Advantages of in vivo measurement of human skin thermal conductance using a calorimetric sensor

Thermal conductivity of the skin has been measured by in vivo procedures since the 1950s. These devices usually consist of temperature sensors and heating elements. In vivo measurement of skin thermal conductivity entails several difficulties. It is necessary to adequately characterize the excitatio...

Full description

Saved in:
Bibliographic Details
Published inJournal of thermal analysis and calorimetry Vol. 147; no. 18; pp. 10027 - 10036
Main Authors Rodríguez de Rivera, Pedro Jesús, Rodríguez de Rivera, Miriam, Socorro, Fabiola, Calbet, Jose A. L., Rodríguez de Rivera, Manuel
Format Journal Article
LanguageEnglish
Published Cham Springer International Publishing 01.09.2022
Springer
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Thermal conductivity of the skin has been measured by in vivo procedures since the 1950s. These devices usually consist of temperature sensors and heating elements. In vivo measurement of skin thermal conductivity entails several difficulties. It is necessary to adequately characterize the excitation produced by the measurement. In addition, the thermal penetration depth of each instrument is different. These factors have led to the development of a multitude of techniques to measure the thermal conductivity or related magnitudes such as thermal conductance. In our case, we have built a calorimetric sensor designed to measure this magnitude directly and non-invasively. The device implements the basic principles of calorimetry and is capable of characterizing the thermal magnitudes of a 2 × 2 (4) cm 2 skin region. The sensor consists of a measuring thermopile with a thermostat cooled by Peltier effect. Several skin measurements performed under different conditions resulted in a thermal conductance ranging from 0.017 to 0.050 WK −1 . This magnitude, measured in vivo, is different in each studied area and depends on several factors, such as physical activity and the physiological state of the subject. This new sensor is a useful tool for studying the human body thermoregulatory response.
AbstractList Thermal conductivity of the skin has been measured by in vivo procedures since the 1950s. These devices usually consist of temperature sensors and heating elements. In vivo measurement of skin thermal conductivity entails several difficulties. It is necessary to adequately characterize the excitation produced by the measurement. In addition, the thermal penetration depth of each instrument is different. These factors have led to the development of a multitude of techniques to measure the thermal conductivity or related magnitudes such as thermal conductance. In our case, we have built a calorimetric sensor designed to measure this magnitude directly and non-invasively. The device implements the basic principles of calorimetry and is capable of characterizing the thermal magnitudes of a 2 x 2 (4) cm.sup.2 skin region. The sensor consists of a measuring thermopile with a thermostat cooled by Peltier effect. Several skin measurements performed under different conditions resulted in a thermal conductance ranging from 0.017 to 0.050 WK.sup.-1. This magnitude, measured in vivo, is different in each studied area and depends on several factors, such as physical activity and the physiological state of the subject. This new sensor is a useful tool for studying the human body thermoregulatory response.
Thermal conductivity of the skin has been measured by in vivo procedures since the 1950s. These devices usually consist of temperature sensors and heating elements. In vivo measurement of skin thermal conductivity entails several difficulties. It is necessary to adequately characterize the excitation produced by the measurement. In addition, the thermal penetration depth of each instrument is different. These factors have led to the development of a multitude of techniques to measure the thermal conductivity or related magnitudes such as thermal conductance. In our case, we have built a calorimetric sensor designed to measure this magnitude directly and non-invasively. The device implements the basic principles of calorimetry and is capable of characterizing the thermal magnitudes of a 2 × 2 (4) cm2 skin region. The sensor consists of a measuring thermopile with a thermostat cooled by Peltier effect. Several skin measurements performed under different conditions resulted in a thermal conductance ranging from 0.017 to 0.050 WK−1. This magnitude, measured in vivo, is different in each studied area and depends on several factors, such as physical activity and the physiological state of the subject. This new sensor is a useful tool for studying the human body thermoregulatory response.
Thermal conductivity of the skin has been measured by in vivo procedures since the 1950s. These devices usually consist of temperature sensors and heating elements. In vivo measurement of skin thermal conductivity entails several difficulties. It is necessary to adequately characterize the excitation produced by the measurement. In addition, the thermal penetration depth of each instrument is different. These factors have led to the development of a multitude of techniques to measure the thermal conductivity or related magnitudes such as thermal conductance. In our case, we have built a calorimetric sensor designed to measure this magnitude directly and non-invasively. The device implements the basic principles of calorimetry and is capable of characterizing the thermal magnitudes of a 2 × 2 (4) cm 2 skin region. The sensor consists of a measuring thermopile with a thermostat cooled by Peltier effect. Several skin measurements performed under different conditions resulted in a thermal conductance ranging from 0.017 to 0.050 WK −1 . This magnitude, measured in vivo, is different in each studied area and depends on several factors, such as physical activity and the physiological state of the subject. This new sensor is a useful tool for studying the human body thermoregulatory response.
Audience Academic
Author Socorro, Fabiola
Rodríguez de Rivera, Miriam
Calbet, Jose A. L.
Rodríguez de Rivera, Pedro Jesús
Rodríguez de Rivera, Manuel
Author_xml – sequence: 1
  givenname: Pedro Jesús
  surname: Rodríguez de Rivera
  fullname: Rodríguez de Rivera, Pedro Jesús
  organization: Department of Physics, University of Las Palmas de Gran Canaria
– sequence: 2
  givenname: Miriam
  surname: Rodríguez de Rivera
  fullname: Rodríguez de Rivera, Miriam
  organization: Department of Physics, University of Las Palmas de Gran Canaria
– sequence: 3
  givenname: Fabiola
  surname: Socorro
  fullname: Socorro, Fabiola
  organization: Department of Physics, University of Las Palmas de Gran Canaria
– sequence: 4
  givenname: Jose A. L.
  surname: Calbet
  fullname: Calbet, Jose A. L.
  organization: Department of Physical Education and Research Institute of Biomedical and Health Sciences (IUIBS), University of Las Palmas de Gran Canaria, Department of Physical Performance, The Norwegian School of Sport Sciences
– sequence: 5
  givenname: Manuel
  orcidid: 0000-0002-6737-4096
  surname: Rodríguez de Rivera
  fullname: Rodríguez de Rivera, Manuel
  email: manuel.rguezderivera@ulpgc.es
  organization: Department of Physics, University of Las Palmas de Gran Canaria
BookMark eNp9kU1r3DAQhkVJocm2f6AnQU89OJEsybKPS-hHIBDox1mM5bGj1JZSSV62_77abqHdUoIOGkbvM4Pe94Kc-eCRkNecXXLG9FXirNOiYnVdcV5rVe2fkXOu2raqu7o5K7UodcMVe0EuUnpgjHUd4-fEbIcd-AwTJhpG6jzduV2gC0JaIy7o86F9vy7gafpWnvM9xgVmaoMfVpvBW6Rrcn6iQC3MIboFc3SWJvQpxJfk-Qhzwle_7w35-v7dl-uP1e3dh5vr7W1lZSNz1QnJGXAmGUIzAu8RWtmogYleCxwUBzHIsdW96EFLJWXfaRihx15orhstNuTNce5jDN9XTNk8hDX6stLUmimtRVf_pZpgRuP8GHIEu7hkzVZzxVV3sHFDLv-jKmfAxZV_4-hK_wR4ewIUTcZ9nmBNydx8_nSqrY9aG0NKEUfzWCyD-MNwZg5ZmmOWpmRpfmVp9gVq_4Gsy5Bd2RPBzU-j4oimssdPGP8Y8wT1E17ItM0
CitedBy_id crossref_primary_10_1016_j_ijheatmasstransfer_2023_124258
crossref_primary_10_3390_s23094391
crossref_primary_10_3390_s24185927
crossref_primary_10_1002_admt_202301997
crossref_primary_10_4236_jbise_2024_176009
crossref_primary_10_1016_j_energy_2023_128850
crossref_primary_10_1111_srt_13622
crossref_primary_10_1016_j_actbio_2024_12_035
crossref_primary_10_1108_HFF_06_2023_0355
Cites_doi 10.1016/j.jtherbio.2004.08.068
10.1152/japplphysiol.01284.2003
10.1007/978-3-319-95432-5_4
10.3390/s20123431
10.1079/PNS2003282
10.1113/JP270487
10.2298/TSCI1804795W
10.1038/s41598-019-40444-6
10.1016/j.measurement.2019.02.063
10.1152/japplphysiol.00185.2004
10.3389/fphys.2019.00533
10.1371/journal.pone.0118131
10.1063/1.1141498
10.1139/apnm-2018-0882
10.1002/adfm.201701282
10.1016/j.ijheatmasstransfer.2018.06.039
10.1109/memb.2002.1175138
10.1038/jid.1968.107
10.1177/0268355514564175
10.1063/1.1142087
10.1016/S0140-6736(04)16360-5
10.1007/s10973-012-2839-8
10.1016/j.jtherbio.2019.02.022
10.1155/2011/534714
ContentType Journal Article
Copyright The Author(s) 2022
COPYRIGHT 2022 Springer
The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2022
– notice: COPYRIGHT 2022 Springer
– notice: The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
ISR
DOI 10.1007/s10973-022-11275-x
DatabaseName Springer Nature OA Free Journals (ODIN)
CrossRef
Gale In Context: Science
DatabaseTitle CrossRef
DatabaseTitleList


CrossRef
Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1588-2926
EndPage 10036
ExternalDocumentID A715159097
10_1007_s10973_022_11275_x
GrantInformation_xml – fundername: Consejería de Economía, Conocimiento y empleo del Gobierno de Canarias, Programa Juan Negrín
  grantid: SD-20/07
– fundername: Ministerio de Economía, Industria y Competitividad, Gobierno de España
  grantid: DEP2017-86409-C2-1-P
  funderid: http://dx.doi.org/10.13039/501100010198
– fundername: Universidad de las Palmas de Gran Canaria
GroupedDBID -4Y
-58
-5G
-BR
-EM
-Y2
-~C
.86
.VR
06C
06D
0R~
0VY
1N0
2.D
203
29L
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
53G
5GY
5QI
5VS
67Z
6NX
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAIKT
AAJBT
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDBF
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACUHS
ACZOJ
ADHIR
ADINQ
ADKNI
ADKPE
ADMLS
ADPHR
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AI.
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AOCGG
ARMRJ
AXYYD
AYJHY
AZFZN
B-.
B0M
BA0
BDATZ
BGNMA
BSONS
C6C
CAG
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EAD
EAP
EBLON
EBS
EIOEI
EJD
EMK
EPL
ESBYG
ESX
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
G-Y
G-Z
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
IAO
IHE
IJ-
IKXTQ
ISR
ITC
ITM
IWAJR
IXC
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
LAK
LLZTM
M4Y
MA-
MET
MKB
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P9N
PF0
PT4
PT5
QOK
QOR
QOS
R89
R9I
RKA
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCG
SCLPG
SCM
SDH
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
VH1
W23
W48
W4F
WJK
WK8
YLTOR
Z45
Z5O
Z7R
Z7S
Z7U
Z7V
Z7W
Z7X
Z7Y
Z7Z
Z81
Z83
Z85
Z86
Z87
Z88
Z8M
Z8N
Z8O
Z8P
Z8Q
Z8R
Z8T
Z8W
Z91
Z92
ZE2
ZMTXR
~02
~8M
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
AEIIB
ABRTQ
ID FETCH-LOGICAL-c464t-93410a1040ea6fa1bea8465d03b73ed51a3d4f87b3ba74544b97afabeb3717673
IEDL.DBID U2A
ISSN 1388-6150
IngestDate Sun Jul 13 04:56:13 EDT 2025
Tue Jun 17 22:09:38 EDT 2025
Tue Jun 10 21:04:21 EDT 2025
Fri Jun 27 05:27:09 EDT 2025
Thu Apr 24 23:04:36 EDT 2025
Tue Jul 01 02:44:43 EDT 2025
Fri Feb 21 02:45:39 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 18
Keywords Medical calorimetry
Skin thermal properties
Skin heat loss
Thermal conductance
Direct calorimetry
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c464t-93410a1040ea6fa1bea8465d03b73ed51a3d4f87b3ba74544b97afabeb3717673
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-6737-4096
OpenAccessLink https://link.springer.com/10.1007/s10973-022-11275-x
PQID 2705773927
PQPubID 2043843
PageCount 10
ParticipantIDs proquest_journals_2705773927
gale_infotracmisc_A715159097
gale_infotracacademiconefile_A715159097
gale_incontextgauss_ISR_A715159097
crossref_primary_10_1007_s10973_022_11275_x
crossref_citationtrail_10_1007_s10973_022_11275_x
springer_journals_10_1007_s10973_022_11275_x
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-09-01
PublicationDateYYYYMMDD 2022-09-01
PublicationDate_xml – month: 09
  year: 2022
  text: 2022-09-01
  day: 01
PublicationDecade 2020
PublicationPlace Cham
PublicationPlace_xml – name: Cham
– name: Dordrecht
PublicationSubtitle An International Forum for Thermal Studies
PublicationTitle Journal of thermal analysis and calorimetry
PublicationTitleAbbrev J Therm Anal Calorim
PublicationYear 2022
Publisher Springer International Publishing
Springer
Springer Nature B.V
Publisher_xml – name: Springer International Publishing
– name: Springer
– name: Springer Nature B.V
References Grenier (CR8) 2016
David, Ronald (CR4) 2004
Alves, Da Rocha, Gonzalez, Fonseca, Silva (CR1) 2020
CR15
Morales-Alamo, Losa-Reyna, Torres-Peralta, Martin-Rincon, Perez-Valera, Curtelin, Ponce-González, Santana, Calbet (CR20) 2015
Tschakovsky, Sheriff (CR25) 2004
Rodríguez de Rivera (CR13) 2019
Otsuka, Okada, Hassan, Togawa (CR7) 2002
Wang, Chong, Di, Yi (CR9) 2018
Brajkovic (CR19) 2004
Saunders, Tschakovsky (CR24) 2004
Nakagata, Yamada, Naito (CR2) 2019
Giering, Minet, Lamprecht, Müller (CR5) 1995
Van de Staak (CR16) 1968
Tian, Li, Webb (CR18) 2017
David (CR22) 1990
Okabe, Fujimura, Okajima (CR11) 2019
Wiegand, Naumov, Nőt (CR6) 2013
Speakman, Selman (CR3) 2003
Patterson (CR26) 2019
CR23
Rodríguez de Rivera (CR14) 2019
Webb, Pielak, Bastien, Ayers (CR17) 2015
Silas (CR21) 1991
Okabe, Fujimura, Okajima, Aiba, Maruyama (CR10) 2018
Rodríguez de Rivera (CR12) 2020
D Morales-Alamo (11275_CR20) 2015
N Wiegand (11275_CR6) 2013
PJ Rodríguez de Rivera (11275_CR12) 2020
NR Saunders (11275_CR24) 2004
SD Patterson (11275_CR26) 2019
VGF Alves (11275_CR1) 2020
T Okabe (11275_CR11) 2019
K Giering (11275_CR5) 1995
L Tian (11275_CR18) 2017
PJ Rodríguez de Rivera (11275_CR13) 2019
ME Tschakovsky (11275_CR25) 2004
WJBM Van de Staak (11275_CR16) 1968
E Grenier (11275_CR8) 2016
JR Speakman (11275_CR3) 2003
L Wang (11275_CR9) 2018
RC Webb (11275_CR17) 2015
K Otsuka (11275_CR7) 2002
11275_CR15
C David (11275_CR22) 1990
D Brajkovic (11275_CR19) 2004
EG Silas (11275_CR21) 1991
PJ Rodríguez de Rivera (11275_CR14) 2019
T Okabe (11275_CR10) 2018
T Nakagata (11275_CR2) 2019
NH David (11275_CR4) 2004
11275_CR23
References_xml – year: 2004
  ident: CR19
  article-title: Cheek skin temperature and thermal resistance in active and inactive individuals during exposure to cold wind
  publication-title: J Therm Biol
  doi: 10.1016/j.jtherbio.2004.08.068
– year: 2004
  ident: CR24
  article-title: Evidence for a rapid vasodilatory contribution to immediate hyperemia in rest-to-mild and mild-to-moderate forearm exercise transitions in humans
  publication-title: J Appl Physiol
  doi: 10.1152/japplphysiol.01284.2003
– year: 1995
  ident: CR5
  article-title: Review of thermal properties of biological tissues
  publication-title: SPIE-Int Soc Opt Eng
  doi: 10.1007/978-3-319-95432-5_4
– year: 2020
  ident: CR12
  article-title: A method to determine human skin heat capacity using a non-invasive calorimetric sensor
  publication-title: Sensors.
  doi: 10.3390/s20123431
– year: 2003
  ident: CR3
  article-title: Physical activity and resting metabolic rate
  publication-title: Proc Nutr Soc
  doi: 10.1079/PNS2003282
– year: 2015
  ident: CR20
  article-title: What limits performance during whole-body incremental exercise to exhaustion in humans?
  publication-title: J Physiol
  doi: 10.1113/JP270487
– year: 2018
  ident: CR9
  article-title: A revised method to predict skin’s thermal resistance
  publication-title: Therm Sci
  doi: 10.2298/TSCI1804795W
– year: 2019
  ident: CR11
  article-title: First-in-human clinical study of novel technique to diagnose malignant melanoma via thermal conductivity measurements
  publication-title: Sci Rep
  doi: 10.1038/s41598-019-40444-6
– year: 2019
  ident: CR13
  article-title: Method for transient heat flux determination in human body surface using a direct calorimetry sensor
  publication-title: Measurement
  doi: 10.1016/j.measurement.2019.02.063
– year: 2004
  ident: CR25
  article-title: Immediate exercise hyperemia: contributions of the muscle pump vs. rapid vasodilation
  publication-title: J. Appl. Physiol.
  doi: 10.1152/japplphysiol.00185.2004
– year: 2019
  ident: CR26
  article-title: Blood flow restriction exercise: considerations of methodology, application, and safety
  publication-title: Front Physiol
  doi: 10.3389/fphys.2019.00533
– ident: CR23
– year: 2015
  ident: CR17
  article-title: Thermal transport characteristics of human skin measured in vivo using ultrathin conformal arrays of thermal sensors and actuators
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0118131
– year: 1990
  ident: CR22
  article-title: Thermal conductivity measurement from 30 to 750 K: the 3omega method
  publication-title: Rev Sci Instrum
  doi: 10.1063/1.1141498
– year: 2019
  ident: CR2
  article-title: Metabolic equivalents of body weight resistance exercise with slow movement in older adults using indirect calorimetry
  publication-title: Appl Physiol Nutr Metab
  doi: 10.1139/apnm-2018-0882
– year: 2017
  ident: CR18
  article-title: Flexible and stretchable 3ω sensors for thermal characterization of human skin
  publication-title: Adv Func Mater
  doi: 10.1002/adfm.201701282
– year: 2018
  ident: CR10
  article-title: Non-invasive measurement of effective thermal conductivity of human skin with a guard-heated thermistor probe
  publication-title: Int J Heat Mass Transf
  doi: 10.1016/j.ijheatmasstransfer.2018.06.039
– year: 2002
  ident: CR7
  article-title: Imaging of skin thermal properties with estimation of ambient radiation temperature
  publication-title: IEEE Eng Med Biol Mag
  doi: 10.1109/memb.2002.1175138
– ident: CR15
– year: 1968
  ident: CR16
  article-title: Measurements of the thermal conductivity of the skin as an indication of skin blood flow
  publication-title: J Investig Dermatol
  doi: 10.1038/jid.1968.107
– year: 2016
  ident: CR8
  article-title: Effect of compression stockings on cutaneous microcirculation: evaluation based on measurements of the skin thermal conductivity
  publication-title: Phlebol/Venous Forum R Soc Med
  doi: 10.1177/0268355514564175
– year: 1991
  ident: CR21
  article-title: Transient plane source techniques for thermal conductivity and thermal diffusivity measurements of solid materials
  publication-title: Rev Sci Instrum
  doi: 10.1063/1.1142087
– year: 2004
  ident: CR4
  article-title: Support of the metabolic response to burn injury
  publication-title: The Lancet
  doi: 10.1016/S0140-6736(04)16360-5
– year: 2013
  ident: CR6
  article-title: Differential scanning calorimetric examination of pathologic scar tissues of human skin
  publication-title: J Therm Anal Calorim
  doi: 10.1007/s10973-012-2839-8
– year: 2019
  ident: CR14
  article-title: Measurement of human body surface heat flux using a calorimetric sensor
  publication-title: J Thermal Biol
  doi: 10.1016/j.jtherbio.2019.02.022
– year: 2020
  ident: CR1
  article-title: Resting energy expenditure measured by indirect calorimetry in obese patients: variation within different BMI ranges
  publication-title: J Parenter Enter Nutr
  doi: 10.1155/2011/534714
– year: 2003
  ident: 11275_CR3
  publication-title: Proc Nutr Soc
  doi: 10.1079/PNS2003282
– year: 2002
  ident: 11275_CR7
  publication-title: IEEE Eng Med Biol Mag
  doi: 10.1109/memb.2002.1175138
– year: 2004
  ident: 11275_CR19
  publication-title: J Therm Biol
  doi: 10.1016/j.jtherbio.2004.08.068
– ident: 11275_CR23
– year: 2019
  ident: 11275_CR14
  publication-title: J Thermal Biol
  doi: 10.1016/j.jtherbio.2019.02.022
– year: 1991
  ident: 11275_CR21
  publication-title: Rev Sci Instrum
  doi: 10.1063/1.1142087
– year: 2015
  ident: 11275_CR20
  publication-title: J Physiol
  doi: 10.1113/JP270487
– year: 2004
  ident: 11275_CR25
  publication-title: J. Appl. Physiol.
  doi: 10.1152/japplphysiol.00185.2004
– year: 1968
  ident: 11275_CR16
  publication-title: J Investig Dermatol
  doi: 10.1038/jid.1968.107
– year: 2020
  ident: 11275_CR1
  publication-title: J Parenter Enter Nutr
  doi: 10.1155/2011/534714
– year: 2017
  ident: 11275_CR18
  publication-title: Adv Func Mater
  doi: 10.1002/adfm.201701282
– year: 1990
  ident: 11275_CR22
  publication-title: Rev Sci Instrum
  doi: 10.1063/1.1141498
– year: 2019
  ident: 11275_CR26
  publication-title: Front Physiol
  doi: 10.3389/fphys.2019.00533
– year: 2019
  ident: 11275_CR11
  publication-title: Sci Rep
  doi: 10.1038/s41598-019-40444-6
– year: 2015
  ident: 11275_CR17
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0118131
– year: 2016
  ident: 11275_CR8
  publication-title: Phlebol/Venous Forum R Soc Med
  doi: 10.1177/0268355514564175
– year: 2019
  ident: 11275_CR2
  publication-title: Appl Physiol Nutr Metab
  doi: 10.1139/apnm-2018-0882
– year: 2018
  ident: 11275_CR10
  publication-title: Int J Heat Mass Transf
  doi: 10.1016/j.ijheatmasstransfer.2018.06.039
– ident: 11275_CR15
– year: 2020
  ident: 11275_CR12
  publication-title: Sensors.
  doi: 10.3390/s20123431
– year: 2004
  ident: 11275_CR4
  publication-title: The Lancet
  doi: 10.1016/S0140-6736(04)16360-5
– year: 2018
  ident: 11275_CR9
  publication-title: Therm Sci
  doi: 10.2298/TSCI1804795W
– year: 2013
  ident: 11275_CR6
  publication-title: J Therm Anal Calorim
  doi: 10.1007/s10973-012-2839-8
– year: 1995
  ident: 11275_CR5
  publication-title: SPIE-Int Soc Opt Eng
  doi: 10.1007/978-3-319-95432-5_4
– year: 2004
  ident: 11275_CR24
  publication-title: J Appl Physiol
  doi: 10.1152/japplphysiol.01284.2003
– year: 2019
  ident: 11275_CR13
  publication-title: Measurement
  doi: 10.1016/j.measurement.2019.02.063
SSID ssj0009901
Score 2.4117105
Snippet Thermal conductivity of the skin has been measured by in vivo procedures since the 1950s. These devices usually consist of temperature sensors and heating...
SourceID proquest
gale
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 10027
SubjectTerms Analytical Chemistry
Calorimetry
Chemistry
Chemistry and Materials Science
Electric properties
Equipment and supplies
Exercise
Heat conductivity
Heat measurement
Heat transfer
Heating
Inorganic Chemistry
Measurement
Measurement Science and Instrumentation
Peltier effects
Penetration depth
Physical Chemistry
Physiological aspects
Physiological effects
Polymer Sciences
Sensors
Skin
Temperature sensors
Thermal conductivity
Thermopiles
Title Advantages of in vivo measurement of human skin thermal conductance using a calorimetric sensor
URI https://link.springer.com/article/10.1007/s10973-022-11275-x
https://www.proquest.com/docview/2705773927
Volume 147
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDI5gHOCCeIrBmCKExAEqtWnarMcxMV4SB2ASnKJkTdEEtIhuEz8fO2sp5SVxqtq4L9tN_DXOZ0L2AxUocF7lMAZwlUexcSIAP44fhYECCMIjZbN8r8KzAb-4C-6KRWF5me1eTknanvrTYrdI4JwjczxkJXcgclwIELuDFw9Yt6LajdwZzAIfQLrzYqnMz9eoDUdfO-Vvs6N20OmvkOUiWqTdmXlXyZxJ18hiryzStk6krYo8hk4hp1lCRymdjqYZfa7-_OFhW4iP5o_QjPHeM1wSYDAyvaLNKea-P1BFwVwZsv0jaT_NAd9mrxtk0D-57Z05Rc0EZ8hDPnYiGJVcUDJ3jQoT5WmjIMIIYtfXwjdx4Ck_5klHaF8rwQPOdSRUojRgagB2ofA3SSPNUrNFaMfvME8DiO24GozoKwNQzsQhYzHsJG6TeKXq5LAgFMe6Fk-yokJGdUtQt7Tqlm9NcvhxzsuMTuNP6T20iESeihQTYR7UJM_l-c217AobicEZTXJQCCUZ3H6oinUF8BJIbVWTbNUkwVTDenNpeFl8yLlkAgJaAUEkNB-VzlA1__7s2_8T3yFLDN3SZq-1SGP8OjG7EO6MdZssdPvHx1e4Pb2_PGmT-V7Ya1uffwdIk_hS
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dT8IwEG8MPuCL8TOiqI0x8UGX7KNb2SNZJKDIg0LCW9NuHSHKZhgQ_3zvxiYBPxIft1677a5b77fe_Y6Qa1e6EiavNGwb4CrzI234AH4Mx_dcCRCE-TKP8u157QF7GLrDgiYHc2E29u8xxc3nuNNoGxZykRvgL24zQMoYvhd4wYpg1zeX4AosjyTnRYLMz2OsLUKbn-Jve6L5UtPaI7uFj0ibS6Puky2dHJBqUJZmOyQir4U8g09BRtOYjhO6GC9SOln978PTefk9mr1CM3p5ExgSwC_yu6KlKUa8j6ikYKQUOf6Rqp9mgGrT6REZtO77QdsoKiUYIfPYzPBhLTJBtczU0oulpbQEv8KNTEdxR0euJZ2IxQ2uHCU5cxlTPpexVICkAc553DkmlSRN9AmhDadhWwqga8NUYDpHagBwOvJsO4KD2KwRq1SdCAsacaxm8SZWBMiobgHqFrm6xUeN3H71eV-SaPwpfYUWEchOkWD4y0jOs0x0Xp5Fk-f-F_SokZtCKE7h8qEssgngIZDQak2yviYJpgrXm0vDi-L1zYTNwY3l4DpC8105GVbNv9_76f_EL0m13X_qim6n93hGdmyconn8Wp1UZtO5PgeHZ6Yu8pn-CXnm8zc
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEF5EQb2IT6xWXUTwoKF5bLLJsVSLVRFRC70tu81GRE3ExOLPd2abmNYXeEx28pqZZOfLznxDyIEvfQnOKy3XBbjKolhbEYAfy4sCXwIEYZE0Wb5XwVmfnQ_8wUQVv8l2r5YkxzUNyNKUFq2XOGlNFL5FHNcfXctBhnILosg5QCpmobYTdGra3cgeQy7wB6Q-L8tmfj7H1NT09QP9baXUTEDdZbJURo60PTb1CpnR6SpZ6FQN29aIMB2SC_hA5DRL6ENKRw-jjD7XfwFxt2nKR_NHGMbY7xlOCc-OrK9of4p58PdUUjBdhsz_SOBPc8C62es66XdP7zpnVtk_wRqygBVWBDOUDQpntpZBIh2lJUQbfmx7ins69h3pxSwJufKU5MxnTEVcJlIBvgaQF3Bvg8ymWao3CQ290HUUANrQVmBQT2qAdToOXDeGjcRuEKdSnRiW5OLY4-JJ1LTIqG4B6hZG3eK9QY4-j3kZU2v8Kb2PFhHIWZFiUsy9fMtz0bu9EW1uojI4okEOS6Ekg8sPZVljAA-BNFdTks0pSTDVcHq4MrwoX-pcuByCWw4BJQwfV85QD_9-71v_E98j89cnXXHZu7rYJosueqhJamuS2eL1Te9AFFSoXePoH-no-34
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Advantages+of+in+vivo+measurement+of+human+skin+thermal+conductance+using+a+calorimetric+sensor&rft.jtitle=Journal+of+thermal+analysis+and+calorimetry&rft.au=Rodr%C3%ADguez+de+Rivera%2C+Pedro+Jes%C3%BAs&rft.au=Rodr%C3%ADguez+de+Rivera%2C+Miriam&rft.au=Socorro%2C+Fabiola&rft.au=Calbet%2C+Jose+A.+L&rft.date=2022-09-01&rft.pub=Springer&rft.issn=1388-6150&rft.volume=147&rft.issue=18&rft_id=info:doi/10.1007%2Fs10973-022-11275-x&rft.externalDocID=A715159097
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1388-6150&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1388-6150&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1388-6150&client=summon