Biomimetic nanoparticles for effective mild temperature photothermal therapy and multimodal imaging

Downregulation of adenosine triphosphate (ATP)-dependent heat shock proteins (HSPs) can significantly reduce the tumorigenicity of cancer cells and overcome heat endurance to achieve high-performance mild temperature (≤45 °C) photothermal therapy (PTT). Herein, we designed and constructed 4T1 cancer...

Full description

Saved in:
Bibliographic Details
Published inJournal of controlled release Vol. 347; pp. 270 - 281
Main Authors Shu, Xian, Chen, Yi, Yan, Ping, Xiang, Yun, Shi, Qun-Ying, Yin, Tinghui, Wang, Ping, Liu, Li-Han, Shuai, Xintao
Format Journal Article
LanguageEnglish
Published Netherlands Elsevier B.V 01.07.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Downregulation of adenosine triphosphate (ATP)-dependent heat shock proteins (HSPs) can significantly reduce the tumorigenicity of cancer cells and overcome heat endurance to achieve high-performance mild temperature (≤45 °C) photothermal therapy (PTT). Herein, we designed and constructed 4T1 cancer cell membrane-coated, lonidamine (LN)-loaded and DL-menthol (DLM)-loaded hollow mesoporous Prussian blue nanoparticles (PBLM@CCM NPs). DLM with mild phase change characteristics served as a plugging agent to avoid early leakage and allow thermally controllable release of LN, which enabled selective intracellular delivery of LN to reduce the HSPs and overcome the heat endurance in PTT by inhibiting the generation of intracellular ATP. The biocompatible PBLM@CCM NPs with good tumor targeting efficiency achieved high-efficiency mild temperature PTT. Meanwhile, PBLM@CCM NPs could allow photoacoustic (PA) imaging and generate heat to promote the phase change of DLM for ultrasound (US) imaging, which is of great value for future clinical translational studies. [Display omitted] •Nanodrug was coated with 4T1 cell membrane for tumor-targeting drug codelivery.•NIR light irradiation-triggered LN release decreased HSPs expression to enhance PTT.•PA/US/Photothermal multimodal imaging abilities were demonstrated.
AbstractList Downregulation of adenosine triphosphate (ATP)-dependent heat shock proteins (HSPs) can significantly reduce the tumorigenicity of cancer cells and overcome heat endurance to achieve high-performance mild temperature (≤45 °C) photothermal therapy (PTT). Herein, we designed and constructed 4T1 cancer cell membrane-coated, lonidamine (LN)-loaded and DL-menthol (DLM)-loaded hollow mesoporous Prussian blue nanoparticles (PBLM@CCM NPs). DLM with mild phase change characteristics served as a plugging agent to avoid early leakage and allow thermally controllable release of LN, which enabled selective intracellular delivery of LN to reduce the HSPs and overcome the heat endurance in PTT by inhibiting the generation of intracellular ATP. The biocompatible PBLM@CCM NPs with good tumor targeting efficiency achieved high-efficiency mild temperature PTT. Meanwhile, PBLM@CCM NPs could allow photoacoustic (PA) imaging and generate heat to promote the phase change of DLM for ultrasound (US) imaging, which is of great value for future clinical translational studies.
Downregulation of adenosine triphosphate (ATP)-dependent heat shock proteins (HSPs) can significantly reduce the tumorigenicity of cancer cells and overcome heat endurance to achieve high-performance mild temperature (≤45 °C) photothermal therapy (PTT). Herein, we designed and constructed 4T1 cancer cell membrane-coated, lonidamine (LN)-loaded and DL-menthol (DLM)-loaded hollow mesoporous Prussian blue nanoparticles (PBLM@CCM NPs). DLM with mild phase change characteristics served as a plugging agent to avoid early leakage and allow thermally controllable release of LN, which enabled selective intracellular delivery of LN to reduce the HSPs and overcome the heat endurance in PTT by inhibiting the generation of intracellular ATP. The biocompatible PBLM@CCM NPs with good tumor targeting efficiency achieved high-efficiency mild temperature PTT. Meanwhile, PBLM@CCM NPs could allow photoacoustic (PA) imaging and generate heat to promote the phase change of DLM for ultrasound (US) imaging, which is of great value for future clinical translational studies.
Downregulation of adenosine triphosphate (ATP)-dependent heat shock proteins (HSPs) can significantly reduce the tumorigenicity of cancer cells and overcome heat endurance to achieve high-performance mild temperature (≤45 °C) photothermal therapy (PTT). Herein, we designed and constructed 4T1 cancer cell membrane-coated, lonidamine (LN)-loaded and DL-menthol (DLM)-loaded hollow mesoporous Prussian blue nanoparticles (PBLM@CCM NPs). DLM with mild phase change characteristics served as a plugging agent to avoid early leakage and allow thermally controllable release of LN, which enabled selective intracellular delivery of LN to reduce the HSPs and overcome the heat endurance in PTT by inhibiting the generation of intracellular ATP. The biocompatible PBLM@CCM NPs with good tumor targeting efficiency achieved high-efficiency mild temperature PTT. Meanwhile, PBLM@CCM NPs could allow photoacoustic (PA) imaging and generate heat to promote the phase change of DLM for ultrasound (US) imaging, which is of great value for future clinical translational studies.Downregulation of adenosine triphosphate (ATP)-dependent heat shock proteins (HSPs) can significantly reduce the tumorigenicity of cancer cells and overcome heat endurance to achieve high-performance mild temperature (≤45 °C) photothermal therapy (PTT). Herein, we designed and constructed 4T1 cancer cell membrane-coated, lonidamine (LN)-loaded and DL-menthol (DLM)-loaded hollow mesoporous Prussian blue nanoparticles (PBLM@CCM NPs). DLM with mild phase change characteristics served as a plugging agent to avoid early leakage and allow thermally controllable release of LN, which enabled selective intracellular delivery of LN to reduce the HSPs and overcome the heat endurance in PTT by inhibiting the generation of intracellular ATP. The biocompatible PBLM@CCM NPs with good tumor targeting efficiency achieved high-efficiency mild temperature PTT. Meanwhile, PBLM@CCM NPs could allow photoacoustic (PA) imaging and generate heat to promote the phase change of DLM for ultrasound (US) imaging, which is of great value for future clinical translational studies.
Downregulation of adenosine triphosphate (ATP)-dependent heat shock proteins (HSPs) can significantly reduce the tumorigenicity of cancer cells and overcome heat endurance to achieve high-performance mild temperature (≤45 °C) photothermal therapy (PTT). Herein, we designed and constructed 4T1 cancer cell membrane-coated, lonidamine (LN)-loaded and DL-menthol (DLM)-loaded hollow mesoporous Prussian blue nanoparticles (PBLM@CCM NPs). DLM with mild phase change characteristics served as a plugging agent to avoid early leakage and allow thermally controllable release of LN, which enabled selective intracellular delivery of LN to reduce the HSPs and overcome the heat endurance in PTT by inhibiting the generation of intracellular ATP. The biocompatible PBLM@CCM NPs with good tumor targeting efficiency achieved high-efficiency mild temperature PTT. Meanwhile, PBLM@CCM NPs could allow photoacoustic (PA) imaging and generate heat to promote the phase change of DLM for ultrasound (US) imaging, which is of great value for future clinical translational studies. [Display omitted] •Nanodrug was coated with 4T1 cell membrane for tumor-targeting drug codelivery.•NIR light irradiation-triggered LN release decreased HSPs expression to enhance PTT.•PA/US/Photothermal multimodal imaging abilities were demonstrated.
Author Chen, Yi
Yin, Tinghui
Liu, Li-Han
Shuai, Xintao
Yan, Ping
Shi, Qun-Ying
Shu, Xian
Xiang, Yun
Wang, Ping
Author_xml – sequence: 1
  givenname: Xian
  surname: Shu
  fullname: Shu, Xian
  organization: Department of Ultrasonography, The Third Affiliated Hospital of Southern Medical University, Academy of Orthopedics, Guangdong Province, Guangzhou 510630, PR China
– sequence: 2
  givenname: Yi
  surname: Chen
  fullname: Chen, Yi
  organization: Department of Ultrasonography, The Third Affiliated Hospital of Southern Medical University, Academy of Orthopedics, Guangdong Province, Guangzhou 510630, PR China
– sequence: 3
  givenname: Ping
  surname: Yan
  fullname: Yan, Ping
  organization: Department of Radiology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan Province 421001, PR China
– sequence: 4
  givenname: Yun
  surname: Xiang
  fullname: Xiang, Yun
  organization: Department of Ultrasonography, The Third Affiliated Hospital of Southern Medical University, Academy of Orthopedics, Guangdong Province, Guangzhou 510630, PR China
– sequence: 5
  givenname: Qun-Ying
  surname: Shi
  fullname: Shi, Qun-Ying
  organization: Guangdong Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, PR China
– sequence: 6
  givenname: Tinghui
  surname: Yin
  fullname: Yin, Tinghui
  email: yinth3@mail.sysu.edu.cn
  organization: Department of Medical Ultrasonic, Laboratory of Novel Optoacoustic (Ultrasonic) imaging, The Third Affiliated Hospital of Sun Yat-sen University, 600 Tianhe Road, Guangzhou 510630, PR China
– sequence: 7
  givenname: Ping
  surname: Wang
  fullname: Wang, Ping
  email: nysycskwp123@smu.edu.cn
  organization: Department of Ultrasonography, The Third Affiliated Hospital of Southern Medical University, Academy of Orthopedics, Guangdong Province, Guangzhou 510630, PR China
– sequence: 8
  givenname: Li-Han
  surname: Liu
  fullname: Liu, Li-Han
  email: liulihan@smu.edu.cn
  organization: Guangdong Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, PR China
– sequence: 9
  givenname: Xintao
  surname: Shuai
  fullname: Shuai, Xintao
  organization: PCFM Lab of Ministry of Education, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510275, PR China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35550912$$D View this record in MEDLINE/PubMed
BookMark eNqNkU1v1DAQhi1URLeFnwDKkUuCndixIw4IKmiRKnHp3XKcceuVP4LtVOq_r1e7vXAppxlZzzvWzHOBzkIMgNBHgjuCyfhl3-11DAlc1-O-7zDrMMFv0I4IPrR0mtgZ2lVOtMPIpnN0kfMeY8wGyt-h84ExhifS75D-YaO3HorVTVAhrirV1kFuTEwNGAO62EdovHVLU8CvkFTZEjTrQyyxPEDyyjWHqtanRoWl8Zsr1selPluv7m24f4_eGuUyfDjVS3T36-fd1U17--f699X321bTkZZ21vMwTMNCgPVGmQmMBsEJNSNgzpZJcErwYqDn8zyLgQlQilBCqWLa1M0u0efj2DXFvxvkIr3NGpxTAeKWZT9yxgThjPwHOlIuxNBPFf10QrfZwyLXVLdKT_LlhBX4egR0ijknMFLbooqNoSRlnSRYHoTJvTwJkwdhEjNZhdU0-yf98sFruW_HHNSDPlpIMmsLQcNiU1Uml2hfmfAMAlu0-Q
CitedBy_id crossref_primary_10_1016_j_jconrel_2025_113601
crossref_primary_10_1002_adhm_202300929
crossref_primary_10_1002_smll_202306540
crossref_primary_10_3390_nano14010112
crossref_primary_10_3762_bjnano_14_24
crossref_primary_10_1039_D4RA01026D
crossref_primary_10_2147_IJN_S470005
crossref_primary_10_1002_anie_202318539
crossref_primary_10_1039_D3QI00441D
crossref_primary_10_1002_adhm_202304595
crossref_primary_10_1021_acs_nanolett_4c02978
crossref_primary_10_1021_acsanm_3c05575
crossref_primary_10_1016_j_ijbiomac_2025_141759
crossref_primary_10_1002_advs_202206707
crossref_primary_10_1016_j_actbio_2023_11_029
crossref_primary_10_1039_D2TB02345H
crossref_primary_10_1039_D4BM01190B
crossref_primary_10_1002_adhm_202400819
crossref_primary_10_1002_adfm_202303328
crossref_primary_10_1016_j_pscia_2023_100009
crossref_primary_10_1016_j_bios_2025_117322
crossref_primary_10_7841_ksbbj_2022_37_2_41
crossref_primary_10_1002_smll_202306766
crossref_primary_10_1016_j_actbio_2023_05_051
crossref_primary_10_1016_j_biopha_2023_115283
crossref_primary_10_1002_advs_202400297
crossref_primary_10_1021_acs_chemrev_4c00009
crossref_primary_10_1002_ange_202318539
crossref_primary_10_1021_acs_nanolett_4c03293
crossref_primary_10_1002_smll_202206423
crossref_primary_10_3390_pharmaceutics14122669
crossref_primary_10_1021_acsmaterialslett_4c01022
crossref_primary_10_1016_j_cclet_2023_108137
crossref_primary_10_1039_D2BM01551J
crossref_primary_10_1021_acsabm_3c00518
crossref_primary_10_1186_s12951_022_01692_3
crossref_primary_10_2147_IJN_S405020
crossref_primary_10_1016_j_mtcomm_2022_104289
crossref_primary_10_1021_acs_molpharmaceut_4c01059
crossref_primary_10_1039_D4BM01145G
crossref_primary_10_1002_adma_202305140
crossref_primary_10_1364_BOE_499286
crossref_primary_10_1016_j_mtbio_2024_101346
crossref_primary_10_1021_acsami_3c11594
Cites_doi 10.1002/advs.201600356
10.1021/nn502950t
10.1038/nrd3137
10.1002/adfm.201403991
10.1016/j.biomaterials.2018.01.007
10.1021/acs.nanolett.9b03817
10.7150/thno.46895
10.1016/j.biomaterials.2021.120935
10.1021/acs.analchem.0c02859
10.1021/acsabm.8b00687
10.1021/acsnano.6b06658
10.1021/nn5062386
10.1039/C7CS00522A
10.1016/j.nano.2010.12.009
10.1021/acsami.7b17022
10.1002/anie.201306557
10.1002/adma.201703969
10.1021/nn203293t
10.1021/acsnano.5b07486
10.1016/j.biomaterials.2014.09.004
10.1016/S0006-2952(98)00054-9
10.1021/acsnano.8b00309
10.1016/j.canlet.2010.10.014
10.1002/adfm.201605795
10.1002/adfm.201604300
10.1038/s41467-019-12771-9
10.7150/thno.13250
10.1038/nrc1098
10.1002/adfm.202100738
10.1002/adma.201703588
10.3109/02656739509022483
10.1016/j.biomaterials.2014.03.043
10.1002/smll.201701621
10.1093/carcin/11.9.1509
10.1002/adma.201705980
10.1016/j.biomaterials.2013.01.055
10.1039/C8CS00618K
10.1002/advs.201801122
10.1038/35019501
10.1002/adma.201503381
10.1016/j.biomaterials.2015.11.037
10.1042/BCJ20160068
10.1039/D1BM00576F
10.1002/advs.201903642
10.1098/rsif.2013.0527
10.1002/smll.201602225
10.1016/j.ijpharm.2019.118751
10.3390/cancers12113332
10.1021/acsami.9b10948
10.18632/oncotarget.6057
10.1016/S1535-6108(03)00029-1
10.1021/acs.nanolett.0c00147
10.1002/adhm.202100770
10.1002/adfm.201804634
ContentType Journal Article
Copyright 2022 Elsevier B.V.
Copyright © 2022 Elsevier B.V. All rights reserved.
Copyright_xml – notice: 2022 Elsevier B.V.
– notice: Copyright © 2022 Elsevier B.V. All rights reserved.
DBID AAYXX
CITATION
NPM
7X8
7S9
L.6
DOI 10.1016/j.jconrel.2022.05.010
DatabaseName CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList PubMed
AGRICOLA
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Pharmacy, Therapeutics, & Pharmacology
EISSN 1873-4995
EndPage 281
ExternalDocumentID 35550912
10_1016_j_jconrel_2022_05_010
S0168365922002644
Genre Journal Article
GroupedDBID ---
--K
--M
.GJ
.~1
0R~
1B1
1RT
1~.
1~5
29K
3O-
4.4
457
4G.
53G
5GY
5VS
7-5
71M
8P~
9JM
AABNK
AABXZ
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATCM
AAXUO
AAYOK
ABFNM
ABFRF
ABJNI
ABMAC
ABOCM
ABXDB
ABYKQ
ABZDS
ACDAQ
ACGFO
ACGFS
ACIUM
ACNNM
ACRLP
ADBBV
ADEZE
ADMUD
AEBSH
AEFWE
AEKER
AENEX
AEZYN
AFKWA
AFRZQ
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALCLG
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
C45
CS3
D-I
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HMT
HVGLF
HZ~
IHE
J1W
KOM
M34
M41
MO0
N9A
O-L
O9-
OAUVE
OGGZJ
OVD
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SCC
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SPT
SSM
SSP
SSZ
T5K
TEORI
WUQ
~G-
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
EFKBS
NPM
7X8
7S9
L.6
ID FETCH-LOGICAL-c464t-bcb3393d1e52faf9efce8714f6e075d987410dfe27bbb8358eaa14144a5cf053
IEDL.DBID .~1
ISSN 0168-3659
1873-4995
IngestDate Sun Aug 24 03:59:53 EDT 2025
Thu Jul 10 17:16:51 EDT 2025
Mon Jul 21 06:02:37 EDT 2025
Thu Apr 24 23:06:21 EDT 2025
Tue Jul 01 04:10:06 EDT 2025
Fri Feb 23 02:38:26 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Heat shock proteins
Multimodal imaging
Heat endurance
Mild temperature photothermal therapy
Hollow mesoporous Prussian blue nanoparticles
Language English
License Copyright © 2022 Elsevier B.V. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c464t-bcb3393d1e52faf9efce8714f6e075d987410dfe27bbb8358eaa14144a5cf053
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 35550912
PQID 2664788329
PQPubID 23479
PageCount 12
ParticipantIDs proquest_miscellaneous_2675581751
proquest_miscellaneous_2664788329
pubmed_primary_35550912
crossref_citationtrail_10_1016_j_jconrel_2022_05_010
crossref_primary_10_1016_j_jconrel_2022_05_010
elsevier_sciencedirect_doi_10_1016_j_jconrel_2022_05_010
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-07-01
PublicationDateYYYYMMDD 2022-07-01
PublicationDate_xml – month: 07
  year: 2022
  text: 2022-07-01
  day: 01
PublicationDecade 2020
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
PublicationTitle Journal of controlled release
PublicationTitleAlternate J Control Release
PublicationYear 2022
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Zhang, Meng, Cao, Yang, Dong, Zhang, Lu, Shi, Zhang (bb0075) 2018; 28
Zhang, Li, Chen, Bo, Li, Xu (bb0225) 2016; 10
Zhong, Huang, Yan, Chen, Shi, Zhao, Chen, Shu, Wang, Yang, Zhou, Chen, Pang, Tu, Liu, Zhang (bb0270) 2021; 10
Cai, Jia, Gao, Zhang, Ma, Wang, Zheng, Shi, Chen (bb0080) 2015; 25
Beere, Wolf, Cain, Mosser, Mahboubi, Kuwana, Tailor, Morimoto, Cohen, Green (bb0105) 2000; 2
G. Jego, A. Hazoumé, R. Seigneuric, C. Garrido, Targeting heat shock proteins in cancer, Cancer Lett. 332(2): 275–285.
Zhang, Li, Sun, Jia, Liu (bb0245) 2018; 159
Isaacs, Xu, Neckers (bb0110) 2003; 3
Huang, Li, Du, Zhang, Wang, Ding, Yang, Meng, Tu, Luo, Sun (bb0025) 2019; 10
Ma, Zhou, Miao, Qian, Zha (bb0215) 2019; 2
Bhutia, Babu, Ganapathy (bb0150) 2016; 473
Zhou, Li, Hou, Luo, Chen, Cao, Huo, Xue, Sutrisno, Hao, Cao, Ran, Lu, Li, Cai (bb0060) 2018; 12
Sheng, Hu, Zheng, Zhao, Liu, Gao, Gong, Gao, Zhang, Ma, Cai (bb0010) 2014; 8
Yao, Niu, Ma, Huang, Grothe, Kaskel, Zhu (bb0020) 2017; 13
Wang, Zhang, Wang, Wang, Xiao, Zhang, Cheng (bb0085) 2016; 81
Yan, Shu, Zhong, Chen, Gong, Han, Tu, Shuai, Li, Liu, Wang (bb0230) 2021; 9
Fulda, Galluzzi, Kroemer (bb0135) 2010; 9
Yoo, Jeong, Noh, Lee, Cheon (bb0050) 2013; 52
Yang, Zhu, Dong, Chao, Xu, Chen, Liu (bb0090) 2017; 29
Cheng, Gong, Zhu, Liu, Wang, Liu, Liu (bb0195) 2014; 35
Zhang, Chen, Li, Wang, Zheng, Xu, Ma, Jia, Chen, Mou, Wang, Shi (bb0220) 2014; 35
Jung, Verwilst, Sharma, Shin, Sessler, Kim (bb0005) 2018; 47
Forster, Campana, D'Onofrio, Henderson, Mosesso, Scorza (bb0175) 1990; 11
Jing, Shao, Wang, Yang, Yue, Dai (bb0200) 2016; 6
Huang, Sun, Sun, Li, Zhao, Zhong, Peng (bb0180) 2020; 12
Jin, Zhou, Zhang, Lv (bb0160) 2019; 571
Feng, Yang, Hao, Wang, Feng, Hou, Zhang (bb0235) 2019; 11
Shen, Feng, Qi, Cao, Ge, Wu, Wang (bb0065) 2020; 20
Milane, Duan, Amiji (bb0165) 2011; 7
Garcia-Heredia, Carnero (bb0140) 2015; 6
Rybiński, Szymańska, Lasota, Gambin (bb0100) 2013; 10
Tian, Jiang, Zou, Liu, Chen, Zhu, Yang, Wang, Wang, Hu (bb0040) 2011; 5
Sun, Huang, Yan, Wang, Guo, Jacobson, Liu, Szajek, Zhu, Niu, Kiesewetter, Sun, Chen (bb0015) 2014; 8
Liu, Zhang, Qiu, Zhang, Gao, Li, Xu, Fan, Li, Zhang (bb0275) 2017; 13
Li, Mivechi, Weitzel (bb0095) 1995; 11
Fidler (bb0265) 2003; 3
Li, Zhang, Wang, Zhang, Ma, Zhou, Ju, Li, Zhao, Lu (bb0170) 2013; 34
Nath, Guo, Nancolas, Nelson, Shestov, Lee, Roman, Zhou, Leeper, Halestrap, Blair, Glickson (bb0155) 1866; 2016
Kroll, Fang, Jiang, Zhou, Wei, Yu, Gao, Luk, Dehaini, Gao, Zhang (bb0260) 2017; 29
Chen, Teng, Lu, Zhang, Rong, Zhao, Yang, Wang, Song, Zhang (bb0205) 2020; 92
Cai, Gao, Ma, Wu, Zhang, Zheng, Chen, Shi (bb0185) 2015; 27
Dai, Sun, Zhao, Qi, Li, Gao, Li, Fan, Shen, Huang (bb0130) 2021; 275
Liu, Bhattarai, Dai, Chen (bb0035) 2019; 48
Jiang, Li, Zhen, Xie, Pu (bb0030) 2018; 30
Sun, Su, Meng, Yin, Chen, Gu, Zhang, Yu, Zhang, Wang, Li (bb0240) 2017; 27
Chen, Luo, Lei, Hong, Qiu, Liu, Cheng, Zhang (bb0125) 2017; 11
Zhang, Du, Guo, Yu, Gao, Yin, Zhu, Gu, Zhao (bb0055) 2019; 6
Tian, Su, Tian, Wang, Su, Liu, Zhang, Tang, Ni, Liu, Dang, Wang, Zhang, Teng, Lu (bb0190) 2017; 4
Peng, Yang, Li, Tan, Xiao, Chen, Hao, Qian (bb0210) 2017; 9
Chen, Zeng, Liu, Ouyang, Wang, Liu, Wang, Deng, Liu (bb0280) 2017; 27
Gao, Wang, Wang, Liu, Liu, Ye, Wang, Wang, Chen, Jiang, Ou, Hest, Peng, Tu (bb0250) 2020; 7
Nie, Dai, Li, Yang, Xi, Wang, Zhang, Qian, Guo, Zhu, Wang, Li, Yu, Zhang, Shi, Gan (bb0255) 2020; 20
Gao, Sun, Liang (bb0045) 2021; 31
Yi, Duan, Wu (bb0120) 2021; 2021
Floridi, Bruno, Miccadei, Fanciulli, Federico, Paggi (bb0145) 1998; 56
Ye, He, Qiao, Qi, Zhang, Santos, Zhong, Li, Hua, Wang, Grzybowski, Yao, Zhou (bb0070) 2020; 10
Zhang (10.1016/j.jconrel.2022.05.010_bb0220) 2014; 35
Yoo (10.1016/j.jconrel.2022.05.010_bb0050) 2013; 52
Yi (10.1016/j.jconrel.2022.05.010_bb0120) 2021; 2021
Nath (10.1016/j.jconrel.2022.05.010_bb0155) 1866; 2016
Cheng (10.1016/j.jconrel.2022.05.010_bb0195) 2014; 35
Zhang (10.1016/j.jconrel.2022.05.010_bb0225) 2016; 10
Kroll (10.1016/j.jconrel.2022.05.010_bb0260) 2017; 29
Garcia-Heredia (10.1016/j.jconrel.2022.05.010_bb0140) 2015; 6
Li (10.1016/j.jconrel.2022.05.010_bb0170) 2013; 34
Yan (10.1016/j.jconrel.2022.05.010_bb0230) 2021; 9
Peng (10.1016/j.jconrel.2022.05.010_bb0210) 2017; 9
Zhang (10.1016/j.jconrel.2022.05.010_bb0245) 2018; 159
Floridi (10.1016/j.jconrel.2022.05.010_bb0145) 1998; 56
Tian (10.1016/j.jconrel.2022.05.010_bb0040) 2011; 5
Dai (10.1016/j.jconrel.2022.05.010_bb0130) 2021; 275
Zhong (10.1016/j.jconrel.2022.05.010_bb0270) 2021; 10
Sheng (10.1016/j.jconrel.2022.05.010_bb0010) 2014; 8
Chen (10.1016/j.jconrel.2022.05.010_bb0125) 2017; 11
Jung (10.1016/j.jconrel.2022.05.010_bb0005) 2018; 47
Bhutia (10.1016/j.jconrel.2022.05.010_bb0150) 2016; 473
Sun (10.1016/j.jconrel.2022.05.010_bb0015) 2014; 8
Zhang (10.1016/j.jconrel.2022.05.010_bb0055) 2019; 6
Huang (10.1016/j.jconrel.2022.05.010_bb0025) 2019; 10
10.1016/j.jconrel.2022.05.010_bb0115
Cai (10.1016/j.jconrel.2022.05.010_bb0185) 2015; 27
Forster (10.1016/j.jconrel.2022.05.010_bb0175) 1990; 11
Chen (10.1016/j.jconrel.2022.05.010_bb0205) 2020; 92
Chen (10.1016/j.jconrel.2022.05.010_bb0280) 2017; 27
Cai (10.1016/j.jconrel.2022.05.010_bb0080) 2015; 25
Wang (10.1016/j.jconrel.2022.05.010_bb0085) 2016; 81
Liu (10.1016/j.jconrel.2022.05.010_bb0275) 2017; 13
Jing (10.1016/j.jconrel.2022.05.010_bb0200) 2016; 6
Sun (10.1016/j.jconrel.2022.05.010_bb0240) 2017; 27
Beere (10.1016/j.jconrel.2022.05.010_bb0105) 2000; 2
Gao (10.1016/j.jconrel.2022.05.010_bb0045) 2021; 31
Jin (10.1016/j.jconrel.2022.05.010_bb0160) 2019; 571
Huang (10.1016/j.jconrel.2022.05.010_bb0180) 2020; 12
Isaacs (10.1016/j.jconrel.2022.05.010_bb0110) 2003; 3
Fulda (10.1016/j.jconrel.2022.05.010_bb0135) 2010; 9
Tian (10.1016/j.jconrel.2022.05.010_bb0190) 2017; 4
Ma (10.1016/j.jconrel.2022.05.010_bb0215) 2019; 2
Liu (10.1016/j.jconrel.2022.05.010_bb0035) 2019; 48
Gao (10.1016/j.jconrel.2022.05.010_bb0250) 2020; 7
Yao (10.1016/j.jconrel.2022.05.010_bb0020) 2017; 13
Rybiński (10.1016/j.jconrel.2022.05.010_bb0100) 2013; 10
Shen (10.1016/j.jconrel.2022.05.010_bb0065) 2020; 20
Zhang (10.1016/j.jconrel.2022.05.010_bb0075) 2018; 28
Yang (10.1016/j.jconrel.2022.05.010_bb0090) 2017; 29
Jiang (10.1016/j.jconrel.2022.05.010_bb0030) 2018; 30
Zhou (10.1016/j.jconrel.2022.05.010_bb0060) 2018; 12
Fidler (10.1016/j.jconrel.2022.05.010_bb0265) 2003; 3
Li (10.1016/j.jconrel.2022.05.010_bb0095) 1995; 11
Milane (10.1016/j.jconrel.2022.05.010_bb0165) 2011; 7
Feng (10.1016/j.jconrel.2022.05.010_bb0235) 2019; 11
Nie (10.1016/j.jconrel.2022.05.010_bb0255) 2020; 20
Ye (10.1016/j.jconrel.2022.05.010_bb0070) 2020; 10
References_xml – volume: 9
  start-page: 447
  year: 2010
  end-page: 464
  ident: bb0135
  article-title: Targeting mitochondria for cancer therapy
  publication-title: Nat. Rev. Drug Discov.
– volume: 31
  start-page: 2100738
  year: 2021
  ident: bb0045
  article-title: Nanoagent-promoted mild-temperature photothermal therapy for cancer treatment
  publication-title: Adv. Funct. Mater.
– volume: 30
  start-page: 1705980
  year: 2018
  ident: bb0030
  article-title: Dual-peak absorbing semiconducting copolymer nanoparticles for first and second near-infrared window photothermal therapy: a comparative study
  publication-title: Adv. Mater.
– volume: 25
  start-page: 2520
  year: 2015
  end-page: 2529
  ident: bb0080
  article-title: A versatile nanotheranostic agent for efficient dual-mode imaging guided synergistic chemo-thermal tumor therapy
  publication-title: Adv. Funct. Mater.
– volume: 10
  start-page: 4871
  year: 2019
  ident: bb0025
  article-title: Mild photothermal therapy potentiates anti-PD-L1 treatment for immunologically cold tumors via an all-in-one and all-in-control strategy
  publication-title: Nat. Commun.
– volume: 9
  start-page: 5025
  year: 2021
  end-page: 5034
  ident: bb0230
  article-title: A versatile nanoagent for multimodal imaging-guided photothermal and anti-inflammatory combination cancer therapy
  publication-title: Biomater. Sci.
– volume: 52
  start-page: 13047
  year: 2013
  end-page: 13051
  ident: bb0050
  article-title: Magnetically triggered dual functional nanoparticles for resistance-free apoptotic hyperthermia
  publication-title: Angew. Chem. Int. Ed.
– volume: 6
  start-page: 41582
  year: 2015
  end-page: 41599
  ident: bb0140
  article-title: Decoding Warburg's hypothesis: tumor-related mutations in the mitochondrial respiratory chain
  publication-title: Oncotarget
– volume: 81
  start-page: 114
  year: 2016
  end-page: 124
  ident: bb0085
  article-title: Multi-responsive photothermal-chemotherapy with drug-loaded melanin-like nanoparticles for synergetic tumor ablation
  publication-title: Biomaterials
– volume: 11
  start-page: 459
  year: 1995
  end-page: 488
  ident: bb0095
  article-title: Heat shock proteins, thermotolerance, and their relevance to clinical hyperthermia
  publication-title: Int. J. Hyperth.
– volume: 6
  start-page: 1801122
  year: 2019
  ident: bb0055
  article-title: Efficient near infrared light triggered nitric oxide release nanocomposites for sensitizing mild photothermal therapy
  publication-title: Adv. Sci.
– volume: 27
  start-page: 1604300
  year: 2017
  ident: bb0240
  article-title: Cancer cell membrane-coated gold nanocages with hyperthermia-triggered drug release and homotypic target inhibit growth and metastasis of breast cancer
  publication-title: Adv. Funct. Mater.
– volume: 5
  start-page: 9761
  year: 2011
  end-page: 9771
  ident: bb0040
  article-title: Hydrophilic Cu9S5 nanocrystals: a photothermal agent with a 25.7% heat conversion efficiency for photothermal ablation of cancer cells in vivo
  publication-title: ACS Nano
– volume: 2
  start-page: 469
  year: 2000
  end-page: 475
  ident: bb0105
  article-title: Heat-shock protein 70 inhibits apoptosis by preventing recruitment of procaspase-9 to the Apaf-1 apoptosome
  publication-title: Nat. Cell Biol.
– volume: 159
  start-page: 25
  year: 2018
  end-page: 36
  ident: bb0245
  article-title: NIR-responsive cancer cytomembrane-cloaked carrier-free nanosystems for highly efficient and self-targeted tumor drug delivery
  publication-title: Biomaterials
– volume: 2021
  start-page: 9816594
  year: 2021
  ident: bb0120
  article-title: Low-temperature photothermal therapy: strategies and applications
  publication-title: Research (Wash D C)
– volume: 7
  start-page: 1903642
  year: 2020
  ident: bb0250
  article-title: Hyperthermia-triggered on-demand biomimetic nanocarriers for synergetic photothermal and chemotherapy
  publication-title: Adv. Sci.
– volume: 56
  start-page: 841
  year: 1998
  end-page: 849
  ident: bb0145
  article-title: Enhancement of doxorubicin content by the antitumor drug lonidamine in resistant ehrlich ascites tumor cells through modulation of energy metabolism
  publication-title: Biochem. Pharmacol.
– volume: 10
  start-page: 2100770
  year: 2021
  ident: bb0270
  article-title: Versatile nanodrugs containing glutathione and heme oxygenase 1 inhibitors enable suppression of antioxidant defense system in a two-pronged manner for enhanced photodynamic therapy
  publication-title: Adv. Healthc. Mater.
– volume: 35
  start-page: 5875
  year: 2014
  end-page: 5885
  ident: bb0220
  article-title: A continuous tri-phase transition effect for HIFU-mediated intravenous drug delivery
  publication-title: Biomaterials
– volume: 12
  start-page: 3332
  year: 2020
  ident: bb0180
  article-title: The potential of lonidamine in combination with chemotherapy and physical therapy in cancer treatment
  publication-title: Cancers
– volume: 20
  start-page: 2137
  year: 2020
  end-page: 2143
  ident: bb0065
  article-title: Reversible thermochromic nanoparticles composed of a eutectic mixture for temperature-controlled photothermal therapy
  publication-title: Nano Lett.
– volume: 10
  start-page: 20130527
  year: 2013
  ident: bb0100
  article-title: Modelling the efficacy of hyperthermia treatment
  publication-title: J. R. Soc. Interface
– volume: 3
  start-page: 213
  year: 2003
  end-page: 217
  ident: bb0110
  article-title: Heat shock protein 90 as a molecular target for cancer therapeutics
  publication-title: Cancer Cell
– volume: 571
  year: 2019
  ident: bb0160
  article-title: Doxorubicin combined with betulinic acid or lonidamine in RGD ligand-targeted pH-sensitive micellar system for ovarian cancer treatment
  publication-title: Int. J. Pharm.
– volume: 7
  start-page: 435
  year: 2011
  end-page: 444
  ident: bb0165
  article-title: Pharmacokinetics and biodistribution of lonidamine/paclitaxel loaded, EGFR-targeted nanoparticles in an orthotopic animal model of multi-drug resistant breast cancer
  publication-title: Nanomedicine
– volume: 9
  start-page: 44410
  year: 2017
  end-page: 44422
  ident: bb0210
  article-title: Erythrocyte-membrane-coated Prussian blue/manganese dioxide nanoparticles as H2O2-responsive oxygen generators to enhance cancer chemotherapy/photothermal therapy
  publication-title: ACS Appl. Mater. Inter.
– volume: 29
  start-page: 1703969
  year: 2017
  ident: bb0260
  article-title: Nanoparticulate delivery of cancer cell membrane elicits multiantigenic antitumor immunity
  publication-title: Adv. Mater.
– volume: 4
  start-page: 1600356
  year: 2017
  ident: bb0190
  article-title: Periodic mesoporous organosilica coated Prussian blue for MR/PA dual-modal imaging-guided photothermal-chemotherapy of triple negative breast cancer
  publication-title: Adv. Sci.
– volume: 8
  start-page: 8438
  year: 2014
  end-page: 8446
  ident: bb0015
  article-title: Chelator-free (64) Cu-integrated gold nanomaterials for positron emission tomography imaging guided photothermal cancer therapy
  publication-title: ACS Nano
– volume: 13
  start-page: 1602225
  year: 2017
  ident: bb0020
  article-title: Graphene quantum dots-capped magnetic mesoporous silica nanoparticles as a multifunctional platform for controlled drug delivery, magnetic hyperthermia, and photothermal therapy
  publication-title: Small
– volume: 20
  start-page: 936
  year: 2020
  end-page: 946
  ident: bb0255
  article-title: Cancer-cell-membrane-coated nanoparticles with a yolk–shell structure augment cancer chemotherapy
  publication-title: Nano Lett.
– volume: 10
  start-page: 2549
  year: 2016
  end-page: 2558
  ident: bb0225
  article-title: Continuous cavitation designed for enhancing radiofrequency ablationvia a special radiofrequency solidoid vaporization process
  publication-title: ACS Nano
– volume: 8
  start-page: 12310
  year: 2014
  end-page: 12322
  ident: bb0010
  article-title: Smart human serum albumin-indocyanine green nanoparticles generated by programmed assembly for dual-modal imaging-guided cancer synergistic phototherapy
  publication-title: ACS Nano
– volume: 27
  start-page: 1605795
  year: 2017
  ident: bb0280
  article-title: Cell membrane camouflaged hollow Prussian blue nanoparticles for synergistic photothermal-/chemotherapy of cancer
  publication-title: Adv. Funct. Mater.
– volume: 10
  start-page: 8541
  year: 2020
  end-page: 8557
  ident: bb0070
  article-title: Mild temperature photothermal assisted anti-bacterial and anti-inflammatory nanosystem for synergistic treatment of post-cataract surgery endophthalmitis
  publication-title: Theranostics
– volume: 12
  start-page: 2858
  year: 2018
  end-page: 2872
  ident: bb0060
  article-title: Engineering of a nanosized biocatalyst for combined tumor starvation and low-temperature photothermal therapy
  publication-title: ACS Nano
– volume: 28
  start-page: 1804634
  year: 2018
  ident: bb0075
  article-title: Metal–organic framework nanoshuttle for synergistic photodynamic and low-temperature photothermal therapy
  publication-title: Adv. Funct. Mater.
– volume: 92
  start-page: 13452
  year: 2020
  end-page: 13461
  ident: bb0205
  article-title: Activatable magnetic/photoacoustic nanoplatform for redox-unlocked deep-tissue molecular imaging in vivo via Prussian blue nanoprobe
  publication-title: Anal. Chem.
– volume: 35
  start-page: 9844
  year: 2014
  end-page: 9852
  ident: bb0195
  article-title: PEGylated Prussian blue nanocubes as a theranostic agent for simultaneous cancer imaging and photothermal therapy
  publication-title: Biomaterials
– volume: 13
  year: 2017
  ident: bb0275
  article-title: Dual-stage light amplified photodynamic therapy against hypoxic tumor based on an O(2) self-sufficient nanoplatform
  publication-title: Small
– volume: 11
  start-page: 1509
  year: 1990
  end-page: 1515
  ident: bb0175
  article-title: Lonidamine: a non-mutagenic antitumor agent
  publication-title: Carcinogenesis
– volume: 29
  start-page: 1703588
  year: 2017
  ident: bb0090
  article-title: 1D coordination polymer nanofibers for low-temperature photothermal therapy
  publication-title: Adv. Mater.
– volume: 2
  start-page: 848
  year: 2019
  end-page: 855
  ident: bb0215
  article-title: DL-menthol loaded polypyrrole nanoparticles as a controlled diclofenac delivery platform for sensitizing cancer cells to photothermal therapy
  publication-title: ACS Appl. Bio Mater.
– volume: 11
  start-page: 1419
  year: 2017
  end-page: 1431
  ident: bb0125
  article-title: Overcoming the heat endurance of tumor cells by interfering with the anaerobic glycolysis metabolism for improved photothermal therapy
  publication-title: ACS Nano
– volume: 275
  year: 2021
  ident: bb0130
  article-title: NIR-II fluorescence imaging guided tumor-specific NIR-II photothermal therapy enhanced by starvation mediated thermal sensitization strategy
  publication-title: Biomaterials
– volume: 2016
  start-page: 151
  year: 1866
  end-page: 162
  ident: bb0155
  article-title: Mechanism of antineoplastic activity of lonidamine
  publication-title: Biochim. Biophys. Acta
– volume: 11
  start-page: 32729
  year: 2019
  end-page: 32738
  ident: bb0235
  article-title: Cancer cell membrane-biomimetic nanoplatform for enhanced sonodynamic therapy on breast cancer via autophagy regulation strategy
  publication-title: ACS Appl. Mater. Inter.
– volume: 27
  start-page: 6382
  year: 2015
  end-page: 6389
  ident: bb0185
  article-title: A Prussian blue-based core-shell hollow-structured mesoporous nanoparticle as a smart theranostic agent with ultrahigh pH-responsive longitudinal relaxivity
  publication-title: Adv. Mater.
– volume: 34
  start-page: 3366
  year: 2013
  end-page: 3380
  ident: bb0170
  article-title: Development of targeting lonidamine liposomes that circumvent drug-resistant cancer by acting on mitochondrial signaling pathways
  publication-title: Biomaterials
– volume: 48
  start-page: 2053
  year: 2019
  end-page: 2108
  ident: bb0035
  article-title: Photothermal therapy and photoacoustic imaging via nanotheranostics in fighting cancer
  publication-title: Chem. Soc. Rev.
– volume: 3
  start-page: 453
  year: 2003
  end-page: 458
  ident: bb0265
  article-title: The pathogenesis of cancer metastasis: the 'seed and soil' hypothesis revisited
  publication-title: Nat. Rev. Cancer
– volume: 473
  start-page: 1503
  year: 2016
  end-page: 1506
  ident: bb0150
  article-title: Re-programming tumour cell metabolism to treat cancer: no lone target for lonidamine
  publication-title: Biochem. J.
– reference: G. Jego, A. Hazoumé, R. Seigneuric, C. Garrido, Targeting heat shock proteins in cancer, Cancer Lett. 332(2): 275–285.
– volume: 6
  start-page: 40
  year: 2016
  end-page: 53
  ident: bb0200
  article-title: Hyaluronic acid modified hollow prussian blue nanoparticles loading 10-hydroxycamptothecin for targeting thermochemotherapy of cancer
  publication-title: Theranostics
– volume: 47
  start-page: 2280
  year: 2018
  end-page: 2297
  ident: bb0005
  article-title: Organic molecule-based photothermal agents: an expanding photothermal therapy universe
  publication-title: Chem. Soc. Rev.
– volume: 4
  start-page: 1600356
  year: 2017
  ident: 10.1016/j.jconrel.2022.05.010_bb0190
  article-title: Periodic mesoporous organosilica coated Prussian blue for MR/PA dual-modal imaging-guided photothermal-chemotherapy of triple negative breast cancer
  publication-title: Adv. Sci.
  doi: 10.1002/advs.201600356
– volume: 8
  start-page: 8438
  year: 2014
  ident: 10.1016/j.jconrel.2022.05.010_bb0015
  article-title: Chelator-free (64) Cu-integrated gold nanomaterials for positron emission tomography imaging guided photothermal cancer therapy
  publication-title: ACS Nano
  doi: 10.1021/nn502950t
– volume: 9
  start-page: 447
  year: 2010
  ident: 10.1016/j.jconrel.2022.05.010_bb0135
  article-title: Targeting mitochondria for cancer therapy
  publication-title: Nat. Rev. Drug Discov.
  doi: 10.1038/nrd3137
– volume: 25
  start-page: 2520
  year: 2015
  ident: 10.1016/j.jconrel.2022.05.010_bb0080
  article-title: A versatile nanotheranostic agent for efficient dual-mode imaging guided synergistic chemo-thermal tumor therapy
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201403991
– volume: 159
  start-page: 25
  year: 2018
  ident: 10.1016/j.jconrel.2022.05.010_bb0245
  article-title: NIR-responsive cancer cytomembrane-cloaked carrier-free nanosystems for highly efficient and self-targeted tumor drug delivery
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2018.01.007
– volume: 20
  start-page: 936
  year: 2020
  ident: 10.1016/j.jconrel.2022.05.010_bb0255
  article-title: Cancer-cell-membrane-coated nanoparticles with a yolk–shell structure augment cancer chemotherapy
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.9b03817
– volume: 10
  start-page: 8541
  year: 2020
  ident: 10.1016/j.jconrel.2022.05.010_bb0070
  article-title: Mild temperature photothermal assisted anti-bacterial and anti-inflammatory nanosystem for synergistic treatment of post-cataract surgery endophthalmitis
  publication-title: Theranostics
  doi: 10.7150/thno.46895
– volume: 275
  year: 2021
  ident: 10.1016/j.jconrel.2022.05.010_bb0130
  article-title: NIR-II fluorescence imaging guided tumor-specific NIR-II photothermal therapy enhanced by starvation mediated thermal sensitization strategy
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2021.120935
– volume: 92
  start-page: 13452
  year: 2020
  ident: 10.1016/j.jconrel.2022.05.010_bb0205
  article-title: Activatable magnetic/photoacoustic nanoplatform for redox-unlocked deep-tissue molecular imaging in vivo via Prussian blue nanoprobe
  publication-title: Anal. Chem.
  doi: 10.1021/acs.analchem.0c02859
– volume: 2
  start-page: 848
  year: 2019
  ident: 10.1016/j.jconrel.2022.05.010_bb0215
  article-title: DL-menthol loaded polypyrrole nanoparticles as a controlled diclofenac delivery platform for sensitizing cancer cells to photothermal therapy
  publication-title: ACS Appl. Bio Mater.
  doi: 10.1021/acsabm.8b00687
– volume: 11
  start-page: 1419
  year: 2017
  ident: 10.1016/j.jconrel.2022.05.010_bb0125
  article-title: Overcoming the heat endurance of tumor cells by interfering with the anaerobic glycolysis metabolism for improved photothermal therapy
  publication-title: ACS Nano
  doi: 10.1021/acsnano.6b06658
– volume: 8
  start-page: 12310
  year: 2014
  ident: 10.1016/j.jconrel.2022.05.010_bb0010
  article-title: Smart human serum albumin-indocyanine green nanoparticles generated by programmed assembly for dual-modal imaging-guided cancer synergistic phototherapy
  publication-title: ACS Nano
  doi: 10.1021/nn5062386
– volume: 47
  start-page: 2280
  year: 2018
  ident: 10.1016/j.jconrel.2022.05.010_bb0005
  article-title: Organic molecule-based photothermal agents: an expanding photothermal therapy universe
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C7CS00522A
– volume: 7
  start-page: 435
  issue: 4
  year: 2011
  ident: 10.1016/j.jconrel.2022.05.010_bb0165
  article-title: Pharmacokinetics and biodistribution of lonidamine/paclitaxel loaded, EGFR-targeted nanoparticles in an orthotopic animal model of multi-drug resistant breast cancer
  publication-title: Nanomedicine
  doi: 10.1016/j.nano.2010.12.009
– volume: 9
  start-page: 44410
  year: 2017
  ident: 10.1016/j.jconrel.2022.05.010_bb0210
  article-title: Erythrocyte-membrane-coated Prussian blue/manganese dioxide nanoparticles as H2O2-responsive oxygen generators to enhance cancer chemotherapy/photothermal therapy
  publication-title: ACS Appl. Mater. Inter.
  doi: 10.1021/acsami.7b17022
– volume: 52
  start-page: 13047
  year: 2013
  ident: 10.1016/j.jconrel.2022.05.010_bb0050
  article-title: Magnetically triggered dual functional nanoparticles for resistance-free apoptotic hyperthermia
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201306557
– volume: 29
  start-page: 1703969
  year: 2017
  ident: 10.1016/j.jconrel.2022.05.010_bb0260
  article-title: Nanoparticulate delivery of cancer cell membrane elicits multiantigenic antitumor immunity
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201703969
– volume: 5
  start-page: 9761
  year: 2011
  ident: 10.1016/j.jconrel.2022.05.010_bb0040
  article-title: Hydrophilic Cu9S5 nanocrystals: a photothermal agent with a 25.7% heat conversion efficiency for photothermal ablation of cancer cells in vivo
  publication-title: ACS Nano
  doi: 10.1021/nn203293t
– volume: 10
  start-page: 2549
  year: 2016
  ident: 10.1016/j.jconrel.2022.05.010_bb0225
  article-title: Continuous cavitation designed for enhancing radiofrequency ablationvia a special radiofrequency solidoid vaporization process
  publication-title: ACS Nano
  doi: 10.1021/acsnano.5b07486
– volume: 35
  start-page: 9844
  year: 2014
  ident: 10.1016/j.jconrel.2022.05.010_bb0195
  article-title: PEGylated Prussian blue nanocubes as a theranostic agent for simultaneous cancer imaging and photothermal therapy
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2014.09.004
– volume: 56
  start-page: 841
  year: 1998
  ident: 10.1016/j.jconrel.2022.05.010_bb0145
  article-title: Enhancement of doxorubicin content by the antitumor drug lonidamine in resistant ehrlich ascites tumor cells through modulation of energy metabolism
  publication-title: Biochem. Pharmacol.
  doi: 10.1016/S0006-2952(98)00054-9
– volume: 2016
  start-page: 151
  year: 1866
  ident: 10.1016/j.jconrel.2022.05.010_bb0155
  article-title: Mechanism of antineoplastic activity of lonidamine
  publication-title: Biochim. Biophys. Acta
– volume: 12
  start-page: 2858
  year: 2018
  ident: 10.1016/j.jconrel.2022.05.010_bb0060
  article-title: Engineering of a nanosized biocatalyst for combined tumor starvation and low-temperature photothermal therapy
  publication-title: ACS Nano
  doi: 10.1021/acsnano.8b00309
– ident: 10.1016/j.jconrel.2022.05.010_bb0115
  doi: 10.1016/j.canlet.2010.10.014
– volume: 27
  start-page: 1605795
  year: 2017
  ident: 10.1016/j.jconrel.2022.05.010_bb0280
  article-title: Cell membrane camouflaged hollow Prussian blue nanoparticles for synergistic photothermal-/chemotherapy of cancer
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201605795
– volume: 27
  start-page: 1604300
  year: 2017
  ident: 10.1016/j.jconrel.2022.05.010_bb0240
  article-title: Cancer cell membrane-coated gold nanocages with hyperthermia-triggered drug release and homotypic target inhibit growth and metastasis of breast cancer
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201604300
– volume: 10
  start-page: 4871
  year: 2019
  ident: 10.1016/j.jconrel.2022.05.010_bb0025
  article-title: Mild photothermal therapy potentiates anti-PD-L1 treatment for immunologically cold tumors via an all-in-one and all-in-control strategy
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-12771-9
– volume: 6
  start-page: 40
  year: 2016
  ident: 10.1016/j.jconrel.2022.05.010_bb0200
  article-title: Hyaluronic acid modified hollow prussian blue nanoparticles loading 10-hydroxycamptothecin for targeting thermochemotherapy of cancer
  publication-title: Theranostics
  doi: 10.7150/thno.13250
– volume: 3
  start-page: 453
  issue: 6
  year: 2003
  ident: 10.1016/j.jconrel.2022.05.010_bb0265
  article-title: The pathogenesis of cancer metastasis: the 'seed and soil' hypothesis revisited
  publication-title: Nat. Rev. Cancer
  doi: 10.1038/nrc1098
– volume: 31
  start-page: 2100738
  year: 2021
  ident: 10.1016/j.jconrel.2022.05.010_bb0045
  article-title: Nanoagent-promoted mild-temperature photothermal therapy for cancer treatment
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202100738
– volume: 29
  start-page: 1703588
  year: 2017
  ident: 10.1016/j.jconrel.2022.05.010_bb0090
  article-title: 1D coordination polymer nanofibers for low-temperature photothermal therapy
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201703588
– volume: 11
  start-page: 459
  year: 1995
  ident: 10.1016/j.jconrel.2022.05.010_bb0095
  article-title: Heat shock proteins, thermotolerance, and their relevance to clinical hyperthermia
  publication-title: Int. J. Hyperth.
  doi: 10.3109/02656739509022483
– volume: 35
  start-page: 5875
  year: 2014
  ident: 10.1016/j.jconrel.2022.05.010_bb0220
  article-title: A continuous tri-phase transition effect for HIFU-mediated intravenous drug delivery
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2014.03.043
– volume: 13
  issue: 37
  year: 2017
  ident: 10.1016/j.jconrel.2022.05.010_bb0275
  article-title: Dual-stage light amplified photodynamic therapy against hypoxic tumor based on an O(2) self-sufficient nanoplatform
  publication-title: Small
  doi: 10.1002/smll.201701621
– volume: 11
  start-page: 1509
  year: 1990
  ident: 10.1016/j.jconrel.2022.05.010_bb0175
  article-title: Lonidamine: a non-mutagenic antitumor agent
  publication-title: Carcinogenesis
  doi: 10.1093/carcin/11.9.1509
– volume: 30
  start-page: 1705980
  year: 2018
  ident: 10.1016/j.jconrel.2022.05.010_bb0030
  article-title: Dual-peak absorbing semiconducting copolymer nanoparticles for first and second near-infrared window photothermal therapy: a comparative study
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201705980
– volume: 34
  start-page: 3366
  issue: 13
  year: 2013
  ident: 10.1016/j.jconrel.2022.05.010_bb0170
  article-title: Development of targeting lonidamine liposomes that circumvent drug-resistant cancer by acting on mitochondrial signaling pathways
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2013.01.055
– volume: 48
  start-page: 2053
  year: 2019
  ident: 10.1016/j.jconrel.2022.05.010_bb0035
  article-title: Photothermal therapy and photoacoustic imaging via nanotheranostics in fighting cancer
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C8CS00618K
– volume: 6
  start-page: 1801122
  issue: 3
  year: 2019
  ident: 10.1016/j.jconrel.2022.05.010_bb0055
  article-title: Efficient near infrared light triggered nitric oxide release nanocomposites for sensitizing mild photothermal therapy
  publication-title: Adv. Sci.
  doi: 10.1002/advs.201801122
– volume: 2
  start-page: 469
  year: 2000
  ident: 10.1016/j.jconrel.2022.05.010_bb0105
  article-title: Heat-shock protein 70 inhibits apoptosis by preventing recruitment of procaspase-9 to the Apaf-1 apoptosome
  publication-title: Nat. Cell Biol.
  doi: 10.1038/35019501
– volume: 27
  start-page: 6382
  year: 2015
  ident: 10.1016/j.jconrel.2022.05.010_bb0185
  article-title: A Prussian blue-based core-shell hollow-structured mesoporous nanoparticle as a smart theranostic agent with ultrahigh pH-responsive longitudinal relaxivity
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201503381
– volume: 81
  start-page: 114
  year: 2016
  ident: 10.1016/j.jconrel.2022.05.010_bb0085
  article-title: Multi-responsive photothermal-chemotherapy with drug-loaded melanin-like nanoparticles for synergetic tumor ablation
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2015.11.037
– volume: 473
  start-page: 1503
  year: 2016
  ident: 10.1016/j.jconrel.2022.05.010_bb0150
  article-title: Re-programming tumour cell metabolism to treat cancer: no lone target for lonidamine
  publication-title: Biochem. J.
  doi: 10.1042/BCJ20160068
– volume: 9
  start-page: 5025
  year: 2021
  ident: 10.1016/j.jconrel.2022.05.010_bb0230
  article-title: A versatile nanoagent for multimodal imaging-guided photothermal and anti-inflammatory combination cancer therapy
  publication-title: Biomater. Sci.
  doi: 10.1039/D1BM00576F
– volume: 7
  start-page: 1903642
  year: 2020
  ident: 10.1016/j.jconrel.2022.05.010_bb0250
  article-title: Hyperthermia-triggered on-demand biomimetic nanocarriers for synergetic photothermal and chemotherapy
  publication-title: Adv. Sci.
  doi: 10.1002/advs.201903642
– volume: 10
  start-page: 20130527
  year: 2013
  ident: 10.1016/j.jconrel.2022.05.010_bb0100
  article-title: Modelling the efficacy of hyperthermia treatment
  publication-title: J. R. Soc. Interface
  doi: 10.1098/rsif.2013.0527
– volume: 13
  start-page: 1602225
  year: 2017
  ident: 10.1016/j.jconrel.2022.05.010_bb0020
  article-title: Graphene quantum dots-capped magnetic mesoporous silica nanoparticles as a multifunctional platform for controlled drug delivery, magnetic hyperthermia, and photothermal therapy
  publication-title: Small
  doi: 10.1002/smll.201602225
– volume: 571
  year: 2019
  ident: 10.1016/j.jconrel.2022.05.010_bb0160
  article-title: Doxorubicin combined with betulinic acid or lonidamine in RGD ligand-targeted pH-sensitive micellar system for ovarian cancer treatment
  publication-title: Int. J. Pharm.
  doi: 10.1016/j.ijpharm.2019.118751
– volume: 12
  start-page: 3332
  year: 2020
  ident: 10.1016/j.jconrel.2022.05.010_bb0180
  article-title: The potential of lonidamine in combination with chemotherapy and physical therapy in cancer treatment
  publication-title: Cancers
  doi: 10.3390/cancers12113332
– volume: 11
  start-page: 32729
  year: 2019
  ident: 10.1016/j.jconrel.2022.05.010_bb0235
  article-title: Cancer cell membrane-biomimetic nanoplatform for enhanced sonodynamic therapy on breast cancer via autophagy regulation strategy
  publication-title: ACS Appl. Mater. Inter.
  doi: 10.1021/acsami.9b10948
– volume: 6
  start-page: 41582
  year: 2015
  ident: 10.1016/j.jconrel.2022.05.010_bb0140
  article-title: Decoding Warburg's hypothesis: tumor-related mutations in the mitochondrial respiratory chain
  publication-title: Oncotarget
  doi: 10.18632/oncotarget.6057
– volume: 2021
  start-page: 9816594
  year: 2021
  ident: 10.1016/j.jconrel.2022.05.010_bb0120
  article-title: Low-temperature photothermal therapy: strategies and applications
  publication-title: Research (Wash D C)
– volume: 3
  start-page: 213
  issue: 3
  year: 2003
  ident: 10.1016/j.jconrel.2022.05.010_bb0110
  article-title: Heat shock protein 90 as a molecular target for cancer therapeutics
  publication-title: Cancer Cell
  doi: 10.1016/S1535-6108(03)00029-1
– volume: 20
  start-page: 2137
  year: 2020
  ident: 10.1016/j.jconrel.2022.05.010_bb0065
  article-title: Reversible thermochromic nanoparticles composed of a eutectic mixture for temperature-controlled photothermal therapy
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.0c00147
– volume: 10
  start-page: 2100770
  issue: 19
  year: 2021
  ident: 10.1016/j.jconrel.2022.05.010_bb0270
  article-title: Versatile nanodrugs containing glutathione and heme oxygenase 1 inhibitors enable suppression of antioxidant defense system in a two-pronged manner for enhanced photodynamic therapy
  publication-title: Adv. Healthc. Mater.
  doi: 10.1002/adhm.202100770
– volume: 28
  start-page: 1804634
  year: 2018
  ident: 10.1016/j.jconrel.2022.05.010_bb0075
  article-title: Metal–organic framework nanoshuttle for synergistic photodynamic and low-temperature photothermal therapy
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201804634
SSID ssj0005347
Score 2.5705564
Snippet Downregulation of adenosine triphosphate (ATP)-dependent heat shock proteins (HSPs) can significantly reduce the tumorigenicity of cancer cells and overcome...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 270
SubjectTerms biomimetics
heat
Heat endurance
Heat shock proteins
heat stress
Hollow mesoporous Prussian blue nanoparticles
Mild temperature photothermal therapy
Multimodal imaging
neoplasm cells
neoplasms
phase transition
photothermotherapy
porous media
temperature
ultrasonics
Title Biomimetic nanoparticles for effective mild temperature photothermal therapy and multimodal imaging
URI https://dx.doi.org/10.1016/j.jconrel.2022.05.010
https://www.ncbi.nlm.nih.gov/pubmed/35550912
https://www.proquest.com/docview/2664788329
https://www.proquest.com/docview/2675581751
Volume 347
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1BT9swFLYquHCZNjZGN0BGmjiRtnbsxDkCGiqbQEgUqTfLiW2RiiQVlEMv--08x07LDqzSjrFixfJ7ee-z_H3vIfRDEdsaN2Ka24glVEUiIToSTChNU1WIlu1-fZOM79mvKZ_20EWnhXG0yhD7fUxvo3UYGYbdHM7LcngHYEXE7lbQ8QwgrTsFO0udlw_-vKF5xMxLphMRubfXKp7hbDCDM-eTcTcQlPoCnqP38tN7-LPNQ5cf0YcAIPGZX-Mn1DP1Ljq59RWol6d4shZUPZ_iE3y7rk29_IyK87KpysopF3GtajgxB2IcBvCKPbkD4h-uykeNXdmqUHMZzx-aRSvWquDjXrS1xKrWuGUkVo2G4bJqWx59QZPLn5OLcRT6LEQFS9giyos8jrNYE8OpVTYztjBwjmI2MQAodCYAdYy0NTTN8xwQmzBKEQYnMcULCxu8h7bqpjb7CGcAYIg1jBIrWE5InmQ8G3GhbZo6xUgfsW5zZRFqkLtWGI-yI5vNZLCJdDaRIy7BJn00WE2b-yIcmyaIznLyL2-SkCg2TT3uLC3hT3PXJ6o2zcuzBCjjeg3ENPvXOynnAiAZ6aOv3k1WKwZk59AZ_fb_i_uOdtyTpwsfoK3F04s5BFC0yI9arz9C22dXv8c3r6ZrDiM
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwEB2VcoALonwuH8VIqKdmd-3YiXOEqtUCbVWJRerNcmJbZNUkq3Z72Au_nXHsdMuhVOLq2IrlsWee5fdmAD5p6nrjJtwIl_CM6URm1CSSS21YrivZs91PTrPZT_7tXJxvwcGghfG0yuj7g0_vvXVsmcTVnCzrevIDwYpM_aug5xlgWH8ADzkeX1_GYPz7Fs8j5UEzncnEd9_IeCaL8QIvnZfWP0EwFjJ4Tu8KUHcB0D4QHT2FJxFBks9hkjuwZdtnsHcWUlCv98l8o6i62id75GyTnHr9HKovddfUjZcukla3eGWOzDiC6JUEdgc6QNLUF4b4vFUx6TJZ_upWvVqrwZ8H1daa6NaQnpLYdAab66avefQC5keH84NZEgstJBXP-CopqzJNi9RQK5jTrrCusniR4i6ziChMIRF2TI2zLC_LEiGbtFpTjlcxLSqHC_wSttuuta-BFIhgqLOcUSd5SWmZFaKYCmlcnnvJyAj4sLiqiknIfS2MCzWwzRYq2kR5m6ipUGiTEYxvhi1DFo77BsjBcuqv7aQwUtw39ONgaYVHzb-f6NZ211cKsYwvNpCy4l99ciEkYjI6gldhm9zMGKGdh2fszf9P7gM8ms1PjtXx19Pvb-Gx_xK4w-9ge3V5bd8jQlqVu_0J-AOwCQ-x
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Biomimetic+nanoparticles+for+effective+mild+temperature+photothermal+therapy+and+multimodal+imaging&rft.jtitle=Journal+of+controlled+release&rft.au=Shu%2C+Xian&rft.au=Chen%2C+Yi&rft.au=Yan%2C+Ping&rft.au=Xiang%2C+Yun&rft.date=2022-07-01&rft.issn=0168-3659&rft.volume=347&rft.spage=270&rft.epage=281&rft_id=info:doi/10.1016%2Fj.jconrel.2022.05.010&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_jconrel_2022_05_010
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0168-3659&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0168-3659&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0168-3659&client=summon