Biomimetic nanoparticles for effective mild temperature photothermal therapy and multimodal imaging
Downregulation of adenosine triphosphate (ATP)-dependent heat shock proteins (HSPs) can significantly reduce the tumorigenicity of cancer cells and overcome heat endurance to achieve high-performance mild temperature (≤45 °C) photothermal therapy (PTT). Herein, we designed and constructed 4T1 cancer...
Saved in:
Published in | Journal of controlled release Vol. 347; pp. 270 - 281 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Netherlands
Elsevier B.V
01.07.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Downregulation of adenosine triphosphate (ATP)-dependent heat shock proteins (HSPs) can significantly reduce the tumorigenicity of cancer cells and overcome heat endurance to achieve high-performance mild temperature (≤45 °C) photothermal therapy (PTT). Herein, we designed and constructed 4T1 cancer cell membrane-coated, lonidamine (LN)-loaded and DL-menthol (DLM)-loaded hollow mesoporous Prussian blue nanoparticles (PBLM@CCM NPs). DLM with mild phase change characteristics served as a plugging agent to avoid early leakage and allow thermally controllable release of LN, which enabled selective intracellular delivery of LN to reduce the HSPs and overcome the heat endurance in PTT by inhibiting the generation of intracellular ATP. The biocompatible PBLM@CCM NPs with good tumor targeting efficiency achieved high-efficiency mild temperature PTT. Meanwhile, PBLM@CCM NPs could allow photoacoustic (PA) imaging and generate heat to promote the phase change of DLM for ultrasound (US) imaging, which is of great value for future clinical translational studies.
[Display omitted]
•Nanodrug was coated with 4T1 cell membrane for tumor-targeting drug codelivery.•NIR light irradiation-triggered LN release decreased HSPs expression to enhance PTT.•PA/US/Photothermal multimodal imaging abilities were demonstrated. |
---|---|
AbstractList | Downregulation of adenosine triphosphate (ATP)-dependent heat shock proteins (HSPs) can significantly reduce the tumorigenicity of cancer cells and overcome heat endurance to achieve high-performance mild temperature (≤45 °C) photothermal therapy (PTT). Herein, we designed and constructed 4T1 cancer cell membrane-coated, lonidamine (LN)-loaded and DL-menthol (DLM)-loaded hollow mesoporous Prussian blue nanoparticles (PBLM@CCM NPs). DLM with mild phase change characteristics served as a plugging agent to avoid early leakage and allow thermally controllable release of LN, which enabled selective intracellular delivery of LN to reduce the HSPs and overcome the heat endurance in PTT by inhibiting the generation of intracellular ATP. The biocompatible PBLM@CCM NPs with good tumor targeting efficiency achieved high-efficiency mild temperature PTT. Meanwhile, PBLM@CCM NPs could allow photoacoustic (PA) imaging and generate heat to promote the phase change of DLM for ultrasound (US) imaging, which is of great value for future clinical translational studies. Downregulation of adenosine triphosphate (ATP)-dependent heat shock proteins (HSPs) can significantly reduce the tumorigenicity of cancer cells and overcome heat endurance to achieve high-performance mild temperature (≤45 °C) photothermal therapy (PTT). Herein, we designed and constructed 4T1 cancer cell membrane-coated, lonidamine (LN)-loaded and DL-menthol (DLM)-loaded hollow mesoporous Prussian blue nanoparticles (PBLM@CCM NPs). DLM with mild phase change characteristics served as a plugging agent to avoid early leakage and allow thermally controllable release of LN, which enabled selective intracellular delivery of LN to reduce the HSPs and overcome the heat endurance in PTT by inhibiting the generation of intracellular ATP. The biocompatible PBLM@CCM NPs with good tumor targeting efficiency achieved high-efficiency mild temperature PTT. Meanwhile, PBLM@CCM NPs could allow photoacoustic (PA) imaging and generate heat to promote the phase change of DLM for ultrasound (US) imaging, which is of great value for future clinical translational studies. Downregulation of adenosine triphosphate (ATP)-dependent heat shock proteins (HSPs) can significantly reduce the tumorigenicity of cancer cells and overcome heat endurance to achieve high-performance mild temperature (≤45 °C) photothermal therapy (PTT). Herein, we designed and constructed 4T1 cancer cell membrane-coated, lonidamine (LN)-loaded and DL-menthol (DLM)-loaded hollow mesoporous Prussian blue nanoparticles (PBLM@CCM NPs). DLM with mild phase change characteristics served as a plugging agent to avoid early leakage and allow thermally controllable release of LN, which enabled selective intracellular delivery of LN to reduce the HSPs and overcome the heat endurance in PTT by inhibiting the generation of intracellular ATP. The biocompatible PBLM@CCM NPs with good tumor targeting efficiency achieved high-efficiency mild temperature PTT. Meanwhile, PBLM@CCM NPs could allow photoacoustic (PA) imaging and generate heat to promote the phase change of DLM for ultrasound (US) imaging, which is of great value for future clinical translational studies.Downregulation of adenosine triphosphate (ATP)-dependent heat shock proteins (HSPs) can significantly reduce the tumorigenicity of cancer cells and overcome heat endurance to achieve high-performance mild temperature (≤45 °C) photothermal therapy (PTT). Herein, we designed and constructed 4T1 cancer cell membrane-coated, lonidamine (LN)-loaded and DL-menthol (DLM)-loaded hollow mesoporous Prussian blue nanoparticles (PBLM@CCM NPs). DLM with mild phase change characteristics served as a plugging agent to avoid early leakage and allow thermally controllable release of LN, which enabled selective intracellular delivery of LN to reduce the HSPs and overcome the heat endurance in PTT by inhibiting the generation of intracellular ATP. The biocompatible PBLM@CCM NPs with good tumor targeting efficiency achieved high-efficiency mild temperature PTT. Meanwhile, PBLM@CCM NPs could allow photoacoustic (PA) imaging and generate heat to promote the phase change of DLM for ultrasound (US) imaging, which is of great value for future clinical translational studies. Downregulation of adenosine triphosphate (ATP)-dependent heat shock proteins (HSPs) can significantly reduce the tumorigenicity of cancer cells and overcome heat endurance to achieve high-performance mild temperature (≤45 °C) photothermal therapy (PTT). Herein, we designed and constructed 4T1 cancer cell membrane-coated, lonidamine (LN)-loaded and DL-menthol (DLM)-loaded hollow mesoporous Prussian blue nanoparticles (PBLM@CCM NPs). DLM with mild phase change characteristics served as a plugging agent to avoid early leakage and allow thermally controllable release of LN, which enabled selective intracellular delivery of LN to reduce the HSPs and overcome the heat endurance in PTT by inhibiting the generation of intracellular ATP. The biocompatible PBLM@CCM NPs with good tumor targeting efficiency achieved high-efficiency mild temperature PTT. Meanwhile, PBLM@CCM NPs could allow photoacoustic (PA) imaging and generate heat to promote the phase change of DLM for ultrasound (US) imaging, which is of great value for future clinical translational studies. [Display omitted] •Nanodrug was coated with 4T1 cell membrane for tumor-targeting drug codelivery.•NIR light irradiation-triggered LN release decreased HSPs expression to enhance PTT.•PA/US/Photothermal multimodal imaging abilities were demonstrated. |
Author | Chen, Yi Yin, Tinghui Liu, Li-Han Shuai, Xintao Yan, Ping Shi, Qun-Ying Shu, Xian Xiang, Yun Wang, Ping |
Author_xml | – sequence: 1 givenname: Xian surname: Shu fullname: Shu, Xian organization: Department of Ultrasonography, The Third Affiliated Hospital of Southern Medical University, Academy of Orthopedics, Guangdong Province, Guangzhou 510630, PR China – sequence: 2 givenname: Yi surname: Chen fullname: Chen, Yi organization: Department of Ultrasonography, The Third Affiliated Hospital of Southern Medical University, Academy of Orthopedics, Guangdong Province, Guangzhou 510630, PR China – sequence: 3 givenname: Ping surname: Yan fullname: Yan, Ping organization: Department of Radiology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan Province 421001, PR China – sequence: 4 givenname: Yun surname: Xiang fullname: Xiang, Yun organization: Department of Ultrasonography, The Third Affiliated Hospital of Southern Medical University, Academy of Orthopedics, Guangdong Province, Guangzhou 510630, PR China – sequence: 5 givenname: Qun-Ying surname: Shi fullname: Shi, Qun-Ying organization: Guangdong Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, PR China – sequence: 6 givenname: Tinghui surname: Yin fullname: Yin, Tinghui email: yinth3@mail.sysu.edu.cn organization: Department of Medical Ultrasonic, Laboratory of Novel Optoacoustic (Ultrasonic) imaging, The Third Affiliated Hospital of Sun Yat-sen University, 600 Tianhe Road, Guangzhou 510630, PR China – sequence: 7 givenname: Ping surname: Wang fullname: Wang, Ping email: nysycskwp123@smu.edu.cn organization: Department of Ultrasonography, The Third Affiliated Hospital of Southern Medical University, Academy of Orthopedics, Guangdong Province, Guangzhou 510630, PR China – sequence: 8 givenname: Li-Han surname: Liu fullname: Liu, Li-Han email: liulihan@smu.edu.cn organization: Guangdong Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, PR China – sequence: 9 givenname: Xintao surname: Shuai fullname: Shuai, Xintao organization: PCFM Lab of Ministry of Education, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510275, PR China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35550912$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkU1v1DAQhi1URLeFnwDKkUuCndixIw4IKmiRKnHp3XKcceuVP4LtVOq_r1e7vXAppxlZzzvWzHOBzkIMgNBHgjuCyfhl3-11DAlc1-O-7zDrMMFv0I4IPrR0mtgZ2lVOtMPIpnN0kfMeY8wGyt-h84ExhifS75D-YaO3HorVTVAhrirV1kFuTEwNGAO62EdovHVLU8CvkFTZEjTrQyyxPEDyyjWHqtanRoWl8Zsr1selPluv7m24f4_eGuUyfDjVS3T36-fd1U17--f699X321bTkZZ21vMwTMNCgPVGmQmMBsEJNSNgzpZJcErwYqDn8zyLgQlQilBCqWLa1M0u0efj2DXFvxvkIr3NGpxTAeKWZT9yxgThjPwHOlIuxNBPFf10QrfZwyLXVLdKT_LlhBX4egR0ijknMFLbooqNoSRlnSRYHoTJvTwJkwdhEjNZhdU0-yf98sFruW_HHNSDPlpIMmsLQcNiU1Uml2hfmfAMAlu0-Q |
CitedBy_id | crossref_primary_10_1016_j_jconrel_2025_113601 crossref_primary_10_1002_adhm_202300929 crossref_primary_10_1002_smll_202306540 crossref_primary_10_3390_nano14010112 crossref_primary_10_3762_bjnano_14_24 crossref_primary_10_1039_D4RA01026D crossref_primary_10_2147_IJN_S470005 crossref_primary_10_1002_anie_202318539 crossref_primary_10_1039_D3QI00441D crossref_primary_10_1002_adhm_202304595 crossref_primary_10_1021_acs_nanolett_4c02978 crossref_primary_10_1021_acsanm_3c05575 crossref_primary_10_1016_j_ijbiomac_2025_141759 crossref_primary_10_1002_advs_202206707 crossref_primary_10_1016_j_actbio_2023_11_029 crossref_primary_10_1039_D2TB02345H crossref_primary_10_1039_D4BM01190B crossref_primary_10_1002_adhm_202400819 crossref_primary_10_1002_adfm_202303328 crossref_primary_10_1016_j_pscia_2023_100009 crossref_primary_10_1016_j_bios_2025_117322 crossref_primary_10_7841_ksbbj_2022_37_2_41 crossref_primary_10_1002_smll_202306766 crossref_primary_10_1016_j_actbio_2023_05_051 crossref_primary_10_1016_j_biopha_2023_115283 crossref_primary_10_1002_advs_202400297 crossref_primary_10_1021_acs_chemrev_4c00009 crossref_primary_10_1002_ange_202318539 crossref_primary_10_1021_acs_nanolett_4c03293 crossref_primary_10_1002_smll_202206423 crossref_primary_10_3390_pharmaceutics14122669 crossref_primary_10_1021_acsmaterialslett_4c01022 crossref_primary_10_1016_j_cclet_2023_108137 crossref_primary_10_1039_D2BM01551J crossref_primary_10_1021_acsabm_3c00518 crossref_primary_10_1186_s12951_022_01692_3 crossref_primary_10_2147_IJN_S405020 crossref_primary_10_1016_j_mtcomm_2022_104289 crossref_primary_10_1021_acs_molpharmaceut_4c01059 crossref_primary_10_1039_D4BM01145G crossref_primary_10_1002_adma_202305140 crossref_primary_10_1364_BOE_499286 crossref_primary_10_1016_j_mtbio_2024_101346 crossref_primary_10_1021_acsami_3c11594 |
Cites_doi | 10.1002/advs.201600356 10.1021/nn502950t 10.1038/nrd3137 10.1002/adfm.201403991 10.1016/j.biomaterials.2018.01.007 10.1021/acs.nanolett.9b03817 10.7150/thno.46895 10.1016/j.biomaterials.2021.120935 10.1021/acs.analchem.0c02859 10.1021/acsabm.8b00687 10.1021/acsnano.6b06658 10.1021/nn5062386 10.1039/C7CS00522A 10.1016/j.nano.2010.12.009 10.1021/acsami.7b17022 10.1002/anie.201306557 10.1002/adma.201703969 10.1021/nn203293t 10.1021/acsnano.5b07486 10.1016/j.biomaterials.2014.09.004 10.1016/S0006-2952(98)00054-9 10.1021/acsnano.8b00309 10.1016/j.canlet.2010.10.014 10.1002/adfm.201605795 10.1002/adfm.201604300 10.1038/s41467-019-12771-9 10.7150/thno.13250 10.1038/nrc1098 10.1002/adfm.202100738 10.1002/adma.201703588 10.3109/02656739509022483 10.1016/j.biomaterials.2014.03.043 10.1002/smll.201701621 10.1093/carcin/11.9.1509 10.1002/adma.201705980 10.1016/j.biomaterials.2013.01.055 10.1039/C8CS00618K 10.1002/advs.201801122 10.1038/35019501 10.1002/adma.201503381 10.1016/j.biomaterials.2015.11.037 10.1042/BCJ20160068 10.1039/D1BM00576F 10.1002/advs.201903642 10.1098/rsif.2013.0527 10.1002/smll.201602225 10.1016/j.ijpharm.2019.118751 10.3390/cancers12113332 10.1021/acsami.9b10948 10.18632/oncotarget.6057 10.1016/S1535-6108(03)00029-1 10.1021/acs.nanolett.0c00147 10.1002/adhm.202100770 10.1002/adfm.201804634 |
ContentType | Journal Article |
Copyright | 2022 Elsevier B.V. Copyright © 2022 Elsevier B.V. All rights reserved. |
Copyright_xml | – notice: 2022 Elsevier B.V. – notice: Copyright © 2022 Elsevier B.V. All rights reserved. |
DBID | AAYXX CITATION NPM 7X8 7S9 L.6 |
DOI | 10.1016/j.jconrel.2022.05.010 |
DatabaseName | CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | PubMed AGRICOLA MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Pharmacy, Therapeutics, & Pharmacology |
EISSN | 1873-4995 |
EndPage | 281 |
ExternalDocumentID | 35550912 10_1016_j_jconrel_2022_05_010 S0168365922002644 |
Genre | Journal Article |
GroupedDBID | --- --K --M .GJ .~1 0R~ 1B1 1RT 1~. 1~5 29K 3O- 4.4 457 4G. 53G 5GY 5VS 7-5 71M 8P~ 9JM AABNK AABXZ AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AATCM AAXUO AAYOK ABFNM ABFRF ABJNI ABMAC ABOCM ABXDB ABYKQ ABZDS ACDAQ ACGFO ACGFS ACIUM ACNNM ACRLP ADBBV ADEZE ADMUD AEBSH AEFWE AEKER AENEX AEZYN AFKWA AFRZQ AFTJW AFXIZ AGHFR AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AJBFU AJOXV ALCLG ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC C45 CS3 D-I DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HMT HVGLF HZ~ IHE J1W KOM M34 M41 MO0 N9A O-L O9- OAUVE OGGZJ OVD OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SCC SDF SDG SDP SES SEW SPC SPCBC SPT SSM SSP SSZ T5K TEORI WUQ ~G- AAHBH AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH EFKBS NPM 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-c464t-bcb3393d1e52faf9efce8714f6e075d987410dfe27bbb8358eaa14144a5cf053 |
IEDL.DBID | .~1 |
ISSN | 0168-3659 1873-4995 |
IngestDate | Sun Aug 24 03:59:53 EDT 2025 Thu Jul 10 17:16:51 EDT 2025 Mon Jul 21 06:02:37 EDT 2025 Thu Apr 24 23:06:21 EDT 2025 Tue Jul 01 04:10:06 EDT 2025 Fri Feb 23 02:38:26 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Heat shock proteins Multimodal imaging Heat endurance Mild temperature photothermal therapy Hollow mesoporous Prussian blue nanoparticles |
Language | English |
License | Copyright © 2022 Elsevier B.V. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c464t-bcb3393d1e52faf9efce8714f6e075d987410dfe27bbb8358eaa14144a5cf053 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 35550912 |
PQID | 2664788329 |
PQPubID | 23479 |
PageCount | 12 |
ParticipantIDs | proquest_miscellaneous_2675581751 proquest_miscellaneous_2664788329 pubmed_primary_35550912 crossref_citationtrail_10_1016_j_jconrel_2022_05_010 crossref_primary_10_1016_j_jconrel_2022_05_010 elsevier_sciencedirect_doi_10_1016_j_jconrel_2022_05_010 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-07-01 |
PublicationDateYYYYMMDD | 2022-07-01 |
PublicationDate_xml | – month: 07 year: 2022 text: 2022-07-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Netherlands |
PublicationPlace_xml | – name: Netherlands |
PublicationTitle | Journal of controlled release |
PublicationTitleAlternate | J Control Release |
PublicationYear | 2022 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Zhang, Meng, Cao, Yang, Dong, Zhang, Lu, Shi, Zhang (bb0075) 2018; 28 Zhang, Li, Chen, Bo, Li, Xu (bb0225) 2016; 10 Zhong, Huang, Yan, Chen, Shi, Zhao, Chen, Shu, Wang, Yang, Zhou, Chen, Pang, Tu, Liu, Zhang (bb0270) 2021; 10 Cai, Jia, Gao, Zhang, Ma, Wang, Zheng, Shi, Chen (bb0080) 2015; 25 Beere, Wolf, Cain, Mosser, Mahboubi, Kuwana, Tailor, Morimoto, Cohen, Green (bb0105) 2000; 2 G. Jego, A. Hazoumé, R. Seigneuric, C. Garrido, Targeting heat shock proteins in cancer, Cancer Lett. 332(2): 275–285. Zhang, Li, Sun, Jia, Liu (bb0245) 2018; 159 Isaacs, Xu, Neckers (bb0110) 2003; 3 Huang, Li, Du, Zhang, Wang, Ding, Yang, Meng, Tu, Luo, Sun (bb0025) 2019; 10 Ma, Zhou, Miao, Qian, Zha (bb0215) 2019; 2 Bhutia, Babu, Ganapathy (bb0150) 2016; 473 Zhou, Li, Hou, Luo, Chen, Cao, Huo, Xue, Sutrisno, Hao, Cao, Ran, Lu, Li, Cai (bb0060) 2018; 12 Sheng, Hu, Zheng, Zhao, Liu, Gao, Gong, Gao, Zhang, Ma, Cai (bb0010) 2014; 8 Yao, Niu, Ma, Huang, Grothe, Kaskel, Zhu (bb0020) 2017; 13 Wang, Zhang, Wang, Wang, Xiao, Zhang, Cheng (bb0085) 2016; 81 Yan, Shu, Zhong, Chen, Gong, Han, Tu, Shuai, Li, Liu, Wang (bb0230) 2021; 9 Fulda, Galluzzi, Kroemer (bb0135) 2010; 9 Yoo, Jeong, Noh, Lee, Cheon (bb0050) 2013; 52 Yang, Zhu, Dong, Chao, Xu, Chen, Liu (bb0090) 2017; 29 Cheng, Gong, Zhu, Liu, Wang, Liu, Liu (bb0195) 2014; 35 Zhang, Chen, Li, Wang, Zheng, Xu, Ma, Jia, Chen, Mou, Wang, Shi (bb0220) 2014; 35 Jung, Verwilst, Sharma, Shin, Sessler, Kim (bb0005) 2018; 47 Forster, Campana, D'Onofrio, Henderson, Mosesso, Scorza (bb0175) 1990; 11 Jing, Shao, Wang, Yang, Yue, Dai (bb0200) 2016; 6 Huang, Sun, Sun, Li, Zhao, Zhong, Peng (bb0180) 2020; 12 Jin, Zhou, Zhang, Lv (bb0160) 2019; 571 Feng, Yang, Hao, Wang, Feng, Hou, Zhang (bb0235) 2019; 11 Shen, Feng, Qi, Cao, Ge, Wu, Wang (bb0065) 2020; 20 Milane, Duan, Amiji (bb0165) 2011; 7 Garcia-Heredia, Carnero (bb0140) 2015; 6 Rybiński, Szymańska, Lasota, Gambin (bb0100) 2013; 10 Tian, Jiang, Zou, Liu, Chen, Zhu, Yang, Wang, Wang, Hu (bb0040) 2011; 5 Sun, Huang, Yan, Wang, Guo, Jacobson, Liu, Szajek, Zhu, Niu, Kiesewetter, Sun, Chen (bb0015) 2014; 8 Liu, Zhang, Qiu, Zhang, Gao, Li, Xu, Fan, Li, Zhang (bb0275) 2017; 13 Li, Mivechi, Weitzel (bb0095) 1995; 11 Fidler (bb0265) 2003; 3 Li, Zhang, Wang, Zhang, Ma, Zhou, Ju, Li, Zhao, Lu (bb0170) 2013; 34 Nath, Guo, Nancolas, Nelson, Shestov, Lee, Roman, Zhou, Leeper, Halestrap, Blair, Glickson (bb0155) 1866; 2016 Kroll, Fang, Jiang, Zhou, Wei, Yu, Gao, Luk, Dehaini, Gao, Zhang (bb0260) 2017; 29 Chen, Teng, Lu, Zhang, Rong, Zhao, Yang, Wang, Song, Zhang (bb0205) 2020; 92 Cai, Gao, Ma, Wu, Zhang, Zheng, Chen, Shi (bb0185) 2015; 27 Dai, Sun, Zhao, Qi, Li, Gao, Li, Fan, Shen, Huang (bb0130) 2021; 275 Liu, Bhattarai, Dai, Chen (bb0035) 2019; 48 Jiang, Li, Zhen, Xie, Pu (bb0030) 2018; 30 Sun, Su, Meng, Yin, Chen, Gu, Zhang, Yu, Zhang, Wang, Li (bb0240) 2017; 27 Chen, Luo, Lei, Hong, Qiu, Liu, Cheng, Zhang (bb0125) 2017; 11 Zhang, Du, Guo, Yu, Gao, Yin, Zhu, Gu, Zhao (bb0055) 2019; 6 Tian, Su, Tian, Wang, Su, Liu, Zhang, Tang, Ni, Liu, Dang, Wang, Zhang, Teng, Lu (bb0190) 2017; 4 Peng, Yang, Li, Tan, Xiao, Chen, Hao, Qian (bb0210) 2017; 9 Chen, Zeng, Liu, Ouyang, Wang, Liu, Wang, Deng, Liu (bb0280) 2017; 27 Gao, Wang, Wang, Liu, Liu, Ye, Wang, Wang, Chen, Jiang, Ou, Hest, Peng, Tu (bb0250) 2020; 7 Nie, Dai, Li, Yang, Xi, Wang, Zhang, Qian, Guo, Zhu, Wang, Li, Yu, Zhang, Shi, Gan (bb0255) 2020; 20 Gao, Sun, Liang (bb0045) 2021; 31 Yi, Duan, Wu (bb0120) 2021; 2021 Floridi, Bruno, Miccadei, Fanciulli, Federico, Paggi (bb0145) 1998; 56 Ye, He, Qiao, Qi, Zhang, Santos, Zhong, Li, Hua, Wang, Grzybowski, Yao, Zhou (bb0070) 2020; 10 Zhang (10.1016/j.jconrel.2022.05.010_bb0220) 2014; 35 Yoo (10.1016/j.jconrel.2022.05.010_bb0050) 2013; 52 Yi (10.1016/j.jconrel.2022.05.010_bb0120) 2021; 2021 Nath (10.1016/j.jconrel.2022.05.010_bb0155) 1866; 2016 Cheng (10.1016/j.jconrel.2022.05.010_bb0195) 2014; 35 Zhang (10.1016/j.jconrel.2022.05.010_bb0225) 2016; 10 Kroll (10.1016/j.jconrel.2022.05.010_bb0260) 2017; 29 Garcia-Heredia (10.1016/j.jconrel.2022.05.010_bb0140) 2015; 6 Li (10.1016/j.jconrel.2022.05.010_bb0170) 2013; 34 Yan (10.1016/j.jconrel.2022.05.010_bb0230) 2021; 9 Peng (10.1016/j.jconrel.2022.05.010_bb0210) 2017; 9 Zhang (10.1016/j.jconrel.2022.05.010_bb0245) 2018; 159 Floridi (10.1016/j.jconrel.2022.05.010_bb0145) 1998; 56 Tian (10.1016/j.jconrel.2022.05.010_bb0040) 2011; 5 Dai (10.1016/j.jconrel.2022.05.010_bb0130) 2021; 275 Zhong (10.1016/j.jconrel.2022.05.010_bb0270) 2021; 10 Sheng (10.1016/j.jconrel.2022.05.010_bb0010) 2014; 8 Chen (10.1016/j.jconrel.2022.05.010_bb0125) 2017; 11 Jung (10.1016/j.jconrel.2022.05.010_bb0005) 2018; 47 Bhutia (10.1016/j.jconrel.2022.05.010_bb0150) 2016; 473 Sun (10.1016/j.jconrel.2022.05.010_bb0015) 2014; 8 Zhang (10.1016/j.jconrel.2022.05.010_bb0055) 2019; 6 Huang (10.1016/j.jconrel.2022.05.010_bb0025) 2019; 10 10.1016/j.jconrel.2022.05.010_bb0115 Cai (10.1016/j.jconrel.2022.05.010_bb0185) 2015; 27 Forster (10.1016/j.jconrel.2022.05.010_bb0175) 1990; 11 Chen (10.1016/j.jconrel.2022.05.010_bb0205) 2020; 92 Chen (10.1016/j.jconrel.2022.05.010_bb0280) 2017; 27 Cai (10.1016/j.jconrel.2022.05.010_bb0080) 2015; 25 Wang (10.1016/j.jconrel.2022.05.010_bb0085) 2016; 81 Liu (10.1016/j.jconrel.2022.05.010_bb0275) 2017; 13 Jing (10.1016/j.jconrel.2022.05.010_bb0200) 2016; 6 Sun (10.1016/j.jconrel.2022.05.010_bb0240) 2017; 27 Beere (10.1016/j.jconrel.2022.05.010_bb0105) 2000; 2 Gao (10.1016/j.jconrel.2022.05.010_bb0045) 2021; 31 Jin (10.1016/j.jconrel.2022.05.010_bb0160) 2019; 571 Huang (10.1016/j.jconrel.2022.05.010_bb0180) 2020; 12 Isaacs (10.1016/j.jconrel.2022.05.010_bb0110) 2003; 3 Fulda (10.1016/j.jconrel.2022.05.010_bb0135) 2010; 9 Tian (10.1016/j.jconrel.2022.05.010_bb0190) 2017; 4 Ma (10.1016/j.jconrel.2022.05.010_bb0215) 2019; 2 Liu (10.1016/j.jconrel.2022.05.010_bb0035) 2019; 48 Gao (10.1016/j.jconrel.2022.05.010_bb0250) 2020; 7 Yao (10.1016/j.jconrel.2022.05.010_bb0020) 2017; 13 Rybiński (10.1016/j.jconrel.2022.05.010_bb0100) 2013; 10 Shen (10.1016/j.jconrel.2022.05.010_bb0065) 2020; 20 Zhang (10.1016/j.jconrel.2022.05.010_bb0075) 2018; 28 Yang (10.1016/j.jconrel.2022.05.010_bb0090) 2017; 29 Jiang (10.1016/j.jconrel.2022.05.010_bb0030) 2018; 30 Zhou (10.1016/j.jconrel.2022.05.010_bb0060) 2018; 12 Fidler (10.1016/j.jconrel.2022.05.010_bb0265) 2003; 3 Li (10.1016/j.jconrel.2022.05.010_bb0095) 1995; 11 Milane (10.1016/j.jconrel.2022.05.010_bb0165) 2011; 7 Feng (10.1016/j.jconrel.2022.05.010_bb0235) 2019; 11 Nie (10.1016/j.jconrel.2022.05.010_bb0255) 2020; 20 Ye (10.1016/j.jconrel.2022.05.010_bb0070) 2020; 10 |
References_xml | – volume: 9 start-page: 447 year: 2010 end-page: 464 ident: bb0135 article-title: Targeting mitochondria for cancer therapy publication-title: Nat. Rev. Drug Discov. – volume: 31 start-page: 2100738 year: 2021 ident: bb0045 article-title: Nanoagent-promoted mild-temperature photothermal therapy for cancer treatment publication-title: Adv. Funct. Mater. – volume: 30 start-page: 1705980 year: 2018 ident: bb0030 article-title: Dual-peak absorbing semiconducting copolymer nanoparticles for first and second near-infrared window photothermal therapy: a comparative study publication-title: Adv. Mater. – volume: 25 start-page: 2520 year: 2015 end-page: 2529 ident: bb0080 article-title: A versatile nanotheranostic agent for efficient dual-mode imaging guided synergistic chemo-thermal tumor therapy publication-title: Adv. Funct. Mater. – volume: 10 start-page: 4871 year: 2019 ident: bb0025 article-title: Mild photothermal therapy potentiates anti-PD-L1 treatment for immunologically cold tumors via an all-in-one and all-in-control strategy publication-title: Nat. Commun. – volume: 9 start-page: 5025 year: 2021 end-page: 5034 ident: bb0230 article-title: A versatile nanoagent for multimodal imaging-guided photothermal and anti-inflammatory combination cancer therapy publication-title: Biomater. Sci. – volume: 52 start-page: 13047 year: 2013 end-page: 13051 ident: bb0050 article-title: Magnetically triggered dual functional nanoparticles for resistance-free apoptotic hyperthermia publication-title: Angew. Chem. Int. Ed. – volume: 6 start-page: 41582 year: 2015 end-page: 41599 ident: bb0140 article-title: Decoding Warburg's hypothesis: tumor-related mutations in the mitochondrial respiratory chain publication-title: Oncotarget – volume: 81 start-page: 114 year: 2016 end-page: 124 ident: bb0085 article-title: Multi-responsive photothermal-chemotherapy with drug-loaded melanin-like nanoparticles for synergetic tumor ablation publication-title: Biomaterials – volume: 11 start-page: 459 year: 1995 end-page: 488 ident: bb0095 article-title: Heat shock proteins, thermotolerance, and their relevance to clinical hyperthermia publication-title: Int. J. Hyperth. – volume: 6 start-page: 1801122 year: 2019 ident: bb0055 article-title: Efficient near infrared light triggered nitric oxide release nanocomposites for sensitizing mild photothermal therapy publication-title: Adv. Sci. – volume: 27 start-page: 1604300 year: 2017 ident: bb0240 article-title: Cancer cell membrane-coated gold nanocages with hyperthermia-triggered drug release and homotypic target inhibit growth and metastasis of breast cancer publication-title: Adv. Funct. Mater. – volume: 5 start-page: 9761 year: 2011 end-page: 9771 ident: bb0040 article-title: Hydrophilic Cu9S5 nanocrystals: a photothermal agent with a 25.7% heat conversion efficiency for photothermal ablation of cancer cells in vivo publication-title: ACS Nano – volume: 2 start-page: 469 year: 2000 end-page: 475 ident: bb0105 article-title: Heat-shock protein 70 inhibits apoptosis by preventing recruitment of procaspase-9 to the Apaf-1 apoptosome publication-title: Nat. Cell Biol. – volume: 159 start-page: 25 year: 2018 end-page: 36 ident: bb0245 article-title: NIR-responsive cancer cytomembrane-cloaked carrier-free nanosystems for highly efficient and self-targeted tumor drug delivery publication-title: Biomaterials – volume: 2021 start-page: 9816594 year: 2021 ident: bb0120 article-title: Low-temperature photothermal therapy: strategies and applications publication-title: Research (Wash D C) – volume: 7 start-page: 1903642 year: 2020 ident: bb0250 article-title: Hyperthermia-triggered on-demand biomimetic nanocarriers for synergetic photothermal and chemotherapy publication-title: Adv. Sci. – volume: 56 start-page: 841 year: 1998 end-page: 849 ident: bb0145 article-title: Enhancement of doxorubicin content by the antitumor drug lonidamine in resistant ehrlich ascites tumor cells through modulation of energy metabolism publication-title: Biochem. Pharmacol. – volume: 10 start-page: 2100770 year: 2021 ident: bb0270 article-title: Versatile nanodrugs containing glutathione and heme oxygenase 1 inhibitors enable suppression of antioxidant defense system in a two-pronged manner for enhanced photodynamic therapy publication-title: Adv. Healthc. Mater. – volume: 35 start-page: 5875 year: 2014 end-page: 5885 ident: bb0220 article-title: A continuous tri-phase transition effect for HIFU-mediated intravenous drug delivery publication-title: Biomaterials – volume: 12 start-page: 3332 year: 2020 ident: bb0180 article-title: The potential of lonidamine in combination with chemotherapy and physical therapy in cancer treatment publication-title: Cancers – volume: 20 start-page: 2137 year: 2020 end-page: 2143 ident: bb0065 article-title: Reversible thermochromic nanoparticles composed of a eutectic mixture for temperature-controlled photothermal therapy publication-title: Nano Lett. – volume: 10 start-page: 20130527 year: 2013 ident: bb0100 article-title: Modelling the efficacy of hyperthermia treatment publication-title: J. R. Soc. Interface – volume: 3 start-page: 213 year: 2003 end-page: 217 ident: bb0110 article-title: Heat shock protein 90 as a molecular target for cancer therapeutics publication-title: Cancer Cell – volume: 571 year: 2019 ident: bb0160 article-title: Doxorubicin combined with betulinic acid or lonidamine in RGD ligand-targeted pH-sensitive micellar system for ovarian cancer treatment publication-title: Int. J. Pharm. – volume: 7 start-page: 435 year: 2011 end-page: 444 ident: bb0165 article-title: Pharmacokinetics and biodistribution of lonidamine/paclitaxel loaded, EGFR-targeted nanoparticles in an orthotopic animal model of multi-drug resistant breast cancer publication-title: Nanomedicine – volume: 9 start-page: 44410 year: 2017 end-page: 44422 ident: bb0210 article-title: Erythrocyte-membrane-coated Prussian blue/manganese dioxide nanoparticles as H2O2-responsive oxygen generators to enhance cancer chemotherapy/photothermal therapy publication-title: ACS Appl. Mater. Inter. – volume: 29 start-page: 1703969 year: 2017 ident: bb0260 article-title: Nanoparticulate delivery of cancer cell membrane elicits multiantigenic antitumor immunity publication-title: Adv. Mater. – volume: 4 start-page: 1600356 year: 2017 ident: bb0190 article-title: Periodic mesoporous organosilica coated Prussian blue for MR/PA dual-modal imaging-guided photothermal-chemotherapy of triple negative breast cancer publication-title: Adv. Sci. – volume: 8 start-page: 8438 year: 2014 end-page: 8446 ident: bb0015 article-title: Chelator-free (64) Cu-integrated gold nanomaterials for positron emission tomography imaging guided photothermal cancer therapy publication-title: ACS Nano – volume: 13 start-page: 1602225 year: 2017 ident: bb0020 article-title: Graphene quantum dots-capped magnetic mesoporous silica nanoparticles as a multifunctional platform for controlled drug delivery, magnetic hyperthermia, and photothermal therapy publication-title: Small – volume: 20 start-page: 936 year: 2020 end-page: 946 ident: bb0255 article-title: Cancer-cell-membrane-coated nanoparticles with a yolk–shell structure augment cancer chemotherapy publication-title: Nano Lett. – volume: 10 start-page: 2549 year: 2016 end-page: 2558 ident: bb0225 article-title: Continuous cavitation designed for enhancing radiofrequency ablationvia a special radiofrequency solidoid vaporization process publication-title: ACS Nano – volume: 8 start-page: 12310 year: 2014 end-page: 12322 ident: bb0010 article-title: Smart human serum albumin-indocyanine green nanoparticles generated by programmed assembly for dual-modal imaging-guided cancer synergistic phototherapy publication-title: ACS Nano – volume: 27 start-page: 1605795 year: 2017 ident: bb0280 article-title: Cell membrane camouflaged hollow Prussian blue nanoparticles for synergistic photothermal-/chemotherapy of cancer publication-title: Adv. Funct. Mater. – volume: 10 start-page: 8541 year: 2020 end-page: 8557 ident: bb0070 article-title: Mild temperature photothermal assisted anti-bacterial and anti-inflammatory nanosystem for synergistic treatment of post-cataract surgery endophthalmitis publication-title: Theranostics – volume: 12 start-page: 2858 year: 2018 end-page: 2872 ident: bb0060 article-title: Engineering of a nanosized biocatalyst for combined tumor starvation and low-temperature photothermal therapy publication-title: ACS Nano – volume: 28 start-page: 1804634 year: 2018 ident: bb0075 article-title: Metal–organic framework nanoshuttle for synergistic photodynamic and low-temperature photothermal therapy publication-title: Adv. Funct. Mater. – volume: 92 start-page: 13452 year: 2020 end-page: 13461 ident: bb0205 article-title: Activatable magnetic/photoacoustic nanoplatform for redox-unlocked deep-tissue molecular imaging in vivo via Prussian blue nanoprobe publication-title: Anal. Chem. – volume: 35 start-page: 9844 year: 2014 end-page: 9852 ident: bb0195 article-title: PEGylated Prussian blue nanocubes as a theranostic agent for simultaneous cancer imaging and photothermal therapy publication-title: Biomaterials – volume: 13 year: 2017 ident: bb0275 article-title: Dual-stage light amplified photodynamic therapy against hypoxic tumor based on an O(2) self-sufficient nanoplatform publication-title: Small – volume: 11 start-page: 1509 year: 1990 end-page: 1515 ident: bb0175 article-title: Lonidamine: a non-mutagenic antitumor agent publication-title: Carcinogenesis – volume: 29 start-page: 1703588 year: 2017 ident: bb0090 article-title: 1D coordination polymer nanofibers for low-temperature photothermal therapy publication-title: Adv. Mater. – volume: 2 start-page: 848 year: 2019 end-page: 855 ident: bb0215 article-title: DL-menthol loaded polypyrrole nanoparticles as a controlled diclofenac delivery platform for sensitizing cancer cells to photothermal therapy publication-title: ACS Appl. Bio Mater. – volume: 11 start-page: 1419 year: 2017 end-page: 1431 ident: bb0125 article-title: Overcoming the heat endurance of tumor cells by interfering with the anaerobic glycolysis metabolism for improved photothermal therapy publication-title: ACS Nano – volume: 275 year: 2021 ident: bb0130 article-title: NIR-II fluorescence imaging guided tumor-specific NIR-II photothermal therapy enhanced by starvation mediated thermal sensitization strategy publication-title: Biomaterials – volume: 2016 start-page: 151 year: 1866 end-page: 162 ident: bb0155 article-title: Mechanism of antineoplastic activity of lonidamine publication-title: Biochim. Biophys. Acta – volume: 11 start-page: 32729 year: 2019 end-page: 32738 ident: bb0235 article-title: Cancer cell membrane-biomimetic nanoplatform for enhanced sonodynamic therapy on breast cancer via autophagy regulation strategy publication-title: ACS Appl. Mater. Inter. – volume: 27 start-page: 6382 year: 2015 end-page: 6389 ident: bb0185 article-title: A Prussian blue-based core-shell hollow-structured mesoporous nanoparticle as a smart theranostic agent with ultrahigh pH-responsive longitudinal relaxivity publication-title: Adv. Mater. – volume: 34 start-page: 3366 year: 2013 end-page: 3380 ident: bb0170 article-title: Development of targeting lonidamine liposomes that circumvent drug-resistant cancer by acting on mitochondrial signaling pathways publication-title: Biomaterials – volume: 48 start-page: 2053 year: 2019 end-page: 2108 ident: bb0035 article-title: Photothermal therapy and photoacoustic imaging via nanotheranostics in fighting cancer publication-title: Chem. Soc. Rev. – volume: 3 start-page: 453 year: 2003 end-page: 458 ident: bb0265 article-title: The pathogenesis of cancer metastasis: the 'seed and soil' hypothesis revisited publication-title: Nat. Rev. Cancer – volume: 473 start-page: 1503 year: 2016 end-page: 1506 ident: bb0150 article-title: Re-programming tumour cell metabolism to treat cancer: no lone target for lonidamine publication-title: Biochem. J. – reference: G. Jego, A. Hazoumé, R. Seigneuric, C. Garrido, Targeting heat shock proteins in cancer, Cancer Lett. 332(2): 275–285. – volume: 6 start-page: 40 year: 2016 end-page: 53 ident: bb0200 article-title: Hyaluronic acid modified hollow prussian blue nanoparticles loading 10-hydroxycamptothecin for targeting thermochemotherapy of cancer publication-title: Theranostics – volume: 47 start-page: 2280 year: 2018 end-page: 2297 ident: bb0005 article-title: Organic molecule-based photothermal agents: an expanding photothermal therapy universe publication-title: Chem. Soc. Rev. – volume: 4 start-page: 1600356 year: 2017 ident: 10.1016/j.jconrel.2022.05.010_bb0190 article-title: Periodic mesoporous organosilica coated Prussian blue for MR/PA dual-modal imaging-guided photothermal-chemotherapy of triple negative breast cancer publication-title: Adv. Sci. doi: 10.1002/advs.201600356 – volume: 8 start-page: 8438 year: 2014 ident: 10.1016/j.jconrel.2022.05.010_bb0015 article-title: Chelator-free (64) Cu-integrated gold nanomaterials for positron emission tomography imaging guided photothermal cancer therapy publication-title: ACS Nano doi: 10.1021/nn502950t – volume: 9 start-page: 447 year: 2010 ident: 10.1016/j.jconrel.2022.05.010_bb0135 article-title: Targeting mitochondria for cancer therapy publication-title: Nat. Rev. Drug Discov. doi: 10.1038/nrd3137 – volume: 25 start-page: 2520 year: 2015 ident: 10.1016/j.jconrel.2022.05.010_bb0080 article-title: A versatile nanotheranostic agent for efficient dual-mode imaging guided synergistic chemo-thermal tumor therapy publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201403991 – volume: 159 start-page: 25 year: 2018 ident: 10.1016/j.jconrel.2022.05.010_bb0245 article-title: NIR-responsive cancer cytomembrane-cloaked carrier-free nanosystems for highly efficient and self-targeted tumor drug delivery publication-title: Biomaterials doi: 10.1016/j.biomaterials.2018.01.007 – volume: 20 start-page: 936 year: 2020 ident: 10.1016/j.jconrel.2022.05.010_bb0255 article-title: Cancer-cell-membrane-coated nanoparticles with a yolk–shell structure augment cancer chemotherapy publication-title: Nano Lett. doi: 10.1021/acs.nanolett.9b03817 – volume: 10 start-page: 8541 year: 2020 ident: 10.1016/j.jconrel.2022.05.010_bb0070 article-title: Mild temperature photothermal assisted anti-bacterial and anti-inflammatory nanosystem for synergistic treatment of post-cataract surgery endophthalmitis publication-title: Theranostics doi: 10.7150/thno.46895 – volume: 275 year: 2021 ident: 10.1016/j.jconrel.2022.05.010_bb0130 article-title: NIR-II fluorescence imaging guided tumor-specific NIR-II photothermal therapy enhanced by starvation mediated thermal sensitization strategy publication-title: Biomaterials doi: 10.1016/j.biomaterials.2021.120935 – volume: 92 start-page: 13452 year: 2020 ident: 10.1016/j.jconrel.2022.05.010_bb0205 article-title: Activatable magnetic/photoacoustic nanoplatform for redox-unlocked deep-tissue molecular imaging in vivo via Prussian blue nanoprobe publication-title: Anal. Chem. doi: 10.1021/acs.analchem.0c02859 – volume: 2 start-page: 848 year: 2019 ident: 10.1016/j.jconrel.2022.05.010_bb0215 article-title: DL-menthol loaded polypyrrole nanoparticles as a controlled diclofenac delivery platform for sensitizing cancer cells to photothermal therapy publication-title: ACS Appl. Bio Mater. doi: 10.1021/acsabm.8b00687 – volume: 11 start-page: 1419 year: 2017 ident: 10.1016/j.jconrel.2022.05.010_bb0125 article-title: Overcoming the heat endurance of tumor cells by interfering with the anaerobic glycolysis metabolism for improved photothermal therapy publication-title: ACS Nano doi: 10.1021/acsnano.6b06658 – volume: 8 start-page: 12310 year: 2014 ident: 10.1016/j.jconrel.2022.05.010_bb0010 article-title: Smart human serum albumin-indocyanine green nanoparticles generated by programmed assembly for dual-modal imaging-guided cancer synergistic phototherapy publication-title: ACS Nano doi: 10.1021/nn5062386 – volume: 47 start-page: 2280 year: 2018 ident: 10.1016/j.jconrel.2022.05.010_bb0005 article-title: Organic molecule-based photothermal agents: an expanding photothermal therapy universe publication-title: Chem. Soc. Rev. doi: 10.1039/C7CS00522A – volume: 7 start-page: 435 issue: 4 year: 2011 ident: 10.1016/j.jconrel.2022.05.010_bb0165 article-title: Pharmacokinetics and biodistribution of lonidamine/paclitaxel loaded, EGFR-targeted nanoparticles in an orthotopic animal model of multi-drug resistant breast cancer publication-title: Nanomedicine doi: 10.1016/j.nano.2010.12.009 – volume: 9 start-page: 44410 year: 2017 ident: 10.1016/j.jconrel.2022.05.010_bb0210 article-title: Erythrocyte-membrane-coated Prussian blue/manganese dioxide nanoparticles as H2O2-responsive oxygen generators to enhance cancer chemotherapy/photothermal therapy publication-title: ACS Appl. Mater. Inter. doi: 10.1021/acsami.7b17022 – volume: 52 start-page: 13047 year: 2013 ident: 10.1016/j.jconrel.2022.05.010_bb0050 article-title: Magnetically triggered dual functional nanoparticles for resistance-free apoptotic hyperthermia publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201306557 – volume: 29 start-page: 1703969 year: 2017 ident: 10.1016/j.jconrel.2022.05.010_bb0260 article-title: Nanoparticulate delivery of cancer cell membrane elicits multiantigenic antitumor immunity publication-title: Adv. Mater. doi: 10.1002/adma.201703969 – volume: 5 start-page: 9761 year: 2011 ident: 10.1016/j.jconrel.2022.05.010_bb0040 article-title: Hydrophilic Cu9S5 nanocrystals: a photothermal agent with a 25.7% heat conversion efficiency for photothermal ablation of cancer cells in vivo publication-title: ACS Nano doi: 10.1021/nn203293t – volume: 10 start-page: 2549 year: 2016 ident: 10.1016/j.jconrel.2022.05.010_bb0225 article-title: Continuous cavitation designed for enhancing radiofrequency ablationvia a special radiofrequency solidoid vaporization process publication-title: ACS Nano doi: 10.1021/acsnano.5b07486 – volume: 35 start-page: 9844 year: 2014 ident: 10.1016/j.jconrel.2022.05.010_bb0195 article-title: PEGylated Prussian blue nanocubes as a theranostic agent for simultaneous cancer imaging and photothermal therapy publication-title: Biomaterials doi: 10.1016/j.biomaterials.2014.09.004 – volume: 56 start-page: 841 year: 1998 ident: 10.1016/j.jconrel.2022.05.010_bb0145 article-title: Enhancement of doxorubicin content by the antitumor drug lonidamine in resistant ehrlich ascites tumor cells through modulation of energy metabolism publication-title: Biochem. Pharmacol. doi: 10.1016/S0006-2952(98)00054-9 – volume: 2016 start-page: 151 year: 1866 ident: 10.1016/j.jconrel.2022.05.010_bb0155 article-title: Mechanism of antineoplastic activity of lonidamine publication-title: Biochim. Biophys. Acta – volume: 12 start-page: 2858 year: 2018 ident: 10.1016/j.jconrel.2022.05.010_bb0060 article-title: Engineering of a nanosized biocatalyst for combined tumor starvation and low-temperature photothermal therapy publication-title: ACS Nano doi: 10.1021/acsnano.8b00309 – ident: 10.1016/j.jconrel.2022.05.010_bb0115 doi: 10.1016/j.canlet.2010.10.014 – volume: 27 start-page: 1605795 year: 2017 ident: 10.1016/j.jconrel.2022.05.010_bb0280 article-title: Cell membrane camouflaged hollow Prussian blue nanoparticles for synergistic photothermal-/chemotherapy of cancer publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201605795 – volume: 27 start-page: 1604300 year: 2017 ident: 10.1016/j.jconrel.2022.05.010_bb0240 article-title: Cancer cell membrane-coated gold nanocages with hyperthermia-triggered drug release and homotypic target inhibit growth and metastasis of breast cancer publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201604300 – volume: 10 start-page: 4871 year: 2019 ident: 10.1016/j.jconrel.2022.05.010_bb0025 article-title: Mild photothermal therapy potentiates anti-PD-L1 treatment for immunologically cold tumors via an all-in-one and all-in-control strategy publication-title: Nat. Commun. doi: 10.1038/s41467-019-12771-9 – volume: 6 start-page: 40 year: 2016 ident: 10.1016/j.jconrel.2022.05.010_bb0200 article-title: Hyaluronic acid modified hollow prussian blue nanoparticles loading 10-hydroxycamptothecin for targeting thermochemotherapy of cancer publication-title: Theranostics doi: 10.7150/thno.13250 – volume: 3 start-page: 453 issue: 6 year: 2003 ident: 10.1016/j.jconrel.2022.05.010_bb0265 article-title: The pathogenesis of cancer metastasis: the 'seed and soil' hypothesis revisited publication-title: Nat. Rev. Cancer doi: 10.1038/nrc1098 – volume: 31 start-page: 2100738 year: 2021 ident: 10.1016/j.jconrel.2022.05.010_bb0045 article-title: Nanoagent-promoted mild-temperature photothermal therapy for cancer treatment publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202100738 – volume: 29 start-page: 1703588 year: 2017 ident: 10.1016/j.jconrel.2022.05.010_bb0090 article-title: 1D coordination polymer nanofibers for low-temperature photothermal therapy publication-title: Adv. Mater. doi: 10.1002/adma.201703588 – volume: 11 start-page: 459 year: 1995 ident: 10.1016/j.jconrel.2022.05.010_bb0095 article-title: Heat shock proteins, thermotolerance, and their relevance to clinical hyperthermia publication-title: Int. J. Hyperth. doi: 10.3109/02656739509022483 – volume: 35 start-page: 5875 year: 2014 ident: 10.1016/j.jconrel.2022.05.010_bb0220 article-title: A continuous tri-phase transition effect for HIFU-mediated intravenous drug delivery publication-title: Biomaterials doi: 10.1016/j.biomaterials.2014.03.043 – volume: 13 issue: 37 year: 2017 ident: 10.1016/j.jconrel.2022.05.010_bb0275 article-title: Dual-stage light amplified photodynamic therapy against hypoxic tumor based on an O(2) self-sufficient nanoplatform publication-title: Small doi: 10.1002/smll.201701621 – volume: 11 start-page: 1509 year: 1990 ident: 10.1016/j.jconrel.2022.05.010_bb0175 article-title: Lonidamine: a non-mutagenic antitumor agent publication-title: Carcinogenesis doi: 10.1093/carcin/11.9.1509 – volume: 30 start-page: 1705980 year: 2018 ident: 10.1016/j.jconrel.2022.05.010_bb0030 article-title: Dual-peak absorbing semiconducting copolymer nanoparticles for first and second near-infrared window photothermal therapy: a comparative study publication-title: Adv. Mater. doi: 10.1002/adma.201705980 – volume: 34 start-page: 3366 issue: 13 year: 2013 ident: 10.1016/j.jconrel.2022.05.010_bb0170 article-title: Development of targeting lonidamine liposomes that circumvent drug-resistant cancer by acting on mitochondrial signaling pathways publication-title: Biomaterials doi: 10.1016/j.biomaterials.2013.01.055 – volume: 48 start-page: 2053 year: 2019 ident: 10.1016/j.jconrel.2022.05.010_bb0035 article-title: Photothermal therapy and photoacoustic imaging via nanotheranostics in fighting cancer publication-title: Chem. Soc. Rev. doi: 10.1039/C8CS00618K – volume: 6 start-page: 1801122 issue: 3 year: 2019 ident: 10.1016/j.jconrel.2022.05.010_bb0055 article-title: Efficient near infrared light triggered nitric oxide release nanocomposites for sensitizing mild photothermal therapy publication-title: Adv. Sci. doi: 10.1002/advs.201801122 – volume: 2 start-page: 469 year: 2000 ident: 10.1016/j.jconrel.2022.05.010_bb0105 article-title: Heat-shock protein 70 inhibits apoptosis by preventing recruitment of procaspase-9 to the Apaf-1 apoptosome publication-title: Nat. Cell Biol. doi: 10.1038/35019501 – volume: 27 start-page: 6382 year: 2015 ident: 10.1016/j.jconrel.2022.05.010_bb0185 article-title: A Prussian blue-based core-shell hollow-structured mesoporous nanoparticle as a smart theranostic agent with ultrahigh pH-responsive longitudinal relaxivity publication-title: Adv. Mater. doi: 10.1002/adma.201503381 – volume: 81 start-page: 114 year: 2016 ident: 10.1016/j.jconrel.2022.05.010_bb0085 article-title: Multi-responsive photothermal-chemotherapy with drug-loaded melanin-like nanoparticles for synergetic tumor ablation publication-title: Biomaterials doi: 10.1016/j.biomaterials.2015.11.037 – volume: 473 start-page: 1503 year: 2016 ident: 10.1016/j.jconrel.2022.05.010_bb0150 article-title: Re-programming tumour cell metabolism to treat cancer: no lone target for lonidamine publication-title: Biochem. J. doi: 10.1042/BCJ20160068 – volume: 9 start-page: 5025 year: 2021 ident: 10.1016/j.jconrel.2022.05.010_bb0230 article-title: A versatile nanoagent for multimodal imaging-guided photothermal and anti-inflammatory combination cancer therapy publication-title: Biomater. Sci. doi: 10.1039/D1BM00576F – volume: 7 start-page: 1903642 year: 2020 ident: 10.1016/j.jconrel.2022.05.010_bb0250 article-title: Hyperthermia-triggered on-demand biomimetic nanocarriers for synergetic photothermal and chemotherapy publication-title: Adv. Sci. doi: 10.1002/advs.201903642 – volume: 10 start-page: 20130527 year: 2013 ident: 10.1016/j.jconrel.2022.05.010_bb0100 article-title: Modelling the efficacy of hyperthermia treatment publication-title: J. R. Soc. Interface doi: 10.1098/rsif.2013.0527 – volume: 13 start-page: 1602225 year: 2017 ident: 10.1016/j.jconrel.2022.05.010_bb0020 article-title: Graphene quantum dots-capped magnetic mesoporous silica nanoparticles as a multifunctional platform for controlled drug delivery, magnetic hyperthermia, and photothermal therapy publication-title: Small doi: 10.1002/smll.201602225 – volume: 571 year: 2019 ident: 10.1016/j.jconrel.2022.05.010_bb0160 article-title: Doxorubicin combined with betulinic acid or lonidamine in RGD ligand-targeted pH-sensitive micellar system for ovarian cancer treatment publication-title: Int. J. Pharm. doi: 10.1016/j.ijpharm.2019.118751 – volume: 12 start-page: 3332 year: 2020 ident: 10.1016/j.jconrel.2022.05.010_bb0180 article-title: The potential of lonidamine in combination with chemotherapy and physical therapy in cancer treatment publication-title: Cancers doi: 10.3390/cancers12113332 – volume: 11 start-page: 32729 year: 2019 ident: 10.1016/j.jconrel.2022.05.010_bb0235 article-title: Cancer cell membrane-biomimetic nanoplatform for enhanced sonodynamic therapy on breast cancer via autophagy regulation strategy publication-title: ACS Appl. Mater. Inter. doi: 10.1021/acsami.9b10948 – volume: 6 start-page: 41582 year: 2015 ident: 10.1016/j.jconrel.2022.05.010_bb0140 article-title: Decoding Warburg's hypothesis: tumor-related mutations in the mitochondrial respiratory chain publication-title: Oncotarget doi: 10.18632/oncotarget.6057 – volume: 2021 start-page: 9816594 year: 2021 ident: 10.1016/j.jconrel.2022.05.010_bb0120 article-title: Low-temperature photothermal therapy: strategies and applications publication-title: Research (Wash D C) – volume: 3 start-page: 213 issue: 3 year: 2003 ident: 10.1016/j.jconrel.2022.05.010_bb0110 article-title: Heat shock protein 90 as a molecular target for cancer therapeutics publication-title: Cancer Cell doi: 10.1016/S1535-6108(03)00029-1 – volume: 20 start-page: 2137 year: 2020 ident: 10.1016/j.jconrel.2022.05.010_bb0065 article-title: Reversible thermochromic nanoparticles composed of a eutectic mixture for temperature-controlled photothermal therapy publication-title: Nano Lett. doi: 10.1021/acs.nanolett.0c00147 – volume: 10 start-page: 2100770 issue: 19 year: 2021 ident: 10.1016/j.jconrel.2022.05.010_bb0270 article-title: Versatile nanodrugs containing glutathione and heme oxygenase 1 inhibitors enable suppression of antioxidant defense system in a two-pronged manner for enhanced photodynamic therapy publication-title: Adv. Healthc. Mater. doi: 10.1002/adhm.202100770 – volume: 28 start-page: 1804634 year: 2018 ident: 10.1016/j.jconrel.2022.05.010_bb0075 article-title: Metal–organic framework nanoshuttle for synergistic photodynamic and low-temperature photothermal therapy publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201804634 |
SSID | ssj0005347 |
Score | 2.5705564 |
Snippet | Downregulation of adenosine triphosphate (ATP)-dependent heat shock proteins (HSPs) can significantly reduce the tumorigenicity of cancer cells and overcome... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 270 |
SubjectTerms | biomimetics heat Heat endurance Heat shock proteins heat stress Hollow mesoporous Prussian blue nanoparticles Mild temperature photothermal therapy Multimodal imaging neoplasm cells neoplasms phase transition photothermotherapy porous media temperature ultrasonics |
Title | Biomimetic nanoparticles for effective mild temperature photothermal therapy and multimodal imaging |
URI | https://dx.doi.org/10.1016/j.jconrel.2022.05.010 https://www.ncbi.nlm.nih.gov/pubmed/35550912 https://www.proquest.com/docview/2664788329 https://www.proquest.com/docview/2675581751 |
Volume | 347 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1BT9swFLYquHCZNjZGN0BGmjiRtnbsxDkCGiqbQEgUqTfLiW2RiiQVlEMv--08x07LDqzSjrFixfJ7ee-z_H3vIfRDEdsaN2Ka24glVEUiIToSTChNU1WIlu1-fZOM79mvKZ_20EWnhXG0yhD7fUxvo3UYGYbdHM7LcngHYEXE7lbQ8QwgrTsFO0udlw_-vKF5xMxLphMRubfXKp7hbDCDM-eTcTcQlPoCnqP38tN7-LPNQ5cf0YcAIPGZX-Mn1DP1Ljq59RWol6d4shZUPZ_iE3y7rk29_IyK87KpysopF3GtajgxB2IcBvCKPbkD4h-uykeNXdmqUHMZzx-aRSvWquDjXrS1xKrWuGUkVo2G4bJqWx59QZPLn5OLcRT6LEQFS9giyos8jrNYE8OpVTYztjBwjmI2MQAodCYAdYy0NTTN8xwQmzBKEQYnMcULCxu8h7bqpjb7CGcAYIg1jBIrWE5InmQ8G3GhbZo6xUgfsW5zZRFqkLtWGI-yI5vNZLCJdDaRIy7BJn00WE2b-yIcmyaIznLyL2-SkCg2TT3uLC3hT3PXJ6o2zcuzBCjjeg3ENPvXOynnAiAZ6aOv3k1WKwZk59AZ_fb_i_uOdtyTpwsfoK3F04s5BFC0yI9arz9C22dXv8c3r6ZrDiM |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwEB2VcoALonwuH8VIqKdmd-3YiXOEqtUCbVWJRerNcmJbZNUkq3Z72Au_nXHsdMuhVOLq2IrlsWee5fdmAD5p6nrjJtwIl_CM6URm1CSSS21YrivZs91PTrPZT_7tXJxvwcGghfG0yuj7g0_vvXVsmcTVnCzrevIDwYpM_aug5xlgWH8ADzkeX1_GYPz7Fs8j5UEzncnEd9_IeCaL8QIvnZfWP0EwFjJ4Tu8KUHcB0D4QHT2FJxFBks9hkjuwZdtnsHcWUlCv98l8o6i62id75GyTnHr9HKovddfUjZcukla3eGWOzDiC6JUEdgc6QNLUF4b4vFUx6TJZ_upWvVqrwZ8H1daa6NaQnpLYdAab66avefQC5keH84NZEgstJBXP-CopqzJNi9RQK5jTrrCusniR4i6ziChMIRF2TI2zLC_LEiGbtFpTjlcxLSqHC_wSttuuta-BFIhgqLOcUSd5SWmZFaKYCmlcnnvJyAj4sLiqiknIfS2MCzWwzRYq2kR5m6ipUGiTEYxvhi1DFo77BsjBcuqv7aQwUtw39ONgaYVHzb-f6NZ211cKsYwvNpCy4l99ciEkYjI6gldhm9zMGKGdh2fszf9P7gM8ms1PjtXx19Pvb-Gx_xK4w-9ge3V5bd8jQlqVu_0J-AOwCQ-x |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Biomimetic+nanoparticles+for+effective+mild+temperature+photothermal+therapy+and+multimodal+imaging&rft.jtitle=Journal+of+controlled+release&rft.au=Shu%2C+Xian&rft.au=Chen%2C+Yi&rft.au=Yan%2C+Ping&rft.au=Xiang%2C+Yun&rft.date=2022-07-01&rft.issn=0168-3659&rft.volume=347&rft.spage=270&rft.epage=281&rft_id=info:doi/10.1016%2Fj.jconrel.2022.05.010&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_jconrel_2022_05_010 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0168-3659&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0168-3659&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0168-3659&client=summon |