Colorimetric detection of ascorbic acid and alkaline phosphatase activity based on the novel oxidase mimetic of Fe–Co bimetallic alloy encapsulated porous carbon nanocages
A novel catalyst of FeCo nanoparticles (FeCo NPs) incorporated porous nanocages (FeCo NPs@PNC) was first synthesized by encapsulating of FeCo alloy into ZIF-8 and further carbonation of the composite. The FeCo NPs@PNC displays enhanced intrinsic oxidase-like activity compared to the individual FeCo...
Saved in:
Published in | Talanta (Oxford) Vol. 202; pp. 354 - 361 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Netherlands
Elsevier B.V
01.09.2019
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | A novel catalyst of FeCo nanoparticles (FeCo NPs) incorporated porous nanocages (FeCo NPs@PNC) was first synthesized by encapsulating of FeCo alloy into ZIF-8 and further carbonation of the composite. The FeCo NPs@PNC displays enhanced intrinsic oxidase-like activity compared to the individual FeCo NPs and porous nanocages (PNC). The FeCo NPs@PNC can catalyze the oxidation of 3,3′,5,5′-tetramethylbenzidine (TMB) to oxidized TMB (oxTMB) without H2O2, producing a blue color with a maximum absorption peak at 652 nm. The catalytic mechanism was investigated and it found that the intermediate (O2·-) produced from the catalytic process in the system of TMB-O2-FeCo NPs@PNC can accelerate the oxidation of TMB to oxTMB. However, ascorbic acid (AA) can reduce the oxTMB and result in a conspicuous blue color fading. Therefore, a novel colorimetric platform was constructed to quantify AA with the linear range of 0.5–28 μM and detection limit of 0.38 μM (at 3σ/m). Owing to the alkaline phosphatase (ALP) can catalyze the hydrolysis of AA 2-phosphate (AAP) into AA, ALP can also be quantified by the above method. And the linear range for ALP is 0.6–10 U L−1 and the limit of detection is 0.49 U L−1. The FeCo NPs@PNC also shows excellent stability and reproducibility. This study provides a new alternative oxidase mimetic on the basis of easily obtained metal-organic frameworks derivatives to replace the expensive natural enzymes and noble metal based nanoenzymes, which will show great potential in biological assays.
(A) The synthesis process of FeCo NPs@PNC. (B) The obtained FeCo NPs@PNC have the intrinsic oxidase-like activity which can catalyze the oxidation of 3,3′,5,5′-tetramethylbenzidine (TMB) without H2O2 producing typical color reaction. Ascorbic acid (AA) can reduce the oxTMB and result in a conspicuous blue color fading. The alkaline phosphatase (ALP) can catalyze the hydrolysis of AA-2-phosphate (AAP) into AA. Therefore, novel colorimetric biosensing platform was constructed based on FeCo NPs@PNC-TMB system to quantify AA and ALP. [Display omitted]
•FeCo NPs@PNC was first synthesized with enhanced intrinsic oxidase-like activity.•FeCo NPs@PNC can catalytically TMB oxidization in the absence of H2O2.•The oxidase-like activity stems from the synergistic effect of FeCo NPs and PNC.•The incorporation of FeCo NPs into MOFs solved the instability of FeCo NPs.•FeCo NPs@PNC-based novel colorimetric platform was built for AA and ALP detection. |
---|---|
AbstractList | A novel catalyst of FeCo nanoparticles (FeCo NPs) incorporated porous nanocages (FeCo NPs@PNC) was first synthesized by encapsulating of FeCo alloy into ZIF-8 and further carbonation of the composite. The FeCo NPs@PNC displays enhanced intrinsic oxidase-like activity compared to the individual FeCo NPs and porous nanocages (PNC). The FeCo NPs@PNC can catalyze the oxidation of 3,3′,5,5′-tetramethylbenzidine (TMB) to oxidized TMB (oxTMB) without H2O2, producing a blue color with a maximum absorption peak at 652 nm. The catalytic mechanism was investigated and it found that the intermediate (O2·-) produced from the catalytic process in the system of TMB-O2-FeCo NPs@PNC can accelerate the oxidation of TMB to oxTMB. However, ascorbic acid (AA) can reduce the oxTMB and result in a conspicuous blue color fading. Therefore, a novel colorimetric platform was constructed to quantify AA with the linear range of 0.5–28 μM and detection limit of 0.38 μM (at 3σ/m). Owing to the alkaline phosphatase (ALP) can catalyze the hydrolysis of AA 2-phosphate (AAP) into AA, ALP can also be quantified by the above method. And the linear range for ALP is 0.6–10 U L−1 and the limit of detection is 0.49 U L−1. The FeCo NPs@PNC also shows excellent stability and reproducibility. This study provides a new alternative oxidase mimetic on the basis of easily obtained metal-organic frameworks derivatives to replace the expensive natural enzymes and noble metal based nanoenzymes, which will show great potential in biological assays. A novel catalyst of FeCo nanoparticles (FeCo NPs) incorporated porous nanocages (FeCo NPs@PNC) was first synthesized by encapsulating of FeCo alloy into ZIF-8 and further carbonation of the composite. The FeCo NPs@PNC displays enhanced intrinsic oxidase-like activity compared to the individual FeCo NPs and porous nanocages (PNC). The FeCo NPs@PNC can catalyze the oxidation of 3,3',5,5'-tetramethylbenzidine (TMB) to oxidized TMB (oxTMB) without H2O2, producing a blue color with a maximum absorption peak at 652 nm. The catalytic mechanism was investigated and it found that the intermediate (O2·-) produced from the catalytic process in the system of TMB-O2-FeCo NPs@PNC can accelerate the oxidation of TMB to oxTMB. However, ascorbic acid (AA) can reduce the oxTMB and result in a conspicuous blue color fading. Therefore, a novel colorimetric platform was constructed to quantify AA with the linear range of 0.5-28 μM and detection limit of 0.38 μM (at 3σ/m). Owing to the alkaline phosphatase (ALP) can catalyze the hydrolysis of AA 2-phosphate (AAP) into AA, ALP can also be quantified by the above method. And the linear range for ALP is 0.6-10 U L-1 and the limit of detection is 0.49 U L-1. The FeCo NPs@PNC also shows excellent stability and reproducibility. This study provides a new alternative oxidase mimetic on the basis of easily obtained metal-organic frameworks derivatives to replace the expensive natural enzymes and noble metal based nanoenzymes, which will show great potential in biological assays.A novel catalyst of FeCo nanoparticles (FeCo NPs) incorporated porous nanocages (FeCo NPs@PNC) was first synthesized by encapsulating of FeCo alloy into ZIF-8 and further carbonation of the composite. The FeCo NPs@PNC displays enhanced intrinsic oxidase-like activity compared to the individual FeCo NPs and porous nanocages (PNC). The FeCo NPs@PNC can catalyze the oxidation of 3,3',5,5'-tetramethylbenzidine (TMB) to oxidized TMB (oxTMB) without H2O2, producing a blue color with a maximum absorption peak at 652 nm. The catalytic mechanism was investigated and it found that the intermediate (O2·-) produced from the catalytic process in the system of TMB-O2-FeCo NPs@PNC can accelerate the oxidation of TMB to oxTMB. However, ascorbic acid (AA) can reduce the oxTMB and result in a conspicuous blue color fading. Therefore, a novel colorimetric platform was constructed to quantify AA with the linear range of 0.5-28 μM and detection limit of 0.38 μM (at 3σ/m). Owing to the alkaline phosphatase (ALP) can catalyze the hydrolysis of AA 2-phosphate (AAP) into AA, ALP can also be quantified by the above method. And the linear range for ALP is 0.6-10 U L-1 and the limit of detection is 0.49 U L-1. The FeCo NPs@PNC also shows excellent stability and reproducibility. This study provides a new alternative oxidase mimetic on the basis of easily obtained metal-organic frameworks derivatives to replace the expensive natural enzymes and noble metal based nanoenzymes, which will show great potential in biological assays. A novel catalyst of FeCo nanoparticles (FeCo NPs) incorporated porous nanocages (FeCo NPs@PNC) was first synthesized by encapsulating of FeCo alloy into ZIF-8 and further carbonation of the composite. The FeCo NPs@PNC displays enhanced intrinsic oxidase-like activity compared to the individual FeCo NPs and porous nanocages (PNC). The FeCo NPs@PNC can catalyze the oxidation of 3,3',5,5'-tetramethylbenzidine (TMB) to oxidized TMB (oxTMB) without H O , producing a blue color with a maximum absorption peak at 652 nm. The catalytic mechanism was investigated and it found that the intermediate (O ) produced from the catalytic process in the system of TMB-O -FeCo NPs@PNC can accelerate the oxidation of TMB to oxTMB. However, ascorbic acid (AA) can reduce the oxTMB and result in a conspicuous blue color fading. Therefore, a novel colorimetric platform was constructed to quantify AA with the linear range of 0.5-28 μM and detection limit of 0.38 μM (at 3σ/m). Owing to the alkaline phosphatase (ALP) can catalyze the hydrolysis of AA 2-phosphate (AAP) into AA, ALP can also be quantified by the above method. And the linear range for ALP is 0.6-10 U L and the limit of detection is 0.49 U L . The FeCo NPs@PNC also shows excellent stability and reproducibility. This study provides a new alternative oxidase mimetic on the basis of easily obtained metal-organic frameworks derivatives to replace the expensive natural enzymes and noble metal based nanoenzymes, which will show great potential in biological assays. A novel catalyst of FeCo nanoparticles (FeCo NPs) incorporated porous nanocages (FeCo NPs@PNC) was first synthesized by encapsulating of FeCo alloy into ZIF-8 and further carbonation of the composite. The FeCo NPs@PNC displays enhanced intrinsic oxidase-like activity compared to the individual FeCo NPs and porous nanocages (PNC). The FeCo NPs@PNC can catalyze the oxidation of 3,3′,5,5′-tetramethylbenzidine (TMB) to oxidized TMB (oxTMB) without H2O2, producing a blue color with a maximum absorption peak at 652 nm. The catalytic mechanism was investigated and it found that the intermediate (O2·-) produced from the catalytic process in the system of TMB-O2-FeCo NPs@PNC can accelerate the oxidation of TMB to oxTMB. However, ascorbic acid (AA) can reduce the oxTMB and result in a conspicuous blue color fading. Therefore, a novel colorimetric platform was constructed to quantify AA with the linear range of 0.5–28 μM and detection limit of 0.38 μM (at 3σ/m). Owing to the alkaline phosphatase (ALP) can catalyze the hydrolysis of AA 2-phosphate (AAP) into AA, ALP can also be quantified by the above method. And the linear range for ALP is 0.6–10 U L−1 and the limit of detection is 0.49 U L−1. The FeCo NPs@PNC also shows excellent stability and reproducibility. This study provides a new alternative oxidase mimetic on the basis of easily obtained metal-organic frameworks derivatives to replace the expensive natural enzymes and noble metal based nanoenzymes, which will show great potential in biological assays. (A) The synthesis process of FeCo NPs@PNC. (B) The obtained FeCo NPs@PNC have the intrinsic oxidase-like activity which can catalyze the oxidation of 3,3′,5,5′-tetramethylbenzidine (TMB) without H2O2 producing typical color reaction. Ascorbic acid (AA) can reduce the oxTMB and result in a conspicuous blue color fading. The alkaline phosphatase (ALP) can catalyze the hydrolysis of AA-2-phosphate (AAP) into AA. Therefore, novel colorimetric biosensing platform was constructed based on FeCo NPs@PNC-TMB system to quantify AA and ALP. [Display omitted] •FeCo NPs@PNC was first synthesized with enhanced intrinsic oxidase-like activity.•FeCo NPs@PNC can catalytically TMB oxidization in the absence of H2O2.•The oxidase-like activity stems from the synergistic effect of FeCo NPs and PNC.•The incorporation of FeCo NPs into MOFs solved the instability of FeCo NPs.•FeCo NPs@PNC-based novel colorimetric platform was built for AA and ALP detection. |
Author | Liu, Xiaoying Zhang, Youyu Wu, Tengteng Ma, Zhangyan Liu, Meiling Li, Haitao Li, Peipei Yao, Shouzhuo |
Author_xml | – sequence: 1 givenname: Tengteng surname: Wu fullname: Wu, Tengteng organization: Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research (Ministry of Education, China), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China – sequence: 2 givenname: Zhangyan surname: Ma fullname: Ma, Zhangyan organization: Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research (Ministry of Education, China), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China – sequence: 3 givenname: Peipei surname: Li fullname: Li, Peipei organization: Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research (Ministry of Education, China), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China – sequence: 4 givenname: Meiling surname: Liu fullname: Liu, Meiling email: liumeilingww@126.com, liuml@hunnu.edu.cn organization: Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research (Ministry of Education, China), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China – sequence: 5 givenname: Xiaoying surname: Liu fullname: Liu, Xiaoying email: xiaoyingliu@126.com organization: College of Science, Hunan Agricultural University, Changsha 410128, China – sequence: 6 givenname: Haitao surname: Li fullname: Li, Haitao organization: Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research (Ministry of Education, China), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China – sequence: 7 givenname: Youyu surname: Zhang fullname: Zhang, Youyu organization: Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research (Ministry of Education, China), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China – sequence: 8 givenname: Shouzhuo surname: Yao fullname: Yao, Shouzhuo organization: Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research (Ministry of Education, China), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31171195$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkk-O0zAYxS00iOkMHAHkJZsE_0niRCwQqhhAGokNrK0vzhfq4sbBdqvpjjtwDi7FSXDUwoJNF5Zl-71n6_18Q64mPyEhzzkrOePNq22ZwMGUoBSMdyWrSyarR2TFWyULWSt5RVaMya7oeMWuyU2MW8aYkEw-IdeSc8V5V6_Ir7V3PtgdpmANHTChSdZP1I8UovGhz7tg7EBhysN9A2cnpPPGx3kDCSLm02QPNh1pn1cDzd60QTr5AzrqH-ywaHbLBTkpp97h7x8_1572yxY4t-Q7548UJwNz3DtIOWX2we8jNRD6HDjB5A18xfiUPB7BRXx2nm_Jl7t3n9cfivtP7z-u394XpmqqVIA0oqpFo7homRCqU2M_NqNsGRsb3vWsbhU2OApeG8HblvcgRQtjDR1T1cjlLXl5yp2D_77HmPTORoMuF475XVrIKnerKlVflgqVkXS8E1n64izd9zsc9Jx7h3DUf2lkQX0SmOBjDDj-k3CmF-p6q8_U9UJds1pn6tn3-j-fsQkWjimAdRfdb05uzI0eLAYdjc00cLAh_wY9eHsh4Q_9hM8T |
CitedBy_id | crossref_primary_10_1007_s41664_021_00177_w crossref_primary_10_1016_j_colsurfa_2023_132645 crossref_primary_10_1021_acsami_3c01412 crossref_primary_10_1016_j_microc_2022_107208 crossref_primary_10_1016_j_surfin_2024_105465 crossref_primary_10_1016_j_talanta_2020_121299 crossref_primary_10_1016_j_talanta_2021_122222 crossref_primary_10_1039_D3AN01995K crossref_primary_10_1016_j_cplett_2021_138749 crossref_primary_10_1016_j_foodchem_2021_131115 crossref_primary_10_2116_analsci_20P353 crossref_primary_10_1002_anbr_202300078 crossref_primary_10_1016_j_matlet_2020_127543 crossref_primary_10_1016_j_matlet_2019_127253 crossref_primary_10_1016_j_jelechem_2019_113573 crossref_primary_10_1007_s00604_022_05481_5 crossref_primary_10_1007_s00604_021_04799_w crossref_primary_10_1016_j_snb_2024_136178 crossref_primary_10_1016_j_sna_2024_115995 crossref_primary_10_1021_acsanm_1c01495 crossref_primary_10_1016_j_talanta_2022_124236 crossref_primary_10_1016_j_talanta_2023_124537 crossref_primary_10_3390_bios14040178 crossref_primary_10_1002_cjoc_202400938 crossref_primary_10_1016_j_aca_2024_343468 crossref_primary_10_1016_j_microc_2024_111919 crossref_primary_10_1039_D0AN01918F crossref_primary_10_1039_D1CC00244A crossref_primary_10_1016_j_microc_2024_111318 crossref_primary_10_1039_D3NJ00136A crossref_primary_10_1016_j_talanta_2022_123825 crossref_primary_10_1021_acsami_2c08946 crossref_primary_10_1039_D3AN00475A crossref_primary_10_1016_j_snb_2020_128157 crossref_primary_10_1016_j_snb_2021_129777 crossref_primary_10_1039_D2AY01460B crossref_primary_10_1039_D4DT01727G crossref_primary_10_1016_j_heliyon_2023_e12866 crossref_primary_10_1039_D3NJ02611F crossref_primary_10_1016_j_nantod_2021_101076 crossref_primary_10_1016_j_jhazmat_2022_129199 crossref_primary_10_1016_j_aca_2022_340518 crossref_primary_10_1016_j_talanta_2022_123451 crossref_primary_10_1016_j_talanta_2023_124863 crossref_primary_10_1080_00032719_2024_2392648 crossref_primary_10_1007_s00604_019_3887_6 crossref_primary_10_3390_chemosensors11070398 crossref_primary_10_1016_j_fbio_2024_105572 crossref_primary_10_1016_j_microc_2020_105122 crossref_primary_10_1039_D4QI02555E crossref_primary_10_1039_D0AN01846E crossref_primary_10_1007_s00604_021_04803_3 crossref_primary_10_1016_j_talanta_2022_123658 crossref_primary_10_1039_D0AN01830A crossref_primary_10_1016_j_molliq_2021_115504 crossref_primary_10_1016_j_saa_2021_120468 crossref_primary_10_1016_j_snb_2021_129549 crossref_primary_10_1021_acsanm_2c03340 crossref_primary_10_1016_j_saa_2021_120709 crossref_primary_10_1007_s40242_022_2256_x crossref_primary_10_1016_j_mtchem_2024_102037 crossref_primary_10_1016_j_aca_2024_343528 crossref_primary_10_1039_C9NJ05751J crossref_primary_10_1007_s00604_023_06102_5 crossref_primary_10_1039_D2NJ01122K crossref_primary_10_1016_j_ccr_2023_215370 crossref_primary_10_1016_j_lwt_2021_112821 crossref_primary_10_1021_acs_inorgchem_2c01925 crossref_primary_10_1515_ijfe_2024_0099 crossref_primary_10_1002_asia_202300878 crossref_primary_10_1007_s00604_024_06700_x crossref_primary_10_1016_j_ijbiomac_2023_123657 crossref_primary_10_1021_acsami_1c00134 crossref_primary_10_1021_acsanm_4c00776 crossref_primary_10_1039_D2AY01927B |
Cites_doi | 10.1016/j.talanta.2018.09.108 10.1016/j.aca.2018.09.045 10.1007/s00604-018-3224-5 10.1039/C9AN00105K 10.1016/j.aca.2016.11.035 10.1007/s12274-017-1611-6 10.1504/IJNM.2019.100461 10.1016/S0927-7757(01)00614-8 10.1016/j.carbon.2017.01.060 10.1166/jnn.2017.13821 10.1021/jf500950p 10.1016/j.snb.2018.12.052 10.1007/s11051-016-3357-6 10.1039/C4CC01703J 10.1039/C7CC08992A 10.1002/chem.200600428 10.1021/acsami.7b01284 10.1021/acsami.5b01706 10.1021/acsami.6b11965 10.1039/c3cy00268c 10.1039/C5NR03588K 10.1002/anie.200805279 10.1016/j.tca.2017.09.015 10.1016/j.carbon.2014.07.062 10.1021/acsami.7b07501 10.1021/ac403536a 10.1039/c3cc41569d 10.1039/c2tb00389a 10.1038/nchem.1272 10.1039/C6NR08987A 10.1021/acs.analchem.5b02167 10.1021/acsami.6b09893 10.1039/C6TA06403E 10.1039/C6CC00194G 10.1039/c3cc38955c 10.1039/C6RA00096G 10.1002/smll.201102480 10.1039/c2an35700c 10.1039/C3NR06896J 10.1002/anie.201408990 10.1039/C8TB02948B |
ContentType | Journal Article |
Copyright | 2019 Elsevier B.V. Copyright © 2019. Published by Elsevier B.V. |
Copyright_xml | – notice: 2019 Elsevier B.V. – notice: Copyright © 2019. Published by Elsevier B.V. |
DBID | AAYXX CITATION NPM 7S9 L.6 7X8 |
DOI | 10.1016/j.talanta.2019.05.034 |
DatabaseName | CrossRef PubMed AGRICOLA AGRICOLA - Academic MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed AGRICOLA AGRICOLA - Academic MEDLINE - Academic |
DatabaseTitleList | AGRICOLA MEDLINE - Academic PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1873-3573 |
EndPage | 361 |
ExternalDocumentID | 31171195 10_1016_j_talanta_2019_05_034 S0039914019305181 |
Genre | Journal Article |
GroupedDBID | --K --M -DZ -~X .~1 0R~ 123 1B1 1RT 1~. 1~5 4.4 457 4G. 53G 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARLI AAXUO ABJNI ABMAC ABYKQ ACDAQ ACGFS ACNCT ACRLP ADBBV ADECG ADEZE AEBSH AEKER AENEX AFKWA AFTJW AFZHZ AGHFR AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AJOXV AJSZI ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FIRID FLBIZ FNPLU FYGXN G-Q GBLVA IHE J1W K-O KOM M36 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RNS ROL RPZ SCC SCH SDF SDG SDP SES SPC SPCBC SSK SSZ T5K TN5 TWZ WH7 XPP YK3 YNT ZMT ~02 ~G- 29Q 3O- AAHBH AAQXK AATTM AAXKI AAYJJ AAYWO AAYXX ABDPE ABEFU ABFNM ABWVN ABXDB ACNNM ACRPL ACVFH ADCNI ADIYS ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AJQLL AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION FEDTE FGOYB HMU HVGLF HZ~ R2- RIG SCB SEW SSH WUQ XOL NPM 7S9 L.6 7X8 |
ID | FETCH-LOGICAL-c464t-a3c245267128022797fbf6f3800f619b0587e6ef215c21881ba328af5a9074f13 |
IEDL.DBID | .~1 |
ISSN | 0039-9140 1873-3573 |
IngestDate | Fri Jul 11 02:23:59 EDT 2025 Fri Jul 11 14:06:48 EDT 2025 Wed Feb 19 02:33:51 EST 2025 Thu Apr 24 23:01:43 EDT 2025 Tue Jul 01 03:43:49 EDT 2025 Fri Feb 23 02:31:42 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Oxidase mimetics FeCo NPs Ascorbic acid (AA) Metal-organic frameworks Alkaline phosphatase (ALP) Colorimetric detection |
Language | English |
License | Copyright © 2019. Published by Elsevier B.V. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c464t-a3c245267128022797fbf6f3800f619b0587e6ef215c21881ba328af5a9074f13 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 31171195 |
PQID | 2271879192 |
PQPubID | 24069 |
PageCount | 8 |
ParticipantIDs | proquest_miscellaneous_2340037475 proquest_miscellaneous_2271879192 pubmed_primary_31171195 crossref_primary_10_1016_j_talanta_2019_05_034 crossref_citationtrail_10_1016_j_talanta_2019_05_034 elsevier_sciencedirect_doi_10_1016_j_talanta_2019_05_034 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-09-01 2019-09-00 2019-Sep-01 20190901 |
PublicationDateYYYYMMDD | 2019-09-01 |
PublicationDate_xml | – month: 09 year: 2019 text: 2019-09-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Netherlands |
PublicationPlace_xml | – name: Netherlands |
PublicationTitle | Talanta (Oxford) |
PublicationTitleAlternate | Talanta |
PublicationYear | 2019 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Zhang, Liu, Walsh, Yao, Kou, Ma (bib5) 2012; 8 Shu, Yan, Chen, Xu, Pang, Hu (bib14) 2017; 9 Song, Wang, Li, Peng, Pan, Niu (bib2) 2018; 1044 Song, Li, Peng, Li, Xu, Pan, Niu (bib3) 2019; 144 Han, Han, Ma, Qu, Kong, Qu (bib33) 2019; 194 Lin, Gao, Zheng, Chi, Chen (bib20) 2014; 86 Zhu, Zhao, Nie, Liu, Yao (bib1) 2015; 87 Xu, Fang, Liu, Pan, Wang, Wang (bib12) 2016; 4 Su, Dong, Wu, Gong, Zhang, Li, Mao, Feng (bib38) 2017; 951 Liu, Wang, Zhao, Zhang, Su, Lv (bib11) 2012; 137 Wang, Yang, Gao, Ni, Zhang, Lin (bib19) 2016; 8 Yang, Xiao, Shi, Shu, Su, Lu, Zhang (bib6) 2018; 54 Qin, Jia, Wang, Wu, Song, Liu (bib7) 2013; 3 Chen, Liu, Zhao, Peng, Chen, Mi, Yin, Li, Zhang, Yao (bib8) 2014; 50 Wang, Zhang, Shang, Zhang, Dong (bib37) 2016; 52 Li, Hao, Tang, Wang, Liu, Wang, Zhu, Lu, Tang (bib18) 2017; 9 Yang, Zhao, Zeng (bib30) 2016; 6 Zhao, Xie, Yuan, Li, Liu, Zheng, Hou (bib41) 2013; 1 Yu, Chen, Jiang, Tseng (bib42) 2014; 6 Ravikovitch, Neimark (bib29) 2001; 187 Koo, Yu, Choi, Jang, Cheong, Kim (bib17) 2017; 9 Liu, Han, Li, Fan, Yang, Li, Luo (bib32) 2019; 283 Yin, Gao, Xiao, Lin, Lin, Cai, Yang (bib10) 2016; 8 Torad, Hu, Kamachi, Takai, Imura, Naito, Yamauchi (bib23) 2013; 49 Chen, Chen, Li, Pang, Lin, Guo, Fu (bib9) 2017; 17 Lin, Fischer, Chen, DeVos (bib15) 2010; 24 Qin, Su, Yang, Ma, Zhang, Chen (bib39) 2014; 62 Lu, Li, Guo, Farha, Hauser, Qi, Wang, Wang, Han, Liu, DuChene, Zhang, Zhang, Chen, Ma, Loo, Wei, Yang, Hupp, Huo (bib27) 2012; 4 Luo, Lin, Zheng, Lin, Chi (bib28) 2015; 7 Polarz, Orlov, Schueth, Lu (bib13) 2007; 13 Asati, Santra, Kaittanis, Nath, Perez (bib36) 2009; 48 Guo, Huang, Liu (bib40) 2016; 18 Bai, Xia, Chen, Su, Zhu (bib22) 2014; 79 Dai, Shi, Huo, Wang (bib21) 2017; 657 Aljerf, Nadra (bib31) 2019 Cen, Tang, Kong, Wu, Yuan, Yu, Chu (bib35) 2015; 7 Wu, Hou1, Ma, Liu, Liu, Z, Yao (bib4) 2019; 186 Zhong, Wang, Zhang, Xu, Xing, Xu, Zhang, Zhang (bib24) 2014; 53 Chen, Cao, Shi, Liu, Huang (bib26) 2013; 49 Wang, Chen, Quan, Yu, Zhang (bib25) 2017; 115 Du, Wang, Long, Xiong (bib16) 2017; 10 Han, Niu, Liu, Niu, Xu (bib34) 2019; 7 Ravikovitch (10.1016/j.talanta.2019.05.034_bib29) 2001; 187 Zhang (10.1016/j.talanta.2019.05.034_bib5) 2012; 8 Torad (10.1016/j.talanta.2019.05.034_bib23) 2013; 49 Li (10.1016/j.talanta.2019.05.034_bib18) 2017; 9 Han (10.1016/j.talanta.2019.05.034_bib34) 2019; 7 Polarz (10.1016/j.talanta.2019.05.034_bib13) 2007; 13 Su (10.1016/j.talanta.2019.05.034_bib38) 2017; 951 Wang (10.1016/j.talanta.2019.05.034_bib19) 2016; 8 Han (10.1016/j.talanta.2019.05.034_bib33) 2019; 194 Zhu (10.1016/j.talanta.2019.05.034_bib1) 2015; 87 Lin (10.1016/j.talanta.2019.05.034_bib20) 2014; 86 Wang (10.1016/j.talanta.2019.05.034_bib37) 2016; 52 Yang (10.1016/j.talanta.2019.05.034_bib6) 2018; 54 Cen (10.1016/j.talanta.2019.05.034_bib35) 2015; 7 Du (10.1016/j.talanta.2019.05.034_bib16) 2017; 10 Guo (10.1016/j.talanta.2019.05.034_bib40) 2016; 18 Shu (10.1016/j.talanta.2019.05.034_bib14) 2017; 9 Lin (10.1016/j.talanta.2019.05.034_bib15) 2010; 24 Wang (10.1016/j.talanta.2019.05.034_bib25) 2017; 115 Luo (10.1016/j.talanta.2019.05.034_bib28) 2015; 7 Lu (10.1016/j.talanta.2019.05.034_bib27) 2012; 4 Aljerf (10.1016/j.talanta.2019.05.034_bib31) 2019 Bai (10.1016/j.talanta.2019.05.034_bib22) 2014; 79 Song (10.1016/j.talanta.2019.05.034_bib2) 2018; 1044 Chen (10.1016/j.talanta.2019.05.034_bib8) 2014; 50 Zhong (10.1016/j.talanta.2019.05.034_bib24) 2014; 53 Song (10.1016/j.talanta.2019.05.034_bib3) 2019; 144 Asati (10.1016/j.talanta.2019.05.034_bib36) 2009; 48 Xu (10.1016/j.talanta.2019.05.034_bib12) 2016; 4 Yin (10.1016/j.talanta.2019.05.034_bib10) 2016; 8 Zhao (10.1016/j.talanta.2019.05.034_bib41) 2013; 1 Qin (10.1016/j.talanta.2019.05.034_bib7) 2013; 3 Chen (10.1016/j.talanta.2019.05.034_bib26) 2013; 49 Koo (10.1016/j.talanta.2019.05.034_bib17) 2017; 9 Liu (10.1016/j.talanta.2019.05.034_bib32) 2019; 283 Yu (10.1016/j.talanta.2019.05.034_bib42) 2014; 6 Dai (10.1016/j.talanta.2019.05.034_bib21) 2017; 657 Yang (10.1016/j.talanta.2019.05.034_bib30) 2016; 6 Qin (10.1016/j.talanta.2019.05.034_bib39) 2014; 62 Wu (10.1016/j.talanta.2019.05.034_bib4) 2019; 186 Chen (10.1016/j.talanta.2019.05.034_bib9) 2017; 17 Liu (10.1016/j.talanta.2019.05.034_bib11) 2012; 137 |
References_xml | – volume: 54 start-page: 818 year: 2018 end-page: 820 ident: bib6 article-title: A dual-cell device designed as an oxidase mimic and its use for the study of oxidase-like nanozymes publication-title: Chem. Commun. – volume: 283 start-page: 515 year: 2019 end-page: 523 ident: bib32 article-title: A ratiometric fluorescent strategy for alkaline phosphatase activity assay based on g-C publication-title: Sensor. Actuator. B Chem. – volume: 144 start-page: 2416 year: 2019 end-page: 2422 ident: bib3 article-title: Enzyme-triggered in situ formation of Ag nanoparticles with oxidase-mimicking activity for amplified detection of alkaline phosphatase activity publication-title: Analyst – volume: 187 start-page: 11 year: 2001 end-page: 21 ident: bib29 article-title: Characterization of nanoporous materials from adsorption and desorption isotherms publication-title: Colloid. Surf. Physicochem. Eng. Asp. – volume: 8 start-page: 32477 year: 2016 end-page: 32487 ident: bib19 article-title: Graphene oxide directed one-step synthesis of flowerlike graphene@HKUST-1 for enzyme-free detection of hydrogen peroxide in biological samples publication-title: ACS Appl. Mater. Interfaces – volume: 3 start-page: 2761 year: 2013 end-page: 2768 ident: bib7 article-title: Hemin@metal-organic framework with peroxidase-like activity and its application to glucose detection publication-title: Catal. Sci. Technol. – volume: 62 start-page: 5827 year: 2014 end-page: 5834 ident: bib39 article-title: Colorimetric Detection of sulfite in foods by a TMB-O publication-title: J. Agric. Food Chem. – volume: 17 start-page: 5730 year: 2017 end-page: 5734 ident: bib9 article-title: Water-dispersible silicon dots as a peroxidase mimetic for the highly-sensitive colorimetric detection of glucose publication-title: J. Nanosci. Nanotechnol. – volume: 6 start-page: 23403 year: 2016 end-page: 23410 ident: bib30 article-title: Well-defined gold nanoparticle@N-doped porous carbon prepared from metal nanoparticle@metal-organic frameworks for electrochemical sensing of hydrazine publication-title: RSC Adv. – volume: 18 start-page: 74 year: 2016 ident: bib40 article-title: Biocompatibility selenium nanoparticles with an intrinsic oxidase-like activity publication-title: J. Nanoparticle Res. – volume: 79 start-page: 213 year: 2014 end-page: 226 ident: bib22 article-title: Preparation and carbon dioxide uptake capacity of N-doped porous carbon materials derived from direct carbonization of zeolitic imidazolate framework publication-title: Carbon – volume: 48 start-page: 2308 year: 2009 end-page: 2312 ident: bib36 article-title: Oxidase-like activity of polymer-coated cerium oxide nanoparticles publication-title: Angew. Chem. Int. Ed. – volume: 6 start-page: 9618 year: 2014 end-page: 9624 ident: bib42 article-title: Lysozyme-directed synthesis of platinum nanoclusters as a mimic oxidase publication-title: Nanoscale – volume: 1 start-page: 1263 year: 2013 end-page: 1269 ident: bib41 article-title: A hierarchical Co-Fe LDH rope-like nanostructure: facile preparation from hexagonal lyotropic liquid crystals and intrinsic oxidase-like catalytic activity publication-title: J. Mater. Chem. B – volume: 50 start-page: 6771 year: 2014 end-page: 6774 ident: bib8 article-title: Water-dispersible silicon dots as a peroxidase mimetic for the highly-sensitive colorimetric detection of glucose publication-title: Chem. Commun. – volume: 9 start-page: 2178 year: 2017 end-page: 2187 ident: bib18 article-title: Supercapacitor electrode materials with hierarchically structured pores from carbonization of MWCNTs and ZIF-8 composites publication-title: Nanoscale – year: 2019 ident: bib31 article-title: Developed greener method based on MW implementation in manufacturing CNFs publication-title: Int. J. Nanomanuf. – volume: 7 start-page: 11322 year: 2015 end-page: 11329 ident: bib28 article-title: Encapsulation of hemin in metal organic frameworks for catalyzing the chemiluminescence reaction of the H publication-title: ACS Appl. Mater. Interfaces – volume: 7 start-page: 13951 year: 2015 end-page: 13957 ident: bib35 article-title: A cobalt oxyhydroxide-modified upconversion nanosystem for sensitive fluorescence sensing of ascorbic acid in human plasma publication-title: Nanoscale – volume: 87 start-page: 8524 year: 2015 end-page: 8530 ident: bib1 article-title: Non-Redox Modulated fluorescence strategy for sensitive and selective ascorbic acid detection with highly photoluminescent nitrogen-doped carbon nanoparticles via solid-state synthesis publication-title: Anal. Chem. – volume: 24 start-page: 3681 year: 2010 end-page: 3880 ident: bib15 article-title: Nanoscale metal-organic frameworks: MRI contrast agents and beyond metals@MOFs-loading MOFs with metal nanoparticles for hybrid functions construction of three-dimensional Uranyl-Organic Frameworks with Benzenetricarboxylate ligands Silica-MOF composite publication-title: Eur. J. Inorg. Chem. – volume: 194 start-page: 55 year: 2019 end-page: 62 ident: bib33 article-title: Self-assembled gold nanoclusters for fluorescence turn-on and colorimetric dual-readout detection of alkaline phosphatase activity via DCIP-mediated fluorescence resonance energy transfer publication-title: Talanta – volume: 9 start-page: 22342 year: 2017 end-page: 22349 ident: bib14 article-title: Ni and NiO nanoparticles decorated metal-organic framework nanosheets: facile synthesis and high-performance nonenzymatic glucose detection in human serum publication-title: ACS Appl. Mater. Interfaces – volume: 10 start-page: 3228 year: 2017 end-page: 3237 ident: bib16 article-title: N-doped carbon-stabilized PtCo nanoparticles derived from Pt@ZIF-67: highly active and durable catalysts for oxygen reduction reaction publication-title: Nano Res. – volume: 13 start-page: 592 year: 2007 end-page: 597 ident: bib13 article-title: Preparation of high-surface-area zinc oxide with ordered porosity, different pore sizes, and nanocrystalline walls publication-title: Chem. Eur J. – volume: 4 start-page: 15880 year: 2016 end-page: 15887 ident: bib12 article-title: One-pot synthesis of nanoscale carbon dots-embedded metal-organic frameworks at room temperature for enhanced chemical sensing publication-title: J. Mater. Chem. – volume: 53 start-page: 14235 year: 2014 end-page: 14239 ident: bib24 article-title: ZIF-8 derived graphene-based nitrogen-doped porous carbon sheets as highly efficient and durable oxygen reduction electrocatalysts publication-title: Angew. Chem. Int. Ed. – volume: 1044 start-page: 154 year: 2018 end-page: 161 ident: bib2 article-title: Sensitive and selective colorimetric detection of alkaline phosphatase activity based on phosphate anion-quenched oxidase-mimicking activity of Ce(IV) ions publication-title: Anal. Chim. Acta – volume: 8 start-page: 29052 year: 2016 end-page: 29061 ident: bib10 article-title: Protein-metal organic framework hybrid composites with intrinsic peroxidase-like activity as a colorimetric biosensing platform publication-title: ACS Appl. Mater. Interfaces – volume: 49 start-page: 2521 year: 2013 end-page: 2523 ident: bib23 article-title: Facile synthesis of nanoporous carbons with controlled particle sizes by direct carbonization of monodispersed ZIF-8 crystals publication-title: Chem. Commun. – volume: 186 start-page: 123 year: 2019 ident: bib4 article-title: Colorimetric determination of ascorbic acid and the activity of alkaline phosphatase based on the inhibition of the peroxidase-like activity of citric acid-capped Prussian Blue nanocubes publication-title: Microchim. Acta – volume: 657 start-page: 39 year: 2017 end-page: 46 ident: bib21 article-title: Study on the poly(lactic acid)/nano MOFs composites: Insights into the MOFs-induced crystallization mechanism and the effects of MOFs on the properties of the composites publication-title: Thermochim. Acta – volume: 4 start-page: 310 year: 2012 end-page: 316 ident: bib27 article-title: Imparting functionality to a metal-organic framework material by controlled nanoparticle encapsulation publication-title: Nat. Chem. – volume: 49 start-page: 5013 year: 2013 end-page: 5015 ident: bib26 article-title: Fe-Co bimetallic alloy nanoparticles as a highly active peroxidase mimetic and its application in biosensing publication-title: Chem. Commun. – volume: 115 start-page: 730 year: 2017 end-page: 739 ident: bib25 article-title: Enhanced activation of peroxymonosulfate by nitrogen doped porous carbon for effective removal of organic pollutants publication-title: Carbon – volume: 52 start-page: 5410 year: 2016 end-page: 5413 ident: bib37 article-title: Triple-enzyme mimetic activity of nickel-palladium hollow nanoparticles and their application in colorimetric biosensing of glucose publication-title: Chem. Commun. – volume: 137 start-page: 4552 year: 2012 end-page: 4558 ident: bib11 article-title: BSA-templated MnO publication-title: Analyst – volume: 951 start-page: 124 year: 2017 end-page: 132 ident: bib38 article-title: The peroxidase and oxidase-like activity of NiCo publication-title: Anal. Chim. Acta – volume: 9 start-page: 8201 year: 2017 end-page: 8210 ident: bib17 article-title: Nanoscale Pd catalyst functionalized Co publication-title: ACS Appl. Mater. Interfaces – volume: 8 start-page: 2948 year: 2012 end-page: 2953 ident: bib5 article-title: Caged-protein-confined bimetallic structural assemblies with mimetic peroxidase activity publication-title: Small – volume: 86 start-page: 1223 year: 2014 end-page: 1228 ident: bib20 article-title: Encapsulation of strongly fluorescent carbon quantum dots in metal-organic frameworks for enhancing chemical sensing publication-title: Anal. Chem. – volume: 7 start-page: 897 year: 2019 end-page: 902 ident: bib34 article-title: A rational strategy to develop a boron nitride quantum dot-based molecular logic gate and fluorescent assay of alkaline phosphatase activity publication-title: J. Mater. Chem. B – volume: 194 start-page: 55 year: 2019 ident: 10.1016/j.talanta.2019.05.034_bib33 article-title: Self-assembled gold nanoclusters for fluorescence turn-on and colorimetric dual-readout detection of alkaline phosphatase activity via DCIP-mediated fluorescence resonance energy transfer publication-title: Talanta doi: 10.1016/j.talanta.2018.09.108 – volume: 1044 start-page: 154 year: 2018 ident: 10.1016/j.talanta.2019.05.034_bib2 article-title: Sensitive and selective colorimetric detection of alkaline phosphatase activity based on phosphate anion-quenched oxidase-mimicking activity of Ce(IV) ions publication-title: Anal. Chim. Acta doi: 10.1016/j.aca.2018.09.045 – volume: 186 start-page: 123 year: 2019 ident: 10.1016/j.talanta.2019.05.034_bib4 article-title: Colorimetric determination of ascorbic acid and the activity of alkaline phosphatase based on the inhibition of the peroxidase-like activity of citric acid-capped Prussian Blue nanocubes publication-title: Microchim. Acta doi: 10.1007/s00604-018-3224-5 – volume: 144 start-page: 2416 year: 2019 ident: 10.1016/j.talanta.2019.05.034_bib3 article-title: Enzyme-triggered in situ formation of Ag nanoparticles with oxidase-mimicking activity for amplified detection of alkaline phosphatase activity publication-title: Analyst doi: 10.1039/C9AN00105K – volume: 951 start-page: 124 year: 2017 ident: 10.1016/j.talanta.2019.05.034_bib38 article-title: The peroxidase and oxidase-like activity of NiCo2O4 mesoporous spheres: Mechanistic understanding and colorimetric biosensing publication-title: Anal. Chim. Acta doi: 10.1016/j.aca.2016.11.035 – volume: 10 start-page: 3228 year: 2017 ident: 10.1016/j.talanta.2019.05.034_bib16 article-title: N-doped carbon-stabilized PtCo nanoparticles derived from Pt@ZIF-67: highly active and durable catalysts for oxygen reduction reaction publication-title: Nano Res. doi: 10.1007/s12274-017-1611-6 – year: 2019 ident: 10.1016/j.talanta.2019.05.034_bib31 article-title: Developed greener method based on MW implementation in manufacturing CNFs publication-title: Int. J. Nanomanuf. doi: 10.1504/IJNM.2019.100461 – volume: 187 start-page: 11 year: 2001 ident: 10.1016/j.talanta.2019.05.034_bib29 article-title: Characterization of nanoporous materials from adsorption and desorption isotherms publication-title: Colloid. Surf. Physicochem. Eng. Asp. doi: 10.1016/S0927-7757(01)00614-8 – volume: 115 start-page: 730 year: 2017 ident: 10.1016/j.talanta.2019.05.034_bib25 article-title: Enhanced activation of peroxymonosulfate by nitrogen doped porous carbon for effective removal of organic pollutants publication-title: Carbon doi: 10.1016/j.carbon.2017.01.060 – volume: 17 start-page: 5730 year: 2017 ident: 10.1016/j.talanta.2019.05.034_bib9 article-title: Water-dispersible silicon dots as a peroxidase mimetic for the highly-sensitive colorimetric detection of glucose publication-title: J. Nanosci. Nanotechnol. doi: 10.1166/jnn.2017.13821 – volume: 62 start-page: 5827 year: 2014 ident: 10.1016/j.talanta.2019.05.034_bib39 article-title: Colorimetric Detection of sulfite in foods by a TMB-O2-Co3O4 nanoparticles detection system publication-title: J. Agric. Food Chem. doi: 10.1021/jf500950p – volume: 283 start-page: 515 year: 2019 ident: 10.1016/j.talanta.2019.05.034_bib32 article-title: A ratiometric fluorescent strategy for alkaline phosphatase activity assay based on g-C3N4/CoOOH nanohybrid via target-triggered competitive redox reaction publication-title: Sensor. Actuator. B Chem. doi: 10.1016/j.snb.2018.12.052 – volume: 18 start-page: 74 issue: 18 year: 2016 ident: 10.1016/j.talanta.2019.05.034_bib40 article-title: Biocompatibility selenium nanoparticles with an intrinsic oxidase-like activity publication-title: J. Nanoparticle Res. doi: 10.1007/s11051-016-3357-6 – volume: 50 start-page: 6771 year: 2014 ident: 10.1016/j.talanta.2019.05.034_bib8 article-title: Water-dispersible silicon dots as a peroxidase mimetic for the highly-sensitive colorimetric detection of glucose publication-title: Chem. Commun. doi: 10.1039/C4CC01703J – volume: 54 start-page: 818 year: 2018 ident: 10.1016/j.talanta.2019.05.034_bib6 article-title: A dual-cell device designed as an oxidase mimic and its use for the study of oxidase-like nanozymes publication-title: Chem. Commun. doi: 10.1039/C7CC08992A – volume: 13 start-page: 592 year: 2007 ident: 10.1016/j.talanta.2019.05.034_bib13 article-title: Preparation of high-surface-area zinc oxide with ordered porosity, different pore sizes, and nanocrystalline walls publication-title: Chem. Eur J. doi: 10.1002/chem.200600428 – volume: 9 start-page: 8201 year: 2017 ident: 10.1016/j.talanta.2019.05.034_bib17 article-title: Nanoscale Pd catalyst functionalized Co3O4 hollow nanocages using MOF templates for selective detection of acetone molecules in exhaled breath publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.7b01284 – volume: 7 start-page: 11322 year: 2015 ident: 10.1016/j.talanta.2019.05.034_bib28 article-title: Encapsulation of hemin in metal organic frameworks for catalyzing the chemiluminescence reaction of the H2O2-luminol system and detecting glucose in the neutral condition publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.5b01706 – volume: 8 start-page: 32477 year: 2016 ident: 10.1016/j.talanta.2019.05.034_bib19 article-title: Graphene oxide directed one-step synthesis of flowerlike graphene@HKUST-1 for enzyme-free detection of hydrogen peroxide in biological samples publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.6b11965 – volume: 3 start-page: 2761 year: 2013 ident: 10.1016/j.talanta.2019.05.034_bib7 article-title: Hemin@metal-organic framework with peroxidase-like activity and its application to glucose detection publication-title: Catal. Sci. Technol. doi: 10.1039/c3cy00268c – volume: 7 start-page: 13951 year: 2015 ident: 10.1016/j.talanta.2019.05.034_bib35 article-title: A cobalt oxyhydroxide-modified upconversion nanosystem for sensitive fluorescence sensing of ascorbic acid in human plasma publication-title: Nanoscale doi: 10.1039/C5NR03588K – volume: 48 start-page: 2308 year: 2009 ident: 10.1016/j.talanta.2019.05.034_bib36 article-title: Oxidase-like activity of polymer-coated cerium oxide nanoparticles publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.200805279 – volume: 657 start-page: 39 year: 2017 ident: 10.1016/j.talanta.2019.05.034_bib21 article-title: Study on the poly(lactic acid)/nano MOFs composites: Insights into the MOFs-induced crystallization mechanism and the effects of MOFs on the properties of the composites publication-title: Thermochim. Acta doi: 10.1016/j.tca.2017.09.015 – volume: 79 start-page: 213 year: 2014 ident: 10.1016/j.talanta.2019.05.034_bib22 article-title: Preparation and carbon dioxide uptake capacity of N-doped porous carbon materials derived from direct carbonization of zeolitic imidazolate framework publication-title: Carbon doi: 10.1016/j.carbon.2014.07.062 – volume: 9 start-page: 22342 year: 2017 ident: 10.1016/j.talanta.2019.05.034_bib14 article-title: Ni and NiO nanoparticles decorated metal-organic framework nanosheets: facile synthesis and high-performance nonenzymatic glucose detection in human serum publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.7b07501 – volume: 86 start-page: 1223 year: 2014 ident: 10.1016/j.talanta.2019.05.034_bib20 article-title: Encapsulation of strongly fluorescent carbon quantum dots in metal-organic frameworks for enhancing chemical sensing publication-title: Anal. Chem. doi: 10.1021/ac403536a – volume: 49 start-page: 5013 year: 2013 ident: 10.1016/j.talanta.2019.05.034_bib26 article-title: Fe-Co bimetallic alloy nanoparticles as a highly active peroxidase mimetic and its application in biosensing publication-title: Chem. Commun. doi: 10.1039/c3cc41569d – volume: 1 start-page: 1263 year: 2013 ident: 10.1016/j.talanta.2019.05.034_bib41 article-title: A hierarchical Co-Fe LDH rope-like nanostructure: facile preparation from hexagonal lyotropic liquid crystals and intrinsic oxidase-like catalytic activity publication-title: J. Mater. Chem. B doi: 10.1039/c2tb00389a – volume: 4 start-page: 310 year: 2012 ident: 10.1016/j.talanta.2019.05.034_bib27 article-title: Imparting functionality to a metal-organic framework material by controlled nanoparticle encapsulation publication-title: Nat. Chem. doi: 10.1038/nchem.1272 – volume: 9 start-page: 2178 year: 2017 ident: 10.1016/j.talanta.2019.05.034_bib18 article-title: Supercapacitor electrode materials with hierarchically structured pores from carbonization of MWCNTs and ZIF-8 composites publication-title: Nanoscale doi: 10.1039/C6NR08987A – volume: 87 start-page: 8524 year: 2015 ident: 10.1016/j.talanta.2019.05.034_bib1 article-title: Non-Redox Modulated fluorescence strategy for sensitive and selective ascorbic acid detection with highly photoluminescent nitrogen-doped carbon nanoparticles via solid-state synthesis publication-title: Anal. Chem. doi: 10.1021/acs.analchem.5b02167 – volume: 8 start-page: 29052 year: 2016 ident: 10.1016/j.talanta.2019.05.034_bib10 article-title: Protein-metal organic framework hybrid composites with intrinsic peroxidase-like activity as a colorimetric biosensing platform publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.6b09893 – volume: 24 start-page: 3681 year: 2010 ident: 10.1016/j.talanta.2019.05.034_bib15 article-title: Nanoscale metal-organic frameworks: MRI contrast agents and beyond metals@MOFs-loading MOFs with metal nanoparticles for hybrid functions construction of three-dimensional Uranyl-Organic Frameworks with Benzenetricarboxylate ligands Silica-MOF composite publication-title: Eur. J. Inorg. Chem. – volume: 4 start-page: 15880 year: 2016 ident: 10.1016/j.talanta.2019.05.034_bib12 article-title: One-pot synthesis of nanoscale carbon dots-embedded metal-organic frameworks at room temperature for enhanced chemical sensing publication-title: J. Mater. Chem. doi: 10.1039/C6TA06403E – volume: 52 start-page: 5410 year: 2016 ident: 10.1016/j.talanta.2019.05.034_bib37 article-title: Triple-enzyme mimetic activity of nickel-palladium hollow nanoparticles and their application in colorimetric biosensing of glucose publication-title: Chem. Commun. doi: 10.1039/C6CC00194G – volume: 49 start-page: 2521 year: 2013 ident: 10.1016/j.talanta.2019.05.034_bib23 article-title: Facile synthesis of nanoporous carbons with controlled particle sizes by direct carbonization of monodispersed ZIF-8 crystals publication-title: Chem. Commun. doi: 10.1039/c3cc38955c – volume: 6 start-page: 23403 year: 2016 ident: 10.1016/j.talanta.2019.05.034_bib30 article-title: Well-defined gold nanoparticle@N-doped porous carbon prepared from metal nanoparticle@metal-organic frameworks for electrochemical sensing of hydrazine publication-title: RSC Adv. doi: 10.1039/C6RA00096G – volume: 8 start-page: 2948 year: 2012 ident: 10.1016/j.talanta.2019.05.034_bib5 article-title: Caged-protein-confined bimetallic structural assemblies with mimetic peroxidase activity publication-title: Small doi: 10.1002/smll.201102480 – volume: 137 start-page: 4552 year: 2012 ident: 10.1016/j.talanta.2019.05.034_bib11 article-title: BSA-templated MnO2 nanoparticles as both peroxidase and oxidase mimics publication-title: Analyst doi: 10.1039/c2an35700c – volume: 6 start-page: 9618 year: 2014 ident: 10.1016/j.talanta.2019.05.034_bib42 article-title: Lysozyme-directed synthesis of platinum nanoclusters as a mimic oxidase publication-title: Nanoscale doi: 10.1039/C3NR06896J – volume: 53 start-page: 14235 issue: 51 year: 2014 ident: 10.1016/j.talanta.2019.05.034_bib24 article-title: ZIF-8 derived graphene-based nitrogen-doped porous carbon sheets as highly efficient and durable oxygen reduction electrocatalysts publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201408990 – volume: 7 start-page: 897 year: 2019 ident: 10.1016/j.talanta.2019.05.034_bib34 article-title: A rational strategy to develop a boron nitride quantum dot-based molecular logic gate and fluorescent assay of alkaline phosphatase activity publication-title: J. Mater. Chem. B doi: 10.1039/C8TB02948B |
SSID | ssj0002303 |
Score | 2.5493176 |
Snippet | A novel catalyst of FeCo nanoparticles (FeCo NPs) incorporated porous nanocages (FeCo NPs@PNC) was first synthesized by encapsulating of FeCo alloy into ZIF-8... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 354 |
SubjectTerms | alkaline phosphatase Alkaline phosphatase (ALP) alloys ascorbic acid Ascorbic acid (AA) bioassays carbon carbonation catalysts catalytic activity color Colorimetric detection colorimetry coordination polymers detection limit encapsulation enzyme activity FeCo NPs hydrogen peroxide hydrolysis Metal-organic frameworks nanoparticles Oxidase mimetics oxidation superoxide anion |
Title | Colorimetric detection of ascorbic acid and alkaline phosphatase activity based on the novel oxidase mimetic of Fe–Co bimetallic alloy encapsulated porous carbon nanocages |
URI | https://dx.doi.org/10.1016/j.talanta.2019.05.034 https://www.ncbi.nlm.nih.gov/pubmed/31171195 https://www.proquest.com/docview/2271879192 https://www.proquest.com/docview/2340037475 |
Volume | 202 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NbtQwELaqcoAL4p_lpzIS13Q3jRNvjlXEagHRE5V6s2zHpltSe9VNEb1UvAPPwUvxJHyTn1YcSiUOq2gt27E8E8838sw3jL2d-0LuWeES63SRCJGbpJS-TmaF9drCg_aWbnQ_HRTLQ_HhKD_aYtWYC0NhlcPZ35_p3Wk9tEyH3ZyuVyvK8YVxJf-ghM6mXfq1EJK0fPfyOswDEHsg3i0T6n2dxTM9IZJBrJ_oh9KyI_DMxE326Sb82dmhxQN2fwCQfL9f40O25cIjdrca67Y9Zr-qSFF1p1Qqy_LatV2wVeDRc72Br2nQqu2q5jrg13zVBDT5-jhu1se6hVHjlOtAJSU4mbiaYyxQIg_xm2t4_L6qqc8pvQAzYdaF-_3jZxW5oSbdNDR_08QLjs3UcMIbwNmaA-fH8w23-sxgwqADjOgXt3nCDhfvPlfLZCjKkFhRiDbRmaXL2kLCsHX0g9IbX_gMwNPDGTOzfC5d4TyghAV8ACrW2d5c-1yTG-7T7CnbDjG454wDKpWiBASZWXpaY2ovRQ0Q43Jolp0wMYpC2YGxnApnNGoMTTtRgwQVSVDNcgUJTtju1bB1T9lx24D5KGf1l-4pmJXbhr4Z9UJBzHTZooPDdipsDRVyB4D-R59MdPw_Mp-wZ71SXa04S1NJdHwv_n9xL9k9-tdHxL1i2-3ZuXsNCNWane4b2WF39t9_XB78AUh3H8w |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKOZRLxZvlaSQ4pvuIk2wOHKqF1ZY-Tq3Um7Edm26bJqsmBXpB_If-Dk78I34J3yROKw6lElIPq5W8sdeamcz3jTyeYezN2MXJyAgbGKviQIhIB2nismAQG6cMImhn6ER3eyee7YmP-9H-EvvV3YWhtErv-1uf3nhrP9L30uwv5nO64wtwpfgghc0CqHxm5aY9-4q4rXq38R5KfjsaTT_sTmaBby0QGBGLOlChoSPHOIF7boroJU672IWgTw4hhR5E48TG1gEQDUAQ3E6Fo7FykaJg0g1DrHuL3RZwF9Q2Ye37ZV4JOL2v9JsGtL3La0P9Q6pqCIFRvaNh2lQMDcVVgHgV4W2Ab3qXrXrGytdbodxjS7a4z1YmXaO4B-znpKQ0vmPqzWV4Zusmu6vgpeOqQnCrMarMPOOqwCc_UsRs-eKgrBYHqgaKcrpcQT0sOGFqxjEXtJQX5Reb8_LbPKNnjukPsBJWndrfP84nJdc0pPKc1s_z8oxDewpRfw7-nHEEFuVpxY060ViwUAVQ-7OtHrK9G1HVI7ZclIV9wji4WSpScJ6BoW-jdeYSkYE12QimbHpMdKqQxpdIp04duexy4Q6l16AkDcpBJKHBHlu7mLZoa4RcN2Hc6Vn-ZewSOHbd1NedXUiomU53VGEhTgnRUOd4MPZ_PBOKpuBQEvXY49aoLnYcDocJ1f97-v-be8VWZrvbW3JrY2fzGbtDv7TpeM_Zcn1yal-Av9X6ZfO-cPbppl_QP5rwWPY |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Colorimetric+detection+of+ascorbic+acid+and+alkaline+phosphatase+activity+based+on+the+novel+oxidase+mimetic+of+Fe%E2%80%93Co+bimetallic+alloy+encapsulated+porous+carbon+nanocages&rft.jtitle=Talanta+%28Oxford%29&rft.au=Wu%2C+Tengteng&rft.au=Ma%2C+Zhangyan&rft.au=Li%2C+Peipei&rft.au=Liu%2C+Meiling&rft.date=2019-09-01&rft.pub=Elsevier+B.V&rft.issn=0039-9140&rft.eissn=1873-3573&rft.volume=202&rft.spage=354&rft.epage=361&rft_id=info:doi/10.1016%2Fj.talanta.2019.05.034&rft.externalDocID=S0039914019305181 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0039-9140&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0039-9140&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0039-9140&client=summon |