The ‘zoo’ of secondary instabilities precursory to stratified shear flow transition. Part 1 Shear aligned convection, pairing, and braid instabilities
We study the competition between various secondary instabilities that co-exist in a preturbulent stratified parallel flow subject to Kelvin–Helmholtz instability. In particular, we investigate whether a secondary braid instability might emerge prior to the overturning of the statically unstable regi...
Saved in:
Published in | Journal of fluid mechanics Vol. 708; pp. 5 - 44 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Cambridge, UK
Cambridge University Press
10.10.2012
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | We study the competition between various secondary instabilities that co-exist in a preturbulent stratified parallel flow subject to Kelvin–Helmholtz instability. In particular, we investigate whether a secondary braid instability might emerge prior to the overturning of the statically unstable regions that develop in the cores of the primary Kelvin–Helmholtz billows. We identify two groups of instabilities on the braid. One group is a shear instability which extracts its energy from the background shear and is suppressed by the straining contribution of the background flow. The other group, which seems to have no precedent in the literature, includes phase-locked modes which grow at the stagnation point on the braid and are almost entirely driven by the straining contributions of the background flow. For the latter group, the braid shear has a negative influence on the growth rate. Our analysis demonstrates that the probability of finite-amplitude growth of both braid instabilities is enhanced with increasing Reynolds number and Richardson number. We also show that the possibility of emergence of braid instabilities decreases with the Prandtl number for the shear modes and increases for the stagnation point instabilities. Through detailed non-separable linear stability analysis, we show that both braid instabilities are fundamentally three dimensional with the shear modes being of small wavenumbers and the stagnation point modes dominating at large wavenumber. |
---|---|
AbstractList | We study the competition between various secondary instabilities that co-exist in a preturbulent stratified parallel flow subject to Kelvin-Helmholtz instability. In particular, we investigate whether a secondary braid instability might emerge prior to the overturning of the statically unstable regions that develop in the cores of the primary Kelvin-Helmholtz billows. We identify two groups of instabilities on the braid. One group is a shear instability which extracts its energy from the background shear and is suppressed by the straining contribution of the background flow. The other group, which seems to have no precedent in the literature, includes phase-locked modes which grow at the stagnation point on the braid and are almost entirely driven by the straining contributions of the background flow. For the latter group, the braid shear has a negative influence on the growth rate. Our analysis demonstrates that the probability of finite-amplitude growth of both braid instabilities is enhanced with increasing Reynolds number and Richardson number. We also show that the possibility of emergence of braid instabilities decreases with the Prandtl number for the shear modes and increases for the stagnation point instabilities. Through detailed non-separable linear stability analysis, we show that both braid instabilities are fundamentally three dimensional with the shear modes being of small wavenumbers and the stagnation point modes dominating at large wavenumber. Abstract We study the competition between various secondary instabilities that co-exist in a preturbulent stratified parallel flow subject to Kelvin-Helmholtz instability. In particular, we investigate whether a secondary braid instability might emerge prior to the overturning of the statically unstable regions that develop in the cores of the primary Kelvin-Helmholtz billows. We identify two groups of instabilities on the braid. One group is a shear instability which extracts its energy from the background shear and is suppressed by the straining contribution of the background flow. The other group, which seems to have no precedent in the literature, includes phase-locked modes which grow at the stagnation point on the braid and are almost entirely driven by the straining contributions of the background flow. For the latter group, the braid shear has a negative influence on the growth rate. Our analysis demonstrates that the probability of finite-amplitude growth of both braid instabilities is enhanced with increasing Reynolds number and Richardson number. We also show that the possibility of emergence of braid instabilities decreases with the Prandtl number for the shear modes and increases for the stagnation point instabilities. Through detailed non-separable linear stability analysis, we show that both braid instabilities are fundamentally three dimensional with the shear modes being of small wavenumbers and the stagnation point modes dominating at large wavenumber. [PUBLICATION ABSTRACT] |
Author | Peltier, W. R. Mashayek, A. |
Author_xml | – sequence: 1 givenname: A. surname: Mashayek fullname: Mashayek, A. email: amashaye@atmosp.physics.utoronto.ca organization: Department of Physics, University of Toronto, Ontario, M5S 1A7, Canada – sequence: 2 givenname: W. R. surname: Peltier fullname: Peltier, W. R. organization: Department of Physics, University of Toronto, Ontario, M5S 1A7, Canada |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=26362603$$DView record in Pascal Francis |
BookMark | eNqN0d1qFDEUB_AgFdxW73yAgAhe7Iw5mXzMXErRKhQUrNfDmUyyzTKbrMmsold9jOrj9UnM2kW0KHgVSH7nJDn_Y3IUYrCEPAZWAwP9fO02NWfA64aJe2QBQnWVVkIekQVjnFcAnD0gxzmvGYOGdXpBvl9cWnpzdf01xpurbzQ6mq2JYcT0hfqQZxz85GdvM90ma3Ypx3IwR5rnhLN33o40X1pM1E3xMy2bIRceQ03fYZop0Pc_T3Hyq1Bsaf3Jmj1Y0i365MNqSTGMdEjoxz9vfEjuO5yyfXRYT8iHVy8vTl9X52_P3py-OK-MUGKuOiaGQXFsme4kjiDlyAFaMApt12qFBpq206gHdK6VbmBMMhhG7VonBR-aE_Lstu82xY87m-d-47Ox04TBxl3uQZdJSa6V_B8KopWdgEKf3KHruEuhfKQHJmSjOgVtUU8PCrPByZX5GZ_7bfKbkkDPVaO4Yk1xy1tnUsw5WfeLAOv32fcl-36ffV-yL5zf4cbPuB97SchP_yqqD0W4GZIfV_b3J_-l4AeIksZb |
CODEN | JFLSA7 |
CitedBy_id | crossref_primary_10_1017_jfm_2021_212 crossref_primary_10_1017_jfm_2021_773 crossref_primary_10_1017_jfm_2012_294 crossref_primary_10_1007_s10652_014_9343_6 crossref_primary_10_1017_jfm_2017_396 crossref_primary_10_1017_jfm_2021_810 crossref_primary_10_1016_j_compfluid_2019_104405 crossref_primary_10_1017_jfm_2013_176 crossref_primary_10_1007_s10409_018_0786_8 crossref_primary_10_1017_jfm_2024_387 crossref_primary_10_3389_fmars_2022_829579 crossref_primary_10_1002_2013JD020646 crossref_primary_10_1017_jfm_2024_96 crossref_primary_10_1017_jfm_2015_225 crossref_primary_10_1146_annurev_fluid_042320_100458 crossref_primary_10_1002_2016GL069462 crossref_primary_10_1017_jfm_2022_537 crossref_primary_10_1017_jfm_2023_412 crossref_primary_10_2514_1_J054189 crossref_primary_10_1175_JPO_D_21_0259_1 crossref_primary_10_1007_s10494_019_00065_5 crossref_primary_10_1177_0954406213512630 crossref_primary_10_1029_2021JD035834 crossref_primary_10_1017_jfm_2021_740 crossref_primary_10_1017_jfm_2012_383 crossref_primary_10_1017_jfm_2018_827 crossref_primary_10_1017_jfm_2020_241 crossref_primary_10_1017_jfm_2020_483 crossref_primary_10_1103_PhysRevFluids_8_024501 crossref_primary_10_1017_jfm_2022_590 crossref_primary_10_1103_PhysRevFluids_6_104802 crossref_primary_10_1017_jfm_2022_394 crossref_primary_10_1088_1873_7005_ac6419 crossref_primary_10_1103_PhysRevFluids_4_063902 crossref_primary_10_1175_JPO_D_15_0059_1 crossref_primary_10_1063_5_0167092 crossref_primary_10_1017_jfm_2013_250 crossref_primary_10_1017_jfm_2014_603 crossref_primary_10_1017_jfm_2020_994 crossref_primary_10_1017_jfm_2022_985 crossref_primary_10_1063_5_0124569 crossref_primary_10_1007_s10546_022_00781_y crossref_primary_10_1016_j_paerosci_2018_10_004 crossref_primary_10_1017_jfm_2022_904 crossref_primary_10_3390_fluids9080171 crossref_primary_10_1103_PhysRevFluids_5_110518 crossref_primary_10_1007_s10652_022_09873_2 crossref_primary_10_1103_PhysRevFluids_2_113701 crossref_primary_10_1017_jfm_2017_374 crossref_primary_10_1017_jfm_2021_755 crossref_primary_10_1002_2016JC012334 crossref_primary_10_1103_PhysRevFluids_10_014501 crossref_primary_10_1017_jfm_2013_551 crossref_primary_10_1007_s10652_022_09895_w crossref_primary_10_1007_s11433_019_1475_8 crossref_primary_10_1017_jfm_2013_355 crossref_primary_10_1017_jfm_2024_121 crossref_primary_10_5802_crphys_196 crossref_primary_10_1017_jfm_2019_577 crossref_primary_10_5194_tc_18_3159_2024 crossref_primary_10_1063_5_0090686 crossref_primary_10_3390_fluids6120442 crossref_primary_10_3390_atmos14121770 crossref_primary_10_1017_jfm_2015_36 crossref_primary_10_1063_1_4949267 crossref_primary_10_1017_jfm_2016_488 crossref_primary_10_1017_jfm_2016_686 crossref_primary_10_1017_jfm_2023_871 crossref_primary_10_1017_jfm_2018_973 crossref_primary_10_1017_jfm_2021_1086 crossref_primary_10_1103_PhysRevFluids_9_014501 crossref_primary_10_1017_jfm_2023_293 crossref_primary_10_1017_jfm_2021_1085 crossref_primary_10_1017_jfm_2021_603 crossref_primary_10_1017_jfm_2013_222 crossref_primary_10_1103_PhysRevFluids_4_014802 crossref_primary_10_1017_jfm_2014_588 crossref_primary_10_1017_jfm_2018_79 crossref_primary_10_1007_s10546_022_00765_y crossref_primary_10_1017_jfm_2019_488 crossref_primary_10_1103_PhysRevFluids_8_084803 crossref_primary_10_1029_2021JD036232 crossref_primary_10_1017_flo_2022_16 crossref_primary_10_1017_jfm_2018_324 |
Cites_doi | 10.1017/S0022112091000915 10.1016/0377-0265(95)00418-1 10.1017/S0022112008002966 10.1017/S0022112097007726 10.1146/annurev.fluid.35.101101.161144 10.1017/S0022112061000305 10.1063/1.869667 10.1175/1520-0469(1979)036<2394:SCOTKH>2.0.CO;2 10.1175/1520-0485(2003)033<2093:SAGOTA>2.0.CO;2 10.1080/03091929808203686 10.1017/S0022112000008284 10.1029/2009JD013519 10.1175/2010JPO4308.1 10.1080/03091929308203572 10.1038/227260a0 10.1038/318519a0 10.1017/S0022112068001035 10.1017/S0022112003006591 10.1029/2010GL045272 10.1017/S0022112067000941 10.1029/JC092iC05p05231 10.1017/S0022112094000753 10.1017/S0022112085001690 10.1038/278312a0 10.1029/JC083iC06p02875 10.1063/1.868370 10.1080/03091929008219506 10.1017/S0022112061000317 10.1002/qj.49709741304 10.1017/S0022112081001365 10.1017/S0022112091000046 10.1017/jfm.2012.294 10.1017/S0022112076001365 10.1017/S0022112071000557 10.1017/S0022112074001571 10.1017/S0022112088000928 10.1017/S0022112089001229 10.1017/S0022112082000044 10.1007/BF01646553 10.1016/S0169-5983(00)00020-4 10.1175/1520-0485(1987)017<1348:OOSSMP>2.0.CO;2 10.1175/1520-0485(2001)031<1969:TEOMIT>2.0.CO;2 10.1017/S0022112095002072 10.1017/S0022112074001121 10.1017/CBO9780511819933 10.1017/S0022112072001065 10.1002/qj.49709339803 10.1007/978-1-935704-15-7_35 |
ContentType | Journal Article |
Copyright | Copyright © Cambridge University Press
2012 2015 INIST-CNRS Copyright © Cambridge University Press 2012 |
Copyright_xml | – notice: Copyright © Cambridge University Press 2012 – notice: 2015 INIST-CNRS – notice: Copyright © Cambridge University Press 2012 |
DBID | AAYXX CITATION IQODW 3V. 7TB 7U5 7UA 7XB 88I 8FD 8FE 8FG 8FK 8G5 ABJCF ABUWG AEUYN AFKRA ARAPS AZQEC BENPR BGLVJ BHPHI BKSAR C1K CCPQU DWQXO F1W FR3 GNUQQ GUQSH H8D H96 HCIFZ KR7 L.G L6V L7M M2O M2P M7S MBDVC P5Z P62 PCBAR PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS Q9U S0W |
DOI | 10.1017/jfm.2012.304 |
DatabaseName | CrossRef Pascal-Francis ProQuest Central (Corporate) Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts Water Resources Abstracts ProQuest Central (purchase pre-March 2016) Science Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Research Library Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials - QC ProQuest Central Technology Collection Natural Science Collection Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One ProQuest Central Korea ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database ProQuest Central Student ProQuest Research Library Aerospace Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources SciTech Premium Collection Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional ProQuest Engineering Collection Advanced Technologies Database with Aerospace ProQuest Research Library Science Database Engineering Database Research Library (Corporate) Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Earth, Atmospheric & Aquatic Science Database ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection ProQuest Central Basic DELNET Engineering & Technology Collection |
DatabaseTitle | CrossRef Research Library Prep ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials SciTech Premium Collection ProQuest Central China Water Resources Abstracts Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Natural Science Collection ProQuest Central (New) Engineering Collection Advanced Technologies & Aerospace Collection Engineering Database ProQuest Science Journals (Alumni Edition) ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database ProQuest Technology Collection ProQuest One Academic UKI Edition Solid State and Superconductivity Abstracts Engineering Research Database ProQuest One Academic ProQuest One Academic (New) Aquatic Science & Fisheries Abstracts (ASFA) Professional Technology Collection Technology Research Database ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Central (Alumni Edition) ProQuest One Community College Research Library (Alumni Edition) ProQuest Central Earth, Atmospheric & Aquatic Science Collection Aerospace Database ProQuest Engineering Collection ProQuest Central Korea ProQuest Research Library Advanced Technologies Database with Aerospace Civil Engineering Abstracts ProQuest Central Basic ProQuest Science Journals ProQuest SciTech Collection Advanced Technologies & Aerospace Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources ASFA: Aquatic Sciences and Fisheries Abstracts ProQuest DELNET Engineering and Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) |
DatabaseTitleList | Aerospace Database CrossRef Aquatic Science & Fisheries Abstracts (ASFA) Professional Research Library Prep |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences Engineering Physics |
EISSN | 1469-7645 |
EndPage | 44 |
ExternalDocumentID | 2767545881 26362603 10_1017_jfm_2012_304 |
Genre | Feature |
GroupedDBID | -2P -DZ -E. -~6 -~X .DC .FH 09C 09E 0E1 0R~ 29K 4.4 5GY 5VS 74X 74Y 7~V 88I 8FE 8FG 8FH 8G5 8R4 8R5 AAAZR AABES AABWE AACJH AAGFV AAKTX AAMNQ AARAB AASVR AATMM AAUIS AAUKB ABBXD ABGDZ ABITZ ABJCF ABJNI ABKKG ABMWE ABQTM ABQWD ABROB ABTCQ ABUWG ABVKB ABXAU ABXHF ABZCX ACBEA ACBMC ACDLN ACGFO ACGFS ACGOD ACIMK ACIWK ACUIJ ACYZP ACZBM ACZUX ACZWT ADCGK ADDNB ADFEC ADFRT ADKIL ADVJH AEBAK AEHGV AEMTW AENEX AENGE AEUYN AFFUJ AFKQG AFKRA AFLOS AFLVW AFRAH AFUTZ AFZFC AGABE AGBYD AGJUD AGLWM AHQXX AHRGI AIDUJ AIGNW AIHIV AIOIP AISIE AJ7 AJCYY AJPFC AJQAS ALMA_UNASSIGNED_HOLDINGS ALVPG ALWZO AQJOH ARABE ARAPS ATUCA AUXHV AZQEC BBLKV BENPR BGHMG BGLVJ BHPHI BKSAR BLZWO BMAJL BPHCQ BQFHP C0O CBIIA CCPQU CCQAD CFAFE CHEAL CJCSC COF CS3 D-I DC4 DOHLZ DU5 DWQXO E.L EBS EJD F5P GNUQQ GUQSH HCIFZ HG- HST HZ~ I.6 I.7 IH6 IOEEP IS6 I~P J36 J38 J3A JHPGK JQKCU KCGVB KFECR L6V L98 LHUNA LK5 LW7 M-V M2O M2P M7R M7S NIKVX O9- OYBOY P2P P62 PCBAR PHGZM PHGZT PQQKQ PROAC PTHSS PYCCK Q2X RAMDC RCA RNS ROL RR0 S0W S6- S6U SAAAG SC5 T9M TAE TN5 UT1 WFFJZ WH7 WQ3 WXU WYP ZE2 ZMEZD ZYDXJ ~02 AAYXX AKMAY CITATION -1F -2V -~N 6TJ 6~7 8WZ 9M5 A6W AANRG ABDMP ABDPE ABFSI ABKAW ABVFV ABVZP ABZUI ACETC ACKIV ACRPL ADMLS ADNMO ADOVH AEBPU AEMFK AENCP AGQPQ AI. ALEEW BESQT CAG CCUQV CDIZJ H~9 I.9 IQODW KAFGG NMFBF PQGLB RIG VH1 VOH ZJOSE ZY4 ~V1 3V. 7TB 7U5 7UA 7XB 8FD 8FK C1K F1W FR3 H8D H96 KR7 L.G L7M MBDVC PKEHL PQEST PQUKI PRINS Q9U |
ID | FETCH-LOGICAL-c464t-904bb62a80795ad155d21181c6ae9876ac13897a7baff85fb00501bd7f8f542b3 |
IEDL.DBID | BENPR |
ISSN | 0022-1120 |
IngestDate | Mon Jul 21 11:48:42 EDT 2025 Fri Jul 11 04:57:37 EDT 2025 Fri Aug 15 22:53:35 EDT 2025 Mon Jul 21 09:10:47 EDT 2025 Tue Jul 01 01:45:04 EDT 2025 Thu Apr 24 23:08:25 EDT 2025 Wed Jun 18 05:08:58 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | stratified turbulencence shear layer turbulence transition to turbulence Kelvin Helmholtz instability Shear flow Hydrodynamic instability Modelling Secondary flow Geophysical fluid dynamics Turbulent laminar transition |
Language | English |
License | https://www.cambridge.org/core/terms CC BY 4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c464t-904bb62a80795ad155d21181c6ae9876ac13897a7baff85fb00501bd7f8f542b3 |
Notes | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 |
PQID | 1045369618 |
PQPubID | 34769 |
PageCount | 40 |
ParticipantIDs | proquest_miscellaneous_1709752765 proquest_miscellaneous_1701485941 proquest_journals_1045369618 pascalfrancis_primary_26362603 crossref_primary_10_1017_jfm_2012_304 crossref_citationtrail_10_1017_jfm_2012_304 cambridge_journals_10_1017_jfm_2012_304 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2012-10-10 |
PublicationDateYYYYMMDD | 2012-10-10 |
PublicationDate_xml | – month: 10 year: 2012 text: 2012-10-10 day: 10 |
PublicationDecade | 2010 |
PublicationPlace | Cambridge, UK |
PublicationPlace_xml | – name: Cambridge, UK – name: Cambridge |
PublicationTitle | Journal of fluid mechanics |
PublicationTitleAlternate | J. Fluid Mech |
PublicationYear | 2012 |
Publisher | Cambridge University Press |
Publisher_xml | – name: Cambridge University Press |
References | Jordan (S0022112012003047_r22) 1977 S0022112012003047_r35 S0022112012003047_r34 S0022112012003047_r33 S0022112012003047_r32 S0022112012003047_r31 S0022112012003047_r30 Haren (S0022112012003047_r17) 2010; 37 Smyth (S0022112012003047_r41) 1991; 228 S0022112012003047_r39 S0022112012003047_r38 S0022112012003047_r37 S0022112012003047_r36 S0022112012003047_r46 S0022112012003047_r45 S0022112012003047_r44 S0022112012003047_r43 S0022112012003047_r42 S0022112012003047_r40 S0022112012003047_r49 S0022112012003047_r48 S0022112012003047_r47 S0022112012003047_r7 S0022112012003047_r8 S0022112012003047_r5 S0022112012003047_r6 S0022112012003047_r9 Kelvin (S0022112012003047_r23) 1871; 10 S0022112012003047_r13 S0022112012003047_r55 S0022112012003047_r11 S0022112012003047_r10 S0022112012003047_r54 S0022112012003047_r53 S0022112012003047_r52 S0022112012003047_r51 S0022112012003047_r50 S0022112012003047_r19 S0022112012003047_r18 S0022112012003047_r3 S0022112012003047_r4 S0022112012003047_r16 S0022112012003047_r15 S0022112012003047_r1 Drazin (S0022112012003047_r12) 1981 S0022112012003047_r2 S0022112012003047_r14 S0022112012003047_r24 S0022112012003047_r21 S0022112012003047_r20 S0022112012003047_r29 S0022112012003047_r28 S0022112012003047_r27 S0022112012003047_r26 S0022112012003047_r25 |
References_xml | – ident: S0022112012003047_r13 doi: 10.1017/S0022112091000915 – ident: S0022112012003047_r7 doi: 10.1016/0377-0265(95)00418-1 – ident: S0022112012003047_r14 doi: 10.1017/S0022112008002966 – ident: S0022112012003047_r36 doi: 10.1017/S0022112097007726 – ident: S0022112012003047_r34 doi: 10.1146/annurev.fluid.35.101101.161144 – ident: S0022112012003047_r32 doi: 10.1017/S0022112061000305 – ident: S0022112012003047_r10 doi: 10.1063/1.869667 – ident: S0022112012003047_r11 doi: 10.1175/1520-0469(1979)036<2394:SCOTKH>2.0.CO;2 – ident: S0022112012003047_r33 doi: 10.1175/1520-0485(2003)033<2093:SAGOTA>2.0.CO;2 – ident: S0022112012003047_r20 doi: 10.1080/03091929808203686 – ident: S0022112012003047_r6 doi: 10.1017/S0022112000008284 – ident: S0022112012003047_r28 doi: 10.1029/2009JD013519 – ident: S0022112012003047_r47 – ident: S0022112012003047_r27 doi: 10.1175/2010JPO4308.1 – ident: S0022112012003047_r42 doi: 10.1080/03091929308203572 – ident: S0022112012003047_r4 doi: 10.1038/227260a0 – volume-title: Nonlinear Ordinary Differential Equations year: 1977 ident: S0022112012003047_r22 – ident: S0022112012003047_r51 doi: 10.1038/318519a0 – ident: S0022112012003047_r55 doi: 10.1017/S0022112068001035 – ident: S0022112012003047_r38 doi: 10.1017/S0022112003006591 – ident: S0022112012003047_r15 doi: 10.1029/2010GL045272 – ident: S0022112012003047_r46 doi: 10.1017/S0022112067000941 – ident: S0022112012003047_r52 doi: 10.1029/JC092iC05p05231 – volume: 37 start-page: L03605 year: 2010 ident: S0022112012003047_r17 article-title: A deep ocean Kelvin–Helmholtz billow train publication-title: Geophys. Res. Lett. – ident: S0022112012003047_r43 doi: 10.1017/S0022112094000753 – ident: S0022112012003047_r24 doi: 10.1017/S0022112085001690 – ident: S0022112012003047_r18 doi: 10.1038/278312a0 – ident: S0022112012003047_r49 doi: 10.1029/JC083iC06p02875 – ident: S0022112012003047_r5 doi: 10.1063/1.868370 – ident: S0022112012003047_r40 doi: 10.1080/03091929008219506 – ident: S0022112012003047_r21 doi: 10.1017/S0022112061000317 – ident: S0022112012003047_r3 doi: 10.1002/qj.49709741304 – ident: S0022112012003047_r50 doi: 10.1017/S0022112081001365 – ident: S0022112012003047_r26 doi: 10.1017/S0022112091000046 – ident: S0022112012003047_r31 doi: 10.1017/jfm.2012.294 – ident: S0022112012003047_r2 – ident: S0022112012003047_r9 doi: 10.1017/S0022112076001365 – ident: S0022112012003047_r48 doi: 10.1017/S0022112071000557 – ident: S0022112012003047_r8 doi: 10.1017/S0022112074001571 – ident: S0022112012003047_r1 doi: 10.1017/S0022112088000928 – ident: S0022112012003047_r25 doi: 10.1017/S0022112089001229 – ident: S0022112012003047_r35 doi: 10.1017/S0022112082000044 – ident: S0022112012003047_r37 doi: 10.1007/BF01646553 – ident: S0022112012003047_r45 doi: 10.1016/S0169-5983(00)00020-4 – volume: 10 start-page: 155 year: 1871 ident: S0022112012003047_r23 article-title: Hydrokinetic solutions and observations publication-title: Phil. Mag. – volume-title: Hydrodynamic Stability year: 1981 ident: S0022112012003047_r12 – ident: S0022112012003047_r30 doi: 10.1175/1520-0485(1987)017<1348:OOSSMP>2.0.CO;2 – ident: S0022112012003047_r39 doi: 10.1175/1520-0485(2001)031<1969:TEOMIT>2.0.CO;2 – ident: S0022112012003047_r44 doi: 10.1017/S0022112095002072 – volume: 228 start-page: 387 year: 1991 ident: S0022112012003047_r41 article-title: Instability and transition in finite amplitude Kelvin–Helmholtz and Holmboe waves publication-title: J. Fluid Mech. – ident: S0022112012003047_r54 doi: 10.1017/S0022112074001121 – ident: S0022112012003047_r53 doi: 10.1017/CBO9780511819933 – ident: S0022112012003047_r19 doi: 10.1017/S0022112072001065 – ident: S0022112012003047_r29 doi: 10.1002/qj.49709339803 – ident: S0022112012003047_r16 doi: 10.1007/978-1-935704-15-7_35 |
SSID | ssj0013097 |
Score | 2.3836112 |
Snippet | We study the competition between various secondary instabilities that co-exist in a preturbulent stratified parallel flow subject to Kelvin–Helmholtz... Abstract We study the competition between various secondary instabilities that co-exist in a preturbulent stratified parallel flow subject to Kelvin-Helmholtz... We study the competition between various secondary instabilities that co-exist in a preturbulent stratified parallel flow subject to Kelvin-Helmholtz... |
SourceID | proquest pascalfrancis crossref cambridge |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 5 |
SubjectTerms | Braiding Earth, ocean, space Exact sciences and technology External geophysics Fluid dynamics Fluid flow Fluid mechanics Fundamental areas of phenomenology (including applications) Geophysics. Techniques, methods, instrumentation and models Hydrodynamic stability Instability Instability of shear flows Physics Reynolds number Secondary instability Shear Stability Stability analysis Stagnation point Transition to turbulence Turbulence Turbulent flows, convection, and heat transfer Wavenumber |
Title | The ‘zoo’ of secondary instabilities precursory to stratified shear flow transition. Part 1 Shear aligned convection, pairing, and braid instabilities |
URI | https://www.cambridge.org/core/product/identifier/S0022112012003047/type/journal_article https://www.proquest.com/docview/1045369618 https://www.proquest.com/docview/1701485941 https://www.proquest.com/docview/1709752765 |
Volume | 708 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1ta9RAEF5si2ARX07F03qMoNwHm5KX3Wz2k6j0LIKliIV-C5vdrJyUJL2kiP4Qf68zyebaQ9p83YFdMi87szv7PIy9UcpmkXQyEK7QAZdpGKgys0GodWRsYkSp6TXy1-P06JR_ORNn_sCt9W2VY0zsA7WtDZ2Ro3dzQdxzUfa-uQiINYpuVz2FxhbbwRCcYfG18_Hw-OTb1T1CqOSIF46ZRehb3wk0-qejh-hRfJAQSdsVsMLGBnW_0S3-KzeQXPwXr_tNaPGIPfDZI3wY1P2Y3SmrCXvoM0nwftpO2O41mMEJu9u3eZr2CfuLVgHzP3U9h9pBS8Ww1avfsKQksW-TxcIZmhUdwrc1DnQ1DMC6jiZoif4a3Hn9Czra4_p2rwM4QfODCHpybMC8_geGbujb2ftHE_vQ6CWtZB90ZQHL86XdnPEpO10cfv90FHhmhsDwlHeBCnlRpLHOQqmEtpiT2JhesJpUlwrjqzZ0_ym1LLRzGZoBwcxEhZUuc4LHRfKMbVd1VT5noFFcmdgIGxqOxZ_mDj-teMF5wk0yZfO1anLvX20-9KbJHJWYkxJzVOKUvRsVlxsPcE48G-c3SL9dSzcDsMcNcrMNG1gLxykh-YS4wL3RKK6vb7TWKXu9HkbPpesYXZX1JcpIOs0Vike3yigpYpmKF7dP85LdoxXTrhqFe2y7W12WrzBd6ooZ28oWn2feM_4BshIXBQ |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKEQKEeCwgFkoZJKo90FR52HF8QAgBy5Y-xKGVeguOHaNF1SZsUlXlh_Az-I3M5LHtCrW35ppR7GhmPDOex8fYG6VsEkgnPeEy7XEZ-57KE-v5WgfGRkbkmrqR9_bjySH_eiSOVtjfvheGyir7M7E5qG1h6I4ctZsLwp4LkvflL49Qoyi72kNotGKxk5-dYshWvdv-hPzdCMPx54OPE69DFfAMj3ntKZ9nWRzqxJdKaIv21IbUfWlinWMAHmtDuTupZaadS_AXaERKkFnpEid4mEX43RvsJo8iRRqVjL-cZy18Jfvp5OjH-F2hPY2o_umo7T0ItyKChDsf47BkDu-VukLOuBZS4z_r0Ji88UN2v_NV4UMrXI_YSj4bsAed3wrdqVAN2N0LQw0H7FZTVGqqx-wPyiCMfhfFCAoHFYXeVs_PYEouaVOUi2E6lHO68q8KfFEX0I7xdbRARWDb4I6LU6jJojbFZVvwDYUdAmiguAGjiB9oKKApnm9aNDah1FPaySbomYVsrqd2ecUn7PBaOPaUrc6KWf6MgUZyZUIjrG84hpqaO3y04hnnETfRkI0WrEk7ba7SthJOpsjElJiYIhOH7G3PuNR049QJ1eP4EuqNBXXZjhG5hG59SQYWxGFMc4N83OBaLxQX99frxpC9XrzGc4KSP3qWFydII-nuWCgeXEmjpAhlLJ5fvcwrdntysLeb7m7v77xgd2j3ZM8Df42t1vOT_CU6anW23mgHsO_XrY7_ANasUQk |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+%E2%80%98zoo%E2%80%99+of+secondary+instabilities+precursory+to+stratified+shear+flow+transition.+Part+1+Shear+aligned+convection%2C+pairing%2C+and+braid+instabilities&rft.jtitle=Journal+of+fluid+mechanics&rft.au=Mashayek%2C+A.&rft.au=Peltier%2C+W.+R.&rft.date=2012-10-10&rft.issn=0022-1120&rft.eissn=1469-7645&rft.volume=708&rft.spage=5&rft.epage=44&rft_id=info:doi/10.1017%2Fjfm.2012.304&rft.externalDBID=n%2Fa&rft.externalDocID=10_1017_jfm_2012_304 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-1120&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-1120&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-1120&client=summon |