Colorimetric detection of ascorbic acid and alkaline phosphatase activity based on the novel oxidase mimetic of Fe–Co bimetallic alloy encapsulated porous carbon nanocages

A novel catalyst of FeCo nanoparticles (FeCo NPs) incorporated porous nanocages (FeCo NPs@PNC) was first synthesized by encapsulating of FeCo alloy into ZIF-8 and further carbonation of the composite. The FeCo NPs@PNC displays enhanced intrinsic oxidase-like activity compared to the individual FeCo...

Full description

Saved in:
Bibliographic Details
Published inTalanta (Oxford) Vol. 202; pp. 354 - 361
Main Authors Wu, Tengteng, Ma, Zhangyan, Li, Peipei, Liu, Meiling, Liu, Xiaoying, Li, Haitao, Zhang, Youyu, Yao, Shouzhuo
Format Journal Article
LanguageEnglish
Published Netherlands Elsevier B.V 01.09.2019
Subjects
Online AccessGet full text

Cover

Loading…
Abstract A novel catalyst of FeCo nanoparticles (FeCo NPs) incorporated porous nanocages (FeCo NPs@PNC) was first synthesized by encapsulating of FeCo alloy into ZIF-8 and further carbonation of the composite. The FeCo NPs@PNC displays enhanced intrinsic oxidase-like activity compared to the individual FeCo NPs and porous nanocages (PNC). The FeCo NPs@PNC can catalyze the oxidation of 3,3′,5,5′-tetramethylbenzidine (TMB) to oxidized TMB (oxTMB) without H2O2, producing a blue color with a maximum absorption peak at 652 nm. The catalytic mechanism was investigated and it found that the intermediate (O2·-) produced from the catalytic process in the system of TMB-O2-FeCo NPs@PNC can accelerate the oxidation of TMB to oxTMB. However, ascorbic acid (AA) can reduce the oxTMB and result in a conspicuous blue color fading. Therefore, a novel colorimetric platform was constructed to quantify AA with the linear range of 0.5–28 μM and detection limit of 0.38 μM (at 3σ/m). Owing to the alkaline phosphatase (ALP) can catalyze the hydrolysis of AA 2-phosphate (AAP) into AA, ALP can also be quantified by the above method. And the linear range for ALP is 0.6–10 U L−1 and the limit of detection is 0.49 U L−1. The FeCo NPs@PNC also shows excellent stability and reproducibility. This study provides a new alternative oxidase mimetic on the basis of easily obtained metal-organic frameworks derivatives to replace the expensive natural enzymes and noble metal based nanoenzymes, which will show great potential in biological assays. (A) The synthesis process of FeCo NPs@PNC. (B) The obtained FeCo NPs@PNC have the intrinsic oxidase-like activity which can catalyze the oxidation of 3,3′,5,5′-tetramethylbenzidine (TMB) without H2O2 producing typical color reaction. Ascorbic acid (AA) can reduce the oxTMB and result in a conspicuous blue color fading. The alkaline phosphatase (ALP) can catalyze the hydrolysis of AA-2-phosphate (AAP) into AA. Therefore, novel colorimetric biosensing platform was constructed based on FeCo NPs@PNC-TMB system to quantify AA and ALP. [Display omitted] •FeCo NPs@PNC was first synthesized with enhanced intrinsic oxidase-like activity.•FeCo NPs@PNC can catalytically TMB oxidization in the absence of H2O2.•The oxidase-like activity stems from the synergistic effect of FeCo NPs and PNC.•The incorporation of FeCo NPs into MOFs solved the instability of FeCo NPs.•FeCo NPs@PNC-based novel colorimetric platform was built for AA and ALP detection.
AbstractList A novel catalyst of FeCo nanoparticles (FeCo NPs) incorporated porous nanocages (FeCo NPs@PNC) was first synthesized by encapsulating of FeCo alloy into ZIF-8 and further carbonation of the composite. The FeCo NPs@PNC displays enhanced intrinsic oxidase-like activity compared to the individual FeCo NPs and porous nanocages (PNC). The FeCo NPs@PNC can catalyze the oxidation of 3,3′,5,5′-tetramethylbenzidine (TMB) to oxidized TMB (oxTMB) without H2O2, producing a blue color with a maximum absorption peak at 652 nm. The catalytic mechanism was investigated and it found that the intermediate (O2·-) produced from the catalytic process in the system of TMB-O2-FeCo NPs@PNC can accelerate the oxidation of TMB to oxTMB. However, ascorbic acid (AA) can reduce the oxTMB and result in a conspicuous blue color fading. Therefore, a novel colorimetric platform was constructed to quantify AA with the linear range of 0.5–28 μM and detection limit of 0.38 μM (at 3σ/m). Owing to the alkaline phosphatase (ALP) can catalyze the hydrolysis of AA 2-phosphate (AAP) into AA, ALP can also be quantified by the above method. And the linear range for ALP is 0.6–10 U L−1 and the limit of detection is 0.49 U L−1. The FeCo NPs@PNC also shows excellent stability and reproducibility. This study provides a new alternative oxidase mimetic on the basis of easily obtained metal-organic frameworks derivatives to replace the expensive natural enzymes and noble metal based nanoenzymes, which will show great potential in biological assays.
A novel catalyst of FeCo nanoparticles (FeCo NPs) incorporated porous nanocages (FeCo NPs@PNC) was first synthesized by encapsulating of FeCo alloy into ZIF-8 and further carbonation of the composite. The FeCo NPs@PNC displays enhanced intrinsic oxidase-like activity compared to the individual FeCo NPs and porous nanocages (PNC). The FeCo NPs@PNC can catalyze the oxidation of 3,3',5,5'-tetramethylbenzidine (TMB) to oxidized TMB (oxTMB) without H2O2, producing a blue color with a maximum absorption peak at 652 nm. The catalytic mechanism was investigated and it found that the intermediate (O2·-) produced from the catalytic process in the system of TMB-O2-FeCo NPs@PNC can accelerate the oxidation of TMB to oxTMB. However, ascorbic acid (AA) can reduce the oxTMB and result in a conspicuous blue color fading. Therefore, a novel colorimetric platform was constructed to quantify AA with the linear range of 0.5-28 μM and detection limit of 0.38 μM (at 3σ/m). Owing to the alkaline phosphatase (ALP) can catalyze the hydrolysis of AA 2-phosphate (AAP) into AA, ALP can also be quantified by the above method. And the linear range for ALP is 0.6-10 U L-1 and the limit of detection is 0.49 U L-1. The FeCo NPs@PNC also shows excellent stability and reproducibility. This study provides a new alternative oxidase mimetic on the basis of easily obtained metal-organic frameworks derivatives to replace the expensive natural enzymes and noble metal based nanoenzymes, which will show great potential in biological assays.A novel catalyst of FeCo nanoparticles (FeCo NPs) incorporated porous nanocages (FeCo NPs@PNC) was first synthesized by encapsulating of FeCo alloy into ZIF-8 and further carbonation of the composite. The FeCo NPs@PNC displays enhanced intrinsic oxidase-like activity compared to the individual FeCo NPs and porous nanocages (PNC). The FeCo NPs@PNC can catalyze the oxidation of 3,3',5,5'-tetramethylbenzidine (TMB) to oxidized TMB (oxTMB) without H2O2, producing a blue color with a maximum absorption peak at 652 nm. The catalytic mechanism was investigated and it found that the intermediate (O2·-) produced from the catalytic process in the system of TMB-O2-FeCo NPs@PNC can accelerate the oxidation of TMB to oxTMB. However, ascorbic acid (AA) can reduce the oxTMB and result in a conspicuous blue color fading. Therefore, a novel colorimetric platform was constructed to quantify AA with the linear range of 0.5-28 μM and detection limit of 0.38 μM (at 3σ/m). Owing to the alkaline phosphatase (ALP) can catalyze the hydrolysis of AA 2-phosphate (AAP) into AA, ALP can also be quantified by the above method. And the linear range for ALP is 0.6-10 U L-1 and the limit of detection is 0.49 U L-1. The FeCo NPs@PNC also shows excellent stability and reproducibility. This study provides a new alternative oxidase mimetic on the basis of easily obtained metal-organic frameworks derivatives to replace the expensive natural enzymes and noble metal based nanoenzymes, which will show great potential in biological assays.
A novel catalyst of FeCo nanoparticles (FeCo NPs) incorporated porous nanocages (FeCo NPs@PNC) was first synthesized by encapsulating of FeCo alloy into ZIF-8 and further carbonation of the composite. The FeCo NPs@PNC displays enhanced intrinsic oxidase-like activity compared to the individual FeCo NPs and porous nanocages (PNC). The FeCo NPs@PNC can catalyze the oxidation of 3,3',5,5'-tetramethylbenzidine (TMB) to oxidized TMB (oxTMB) without H O , producing a blue color with a maximum absorption peak at 652 nm. The catalytic mechanism was investigated and it found that the intermediate (O ) produced from the catalytic process in the system of TMB-O -FeCo NPs@PNC can accelerate the oxidation of TMB to oxTMB. However, ascorbic acid (AA) can reduce the oxTMB and result in a conspicuous blue color fading. Therefore, a novel colorimetric platform was constructed to quantify AA with the linear range of 0.5-28 μM and detection limit of 0.38 μM (at 3σ/m). Owing to the alkaline phosphatase (ALP) can catalyze the hydrolysis of AA 2-phosphate (AAP) into AA, ALP can also be quantified by the above method. And the linear range for ALP is 0.6-10 U L and the limit of detection is 0.49 U L . The FeCo NPs@PNC also shows excellent stability and reproducibility. This study provides a new alternative oxidase mimetic on the basis of easily obtained metal-organic frameworks derivatives to replace the expensive natural enzymes and noble metal based nanoenzymes, which will show great potential in biological assays.
A novel catalyst of FeCo nanoparticles (FeCo NPs) incorporated porous nanocages (FeCo NPs@PNC) was first synthesized by encapsulating of FeCo alloy into ZIF-8 and further carbonation of the composite. The FeCo NPs@PNC displays enhanced intrinsic oxidase-like activity compared to the individual FeCo NPs and porous nanocages (PNC). The FeCo NPs@PNC can catalyze the oxidation of 3,3′,5,5′-tetramethylbenzidine (TMB) to oxidized TMB (oxTMB) without H2O2, producing a blue color with a maximum absorption peak at 652 nm. The catalytic mechanism was investigated and it found that the intermediate (O2·-) produced from the catalytic process in the system of TMB-O2-FeCo NPs@PNC can accelerate the oxidation of TMB to oxTMB. However, ascorbic acid (AA) can reduce the oxTMB and result in a conspicuous blue color fading. Therefore, a novel colorimetric platform was constructed to quantify AA with the linear range of 0.5–28 μM and detection limit of 0.38 μM (at 3σ/m). Owing to the alkaline phosphatase (ALP) can catalyze the hydrolysis of AA 2-phosphate (AAP) into AA, ALP can also be quantified by the above method. And the linear range for ALP is 0.6–10 U L−1 and the limit of detection is 0.49 U L−1. The FeCo NPs@PNC also shows excellent stability and reproducibility. This study provides a new alternative oxidase mimetic on the basis of easily obtained metal-organic frameworks derivatives to replace the expensive natural enzymes and noble metal based nanoenzymes, which will show great potential in biological assays. (A) The synthesis process of FeCo NPs@PNC. (B) The obtained FeCo NPs@PNC have the intrinsic oxidase-like activity which can catalyze the oxidation of 3,3′,5,5′-tetramethylbenzidine (TMB) without H2O2 producing typical color reaction. Ascorbic acid (AA) can reduce the oxTMB and result in a conspicuous blue color fading. The alkaline phosphatase (ALP) can catalyze the hydrolysis of AA-2-phosphate (AAP) into AA. Therefore, novel colorimetric biosensing platform was constructed based on FeCo NPs@PNC-TMB system to quantify AA and ALP. [Display omitted] •FeCo NPs@PNC was first synthesized with enhanced intrinsic oxidase-like activity.•FeCo NPs@PNC can catalytically TMB oxidization in the absence of H2O2.•The oxidase-like activity stems from the synergistic effect of FeCo NPs and PNC.•The incorporation of FeCo NPs into MOFs solved the instability of FeCo NPs.•FeCo NPs@PNC-based novel colorimetric platform was built for AA and ALP detection.
Author Liu, Xiaoying
Zhang, Youyu
Wu, Tengteng
Ma, Zhangyan
Liu, Meiling
Li, Haitao
Li, Peipei
Yao, Shouzhuo
Author_xml – sequence: 1
  givenname: Tengteng
  surname: Wu
  fullname: Wu, Tengteng
  organization: Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research (Ministry of Education, China), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China
– sequence: 2
  givenname: Zhangyan
  surname: Ma
  fullname: Ma, Zhangyan
  organization: Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research (Ministry of Education, China), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China
– sequence: 3
  givenname: Peipei
  surname: Li
  fullname: Li, Peipei
  organization: Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research (Ministry of Education, China), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China
– sequence: 4
  givenname: Meiling
  surname: Liu
  fullname: Liu, Meiling
  email: liumeilingww@126.com, liuml@hunnu.edu.cn
  organization: Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research (Ministry of Education, China), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China
– sequence: 5
  givenname: Xiaoying
  surname: Liu
  fullname: Liu, Xiaoying
  email: xiaoyingliu@126.com
  organization: College of Science, Hunan Agricultural University, Changsha 410128, China
– sequence: 6
  givenname: Haitao
  surname: Li
  fullname: Li, Haitao
  organization: Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research (Ministry of Education, China), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China
– sequence: 7
  givenname: Youyu
  surname: Zhang
  fullname: Zhang, Youyu
  organization: Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research (Ministry of Education, China), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China
– sequence: 8
  givenname: Shouzhuo
  surname: Yao
  fullname: Yao, Shouzhuo
  organization: Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research (Ministry of Education, China), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31171195$$D View this record in MEDLINE/PubMed
BookMark eNqFkk-O0zAYxS00iOkMHAHkJZsE_0niRCwQqhhAGokNrK0vzhfq4sbBdqvpjjtwDi7FSXDUwoJNF5Zl-71n6_18Q64mPyEhzzkrOePNq22ZwMGUoBSMdyWrSyarR2TFWyULWSt5RVaMya7oeMWuyU2MW8aYkEw-IdeSc8V5V6_Ir7V3PtgdpmANHTChSdZP1I8UovGhz7tg7EBhysN9A2cnpPPGx3kDCSLm02QPNh1pn1cDzd60QTr5AzrqH-ywaHbLBTkpp97h7x8_1572yxY4t-Q7548UJwNz3DtIOWX2we8jNRD6HDjB5A18xfiUPB7BRXx2nm_Jl7t3n9cfivtP7z-u394XpmqqVIA0oqpFo7homRCqU2M_NqNsGRsb3vWsbhU2OApeG8HblvcgRQtjDR1T1cjlLXl5yp2D_77HmPTORoMuF475XVrIKnerKlVflgqVkXS8E1n64izd9zsc9Jx7h3DUf2lkQX0SmOBjDDj-k3CmF-p6q8_U9UJds1pn6tn3-j-fsQkWjimAdRfdb05uzI0eLAYdjc00cLAh_wY9eHsh4Q_9hM8T
CitedBy_id crossref_primary_10_1007_s41664_021_00177_w
crossref_primary_10_1016_j_colsurfa_2023_132645
crossref_primary_10_1021_acsami_3c01412
crossref_primary_10_1016_j_microc_2022_107208
crossref_primary_10_1016_j_surfin_2024_105465
crossref_primary_10_1016_j_talanta_2020_121299
crossref_primary_10_1016_j_talanta_2021_122222
crossref_primary_10_1039_D3AN01995K
crossref_primary_10_1016_j_cplett_2021_138749
crossref_primary_10_1016_j_foodchem_2021_131115
crossref_primary_10_2116_analsci_20P353
crossref_primary_10_1002_anbr_202300078
crossref_primary_10_1016_j_matlet_2020_127543
crossref_primary_10_1016_j_matlet_2019_127253
crossref_primary_10_1016_j_jelechem_2019_113573
crossref_primary_10_1007_s00604_022_05481_5
crossref_primary_10_1007_s00604_021_04799_w
crossref_primary_10_1016_j_snb_2024_136178
crossref_primary_10_1016_j_sna_2024_115995
crossref_primary_10_1021_acsanm_1c01495
crossref_primary_10_1016_j_talanta_2022_124236
crossref_primary_10_1016_j_talanta_2023_124537
crossref_primary_10_3390_bios14040178
crossref_primary_10_1002_cjoc_202400938
crossref_primary_10_1016_j_aca_2024_343468
crossref_primary_10_1016_j_microc_2024_111919
crossref_primary_10_1039_D0AN01918F
crossref_primary_10_1039_D1CC00244A
crossref_primary_10_1016_j_microc_2024_111318
crossref_primary_10_1039_D3NJ00136A
crossref_primary_10_1016_j_talanta_2022_123825
crossref_primary_10_1021_acsami_2c08946
crossref_primary_10_1039_D3AN00475A
crossref_primary_10_1016_j_snb_2020_128157
crossref_primary_10_1016_j_snb_2021_129777
crossref_primary_10_1039_D2AY01460B
crossref_primary_10_1039_D4DT01727G
crossref_primary_10_1016_j_heliyon_2023_e12866
crossref_primary_10_1039_D3NJ02611F
crossref_primary_10_1016_j_nantod_2021_101076
crossref_primary_10_1016_j_jhazmat_2022_129199
crossref_primary_10_1016_j_aca_2022_340518
crossref_primary_10_1016_j_talanta_2022_123451
crossref_primary_10_1016_j_talanta_2023_124863
crossref_primary_10_1080_00032719_2024_2392648
crossref_primary_10_1007_s00604_019_3887_6
crossref_primary_10_3390_chemosensors11070398
crossref_primary_10_1016_j_fbio_2024_105572
crossref_primary_10_1016_j_microc_2020_105122
crossref_primary_10_1039_D4QI02555E
crossref_primary_10_1039_D0AN01846E
crossref_primary_10_1007_s00604_021_04803_3
crossref_primary_10_1016_j_talanta_2022_123658
crossref_primary_10_1039_D0AN01830A
crossref_primary_10_1016_j_molliq_2021_115504
crossref_primary_10_1016_j_saa_2021_120468
crossref_primary_10_1016_j_snb_2021_129549
crossref_primary_10_1021_acsanm_2c03340
crossref_primary_10_1016_j_saa_2021_120709
crossref_primary_10_1007_s40242_022_2256_x
crossref_primary_10_1016_j_mtchem_2024_102037
crossref_primary_10_1016_j_aca_2024_343528
crossref_primary_10_1039_C9NJ05751J
crossref_primary_10_1007_s00604_023_06102_5
crossref_primary_10_1039_D2NJ01122K
crossref_primary_10_1016_j_ccr_2023_215370
crossref_primary_10_1016_j_lwt_2021_112821
crossref_primary_10_1021_acs_inorgchem_2c01925
crossref_primary_10_1515_ijfe_2024_0099
crossref_primary_10_1002_asia_202300878
crossref_primary_10_1007_s00604_024_06700_x
crossref_primary_10_1016_j_ijbiomac_2023_123657
crossref_primary_10_1021_acsami_1c00134
crossref_primary_10_1021_acsanm_4c00776
crossref_primary_10_1039_D2AY01927B
Cites_doi 10.1016/j.talanta.2018.09.108
10.1016/j.aca.2018.09.045
10.1007/s00604-018-3224-5
10.1039/C9AN00105K
10.1016/j.aca.2016.11.035
10.1007/s12274-017-1611-6
10.1504/IJNM.2019.100461
10.1016/S0927-7757(01)00614-8
10.1016/j.carbon.2017.01.060
10.1166/jnn.2017.13821
10.1021/jf500950p
10.1016/j.snb.2018.12.052
10.1007/s11051-016-3357-6
10.1039/C4CC01703J
10.1039/C7CC08992A
10.1002/chem.200600428
10.1021/acsami.7b01284
10.1021/acsami.5b01706
10.1021/acsami.6b11965
10.1039/c3cy00268c
10.1039/C5NR03588K
10.1002/anie.200805279
10.1016/j.tca.2017.09.015
10.1016/j.carbon.2014.07.062
10.1021/acsami.7b07501
10.1021/ac403536a
10.1039/c3cc41569d
10.1039/c2tb00389a
10.1038/nchem.1272
10.1039/C6NR08987A
10.1021/acs.analchem.5b02167
10.1021/acsami.6b09893
10.1039/C6TA06403E
10.1039/C6CC00194G
10.1039/c3cc38955c
10.1039/C6RA00096G
10.1002/smll.201102480
10.1039/c2an35700c
10.1039/C3NR06896J
10.1002/anie.201408990
10.1039/C8TB02948B
ContentType Journal Article
Copyright 2019 Elsevier B.V.
Copyright © 2019. Published by Elsevier B.V.
Copyright_xml – notice: 2019 Elsevier B.V.
– notice: Copyright © 2019. Published by Elsevier B.V.
DBID AAYXX
CITATION
NPM
7S9
L.6
7X8
DOI 10.1016/j.talanta.2019.05.034
DatabaseName CrossRef
PubMed
AGRICOLA
AGRICOLA - Academic
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
AGRICOLA
AGRICOLA - Academic
MEDLINE - Academic
DatabaseTitleList AGRICOLA
MEDLINE - Academic
PubMed

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1873-3573
EndPage 361
ExternalDocumentID 31171195
10_1016_j_talanta_2019_05_034
S0039914019305181
Genre Journal Article
GroupedDBID --K
--M
-DZ
-~X
.~1
0R~
123
1B1
1RT
1~.
1~5
4.4
457
4G.
53G
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARLI
AAXUO
ABJNI
ABMAC
ABYKQ
ACDAQ
ACGFS
ACNCT
ACRLP
ADBBV
ADECG
ADEZE
AEBSH
AEKER
AENEX
AFKWA
AFTJW
AFZHZ
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AJOXV
AJSZI
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FLBIZ
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
K-O
KOM
M36
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RNS
ROL
RPZ
SCC
SCH
SDF
SDG
SDP
SES
SPC
SPCBC
SSK
SSZ
T5K
TN5
TWZ
WH7
XPP
YK3
YNT
ZMT
~02
~G-
29Q
3O-
AAHBH
AAQXK
AATTM
AAXKI
AAYJJ
AAYWO
AAYXX
ABDPE
ABEFU
ABFNM
ABWVN
ABXDB
ACNNM
ACRPL
ACVFH
ADCNI
ADIYS
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AJQLL
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
FEDTE
FGOYB
HMU
HVGLF
HZ~
R2-
RIG
SCB
SEW
SSH
WUQ
XOL
NPM
7S9
L.6
7X8
ID FETCH-LOGICAL-c464t-a3c245267128022797fbf6f3800f619b0587e6ef215c21881ba328af5a9074f13
IEDL.DBID .~1
ISSN 0039-9140
1873-3573
IngestDate Fri Jul 11 02:23:59 EDT 2025
Fri Jul 11 14:06:48 EDT 2025
Wed Feb 19 02:33:51 EST 2025
Thu Apr 24 23:01:43 EDT 2025
Tue Jul 01 03:43:49 EDT 2025
Fri Feb 23 02:31:42 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Oxidase mimetics
FeCo NPs
Ascorbic acid (AA)
Metal-organic frameworks
Alkaline phosphatase (ALP)
Colorimetric detection
Language English
License Copyright © 2019. Published by Elsevier B.V.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c464t-a3c245267128022797fbf6f3800f619b0587e6ef215c21881ba328af5a9074f13
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 31171195
PQID 2271879192
PQPubID 24069
PageCount 8
ParticipantIDs proquest_miscellaneous_2340037475
proquest_miscellaneous_2271879192
pubmed_primary_31171195
crossref_primary_10_1016_j_talanta_2019_05_034
crossref_citationtrail_10_1016_j_talanta_2019_05_034
elsevier_sciencedirect_doi_10_1016_j_talanta_2019_05_034
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-09-01
2019-09-00
2019-Sep-01
20190901
PublicationDateYYYYMMDD 2019-09-01
PublicationDate_xml – month: 09
  year: 2019
  text: 2019-09-01
  day: 01
PublicationDecade 2010
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
PublicationTitle Talanta (Oxford)
PublicationTitleAlternate Talanta
PublicationYear 2019
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Zhang, Liu, Walsh, Yao, Kou, Ma (bib5) 2012; 8
Shu, Yan, Chen, Xu, Pang, Hu (bib14) 2017; 9
Song, Wang, Li, Peng, Pan, Niu (bib2) 2018; 1044
Song, Li, Peng, Li, Xu, Pan, Niu (bib3) 2019; 144
Han, Han, Ma, Qu, Kong, Qu (bib33) 2019; 194
Lin, Gao, Zheng, Chi, Chen (bib20) 2014; 86
Zhu, Zhao, Nie, Liu, Yao (bib1) 2015; 87
Xu, Fang, Liu, Pan, Wang, Wang (bib12) 2016; 4
Su, Dong, Wu, Gong, Zhang, Li, Mao, Feng (bib38) 2017; 951
Liu, Wang, Zhao, Zhang, Su, Lv (bib11) 2012; 137
Wang, Yang, Gao, Ni, Zhang, Lin (bib19) 2016; 8
Yang, Xiao, Shi, Shu, Su, Lu, Zhang (bib6) 2018; 54
Qin, Jia, Wang, Wu, Song, Liu (bib7) 2013; 3
Chen, Liu, Zhao, Peng, Chen, Mi, Yin, Li, Zhang, Yao (bib8) 2014; 50
Wang, Zhang, Shang, Zhang, Dong (bib37) 2016; 52
Li, Hao, Tang, Wang, Liu, Wang, Zhu, Lu, Tang (bib18) 2017; 9
Yang, Zhao, Zeng (bib30) 2016; 6
Zhao, Xie, Yuan, Li, Liu, Zheng, Hou (bib41) 2013; 1
Yu, Chen, Jiang, Tseng (bib42) 2014; 6
Ravikovitch, Neimark (bib29) 2001; 187
Koo, Yu, Choi, Jang, Cheong, Kim (bib17) 2017; 9
Liu, Han, Li, Fan, Yang, Li, Luo (bib32) 2019; 283
Yin, Gao, Xiao, Lin, Lin, Cai, Yang (bib10) 2016; 8
Torad, Hu, Kamachi, Takai, Imura, Naito, Yamauchi (bib23) 2013; 49
Chen, Chen, Li, Pang, Lin, Guo, Fu (bib9) 2017; 17
Lin, Fischer, Chen, DeVos (bib15) 2010; 24
Qin, Su, Yang, Ma, Zhang, Chen (bib39) 2014; 62
Lu, Li, Guo, Farha, Hauser, Qi, Wang, Wang, Han, Liu, DuChene, Zhang, Zhang, Chen, Ma, Loo, Wei, Yang, Hupp, Huo (bib27) 2012; 4
Luo, Lin, Zheng, Lin, Chi (bib28) 2015; 7
Polarz, Orlov, Schueth, Lu (bib13) 2007; 13
Asati, Santra, Kaittanis, Nath, Perez (bib36) 2009; 48
Guo, Huang, Liu (bib40) 2016; 18
Bai, Xia, Chen, Su, Zhu (bib22) 2014; 79
Dai, Shi, Huo, Wang (bib21) 2017; 657
Aljerf, Nadra (bib31) 2019
Cen, Tang, Kong, Wu, Yuan, Yu, Chu (bib35) 2015; 7
Wu, Hou1, Ma, Liu, Liu, Z, Yao (bib4) 2019; 186
Zhong, Wang, Zhang, Xu, Xing, Xu, Zhang, Zhang (bib24) 2014; 53
Chen, Cao, Shi, Liu, Huang (bib26) 2013; 49
Wang, Chen, Quan, Yu, Zhang (bib25) 2017; 115
Du, Wang, Long, Xiong (bib16) 2017; 10
Han, Niu, Liu, Niu, Xu (bib34) 2019; 7
Ravikovitch (10.1016/j.talanta.2019.05.034_bib29) 2001; 187
Zhang (10.1016/j.talanta.2019.05.034_bib5) 2012; 8
Torad (10.1016/j.talanta.2019.05.034_bib23) 2013; 49
Li (10.1016/j.talanta.2019.05.034_bib18) 2017; 9
Han (10.1016/j.talanta.2019.05.034_bib34) 2019; 7
Polarz (10.1016/j.talanta.2019.05.034_bib13) 2007; 13
Su (10.1016/j.talanta.2019.05.034_bib38) 2017; 951
Wang (10.1016/j.talanta.2019.05.034_bib19) 2016; 8
Han (10.1016/j.talanta.2019.05.034_bib33) 2019; 194
Zhu (10.1016/j.talanta.2019.05.034_bib1) 2015; 87
Lin (10.1016/j.talanta.2019.05.034_bib20) 2014; 86
Wang (10.1016/j.talanta.2019.05.034_bib37) 2016; 52
Yang (10.1016/j.talanta.2019.05.034_bib6) 2018; 54
Cen (10.1016/j.talanta.2019.05.034_bib35) 2015; 7
Du (10.1016/j.talanta.2019.05.034_bib16) 2017; 10
Guo (10.1016/j.talanta.2019.05.034_bib40) 2016; 18
Shu (10.1016/j.talanta.2019.05.034_bib14) 2017; 9
Lin (10.1016/j.talanta.2019.05.034_bib15) 2010; 24
Wang (10.1016/j.talanta.2019.05.034_bib25) 2017; 115
Luo (10.1016/j.talanta.2019.05.034_bib28) 2015; 7
Lu (10.1016/j.talanta.2019.05.034_bib27) 2012; 4
Aljerf (10.1016/j.talanta.2019.05.034_bib31) 2019
Bai (10.1016/j.talanta.2019.05.034_bib22) 2014; 79
Song (10.1016/j.talanta.2019.05.034_bib2) 2018; 1044
Chen (10.1016/j.talanta.2019.05.034_bib8) 2014; 50
Zhong (10.1016/j.talanta.2019.05.034_bib24) 2014; 53
Song (10.1016/j.talanta.2019.05.034_bib3) 2019; 144
Asati (10.1016/j.talanta.2019.05.034_bib36) 2009; 48
Xu (10.1016/j.talanta.2019.05.034_bib12) 2016; 4
Yin (10.1016/j.talanta.2019.05.034_bib10) 2016; 8
Zhao (10.1016/j.talanta.2019.05.034_bib41) 2013; 1
Qin (10.1016/j.talanta.2019.05.034_bib7) 2013; 3
Chen (10.1016/j.talanta.2019.05.034_bib26) 2013; 49
Koo (10.1016/j.talanta.2019.05.034_bib17) 2017; 9
Liu (10.1016/j.talanta.2019.05.034_bib32) 2019; 283
Yu (10.1016/j.talanta.2019.05.034_bib42) 2014; 6
Dai (10.1016/j.talanta.2019.05.034_bib21) 2017; 657
Yang (10.1016/j.talanta.2019.05.034_bib30) 2016; 6
Qin (10.1016/j.talanta.2019.05.034_bib39) 2014; 62
Wu (10.1016/j.talanta.2019.05.034_bib4) 2019; 186
Chen (10.1016/j.talanta.2019.05.034_bib9) 2017; 17
Liu (10.1016/j.talanta.2019.05.034_bib11) 2012; 137
References_xml – volume: 54
  start-page: 818
  year: 2018
  end-page: 820
  ident: bib6
  article-title: A dual-cell device designed as an oxidase mimic and its use for the study of oxidase-like nanozymes
  publication-title: Chem. Commun.
– volume: 283
  start-page: 515
  year: 2019
  end-page: 523
  ident: bib32
  article-title: A ratiometric fluorescent strategy for alkaline phosphatase activity assay based on g-C
  publication-title: Sensor. Actuator. B Chem.
– volume: 144
  start-page: 2416
  year: 2019
  end-page: 2422
  ident: bib3
  article-title: Enzyme-triggered in situ formation of Ag nanoparticles with oxidase-mimicking activity for amplified detection of alkaline phosphatase activity
  publication-title: Analyst
– volume: 187
  start-page: 11
  year: 2001
  end-page: 21
  ident: bib29
  article-title: Characterization of nanoporous materials from adsorption and desorption isotherms
  publication-title: Colloid. Surf. Physicochem. Eng. Asp.
– volume: 8
  start-page: 32477
  year: 2016
  end-page: 32487
  ident: bib19
  article-title: Graphene oxide directed one-step synthesis of flowerlike graphene@HKUST-1 for enzyme-free detection of hydrogen peroxide in biological samples
  publication-title: ACS Appl. Mater. Interfaces
– volume: 3
  start-page: 2761
  year: 2013
  end-page: 2768
  ident: bib7
  article-title: Hemin@metal-organic framework with peroxidase-like activity and its application to glucose detection
  publication-title: Catal. Sci. Technol.
– volume: 62
  start-page: 5827
  year: 2014
  end-page: 5834
  ident: bib39
  article-title: Colorimetric Detection of sulfite in foods by a TMB-O
  publication-title: J. Agric. Food Chem.
– volume: 17
  start-page: 5730
  year: 2017
  end-page: 5734
  ident: bib9
  article-title: Water-dispersible silicon dots as a peroxidase mimetic for the highly-sensitive colorimetric detection of glucose
  publication-title: J. Nanosci. Nanotechnol.
– volume: 6
  start-page: 23403
  year: 2016
  end-page: 23410
  ident: bib30
  article-title: Well-defined gold nanoparticle@N-doped porous carbon prepared from metal nanoparticle@metal-organic frameworks for electrochemical sensing of hydrazine
  publication-title: RSC Adv.
– volume: 18
  start-page: 74
  year: 2016
  ident: bib40
  article-title: Biocompatibility selenium nanoparticles with an intrinsic oxidase-like activity
  publication-title: J. Nanoparticle Res.
– volume: 79
  start-page: 213
  year: 2014
  end-page: 226
  ident: bib22
  article-title: Preparation and carbon dioxide uptake capacity of N-doped porous carbon materials derived from direct carbonization of zeolitic imidazolate framework
  publication-title: Carbon
– volume: 48
  start-page: 2308
  year: 2009
  end-page: 2312
  ident: bib36
  article-title: Oxidase-like activity of polymer-coated cerium oxide nanoparticles
  publication-title: Angew. Chem. Int. Ed.
– volume: 6
  start-page: 9618
  year: 2014
  end-page: 9624
  ident: bib42
  article-title: Lysozyme-directed synthesis of platinum nanoclusters as a mimic oxidase
  publication-title: Nanoscale
– volume: 1
  start-page: 1263
  year: 2013
  end-page: 1269
  ident: bib41
  article-title: A hierarchical Co-Fe LDH rope-like nanostructure: facile preparation from hexagonal lyotropic liquid crystals and intrinsic oxidase-like catalytic activity
  publication-title: J. Mater. Chem. B
– volume: 50
  start-page: 6771
  year: 2014
  end-page: 6774
  ident: bib8
  article-title: Water-dispersible silicon dots as a peroxidase mimetic for the highly-sensitive colorimetric detection of glucose
  publication-title: Chem. Commun.
– volume: 9
  start-page: 2178
  year: 2017
  end-page: 2187
  ident: bib18
  article-title: Supercapacitor electrode materials with hierarchically structured pores from carbonization of MWCNTs and ZIF-8 composites
  publication-title: Nanoscale
– year: 2019
  ident: bib31
  article-title: Developed greener method based on MW implementation in manufacturing CNFs
  publication-title: Int. J. Nanomanuf.
– volume: 7
  start-page: 11322
  year: 2015
  end-page: 11329
  ident: bib28
  article-title: Encapsulation of hemin in metal organic frameworks for catalyzing the chemiluminescence reaction of the H
  publication-title: ACS Appl. Mater. Interfaces
– volume: 7
  start-page: 13951
  year: 2015
  end-page: 13957
  ident: bib35
  article-title: A cobalt oxyhydroxide-modified upconversion nanosystem for sensitive fluorescence sensing of ascorbic acid in human plasma
  publication-title: Nanoscale
– volume: 87
  start-page: 8524
  year: 2015
  end-page: 8530
  ident: bib1
  article-title: Non-Redox Modulated fluorescence strategy for sensitive and selective ascorbic acid detection with highly photoluminescent nitrogen-doped carbon nanoparticles via solid-state synthesis
  publication-title: Anal. Chem.
– volume: 24
  start-page: 3681
  year: 2010
  end-page: 3880
  ident: bib15
  article-title: Nanoscale metal-organic frameworks: MRI contrast agents and beyond metals@MOFs-loading MOFs with metal nanoparticles for hybrid functions construction of three-dimensional Uranyl-Organic Frameworks with Benzenetricarboxylate ligands Silica-MOF composite
  publication-title: Eur. J. Inorg. Chem.
– volume: 194
  start-page: 55
  year: 2019
  end-page: 62
  ident: bib33
  article-title: Self-assembled gold nanoclusters for fluorescence turn-on and colorimetric dual-readout detection of alkaline phosphatase activity via DCIP-mediated fluorescence resonance energy transfer
  publication-title: Talanta
– volume: 9
  start-page: 22342
  year: 2017
  end-page: 22349
  ident: bib14
  article-title: Ni and NiO nanoparticles decorated metal-organic framework nanosheets: facile synthesis and high-performance nonenzymatic glucose detection in human serum
  publication-title: ACS Appl. Mater. Interfaces
– volume: 10
  start-page: 3228
  year: 2017
  end-page: 3237
  ident: bib16
  article-title: N-doped carbon-stabilized PtCo nanoparticles derived from Pt@ZIF-67: highly active and durable catalysts for oxygen reduction reaction
  publication-title: Nano Res.
– volume: 13
  start-page: 592
  year: 2007
  end-page: 597
  ident: bib13
  article-title: Preparation of high-surface-area zinc oxide with ordered porosity, different pore sizes, and nanocrystalline walls
  publication-title: Chem. Eur J.
– volume: 4
  start-page: 15880
  year: 2016
  end-page: 15887
  ident: bib12
  article-title: One-pot synthesis of nanoscale carbon dots-embedded metal-organic frameworks at room temperature for enhanced chemical sensing
  publication-title: J. Mater. Chem.
– volume: 53
  start-page: 14235
  year: 2014
  end-page: 14239
  ident: bib24
  article-title: ZIF-8 derived graphene-based nitrogen-doped porous carbon sheets as highly efficient and durable oxygen reduction electrocatalysts
  publication-title: Angew. Chem. Int. Ed.
– volume: 1044
  start-page: 154
  year: 2018
  end-page: 161
  ident: bib2
  article-title: Sensitive and selective colorimetric detection of alkaline phosphatase activity based on phosphate anion-quenched oxidase-mimicking activity of Ce(IV) ions
  publication-title: Anal. Chim. Acta
– volume: 8
  start-page: 29052
  year: 2016
  end-page: 29061
  ident: bib10
  article-title: Protein-metal organic framework hybrid composites with intrinsic peroxidase-like activity as a colorimetric biosensing platform
  publication-title: ACS Appl. Mater. Interfaces
– volume: 49
  start-page: 2521
  year: 2013
  end-page: 2523
  ident: bib23
  article-title: Facile synthesis of nanoporous carbons with controlled particle sizes by direct carbonization of monodispersed ZIF-8 crystals
  publication-title: Chem. Commun.
– volume: 186
  start-page: 123
  year: 2019
  ident: bib4
  article-title: Colorimetric determination of ascorbic acid and the activity of alkaline phosphatase based on the inhibition of the peroxidase-like activity of citric acid-capped Prussian Blue nanocubes
  publication-title: Microchim. Acta
– volume: 657
  start-page: 39
  year: 2017
  end-page: 46
  ident: bib21
  article-title: Study on the poly(lactic acid)/nano MOFs composites: Insights into the MOFs-induced crystallization mechanism and the effects of MOFs on the properties of the composites
  publication-title: Thermochim. Acta
– volume: 4
  start-page: 310
  year: 2012
  end-page: 316
  ident: bib27
  article-title: Imparting functionality to a metal-organic framework material by controlled nanoparticle encapsulation
  publication-title: Nat. Chem.
– volume: 49
  start-page: 5013
  year: 2013
  end-page: 5015
  ident: bib26
  article-title: Fe-Co bimetallic alloy nanoparticles as a highly active peroxidase mimetic and its application in biosensing
  publication-title: Chem. Commun.
– volume: 115
  start-page: 730
  year: 2017
  end-page: 739
  ident: bib25
  article-title: Enhanced activation of peroxymonosulfate by nitrogen doped porous carbon for effective removal of organic pollutants
  publication-title: Carbon
– volume: 52
  start-page: 5410
  year: 2016
  end-page: 5413
  ident: bib37
  article-title: Triple-enzyme mimetic activity of nickel-palladium hollow nanoparticles and their application in colorimetric biosensing of glucose
  publication-title: Chem. Commun.
– volume: 137
  start-page: 4552
  year: 2012
  end-page: 4558
  ident: bib11
  article-title: BSA-templated MnO
  publication-title: Analyst
– volume: 951
  start-page: 124
  year: 2017
  end-page: 132
  ident: bib38
  article-title: The peroxidase and oxidase-like activity of NiCo
  publication-title: Anal. Chim. Acta
– volume: 9
  start-page: 8201
  year: 2017
  end-page: 8210
  ident: bib17
  article-title: Nanoscale Pd catalyst functionalized Co
  publication-title: ACS Appl. Mater. Interfaces
– volume: 8
  start-page: 2948
  year: 2012
  end-page: 2953
  ident: bib5
  article-title: Caged-protein-confined bimetallic structural assemblies with mimetic peroxidase activity
  publication-title: Small
– volume: 86
  start-page: 1223
  year: 2014
  end-page: 1228
  ident: bib20
  article-title: Encapsulation of strongly fluorescent carbon quantum dots in metal-organic frameworks for enhancing chemical sensing
  publication-title: Anal. Chem.
– volume: 7
  start-page: 897
  year: 2019
  end-page: 902
  ident: bib34
  article-title: A rational strategy to develop a boron nitride quantum dot-based molecular logic gate and fluorescent assay of alkaline phosphatase activity
  publication-title: J. Mater. Chem. B
– volume: 194
  start-page: 55
  year: 2019
  ident: 10.1016/j.talanta.2019.05.034_bib33
  article-title: Self-assembled gold nanoclusters for fluorescence turn-on and colorimetric dual-readout detection of alkaline phosphatase activity via DCIP-mediated fluorescence resonance energy transfer
  publication-title: Talanta
  doi: 10.1016/j.talanta.2018.09.108
– volume: 1044
  start-page: 154
  year: 2018
  ident: 10.1016/j.talanta.2019.05.034_bib2
  article-title: Sensitive and selective colorimetric detection of alkaline phosphatase activity based on phosphate anion-quenched oxidase-mimicking activity of Ce(IV) ions
  publication-title: Anal. Chim. Acta
  doi: 10.1016/j.aca.2018.09.045
– volume: 186
  start-page: 123
  year: 2019
  ident: 10.1016/j.talanta.2019.05.034_bib4
  article-title: Colorimetric determination of ascorbic acid and the activity of alkaline phosphatase based on the inhibition of the peroxidase-like activity of citric acid-capped Prussian Blue nanocubes
  publication-title: Microchim. Acta
  doi: 10.1007/s00604-018-3224-5
– volume: 144
  start-page: 2416
  year: 2019
  ident: 10.1016/j.talanta.2019.05.034_bib3
  article-title: Enzyme-triggered in situ formation of Ag nanoparticles with oxidase-mimicking activity for amplified detection of alkaline phosphatase activity
  publication-title: Analyst
  doi: 10.1039/C9AN00105K
– volume: 951
  start-page: 124
  year: 2017
  ident: 10.1016/j.talanta.2019.05.034_bib38
  article-title: The peroxidase and oxidase-like activity of NiCo2O4 mesoporous spheres: Mechanistic understanding and colorimetric biosensing
  publication-title: Anal. Chim. Acta
  doi: 10.1016/j.aca.2016.11.035
– volume: 10
  start-page: 3228
  year: 2017
  ident: 10.1016/j.talanta.2019.05.034_bib16
  article-title: N-doped carbon-stabilized PtCo nanoparticles derived from Pt@ZIF-67: highly active and durable catalysts for oxygen reduction reaction
  publication-title: Nano Res.
  doi: 10.1007/s12274-017-1611-6
– year: 2019
  ident: 10.1016/j.talanta.2019.05.034_bib31
  article-title: Developed greener method based on MW implementation in manufacturing CNFs
  publication-title: Int. J. Nanomanuf.
  doi: 10.1504/IJNM.2019.100461
– volume: 187
  start-page: 11
  year: 2001
  ident: 10.1016/j.talanta.2019.05.034_bib29
  article-title: Characterization of nanoporous materials from adsorption and desorption isotherms
  publication-title: Colloid. Surf. Physicochem. Eng. Asp.
  doi: 10.1016/S0927-7757(01)00614-8
– volume: 115
  start-page: 730
  year: 2017
  ident: 10.1016/j.talanta.2019.05.034_bib25
  article-title: Enhanced activation of peroxymonosulfate by nitrogen doped porous carbon for effective removal of organic pollutants
  publication-title: Carbon
  doi: 10.1016/j.carbon.2017.01.060
– volume: 17
  start-page: 5730
  year: 2017
  ident: 10.1016/j.talanta.2019.05.034_bib9
  article-title: Water-dispersible silicon dots as a peroxidase mimetic for the highly-sensitive colorimetric detection of glucose
  publication-title: J. Nanosci. Nanotechnol.
  doi: 10.1166/jnn.2017.13821
– volume: 62
  start-page: 5827
  year: 2014
  ident: 10.1016/j.talanta.2019.05.034_bib39
  article-title: Colorimetric Detection of sulfite in foods by a TMB-O2-Co3O4 nanoparticles detection system
  publication-title: J. Agric. Food Chem.
  doi: 10.1021/jf500950p
– volume: 283
  start-page: 515
  year: 2019
  ident: 10.1016/j.talanta.2019.05.034_bib32
  article-title: A ratiometric fluorescent strategy for alkaline phosphatase activity assay based on g-C3N4/CoOOH nanohybrid via target-triggered competitive redox reaction
  publication-title: Sensor. Actuator. B Chem.
  doi: 10.1016/j.snb.2018.12.052
– volume: 18
  start-page: 74
  issue: 18
  year: 2016
  ident: 10.1016/j.talanta.2019.05.034_bib40
  article-title: Biocompatibility selenium nanoparticles with an intrinsic oxidase-like activity
  publication-title: J. Nanoparticle Res.
  doi: 10.1007/s11051-016-3357-6
– volume: 50
  start-page: 6771
  year: 2014
  ident: 10.1016/j.talanta.2019.05.034_bib8
  article-title: Water-dispersible silicon dots as a peroxidase mimetic for the highly-sensitive colorimetric detection of glucose
  publication-title: Chem. Commun.
  doi: 10.1039/C4CC01703J
– volume: 54
  start-page: 818
  year: 2018
  ident: 10.1016/j.talanta.2019.05.034_bib6
  article-title: A dual-cell device designed as an oxidase mimic and its use for the study of oxidase-like nanozymes
  publication-title: Chem. Commun.
  doi: 10.1039/C7CC08992A
– volume: 13
  start-page: 592
  year: 2007
  ident: 10.1016/j.talanta.2019.05.034_bib13
  article-title: Preparation of high-surface-area zinc oxide with ordered porosity, different pore sizes, and nanocrystalline walls
  publication-title: Chem. Eur J.
  doi: 10.1002/chem.200600428
– volume: 9
  start-page: 8201
  year: 2017
  ident: 10.1016/j.talanta.2019.05.034_bib17
  article-title: Nanoscale Pd catalyst functionalized Co3O4 hollow nanocages using MOF templates for selective detection of acetone molecules in exhaled breath
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.7b01284
– volume: 7
  start-page: 11322
  year: 2015
  ident: 10.1016/j.talanta.2019.05.034_bib28
  article-title: Encapsulation of hemin in metal organic frameworks for catalyzing the chemiluminescence reaction of the H2O2-luminol system and detecting glucose in the neutral condition
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.5b01706
– volume: 8
  start-page: 32477
  year: 2016
  ident: 10.1016/j.talanta.2019.05.034_bib19
  article-title: Graphene oxide directed one-step synthesis of flowerlike graphene@HKUST-1 for enzyme-free detection of hydrogen peroxide in biological samples
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.6b11965
– volume: 3
  start-page: 2761
  year: 2013
  ident: 10.1016/j.talanta.2019.05.034_bib7
  article-title: Hemin@metal-organic framework with peroxidase-like activity and its application to glucose detection
  publication-title: Catal. Sci. Technol.
  doi: 10.1039/c3cy00268c
– volume: 7
  start-page: 13951
  year: 2015
  ident: 10.1016/j.talanta.2019.05.034_bib35
  article-title: A cobalt oxyhydroxide-modified upconversion nanosystem for sensitive fluorescence sensing of ascorbic acid in human plasma
  publication-title: Nanoscale
  doi: 10.1039/C5NR03588K
– volume: 48
  start-page: 2308
  year: 2009
  ident: 10.1016/j.talanta.2019.05.034_bib36
  article-title: Oxidase-like activity of polymer-coated cerium oxide nanoparticles
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.200805279
– volume: 657
  start-page: 39
  year: 2017
  ident: 10.1016/j.talanta.2019.05.034_bib21
  article-title: Study on the poly(lactic acid)/nano MOFs composites: Insights into the MOFs-induced crystallization mechanism and the effects of MOFs on the properties of the composites
  publication-title: Thermochim. Acta
  doi: 10.1016/j.tca.2017.09.015
– volume: 79
  start-page: 213
  year: 2014
  ident: 10.1016/j.talanta.2019.05.034_bib22
  article-title: Preparation and carbon dioxide uptake capacity of N-doped porous carbon materials derived from direct carbonization of zeolitic imidazolate framework
  publication-title: Carbon
  doi: 10.1016/j.carbon.2014.07.062
– volume: 9
  start-page: 22342
  year: 2017
  ident: 10.1016/j.talanta.2019.05.034_bib14
  article-title: Ni and NiO nanoparticles decorated metal-organic framework nanosheets: facile synthesis and high-performance nonenzymatic glucose detection in human serum
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.7b07501
– volume: 86
  start-page: 1223
  year: 2014
  ident: 10.1016/j.talanta.2019.05.034_bib20
  article-title: Encapsulation of strongly fluorescent carbon quantum dots in metal-organic frameworks for enhancing chemical sensing
  publication-title: Anal. Chem.
  doi: 10.1021/ac403536a
– volume: 49
  start-page: 5013
  year: 2013
  ident: 10.1016/j.talanta.2019.05.034_bib26
  article-title: Fe-Co bimetallic alloy nanoparticles as a highly active peroxidase mimetic and its application in biosensing
  publication-title: Chem. Commun.
  doi: 10.1039/c3cc41569d
– volume: 1
  start-page: 1263
  year: 2013
  ident: 10.1016/j.talanta.2019.05.034_bib41
  article-title: A hierarchical Co-Fe LDH rope-like nanostructure: facile preparation from hexagonal lyotropic liquid crystals and intrinsic oxidase-like catalytic activity
  publication-title: J. Mater. Chem. B
  doi: 10.1039/c2tb00389a
– volume: 4
  start-page: 310
  year: 2012
  ident: 10.1016/j.talanta.2019.05.034_bib27
  article-title: Imparting functionality to a metal-organic framework material by controlled nanoparticle encapsulation
  publication-title: Nat. Chem.
  doi: 10.1038/nchem.1272
– volume: 9
  start-page: 2178
  year: 2017
  ident: 10.1016/j.talanta.2019.05.034_bib18
  article-title: Supercapacitor electrode materials with hierarchically structured pores from carbonization of MWCNTs and ZIF-8 composites
  publication-title: Nanoscale
  doi: 10.1039/C6NR08987A
– volume: 87
  start-page: 8524
  year: 2015
  ident: 10.1016/j.talanta.2019.05.034_bib1
  article-title: Non-Redox Modulated fluorescence strategy for sensitive and selective ascorbic acid detection with highly photoluminescent nitrogen-doped carbon nanoparticles via solid-state synthesis
  publication-title: Anal. Chem.
  doi: 10.1021/acs.analchem.5b02167
– volume: 8
  start-page: 29052
  year: 2016
  ident: 10.1016/j.talanta.2019.05.034_bib10
  article-title: Protein-metal organic framework hybrid composites with intrinsic peroxidase-like activity as a colorimetric biosensing platform
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.6b09893
– volume: 24
  start-page: 3681
  year: 2010
  ident: 10.1016/j.talanta.2019.05.034_bib15
  article-title: Nanoscale metal-organic frameworks: MRI contrast agents and beyond metals@MOFs-loading MOFs with metal nanoparticles for hybrid functions construction of three-dimensional Uranyl-Organic Frameworks with Benzenetricarboxylate ligands Silica-MOF composite
  publication-title: Eur. J. Inorg. Chem.
– volume: 4
  start-page: 15880
  year: 2016
  ident: 10.1016/j.talanta.2019.05.034_bib12
  article-title: One-pot synthesis of nanoscale carbon dots-embedded metal-organic frameworks at room temperature for enhanced chemical sensing
  publication-title: J. Mater. Chem.
  doi: 10.1039/C6TA06403E
– volume: 52
  start-page: 5410
  year: 2016
  ident: 10.1016/j.talanta.2019.05.034_bib37
  article-title: Triple-enzyme mimetic activity of nickel-palladium hollow nanoparticles and their application in colorimetric biosensing of glucose
  publication-title: Chem. Commun.
  doi: 10.1039/C6CC00194G
– volume: 49
  start-page: 2521
  year: 2013
  ident: 10.1016/j.talanta.2019.05.034_bib23
  article-title: Facile synthesis of nanoporous carbons with controlled particle sizes by direct carbonization of monodispersed ZIF-8 crystals
  publication-title: Chem. Commun.
  doi: 10.1039/c3cc38955c
– volume: 6
  start-page: 23403
  year: 2016
  ident: 10.1016/j.talanta.2019.05.034_bib30
  article-title: Well-defined gold nanoparticle@N-doped porous carbon prepared from metal nanoparticle@metal-organic frameworks for electrochemical sensing of hydrazine
  publication-title: RSC Adv.
  doi: 10.1039/C6RA00096G
– volume: 8
  start-page: 2948
  year: 2012
  ident: 10.1016/j.talanta.2019.05.034_bib5
  article-title: Caged-protein-confined bimetallic structural assemblies with mimetic peroxidase activity
  publication-title: Small
  doi: 10.1002/smll.201102480
– volume: 137
  start-page: 4552
  year: 2012
  ident: 10.1016/j.talanta.2019.05.034_bib11
  article-title: BSA-templated MnO2 nanoparticles as both peroxidase and oxidase mimics
  publication-title: Analyst
  doi: 10.1039/c2an35700c
– volume: 6
  start-page: 9618
  year: 2014
  ident: 10.1016/j.talanta.2019.05.034_bib42
  article-title: Lysozyme-directed synthesis of platinum nanoclusters as a mimic oxidase
  publication-title: Nanoscale
  doi: 10.1039/C3NR06896J
– volume: 53
  start-page: 14235
  issue: 51
  year: 2014
  ident: 10.1016/j.talanta.2019.05.034_bib24
  article-title: ZIF-8 derived graphene-based nitrogen-doped porous carbon sheets as highly efficient and durable oxygen reduction electrocatalysts
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201408990
– volume: 7
  start-page: 897
  year: 2019
  ident: 10.1016/j.talanta.2019.05.034_bib34
  article-title: A rational strategy to develop a boron nitride quantum dot-based molecular logic gate and fluorescent assay of alkaline phosphatase activity
  publication-title: J. Mater. Chem. B
  doi: 10.1039/C8TB02948B
SSID ssj0002303
Score 2.5493176
Snippet A novel catalyst of FeCo nanoparticles (FeCo NPs) incorporated porous nanocages (FeCo NPs@PNC) was first synthesized by encapsulating of FeCo alloy into ZIF-8...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 354
SubjectTerms alkaline phosphatase
Alkaline phosphatase (ALP)
alloys
ascorbic acid
Ascorbic acid (AA)
bioassays
carbon
carbonation
catalysts
catalytic activity
color
Colorimetric detection
colorimetry
coordination polymers
detection limit
encapsulation
enzyme activity
FeCo NPs
hydrogen peroxide
hydrolysis
Metal-organic frameworks
nanoparticles
Oxidase mimetics
oxidation
superoxide anion
Title Colorimetric detection of ascorbic acid and alkaline phosphatase activity based on the novel oxidase mimetic of Fe–Co bimetallic alloy encapsulated porous carbon nanocages
URI https://dx.doi.org/10.1016/j.talanta.2019.05.034
https://www.ncbi.nlm.nih.gov/pubmed/31171195
https://www.proquest.com/docview/2271879192
https://www.proquest.com/docview/2340037475
Volume 202
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NbtQwELaqcoAL4p_lpzIS13Q3jRNvjlXEagHRE5V6s2zHpltSe9VNEb1UvAPPwUvxJHyTn1YcSiUOq2gt27E8E8838sw3jL2d-0LuWeES63SRCJGbpJS-TmaF9drCg_aWbnQ_HRTLQ_HhKD_aYtWYC0NhlcPZ35_p3Wk9tEyH3ZyuVyvK8YVxJf-ghM6mXfq1EJK0fPfyOswDEHsg3i0T6n2dxTM9IZJBrJ_oh9KyI_DMxE326Sb82dmhxQN2fwCQfL9f40O25cIjdrca67Y9Zr-qSFF1p1Qqy_LatV2wVeDRc72Br2nQqu2q5jrg13zVBDT5-jhu1se6hVHjlOtAJSU4mbiaYyxQIg_xm2t4_L6qqc8pvQAzYdaF-_3jZxW5oSbdNDR_08QLjs3UcMIbwNmaA-fH8w23-sxgwqADjOgXt3nCDhfvPlfLZCjKkFhRiDbRmaXL2kLCsHX0g9IbX_gMwNPDGTOzfC5d4TyghAV8ACrW2d5c-1yTG-7T7CnbDjG454wDKpWiBASZWXpaY2ovRQ0Q43Jolp0wMYpC2YGxnApnNGoMTTtRgwQVSVDNcgUJTtju1bB1T9lx24D5KGf1l-4pmJXbhr4Z9UJBzHTZooPDdipsDRVyB4D-R59MdPw_Mp-wZ71SXa04S1NJdHwv_n9xL9k9-tdHxL1i2-3ZuXsNCNWane4b2WF39t9_XB78AUh3H8w
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKOZRLxZvlaSQ4pvuIk2wOHKqF1ZY-Tq3Um7Edm26bJqsmBXpB_If-Dk78I34J3yROKw6lElIPq5W8sdeamcz3jTyeYezN2MXJyAgbGKviQIhIB2nismAQG6cMImhn6ER3eyee7YmP-9H-EvvV3YWhtErv-1uf3nhrP9L30uwv5nO64wtwpfgghc0CqHxm5aY9-4q4rXq38R5KfjsaTT_sTmaBby0QGBGLOlChoSPHOIF7boroJU672IWgTw4hhR5E48TG1gEQDUAQ3E6Fo7FykaJg0g1DrHuL3RZwF9Q2Ye37ZV4JOL2v9JsGtL3La0P9Q6pqCIFRvaNh2lQMDcVVgHgV4W2Ab3qXrXrGytdbodxjS7a4z1YmXaO4B-znpKQ0vmPqzWV4Zusmu6vgpeOqQnCrMarMPOOqwCc_UsRs-eKgrBYHqgaKcrpcQT0sOGFqxjEXtJQX5Reb8_LbPKNnjukPsBJWndrfP84nJdc0pPKc1s_z8oxDewpRfw7-nHEEFuVpxY060ViwUAVQ-7OtHrK9G1HVI7ZclIV9wji4WSpScJ6BoW-jdeYSkYE12QimbHpMdKqQxpdIp04duexy4Q6l16AkDcpBJKHBHlu7mLZoa4RcN2Hc6Vn-ZewSOHbd1NedXUiomU53VGEhTgnRUOd4MPZ_PBOKpuBQEvXY49aoLnYcDocJ1f97-v-be8VWZrvbW3JrY2fzGbtDv7TpeM_Zcn1yal-Av9X6ZfO-cPbppl_QP5rwWPY
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Colorimetric+detection+of+ascorbic+acid+and+alkaline+phosphatase+activity+based+on+the+novel+oxidase+mimetic+of+Fe%E2%80%93Co+bimetallic+alloy+encapsulated+porous+carbon+nanocages&rft.jtitle=Talanta+%28Oxford%29&rft.au=Wu%2C+Tengteng&rft.au=Ma%2C+Zhangyan&rft.au=Li%2C+Peipei&rft.au=Liu%2C+Meiling&rft.date=2019-09-01&rft.pub=Elsevier+B.V&rft.issn=0039-9140&rft.eissn=1873-3573&rft.volume=202&rft.spage=354&rft.epage=361&rft_id=info:doi/10.1016%2Fj.talanta.2019.05.034&rft.externalDocID=S0039914019305181
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0039-9140&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0039-9140&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0039-9140&client=summon