Genome editing of mutant KRAS through supramolecular polymer-mediated delivery of Cas9 ribonucleoprotein for colorectal cancer therapy

CRISPR (clustered, regularly interspaced, short palindromic repeats)/CRISPR-associated protein 9 (Cas9) system has emerged as a powerful genome-editing tool to correct genetic disorders. However, successful intracellular delivery of CRISPR/Cas9, especially in the form of ribonucleoprotein (RNP), rem...

Full description

Saved in:
Bibliographic Details
Published inJournal of controlled release Vol. 322; pp. 236 - 247
Main Authors Wan, Tao, Chen, Yuxuan, Pan, Qi, Xu, Xiaojie, Kang, Yu, Gao, Xue, Huang, Feihe, Wu, Chuanbin, Ping, Yuan
Format Journal Article
LanguageEnglish
Published Netherlands Elsevier B.V 10.06.2020
Subjects
Online AccessGet full text
ISSN0168-3659
1873-4995
1873-4995
DOI10.1016/j.jconrel.2020.03.015

Cover

Loading…
Abstract CRISPR (clustered, regularly interspaced, short palindromic repeats)/CRISPR-associated protein 9 (Cas9) system has emerged as a powerful genome-editing tool to correct genetic disorders. However, successful intracellular delivery of CRISPR/Cas9, especially in the form of ribonucleoprotein (RNP), remains elusive for clinical translation. Herein, we describe a supramolecular polymer that can mediate efficient controlled delivery of Cas9 RNP in vitro and in vivo. This supramolecular polymer system is prepared by complexing disulfide-bridged biguanidyl adamantine (Ad-SS-GD) with β-cyclodextrin-conjugated low-molecular-weight polyethyleneimime (CP) through supramolecular assembly to generate CP/Ad-SS-GD. Due to multiple, strong hydrogen bonding and salt bridge effects, CP/Ad-SS-GD well interact with Cas9 RNP to form stable nanocomplex CP/Ad-SS-GD/RNP, which can be readily released in the reductive intracellular milieu as a result of the cleavage of disulfide bonds. The supramolecular polymer ensures the efficient intracellular delivery and the release of Cas9 RNP into 293T cells and colorectal cancer (CRC) cells, thus displaying high genome-editing activity in vitro. Importantly, we also found that hyaluronic acid (HA)-decorated CP/Ad-SS-GD/RNP nanocomplexes targeting mutant KRAS effectively inhibit tumor growth as well as metastasis in the tumor-bearing mouse models. Collectively, our findings provide a promising therapeutic strategy against mutant KRAS for the treatment of CRC-activated RAS pathways, offering a new therapeutic genome-editing modality for the colorectal cancer treatment. [Display omitted]
AbstractList CRISPR (clustered, regularly interspaced, short palindromic repeats)/CRISPR-associated protein 9 (Cas9) system has emerged as a powerful genome-editing tool to correct genetic disorders. However, successful intracellular delivery of CRISPR/Cas9, especially in the form of ribonucleoprotein (RNP), remains elusive for clinical translation. Herein, we describe a supramolecular polymer that can mediate efficient controlled delivery of Cas9 RNP in vitro and in vivo. This supramolecular polymer system is prepared by complexing disulfide-bridged biguanidyl adamantine (Ad-SS-GD) with β-cyclodextrin-conjugated low-molecular-weight polyethyleneimime (CP) through supramolecular assembly to generate CP/Ad-SS-GD. Due to multiple, strong hydrogen bonding and salt bridge effects, CP/Ad-SS-GD well interact with Cas9 RNP to form stable nanocomplex CP/Ad-SS-GD/RNP, which can be readily released in the reductive intracellular milieu as a result of the cleavage of disulfide bonds. The supramolecular polymer ensures the efficient intracellular delivery and the release of Cas9 RNP into 293T cells and colorectal cancer (CRC) cells, thus displaying high genome-editing activity in vitro. Importantly, we also found that hyaluronic acid (HA)-decorated CP/Ad-SS-GD/RNP nanocomplexes targeting mutant KRAS effectively inhibit tumor growth as well as metastasis in the tumor-bearing mouse models. Collectively, our findings provide a promising therapeutic strategy against mutant KRAS for the treatment of CRC-activated RAS pathways, offering a new therapeutic genome-editing modality for the colorectal cancer treatment.
CRISPR (clustered, regularly interspaced, short palindromic repeats)/CRISPR-associated protein 9 (Cas9) system has emerged as a powerful genome-editing tool to correct genetic disorders. However, successful intracellular delivery of CRISPR/Cas9, especially in the form of ribonucleoprotein (RNP), remains elusive for clinical translation. Herein, we describe a supramolecular polymer that can mediate efficient controlled delivery of Cas9 RNP in vitro and in vivo. This supramolecular polymer system is prepared by complexing disulfide-bridged biguanidyl adamantine (Ad-SS-GD) with β-cyclodextrin-conjugated low-molecular-weight polyethyleneimime (CP) through supramolecular assembly to generate CP/Ad-SS-GD. Due to multiple, strong hydrogen bonding and salt bridge effects, CP/Ad-SS-GD well interact with Cas9 RNP to form stable nanocomplex CP/Ad-SS-GD/RNP, which can be readily released in the reductive intracellular milieu as a result of the cleavage of disulfide bonds. The supramolecular polymer ensures the efficient intracellular delivery and the release of Cas9 RNP into 293T cells and colorectal cancer (CRC) cells, thus displaying high genome-editing activity in vitro. Importantly, we also found that hyaluronic acid (HA)-decorated CP/Ad-SS-GD/RNP nanocomplexes targeting mutant KRAS effectively inhibit tumor growth as well as metastasis in the tumor-bearing mouse models. Collectively, our findings provide a promising therapeutic strategy against mutant KRAS for the treatment of CRC-activated RAS pathways, offering a new therapeutic genome-editing modality for the colorectal cancer treatment. [Display omitted]
CRISPR (clustered, regularly interspaced, short palindromic repeats)/CRISPR-associated protein 9 (Cas9) system has emerged as a powerful genome-editing tool to correct genetic disorders. However, successful intracellular delivery of CRISPR/Cas9, especially in the form of ribonucleoprotein (RNP), remains elusive for clinical translation. Herein, we describe a supramolecular polymer that can mediate efficient controlled delivery of Cas9 RNP in vitro and in vivo. This supramolecular polymer system is prepared by complexing disulfide-bridged biguanidyl adamantine (Ad-SS-GD) with β-cyclodextrin-conjugated low-molecular-weight polyethyleneimime (CP) through supramolecular assembly to generate CP/Ad-SS-GD. Due to multiple, strong hydrogen bonding and salt bridge effects, CP/Ad-SS-GD well interact with Cas9 RNP to form stable nanocomplex CP/Ad-SS-GD/RNP, which can be readily released in the reductive intracellular milieu as a result of the cleavage of disulfide bonds. The supramolecular polymer ensures the efficient intracellular delivery and the release of Cas9 RNP into 293T cells and colorectal cancer (CRC) cells, thus displaying high genome-editing activity in vitro. Importantly, we also found that hyaluronic acid (HA)-decorated CP/Ad-SS-GD/RNP nanocomplexes targeting mutant KRAS effectively inhibit tumor growth as well as metastasis in the tumor-bearing mouse models. Collectively, our findings provide a promising therapeutic strategy against mutant KRAS for the treatment of CRC-activated RAS pathways, offering a new therapeutic genome-editing modality for the colorectal cancer treatment.CRISPR (clustered, regularly interspaced, short palindromic repeats)/CRISPR-associated protein 9 (Cas9) system has emerged as a powerful genome-editing tool to correct genetic disorders. However, successful intracellular delivery of CRISPR/Cas9, especially in the form of ribonucleoprotein (RNP), remains elusive for clinical translation. Herein, we describe a supramolecular polymer that can mediate efficient controlled delivery of Cas9 RNP in vitro and in vivo. This supramolecular polymer system is prepared by complexing disulfide-bridged biguanidyl adamantine (Ad-SS-GD) with β-cyclodextrin-conjugated low-molecular-weight polyethyleneimime (CP) through supramolecular assembly to generate CP/Ad-SS-GD. Due to multiple, strong hydrogen bonding and salt bridge effects, CP/Ad-SS-GD well interact with Cas9 RNP to form stable nanocomplex CP/Ad-SS-GD/RNP, which can be readily released in the reductive intracellular milieu as a result of the cleavage of disulfide bonds. The supramolecular polymer ensures the efficient intracellular delivery and the release of Cas9 RNP into 293T cells and colorectal cancer (CRC) cells, thus displaying high genome-editing activity in vitro. Importantly, we also found that hyaluronic acid (HA)-decorated CP/Ad-SS-GD/RNP nanocomplexes targeting mutant KRAS effectively inhibit tumor growth as well as metastasis in the tumor-bearing mouse models. Collectively, our findings provide a promising therapeutic strategy against mutant KRAS for the treatment of CRC-activated RAS pathways, offering a new therapeutic genome-editing modality for the colorectal cancer treatment.
Author Pan, Qi
Chen, Yuxuan
Xu, Xiaojie
Ping, Yuan
Kang, Yu
Wu, Chuanbin
Wan, Tao
Gao, Xue
Huang, Feihe
Author_xml – sequence: 1
  givenname: Tao
  surname: Wan
  fullname: Wan, Tao
  organization: School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510275, China
– sequence: 2
  givenname: Yuxuan
  surname: Chen
  fullname: Chen, Yuxuan
  organization: Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Zhejiang University, Hangzhou 310058, China
– sequence: 3
  givenname: Qi
  surname: Pan
  fullname: Pan, Qi
  organization: Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Zhejiang University, Hangzhou 310058, China
– sequence: 4
  givenname: Xiaojie
  surname: Xu
  fullname: Xu, Xiaojie
  organization: Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Zhejiang University, Hangzhou 310058, China
– sequence: 5
  givenname: Yu
  surname: Kang
  fullname: Kang, Yu
  organization: Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Zhejiang University, Hangzhou 310058, China
– sequence: 6
  givenname: Xue
  surname: Gao
  fullname: Gao, Xue
  organization: Department of Chemical and Biomolecular Engineering, Department of Bioengineering, Rice University, Houston, TX 77005, USA
– sequence: 7
  givenname: Feihe
  surname: Huang
  fullname: Huang, Feihe
  organization: State Key Laboratory of Chemical Engineering, Center for Chemistry of High Performance & Novel Materials, Department of Chemistry, Zhejiang University, Hangzhou 310027, China
– sequence: 8
  givenname: Chuanbin
  orcidid: 0000-0003-1661-0201
  surname: Wu
  fullname: Wu, Chuanbin
  organization: School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510275, China
– sequence: 9
  givenname: Yuan
  orcidid: 0000-0003-2571-7721
  surname: Ping
  fullname: Ping, Yuan
  email: pingy@zju.edu.cn
  organization: Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Zhejiang University, Hangzhou 310058, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32169537$$D View this record in MEDLINE/PubMed
BookMark eNqNkctq3DAUhkVJaSZpH6FFy27s6mJZNl2UMLRJaKDQy1rI8nGiQZZcSQ7MC_S5q2Emm27SlRB83znS_1-gMx88IPSWkpoS2n7Y1TsTfARXM8JITXhNqHiBNrSTvGr6XpyhTeG6ireiP0cXKe0IIYI38hU654y2veByg_5cgw8zYBhttv4ehwnPa9Y-46_fr37g_BDDev-A07pEPQcHZnU64iW4_QyxmoumM4x4BGcfIe4P_lanHkc7BL8aB2GJIYP1eAoRm-BCBJO1w0Z7A7EsgKiX_Wv0ctIuwZvTeYl-ffn8c3tT3X27vt1e3VWmaZtc9ZJNvRih7cdx0LJjXFBGGZGNkFqYllKj6SClHoD0VOh2kNqAKR8vfrnyS_T-OLe86vcKKavZJgPOaQ9hTYo1nHYNYd1_oFxK3hAueUHfndB1KJGoJdpZx716irkAH4-AiSGlCJMyNutsg89RW6coUYdS1U6dSlWHUhXhqpRabPGP_bTgOe_T0YOS6KOFqJKxUGIf7aEENQb7zIS_fU_AyQ
CitedBy_id crossref_primary_10_1016_j_jconrel_2020_06_038
crossref_primary_10_1016_j_jconrel_2021_08_007
crossref_primary_10_1021_acscentsci_0c01648
crossref_primary_10_1080_17425247_2022_2100342
crossref_primary_10_1186_s12951_022_01717_x
crossref_primary_10_3390_ijms21249604
crossref_primary_10_1080_14728222_2020_1820986
crossref_primary_10_1186_s12951_021_01233_4
crossref_primary_10_1002_adfm_202204947
crossref_primary_10_1002_chem_202404617
crossref_primary_10_1016_j_addr_2021_113891
crossref_primary_10_1016_j_jconrel_2021_04_026
crossref_primary_10_1002_adfm_202108431
crossref_primary_10_1016_j_jconrel_2020_11_018
crossref_primary_10_1038_s41573_022_00476_6
crossref_primary_10_1039_D3BM00529A
crossref_primary_10_3390_cells11182781
crossref_primary_10_3390_ijms222111321
crossref_primary_10_1016_j_jconrel_2020_12_013
crossref_primary_10_3390_polym14224855
crossref_primary_10_3390_pharmaceutics16010062
crossref_primary_10_1039_D2NR05949E
crossref_primary_10_3390_cimb45100486
crossref_primary_10_1126_sciadv_abe2888
crossref_primary_10_1021_acsabm_1c01112
crossref_primary_10_1016_j_bioadv_2023_213556
crossref_primary_10_1016_j_carbpol_2023_121207
crossref_primary_10_1016_j_cej_2024_152754
crossref_primary_10_1016_j_actbio_2022_09_046
crossref_primary_10_1016_j_apsb_2022_12_013
crossref_primary_10_1039_D4BM01440E
crossref_primary_10_1007_s13205_024_04186_1
crossref_primary_10_1002_cac2_12366
crossref_primary_10_1021_acs_nanolett_1c03708
crossref_primary_10_1002_smll_202100546
crossref_primary_10_1007_s12033_022_00479_z
crossref_primary_10_1208_s12249_024_02834_6
crossref_primary_10_1002_adfm_202213967
crossref_primary_10_1002_adma_202300665
crossref_primary_10_1021_acs_nanolett_2c02948
crossref_primary_10_34133_bmr_0023
crossref_primary_10_34172_bi_2024_30087
crossref_primary_10_1186_s12943_022_01550_8
crossref_primary_10_1186_s12943_022_01552_6
crossref_primary_10_1002_bit_28603
crossref_primary_10_1016_j_actbio_2024_08_032
crossref_primary_10_1021_acs_chemmater_1c02844
crossref_primary_10_1186_s12943_022_01518_8
crossref_primary_10_1002_jgm_3240
crossref_primary_10_1002_adhm_202201825
crossref_primary_10_1016_j_matdes_2024_113097
crossref_primary_10_1038_s41392_021_00645_w
crossref_primary_10_1063_5_0123664
crossref_primary_10_1021_acsabm_0c00761
crossref_primary_10_1073_pnas_2307796121
crossref_primary_10_1016_j_colsurfb_2021_112257
crossref_primary_10_1016_j_nantod_2022_101482
crossref_primary_10_3390_genes11080921
crossref_primary_10_1039_D2BM01636B
crossref_primary_10_1080_14737159_2024_2388777
crossref_primary_10_1016_j_apsb_2021_05_020
crossref_primary_10_1002_adhm_202100847
crossref_primary_10_1016_j_mattod_2023_04_011
crossref_primary_10_3390_ijms24087052
crossref_primary_10_1186_s12929_021_00772_0
crossref_primary_10_1021_acs_accounts_3c00279
crossref_primary_10_1002_advs_202207512
crossref_primary_10_1007_s13205_021_02680_4
crossref_primary_10_1039_D3BM00788J
crossref_primary_10_1016_j_jconrel_2021_10_029
crossref_primary_10_1016_j_ymeth_2021_06_004
crossref_primary_10_1039_D1BM01658J
crossref_primary_10_1016_j_tips_2020_08_001
crossref_primary_10_3389_fbioe_2022_973326
crossref_primary_10_1016_j_lfs_2020_118525
crossref_primary_10_1016_j_omto_2023_08_007
crossref_primary_10_3389_fbioe_2022_1078342
crossref_primary_10_1016_j_jddst_2022_103737
crossref_primary_10_1021_acscentsci_3c00207
crossref_primary_10_1038_s41598_021_03325_5
crossref_primary_10_1002_adfm_202107174
crossref_primary_10_1016_j_crbiot_2023_100127
crossref_primary_10_1016_j_actbio_2020_08_029
crossref_primary_10_1039_D4PY00298A
crossref_primary_10_1016_j_gendis_2023_02_027
crossref_primary_10_1016_j_progpolymsci_2023_101769
crossref_primary_10_1134_S2634827624600312
crossref_primary_10_1186_s12951_022_01570_y
crossref_primary_10_2174_0929867331666230915103707
crossref_primary_10_3390_jfb15110324
crossref_primary_10_1016_j_lfs_2020_118969
crossref_primary_10_1002_chem_202402485
crossref_primary_10_1016_j_mseb_2023_116936
crossref_primary_10_1038_s41598_021_01572_0
crossref_primary_10_3390_pharmaceutics15061686
Cites_doi 10.1016/j.biomaterials.2019.119358
10.1016/j.chembiol.2017.06.017
10.1101/gr.223891.117
10.1158/1535-7163.MCT-14-0074
10.1038/nrd4389
10.1016/j.cell.2017.01.020
10.1021/jacs.6b02664
10.1039/C7CS00647K
10.1016/j.biomaterials.2018.08.023
10.1053/gast.2000.16507
10.1038/s41551-017-0137-2
10.1093/carcin/bgg009
10.1158/2159-8290.CD-15-1105
10.1021/jm3017706
10.1038/s41551-016-0011
10.1016/j.mam.2010.02.005
10.1038/nrd1775
10.1126/sciadv.aaw8922
10.1158/2159-8290.CD-13-0900
10.1016/S1369-7021(05)71034-8
10.1016/j.jconrel.2017.03.011
10.1016/j.mattod.2018.12.003
10.1158/2159-8290.CD-12-0231
10.1039/C5SC00524H
10.1021/acs.nanolett.6b04955
10.1080/10408360290795574
10.1073/pnas.1912220117
10.1016/j.jconrel.2017.06.027
10.1038/s41467-018-03779-8
10.1021/acs.chemrev.6b00799
10.1002/ijc.31374
10.1038/ncomms8391
10.1016/j.cell.2018.01.006
10.1038/nm.2385
10.1016/j.mib.2017.05.008
ContentType Journal Article
Copyright 2020 Elsevier B.V.
Copyright © 2020 Elsevier B.V. All rights reserved.
Copyright_xml – notice: 2020 Elsevier B.V.
– notice: Copyright © 2020 Elsevier B.V. All rights reserved.
DBID AAYXX
CITATION
NPM
7X8
7S9
L.6
DOI 10.1016/j.jconrel.2020.03.015
DatabaseName CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList PubMed

AGRICOLA
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Pharmacy, Therapeutics, & Pharmacology
EISSN 1873-4995
EndPage 247
ExternalDocumentID 32169537
10_1016_j_jconrel_2020_03_015
S016836592030167X
Genre Journal Article
GroupedDBID ---
--K
--M
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
53G
5GY
5VS
7-5
71M
8P~
9JM
AABNK
AABXZ
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AATCM
AAXUO
ABFNM
ABFRF
ABJNI
ABMAC
ABOCM
ABYKQ
ABZDS
ACDAQ
ACGFO
ACGFS
ACIUM
ACRLP
ADBBV
ADEZE
AEBSH
AEFWE
AEKER
AENEX
AEZYN
AFKWA
AFRZQ
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AIEXJ
AIKHN
AITUG
AJOXV
ALCLG
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLXMC
C45
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HMT
IHE
J1W
KOM
M34
M41
MO0
N9A
O-L
O9-
OAUVE
OGGZJ
OVD
OZT
P-8
P-9
P2P
PC.
Q38
RNS
ROL
RPZ
SCC
SDF
SDG
SDP
SES
SPC
SPCBC
SSM
SSP
SSZ
T5K
TEORI
~G-
.GJ
29K
3O-
AAHBH
AAQXK
AATTM
AAXKI
AAYOK
AAYWO
AAYXX
ABWVN
ABXDB
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AHHHB
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
D-I
EJD
FEDTE
FGOYB
G-2
HVGLF
HZ~
R2-
RIG
SEW
SPT
SSH
WUQ
NPM
7X8
EFKBS
7S9
L.6
ID FETCH-LOGICAL-c464t-972f95de69ddba78235121207457a5c611ca1b77abe0915a6b7acec000c465a63
IEDL.DBID .~1
ISSN 0168-3659
1873-4995
IngestDate Thu Jul 10 21:56:30 EDT 2025
Sun Aug 31 06:30:17 EDT 2025
Wed Feb 19 02:30:04 EST 2025
Tue Jul 01 04:09:56 EDT 2025
Thu Apr 24 22:59:06 EDT 2025
Fri Feb 23 02:47:48 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Protein delivery
CRISPR/Cas9
Host-guest self-assembly
Nanomedicine
Colorectal cancer
Language English
License Copyright © 2020 Elsevier B.V. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c464t-972f95de69ddba78235121207457a5c611ca1b77abe0915a6b7acec000c465a63
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-1661-0201
0000-0003-2571-7721
PMID 32169537
PQID 2377340373
PQPubID 23479
PageCount 12
ParticipantIDs proquest_miscellaneous_2431840286
proquest_miscellaneous_2377340373
pubmed_primary_32169537
crossref_citationtrail_10_1016_j_jconrel_2020_03_015
crossref_primary_10_1016_j_jconrel_2020_03_015
elsevier_sciencedirect_doi_10_1016_j_jconrel_2020_03_015
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-06-10
PublicationDateYYYYMMDD 2020-06-10
PublicationDate_xml – month: 06
  year: 2020
  text: 2020-06-10
  day: 10
PublicationDecade 2020
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
PublicationTitle Journal of controlled release
PublicationTitleAlternate J Control Release
PublicationYear 2020
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Wang, Sun, Ye, Hu, Bomba, Gu (bb0145) 2017; 1
Lv, He, Yu, Wang, Wang, Zhang, Wang, Hu, Zhang, Cheng (bb0165) 2018; 182
Waldner, Neurath (bb0020) 2010; 31
Pack, Hoffman, Pun, Stayton (bb0085) 2005; 4
Okuro, Sasaki, Aida (bb0125) 2016; 138
Janes, Zhang, Li, Hansen, Peters, Guo, Chen, Babbar, Firdaus, Darjania, Feng, Chen, Li, Li, Long, Thach, Liu, Zarieh, Ely, Kucharski, Kessler, Wu, Yu, Wang, Yao, Deng, Zarrinkar, Brehmer, Dhanak, Lorenzi, Hu-Lowe, Patricelli, Ren, Liu (bb0040) 2018; 172
Mogaki, Okuro, Aida (bb0120) 2015; 6
Wu, Liu, Jin, Li, Li, Hu, Chu, Tang, Ping (bb0140) 2017; 253
Lv, Fan, Wang, Cheng (bb0105) 2019; 218
Lee, Conboy, Park, Jiang, Kim, Dewitt, Mackley, Chang, Rao, Skinner, Shobha, Mehdipour, Liu, Huang, Lan, Bray, Li, Corn, Kataoka, Doudna, Conboy, Murthy (bb0090) 2017; 1
Wang, Li, Lee, Chakraborty, Kim, Bao, Leong (bb0115) 2017; 117
Chang, Lv, Gao, Wang, Wang, Chen, He, Li, Cheng (bb0135) 2017; 17
Naor, Nedvetzki, Golan, Melnik, Faitelson (bb0175) 2002; 39
Liu, Wan, Wang, Zhang, Ping, Cheng (bb0100) 2019; 5
Wan, Niu, Wu, Xu, Church, Ping (bb0075) 2019; 26
Young, Lou, McCormick (bb0060) 2013; 3
Zhang, Shen, Ling, Yan, Hu, Cheng (bb0095) 2018; 9
Cox, Fesik, Kimmelman, Luo, Der (bb0015) 2014; 13
Yuan, Fellmann, Lee, Ritchie, Thapar, Lee, Hsu, Grace, Carver, Zuber, Luo, McCormick, Lowe (bb0045) 2014; 4
Chi, Yin, Sun, Feng, Liu, Chen, Guo, Wu (bb0160) 2017; 261
Wang, Kaiser, Frett, Li (bb0025) 2013; 56
Zhou, Liu, Li, Huang, Li, Li (bb0155) 2018; 143
Zeng, Lu, Li, Feru, Quan, Gero, Ficarro, Xiong, Ambrogio, Paranal, Catalano, Shao, Wong, Marto, Fischer, Jänne, Scott, Westover, Gray (bb0035) 2017; 24
Patricelli, Janes, Li, Hansen, Peters, Kessler, Chen, Kucharski, Feng, Ely, Chen, Firdaus, Babbar, Ren, Liu (bb0030) 2016; 6
Chen, Chen, Xin, Wan, Ping (bb0080) 2020; 117
Mogaki, Hashim, Okuro, Aida (bb0130) 2017; 46
Kim, Lee, Kim, Song, Cha, Kim, Shin, Lee, Joo, Song, Choi, Choi, Lee, Kang, Yook, Lee, Kim, Paik, Kim (bb0070) 2018; 28
Koonin, Makarova, Zhang (bb0055) 2017; 37
Kim, Nie (bb0170) 2005; 8
Burgess, Hwang, Mroue, Bielski, Wandler, Huang, Firestone, Young, Lacap, Crocker, Asthana, Davis, Xu, Akagi, Le Beau, Li, Haley, Stokoe, Sampath, Taylor, Evangelista, Shannon (bb0065) 2017; 168
Huang, Li, Liu, Li, Shi, Liu, O’Sullivan, He, Peng, Tan, Zhou, Shen, Han, Wang, Thorburn, Thorburn, Jimeno, Raben, Bedford, Li (bb0150) 2011; 17
Chung (bb0005) 2000; 119
Pecot, Wu, Bellister, Filant, Rupaimoole, Hisamatsu, Bhattacharya, Maharaj, Azam, Rodriguez-Aguayo, Nagaraja, Morelli, Gharpure, Waugh, Gonzalez-Villasana, Zand, Dalton, Kopetz, Lopez-Berestein, Ellis, Sood (bb0050) 2014; 13
Zuckermann, Hovestadt, Knobbe-Thomsen, Zapatka, Northcott, Schramm, Belic, Jones, Tschida, Moriarity, Largaespada, Roussel, Korshunov, Reifenberger, Pfister, Lichter, Kawauchi, Gronych (bb0110) 2015; 6
Brink (bb0010) 2003; 24
Chung (10.1016/j.jconrel.2020.03.015_bb0005) 2000; 119
Huang (10.1016/j.jconrel.2020.03.015_bb0150) 2011; 17
Lv (10.1016/j.jconrel.2020.03.015_bb0165) 2018; 182
Zuckermann (10.1016/j.jconrel.2020.03.015_bb0110) 2015; 6
Waldner (10.1016/j.jconrel.2020.03.015_bb0020) 2010; 31
Lee (10.1016/j.jconrel.2020.03.015_bb0090) 2017; 1
Mogaki (10.1016/j.jconrel.2020.03.015_bb0120) 2015; 6
Janes (10.1016/j.jconrel.2020.03.015_bb0040) 2018; 172
Naor (10.1016/j.jconrel.2020.03.015_bb0175) 2002; 39
Wang (10.1016/j.jconrel.2020.03.015_bb0145) 2017; 1
Chi (10.1016/j.jconrel.2020.03.015_bb0160) 2017; 261
Zeng (10.1016/j.jconrel.2020.03.015_bb0035) 2017; 24
Chen (10.1016/j.jconrel.2020.03.015_bb0080) 2020; 117
Kim (10.1016/j.jconrel.2020.03.015_bb0170) 2005; 8
Brink (10.1016/j.jconrel.2020.03.015_bb0010) 2003; 24
Patricelli (10.1016/j.jconrel.2020.03.015_bb0030) 2016; 6
Wan (10.1016/j.jconrel.2020.03.015_bb0075) 2019; 26
Yuan (10.1016/j.jconrel.2020.03.015_bb0045) 2014; 4
Lv (10.1016/j.jconrel.2020.03.015_bb0105) 2019; 218
Pecot (10.1016/j.jconrel.2020.03.015_bb0050) 2014; 13
Young (10.1016/j.jconrel.2020.03.015_bb0060) 2013; 3
Wang (10.1016/j.jconrel.2020.03.015_bb0025) 2013; 56
Pack (10.1016/j.jconrel.2020.03.015_bb0085) 2005; 4
Okuro (10.1016/j.jconrel.2020.03.015_bb0125) 2016; 138
Chang (10.1016/j.jconrel.2020.03.015_bb0135) 2017; 17
Liu (10.1016/j.jconrel.2020.03.015_bb0100) 2019; 5
Mogaki (10.1016/j.jconrel.2020.03.015_bb0130) 2017; 46
Zhang (10.1016/j.jconrel.2020.03.015_bb0095) 2018; 9
Wang (10.1016/j.jconrel.2020.03.015_bb0115) 2017; 117
Burgess (10.1016/j.jconrel.2020.03.015_bb0065) 2017; 168
Koonin (10.1016/j.jconrel.2020.03.015_bb0055) 2017; 37
Zhou (10.1016/j.jconrel.2020.03.015_bb0155) 2018; 143
Cox (10.1016/j.jconrel.2020.03.015_bb0015) 2014; 13
Kim (10.1016/j.jconrel.2020.03.015_bb0070) 2018; 28
Wu (10.1016/j.jconrel.2020.03.015_bb0140) 2017; 253
References_xml – volume: 13
  start-page: 2876
  year: 2014
  end-page: 2885
  ident: bb0050
  article-title: Therapeutic silencing of KRAS using systemically delivered siRNAs
  publication-title: Mol. Cancer Ther.
– volume: 4
  start-page: 1182
  year: 2014
  end-page: 1197
  ident: bb0045
  article-title: Development of siRNA payloads to target KRAS-mutant cancer
  publication-title: Cancer Discov.
– volume: 168
  start-page: 817
  year: 2017
  end-page: 829
  ident: bb0065
  article-title: KRAS allelic imbalance enhances fitness and modulates MAP kinase dependence in cancer
  publication-title: Cell.
– volume: 17
  start-page: 860
  year: 2011
  end-page: 866
  ident: bb0150
  article-title: Caspase 3–mediated stimulation of tumor cell repopulation during cancer radiotherapy
  publication-title: Nat. Med.
– volume: 17
  start-page: 1678
  year: 2017
  end-page: 1684
  ident: bb0135
  article-title: Rational design of a polymer with robust efficacy for intracellular protein and peptide delivery
  publication-title: Nano Lett.
– volume: 4
  start-page: 581
  year: 2005
  end-page: 593
  ident: bb0085
  article-title: Design and development of polymers for gene delivery
  publication-title: Nat. Rev. Drug Discov.
– volume: 117
  start-page: 9874
  year: 2017
  end-page: 9906
  ident: bb0115
  article-title: CRISPR/Cas9-based genome editing for disease modeling and therapy: challenges and opportunities for nonviral delivery
  publication-title: Chem. Rev.
– volume: 6
  start-page: 2802
  year: 2015
  end-page: 2805
  ident: bb0120
  article-title: Molecular glues for manipulating enzymes: trypsin inhibition by benzamidine-conjugated molecular glues
  publication-title: Chem. Sci.
– volume: 28
  start-page: 374
  year: 2018
  end-page: 382
  ident: bb0070
  article-title: Targeting mutant KRAS with CRISPR-Cas9 controls tumor growth
  publication-title: Genome Res.
– volume: 46
  start-page: 6480
  year: 2017
  end-page: 6491
  ident: bb0130
  article-title: Guanidinium-based “molecular glues” for modulation of biomolecular functions
  publication-title: Chem. Soc. Rev.
– volume: 5
  year: 2019
  ident: bb0100
  article-title: A boronic acid–rich dendrimer with robust and unprecedented efficiency for cytosolic protein delivery and CRISPR-Cas9 gene editing
  publication-title: Sci. Adv.
– volume: 253
  start-page: 110
  year: 2017
  end-page: 121
  ident: bb0140
  article-title: Targeting ETS1 with RNAi-based supramolecular nanoassemblies for multidrug-resistant breast cancer therapy
  publication-title: J. Control. Release
– volume: 39
  start-page: 527
  year: 2002
  end-page: 579
  ident: bb0175
  article-title: CD44 in Cancer
  publication-title: Crit. Rev. Clin. Lab. Sci.
– volume: 138
  start-page: 5527
  year: 2016
  end-page: 5530
  ident: bb0125
  article-title: Boronic acid-appended molecular glues for ATP-responsive activity modulation of enzymes
  publication-title: J. Am. Chem. Soc.
– volume: 1
  start-page: 0011
  year: 2017
  ident: bb0145
  article-title: In situ activation of platelets with checkpoint inhibitors for post-surgical cancer immunotherapy
  publication-title: Nat. Biomed. Eng.
– volume: 172
  start-page: 578
  year: 2018
  end-page: 589
  ident: bb0040
  article-title: Targeting KRAS mutant cancers with a covalent G12C-specific inhibitor
  publication-title: Cell
– volume: 6
  start-page: 7391
  year: 2015
  ident: bb0110
  article-title: Somatic CRISPR/Cas9-mediated tumour suppressor disruption enables versatile brain tumour modelling
  publication-title: Nat. Commun.
– volume: 37
  start-page: 67
  year: 2017
  end-page: 78
  ident: bb0055
  article-title: Diversity, classification and evolution of CRISPR-Cas systems
  publication-title: Curr. Opin. Microbiol.
– volume: 119
  start-page: 854
  year: 2000
  end-page: 865
  ident: bb0005
  article-title: The genetic basis of colorectal cancer: insights into critical pathways of tumorigenesis
  publication-title: Gastroenterology
– volume: 24
  start-page: 1005
  year: 2017
  end-page: 1016
  ident: bb0035
  article-title: Potent and selective covalent quinazoline inhibitors of KRAS G12C
  publication-title: Cell Chem. Biol.
– volume: 8
  start-page: 28
  year: 2005
  end-page: 33
  ident: bb0170
  article-title: Targeted cancer nanotherapy
  publication-title: Mater. Today
– volume: 261
  start-page: 113
  year: 2017
  end-page: 125
  ident: bb0160
  article-title: Redox-sensitive and hyaluronic acid functionalized liposomes for cytoplasmic drug delivery to osteosarcoma in animal models
  publication-title: J. Control. Release
– volume: 218
  start-page: 119358
  year: 2019
  ident: bb0105
  article-title: Polymers for cytosolic protein delivery
  publication-title: Biomaterials
– volume: 24
  start-page: 703
  year: 2003
  end-page: 710
  ident: bb0010
  article-title: K-ras oncogene mutations in sporadic colorectal cancer in the Netherlands cohort study
  publication-title: Carcinogenesis
– volume: 13
  start-page: 828
  year: 2014
  end-page: 851
  ident: bb0015
  article-title: Drugging the undruggable RAS: Mission possible?
  publication-title: Nat. Rev. Drug Discov.
– volume: 143
  start-page: 921
  year: 2018
  end-page: 930
  ident: bb0155
  article-title: Caspase-3 regulates the migration, invasion and metastasis of colon cancer cells
  publication-title: Int. J. Cancer
– volume: 56
  start-page: 5219
  year: 2013
  end-page: 5230
  ident: bb0025
  article-title: Targeting mutant KRAS for anticancer therapeutics: a review of novel small molecule modulators
  publication-title: J. Med. Chem.
– volume: 6
  start-page: 316
  year: 2016
  end-page: 329
  ident: bb0030
  article-title: Selective inhibition of oncogenic KRAS output with small molecules targeting the inactive state
  publication-title: Cancer Discov.
– volume: 1
  start-page: 889
  year: 2017
  end-page: 901
  ident: bb0090
  article-title: Nanoparticle delivery of Cas9 ribonucleoprotein and donor DNA in vivo induces homology-directed DNA repair
  publication-title: Nat. Biomed. Eng.
– volume: 9
  start-page: 1377
  year: 2018
  ident: bb0095
  article-title: The fluorination effect of fluoroamphiphiles in cytosolic protein delivery
  publication-title: Nat. Commun.
– volume: 31
  start-page: 171
  year: 2010
  end-page: 178
  ident: bb0020
  article-title: The molecular therapy of colorectal cancer
  publication-title: Mol. Asp. Med.
– volume: 182
  start-page: 167
  year: 2018
  end-page: 175
  ident: bb0165
  article-title: Fluoropolymers for intracellular and in vivo protein delivery
  publication-title: Biomaterials
– volume: 26
  start-page: 40
  year: 2019
  end-page: 66
  ident: bb0075
  article-title: Material solutions for delivery of CRISPR/Cas-based genome editing tools: current status and future outlook
  publication-title: Mater. Today
– volume: 117
  start-page: 2395
  year: 2020
  end-page: 2405
  ident: bb0080
  article-title: Near-infrared optogenetic engineering of photothermal nanoCRISPR for programmable genome editing
  publication-title: Proc. Natl. Acad. Sci.
– volume: 3
  start-page: 112
  year: 2013
  end-page: 123
  ident: bb0060
  article-title: Oncogenic and wild-type Ras play divergent roles in the regulation of mitogen-activated protein kinase signaling
  publication-title: Cancer Discov.
– volume: 218
  start-page: 119358
  year: 2019
  ident: 10.1016/j.jconrel.2020.03.015_bb0105
  article-title: Polymers for cytosolic protein delivery
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2019.119358
– volume: 24
  start-page: 1005
  year: 2017
  ident: 10.1016/j.jconrel.2020.03.015_bb0035
  article-title: Potent and selective covalent quinazoline inhibitors of KRAS G12C
  publication-title: Cell Chem. Biol.
  doi: 10.1016/j.chembiol.2017.06.017
– volume: 28
  start-page: 374
  year: 2018
  ident: 10.1016/j.jconrel.2020.03.015_bb0070
  article-title: Targeting mutant KRAS with CRISPR-Cas9 controls tumor growth
  publication-title: Genome Res.
  doi: 10.1101/gr.223891.117
– volume: 13
  start-page: 2876
  year: 2014
  ident: 10.1016/j.jconrel.2020.03.015_bb0050
  article-title: Therapeutic silencing of KRAS using systemically delivered siRNAs
  publication-title: Mol. Cancer Ther.
  doi: 10.1158/1535-7163.MCT-14-0074
– volume: 13
  start-page: 828
  year: 2014
  ident: 10.1016/j.jconrel.2020.03.015_bb0015
  article-title: Drugging the undruggable RAS: Mission possible?
  publication-title: Nat. Rev. Drug Discov.
  doi: 10.1038/nrd4389
– volume: 168
  start-page: 817
  year: 2017
  ident: 10.1016/j.jconrel.2020.03.015_bb0065
  article-title: KRAS allelic imbalance enhances fitness and modulates MAP kinase dependence in cancer
  publication-title: Cell.
  doi: 10.1016/j.cell.2017.01.020
– volume: 138
  start-page: 5527
  year: 2016
  ident: 10.1016/j.jconrel.2020.03.015_bb0125
  article-title: Boronic acid-appended molecular glues for ATP-responsive activity modulation of enzymes
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.6b02664
– volume: 46
  start-page: 6480
  year: 2017
  ident: 10.1016/j.jconrel.2020.03.015_bb0130
  article-title: Guanidinium-based “molecular glues” for modulation of biomolecular functions
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C7CS00647K
– volume: 182
  start-page: 167
  year: 2018
  ident: 10.1016/j.jconrel.2020.03.015_bb0165
  article-title: Fluoropolymers for intracellular and in vivo protein delivery
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2018.08.023
– volume: 119
  start-page: 854
  year: 2000
  ident: 10.1016/j.jconrel.2020.03.015_bb0005
  article-title: The genetic basis of colorectal cancer: insights into critical pathways of tumorigenesis
  publication-title: Gastroenterology
  doi: 10.1053/gast.2000.16507
– volume: 1
  start-page: 889
  year: 2017
  ident: 10.1016/j.jconrel.2020.03.015_bb0090
  article-title: Nanoparticle delivery of Cas9 ribonucleoprotein and donor DNA in vivo induces homology-directed DNA repair
  publication-title: Nat. Biomed. Eng.
  doi: 10.1038/s41551-017-0137-2
– volume: 24
  start-page: 703
  year: 2003
  ident: 10.1016/j.jconrel.2020.03.015_bb0010
  article-title: K-ras oncogene mutations in sporadic colorectal cancer in the Netherlands cohort study
  publication-title: Carcinogenesis
  doi: 10.1093/carcin/bgg009
– volume: 6
  start-page: 316
  year: 2016
  ident: 10.1016/j.jconrel.2020.03.015_bb0030
  article-title: Selective inhibition of oncogenic KRAS output with small molecules targeting the inactive state
  publication-title: Cancer Discov.
  doi: 10.1158/2159-8290.CD-15-1105
– volume: 56
  start-page: 5219
  year: 2013
  ident: 10.1016/j.jconrel.2020.03.015_bb0025
  article-title: Targeting mutant KRAS for anticancer therapeutics: a review of novel small molecule modulators
  publication-title: J. Med. Chem.
  doi: 10.1021/jm3017706
– volume: 1
  start-page: 0011
  year: 2017
  ident: 10.1016/j.jconrel.2020.03.015_bb0145
  article-title: In situ activation of platelets with checkpoint inhibitors for post-surgical cancer immunotherapy
  publication-title: Nat. Biomed. Eng.
  doi: 10.1038/s41551-016-0011
– volume: 31
  start-page: 171
  year: 2010
  ident: 10.1016/j.jconrel.2020.03.015_bb0020
  article-title: The molecular therapy of colorectal cancer
  publication-title: Mol. Asp. Med.
  doi: 10.1016/j.mam.2010.02.005
– volume: 4
  start-page: 581
  year: 2005
  ident: 10.1016/j.jconrel.2020.03.015_bb0085
  article-title: Design and development of polymers for gene delivery
  publication-title: Nat. Rev. Drug Discov.
  doi: 10.1038/nrd1775
– volume: 5
  year: 2019
  ident: 10.1016/j.jconrel.2020.03.015_bb0100
  article-title: A boronic acid–rich dendrimer with robust and unprecedented efficiency for cytosolic protein delivery and CRISPR-Cas9 gene editing
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.aaw8922
– volume: 4
  start-page: 1182
  year: 2014
  ident: 10.1016/j.jconrel.2020.03.015_bb0045
  article-title: Development of siRNA payloads to target KRAS-mutant cancer
  publication-title: Cancer Discov.
  doi: 10.1158/2159-8290.CD-13-0900
– volume: 8
  start-page: 28
  year: 2005
  ident: 10.1016/j.jconrel.2020.03.015_bb0170
  article-title: Targeted cancer nanotherapy
  publication-title: Mater. Today
  doi: 10.1016/S1369-7021(05)71034-8
– volume: 253
  start-page: 110
  year: 2017
  ident: 10.1016/j.jconrel.2020.03.015_bb0140
  article-title: Targeting ETS1 with RNAi-based supramolecular nanoassemblies for multidrug-resistant breast cancer therapy
  publication-title: J. Control. Release
  doi: 10.1016/j.jconrel.2017.03.011
– volume: 26
  start-page: 40
  year: 2019
  ident: 10.1016/j.jconrel.2020.03.015_bb0075
  article-title: Material solutions for delivery of CRISPR/Cas-based genome editing tools: current status and future outlook
  publication-title: Mater. Today
  doi: 10.1016/j.mattod.2018.12.003
– volume: 3
  start-page: 112
  year: 2013
  ident: 10.1016/j.jconrel.2020.03.015_bb0060
  article-title: Oncogenic and wild-type Ras play divergent roles in the regulation of mitogen-activated protein kinase signaling
  publication-title: Cancer Discov.
  doi: 10.1158/2159-8290.CD-12-0231
– volume: 6
  start-page: 2802
  year: 2015
  ident: 10.1016/j.jconrel.2020.03.015_bb0120
  article-title: Molecular glues for manipulating enzymes: trypsin inhibition by benzamidine-conjugated molecular glues
  publication-title: Chem. Sci.
  doi: 10.1039/C5SC00524H
– volume: 17
  start-page: 1678
  year: 2017
  ident: 10.1016/j.jconrel.2020.03.015_bb0135
  article-title: Rational design of a polymer with robust efficacy for intracellular protein and peptide delivery
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.6b04955
– volume: 39
  start-page: 527
  year: 2002
  ident: 10.1016/j.jconrel.2020.03.015_bb0175
  article-title: CD44 in Cancer
  publication-title: Crit. Rev. Clin. Lab. Sci.
  doi: 10.1080/10408360290795574
– volume: 117
  start-page: 2395
  year: 2020
  ident: 10.1016/j.jconrel.2020.03.015_bb0080
  article-title: Near-infrared optogenetic engineering of photothermal nanoCRISPR for programmable genome editing
  publication-title: Proc. Natl. Acad. Sci.
  doi: 10.1073/pnas.1912220117
– volume: 261
  start-page: 113
  year: 2017
  ident: 10.1016/j.jconrel.2020.03.015_bb0160
  article-title: Redox-sensitive and hyaluronic acid functionalized liposomes for cytoplasmic drug delivery to osteosarcoma in animal models
  publication-title: J. Control. Release
  doi: 10.1016/j.jconrel.2017.06.027
– volume: 9
  start-page: 1377
  year: 2018
  ident: 10.1016/j.jconrel.2020.03.015_bb0095
  article-title: The fluorination effect of fluoroamphiphiles in cytosolic protein delivery
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-03779-8
– volume: 117
  start-page: 9874
  year: 2017
  ident: 10.1016/j.jconrel.2020.03.015_bb0115
  article-title: CRISPR/Cas9-based genome editing for disease modeling and therapy: challenges and opportunities for nonviral delivery
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.6b00799
– volume: 143
  start-page: 921
  year: 2018
  ident: 10.1016/j.jconrel.2020.03.015_bb0155
  article-title: Caspase-3 regulates the migration, invasion and metastasis of colon cancer cells
  publication-title: Int. J. Cancer
  doi: 10.1002/ijc.31374
– volume: 6
  start-page: 7391
  year: 2015
  ident: 10.1016/j.jconrel.2020.03.015_bb0110
  article-title: Somatic CRISPR/Cas9-mediated tumour suppressor disruption enables versatile brain tumour modelling
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms8391
– volume: 172
  start-page: 578
  year: 2018
  ident: 10.1016/j.jconrel.2020.03.015_bb0040
  article-title: Targeting KRAS mutant cancers with a covalent G12C-specific inhibitor
  publication-title: Cell
  doi: 10.1016/j.cell.2018.01.006
– volume: 17
  start-page: 860
  year: 2011
  ident: 10.1016/j.jconrel.2020.03.015_bb0150
  article-title: Caspase 3–mediated stimulation of tumor cell repopulation during cancer radiotherapy
  publication-title: Nat. Med.
  doi: 10.1038/nm.2385
– volume: 37
  start-page: 67
  year: 2017
  ident: 10.1016/j.jconrel.2020.03.015_bb0055
  article-title: Diversity, classification and evolution of CRISPR-Cas systems
  publication-title: Curr. Opin. Microbiol.
  doi: 10.1016/j.mib.2017.05.008
SSID ssj0005347
Score 2.5970306
Snippet CRISPR (clustered, regularly interspaced, short palindromic repeats)/CRISPR-associated protein 9 (Cas9) system has emerged as a powerful genome-editing tool to...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 236
SubjectTerms animal models
cancer therapy
Colorectal cancer
colorectal neoplasms
CRISPR-associated proteins
CRISPR-Cas systems
CRISPR/Cas9
disulfide bonds
gene editing
genetic disorders
Host-guest self-assembly
hyaluronic acid
hydrogen bonding
metastasis
mice
mutants
Nanomedicine
neoplasm cells
polymers
Protein delivery
ribonucleoproteins
Title Genome editing of mutant KRAS through supramolecular polymer-mediated delivery of Cas9 ribonucleoprotein for colorectal cancer therapy
URI https://dx.doi.org/10.1016/j.jconrel.2020.03.015
https://www.ncbi.nlm.nih.gov/pubmed/32169537
https://www.proquest.com/docview/2377340373
https://www.proquest.com/docview/2431840286
Volume 322
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9swEBele-lL6datzT6KBqNPVWJbsmQ_hrA2W1kpawt5E5KsQEJiByd58Mse93fvzh_NBt0Ke7TRYVl3uvsJ3f2OkE8QNRILMICJJBRMuGnAEm5CprI4E94AQrZYO_ztRo4fxNdJPNkjo64WBtMqW9_f-PTaW7dvBu1qDlaz2eAOwErC8VYQUb1UE6xgFwr58_s_fkvz4KIpmZYJw9G7Kp7BvD-HM2fp8QYiCmquU-yO-3R8-hv-rOPQ5RE5bAEkHTZzfEn2fP6KnN82DNTVBb3fFVStL-g5vd1xU1fH5OeVz4ulp_DbmO9MiyldbrGRML3-Pryjbdceut6uSrPsOufSVbGolr5kdZkJQFSa-QXmc1QoPzLrlJYzW-RIjVzUxA-znAIYpvhVXF2Yr0PrKmlT7lW9Jg-Xn-9HY9a2YmBOSLFhqYqmaZx5mWaZNYAqOACFMAL8ESsTOxmGzoRWKWM9AJDYSKuM8w7WH-Thkb8h-3mR-1NCMSTyqeMp2IGwMoMTW2TBXUturOMq6BHRKUC7lqcc22UsdJeQNtet3jTqTQdcg956pP8otmqIOp4TSDrt6j8sTkMweU70Y2cNGnYjXrGY3BfbtY64UlwEXPF_jAHMBsfqKJE9ctKY0uOMeRTKNObq7f9P7h05wCdMZwuD92R_U279BwBOG3tW74wz8mL45Xp88ws7xhoJ
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9swDBa69rBdhnWvZt06DRh6qhvbkiX7GATt0qUNijUFchMkWQESJHbgJAf_gf7ukX40GLCuwI5-EJZFivwEkR8J-Q5RIzYAAzweB9zjdup7MdOBJ9Mo5U4DQjZYO3wzEoN7_nMSTfZIv62FwbTKxvfXPr3y1s2dbjOb3dVs1r0DsBIzPBVEVC_k5AU5QHYqMPaD3tVwMNplejBeV02L2EOBXSFPd34-h21n4fAQIvQrulNskPv3EPUUBK1C0eUb8rrBkLRXD_OQ7LnsLTm9rUmoyzM63tVUrc_oKb3d0VOX78jDD5flS0fhzzHlmeZTutxiL2E6_NW7o03jHrrergq9bJvn0lW-KJeu8KpKE0CpNHULTOkoUb6v1wktZibPkB05r7gfZhkFPEzxqzjBMF6LBlbQuuKrfE_uLy_G_YHXdGPwLBd84yUynCZR6kSSpkYDsGCAFYIQIEgkdWRFEFgdGCm1cYBBIi2M1NZZmH-Qh0v2gexneeaOCMWoyKaWJWAK3IgUNm2hAY8tmDaWSb9DeKsAZRuqcuyYsVBtTtpcNXpTqDflMwV665DzR7FVzdXxnEDcalf9YXQK4slzot9aa1CwIPGURWcu365VyKRk3GeS_eMdgG2wsw5j0SEfa1N6HDELA5FETH76_8F9JS8H45trdX01Gh6TV_gEs9sC_zPZ3xRb9wVw1MacNOvkN87LHLo
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Genome+editing+of+mutant+KRAS+through+supramolecular+polymer-mediated+delivery+of+Cas9+ribonucleoprotein+for+colorectal+cancer+therapy&rft.jtitle=Journal+of+controlled+release&rft.au=Wan%2C+Tao&rft.au=Chen%2C+Yuxuan&rft.au=Pan%2C+Qi&rft.au=Xu%2C+Xiaojie&rft.date=2020-06-10&rft.issn=0168-3659&rft.volume=322+p.236-247&rft.spage=236&rft.epage=247&rft_id=info:doi/10.1016%2Fj.jconrel.2020.03.015&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0168-3659&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0168-3659&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0168-3659&client=summon