSO
SSR
SSZ
T5K
TAE
TWZ
UHS
UQL
VH1
WH7
WUQ
XPP
XSW
Y6R
YK3
YV5
ZCA
ZMT
ZU3
ZY4
~02
~G-
~KM
AAYXX
ACVFH
ADCNI
AEUPX
AFPUW
AIGII
AKBMS
AKYEP
CITATION
AACTN
ABTAH
NPM
7X8
7S9
EFKBS
L.6
ID FETCH-LOGICAL-c464t-c13cd22bd12fcb391a2b2ce435a53561723452af5d4e6fae9ac61fc8ceec883c3
IEDL.DBID .~1
ISSN 0301-4797
1095-8630
IngestDate Fri Aug 22 20:23:20 EDT 2025
Fri Jul 11 02:09:52 EDT 2025
Thu Apr 03 07:00:25 EDT 2025
Sun Jul 06 05:06:14 EDT 2025
Thu Apr 24 23:02:16 EDT 2025
Sat May 24 17:07:07 EDT 2025
IsPeerReviewed true
IsScholarly true
Language English
License Copyright © 2023 Elsevier Ltd. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c464t-c13cd22bd12fcb391a2b2ce435a53561723452af5d4e6fae9ac61fc8ceec883c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-5509-8792
PMID 38169264
PQID 2910192669
PQPubID 23479
ParticipantIDs proquest_miscellaneous_3040464332
proquest_miscellaneous_2910192669
pubmed_primary_38169264
crossref_primary_10_1016_j_jenvman_2023_119955
crossref_citationtrail_10_1016_j_jenvman_2023_119955
elsevier_sciencedirect_doi_10_1016_j_jenvman_2023_119955
PublicationCentury 2000
PublicationDate February 2024
2024-02-00
2024-Feb
20240201
PublicationDateYYYYMMDD 2024-02-01
PublicationDate_xml – month: 02
  year: 2024
  text: February 2024
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Journal of environmental management
PublicationTitleAlternate J Environ Manage
PublicationYear 2024
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Li, Qu, Shi, Chen, Xue, Gou, Zhang (bib21) 2018
Yang, Reichert, Abbaspour, Xia, Yang (bib57) 2008; 358
Seibert, Beven (bib47) 2009; 13
(bib62) 2009
Ficchì, Perrin, Andréassian (bib11) 2019; 575
Lèye, Sambou, Sané, Ndiaye, Ndione, Kane, Diatta, Diédhiou, Cissé (bib20) 2020; 9
Nanding, Rico-Ramirez, Han, Wu, Dai, Zhang (bib33) 2021; 603
Pang, Wang, Melching, Feger (bib35) 2020; 588
Yu, Xie, Dong, Hu, Liu, Li, Peng, Ma, Wang, Xu (bib59) 2018; 22
Pandey, Dhaubanjar, Bharati, Thapa (bib34) 2020; 29
Westerberg, Wagener, Coxon, McMillan, Castellarin, Montanari, Freer (bib54) 2016; 52
McMillan, Westerberg, Branger (bib25) 2017; 31
Beven (bib6) 2016; 61
Westerberg, Sikorska-Senoner, Viviroli, Vis, Seibert (bib53) 2020
Phiri, Vanzo, Banda, Nyirenda, Nyambe (bib36) 2021; 33
Guillaume, Jakeman, Marsili-Libelli, Asher, Brunner, Croke, Hill, Jakeman, Keesman, Razavi, Stigter (bib12) 2019; 119
Kuczera, Renard, Thyer, Kavetski (bib19) 2010; 55
Nachtergaele, van Velthuizen, Verelst, Batjes, Dijkshoorn, van Engelen, Fischer, Jones, Montanarella, Petri, Prieler, Teixeira, Wilberg, Shi (bib10) 2008
Wu, Shirvan, Kozlowski (bib56) 2019; 396
Mirchi, Watkins, Madani (bib28) 2010
McMillan, Freer, Pappenberger, Krueger, Clark (bib24) 2010; 24
Sun, Lotz, Huang (bib46) 2021; 35
Hession, Storm (bib15) 2000; 29
Pianosi, Beven, Freer, Hall, Rougier, Stephenson, Wagener (bib37) 2016; 79
Moriasi, Arnold, Van Liew, Bingner, Harmel, Veith (bib29) 2007; 50
Wang, Van Meerveld, Seibert (bib52) 2017; 48
Winsemius, Schaefli, Montanari, Savenije (bib55) 2009; 45
Arnold, Srinivasan, Muttiah, Williams (bib3) 1998; 34
Kelleher, McGlynn, Wagener (bib17) 2017; 21
Stephens, Bates, Freer, Mason (bib45) 2012; 414–415
Rong, Qin, Du, Sun (bib42) 2021; 42
Meyer Oliveira, Fleischmann, Paiva (bib26) 2021; 597
Thyer, Frost, Kuczera (bib50) 2006; 330
Bai, Zheng, Ouyang, Zhuang, Jiang (bib5) 2013; 70
Senent-Aparicio, Jimeno-Sáez, López-Ballesteros, Giménez, Pérez-Sánchez, Cecilia, Srinivasan (bib43) 2021; 35
Zhang, Peng, Zhou, Nazir (bib60) 2021; 15
Moges, Demissie, Larsen, Yassin (bib30) 2021; 13
Haan, Allred, Storm, Sabbagh, Prabhu (bib13) 1995; 38
Moreno-Rodenas, Tscheikner-Gratl, Langeveld, Clemens (bib31) 2019; 158
Raue, Kreutz, Maiwald, Bachmann, Schilling, Klingmüller, Timmer (bib40) 2009; 25
Addor, Newman, Mizukami, Clark (bib2) 2017; 21
Kolmogorov (bib18) 1933; 4
Arsenault, Brissette, Martel (bib4) 2018; 566
Abe, Lobo, Dibike, Costa, Dos Santos, Novo (bib1) 2018
Boyd, Crawford (bib9) 2012; 15
Romagnoli, Portapila, Rigalli, Maydana, Burgués, García (bib41) 2017; 596–597
Li, Yen, Daren Harmel, Lei, Zhou, Hu, Li, Lian, Zhu, Zhai, Wang, Qiu, Luo, Wu, Liu, Li (bib22) 2019; 579
Narsimlu, Gosain, Chahar (bib61) 2015; 2
Vicens, Rodriguez‐Iturbe, Schaake (bib51) 1975; 11
Tanksali, Soraganvi (bib48) 2021; 7
Pokorny, Stadnyk, Ali, Lilhare, Déry, Koenig (bib39) 2021; 9
Ma, Zhang, Li, Zheng, Li (bib23) 2022; 147
Sisay, Halefom, Khare, Singh, Worku (bib44) 2017; 3
Beven, Binley (bib7) 1992; 6
Miller, Dere, Coleman (bib27) 2021; 753
Yen, Wang, Fontane, Harmel, Arabi (bib58) 2014; 54
Pianosi, Wagener (bib38) 2015; 67
Jia, Xu, Liang, Zhao, Xu (bib16) 2018; 104
Teshager, Gassman, Secchi, Schoof, Misgna (bib49) 2016; 57
Beven, Smith (bib8) 2015; 20
Harmel, Cooper, Slade, Haney, Arnold (bib14) 2006; 49
Muleta (bib32) 2011; 17
Wu (10.1016/j.jenvman.2023.119955_bib56) 2019; 396
Pianosi (10.1016/j.jenvman.2023.119955_bib37) 2016; 79
Jia (10.1016/j.jenvman.2023.119955_bib16) 2018; 104
Haan (10.1016/j.jenvman.2023.119955_bib13) 1995; 38
Westerberg (10.1016/j.jenvman.2023.119955_bib54) 2016; 52
Phiri (10.1016/j.jenvman.2023.119955_bib36) 2021; 33
Kuczera (10.1016/j.jenvman.2023.119955_bib19) 2010; 55
Wang (10.1016/j.jenvman.2023.119955_bib52) 2017; 48
Westerberg (10.1016/j.jenvman.2023.119955_bib53) 2020
Lèye (10.1016/j.jenvman.2023.119955_bib20) 2020; 9
Sisay (10.1016/j.jenvman.2023.119955_bib44) 2017; 3
Guillaume (10.1016/j.jenvman.2023.119955_bib12) 2019; 119
Rong (10.1016/j.jenvman.2023.119955_bib42) 2021; 42
Ma (10.1016/j.jenvman.2023.119955_bib23) 2022; 147
Nanding (10.1016/j.jenvman.2023.119955_bib33) 2021; 603
Li (10.1016/j.jenvman.2023.119955_bib22) 2019; 579
(10.1016/j.jenvman.2023.119955_bib62) 2009
Kolmogorov (10.1016/j.jenvman.2023.119955_bib18) 1933; 4
Tanksali (10.1016/j.jenvman.2023.119955_bib48) 2021; 7
Romagnoli (10.1016/j.jenvman.2023.119955_bib41) 2017; 596–597
Abe (10.1016/j.jenvman.2023.119955_bib1) 2018
Nachtergaele (10.1016/j.jenvman.2023.119955_bib10) 2008
Beven (10.1016/j.jenvman.2023.119955_bib6) 2016; 61
Yang (10.1016/j.jenvman.2023.119955_bib57) 2008; 358
Yen (10.1016/j.jenvman.2023.119955_bib58) 2014; 54
Zhang (10.1016/j.jenvman.2023.119955_bib60) 2021; 15
Bai (10.1016/j.jenvman.2023.119955_bib5) 2013; 70
Hession (10.1016/j.jenvman.2023.119955_bib15) 2000; 29
Stephens (10.1016/j.jenvman.2023.119955_bib45) 2012; 414–415
Arnold (10.1016/j.jenvman.2023.119955_bib3) 1998; 34
Sun (10.1016/j.jenvman.2023.119955_bib46) 2021; 35
Vicens (10.1016/j.jenvman.2023.119955_bib51) 1975; 11
Pokorny (10.1016/j.jenvman.2023.119955_bib39) 2021; 9
Mirchi (10.1016/j.jenvman.2023.119955_bib28) 2010
Muleta (10.1016/j.jenvman.2023.119955_bib32) 2011; 17
Kelleher (10.1016/j.jenvman.2023.119955_bib17) 2017; 21
Thyer (10.1016/j.jenvman.2023.119955_bib50) 2006; 330
Harmel (10.1016/j.jenvman.2023.119955_bib14) 2006; 49
Narsimlu (10.1016/j.jenvman.2023.119955_bib61) 2015; 2
Li (10.1016/j.jenvman.2023.119955_bib21) 2018
Seibert (10.1016/j.jenvman.2023.119955_bib47) 2009; 13
Arsenault (10.1016/j.jenvman.2023.119955_bib4) 2018; 566
Teshager (10.1016/j.jenvman.2023.119955_bib49) 2016; 57
Addor (10.1016/j.jenvman.2023.119955_bib2) 2017; 21
McMillan (10.1016/j.jenvman.2023.119955_bib25) 2017; 31
Pang (10.1016/j.jenvman.2023.119955_bib35) 2020; 588
Pianosi (10.1016/j.jenvman.2023.119955_bib38) 2015; 67
Moges (10.1016/j.jenvman.2023.119955_bib30) 2021; 13
Pandey (10.1016/j.jenvman.2023.119955_bib34) 2020; 29
Yu (10.1016/j.jenvman.2023.119955_bib59) 2018; 22
Beven (10.1016/j.jenvman.2023.119955_bib7) 1992; 6
Moriasi (10.1016/j.jenvman.2023.119955_bib29) 2007; 50
Winsemius (10.1016/j.jenvman.2023.119955_bib55) 2009; 45
Boyd (10.1016/j.jenvman.2023.119955_bib9) 2012; 15
Moreno-Rodenas (10.1016/j.jenvman.2023.119955_bib31) 2019; 158
Beven (10.1016/j.jenvman.2023.119955_bib8) 2015; 20
Raue (10.1016/j.jenvman.2023.119955_bib40) 2009; 25
Meyer Oliveira (10.1016/j.jenvman.2023.119955_bib26) 2021; 597
Miller (10.1016/j.jenvman.2023.119955_bib27) 2021; 753
Ficchì (10.1016/j.jenvman.2023.119955_bib11) 2019; 575
Senent-Aparicio (10.1016/j.jenvman.2023.119955_bib43) 2021; 35
McMillan (10.1016/j.jenvman.2023.119955_bib24) 2010; 24
References_xml – volume: 3
  start-page: 693
  year: 2017
  end-page: 702
  ident: bib44
  article-title: Hydrological modelling of ungauged urban watershed using SWAT model
  publication-title: Model. Earth Syst. Environ.
– year: 2008
  ident: bib10
  publication-title: Harmonized World Soil Database (version 1.0)
– year: 2018
  ident: bib1
  article-title: Modelling the Effects of Historical and Future Land Cover Changes on the Hydrology of an Amazonian Basin
– volume: 104
  start-page: 13
  year: 2018
  end-page: 26
  ident: bib16
  article-title: Bayesian framework of parameter sensitivity, uncertainty, and identifiability analysis in complex water quality models
  publication-title: Environ. Model. Softw.
– volume: 79
  start-page: 214
  year: 2016
  end-page: 232
  ident: bib37
  article-title: Sensitivity analysis of environmental models: a systematic review with practical workflow
  publication-title: Environ. Model. Softw.
– volume: 13
  start-page: 883
  year: 2009
  end-page: 892
  ident: bib47
  article-title: Gauging the ungauged basin: how many discharge measurements are needed?
  publication-title: Hydrol. Earth Syst. Sci.
– volume: 603
  year: 2021
  ident: bib33
  article-title: Uncertainty assessment of radar-raingauge merged rainfall estimates in river discharge simulations
  publication-title: J. Hydrol.
– volume: 55
  start-page: 980
  year: 2010
  end-page: 991
  ident: bib19
  article-title: There are no hydrological monsters, just models and observations with large uncertainties!
  publication-title: Hydrol. Sci. J.
– volume: 29
  year: 2020
  ident: bib34
  article-title: Spatio-temporal distribution of water availability in Karnali-Mohana Basin, Western Nepal: hydrological model development using multi-site calibration approach (Part-A)
  publication-title: J. Hydrol. Reg. Stud.
– volume: 2
  start-page: 79
  year: 2015
  end-page: 95
  ident: bib61
  article-title: SWAT Model Calibration and Uncertainty Analysis for Streamflow Prediction in the Kunwari River Basin, India, Using Sequential Uncertainty Fitting
  publication-title: Environ. Process.
– volume: 17
  start-page: 191
  year: 2011
  end-page: 200
  ident: bib32
  article-title: Improving model performance using season-based evaluation
  publication-title: J. Hydrol. Eng.
– volume: 13
  year: 2021
  ident: bib30
  article-title: Review: sources of hydrological model uncertainties and advances in their analysis
  publication-title: Water
– volume: 21
  start-page: 5293
  year: 2017
  end-page: 5313
  ident: bib2
  article-title: The CAMELS data set: catchment attributes and meteorology for large-sample studies
  publication-title: Hydrol. Earth Syst. Sci.
– volume: 21
  start-page: 3325
  year: 2017
  end-page: 3352
  ident: bib17
  article-title: Characterizing and reducing equifinality by constraining a distributed catchment model with regional signatures, local observations, and process understanding
  publication-title: Hydrol. Earth Syst. Sci.
– volume: 35
  start-page: 1065
  year: 2021
  end-page: 1077
  ident: bib46
  article-title: An ET-based two-phase method for the calibration and application of distributed hydrological models
  publication-title: Water Resour. Manag.
– volume: 54
  start-page: 211
  year: 2014
  end-page: 221
  ident: bib58
  article-title: A framework for propagation of uncertainty contributed by parameterization, input data, model structure, and calibration/validation data in watershed modeling
  publication-title: Environ. Model. Softw.
– volume: 4
  start-page: 83
  year: 1933
  end-page: 91
  ident: bib18
  article-title: Sulla determinazione empirica di una legge di distribuzione
  publication-title: Giorn. Inst. Ital. Attuari
– volume: 20
  year: 2015
  ident: bib8
  article-title: Concepts of information content and likelihood in parameter calibration for hydrological simulation models
  publication-title: J. Hydrol. Eng.
– volume: 61
  start-page: 1652
  year: 2016
  end-page: 1665
  ident: bib6
  article-title: Facets of uncertainty: Epistemic uncertainty, non-stationarity, likelihood, hypothesis testing, and communication
  publication-title: Hydrol. Sci. J.
– volume: 579
  year: 2019
  ident: bib22
  article-title: Effects of sampling strategies and estimation algorithms on total nitrogen load determination in a small agricultural headwater watershed
  publication-title: J. Hydrol.
– volume: 38
  start-page: 725
  year: 1995
  end-page: 733
  ident: bib13
  article-title: Statistical procedure for evaluating hydrologic/water quality models
  publication-title: Trans. Am. Soc. Agric. Eng.
– volume: 358
  start-page: 1
  year: 2008
  end-page: 23
  ident: bib57
  article-title: Comparing uncertainty analysis techniques for a SWAT application to the Chaohe Basin in China
  publication-title: J. Hydrol.
– volume: 147
  year: 2022
  ident: bib23
  article-title: Using Bayesian optimization to automate the calibration of complex hydrological models: framework and application
  publication-title: Environ. Model. Softw.
– volume: 119
  start-page: 418
  year: 2019
  end-page: 432
  ident: bib12
  article-title: Introductory overview of identifiability analysis: a guide to evaluating whether you have the right type of data for your modeling purpose
  publication-title: Environ. Model. Softw.
– start-page: 221
  year: 2010
  end-page: 224
  ident: bib28
  article-title: Modeling for watershed planning, management, and decision making
  publication-title: Watersheds: Management, Restoration and Environmental Impact
– volume: 11
  start-page: 405
  year: 1975
  end-page: 414
  ident: bib51
  article-title: A Bayesian framework for the use of regional information in hydrology
  publication-title: Water Resour. Res.
– volume: 52
  start-page: 1847
  year: 2016
  end-page: 1865
  ident: bib54
  article-title: Uncertainty in hydrological signatures for gauged and ungauged catchments
  publication-title: Water Resour. Res.
– volume: 15
  start-page: 342
  year: 2021
  end-page: 353
  ident: bib60
  article-title: Parameter identification and uncertainty quantification of a non-linear pump-turbine governing system based on the differential evolution adaptive Metropolis algorithm
  publication-title: IET Renew. Power Gener.
– volume: 575
  start-page: 1308
  year: 2019
  end-page: 1327
  ident: bib11
  article-title: Hydrological modelling at multiple sub-daily time steps: model improvement via flux-matching
  publication-title: J. Hydrol.
– volume: 597
  year: 2021
  ident: bib26
  article-title: On the contribution of remote sensing-based calibration to model hydrological and hydraulic processes in tropical regions
  publication-title: J. Hydrol.
– volume: 67
  start-page: 1
  year: 2015
  end-page: 11
  ident: bib38
  article-title: A simple and efficient method for global sensitivity analysis based on cumulative distribution functions
  publication-title: Environ. Model. Softw.
– volume: 70
  start-page: 709
  year: 2013
  end-page: 718
  ident: bib5
  article-title: Modeling hydrological ecosystem services and tradeoffs: a case study in Baiyangdian watershed, China
  publication-title: Environ. Earth Sci.
– volume: 588
  year: 2020
  ident: bib35
  article-title: Development and testing of a modified SWAT model based on slope condition and precipitation intensity
  publication-title: J. Hydrol.
– volume: 330
  start-page: 313
  year: 2006
  end-page: 328
  ident: bib50
  article-title: Parameter estimation and model identification for stochastic models of annual hydrological data: is the observed record long enough?
  publication-title: J. Hydrol.
– start-page: 1
  year: 2020
  end-page: 16
  ident: bib53
  article-title: Hydrological model calibration with uncertain discharge data
  publication-title: Hydrol. Sci. J.
– volume: 158
  start-page: 46
  year: 2019
  end-page: 60
  ident: bib31
  article-title: Uncertainty analysis in a large-scale water quality integrated catchment modelling study
  publication-title: Water Res.
– volume: 25
  start-page: 1923
  year: 2009
  end-page: 1929
  ident: bib40
  article-title: Structural and practical identifiability analysis of partially observed dynamical models by exploiting the profile likelihood
  publication-title: Bioinformatics
– volume: 35
  year: 2021
  ident: bib43
  article-title: Impacts of swat weather generator statistics from high-resolution datasets on monthly streamflow simulation over Peninsular Spain
  publication-title: J. Hydrol. Reg. Stud.
– volume: 15
  start-page: 662
  year: 2012
  end-page: 679
  ident: bib9
  article-title: Critical questions for big data
  publication-title: Inf. Commun. Soc.
– volume: 753
  year: 2021
  ident: bib27
  article-title: High-frequency data reveal differential dissolved and suspended solids behavior from a mixed restored prairie and agricultural catchment
  publication-title: Sci. Total Environ.
– volume: 566
  start-page: 346
  year: 2018
  end-page: 362
  ident: bib4
  article-title: The hazards of split-sample validation in hydrological model calibration
  publication-title: J. Hydrol.
– volume: 42
  start-page: 2769
  year: 2021
  end-page: 277710
  ident: bib42
  article-title: Characteristic analysis of SWAT model parameter values based on assessment of model research quality
  publication-title: Environmental Science
– volume: 396
  start-page: 12
  year: 2019
  end-page: 30
  ident: bib56
  article-title: Demonstration of the relationship between sensitivity and identifiability for inverse uncertainty quantification
  publication-title: J. Comput. Phys.
– volume: 50
  start-page: 885
  year: 2007
  end-page: 900
  ident: bib29
  article-title: Model evaluation guidelines for systematic quantification of accuracy in watershed simulations
  publication-title: Trans. ASABE (Am. Soc. Agric. Biol. Eng.)
– year: 2009
  ident: bib62
  article-title: Guidance on the Development,Evaluation, and Application of Environmental Models
– volume: 9
  start-page: 431
  year: 2021
  ident: bib39
  article-title: Cumulative effects of uncertainty on simulated streamflow in a hydrologic modeling environment
  publication-title: Elem. Sci. Anthr.
– volume: 31
  start-page: 4757
  year: 2017
  end-page: 4761
  ident: bib25
  article-title: Five guidelines for selecting hydrological signatures
  publication-title: Hydrol. Process.
– volume: 24
  start-page: 1270
  year: 2010
  end-page: 1284
  ident: bib24
  article-title: Impacts of uncertain river flow data on rainfall-runoff model calibration and discharge predictions
  publication-title: Hydrol. Process.
– year: 2018
  ident: bib21
  article-title: Development and integration of sub-daily flood modelling capability within the SWAT model and a comparison with XAJ model
  publication-title: Water
– volume: 49
  start-page: 689
  year: 2006
  end-page: 701
  ident: bib14
  article-title: Cumulative uncertainty in measured streamflow and water quality data for small watersheds
  publication-title: Trans. ASABE (Am. Soc. Agric. Biol. Eng.)
– volume: 22
  start-page: 5001
  year: 2018
  end-page: 5019
  ident: bib59
  article-title: Improvement of the SWAT model for event-based flood simulation on a sub-daily timescale
  publication-title: Hydrol. Earth Syst. Sci.
– volume: 414–415
  start-page: 162
  year: 2012
  end-page: 173
  ident: bib45
  article-title: The impact of uncertainty in satellite data on the assessment of flood inundation models
  publication-title: J. Hydrol.
– volume: 29
  start-page: 1172
  year: 2000
  end-page: 1179
  ident: bib15
  article-title: Watershed‐level uncertainties: Implications for Phosphorus management and Eutrophication
  publication-title: J. Environ. Qual.
– volume: 45
  year: 2009
  ident: bib55
  article-title: On the calibration of hydrological models in ungauged basins: a framework for integrating hard and soft hydrological information
  publication-title: Water Resour. Res.
– volume: 33
  year: 2021
  ident: bib36
  article-title: A pseudo-reservoir concept in SWAT model for the simulation of an alluvial floodplain in a complex tropical river system
  publication-title: J. Hydrol. Reg. Stud.
– volume: 6
  start-page: 279
  year: 1992
  end-page: 298
  ident: bib7
  article-title: The future of distributed models: model calibration and uncertainty prediction
  publication-title: Hydrol. Process.
– volume: 7
  start-page: 2391
  year: 2021
  end-page: 2406
  ident: bib48
  article-title: Assessment of impacts of land use/land cover changes upstream of a dam in a semi-arid watershed using QSWAT
  publication-title: Model. Earth Syst. Environ.
– volume: 9
  start-page: 29
  year: 2020
  end-page: 41
  ident: bib20
  article-title: Hydrological modeling of an ungauged river basin using SWAT model for water resource management case of kayanga river upstream niandouba dam
  publication-title: J. Water Resour. Ocean Sci.
– volume: 596–597
  start-page: 437
  year: 2017
  end-page: 450
  ident: bib41
  article-title: Assessment of the SWAT model to simulate a watershed with limited available data in the Pampas region, Argentina
  publication-title: Sci. Total Environ.
– volume: 48
  start-page: 1566
  year: 2017
  end-page: 1584
  ident: bib52
  article-title: When should stream water be sampled to be most informative for event-based, multi-criteria model calibration?
  publication-title: Hydrol. Res.
– volume: 57
  start-page: 894
  year: 2016
  end-page: 911
  ident: bib49
  article-title: Modeling agricultural watersheds with the soil and water assessment tool (SWAT): calibration and validation with a novel procedure for spatially explicit HRUs
  publication-title: Environ. Manage.
– volume: 34
  start-page: 73
  year: 1998
  end-page: 89
  ident: bib3
  article-title: Large area hydrologic modeling and assessment part I: model development
  publication-title: J. Am. Water Resour. Assoc.
– volume: 42
  start-page: 2769
  issue: 6
  year: 2021
  ident: 10.1016/j.jenvman.2023.119955_bib42
  article-title: Characteristic analysis of SWAT model parameter values based on assessment of model research quality
  publication-title: Environmental Science
– volume: 20
  year: 2015
  ident: 10.1016/j.jenvman.2023.119955_bib8
  article-title: Concepts of information content and likelihood in parameter calibration for hydrological simulation models
  publication-title: J. Hydrol. Eng.
  doi: 10.1061/(ASCE)HE.1943-5584.0000991
– start-page: 221
  year: 2010
  ident: 10.1016/j.jenvman.2023.119955_bib28
  article-title: Modeling for watershed planning, management, and decision making
– volume: 15
  start-page: 662
  year: 2012
  ident: 10.1016/j.jenvman.2023.119955_bib9
  article-title: Critical questions for big data
  publication-title: Inf. Commun. Soc.
  doi: 10.1080/1369118X.2012.678878
– volume: 330
  start-page: 313
  year: 2006
  ident: 10.1016/j.jenvman.2023.119955_bib50
  article-title: Parameter estimation and model identification for stochastic models of annual hydrological data: is the observed record long enough?
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2006.03.029
– volume: 358
  start-page: 1
  year: 2008
  ident: 10.1016/j.jenvman.2023.119955_bib57
  article-title: Comparing uncertainty analysis techniques for a SWAT application to the Chaohe Basin in China
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2008.05.012
– volume: 414–415
  start-page: 162
  year: 2012
  ident: 10.1016/j.jenvman.2023.119955_bib45
  article-title: The impact of uncertainty in satellite data on the assessment of flood inundation models
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2011.10.040
– volume: 3
  start-page: 693
  year: 2017
  ident: 10.1016/j.jenvman.2023.119955_bib44
  article-title: Hydrological modelling of ungauged urban watershed using SWAT model
  publication-title: Model. Earth Syst. Environ.
  doi: 10.1007/s40808-017-0328-6
– volume: 52
  start-page: 1847
  year: 2016
  ident: 10.1016/j.jenvman.2023.119955_bib54
  article-title: Uncertainty in hydrological signatures for gauged and ungauged catchments
  publication-title: Water Resour. Res.
  doi: 10.1002/2015WR017635
– volume: 9
  start-page: 431
  year: 2021
  ident: 10.1016/j.jenvman.2023.119955_bib39
  article-title: Cumulative effects of uncertainty on simulated streamflow in a hydrologic modeling environment
  publication-title: Elem. Sci. Anthr.
  doi: 10.1525/elementa.431
– volume: 33
  year: 2021
  ident: 10.1016/j.jenvman.2023.119955_bib36
  article-title: A pseudo-reservoir concept in SWAT model for the simulation of an alluvial floodplain in a complex tropical river system
  publication-title: J. Hydrol. Reg. Stud.
– volume: 22
  start-page: 5001
  year: 2018
  ident: 10.1016/j.jenvman.2023.119955_bib59
  article-title: Improvement of the SWAT model for event-based flood simulation on a sub-daily timescale
  publication-title: Hydrol. Earth Syst. Sci.
  doi: 10.5194/hess-22-5001-2018
– volume: 11
  start-page: 405
  year: 1975
  ident: 10.1016/j.jenvman.2023.119955_bib51
  article-title: A Bayesian framework for the use of regional information in hydrology
  publication-title: Water Resour. Res.
  doi: 10.1029/WR011i003p00405
– volume: 38
  start-page: 725
  year: 1995
  ident: 10.1016/j.jenvman.2023.119955_bib13
  article-title: Statistical procedure for evaluating hydrologic/water quality models
  publication-title: Trans. Am. Soc. Agric. Eng.
  doi: 10.13031/2013.27886
– volume: 603
  year: 2021
  ident: 10.1016/j.jenvman.2023.119955_bib33
  article-title: Uncertainty assessment of radar-raingauge merged rainfall estimates in river discharge simulations
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2021.127093
– volume: 17
  start-page: 191
  year: 2011
  ident: 10.1016/j.jenvman.2023.119955_bib32
  article-title: Improving model performance using season-based evaluation
  publication-title: J. Hydrol. Eng.
  doi: 10.1061/(ASCE)HE.1943-5584.0000421
– volume: 15
  start-page: 342
  year: 2021
  ident: 10.1016/j.jenvman.2023.119955_bib60
  article-title: Parameter identification and uncertainty quantification of a non-linear pump-turbine governing system based on the differential evolution adaptive Metropolis algorithm
  publication-title: IET Renew. Power Gener.
  doi: 10.1049/rpg2.12027
– volume: 50
  start-page: 885
  year: 2007
  ident: 10.1016/j.jenvman.2023.119955_bib29
  article-title: Model evaluation guidelines for systematic quantification of accuracy in watershed simulations
  publication-title: Trans. ASABE (Am. Soc. Agric. Biol. Eng.)
– start-page: 1
  year: 2020
  ident: 10.1016/j.jenvman.2023.119955_bib53
  article-title: Hydrological model calibration with uncertain discharge data
  publication-title: Hydrol. Sci. J.
– volume: 753
  year: 2021
  ident: 10.1016/j.jenvman.2023.119955_bib27
  article-title: High-frequency data reveal differential dissolved and suspended solids behavior from a mixed restored prairie and agricultural catchment
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2020.141731
– year: 2009
  ident: 10.1016/j.jenvman.2023.119955_bib62
– volume: 21
  start-page: 5293
  year: 2017
  ident: 10.1016/j.jenvman.2023.119955_bib2
  article-title: The CAMELS data set: catchment attributes and meteorology for large-sample studies
  publication-title: Hydrol. Earth Syst. Sci.
  doi: 10.5194/hess-21-5293-2017
– volume: 34
  start-page: 73
  year: 1998
  ident: 10.1016/j.jenvman.2023.119955_bib3
  article-title: Large area hydrologic modeling and assessment part I: model development
  publication-title: J. Am. Water Resour. Assoc.
  doi: 10.1111/j.1752-1688.1998.tb05961.x
– volume: 13
  year: 2021
  ident: 10.1016/j.jenvman.2023.119955_bib30
  article-title: Review: sources of hydrological model uncertainties and advances in their analysis
  publication-title: Water
– volume: 13
  start-page: 883
  year: 2009
  ident: 10.1016/j.jenvman.2023.119955_bib47
  article-title: Gauging the ungauged basin: how many discharge measurements are needed?
  publication-title: Hydrol. Earth Syst. Sci.
  doi: 10.5194/hess-13-883-2009
– volume: 61
  start-page: 1652
  year: 2016
  ident: 10.1016/j.jenvman.2023.119955_bib6
  article-title: Facets of uncertainty: Epistemic uncertainty, non-stationarity, likelihood, hypothesis testing, and communication
  publication-title: Hydrol. Sci. J.
  doi: 10.1080/02626667.2015.1031761
– volume: 35
  start-page: 1065
  year: 2021
  ident: 10.1016/j.jenvman.2023.119955_bib46
  article-title: An ET-based two-phase method for the calibration and application of distributed hydrological models
  publication-title: Water Resour. Manag.
  doi: 10.1007/s11269-021-02774-x
– volume: 119
  start-page: 418
  year: 2019
  ident: 10.1016/j.jenvman.2023.119955_bib12
  article-title: Introductory overview of identifiability analysis: a guide to evaluating whether you have the right type of data for your modeling purpose
  publication-title: Environ. Model. Softw.
  doi: 10.1016/j.envsoft.2019.07.007
– volume: 21
  start-page: 3325
  year: 2017
  ident: 10.1016/j.jenvman.2023.119955_bib17
  article-title: Characterizing and reducing equifinality by constraining a distributed catchment model with regional signatures, local observations, and process understanding
  publication-title: Hydrol. Earth Syst. Sci.
  doi: 10.5194/hess-21-3325-2017
– volume: 2
  start-page: 79
  year: 2015
  ident: 10.1016/j.jenvman.2023.119955_bib61
  article-title: SWAT Model Calibration and Uncertainty Analysis for Streamflow Prediction in the Kunwari River Basin, India, Using Sequential Uncertainty Fitting
  publication-title: Environ. Process.
  doi: 10.1007/s40710-015-0064-8
– volume: 45
  year: 2009
  ident: 10.1016/j.jenvman.2023.119955_bib55
  article-title: On the calibration of hydrological models in ungauged basins: a framework for integrating hard and soft hydrological information
  publication-title: Water Resour. Res.
  doi: 10.1029/2009WR007706
– volume: 579
  year: 2019
  ident: 10.1016/j.jenvman.2023.119955_bib22
  article-title: Effects of sampling strategies and estimation algorithms on total nitrogen load determination in a small agricultural headwater watershed
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2019.124114
– volume: 7
  start-page: 2391
  year: 2021
  ident: 10.1016/j.jenvman.2023.119955_bib48
  article-title: Assessment of impacts of land use/land cover changes upstream of a dam in a semi-arid watershed using QSWAT
  publication-title: Model. Earth Syst. Environ.
  doi: 10.1007/s40808-020-00978-5
– volume: 55
  start-page: 980
  year: 2010
  ident: 10.1016/j.jenvman.2023.119955_bib19
  article-title: There are no hydrological monsters, just models and observations with large uncertainties!
  publication-title: Hydrol. Sci. J.
  doi: 10.1080/02626667.2010.504677
– volume: 25
  start-page: 1923
  year: 2009
  ident: 10.1016/j.jenvman.2023.119955_bib40
  article-title: Structural and practical identifiability analysis of partially observed dynamical models by exploiting the profile likelihood
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btp358
– volume: 67
  start-page: 1
  year: 2015
  ident: 10.1016/j.jenvman.2023.119955_bib38
  article-title: A simple and efficient method for global sensitivity analysis based on cumulative distribution functions
  publication-title: Environ. Model. Softw.
  doi: 10.1016/j.envsoft.2015.01.004
– volume: 48
  start-page: 1566
  year: 2017
  ident: 10.1016/j.jenvman.2023.119955_bib52
  article-title: When should stream water be sampled to be most informative for event-based, multi-criteria model calibration?
  publication-title: Hydrol. Res.
  doi: 10.2166/nh.2017.197
– volume: 566
  start-page: 346
  year: 2018
  ident: 10.1016/j.jenvman.2023.119955_bib4
  article-title: The hazards of split-sample validation in hydrological model calibration
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2018.09.027
– year: 2008
  ident: 10.1016/j.jenvman.2023.119955_bib10
– volume: 596–597
  start-page: 437
  year: 2017
  ident: 10.1016/j.jenvman.2023.119955_bib41
  article-title: Assessment of the SWAT model to simulate a watershed with limited available data in the Pampas region, Argentina
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2017.01.041
– volume: 79
  start-page: 214
  year: 2016
  ident: 10.1016/j.jenvman.2023.119955_bib37
  article-title: Sensitivity analysis of environmental models: a systematic review with practical workflow
  publication-title: Environ. Model. Softw.
  doi: 10.1016/j.envsoft.2016.02.008
– volume: 9
  start-page: 29
  year: 2020
  ident: 10.1016/j.jenvman.2023.119955_bib20
  article-title: Hydrological modeling of an ungauged river basin using SWAT model for water resource management case of kayanga river upstream niandouba dam
  publication-title: J. Water Resour. Ocean Sci.
  doi: 10.11648/j.wros.20200901.14
– volume: 29
  year: 2020
  ident: 10.1016/j.jenvman.2023.119955_bib34
  article-title: Spatio-temporal distribution of water availability in Karnali-Mohana Basin, Western Nepal: hydrological model development using multi-site calibration approach (Part-A)
  publication-title: J. Hydrol. Reg. Stud.
– volume: 70
  start-page: 709
  year: 2013
  ident: 10.1016/j.jenvman.2023.119955_bib5
  article-title: Modeling hydrological ecosystem services and tradeoffs: a case study in Baiyangdian watershed, China
  publication-title: Environ. Earth Sci.
  doi: 10.1007/s12665-012-2154-5
– volume: 147
  year: 2022
  ident: 10.1016/j.jenvman.2023.119955_bib23
  article-title: Using Bayesian optimization to automate the calibration of complex hydrological models: framework and application
  publication-title: Environ. Model. Softw.
  doi: 10.1016/j.envsoft.2021.105235
– volume: 57
  start-page: 894
  year: 2016
  ident: 10.1016/j.jenvman.2023.119955_bib49
  article-title: Modeling agricultural watersheds with the soil and water assessment tool (SWAT): calibration and validation with a novel procedure for spatially explicit HRUs
  publication-title: Environ. Manage.
  doi: 10.1007/s00267-015-0636-4
– volume: 24
  start-page: 1270
  year: 2010
  ident: 10.1016/j.jenvman.2023.119955_bib24
  article-title: Impacts of uncertain river flow data on rainfall-runoff model calibration and discharge predictions
  publication-title: Hydrol. Process.
  doi: 10.1002/hyp.7587
– volume: 104
  start-page: 13
  year: 2018
  ident: 10.1016/j.jenvman.2023.119955_bib16
  article-title: Bayesian framework of parameter sensitivity, uncertainty, and identifiability analysis in complex water quality models
  publication-title: Environ. Model. Softw.
  doi: 10.1016/j.envsoft.2018.03.001
– volume: 6
  start-page: 279
  year: 1992
  ident: 10.1016/j.jenvman.2023.119955_bib7
  article-title: The future of distributed models: model calibration and uncertainty prediction
  publication-title: Hydrol. Process.
  doi: 10.1002/hyp.3360060305
– volume: 396
  start-page: 12
  year: 2019
  ident: 10.1016/j.jenvman.2023.119955_bib56
  article-title: Demonstration of the relationship between sensitivity and identifiability for inverse uncertainty quantification
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2019.06.032
– volume: 597
  year: 2021
  ident: 10.1016/j.jenvman.2023.119955_bib26
  article-title: On the contribution of remote sensing-based calibration to model hydrological and hydraulic processes in tropical regions
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2021.126184
– volume: 4
  start-page: 83
  year: 1933
  ident: 10.1016/j.jenvman.2023.119955_bib18
  article-title: Sulla determinazione empirica di una legge di distribuzione
  publication-title: Giorn. Inst. Ital. Attuari
– volume: 588
  year: 2020
  ident: 10.1016/j.jenvman.2023.119955_bib35
  article-title: Development and testing of a modified SWAT model based on slope condition and precipitation intensity
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2020.125098
– volume: 158
  start-page: 46
  year: 2019
  ident: 10.1016/j.jenvman.2023.119955_bib31
  article-title: Uncertainty analysis in a large-scale water quality integrated catchment modelling study
  publication-title: Water Res.
  doi: 10.1016/j.watres.2019.04.016
– volume: 54
  start-page: 211
  year: 2014
  ident: 10.1016/j.jenvman.2023.119955_bib58
  article-title: A framework for propagation of uncertainty contributed by parameterization, input data, model structure, and calibration/validation data in watershed modeling
  publication-title: Environ. Model. Softw.
  doi: 10.1016/j.envsoft.2014.01.004
– volume: 29
  start-page: 1172
  year: 2000
  ident: 10.1016/j.jenvman.2023.119955_bib15
  article-title: Watershed‐level uncertainties: Implications for Phosphorus management and Eutrophication
  publication-title: J. Environ. Qual.
  doi: 10.2134/jeq2000.00472425002900040019x
– volume: 31
  start-page: 4757
  year: 2017
  ident: 10.1016/j.jenvman.2023.119955_bib25
  article-title: Five guidelines for selecting hydrological signatures
  publication-title: Hydrol. Process.
  doi: 10.1002/hyp.11300
– volume: 575
  start-page: 1308
  year: 2019
  ident: 10.1016/j.jenvman.2023.119955_bib11
  article-title: Hydrological modelling at multiple sub-daily time steps: model improvement via flux-matching
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2019.05.084
– volume: 49
  start-page: 689
  year: 2006
  ident: 10.1016/j.jenvman.2023.119955_bib14
  article-title: Cumulative uncertainty in measured streamflow and water quality data for small watersheds
  publication-title: Trans. ASABE (Am. Soc. Agric. Biol. Eng.)
– volume: 35
  year: 2021
  ident: 10.1016/j.jenvman.2023.119955_bib43
  article-title: Impacts of swat weather generator statistics from high-resolution datasets on monthly streamflow simulation over Peninsular Spain
  publication-title: J. Hydrol. Reg. Stud.
– year: 2018
  ident: 10.1016/j.jenvman.2023.119955_bib1
– year: 2018
  ident: 10.1016/j.jenvman.2023.119955_bib21
  article-title: Development and integration of sub-daily flood modelling capability within the SWAT model and a comparison with XAJ model
  publication-title: Water
SSID ssj0003217
Score 2.431753
Snippet The quality of calibration datasets is critical for establishing well-calibrated models for reliable decision-making support. However, the analysis of the...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 119955
SubjectTerms canopy
case studies
China
data collection
decision making
environmental management
groundwater
risk
rivers
Soil and Water Assessment Tool model
uncertainty
watershed management
watersheds
Title Taking full advantage of ‘low-quality’ datasets in watershed modeling and management: From a perspective of parameter calibration
URI https://dx.doi.org/10.1016/j.jenvman.2023.119955
https://www.ncbi.nlm.nih.gov/pubmed/38169264
https://www.proquest.com/docview/2910192669
https://www.proquest.com/docview/3040464332
Volume 351
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEB5CemgvpU2bdvsIKvTq3bU08qO3ELJsW8ilCeQmZFmmu2TtJXYaeim59D-0fy-_pDN-7FJoCPRikNEIoRnNjKT5ZgDek8WYFqH2Afo4pk-oA8u3TRJzpVSmGcbM0RYn0fwMP53r8x04GrAwHFbZ6_5Op7fauv8z6Vdzsl4sJl_a00DMVbP4aKU44ydizFI-_rEN81CyrbrLnfkWKd6ieCbL8dKX31aW06BKRcojTRnx92_7dJf_2dqh2RN43DuQ4rCb41PY8eUePBzwxfUe7B9vsWvUsd-89TP4edpWnhJ84y7at_-GlImoCnF78-uiug46gOX325vfggNHa9_UYlGKa8sZOL_6XLRlc3gIW1JjEzjzQcwuq5WwYr1FbvKwnFZ8xeE2ggSBj-UsBM_hbHZ8ejQP-ioMgcMIm8CFyuVSZnkoC5epNLQyk86Tm2W10uwAKdTSFjpHHxXWp9ZFYeESsr4uSZRT-7BbVqV_CSJxMdJh3MvcIaoMUy9jq_00Sgt0OpmOAIe1N65PUc6VMi7MEIu2ND3LDLPMdCwbwXhDtu5ydNxHkAyMNX8JmyE7ch_pu0EQDG1Efl2xpa-uaiPJ8SJ3OYrSu_soUpm0qErJEbzopGgzY37BJXJ89f-Tew2PqIVdUPkb2G0ur_xb8pma7KDdFAfw4PDj5_nJH8hTGeY
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VcigXVAqFUB6LBEcn8T78QOKAoFFKSy-kUm_Ler1WEzV2VKdEvaBe-A_wO_hH_SXM-JEIiaoSUi-WbO-uVjuz89j9ZgbgNWqMfuYr50kXhvjwlWfotInLVAiRKApjJrTFYTA8kp-O1fEa_G5jYQhW2cj-WqZX0rr50mtWszcbj3tfKm8gpKpZ5FqJtoL1vrtYoN9Wvtv7iER-w_lgd_Rh6DWlBTwrAzn3rC9synmS-jyziYh9wxNuHdoORglFWl1IxU2mUumCzLjY2MDPbIQqxUaRsALHvQN3JYoLKpvQ_b7ClQhelfml2dGxVbgKG-pNuhOXf5sayrvKBUqrOKYQw38rxOsM3krxDTbhfmOxsvf1ojyANZdvwUYb0FxuwfbuKlgOGzbSonwIP0ZVqStGR_ysAhvMUXqxImNXlz9Pi4VXR3ReXF3-YoRULd28ZOOcLQyl_DxxKavq9NAQJseXJVLnLRucFVNm2GwVKkrDUh7zKeF7GHIenQMQ1z2Co1uhzTas50XungCLbCjR-3c8tVKKRMaOh0a5fhBn0qqo3wHZrr22TU50Ks1xqlvw20Q3JNNEMl2TrAPdZbdZnRTkpg5RS1j9F3drVFw3dX3VMoLGnU_XOSZ3xXmpOVp6aJ8HQXx9G4EyGhdVCN6BxzUXLWdMV8bYXT79_8m9hI3h6POBPtg73N-Be_hH1oj2Z7A-Pzt3z9Fgmycvqg3C4Ott78g_1cxXBg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Taking+full+advantage+of+%E2%80%98low-quality%E2%80%99+datasets+in+watershed+modeling+and+management%3A+From+a+perspective+of+parameter+calibration&rft.jtitle=Journal+of+environmental+management&rft.au=Rong%2C+Yi&rft.au=Qin%2C+Chengxin&rft.au=Yen%2C+Haw&rft.au=Sun%2C+Fu&rft.date=2024-02-01&rft.issn=0301-4797&rft.volume=351+p.119955-&rft_id=info:doi/10.1016%2Fj.jenvman.2023.119955&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0301-4797&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0301-4797&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0301-4797&client=summon