Genome editing of mutant KRAS through supramolecular polymer-mediated delivery of Cas9 ribonucleoprotein for colorectal cancer therapy
CRISPR (clustered, regularly interspaced, short palindromic repeats)/CRISPR-associated protein 9 (Cas9) system has emerged as a powerful genome-editing tool to correct genetic disorders. However, successful intracellular delivery of CRISPR/Cas9, especially in the form of ribonucleoprotein (RNP), rem...
Saved in:
Published in | Journal of controlled release Vol. 322; pp. 236 - 247 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Netherlands
Elsevier B.V
10.06.2020
|
Subjects | |
Online Access | Get full text |
ISSN | 0168-3659 1873-4995 1873-4995 |
DOI | 10.1016/j.jconrel.2020.03.015 |
Cover
Loading…
Abstract | CRISPR (clustered, regularly interspaced, short palindromic repeats)/CRISPR-associated protein 9 (Cas9) system has emerged as a powerful genome-editing tool to correct genetic disorders. However, successful intracellular delivery of CRISPR/Cas9, especially in the form of ribonucleoprotein (RNP), remains elusive for clinical translation. Herein, we describe a supramolecular polymer that can mediate efficient controlled delivery of Cas9 RNP in vitro and in vivo. This supramolecular polymer system is prepared by complexing disulfide-bridged biguanidyl adamantine (Ad-SS-GD) with β-cyclodextrin-conjugated low-molecular-weight polyethyleneimime (CP) through supramolecular assembly to generate CP/Ad-SS-GD. Due to multiple, strong hydrogen bonding and salt bridge effects, CP/Ad-SS-GD well interact with Cas9 RNP to form stable nanocomplex CP/Ad-SS-GD/RNP, which can be readily released in the reductive intracellular milieu as a result of the cleavage of disulfide bonds. The supramolecular polymer ensures the efficient intracellular delivery and the release of Cas9 RNP into 293T cells and colorectal cancer (CRC) cells, thus displaying high genome-editing activity in vitro. Importantly, we also found that hyaluronic acid (HA)-decorated CP/Ad-SS-GD/RNP nanocomplexes targeting mutant KRAS effectively inhibit tumor growth as well as metastasis in the tumor-bearing mouse models. Collectively, our findings provide a promising therapeutic strategy against mutant KRAS for the treatment of CRC-activated RAS pathways, offering a new therapeutic genome-editing modality for the colorectal cancer treatment.
[Display omitted] |
---|---|
AbstractList | CRISPR (clustered, regularly interspaced, short palindromic repeats)/CRISPR-associated protein 9 (Cas9) system has emerged as a powerful genome-editing tool to correct genetic disorders. However, successful intracellular delivery of CRISPR/Cas9, especially in the form of ribonucleoprotein (RNP), remains elusive for clinical translation. Herein, we describe a supramolecular polymer that can mediate efficient controlled delivery of Cas9 RNP in vitro and in vivo. This supramolecular polymer system is prepared by complexing disulfide-bridged biguanidyl adamantine (Ad-SS-GD) with β-cyclodextrin-conjugated low-molecular-weight polyethyleneimime (CP) through supramolecular assembly to generate CP/Ad-SS-GD. Due to multiple, strong hydrogen bonding and salt bridge effects, CP/Ad-SS-GD well interact with Cas9 RNP to form stable nanocomplex CP/Ad-SS-GD/RNP, which can be readily released in the reductive intracellular milieu as a result of the cleavage of disulfide bonds. The supramolecular polymer ensures the efficient intracellular delivery and the release of Cas9 RNP into 293T cells and colorectal cancer (CRC) cells, thus displaying high genome-editing activity in vitro. Importantly, we also found that hyaluronic acid (HA)-decorated CP/Ad-SS-GD/RNP nanocomplexes targeting mutant KRAS effectively inhibit tumor growth as well as metastasis in the tumor-bearing mouse models. Collectively, our findings provide a promising therapeutic strategy against mutant KRAS for the treatment of CRC-activated RAS pathways, offering a new therapeutic genome-editing modality for the colorectal cancer treatment. CRISPR (clustered, regularly interspaced, short palindromic repeats)/CRISPR-associated protein 9 (Cas9) system has emerged as a powerful genome-editing tool to correct genetic disorders. However, successful intracellular delivery of CRISPR/Cas9, especially in the form of ribonucleoprotein (RNP), remains elusive for clinical translation. Herein, we describe a supramolecular polymer that can mediate efficient controlled delivery of Cas9 RNP in vitro and in vivo. This supramolecular polymer system is prepared by complexing disulfide-bridged biguanidyl adamantine (Ad-SS-GD) with β-cyclodextrin-conjugated low-molecular-weight polyethyleneimime (CP) through supramolecular assembly to generate CP/Ad-SS-GD. Due to multiple, strong hydrogen bonding and salt bridge effects, CP/Ad-SS-GD well interact with Cas9 RNP to form stable nanocomplex CP/Ad-SS-GD/RNP, which can be readily released in the reductive intracellular milieu as a result of the cleavage of disulfide bonds. The supramolecular polymer ensures the efficient intracellular delivery and the release of Cas9 RNP into 293T cells and colorectal cancer (CRC) cells, thus displaying high genome-editing activity in vitro. Importantly, we also found that hyaluronic acid (HA)-decorated CP/Ad-SS-GD/RNP nanocomplexes targeting mutant KRAS effectively inhibit tumor growth as well as metastasis in the tumor-bearing mouse models. Collectively, our findings provide a promising therapeutic strategy against mutant KRAS for the treatment of CRC-activated RAS pathways, offering a new therapeutic genome-editing modality for the colorectal cancer treatment. [Display omitted] CRISPR (clustered, regularly interspaced, short palindromic repeats)/CRISPR-associated protein 9 (Cas9) system has emerged as a powerful genome-editing tool to correct genetic disorders. However, successful intracellular delivery of CRISPR/Cas9, especially in the form of ribonucleoprotein (RNP), remains elusive for clinical translation. Herein, we describe a supramolecular polymer that can mediate efficient controlled delivery of Cas9 RNP in vitro and in vivo. This supramolecular polymer system is prepared by complexing disulfide-bridged biguanidyl adamantine (Ad-SS-GD) with β-cyclodextrin-conjugated low-molecular-weight polyethyleneimime (CP) through supramolecular assembly to generate CP/Ad-SS-GD. Due to multiple, strong hydrogen bonding and salt bridge effects, CP/Ad-SS-GD well interact with Cas9 RNP to form stable nanocomplex CP/Ad-SS-GD/RNP, which can be readily released in the reductive intracellular milieu as a result of the cleavage of disulfide bonds. The supramolecular polymer ensures the efficient intracellular delivery and the release of Cas9 RNP into 293T cells and colorectal cancer (CRC) cells, thus displaying high genome-editing activity in vitro. Importantly, we also found that hyaluronic acid (HA)-decorated CP/Ad-SS-GD/RNP nanocomplexes targeting mutant KRAS effectively inhibit tumor growth as well as metastasis in the tumor-bearing mouse models. Collectively, our findings provide a promising therapeutic strategy against mutant KRAS for the treatment of CRC-activated RAS pathways, offering a new therapeutic genome-editing modality for the colorectal cancer treatment.CRISPR (clustered, regularly interspaced, short palindromic repeats)/CRISPR-associated protein 9 (Cas9) system has emerged as a powerful genome-editing tool to correct genetic disorders. However, successful intracellular delivery of CRISPR/Cas9, especially in the form of ribonucleoprotein (RNP), remains elusive for clinical translation. Herein, we describe a supramolecular polymer that can mediate efficient controlled delivery of Cas9 RNP in vitro and in vivo. This supramolecular polymer system is prepared by complexing disulfide-bridged biguanidyl adamantine (Ad-SS-GD) with β-cyclodextrin-conjugated low-molecular-weight polyethyleneimime (CP) through supramolecular assembly to generate CP/Ad-SS-GD. Due to multiple, strong hydrogen bonding and salt bridge effects, CP/Ad-SS-GD well interact with Cas9 RNP to form stable nanocomplex CP/Ad-SS-GD/RNP, which can be readily released in the reductive intracellular milieu as a result of the cleavage of disulfide bonds. The supramolecular polymer ensures the efficient intracellular delivery and the release of Cas9 RNP into 293T cells and colorectal cancer (CRC) cells, thus displaying high genome-editing activity in vitro. Importantly, we also found that hyaluronic acid (HA)-decorated CP/Ad-SS-GD/RNP nanocomplexes targeting mutant KRAS effectively inhibit tumor growth as well as metastasis in the tumor-bearing mouse models. Collectively, our findings provide a promising therapeutic strategy against mutant KRAS for the treatment of CRC-activated RAS pathways, offering a new therapeutic genome-editing modality for the colorectal cancer treatment. |
Author | Pan, Qi Chen, Yuxuan Xu, Xiaojie Ping, Yuan Kang, Yu Wu, Chuanbin Wan, Tao Gao, Xue Huang, Feihe |
Author_xml | – sequence: 1 givenname: Tao surname: Wan fullname: Wan, Tao organization: School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510275, China – sequence: 2 givenname: Yuxuan surname: Chen fullname: Chen, Yuxuan organization: Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Zhejiang University, Hangzhou 310058, China – sequence: 3 givenname: Qi surname: Pan fullname: Pan, Qi organization: Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Zhejiang University, Hangzhou 310058, China – sequence: 4 givenname: Xiaojie surname: Xu fullname: Xu, Xiaojie organization: Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Zhejiang University, Hangzhou 310058, China – sequence: 5 givenname: Yu surname: Kang fullname: Kang, Yu organization: Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Zhejiang University, Hangzhou 310058, China – sequence: 6 givenname: Xue surname: Gao fullname: Gao, Xue organization: Department of Chemical and Biomolecular Engineering, Department of Bioengineering, Rice University, Houston, TX 77005, USA – sequence: 7 givenname: Feihe surname: Huang fullname: Huang, Feihe organization: State Key Laboratory of Chemical Engineering, Center for Chemistry of High Performance & Novel Materials, Department of Chemistry, Zhejiang University, Hangzhou 310027, China – sequence: 8 givenname: Chuanbin orcidid: 0000-0003-1661-0201 surname: Wu fullname: Wu, Chuanbin organization: School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510275, China – sequence: 9 givenname: Yuan orcidid: 0000-0003-2571-7721 surname: Ping fullname: Ping, Yuan email: pingy@zju.edu.cn organization: Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Zhejiang University, Hangzhou 310058, China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32169537$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkctq3DAUhkVJaSZpH6FFy27s6mJZNl2UMLRJaKDQy1rI8nGiQZZcSQ7MC_S5q2Emm27SlRB83znS_1-gMx88IPSWkpoS2n7Y1TsTfARXM8JITXhNqHiBNrSTvGr6XpyhTeG6ireiP0cXKe0IIYI38hU654y2veByg_5cgw8zYBhttv4ehwnPa9Y-46_fr37g_BDDev-A07pEPQcHZnU64iW4_QyxmoumM4x4BGcfIe4P_lanHkc7BL8aB2GJIYP1eAoRm-BCBJO1w0Z7A7EsgKiX_Wv0ctIuwZvTeYl-ffn8c3tT3X27vt1e3VWmaZtc9ZJNvRih7cdx0LJjXFBGGZGNkFqYllKj6SClHoD0VOh2kNqAKR8vfrnyS_T-OLe86vcKKavZJgPOaQ9hTYo1nHYNYd1_oFxK3hAueUHfndB1KJGoJdpZx716irkAH4-AiSGlCJMyNutsg89RW6coUYdS1U6dSlWHUhXhqpRabPGP_bTgOe_T0YOS6KOFqJKxUGIf7aEENQb7zIS_fU_AyQ |
CitedBy_id | crossref_primary_10_1016_j_jconrel_2020_06_038 crossref_primary_10_1016_j_jconrel_2021_08_007 crossref_primary_10_1021_acscentsci_0c01648 crossref_primary_10_1080_17425247_2022_2100342 crossref_primary_10_1186_s12951_022_01717_x crossref_primary_10_3390_ijms21249604 crossref_primary_10_1080_14728222_2020_1820986 crossref_primary_10_1186_s12951_021_01233_4 crossref_primary_10_1002_adfm_202204947 crossref_primary_10_1002_chem_202404617 crossref_primary_10_1016_j_addr_2021_113891 crossref_primary_10_1016_j_jconrel_2021_04_026 crossref_primary_10_1002_adfm_202108431 crossref_primary_10_1016_j_jconrel_2020_11_018 crossref_primary_10_1038_s41573_022_00476_6 crossref_primary_10_1039_D3BM00529A crossref_primary_10_3390_cells11182781 crossref_primary_10_3390_ijms222111321 crossref_primary_10_1016_j_jconrel_2020_12_013 crossref_primary_10_3390_polym14224855 crossref_primary_10_3390_pharmaceutics16010062 crossref_primary_10_1039_D2NR05949E crossref_primary_10_3390_cimb45100486 crossref_primary_10_1126_sciadv_abe2888 crossref_primary_10_1021_acsabm_1c01112 crossref_primary_10_1016_j_bioadv_2023_213556 crossref_primary_10_1016_j_carbpol_2023_121207 crossref_primary_10_1016_j_cej_2024_152754 crossref_primary_10_1016_j_actbio_2022_09_046 crossref_primary_10_1016_j_apsb_2022_12_013 crossref_primary_10_1039_D4BM01440E crossref_primary_10_1007_s13205_024_04186_1 crossref_primary_10_1002_cac2_12366 crossref_primary_10_1021_acs_nanolett_1c03708 crossref_primary_10_1002_smll_202100546 crossref_primary_10_1007_s12033_022_00479_z crossref_primary_10_1208_s12249_024_02834_6 crossref_primary_10_1002_adfm_202213967 crossref_primary_10_1002_adma_202300665 crossref_primary_10_1021_acs_nanolett_2c02948 crossref_primary_10_34133_bmr_0023 crossref_primary_10_34172_bi_2024_30087 crossref_primary_10_1186_s12943_022_01550_8 crossref_primary_10_1186_s12943_022_01552_6 crossref_primary_10_1002_bit_28603 crossref_primary_10_1016_j_actbio_2024_08_032 crossref_primary_10_1021_acs_chemmater_1c02844 crossref_primary_10_1186_s12943_022_01518_8 crossref_primary_10_1002_jgm_3240 crossref_primary_10_1002_adhm_202201825 crossref_primary_10_1016_j_matdes_2024_113097 crossref_primary_10_1038_s41392_021_00645_w crossref_primary_10_1063_5_0123664 crossref_primary_10_1021_acsabm_0c00761 crossref_primary_10_1073_pnas_2307796121 crossref_primary_10_1016_j_colsurfb_2021_112257 crossref_primary_10_1016_j_nantod_2022_101482 crossref_primary_10_3390_genes11080921 crossref_primary_10_1039_D2BM01636B crossref_primary_10_1080_14737159_2024_2388777 crossref_primary_10_1016_j_apsb_2021_05_020 crossref_primary_10_1002_adhm_202100847 crossref_primary_10_1016_j_mattod_2023_04_011 crossref_primary_10_3390_ijms24087052 crossref_primary_10_1186_s12929_021_00772_0 crossref_primary_10_1021_acs_accounts_3c00279 crossref_primary_10_1002_advs_202207512 crossref_primary_10_1007_s13205_021_02680_4 crossref_primary_10_1039_D3BM00788J crossref_primary_10_1016_j_jconrel_2021_10_029 crossref_primary_10_1016_j_ymeth_2021_06_004 crossref_primary_10_1039_D1BM01658J crossref_primary_10_1016_j_tips_2020_08_001 crossref_primary_10_3389_fbioe_2022_973326 crossref_primary_10_1016_j_lfs_2020_118525 crossref_primary_10_1016_j_omto_2023_08_007 crossref_primary_10_3389_fbioe_2022_1078342 crossref_primary_10_1016_j_jddst_2022_103737 crossref_primary_10_1021_acscentsci_3c00207 crossref_primary_10_1038_s41598_021_03325_5 crossref_primary_10_1002_adfm_202107174 crossref_primary_10_1016_j_crbiot_2023_100127 crossref_primary_10_1016_j_actbio_2020_08_029 crossref_primary_10_1039_D4PY00298A crossref_primary_10_1016_j_gendis_2023_02_027 crossref_primary_10_1016_j_progpolymsci_2023_101769 crossref_primary_10_1134_S2634827624600312 crossref_primary_10_1186_s12951_022_01570_y crossref_primary_10_2174_0929867331666230915103707 crossref_primary_10_3390_jfb15110324 crossref_primary_10_1016_j_lfs_2020_118969 crossref_primary_10_1002_chem_202402485 crossref_primary_10_1016_j_mseb_2023_116936 crossref_primary_10_1038_s41598_021_01572_0 crossref_primary_10_3390_pharmaceutics15061686 |
Cites_doi | 10.1016/j.biomaterials.2019.119358 10.1016/j.chembiol.2017.06.017 10.1101/gr.223891.117 10.1158/1535-7163.MCT-14-0074 10.1038/nrd4389 10.1016/j.cell.2017.01.020 10.1021/jacs.6b02664 10.1039/C7CS00647K 10.1016/j.biomaterials.2018.08.023 10.1053/gast.2000.16507 10.1038/s41551-017-0137-2 10.1093/carcin/bgg009 10.1158/2159-8290.CD-15-1105 10.1021/jm3017706 10.1038/s41551-016-0011 10.1016/j.mam.2010.02.005 10.1038/nrd1775 10.1126/sciadv.aaw8922 10.1158/2159-8290.CD-13-0900 10.1016/S1369-7021(05)71034-8 10.1016/j.jconrel.2017.03.011 10.1016/j.mattod.2018.12.003 10.1158/2159-8290.CD-12-0231 10.1039/C5SC00524H 10.1021/acs.nanolett.6b04955 10.1080/10408360290795574 10.1073/pnas.1912220117 10.1016/j.jconrel.2017.06.027 10.1038/s41467-018-03779-8 10.1021/acs.chemrev.6b00799 10.1002/ijc.31374 10.1038/ncomms8391 10.1016/j.cell.2018.01.006 10.1038/nm.2385 10.1016/j.mib.2017.05.008 |
ContentType | Journal Article |
Copyright | 2020 Elsevier B.V. Copyright © 2020 Elsevier B.V. All rights reserved. |
Copyright_xml | – notice: 2020 Elsevier B.V. – notice: Copyright © 2020 Elsevier B.V. All rights reserved. |
DBID | AAYXX CITATION NPM 7X8 7S9 L.6 |
DOI | 10.1016/j.jconrel.2020.03.015 |
DatabaseName | CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | PubMed AGRICOLA MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Pharmacy, Therapeutics, & Pharmacology |
EISSN | 1873-4995 |
EndPage | 247 |
ExternalDocumentID | 32169537 10_1016_j_jconrel_2020_03_015 S016836592030167X |
Genre | Journal Article |
GroupedDBID | --- --K --M .~1 0R~ 1B1 1RT 1~. 1~5 4.4 457 4G. 53G 5GY 5VS 7-5 71M 8P~ 9JM AABNK AABXZ AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AATCM AAXUO ABFNM ABFRF ABJNI ABMAC ABOCM ABYKQ ABZDS ACDAQ ACGFO ACGFS ACIUM ACRLP ADBBV ADEZE AEBSH AEFWE AEKER AENEX AEZYN AFKWA AFRZQ AFTJW AFXIZ AGHFR AGUBO AGYEJ AIEXJ AIKHN AITUG AJOXV ALCLG ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLXMC C45 CS3 DU5 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA HMT IHE J1W KOM M34 M41 MO0 N9A O-L O9- OAUVE OGGZJ OVD OZT P-8 P-9 P2P PC. Q38 RNS ROL RPZ SCC SDF SDG SDP SES SPC SPCBC SSM SSP SSZ T5K TEORI ~G- .GJ 29K 3O- AAHBH AAQXK AATTM AAXKI AAYOK AAYWO AAYXX ABWVN ABXDB ACNNM ACRPL ACVFH ADCNI ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AHHHB AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION D-I EJD FEDTE FGOYB G-2 HVGLF HZ~ R2- RIG SEW SPT SSH WUQ NPM 7X8 EFKBS 7S9 L.6 |
ID | FETCH-LOGICAL-c464t-972f95de69ddba78235121207457a5c611ca1b77abe0915a6b7acec000c465a63 |
IEDL.DBID | .~1 |
ISSN | 0168-3659 1873-4995 |
IngestDate | Thu Jul 10 21:56:30 EDT 2025 Sun Aug 31 06:30:17 EDT 2025 Wed Feb 19 02:30:04 EST 2025 Tue Jul 01 04:09:56 EDT 2025 Thu Apr 24 22:59:06 EDT 2025 Fri Feb 23 02:47:48 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Protein delivery CRISPR/Cas9 Host-guest self-assembly Nanomedicine Colorectal cancer |
Language | English |
License | Copyright © 2020 Elsevier B.V. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c464t-972f95de69ddba78235121207457a5c611ca1b77abe0915a6b7acec000c465a63 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0003-1661-0201 0000-0003-2571-7721 |
PMID | 32169537 |
PQID | 2377340373 |
PQPubID | 23479 |
PageCount | 12 |
ParticipantIDs | proquest_miscellaneous_2431840286 proquest_miscellaneous_2377340373 pubmed_primary_32169537 crossref_citationtrail_10_1016_j_jconrel_2020_03_015 crossref_primary_10_1016_j_jconrel_2020_03_015 elsevier_sciencedirect_doi_10_1016_j_jconrel_2020_03_015 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-06-10 |
PublicationDateYYYYMMDD | 2020-06-10 |
PublicationDate_xml | – month: 06 year: 2020 text: 2020-06-10 day: 10 |
PublicationDecade | 2020 |
PublicationPlace | Netherlands |
PublicationPlace_xml | – name: Netherlands |
PublicationTitle | Journal of controlled release |
PublicationTitleAlternate | J Control Release |
PublicationYear | 2020 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Wang, Sun, Ye, Hu, Bomba, Gu (bb0145) 2017; 1 Lv, He, Yu, Wang, Wang, Zhang, Wang, Hu, Zhang, Cheng (bb0165) 2018; 182 Waldner, Neurath (bb0020) 2010; 31 Pack, Hoffman, Pun, Stayton (bb0085) 2005; 4 Okuro, Sasaki, Aida (bb0125) 2016; 138 Janes, Zhang, Li, Hansen, Peters, Guo, Chen, Babbar, Firdaus, Darjania, Feng, Chen, Li, Li, Long, Thach, Liu, Zarieh, Ely, Kucharski, Kessler, Wu, Yu, Wang, Yao, Deng, Zarrinkar, Brehmer, Dhanak, Lorenzi, Hu-Lowe, Patricelli, Ren, Liu (bb0040) 2018; 172 Mogaki, Okuro, Aida (bb0120) 2015; 6 Wu, Liu, Jin, Li, Li, Hu, Chu, Tang, Ping (bb0140) 2017; 253 Lv, Fan, Wang, Cheng (bb0105) 2019; 218 Lee, Conboy, Park, Jiang, Kim, Dewitt, Mackley, Chang, Rao, Skinner, Shobha, Mehdipour, Liu, Huang, Lan, Bray, Li, Corn, Kataoka, Doudna, Conboy, Murthy (bb0090) 2017; 1 Wang, Li, Lee, Chakraborty, Kim, Bao, Leong (bb0115) 2017; 117 Chang, Lv, Gao, Wang, Wang, Chen, He, Li, Cheng (bb0135) 2017; 17 Naor, Nedvetzki, Golan, Melnik, Faitelson (bb0175) 2002; 39 Liu, Wan, Wang, Zhang, Ping, Cheng (bb0100) 2019; 5 Wan, Niu, Wu, Xu, Church, Ping (bb0075) 2019; 26 Young, Lou, McCormick (bb0060) 2013; 3 Zhang, Shen, Ling, Yan, Hu, Cheng (bb0095) 2018; 9 Cox, Fesik, Kimmelman, Luo, Der (bb0015) 2014; 13 Yuan, Fellmann, Lee, Ritchie, Thapar, Lee, Hsu, Grace, Carver, Zuber, Luo, McCormick, Lowe (bb0045) 2014; 4 Chi, Yin, Sun, Feng, Liu, Chen, Guo, Wu (bb0160) 2017; 261 Wang, Kaiser, Frett, Li (bb0025) 2013; 56 Zhou, Liu, Li, Huang, Li, Li (bb0155) 2018; 143 Zeng, Lu, Li, Feru, Quan, Gero, Ficarro, Xiong, Ambrogio, Paranal, Catalano, Shao, Wong, Marto, Fischer, Jänne, Scott, Westover, Gray (bb0035) 2017; 24 Patricelli, Janes, Li, Hansen, Peters, Kessler, Chen, Kucharski, Feng, Ely, Chen, Firdaus, Babbar, Ren, Liu (bb0030) 2016; 6 Chen, Chen, Xin, Wan, Ping (bb0080) 2020; 117 Mogaki, Hashim, Okuro, Aida (bb0130) 2017; 46 Kim, Lee, Kim, Song, Cha, Kim, Shin, Lee, Joo, Song, Choi, Choi, Lee, Kang, Yook, Lee, Kim, Paik, Kim (bb0070) 2018; 28 Koonin, Makarova, Zhang (bb0055) 2017; 37 Kim, Nie (bb0170) 2005; 8 Burgess, Hwang, Mroue, Bielski, Wandler, Huang, Firestone, Young, Lacap, Crocker, Asthana, Davis, Xu, Akagi, Le Beau, Li, Haley, Stokoe, Sampath, Taylor, Evangelista, Shannon (bb0065) 2017; 168 Huang, Li, Liu, Li, Shi, Liu, O’Sullivan, He, Peng, Tan, Zhou, Shen, Han, Wang, Thorburn, Thorburn, Jimeno, Raben, Bedford, Li (bb0150) 2011; 17 Chung (bb0005) 2000; 119 Pecot, Wu, Bellister, Filant, Rupaimoole, Hisamatsu, Bhattacharya, Maharaj, Azam, Rodriguez-Aguayo, Nagaraja, Morelli, Gharpure, Waugh, Gonzalez-Villasana, Zand, Dalton, Kopetz, Lopez-Berestein, Ellis, Sood (bb0050) 2014; 13 Zuckermann, Hovestadt, Knobbe-Thomsen, Zapatka, Northcott, Schramm, Belic, Jones, Tschida, Moriarity, Largaespada, Roussel, Korshunov, Reifenberger, Pfister, Lichter, Kawauchi, Gronych (bb0110) 2015; 6 Brink (bb0010) 2003; 24 Chung (10.1016/j.jconrel.2020.03.015_bb0005) 2000; 119 Huang (10.1016/j.jconrel.2020.03.015_bb0150) 2011; 17 Lv (10.1016/j.jconrel.2020.03.015_bb0165) 2018; 182 Zuckermann (10.1016/j.jconrel.2020.03.015_bb0110) 2015; 6 Waldner (10.1016/j.jconrel.2020.03.015_bb0020) 2010; 31 Lee (10.1016/j.jconrel.2020.03.015_bb0090) 2017; 1 Mogaki (10.1016/j.jconrel.2020.03.015_bb0120) 2015; 6 Janes (10.1016/j.jconrel.2020.03.015_bb0040) 2018; 172 Naor (10.1016/j.jconrel.2020.03.015_bb0175) 2002; 39 Wang (10.1016/j.jconrel.2020.03.015_bb0145) 2017; 1 Chi (10.1016/j.jconrel.2020.03.015_bb0160) 2017; 261 Zeng (10.1016/j.jconrel.2020.03.015_bb0035) 2017; 24 Chen (10.1016/j.jconrel.2020.03.015_bb0080) 2020; 117 Kim (10.1016/j.jconrel.2020.03.015_bb0170) 2005; 8 Brink (10.1016/j.jconrel.2020.03.015_bb0010) 2003; 24 Patricelli (10.1016/j.jconrel.2020.03.015_bb0030) 2016; 6 Wan (10.1016/j.jconrel.2020.03.015_bb0075) 2019; 26 Yuan (10.1016/j.jconrel.2020.03.015_bb0045) 2014; 4 Lv (10.1016/j.jconrel.2020.03.015_bb0105) 2019; 218 Pecot (10.1016/j.jconrel.2020.03.015_bb0050) 2014; 13 Young (10.1016/j.jconrel.2020.03.015_bb0060) 2013; 3 Wang (10.1016/j.jconrel.2020.03.015_bb0025) 2013; 56 Pack (10.1016/j.jconrel.2020.03.015_bb0085) 2005; 4 Okuro (10.1016/j.jconrel.2020.03.015_bb0125) 2016; 138 Chang (10.1016/j.jconrel.2020.03.015_bb0135) 2017; 17 Liu (10.1016/j.jconrel.2020.03.015_bb0100) 2019; 5 Mogaki (10.1016/j.jconrel.2020.03.015_bb0130) 2017; 46 Zhang (10.1016/j.jconrel.2020.03.015_bb0095) 2018; 9 Wang (10.1016/j.jconrel.2020.03.015_bb0115) 2017; 117 Burgess (10.1016/j.jconrel.2020.03.015_bb0065) 2017; 168 Koonin (10.1016/j.jconrel.2020.03.015_bb0055) 2017; 37 Zhou (10.1016/j.jconrel.2020.03.015_bb0155) 2018; 143 Cox (10.1016/j.jconrel.2020.03.015_bb0015) 2014; 13 Kim (10.1016/j.jconrel.2020.03.015_bb0070) 2018; 28 Wu (10.1016/j.jconrel.2020.03.015_bb0140) 2017; 253 |
References_xml | – volume: 13 start-page: 2876 year: 2014 end-page: 2885 ident: bb0050 article-title: Therapeutic silencing of KRAS using systemically delivered siRNAs publication-title: Mol. Cancer Ther. – volume: 4 start-page: 1182 year: 2014 end-page: 1197 ident: bb0045 article-title: Development of siRNA payloads to target KRAS-mutant cancer publication-title: Cancer Discov. – volume: 168 start-page: 817 year: 2017 end-page: 829 ident: bb0065 article-title: KRAS allelic imbalance enhances fitness and modulates MAP kinase dependence in cancer publication-title: Cell. – volume: 17 start-page: 860 year: 2011 end-page: 866 ident: bb0150 article-title: Caspase 3–mediated stimulation of tumor cell repopulation during cancer radiotherapy publication-title: Nat. Med. – volume: 17 start-page: 1678 year: 2017 end-page: 1684 ident: bb0135 article-title: Rational design of a polymer with robust efficacy for intracellular protein and peptide delivery publication-title: Nano Lett. – volume: 4 start-page: 581 year: 2005 end-page: 593 ident: bb0085 article-title: Design and development of polymers for gene delivery publication-title: Nat. Rev. Drug Discov. – volume: 117 start-page: 9874 year: 2017 end-page: 9906 ident: bb0115 article-title: CRISPR/Cas9-based genome editing for disease modeling and therapy: challenges and opportunities for nonviral delivery publication-title: Chem. Rev. – volume: 6 start-page: 2802 year: 2015 end-page: 2805 ident: bb0120 article-title: Molecular glues for manipulating enzymes: trypsin inhibition by benzamidine-conjugated molecular glues publication-title: Chem. Sci. – volume: 28 start-page: 374 year: 2018 end-page: 382 ident: bb0070 article-title: Targeting mutant KRAS with CRISPR-Cas9 controls tumor growth publication-title: Genome Res. – volume: 46 start-page: 6480 year: 2017 end-page: 6491 ident: bb0130 article-title: Guanidinium-based “molecular glues” for modulation of biomolecular functions publication-title: Chem. Soc. Rev. – volume: 5 year: 2019 ident: bb0100 article-title: A boronic acid–rich dendrimer with robust and unprecedented efficiency for cytosolic protein delivery and CRISPR-Cas9 gene editing publication-title: Sci. Adv. – volume: 253 start-page: 110 year: 2017 end-page: 121 ident: bb0140 article-title: Targeting ETS1 with RNAi-based supramolecular nanoassemblies for multidrug-resistant breast cancer therapy publication-title: J. Control. Release – volume: 39 start-page: 527 year: 2002 end-page: 579 ident: bb0175 article-title: CD44 in Cancer publication-title: Crit. Rev. Clin. Lab. Sci. – volume: 138 start-page: 5527 year: 2016 end-page: 5530 ident: bb0125 article-title: Boronic acid-appended molecular glues for ATP-responsive activity modulation of enzymes publication-title: J. Am. Chem. Soc. – volume: 1 start-page: 0011 year: 2017 ident: bb0145 article-title: In situ activation of platelets with checkpoint inhibitors for post-surgical cancer immunotherapy publication-title: Nat. Biomed. Eng. – volume: 172 start-page: 578 year: 2018 end-page: 589 ident: bb0040 article-title: Targeting KRAS mutant cancers with a covalent G12C-specific inhibitor publication-title: Cell – volume: 6 start-page: 7391 year: 2015 ident: bb0110 article-title: Somatic CRISPR/Cas9-mediated tumour suppressor disruption enables versatile brain tumour modelling publication-title: Nat. Commun. – volume: 37 start-page: 67 year: 2017 end-page: 78 ident: bb0055 article-title: Diversity, classification and evolution of CRISPR-Cas systems publication-title: Curr. Opin. Microbiol. – volume: 119 start-page: 854 year: 2000 end-page: 865 ident: bb0005 article-title: The genetic basis of colorectal cancer: insights into critical pathways of tumorigenesis publication-title: Gastroenterology – volume: 24 start-page: 1005 year: 2017 end-page: 1016 ident: bb0035 article-title: Potent and selective covalent quinazoline inhibitors of KRAS G12C publication-title: Cell Chem. Biol. – volume: 8 start-page: 28 year: 2005 end-page: 33 ident: bb0170 article-title: Targeted cancer nanotherapy publication-title: Mater. Today – volume: 261 start-page: 113 year: 2017 end-page: 125 ident: bb0160 article-title: Redox-sensitive and hyaluronic acid functionalized liposomes for cytoplasmic drug delivery to osteosarcoma in animal models publication-title: J. Control. Release – volume: 218 start-page: 119358 year: 2019 ident: bb0105 article-title: Polymers for cytosolic protein delivery publication-title: Biomaterials – volume: 24 start-page: 703 year: 2003 end-page: 710 ident: bb0010 article-title: K-ras oncogene mutations in sporadic colorectal cancer in the Netherlands cohort study publication-title: Carcinogenesis – volume: 13 start-page: 828 year: 2014 end-page: 851 ident: bb0015 article-title: Drugging the undruggable RAS: Mission possible? publication-title: Nat. Rev. Drug Discov. – volume: 143 start-page: 921 year: 2018 end-page: 930 ident: bb0155 article-title: Caspase-3 regulates the migration, invasion and metastasis of colon cancer cells publication-title: Int. J. Cancer – volume: 56 start-page: 5219 year: 2013 end-page: 5230 ident: bb0025 article-title: Targeting mutant KRAS for anticancer therapeutics: a review of novel small molecule modulators publication-title: J. Med. Chem. – volume: 6 start-page: 316 year: 2016 end-page: 329 ident: bb0030 article-title: Selective inhibition of oncogenic KRAS output with small molecules targeting the inactive state publication-title: Cancer Discov. – volume: 1 start-page: 889 year: 2017 end-page: 901 ident: bb0090 article-title: Nanoparticle delivery of Cas9 ribonucleoprotein and donor DNA in vivo induces homology-directed DNA repair publication-title: Nat. Biomed. Eng. – volume: 9 start-page: 1377 year: 2018 ident: bb0095 article-title: The fluorination effect of fluoroamphiphiles in cytosolic protein delivery publication-title: Nat. Commun. – volume: 31 start-page: 171 year: 2010 end-page: 178 ident: bb0020 article-title: The molecular therapy of colorectal cancer publication-title: Mol. Asp. Med. – volume: 182 start-page: 167 year: 2018 end-page: 175 ident: bb0165 article-title: Fluoropolymers for intracellular and in vivo protein delivery publication-title: Biomaterials – volume: 26 start-page: 40 year: 2019 end-page: 66 ident: bb0075 article-title: Material solutions for delivery of CRISPR/Cas-based genome editing tools: current status and future outlook publication-title: Mater. Today – volume: 117 start-page: 2395 year: 2020 end-page: 2405 ident: bb0080 article-title: Near-infrared optogenetic engineering of photothermal nanoCRISPR for programmable genome editing publication-title: Proc. Natl. Acad. Sci. – volume: 3 start-page: 112 year: 2013 end-page: 123 ident: bb0060 article-title: Oncogenic and wild-type Ras play divergent roles in the regulation of mitogen-activated protein kinase signaling publication-title: Cancer Discov. – volume: 218 start-page: 119358 year: 2019 ident: 10.1016/j.jconrel.2020.03.015_bb0105 article-title: Polymers for cytosolic protein delivery publication-title: Biomaterials doi: 10.1016/j.biomaterials.2019.119358 – volume: 24 start-page: 1005 year: 2017 ident: 10.1016/j.jconrel.2020.03.015_bb0035 article-title: Potent and selective covalent quinazoline inhibitors of KRAS G12C publication-title: Cell Chem. Biol. doi: 10.1016/j.chembiol.2017.06.017 – volume: 28 start-page: 374 year: 2018 ident: 10.1016/j.jconrel.2020.03.015_bb0070 article-title: Targeting mutant KRAS with CRISPR-Cas9 controls tumor growth publication-title: Genome Res. doi: 10.1101/gr.223891.117 – volume: 13 start-page: 2876 year: 2014 ident: 10.1016/j.jconrel.2020.03.015_bb0050 article-title: Therapeutic silencing of KRAS using systemically delivered siRNAs publication-title: Mol. Cancer Ther. doi: 10.1158/1535-7163.MCT-14-0074 – volume: 13 start-page: 828 year: 2014 ident: 10.1016/j.jconrel.2020.03.015_bb0015 article-title: Drugging the undruggable RAS: Mission possible? publication-title: Nat. Rev. Drug Discov. doi: 10.1038/nrd4389 – volume: 168 start-page: 817 year: 2017 ident: 10.1016/j.jconrel.2020.03.015_bb0065 article-title: KRAS allelic imbalance enhances fitness and modulates MAP kinase dependence in cancer publication-title: Cell. doi: 10.1016/j.cell.2017.01.020 – volume: 138 start-page: 5527 year: 2016 ident: 10.1016/j.jconrel.2020.03.015_bb0125 article-title: Boronic acid-appended molecular glues for ATP-responsive activity modulation of enzymes publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.6b02664 – volume: 46 start-page: 6480 year: 2017 ident: 10.1016/j.jconrel.2020.03.015_bb0130 article-title: Guanidinium-based “molecular glues” for modulation of biomolecular functions publication-title: Chem. Soc. Rev. doi: 10.1039/C7CS00647K – volume: 182 start-page: 167 year: 2018 ident: 10.1016/j.jconrel.2020.03.015_bb0165 article-title: Fluoropolymers for intracellular and in vivo protein delivery publication-title: Biomaterials doi: 10.1016/j.biomaterials.2018.08.023 – volume: 119 start-page: 854 year: 2000 ident: 10.1016/j.jconrel.2020.03.015_bb0005 article-title: The genetic basis of colorectal cancer: insights into critical pathways of tumorigenesis publication-title: Gastroenterology doi: 10.1053/gast.2000.16507 – volume: 1 start-page: 889 year: 2017 ident: 10.1016/j.jconrel.2020.03.015_bb0090 article-title: Nanoparticle delivery of Cas9 ribonucleoprotein and donor DNA in vivo induces homology-directed DNA repair publication-title: Nat. Biomed. Eng. doi: 10.1038/s41551-017-0137-2 – volume: 24 start-page: 703 year: 2003 ident: 10.1016/j.jconrel.2020.03.015_bb0010 article-title: K-ras oncogene mutations in sporadic colorectal cancer in the Netherlands cohort study publication-title: Carcinogenesis doi: 10.1093/carcin/bgg009 – volume: 6 start-page: 316 year: 2016 ident: 10.1016/j.jconrel.2020.03.015_bb0030 article-title: Selective inhibition of oncogenic KRAS output with small molecules targeting the inactive state publication-title: Cancer Discov. doi: 10.1158/2159-8290.CD-15-1105 – volume: 56 start-page: 5219 year: 2013 ident: 10.1016/j.jconrel.2020.03.015_bb0025 article-title: Targeting mutant KRAS for anticancer therapeutics: a review of novel small molecule modulators publication-title: J. Med. Chem. doi: 10.1021/jm3017706 – volume: 1 start-page: 0011 year: 2017 ident: 10.1016/j.jconrel.2020.03.015_bb0145 article-title: In situ activation of platelets with checkpoint inhibitors for post-surgical cancer immunotherapy publication-title: Nat. Biomed. Eng. doi: 10.1038/s41551-016-0011 – volume: 31 start-page: 171 year: 2010 ident: 10.1016/j.jconrel.2020.03.015_bb0020 article-title: The molecular therapy of colorectal cancer publication-title: Mol. Asp. Med. doi: 10.1016/j.mam.2010.02.005 – volume: 4 start-page: 581 year: 2005 ident: 10.1016/j.jconrel.2020.03.015_bb0085 article-title: Design and development of polymers for gene delivery publication-title: Nat. Rev. Drug Discov. doi: 10.1038/nrd1775 – volume: 5 year: 2019 ident: 10.1016/j.jconrel.2020.03.015_bb0100 article-title: A boronic acid–rich dendrimer with robust and unprecedented efficiency for cytosolic protein delivery and CRISPR-Cas9 gene editing publication-title: Sci. Adv. doi: 10.1126/sciadv.aaw8922 – volume: 4 start-page: 1182 year: 2014 ident: 10.1016/j.jconrel.2020.03.015_bb0045 article-title: Development of siRNA payloads to target KRAS-mutant cancer publication-title: Cancer Discov. doi: 10.1158/2159-8290.CD-13-0900 – volume: 8 start-page: 28 year: 2005 ident: 10.1016/j.jconrel.2020.03.015_bb0170 article-title: Targeted cancer nanotherapy publication-title: Mater. Today doi: 10.1016/S1369-7021(05)71034-8 – volume: 253 start-page: 110 year: 2017 ident: 10.1016/j.jconrel.2020.03.015_bb0140 article-title: Targeting ETS1 with RNAi-based supramolecular nanoassemblies for multidrug-resistant breast cancer therapy publication-title: J. Control. Release doi: 10.1016/j.jconrel.2017.03.011 – volume: 26 start-page: 40 year: 2019 ident: 10.1016/j.jconrel.2020.03.015_bb0075 article-title: Material solutions for delivery of CRISPR/Cas-based genome editing tools: current status and future outlook publication-title: Mater. Today doi: 10.1016/j.mattod.2018.12.003 – volume: 3 start-page: 112 year: 2013 ident: 10.1016/j.jconrel.2020.03.015_bb0060 article-title: Oncogenic and wild-type Ras play divergent roles in the regulation of mitogen-activated protein kinase signaling publication-title: Cancer Discov. doi: 10.1158/2159-8290.CD-12-0231 – volume: 6 start-page: 2802 year: 2015 ident: 10.1016/j.jconrel.2020.03.015_bb0120 article-title: Molecular glues for manipulating enzymes: trypsin inhibition by benzamidine-conjugated molecular glues publication-title: Chem. Sci. doi: 10.1039/C5SC00524H – volume: 17 start-page: 1678 year: 2017 ident: 10.1016/j.jconrel.2020.03.015_bb0135 article-title: Rational design of a polymer with robust efficacy for intracellular protein and peptide delivery publication-title: Nano Lett. doi: 10.1021/acs.nanolett.6b04955 – volume: 39 start-page: 527 year: 2002 ident: 10.1016/j.jconrel.2020.03.015_bb0175 article-title: CD44 in Cancer publication-title: Crit. Rev. Clin. Lab. Sci. doi: 10.1080/10408360290795574 – volume: 117 start-page: 2395 year: 2020 ident: 10.1016/j.jconrel.2020.03.015_bb0080 article-title: Near-infrared optogenetic engineering of photothermal nanoCRISPR for programmable genome editing publication-title: Proc. Natl. Acad. Sci. doi: 10.1073/pnas.1912220117 – volume: 261 start-page: 113 year: 2017 ident: 10.1016/j.jconrel.2020.03.015_bb0160 article-title: Redox-sensitive and hyaluronic acid functionalized liposomes for cytoplasmic drug delivery to osteosarcoma in animal models publication-title: J. Control. Release doi: 10.1016/j.jconrel.2017.06.027 – volume: 9 start-page: 1377 year: 2018 ident: 10.1016/j.jconrel.2020.03.015_bb0095 article-title: The fluorination effect of fluoroamphiphiles in cytosolic protein delivery publication-title: Nat. Commun. doi: 10.1038/s41467-018-03779-8 – volume: 117 start-page: 9874 year: 2017 ident: 10.1016/j.jconrel.2020.03.015_bb0115 article-title: CRISPR/Cas9-based genome editing for disease modeling and therapy: challenges and opportunities for nonviral delivery publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.6b00799 – volume: 143 start-page: 921 year: 2018 ident: 10.1016/j.jconrel.2020.03.015_bb0155 article-title: Caspase-3 regulates the migration, invasion and metastasis of colon cancer cells publication-title: Int. J. Cancer doi: 10.1002/ijc.31374 – volume: 6 start-page: 7391 year: 2015 ident: 10.1016/j.jconrel.2020.03.015_bb0110 article-title: Somatic CRISPR/Cas9-mediated tumour suppressor disruption enables versatile brain tumour modelling publication-title: Nat. Commun. doi: 10.1038/ncomms8391 – volume: 172 start-page: 578 year: 2018 ident: 10.1016/j.jconrel.2020.03.015_bb0040 article-title: Targeting KRAS mutant cancers with a covalent G12C-specific inhibitor publication-title: Cell doi: 10.1016/j.cell.2018.01.006 – volume: 17 start-page: 860 year: 2011 ident: 10.1016/j.jconrel.2020.03.015_bb0150 article-title: Caspase 3–mediated stimulation of tumor cell repopulation during cancer radiotherapy publication-title: Nat. Med. doi: 10.1038/nm.2385 – volume: 37 start-page: 67 year: 2017 ident: 10.1016/j.jconrel.2020.03.015_bb0055 article-title: Diversity, classification and evolution of CRISPR-Cas systems publication-title: Curr. Opin. Microbiol. doi: 10.1016/j.mib.2017.05.008 |
SSID | ssj0005347 |
Score | 2.5970306 |
Snippet | CRISPR (clustered, regularly interspaced, short palindromic repeats)/CRISPR-associated protein 9 (Cas9) system has emerged as a powerful genome-editing tool to... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 236 |
SubjectTerms | animal models cancer therapy Colorectal cancer colorectal neoplasms CRISPR-associated proteins CRISPR-Cas systems CRISPR/Cas9 disulfide bonds gene editing genetic disorders Host-guest self-assembly hyaluronic acid hydrogen bonding metastasis mice mutants Nanomedicine neoplasm cells polymers Protein delivery ribonucleoproteins |
Title | Genome editing of mutant KRAS through supramolecular polymer-mediated delivery of Cas9 ribonucleoprotein for colorectal cancer therapy |
URI | https://dx.doi.org/10.1016/j.jconrel.2020.03.015 https://www.ncbi.nlm.nih.gov/pubmed/32169537 https://www.proquest.com/docview/2377340373 https://www.proquest.com/docview/2431840286 |
Volume | 322 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9swEBele-lL6datzT6KBqNPVWJbsmQ_hrA2W1kpawt5E5KsQEJiByd58Mse93fvzh_NBt0Ke7TRYVl3uvsJ3f2OkE8QNRILMICJJBRMuGnAEm5CprI4E94AQrZYO_ztRo4fxNdJPNkjo64WBtMqW9_f-PTaW7dvBu1qDlaz2eAOwErC8VYQUb1UE6xgFwr58_s_fkvz4KIpmZYJw9G7Kp7BvD-HM2fp8QYiCmquU-yO-3R8-hv-rOPQ5RE5bAEkHTZzfEn2fP6KnN82DNTVBb3fFVStL-g5vd1xU1fH5OeVz4ulp_DbmO9MiyldbrGRML3-Pryjbdceut6uSrPsOufSVbGolr5kdZkJQFSa-QXmc1QoPzLrlJYzW-RIjVzUxA-znAIYpvhVXF2Yr0PrKmlT7lW9Jg-Xn-9HY9a2YmBOSLFhqYqmaZx5mWaZNYAqOACFMAL8ESsTOxmGzoRWKWM9AJDYSKuM8w7WH-Thkb8h-3mR-1NCMSTyqeMp2IGwMoMTW2TBXUturOMq6BHRKUC7lqcc22UsdJeQNtet3jTqTQdcg956pP8otmqIOp4TSDrt6j8sTkMweU70Y2cNGnYjXrGY3BfbtY64UlwEXPF_jAHMBsfqKJE9ctKY0uOMeRTKNObq7f9P7h05wCdMZwuD92R_U279BwBOG3tW74wz8mL45Xp88ws7xhoJ |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9swDBa69rBdhnWvZt06DRh6qhvbkiX7GATt0qUNijUFchMkWQESJHbgJAf_gf7ukX40GLCuwI5-EJZFivwEkR8J-Q5RIzYAAzweB9zjdup7MdOBJ9Mo5U4DQjZYO3wzEoN7_nMSTfZIv62FwbTKxvfXPr3y1s2dbjOb3dVs1r0DsBIzPBVEVC_k5AU5QHYqMPaD3tVwMNplejBeV02L2EOBXSFPd34-h21n4fAQIvQrulNskPv3EPUUBK1C0eUb8rrBkLRXD_OQ7LnsLTm9rUmoyzM63tVUrc_oKb3d0VOX78jDD5flS0fhzzHlmeZTutxiL2E6_NW7o03jHrrergq9bJvn0lW-KJeu8KpKE0CpNHULTOkoUb6v1wktZibPkB05r7gfZhkFPEzxqzjBMF6LBlbQuuKrfE_uLy_G_YHXdGPwLBd84yUynCZR6kSSpkYDsGCAFYIQIEgkdWRFEFgdGCm1cYBBIi2M1NZZmH-Qh0v2gexneeaOCMWoyKaWJWAK3IgUNm2hAY8tmDaWSb9DeKsAZRuqcuyYsVBtTtpcNXpTqDflMwV665DzR7FVzdXxnEDcalf9YXQK4slzot9aa1CwIPGURWcu365VyKRk3GeS_eMdgG2wsw5j0SEfa1N6HDELA5FETH76_8F9JS8H45trdX01Gh6TV_gEs9sC_zPZ3xRb9wVw1MacNOvkN87LHLo |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Genome+editing+of+mutant+KRAS+through+supramolecular+polymer-mediated+delivery+of+Cas9+ribonucleoprotein+for+colorectal+cancer+therapy&rft.jtitle=Journal+of+controlled+release&rft.au=Wan%2C+Tao&rft.au=Chen%2C+Yuxuan&rft.au=Pan%2C+Qi&rft.au=Xu%2C+Xiaojie&rft.date=2020-06-10&rft.issn=0168-3659&rft.volume=322+p.236-247&rft.spage=236&rft.epage=247&rft_id=info:doi/10.1016%2Fj.jconrel.2020.03.015&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0168-3659&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0168-3659&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0168-3659&client=summon |