Advantages of in vivo measurement of human skin thermal conductance using a calorimetric sensor
Thermal conductivity of the skin has been measured by in vivo procedures since the 1950s. These devices usually consist of temperature sensors and heating elements. In vivo measurement of skin thermal conductivity entails several difficulties. It is necessary to adequately characterize the excitatio...
Saved in:
Published in | Journal of thermal analysis and calorimetry Vol. 147; no. 18; pp. 10027 - 10036 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Cham
Springer International Publishing
01.09.2022
Springer Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Thermal conductivity of the skin has been measured by in vivo procedures since the 1950s. These devices usually consist of temperature sensors and heating elements. In vivo measurement of skin thermal conductivity entails several difficulties. It is necessary to adequately characterize the excitation produced by the measurement. In addition, the thermal penetration depth of each instrument is different. These factors have led to the development of a multitude of techniques to measure the thermal conductivity or related magnitudes such as thermal conductance. In our case, we have built a calorimetric sensor designed to measure this magnitude directly and non-invasively. The device implements the basic principles of calorimetry and is capable of characterizing the thermal magnitudes of a 2 × 2 (4) cm
2
skin region. The sensor consists of a measuring thermopile with a thermostat cooled by Peltier effect. Several skin measurements performed under different conditions resulted in a thermal conductance ranging from 0.017 to 0.050 WK
−1
. This magnitude, measured in vivo, is different in each studied area and depends on several factors, such as physical activity and the physiological state of the subject. This new sensor is a useful tool for studying the human body thermoregulatory response. |
---|---|
AbstractList | Thermal conductivity of the skin has been measured by in vivo procedures since the 1950s. These devices usually consist of temperature sensors and heating elements. In vivo measurement of skin thermal conductivity entails several difficulties. It is necessary to adequately characterize the excitation produced by the measurement. In addition, the thermal penetration depth of each instrument is different. These factors have led to the development of a multitude of techniques to measure the thermal conductivity or related magnitudes such as thermal conductance. In our case, we have built a calorimetric sensor designed to measure this magnitude directly and non-invasively. The device implements the basic principles of calorimetry and is capable of characterizing the thermal magnitudes of a 2 x 2 (4) cm.sup.2 skin region. The sensor consists of a measuring thermopile with a thermostat cooled by Peltier effect. Several skin measurements performed under different conditions resulted in a thermal conductance ranging from 0.017 to 0.050 WK.sup.-1. This magnitude, measured in vivo, is different in each studied area and depends on several factors, such as physical activity and the physiological state of the subject. This new sensor is a useful tool for studying the human body thermoregulatory response. Thermal conductivity of the skin has been measured by in vivo procedures since the 1950s. These devices usually consist of temperature sensors and heating elements. In vivo measurement of skin thermal conductivity entails several difficulties. It is necessary to adequately characterize the excitation produced by the measurement. In addition, the thermal penetration depth of each instrument is different. These factors have led to the development of a multitude of techniques to measure the thermal conductivity or related magnitudes such as thermal conductance. In our case, we have built a calorimetric sensor designed to measure this magnitude directly and non-invasively. The device implements the basic principles of calorimetry and is capable of characterizing the thermal magnitudes of a 2 × 2 (4) cm2 skin region. The sensor consists of a measuring thermopile with a thermostat cooled by Peltier effect. Several skin measurements performed under different conditions resulted in a thermal conductance ranging from 0.017 to 0.050 WK−1. This magnitude, measured in vivo, is different in each studied area and depends on several factors, such as physical activity and the physiological state of the subject. This new sensor is a useful tool for studying the human body thermoregulatory response. Thermal conductivity of the skin has been measured by in vivo procedures since the 1950s. These devices usually consist of temperature sensors and heating elements. In vivo measurement of skin thermal conductivity entails several difficulties. It is necessary to adequately characterize the excitation produced by the measurement. In addition, the thermal penetration depth of each instrument is different. These factors have led to the development of a multitude of techniques to measure the thermal conductivity or related magnitudes such as thermal conductance. In our case, we have built a calorimetric sensor designed to measure this magnitude directly and non-invasively. The device implements the basic principles of calorimetry and is capable of characterizing the thermal magnitudes of a 2 × 2 (4) cm 2 skin region. The sensor consists of a measuring thermopile with a thermostat cooled by Peltier effect. Several skin measurements performed under different conditions resulted in a thermal conductance ranging from 0.017 to 0.050 WK −1 . This magnitude, measured in vivo, is different in each studied area and depends on several factors, such as physical activity and the physiological state of the subject. This new sensor is a useful tool for studying the human body thermoregulatory response. |
Audience | Academic |
Author | Socorro, Fabiola Rodríguez de Rivera, Miriam Calbet, Jose A. L. Rodríguez de Rivera, Pedro Jesús Rodríguez de Rivera, Manuel |
Author_xml | – sequence: 1 givenname: Pedro Jesús surname: Rodríguez de Rivera fullname: Rodríguez de Rivera, Pedro Jesús organization: Department of Physics, University of Las Palmas de Gran Canaria – sequence: 2 givenname: Miriam surname: Rodríguez de Rivera fullname: Rodríguez de Rivera, Miriam organization: Department of Physics, University of Las Palmas de Gran Canaria – sequence: 3 givenname: Fabiola surname: Socorro fullname: Socorro, Fabiola organization: Department of Physics, University of Las Palmas de Gran Canaria – sequence: 4 givenname: Jose A. L. surname: Calbet fullname: Calbet, Jose A. L. organization: Department of Physical Education and Research Institute of Biomedical and Health Sciences (IUIBS), University of Las Palmas de Gran Canaria, Department of Physical Performance, The Norwegian School of Sport Sciences – sequence: 5 givenname: Manuel orcidid: 0000-0002-6737-4096 surname: Rodríguez de Rivera fullname: Rodríguez de Rivera, Manuel email: manuel.rguezderivera@ulpgc.es organization: Department of Physics, University of Las Palmas de Gran Canaria |
BookMark | eNp9kU1r3DAQhkVJocm2f6AnQU89OJEsybKPS-hHIBDox1mM5bGj1JZSSV62_77abqHdUoIOGkbvM4Pe94Kc-eCRkNecXXLG9FXirNOiYnVdcV5rVe2fkXOu2raqu7o5K7UodcMVe0EuUnpgjHUd4-fEbIcd-AwTJhpG6jzduV2gC0JaIy7o86F9vy7gafpWnvM9xgVmaoMfVpvBW6Rrcn6iQC3MIboFc3SWJvQpxJfk-Qhzwle_7w35-v7dl-uP1e3dh5vr7W1lZSNz1QnJGXAmGUIzAu8RWtmogYleCxwUBzHIsdW96EFLJWXfaRihx15orhstNuTNce5jDN9XTNk8hDX6stLUmimtRVf_pZpgRuP8GHIEu7hkzVZzxVV3sHFDLv-jKmfAxZV_4-hK_wR4ewIUTcZ9nmBNydx8_nSqrY9aG0NKEUfzWCyD-MNwZg5ZmmOWpmRpfmVp9gVq_4Gsy5Bd2RPBzU-j4oimssdPGP8Y8wT1E17ItM0 |
CitedBy_id | crossref_primary_10_1016_j_ijheatmasstransfer_2023_124258 crossref_primary_10_3390_s23094391 crossref_primary_10_3390_s24185927 crossref_primary_10_1002_admt_202301997 crossref_primary_10_4236_jbise_2024_176009 crossref_primary_10_1016_j_energy_2023_128850 crossref_primary_10_1111_srt_13622 crossref_primary_10_1016_j_actbio_2024_12_035 crossref_primary_10_1108_HFF_06_2023_0355 |
Cites_doi | 10.1016/j.jtherbio.2004.08.068 10.1152/japplphysiol.01284.2003 10.1007/978-3-319-95432-5_4 10.3390/s20123431 10.1079/PNS2003282 10.1113/JP270487 10.2298/TSCI1804795W 10.1038/s41598-019-40444-6 10.1016/j.measurement.2019.02.063 10.1152/japplphysiol.00185.2004 10.3389/fphys.2019.00533 10.1371/journal.pone.0118131 10.1063/1.1141498 10.1139/apnm-2018-0882 10.1002/adfm.201701282 10.1016/j.ijheatmasstransfer.2018.06.039 10.1109/memb.2002.1175138 10.1038/jid.1968.107 10.1177/0268355514564175 10.1063/1.1142087 10.1016/S0140-6736(04)16360-5 10.1007/s10973-012-2839-8 10.1016/j.jtherbio.2019.02.022 10.1155/2011/534714 |
ContentType | Journal Article |
Copyright | The Author(s) 2022 COPYRIGHT 2022 Springer The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2022 – notice: COPYRIGHT 2022 Springer – notice: The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | C6C AAYXX CITATION ISR |
DOI | 10.1007/s10973-022-11275-x |
DatabaseName | Springer Nature OA Free Journals (ODIN) CrossRef Gale In Context: Science |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1588-2926 |
EndPage | 10036 |
ExternalDocumentID | A715159097 10_1007_s10973_022_11275_x |
GrantInformation_xml | – fundername: Consejería de Economía, Conocimiento y empleo del Gobierno de Canarias, Programa Juan Negrín grantid: SD-20/07 – fundername: Ministerio de Economía, Industria y Competitividad, Gobierno de España grantid: DEP2017-86409-C2-1-P funderid: http://dx.doi.org/10.13039/501100010198 – fundername: Universidad de las Palmas de Gran Canaria |
GroupedDBID | -4Y -58 -5G -BR -EM -Y2 -~C .86 .VR 06C 06D 0R~ 0VY 1N0 2.D 203 29L 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 53G 5GY 5QI 5VS 67Z 6NX 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAIKT AAJBT AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDBF ABDZT ABECU ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACUHS ACZOJ ADHIR ADINQ ADKNI ADKPE ADMLS ADPHR ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AI. AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AOCGG ARMRJ AXYYD AYJHY AZFZN B-. B0M BA0 BDATZ BGNMA BSONS C6C CAG COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 EAD EAP EBLON EBS EIOEI EJD EMK EPL ESBYG ESX F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC G-Y G-Z GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F IAO IHE IJ- IKXTQ ISR ITC ITM IWAJR IXC IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV LAK LLZTM M4Y MA- MET MKB N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P9N PF0 PT4 PT5 QOK QOR QOS R89 R9I RKA RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SCG SCLPG SCM SDH SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW VH1 W23 W48 W4F WJK WK8 YLTOR Z45 Z5O Z7R Z7S Z7U Z7V Z7W Z7X Z7Y Z7Z Z81 Z83 Z85 Z86 Z87 Z88 Z8M Z8N Z8O Z8P Z8Q Z8R Z8T Z8W Z91 Z92 ZE2 ZMTXR ~02 ~8M AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION AEIIB ABRTQ |
ID | FETCH-LOGICAL-c464t-93410a1040ea6fa1bea8465d03b73ed51a3d4f87b3ba74544b97afabeb3717673 |
IEDL.DBID | U2A |
ISSN | 1388-6150 |
IngestDate | Sun Jul 13 04:56:13 EDT 2025 Tue Jun 17 22:09:38 EDT 2025 Tue Jun 10 21:04:21 EDT 2025 Fri Jun 27 05:27:09 EDT 2025 Thu Apr 24 23:04:36 EDT 2025 Tue Jul 01 02:44:43 EDT 2025 Fri Feb 21 02:45:39 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 18 |
Keywords | Medical calorimetry Skin thermal properties Skin heat loss Thermal conductance Direct calorimetry |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c464t-93410a1040ea6fa1bea8465d03b73ed51a3d4f87b3ba74544b97afabeb3717673 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-6737-4096 |
OpenAccessLink | https://link.springer.com/10.1007/s10973-022-11275-x |
PQID | 2705773927 |
PQPubID | 2043843 |
PageCount | 10 |
ParticipantIDs | proquest_journals_2705773927 gale_infotracmisc_A715159097 gale_infotracacademiconefile_A715159097 gale_incontextgauss_ISR_A715159097 crossref_primary_10_1007_s10973_022_11275_x crossref_citationtrail_10_1007_s10973_022_11275_x springer_journals_10_1007_s10973_022_11275_x |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-09-01 |
PublicationDateYYYYMMDD | 2022-09-01 |
PublicationDate_xml | – month: 09 year: 2022 text: 2022-09-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Cham |
PublicationPlace_xml | – name: Cham – name: Dordrecht |
PublicationSubtitle | An International Forum for Thermal Studies |
PublicationTitle | Journal of thermal analysis and calorimetry |
PublicationTitleAbbrev | J Therm Anal Calorim |
PublicationYear | 2022 |
Publisher | Springer International Publishing Springer Springer Nature B.V |
Publisher_xml | – name: Springer International Publishing – name: Springer – name: Springer Nature B.V |
References | Grenier (CR8) 2016 David, Ronald (CR4) 2004 Alves, Da Rocha, Gonzalez, Fonseca, Silva (CR1) 2020 CR15 Morales-Alamo, Losa-Reyna, Torres-Peralta, Martin-Rincon, Perez-Valera, Curtelin, Ponce-González, Santana, Calbet (CR20) 2015 Tschakovsky, Sheriff (CR25) 2004 Rodríguez de Rivera (CR13) 2019 Otsuka, Okada, Hassan, Togawa (CR7) 2002 Wang, Chong, Di, Yi (CR9) 2018 Brajkovic (CR19) 2004 Saunders, Tschakovsky (CR24) 2004 Nakagata, Yamada, Naito (CR2) 2019 Giering, Minet, Lamprecht, Müller (CR5) 1995 Van de Staak (CR16) 1968 Tian, Li, Webb (CR18) 2017 David (CR22) 1990 Okabe, Fujimura, Okajima (CR11) 2019 Wiegand, Naumov, Nőt (CR6) 2013 Speakman, Selman (CR3) 2003 Patterson (CR26) 2019 CR23 Rodríguez de Rivera (CR14) 2019 Webb, Pielak, Bastien, Ayers (CR17) 2015 Silas (CR21) 1991 Okabe, Fujimura, Okajima, Aiba, Maruyama (CR10) 2018 Rodríguez de Rivera (CR12) 2020 D Morales-Alamo (11275_CR20) 2015 N Wiegand (11275_CR6) 2013 PJ Rodríguez de Rivera (11275_CR12) 2020 NR Saunders (11275_CR24) 2004 SD Patterson (11275_CR26) 2019 VGF Alves (11275_CR1) 2020 T Okabe (11275_CR11) 2019 K Giering (11275_CR5) 1995 L Tian (11275_CR18) 2017 PJ Rodríguez de Rivera (11275_CR13) 2019 ME Tschakovsky (11275_CR25) 2004 WJBM Van de Staak (11275_CR16) 1968 E Grenier (11275_CR8) 2016 JR Speakman (11275_CR3) 2003 L Wang (11275_CR9) 2018 RC Webb (11275_CR17) 2015 K Otsuka (11275_CR7) 2002 11275_CR15 C David (11275_CR22) 1990 D Brajkovic (11275_CR19) 2004 EG Silas (11275_CR21) 1991 PJ Rodríguez de Rivera (11275_CR14) 2019 T Okabe (11275_CR10) 2018 T Nakagata (11275_CR2) 2019 NH David (11275_CR4) 2004 11275_CR23 |
References_xml | – year: 2004 ident: CR19 article-title: Cheek skin temperature and thermal resistance in active and inactive individuals during exposure to cold wind publication-title: J Therm Biol doi: 10.1016/j.jtherbio.2004.08.068 – year: 2004 ident: CR24 article-title: Evidence for a rapid vasodilatory contribution to immediate hyperemia in rest-to-mild and mild-to-moderate forearm exercise transitions in humans publication-title: J Appl Physiol doi: 10.1152/japplphysiol.01284.2003 – year: 1995 ident: CR5 article-title: Review of thermal properties of biological tissues publication-title: SPIE-Int Soc Opt Eng doi: 10.1007/978-3-319-95432-5_4 – year: 2020 ident: CR12 article-title: A method to determine human skin heat capacity using a non-invasive calorimetric sensor publication-title: Sensors. doi: 10.3390/s20123431 – year: 2003 ident: CR3 article-title: Physical activity and resting metabolic rate publication-title: Proc Nutr Soc doi: 10.1079/PNS2003282 – year: 2015 ident: CR20 article-title: What limits performance during whole-body incremental exercise to exhaustion in humans? publication-title: J Physiol doi: 10.1113/JP270487 – year: 2018 ident: CR9 article-title: A revised method to predict skin’s thermal resistance publication-title: Therm Sci doi: 10.2298/TSCI1804795W – year: 2019 ident: CR11 article-title: First-in-human clinical study of novel technique to diagnose malignant melanoma via thermal conductivity measurements publication-title: Sci Rep doi: 10.1038/s41598-019-40444-6 – year: 2019 ident: CR13 article-title: Method for transient heat flux determination in human body surface using a direct calorimetry sensor publication-title: Measurement doi: 10.1016/j.measurement.2019.02.063 – year: 2004 ident: CR25 article-title: Immediate exercise hyperemia: contributions of the muscle pump vs. rapid vasodilation publication-title: J. Appl. Physiol. doi: 10.1152/japplphysiol.00185.2004 – year: 2019 ident: CR26 article-title: Blood flow restriction exercise: considerations of methodology, application, and safety publication-title: Front Physiol doi: 10.3389/fphys.2019.00533 – ident: CR23 – year: 2015 ident: CR17 article-title: Thermal transport characteristics of human skin measured in vivo using ultrathin conformal arrays of thermal sensors and actuators publication-title: PLoS ONE doi: 10.1371/journal.pone.0118131 – year: 1990 ident: CR22 article-title: Thermal conductivity measurement from 30 to 750 K: the 3omega method publication-title: Rev Sci Instrum doi: 10.1063/1.1141498 – year: 2019 ident: CR2 article-title: Metabolic equivalents of body weight resistance exercise with slow movement in older adults using indirect calorimetry publication-title: Appl Physiol Nutr Metab doi: 10.1139/apnm-2018-0882 – year: 2017 ident: CR18 article-title: Flexible and stretchable 3ω sensors for thermal characterization of human skin publication-title: Adv Func Mater doi: 10.1002/adfm.201701282 – year: 2018 ident: CR10 article-title: Non-invasive measurement of effective thermal conductivity of human skin with a guard-heated thermistor probe publication-title: Int J Heat Mass Transf doi: 10.1016/j.ijheatmasstransfer.2018.06.039 – year: 2002 ident: CR7 article-title: Imaging of skin thermal properties with estimation of ambient radiation temperature publication-title: IEEE Eng Med Biol Mag doi: 10.1109/memb.2002.1175138 – ident: CR15 – year: 1968 ident: CR16 article-title: Measurements of the thermal conductivity of the skin as an indication of skin blood flow publication-title: J Investig Dermatol doi: 10.1038/jid.1968.107 – year: 2016 ident: CR8 article-title: Effect of compression stockings on cutaneous microcirculation: evaluation based on measurements of the skin thermal conductivity publication-title: Phlebol/Venous Forum R Soc Med doi: 10.1177/0268355514564175 – year: 1991 ident: CR21 article-title: Transient plane source techniques for thermal conductivity and thermal diffusivity measurements of solid materials publication-title: Rev Sci Instrum doi: 10.1063/1.1142087 – year: 2004 ident: CR4 article-title: Support of the metabolic response to burn injury publication-title: The Lancet doi: 10.1016/S0140-6736(04)16360-5 – year: 2013 ident: CR6 article-title: Differential scanning calorimetric examination of pathologic scar tissues of human skin publication-title: J Therm Anal Calorim doi: 10.1007/s10973-012-2839-8 – year: 2019 ident: CR14 article-title: Measurement of human body surface heat flux using a calorimetric sensor publication-title: J Thermal Biol doi: 10.1016/j.jtherbio.2019.02.022 – year: 2020 ident: CR1 article-title: Resting energy expenditure measured by indirect calorimetry in obese patients: variation within different BMI ranges publication-title: J Parenter Enter Nutr doi: 10.1155/2011/534714 – year: 2003 ident: 11275_CR3 publication-title: Proc Nutr Soc doi: 10.1079/PNS2003282 – year: 2002 ident: 11275_CR7 publication-title: IEEE Eng Med Biol Mag doi: 10.1109/memb.2002.1175138 – year: 2004 ident: 11275_CR19 publication-title: J Therm Biol doi: 10.1016/j.jtherbio.2004.08.068 – ident: 11275_CR23 – year: 2019 ident: 11275_CR14 publication-title: J Thermal Biol doi: 10.1016/j.jtherbio.2019.02.022 – year: 1991 ident: 11275_CR21 publication-title: Rev Sci Instrum doi: 10.1063/1.1142087 – year: 2015 ident: 11275_CR20 publication-title: J Physiol doi: 10.1113/JP270487 – year: 2004 ident: 11275_CR25 publication-title: J. Appl. Physiol. doi: 10.1152/japplphysiol.00185.2004 – year: 1968 ident: 11275_CR16 publication-title: J Investig Dermatol doi: 10.1038/jid.1968.107 – year: 2020 ident: 11275_CR1 publication-title: J Parenter Enter Nutr doi: 10.1155/2011/534714 – year: 2017 ident: 11275_CR18 publication-title: Adv Func Mater doi: 10.1002/adfm.201701282 – year: 1990 ident: 11275_CR22 publication-title: Rev Sci Instrum doi: 10.1063/1.1141498 – year: 2019 ident: 11275_CR26 publication-title: Front Physiol doi: 10.3389/fphys.2019.00533 – year: 2019 ident: 11275_CR11 publication-title: Sci Rep doi: 10.1038/s41598-019-40444-6 – year: 2015 ident: 11275_CR17 publication-title: PLoS ONE doi: 10.1371/journal.pone.0118131 – year: 2016 ident: 11275_CR8 publication-title: Phlebol/Venous Forum R Soc Med doi: 10.1177/0268355514564175 – year: 2019 ident: 11275_CR2 publication-title: Appl Physiol Nutr Metab doi: 10.1139/apnm-2018-0882 – year: 2018 ident: 11275_CR10 publication-title: Int J Heat Mass Transf doi: 10.1016/j.ijheatmasstransfer.2018.06.039 – ident: 11275_CR15 – year: 2020 ident: 11275_CR12 publication-title: Sensors. doi: 10.3390/s20123431 – year: 2004 ident: 11275_CR4 publication-title: The Lancet doi: 10.1016/S0140-6736(04)16360-5 – year: 2018 ident: 11275_CR9 publication-title: Therm Sci doi: 10.2298/TSCI1804795W – year: 2013 ident: 11275_CR6 publication-title: J Therm Anal Calorim doi: 10.1007/s10973-012-2839-8 – year: 1995 ident: 11275_CR5 publication-title: SPIE-Int Soc Opt Eng doi: 10.1007/978-3-319-95432-5_4 – year: 2004 ident: 11275_CR24 publication-title: J Appl Physiol doi: 10.1152/japplphysiol.01284.2003 – year: 2019 ident: 11275_CR13 publication-title: Measurement doi: 10.1016/j.measurement.2019.02.063 |
SSID | ssj0009901 |
Score | 2.4117105 |
Snippet | Thermal conductivity of the skin has been measured by in vivo procedures since the 1950s. These devices usually consist of temperature sensors and heating... |
SourceID | proquest gale crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 10027 |
SubjectTerms | Analytical Chemistry Calorimetry Chemistry Chemistry and Materials Science Electric properties Equipment and supplies Exercise Heat conductivity Heat measurement Heat transfer Heating Inorganic Chemistry Measurement Measurement Science and Instrumentation Peltier effects Penetration depth Physical Chemistry Physiological aspects Physiological effects Polymer Sciences Sensors Skin Temperature sensors Thermal conductivity Thermopiles |
Title | Advantages of in vivo measurement of human skin thermal conductance using a calorimetric sensor |
URI | https://link.springer.com/article/10.1007/s10973-022-11275-x https://www.proquest.com/docview/2705773927 |
Volume | 147 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDI5gHOCCeIrBmCKExAEqtWnarMcxMV4SB2ASnKJkTdEEtIhuEz8fO2sp5SVxqtq4L9tN_DXOZ0L2AxUocF7lMAZwlUexcSIAP44fhYECCMIjZbN8r8KzAb-4C-6KRWF5me1eTknanvrTYrdI4JwjczxkJXcgclwIELuDFw9Yt6LajdwZzAIfQLrzYqnMz9eoDUdfO-Vvs6N20OmvkOUiWqTdmXlXyZxJ18hiryzStk6krYo8hk4hp1lCRymdjqYZfa7-_OFhW4iP5o_QjPHeM1wSYDAyvaLNKea-P1BFwVwZsv0jaT_NAd9mrxtk0D-57Z05Rc0EZ8hDPnYiGJVcUDJ3jQoT5WmjIMIIYtfXwjdx4Ck_5klHaF8rwQPOdSRUojRgagB2ofA3SSPNUrNFaMfvME8DiO24GozoKwNQzsQhYzHsJG6TeKXq5LAgFMe6Fk-yokJGdUtQt7Tqlm9NcvhxzsuMTuNP6T20iESeihQTYR7UJM_l-c217AobicEZTXJQCCUZ3H6oinUF8BJIbVWTbNUkwVTDenNpeFl8yLlkAgJaAUEkNB-VzlA1__7s2_8T3yFLDN3SZq-1SGP8OjG7EO6MdZssdPvHx1e4Pb2_PGmT-V7Ya1uffwdIk_hS |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dT8IwEG8MPuCL8TOiqI0x8UGX7KNb2SNZJKDIg0LCW9NuHSHKZhgQ_3zvxiYBPxIft1677a5b77fe_Y6Qa1e6EiavNGwb4CrzI234AH4Mx_dcCRCE-TKP8u157QF7GLrDgiYHc2E29u8xxc3nuNNoGxZykRvgL24zQMoYvhd4wYpg1zeX4AosjyTnRYLMz2OsLUKbn-Jve6L5UtPaI7uFj0ibS6Puky2dHJBqUJZmOyQir4U8g09BRtOYjhO6GC9SOln978PTefk9mr1CM3p5ExgSwC_yu6KlKUa8j6ikYKQUOf6Rqp9mgGrT6REZtO77QdsoKiUYIfPYzPBhLTJBtczU0oulpbQEv8KNTEdxR0euJZ2IxQ2uHCU5cxlTPpexVICkAc553DkmlSRN9AmhDadhWwqga8NUYDpHagBwOvJsO4KD2KwRq1SdCAsacaxm8SZWBMiobgHqFrm6xUeN3H71eV-SaPwpfYUWEchOkWD4y0jOs0x0Xp5Fk-f-F_SokZtCKE7h8qEssgngIZDQak2yviYJpgrXm0vDi-L1zYTNwY3l4DpC8105GVbNv9_76f_EL0m13X_qim6n93hGdmyconn8Wp1UZtO5PgeHZ6Yu8pn-CXnm8zc |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEF5EQb2IT6xWXUTwoKF5bLLJsVSLVRFRC70tu81GRE3ExOLPd2abmNYXeEx28pqZZOfLznxDyIEvfQnOKy3XBbjKolhbEYAfy4sCXwIEYZE0Wb5XwVmfnQ_8wUQVv8l2r5YkxzUNyNKUFq2XOGlNFL5FHNcfXctBhnILosg5QCpmobYTdGra3cgeQy7wB6Q-L8tmfj7H1NT09QP9baXUTEDdZbJURo60PTb1CpnR6SpZ6FQN29aIMB2SC_hA5DRL6ENKRw-jjD7XfwFxt2nKR_NHGMbY7xlOCc-OrK9of4p58PdUUjBdhsz_SOBPc8C62es66XdP7zpnVtk_wRqygBVWBDOUDQpntpZBIh2lJUQbfmx7ins69h3pxSwJufKU5MxnTEVcJlIBvgaQF3Bvg8ymWao3CQ290HUUANrQVmBQT2qAdToOXDeGjcRuEKdSnRiW5OLY4-JJ1LTIqG4B6hZG3eK9QY4-j3kZU2v8Kb2PFhHIWZFiUsy9fMtz0bu9EW1uojI4okEOS6Ekg8sPZVljAA-BNFdTks0pSTDVcHq4MrwoX-pcuByCWw4BJQwfV85QD_9-71v_E98j89cnXXHZu7rYJosueqhJamuS2eL1Te9AFFSoXePoH-no-34 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Advantages+of+in+vivo+measurement+of+human+skin+thermal+conductance+using+a+calorimetric+sensor&rft.jtitle=Journal+of+thermal+analysis+and+calorimetry&rft.au=Rodr%C3%ADguez+de+Rivera%2C+Pedro+Jes%C3%BAs&rft.au=Rodr%C3%ADguez+de+Rivera%2C+Miriam&rft.au=Socorro%2C+Fabiola&rft.au=Calbet%2C+Jose+A.+L&rft.date=2022-09-01&rft.pub=Springer&rft.issn=1388-6150&rft.volume=147&rft.issue=18&rft_id=info:doi/10.1007%2Fs10973-022-11275-x&rft.externalDocID=A715159097 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1388-6150&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1388-6150&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1388-6150&client=summon |