The ‘zoo’ of secondary instabilities precursory to stratified shear flow transition. Part 1 Shear aligned convection, pairing, and braid instabilities

We study the competition between various secondary instabilities that co-exist in a preturbulent stratified parallel flow subject to Kelvin–Helmholtz instability. In particular, we investigate whether a secondary braid instability might emerge prior to the overturning of the statically unstable regi...

Full description

Saved in:
Bibliographic Details
Published inJournal of fluid mechanics Vol. 708; pp. 5 - 44
Main Authors Mashayek, A., Peltier, W. R.
Format Journal Article
LanguageEnglish
Published Cambridge, UK Cambridge University Press 10.10.2012
Subjects
Online AccessGet full text

Cover

Loading…
Abstract We study the competition between various secondary instabilities that co-exist in a preturbulent stratified parallel flow subject to Kelvin–Helmholtz instability. In particular, we investigate whether a secondary braid instability might emerge prior to the overturning of the statically unstable regions that develop in the cores of the primary Kelvin–Helmholtz billows. We identify two groups of instabilities on the braid. One group is a shear instability which extracts its energy from the background shear and is suppressed by the straining contribution of the background flow. The other group, which seems to have no precedent in the literature, includes phase-locked modes which grow at the stagnation point on the braid and are almost entirely driven by the straining contributions of the background flow. For the latter group, the braid shear has a negative influence on the growth rate. Our analysis demonstrates that the probability of finite-amplitude growth of both braid instabilities is enhanced with increasing Reynolds number and Richardson number. We also show that the possibility of emergence of braid instabilities decreases with the Prandtl number for the shear modes and increases for the stagnation point instabilities. Through detailed non-separable linear stability analysis, we show that both braid instabilities are fundamentally three dimensional with the shear modes being of small wavenumbers and the stagnation point modes dominating at large wavenumber.
AbstractList We study the competition between various secondary instabilities that co-exist in a preturbulent stratified parallel flow subject to Kelvin-Helmholtz instability. In particular, we investigate whether a secondary braid instability might emerge prior to the overturning of the statically unstable regions that develop in the cores of the primary Kelvin-Helmholtz billows. We identify two groups of instabilities on the braid. One group is a shear instability which extracts its energy from the background shear and is suppressed by the straining contribution of the background flow. The other group, which seems to have no precedent in the literature, includes phase-locked modes which grow at the stagnation point on the braid and are almost entirely driven by the straining contributions of the background flow. For the latter group, the braid shear has a negative influence on the growth rate. Our analysis demonstrates that the probability of finite-amplitude growth of both braid instabilities is enhanced with increasing Reynolds number and Richardson number. We also show that the possibility of emergence of braid instabilities decreases with the Prandtl number for the shear modes and increases for the stagnation point instabilities. Through detailed non-separable linear stability analysis, we show that both braid instabilities are fundamentally three dimensional with the shear modes being of small wavenumbers and the stagnation point modes dominating at large wavenumber.
Abstract We study the competition between various secondary instabilities that co-exist in a preturbulent stratified parallel flow subject to Kelvin-Helmholtz instability. In particular, we investigate whether a secondary braid instability might emerge prior to the overturning of the statically unstable regions that develop in the cores of the primary Kelvin-Helmholtz billows. We identify two groups of instabilities on the braid. One group is a shear instability which extracts its energy from the background shear and is suppressed by the straining contribution of the background flow. The other group, which seems to have no precedent in the literature, includes phase-locked modes which grow at the stagnation point on the braid and are almost entirely driven by the straining contributions of the background flow. For the latter group, the braid shear has a negative influence on the growth rate. Our analysis demonstrates that the probability of finite-amplitude growth of both braid instabilities is enhanced with increasing Reynolds number and Richardson number. We also show that the possibility of emergence of braid instabilities decreases with the Prandtl number for the shear modes and increases for the stagnation point instabilities. Through detailed non-separable linear stability analysis, we show that both braid instabilities are fundamentally three dimensional with the shear modes being of small wavenumbers and the stagnation point modes dominating at large wavenumber. [PUBLICATION ABSTRACT]
Author Peltier, W. R.
Mashayek, A.
Author_xml – sequence: 1
  givenname: A.
  surname: Mashayek
  fullname: Mashayek, A.
  email: amashaye@atmosp.physics.utoronto.ca
  organization: Department of Physics, University of Toronto, Ontario, M5S 1A7, Canada
– sequence: 2
  givenname: W. R.
  surname: Peltier
  fullname: Peltier, W. R.
  organization: Department of Physics, University of Toronto, Ontario, M5S 1A7, Canada
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=26362603$$DView record in Pascal Francis
BookMark eNqN0d1qFDEUB_AgFdxW73yAgAhe7Iw5mXzMXErRKhQUrNfDmUyyzTKbrMmsold9jOrj9UnM2kW0KHgVSH7nJDn_Y3IUYrCEPAZWAwP9fO02NWfA64aJe2QBQnWVVkIekQVjnFcAnD0gxzmvGYOGdXpBvl9cWnpzdf01xpurbzQ6mq2JYcT0hfqQZxz85GdvM90ma3Ypx3IwR5rnhLN33o40X1pM1E3xMy2bIRceQ03fYZop0Pc_T3Hyq1Bsaf3Jmj1Y0i365MNqSTGMdEjoxz9vfEjuO5yyfXRYT8iHVy8vTl9X52_P3py-OK-MUGKuOiaGQXFsme4kjiDlyAFaMApt12qFBpq206gHdK6VbmBMMhhG7VonBR-aE_Lstu82xY87m-d-47Ox04TBxl3uQZdJSa6V_B8KopWdgEKf3KHruEuhfKQHJmSjOgVtUU8PCrPByZX5GZ_7bfKbkkDPVaO4Yk1xy1tnUsw5WfeLAOv32fcl-36ffV-yL5zf4cbPuB97SchP_yqqD0W4GZIfV_b3J_-l4AeIksZb
CODEN JFLSA7
CitedBy_id crossref_primary_10_1017_jfm_2021_212
crossref_primary_10_1017_jfm_2021_773
crossref_primary_10_1017_jfm_2012_294
crossref_primary_10_1007_s10652_014_9343_6
crossref_primary_10_1017_jfm_2017_396
crossref_primary_10_1017_jfm_2021_810
crossref_primary_10_1016_j_compfluid_2019_104405
crossref_primary_10_1017_jfm_2013_176
crossref_primary_10_1007_s10409_018_0786_8
crossref_primary_10_1017_jfm_2024_387
crossref_primary_10_3389_fmars_2022_829579
crossref_primary_10_1002_2013JD020646
crossref_primary_10_1017_jfm_2024_96
crossref_primary_10_1017_jfm_2015_225
crossref_primary_10_1146_annurev_fluid_042320_100458
crossref_primary_10_1002_2016GL069462
crossref_primary_10_1017_jfm_2022_537
crossref_primary_10_1017_jfm_2023_412
crossref_primary_10_2514_1_J054189
crossref_primary_10_1175_JPO_D_21_0259_1
crossref_primary_10_1007_s10494_019_00065_5
crossref_primary_10_1177_0954406213512630
crossref_primary_10_1029_2021JD035834
crossref_primary_10_1017_jfm_2021_740
crossref_primary_10_1017_jfm_2012_383
crossref_primary_10_1017_jfm_2018_827
crossref_primary_10_1017_jfm_2020_241
crossref_primary_10_1017_jfm_2020_483
crossref_primary_10_1103_PhysRevFluids_8_024501
crossref_primary_10_1017_jfm_2022_590
crossref_primary_10_1103_PhysRevFluids_6_104802
crossref_primary_10_1017_jfm_2022_394
crossref_primary_10_1088_1873_7005_ac6419
crossref_primary_10_1103_PhysRevFluids_4_063902
crossref_primary_10_1175_JPO_D_15_0059_1
crossref_primary_10_1063_5_0167092
crossref_primary_10_1017_jfm_2013_250
crossref_primary_10_1017_jfm_2014_603
crossref_primary_10_1017_jfm_2020_994
crossref_primary_10_1017_jfm_2022_985
crossref_primary_10_1063_5_0124569
crossref_primary_10_1007_s10546_022_00781_y
crossref_primary_10_1016_j_paerosci_2018_10_004
crossref_primary_10_1017_jfm_2022_904
crossref_primary_10_3390_fluids9080171
crossref_primary_10_1103_PhysRevFluids_5_110518
crossref_primary_10_1007_s10652_022_09873_2
crossref_primary_10_1103_PhysRevFluids_2_113701
crossref_primary_10_1017_jfm_2017_374
crossref_primary_10_1017_jfm_2021_755
crossref_primary_10_1002_2016JC012334
crossref_primary_10_1103_PhysRevFluids_10_014501
crossref_primary_10_1017_jfm_2013_551
crossref_primary_10_1007_s10652_022_09895_w
crossref_primary_10_1007_s11433_019_1475_8
crossref_primary_10_1017_jfm_2013_355
crossref_primary_10_1017_jfm_2024_121
crossref_primary_10_5802_crphys_196
crossref_primary_10_1017_jfm_2019_577
crossref_primary_10_5194_tc_18_3159_2024
crossref_primary_10_1063_5_0090686
crossref_primary_10_3390_fluids6120442
crossref_primary_10_3390_atmos14121770
crossref_primary_10_1017_jfm_2015_36
crossref_primary_10_1063_1_4949267
crossref_primary_10_1017_jfm_2016_488
crossref_primary_10_1017_jfm_2016_686
crossref_primary_10_1017_jfm_2023_871
crossref_primary_10_1017_jfm_2018_973
crossref_primary_10_1017_jfm_2021_1086
crossref_primary_10_1103_PhysRevFluids_9_014501
crossref_primary_10_1017_jfm_2023_293
crossref_primary_10_1017_jfm_2021_1085
crossref_primary_10_1017_jfm_2021_603
crossref_primary_10_1017_jfm_2013_222
crossref_primary_10_1103_PhysRevFluids_4_014802
crossref_primary_10_1017_jfm_2014_588
crossref_primary_10_1017_jfm_2018_79
crossref_primary_10_1007_s10546_022_00765_y
crossref_primary_10_1017_jfm_2019_488
crossref_primary_10_1103_PhysRevFluids_8_084803
crossref_primary_10_1029_2021JD036232
crossref_primary_10_1017_flo_2022_16
crossref_primary_10_1017_jfm_2018_324
Cites_doi 10.1017/S0022112091000915
10.1016/0377-0265(95)00418-1
10.1017/S0022112008002966
10.1017/S0022112097007726
10.1146/annurev.fluid.35.101101.161144
10.1017/S0022112061000305
10.1063/1.869667
10.1175/1520-0469(1979)036<2394:SCOTKH>2.0.CO;2
10.1175/1520-0485(2003)033<2093:SAGOTA>2.0.CO;2
10.1080/03091929808203686
10.1017/S0022112000008284
10.1029/2009JD013519
10.1175/2010JPO4308.1
10.1080/03091929308203572
10.1038/227260a0
10.1038/318519a0
10.1017/S0022112068001035
10.1017/S0022112003006591
10.1029/2010GL045272
10.1017/S0022112067000941
10.1029/JC092iC05p05231
10.1017/S0022112094000753
10.1017/S0022112085001690
10.1038/278312a0
10.1029/JC083iC06p02875
10.1063/1.868370
10.1080/03091929008219506
10.1017/S0022112061000317
10.1002/qj.49709741304
10.1017/S0022112081001365
10.1017/S0022112091000046
10.1017/jfm.2012.294
10.1017/S0022112076001365
10.1017/S0022112071000557
10.1017/S0022112074001571
10.1017/S0022112088000928
10.1017/S0022112089001229
10.1017/S0022112082000044
10.1007/BF01646553
10.1016/S0169-5983(00)00020-4
10.1175/1520-0485(1987)017<1348:OOSSMP>2.0.CO;2
10.1175/1520-0485(2001)031<1969:TEOMIT>2.0.CO;2
10.1017/S0022112095002072
10.1017/S0022112074001121
10.1017/CBO9780511819933
10.1017/S0022112072001065
10.1002/qj.49709339803
10.1007/978-1-935704-15-7_35
ContentType Journal Article
Copyright Copyright © Cambridge University Press 2012
2015 INIST-CNRS
Copyright © Cambridge University Press 2012
Copyright_xml – notice: Copyright © Cambridge University Press 2012
– notice: 2015 INIST-CNRS
– notice: Copyright © Cambridge University Press 2012
DBID AAYXX
CITATION
IQODW
3V.
7TB
7U5
7UA
7XB
88I
8FD
8FE
8FG
8FK
8G5
ABJCF
ABUWG
AEUYN
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
BHPHI
BKSAR
C1K
CCPQU
DWQXO
F1W
FR3
GNUQQ
GUQSH
H8D
H96
HCIFZ
KR7
L.G
L6V
L7M
M2O
M2P
M7S
MBDVC
P5Z
P62
PCBAR
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
Q9U
S0W
DOI 10.1017/jfm.2012.304
DatabaseName CrossRef
Pascal-Francis
ProQuest Central (Corporate)
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
Water Resources Abstracts
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Research Library
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials - QC
ProQuest Central
Technology Collection
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
Environmental Sciences and Pollution Management
ProQuest One
ProQuest Central Korea
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
ProQuest Central Student
ProQuest Research Library
Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
SciTech Premium Collection
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
ProQuest Research Library
Science Database
Engineering Database
Research Library (Corporate)
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Earth, Atmospheric & Aquatic Science Database
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
ProQuest Central Basic
DELNET Engineering & Technology Collection
DatabaseTitle CrossRef
Research Library Prep
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
SciTech Premium Collection
ProQuest Central China
Water Resources Abstracts
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Natural Science Collection
ProQuest Central (New)
Engineering Collection
Advanced Technologies & Aerospace Collection
Engineering Database
ProQuest Science Journals (Alumni Edition)
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
ProQuest Technology Collection
ProQuest One Academic UKI Edition
Solid State and Superconductivity Abstracts
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Central (Alumni Edition)
ProQuest One Community College
Research Library (Alumni Edition)
ProQuest Central
Earth, Atmospheric & Aquatic Science Collection
Aerospace Database
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Research Library
Advanced Technologies Database with Aerospace
Civil Engineering Abstracts
ProQuest Central Basic
ProQuest Science Journals
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
ASFA: Aquatic Sciences and Fisheries Abstracts
ProQuest DELNET Engineering and Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
DatabaseTitleList Aerospace Database

CrossRef
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Research Library Prep
Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Engineering
Physics
EISSN 1469-7645
EndPage 44
ExternalDocumentID 2767545881
26362603
10_1017_jfm_2012_304
Genre Feature
GroupedDBID -2P
-DZ
-E.
-~6
-~X
.DC
.FH
09C
09E
0E1
0R~
29K
4.4
5GY
5VS
74X
74Y
7~V
88I
8FE
8FG
8FH
8G5
8R4
8R5
AAAZR
AABES
AABWE
AACJH
AAGFV
AAKTX
AAMNQ
AARAB
AASVR
AATMM
AAUIS
AAUKB
ABBXD
ABGDZ
ABITZ
ABJCF
ABJNI
ABKKG
ABMWE
ABQTM
ABQWD
ABROB
ABTCQ
ABUWG
ABVKB
ABXAU
ABXHF
ABZCX
ACBEA
ACBMC
ACDLN
ACGFO
ACGFS
ACGOD
ACIMK
ACIWK
ACUIJ
ACYZP
ACZBM
ACZUX
ACZWT
ADCGK
ADDNB
ADFEC
ADFRT
ADKIL
ADVJH
AEBAK
AEHGV
AEMTW
AENEX
AENGE
AEUYN
AFFUJ
AFKQG
AFKRA
AFLOS
AFLVW
AFRAH
AFUTZ
AFZFC
AGABE
AGBYD
AGJUD
AGLWM
AHQXX
AHRGI
AIDUJ
AIGNW
AIHIV
AIOIP
AISIE
AJ7
AJCYY
AJPFC
AJQAS
ALMA_UNASSIGNED_HOLDINGS
ALVPG
ALWZO
AQJOH
ARABE
ARAPS
ATUCA
AUXHV
AZQEC
BBLKV
BENPR
BGHMG
BGLVJ
BHPHI
BKSAR
BLZWO
BMAJL
BPHCQ
BQFHP
C0O
CBIIA
CCPQU
CCQAD
CFAFE
CHEAL
CJCSC
COF
CS3
D-I
DC4
DOHLZ
DU5
DWQXO
E.L
EBS
EJD
F5P
GNUQQ
GUQSH
HCIFZ
HG-
HST
HZ~
I.6
I.7
IH6
IOEEP
IS6
I~P
J36
J38
J3A
JHPGK
JQKCU
KCGVB
KFECR
L6V
L98
LHUNA
LK5
LW7
M-V
M2O
M2P
M7R
M7S
NIKVX
O9-
OYBOY
P2P
P62
PCBAR
PHGZM
PHGZT
PQQKQ
PROAC
PTHSS
PYCCK
Q2X
RAMDC
RCA
RNS
ROL
RR0
S0W
S6-
S6U
SAAAG
SC5
T9M
TAE
TN5
UT1
WFFJZ
WH7
WQ3
WXU
WYP
ZE2
ZMEZD
ZYDXJ
~02
AAYXX
AKMAY
CITATION
-1F
-2V
-~N
6TJ
6~7
8WZ
9M5
A6W
AANRG
ABDMP
ABDPE
ABFSI
ABKAW
ABVFV
ABVZP
ABZUI
ACETC
ACKIV
ACRPL
ADMLS
ADNMO
ADOVH
AEBPU
AEMFK
AENCP
AGQPQ
AI.
ALEEW
BESQT
CAG
CCUQV
CDIZJ
H~9
I.9
IQODW
KAFGG
NMFBF
PQGLB
RIG
VH1
VOH
ZJOSE
ZY4
~V1
3V.
7TB
7U5
7UA
7XB
8FD
8FK
C1K
F1W
FR3
H8D
H96
KR7
L.G
L7M
MBDVC
PKEHL
PQEST
PQUKI
PRINS
Q9U
ID FETCH-LOGICAL-c464t-904bb62a80795ad155d21181c6ae9876ac13897a7baff85fb00501bd7f8f542b3
IEDL.DBID BENPR
ISSN 0022-1120
IngestDate Mon Jul 21 11:48:42 EDT 2025
Fri Jul 11 04:57:37 EDT 2025
Fri Aug 15 22:53:35 EDT 2025
Mon Jul 21 09:10:47 EDT 2025
Tue Jul 01 01:45:04 EDT 2025
Thu Apr 24 23:08:25 EDT 2025
Wed Jun 18 05:08:58 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords stratified turbulencence
shear layer turbulence
transition to turbulence
Kelvin Helmholtz instability
Shear flow
Hydrodynamic instability
Modelling
Secondary flow
Geophysical fluid dynamics
Turbulent laminar transition
Language English
License https://www.cambridge.org/core/terms
CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c464t-904bb62a80795ad155d21181c6ae9876ac13897a7baff85fb00501bd7f8f542b3
Notes SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
PQID 1045369618
PQPubID 34769
PageCount 40
ParticipantIDs proquest_miscellaneous_1709752765
proquest_miscellaneous_1701485941
proquest_journals_1045369618
pascalfrancis_primary_26362603
crossref_primary_10_1017_jfm_2012_304
crossref_citationtrail_10_1017_jfm_2012_304
cambridge_journals_10_1017_jfm_2012_304
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2012-10-10
PublicationDateYYYYMMDD 2012-10-10
PublicationDate_xml – month: 10
  year: 2012
  text: 2012-10-10
  day: 10
PublicationDecade 2010
PublicationPlace Cambridge, UK
PublicationPlace_xml – name: Cambridge, UK
– name: Cambridge
PublicationTitle Journal of fluid mechanics
PublicationTitleAlternate J. Fluid Mech
PublicationYear 2012
Publisher Cambridge University Press
Publisher_xml – name: Cambridge University Press
References Jordan (S0022112012003047_r22) 1977
S0022112012003047_r35
S0022112012003047_r34
S0022112012003047_r33
S0022112012003047_r32
S0022112012003047_r31
S0022112012003047_r30
Haren (S0022112012003047_r17) 2010; 37
Smyth (S0022112012003047_r41) 1991; 228
S0022112012003047_r39
S0022112012003047_r38
S0022112012003047_r37
S0022112012003047_r36
S0022112012003047_r46
S0022112012003047_r45
S0022112012003047_r44
S0022112012003047_r43
S0022112012003047_r42
S0022112012003047_r40
S0022112012003047_r49
S0022112012003047_r48
S0022112012003047_r47
S0022112012003047_r7
S0022112012003047_r8
S0022112012003047_r5
S0022112012003047_r6
S0022112012003047_r9
Kelvin (S0022112012003047_r23) 1871; 10
S0022112012003047_r13
S0022112012003047_r55
S0022112012003047_r11
S0022112012003047_r10
S0022112012003047_r54
S0022112012003047_r53
S0022112012003047_r52
S0022112012003047_r51
S0022112012003047_r50
S0022112012003047_r19
S0022112012003047_r18
S0022112012003047_r3
S0022112012003047_r4
S0022112012003047_r16
S0022112012003047_r15
S0022112012003047_r1
Drazin (S0022112012003047_r12) 1981
S0022112012003047_r2
S0022112012003047_r14
S0022112012003047_r24
S0022112012003047_r21
S0022112012003047_r20
S0022112012003047_r29
S0022112012003047_r28
S0022112012003047_r27
S0022112012003047_r26
S0022112012003047_r25
References_xml – ident: S0022112012003047_r13
  doi: 10.1017/S0022112091000915
– ident: S0022112012003047_r7
  doi: 10.1016/0377-0265(95)00418-1
– ident: S0022112012003047_r14
  doi: 10.1017/S0022112008002966
– ident: S0022112012003047_r36
  doi: 10.1017/S0022112097007726
– ident: S0022112012003047_r34
  doi: 10.1146/annurev.fluid.35.101101.161144
– ident: S0022112012003047_r32
  doi: 10.1017/S0022112061000305
– ident: S0022112012003047_r10
  doi: 10.1063/1.869667
– ident: S0022112012003047_r11
  doi: 10.1175/1520-0469(1979)036<2394:SCOTKH>2.0.CO;2
– ident: S0022112012003047_r33
  doi: 10.1175/1520-0485(2003)033<2093:SAGOTA>2.0.CO;2
– ident: S0022112012003047_r20
  doi: 10.1080/03091929808203686
– ident: S0022112012003047_r6
  doi: 10.1017/S0022112000008284
– ident: S0022112012003047_r28
  doi: 10.1029/2009JD013519
– ident: S0022112012003047_r47
– ident: S0022112012003047_r27
  doi: 10.1175/2010JPO4308.1
– ident: S0022112012003047_r42
  doi: 10.1080/03091929308203572
– ident: S0022112012003047_r4
  doi: 10.1038/227260a0
– volume-title: Nonlinear Ordinary Differential Equations
  year: 1977
  ident: S0022112012003047_r22
– ident: S0022112012003047_r51
  doi: 10.1038/318519a0
– ident: S0022112012003047_r55
  doi: 10.1017/S0022112068001035
– ident: S0022112012003047_r38
  doi: 10.1017/S0022112003006591
– ident: S0022112012003047_r15
  doi: 10.1029/2010GL045272
– ident: S0022112012003047_r46
  doi: 10.1017/S0022112067000941
– ident: S0022112012003047_r52
  doi: 10.1029/JC092iC05p05231
– volume: 37
  start-page: L03605
  year: 2010
  ident: S0022112012003047_r17
  article-title: A deep ocean Kelvin–Helmholtz billow train
  publication-title: Geophys. Res. Lett.
– ident: S0022112012003047_r43
  doi: 10.1017/S0022112094000753
– ident: S0022112012003047_r24
  doi: 10.1017/S0022112085001690
– ident: S0022112012003047_r18
  doi: 10.1038/278312a0
– ident: S0022112012003047_r49
  doi: 10.1029/JC083iC06p02875
– ident: S0022112012003047_r5
  doi: 10.1063/1.868370
– ident: S0022112012003047_r40
  doi: 10.1080/03091929008219506
– ident: S0022112012003047_r21
  doi: 10.1017/S0022112061000317
– ident: S0022112012003047_r3
  doi: 10.1002/qj.49709741304
– ident: S0022112012003047_r50
  doi: 10.1017/S0022112081001365
– ident: S0022112012003047_r26
  doi: 10.1017/S0022112091000046
– ident: S0022112012003047_r31
  doi: 10.1017/jfm.2012.294
– ident: S0022112012003047_r2
– ident: S0022112012003047_r9
  doi: 10.1017/S0022112076001365
– ident: S0022112012003047_r48
  doi: 10.1017/S0022112071000557
– ident: S0022112012003047_r8
  doi: 10.1017/S0022112074001571
– ident: S0022112012003047_r1
  doi: 10.1017/S0022112088000928
– ident: S0022112012003047_r25
  doi: 10.1017/S0022112089001229
– ident: S0022112012003047_r35
  doi: 10.1017/S0022112082000044
– ident: S0022112012003047_r37
  doi: 10.1007/BF01646553
– ident: S0022112012003047_r45
  doi: 10.1016/S0169-5983(00)00020-4
– volume: 10
  start-page: 155
  year: 1871
  ident: S0022112012003047_r23
  article-title: Hydrokinetic solutions and observations
  publication-title: Phil. Mag.
– volume-title: Hydrodynamic Stability
  year: 1981
  ident: S0022112012003047_r12
– ident: S0022112012003047_r30
  doi: 10.1175/1520-0485(1987)017<1348:OOSSMP>2.0.CO;2
– ident: S0022112012003047_r39
  doi: 10.1175/1520-0485(2001)031<1969:TEOMIT>2.0.CO;2
– ident: S0022112012003047_r44
  doi: 10.1017/S0022112095002072
– volume: 228
  start-page: 387
  year: 1991
  ident: S0022112012003047_r41
  article-title: Instability and transition in finite amplitude Kelvin–Helmholtz and Holmboe waves
  publication-title: J. Fluid Mech.
– ident: S0022112012003047_r54
  doi: 10.1017/S0022112074001121
– ident: S0022112012003047_r53
  doi: 10.1017/CBO9780511819933
– ident: S0022112012003047_r19
  doi: 10.1017/S0022112072001065
– ident: S0022112012003047_r29
  doi: 10.1002/qj.49709339803
– ident: S0022112012003047_r16
  doi: 10.1007/978-1-935704-15-7_35
SSID ssj0013097
Score 2.3836112
Snippet We study the competition between various secondary instabilities that co-exist in a preturbulent stratified parallel flow subject to Kelvin–Helmholtz...
Abstract We study the competition between various secondary instabilities that co-exist in a preturbulent stratified parallel flow subject to Kelvin-Helmholtz...
We study the competition between various secondary instabilities that co-exist in a preturbulent stratified parallel flow subject to Kelvin-Helmholtz...
SourceID proquest
pascalfrancis
crossref
cambridge
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 5
SubjectTerms Braiding
Earth, ocean, space
Exact sciences and technology
External geophysics
Fluid dynamics
Fluid flow
Fluid mechanics
Fundamental areas of phenomenology (including applications)
Geophysics. Techniques, methods, instrumentation and models
Hydrodynamic stability
Instability
Instability of shear flows
Physics
Reynolds number
Secondary instability
Shear
Stability
Stability analysis
Stagnation point
Transition to turbulence
Turbulence
Turbulent flows, convection, and heat transfer
Wavenumber
Title The ‘zoo’ of secondary instabilities precursory to stratified shear flow transition. Part 1 Shear aligned convection, pairing, and braid instabilities
URI https://www.cambridge.org/core/product/identifier/S0022112012003047/type/journal_article
https://www.proquest.com/docview/1045369618
https://www.proquest.com/docview/1701485941
https://www.proquest.com/docview/1709752765
Volume 708
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1ta9RAEF5si2ARX07F03qMoNwHm5KX3Wz2k6j0LIKliIV-C5vdrJyUJL2kiP4Qf68zyebaQ9p83YFdMi87szv7PIy9UcpmkXQyEK7QAZdpGKgys0GodWRsYkSp6TXy1-P06JR_ORNn_sCt9W2VY0zsA7WtDZ2Ro3dzQdxzUfa-uQiINYpuVz2FxhbbwRCcYfG18_Hw-OTb1T1CqOSIF46ZRehb3wk0-qejh-hRfJAQSdsVsMLGBnW_0S3-KzeQXPwXr_tNaPGIPfDZI3wY1P2Y3SmrCXvoM0nwftpO2O41mMEJu9u3eZr2CfuLVgHzP3U9h9pBS8Ww1avfsKQksW-TxcIZmhUdwrc1DnQ1DMC6jiZoif4a3Hn9Czra4_p2rwM4QfODCHpybMC8_geGbujb2ftHE_vQ6CWtZB90ZQHL86XdnPEpO10cfv90FHhmhsDwlHeBCnlRpLHOQqmEtpiT2JhesJpUlwrjqzZ0_ym1LLRzGZoBwcxEhZUuc4LHRfKMbVd1VT5noFFcmdgIGxqOxZ_mDj-teMF5wk0yZfO1anLvX20-9KbJHJWYkxJzVOKUvRsVlxsPcE48G-c3SL9dSzcDsMcNcrMNG1gLxykh-YS4wL3RKK6vb7TWKXu9HkbPpesYXZX1JcpIOs0Vike3yigpYpmKF7dP85LdoxXTrhqFe2y7W12WrzBd6ooZ28oWn2feM_4BshIXBQ
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKEQKEeCwgFkoZJKo90FR52HF8QAgBy5Y-xKGVeguOHaNF1SZsUlXlh_Az-I3M5LHtCrW35ppR7GhmPDOex8fYG6VsEkgnPeEy7XEZ-57KE-v5WgfGRkbkmrqR9_bjySH_eiSOVtjfvheGyir7M7E5qG1h6I4ctZsLwp4LkvflL49Qoyi72kNotGKxk5-dYshWvdv-hPzdCMPx54OPE69DFfAMj3ntKZ9nWRzqxJdKaIv21IbUfWlinWMAHmtDuTupZaadS_AXaERKkFnpEid4mEX43RvsJo8iRRqVjL-cZy18Jfvp5OjH-F2hPY2o_umo7T0ItyKChDsf47BkDu-VukLOuBZS4z_r0Ji88UN2v_NV4UMrXI_YSj4bsAed3wrdqVAN2N0LQw0H7FZTVGqqx-wPyiCMfhfFCAoHFYXeVs_PYEouaVOUi2E6lHO68q8KfFEX0I7xdbRARWDb4I6LU6jJojbFZVvwDYUdAmiguAGjiB9oKKApnm9aNDah1FPaySbomYVsrqd2ecUn7PBaOPaUrc6KWf6MgUZyZUIjrG84hpqaO3y04hnnETfRkI0WrEk7ba7SthJOpsjElJiYIhOH7G3PuNR049QJ1eP4EuqNBXXZjhG5hG59SQYWxGFMc4N83OBaLxQX99frxpC9XrzGc4KSP3qWFydII-nuWCgeXEmjpAhlLJ5fvcwrdntysLeb7m7v77xgd2j3ZM8Df42t1vOT_CU6anW23mgHsO_XrY7_ANasUQk
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+%E2%80%98zoo%E2%80%99+of+secondary+instabilities+precursory+to+stratified+shear+flow+transition.+Part+1+Shear+aligned+convection%2C+pairing%2C+and+braid+instabilities&rft.jtitle=Journal+of+fluid+mechanics&rft.au=Mashayek%2C+A.&rft.au=Peltier%2C+W.+R.&rft.date=2012-10-10&rft.issn=0022-1120&rft.eissn=1469-7645&rft.volume=708&rft.spage=5&rft.epage=44&rft_id=info:doi/10.1017%2Fjfm.2012.304&rft.externalDBID=n%2Fa&rft.externalDocID=10_1017_jfm_2012_304
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-1120&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-1120&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-1120&client=summon