Responsive shape-shifting nanoarchitectonics and its application in tumor diagnosis and therapy
Nanodrug delivery system has a great application in the treatment of solid tumors by virtue of EPR effect, though its success in clinics is still limited by its poor extravasation, small intratumoral accumulation, and weak tumor penetration. The shape of nanoparticles (NPs) greatly affects their cir...
Saved in:
Published in | Journal of controlled release Vol. 352; pp. 600 - 618 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Netherlands
Elsevier B.V
01.12.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Nanodrug delivery system has a great application in the treatment of solid tumors by virtue of EPR effect, though its success in clinics is still limited by its poor extravasation, small intratumoral accumulation, and weak tumor penetration. The shape of nanoparticles (NPs) greatly affects their circulation time, flow behavior, intratumoral amassing, cell internalization as well as tumor tissue penetration. Generally, short nanorods and 100–200 nm spherical nanocarriers possess nice circulation behaviors, nanorods and nanofibers with a large aspect ratio (AR) cumulate well at tumor sites, and tiny nanospheres/disks (< 50 nm) and short nanorods with a low AR achieve a favorable tumor tissue penetration. The AR and surface evenness of NPs also tune their cell contact, cell ingestion, and drug accumulation at tumor sites. Therefore, adopting stimulus-responsive shape-switching (namely, shape-shifting nanoarchitectonics) can not only ensure a good circulation and extravasation for NPs, but also and more importantly, promote their amassing, retention, and penetration in tumor tissues to maximize therapeutic efficacy. Here we review the recently developed shape-switching nanoarchitectonics of antitumoral NPs based on stimulus-responsiveness, demonstrate how successful they are in tumor shrinking and elimination, and provide new ideas for the optimization of anticancer nanotherapeutics.
[Display omitted] |
---|---|
AbstractList | Nanodrug delivery system has a great application in the treatment of solid tumors by virtue of EPR effect, though its success in clinics is still limited by its poor extravasation, small intratumoral accumulation, and weak tumor penetration. The shape of nanoparticles (NPs) greatly affects their circulation time, flow behavior, intratumoral amassing, cell internalization as well as tumor tissue penetration. Generally, short nanorods and 100–200 nm spherical nanocarriers possess nice circulation behaviors, nanorods and nanofibers with a large aspect ratio (AR) cumulate well at tumor sites, and tiny nanospheres/disks (< 50 nm) and short nanorods with a low AR achieve a favorable tumor tissue penetration. The AR and surface evenness of NPs also tune their cell contact, cell ingestion, and drug accumulation at tumor sites. Therefore, adopting stimulus-responsive shape-switching (namely, shape-shifting nanoarchitectonics) can not only ensure a good circulation and extravasation for NPs, but also and more importantly, promote their amassing, retention, and penetration in tumor tissues to maximize therapeutic efficacy. Here we review the recently developed shape-switching nanoarchitectonics of antitumoral NPs based on stimulus-responsiveness, demonstrate how successful they are in tumor shrinking and elimination, and provide new ideas for the optimization of anticancer nanotherapeutics. Nanodrug delivery system has a great application in the treatment of solid tumors by virtue of EPR effect, though its success in clinics is still limited by its poor extravasation, small intratumoral accumulation, and weak tumor penetration. The shape of nanoparticles (NPs) greatly affects their circulation time, flow behavior, intratumoral amassing, cell internalization as well as tumor tissue penetration. Generally, short nanorods and 100–200 nm spherical nanocarriers possess nice circulation behaviors, nanorods and nanofibers with a large aspect ratio (AR) cumulate well at tumor sites, and tiny nanospheres/disks (< 50 nm) and short nanorods with a low AR achieve a favorable tumor tissue penetration. The AR and surface evenness of NPs also tune their cell contact, cell ingestion, and drug accumulation at tumor sites. Therefore, adopting stimulus-responsive shape-switching (namely, shape-shifting nanoarchitectonics) can not only ensure a good circulation and extravasation for NPs, but also and more importantly, promote their amassing, retention, and penetration in tumor tissues to maximize therapeutic efficacy. Here we review the recently developed shape-switching nanoarchitectonics of antitumoral NPs based on stimulus-responsiveness, demonstrate how successful they are in tumor shrinking and elimination, and provide new ideas for the optimization of anticancer nanotherapeutics. [Display omitted] Nanodrug delivery system has a great application in the treatment of solid tumors by virtue of EPR effect, though its success in clinics is still limited by its poor extravasation, small intratumoral accumulation, and weak tumor penetration. The shape of nanoparticles (NPs) greatly affects their circulation time, flow behavior, intratumoral amassing, cell internalization as well as tumor tissue penetration. Generally, short nanorods and 100-200 nm spherical nanocarriers possess nice circulation behaviors, nanorods and nanofibers with a large aspect ratio (AR) cumulate well at tumor sites, and tiny nanospheres/disks (< 50 nm) and short nanorods with a low AR achieve a favorable tumor tissue penetration. The AR and surface evenness of NPs also tune their cell contact, cell ingestion, and drug accumulation at tumor sites. Therefore, adopting stimulus-responsive shape-switching (namely, shape-shifting nanoarchitectonics) can not only ensure a good circulation and extravasation for NPs, but also and more importantly, promote their amassing, retention, and penetration in tumor tissues to maximize therapeutic efficacy. Here we review the recently developed shape-switching nanoarchitectonics of antitumoral NPs based on stimulus-responsiveness, demonstrate how successful they are in tumor shrinking and elimination, and provide new ideas for the optimization of anticancer nanotherapeutics.Nanodrug delivery system has a great application in the treatment of solid tumors by virtue of EPR effect, though its success in clinics is still limited by its poor extravasation, small intratumoral accumulation, and weak tumor penetration. The shape of nanoparticles (NPs) greatly affects their circulation time, flow behavior, intratumoral amassing, cell internalization as well as tumor tissue penetration. Generally, short nanorods and 100-200 nm spherical nanocarriers possess nice circulation behaviors, nanorods and nanofibers with a large aspect ratio (AR) cumulate well at tumor sites, and tiny nanospheres/disks (< 50 nm) and short nanorods with a low AR achieve a favorable tumor tissue penetration. The AR and surface evenness of NPs also tune their cell contact, cell ingestion, and drug accumulation at tumor sites. Therefore, adopting stimulus-responsive shape-switching (namely, shape-shifting nanoarchitectonics) can not only ensure a good circulation and extravasation for NPs, but also and more importantly, promote their amassing, retention, and penetration in tumor tissues to maximize therapeutic efficacy. Here we review the recently developed shape-switching nanoarchitectonics of antitumoral NPs based on stimulus-responsiveness, demonstrate how successful they are in tumor shrinking and elimination, and provide new ideas for the optimization of anticancer nanotherapeutics. Nanodrug delivery system has a great application in the treatment of solid tumors by virtue of EPR effect, though its success in clinics is still limited by its poor extravasation, small intratumoral accumulation, and weak tumor penetration. The shape of nanoparticles (NPs) greatly affects their circulation time, flow behavior, intratumoral amassing, cell internalization as well as tumor tissue penetration. Generally, short nanorods and 100-200 nm spherical nanocarriers possess nice circulation behaviors, nanorods and nanofibers with a large aspect ratio (AR) cumulate well at tumor sites, and tiny nanospheres/disks (< 50 nm) and short nanorods with a low AR achieve a favorable tumor tissue penetration. The AR and surface evenness of NPs also tune their cell contact, cell ingestion, and drug accumulation at tumor sites. Therefore, adopting stimulus-responsive shape-switching (namely, shape-shifting nanoarchitectonics) can not only ensure a good circulation and extravasation for NPs, but also and more importantly, promote their amassing, retention, and penetration in tumor tissues to maximize therapeutic efficacy. Here we review the recently developed shape-switching nanoarchitectonics of antitumoral NPs based on stimulus-responsiveness, demonstrate how successful they are in tumor shrinking and elimination, and provide new ideas for the optimization of anticancer nanotherapeutics. |
Author | Xiang, Li Zhang, Wenhui Shao, Yaru Chen, Yuping |
Author_xml | – sequence: 1 givenname: Yaru surname: Shao fullname: Shao, Yaru organization: Institute of Pharmacy & Pharmacology, School of Pharmaceutical Science, University of South China, Hengyang 421001, China – sequence: 2 givenname: Li surname: Xiang fullname: Xiang, Li organization: Hengyang Medical School, University of South China, Hengyang 410001, China – sequence: 3 givenname: Wenhui surname: Zhang fullname: Zhang, Wenhui organization: Institute of Pharmacy & Pharmacology, School of Pharmaceutical Science, University of South China, Hengyang 421001, China – sequence: 4 givenname: Yuping surname: Chen fullname: Chen, Yuping email: yupingc@usc.edu.cn organization: Institute of Pharmacy & Pharmacology, School of Pharmaceutical Science, University of South China, Hengyang 421001, China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/36341936$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkUtrGzEUhUVISZzHT2iZZTfjXj1GGtNFKaFtAoFCaddCo7kTXzOWppIcyL_PuHa76MarC5fvnMX5rth5iAEZe8thyYHrD5vlxseQcFwKEGL-LUHpM7bgrZG1Wq2ac7aYubaWulldsqucNwDQSGUu2KXUUvGV1Atmf2CeYsj0jFVeuwnrvKahUHiqggvRJb-mgr7EQD5XLvQVlflO00jeFYqholCV3Tamqif3FGKmA1bWmNz0csPeDG7MeHu81-zX1y8_7-7rx-_fHu4-P9ZeaVVqg16gMEZ0g3ZKYwvKKQAvOAyqQz40bjC8R-9RQyclOGOUV74X0redGuQ1e3_onVL8vcNc7Jayx3F0AeMuW8kb2QrQHE6iwkgpAATIGX13RHfdFns7Jdq69GL_7jcDzQHwKeaccPiHcLB7T3Zjj57s3tP-PXuacx__y3kqf_YsydF4Mv3pkMZ50WfCZLMnDB57SrMr20c60fAKthizZg |
CitedBy_id | crossref_primary_10_1039_D3TB00322A crossref_primary_10_1039_D3TB02618C crossref_primary_10_1093_bulcsj_uoad001 crossref_primary_10_1002_smtd_202401860 crossref_primary_10_1142_S1088424623300045 crossref_primary_10_1002_wnan_1964 crossref_primary_10_1007_s10904_024_03065_9 crossref_primary_10_1002_anie_202409169 crossref_primary_10_1002_ange_202409169 crossref_primary_10_3390_mi15020282 crossref_primary_10_1016_j_ijbiomac_2024_136034 crossref_primary_10_1021_acs_chemrev_3c00705 crossref_primary_10_1021_acsami_4c13504 crossref_primary_10_1002_apxr_202200113 crossref_primary_10_1016_j_jconrel_2025_01_038 crossref_primary_10_3389_fbioe_2023_1249875 crossref_primary_10_3390_ma17010271 crossref_primary_10_1016_j_apsb_2024_12_016 crossref_primary_10_1002_cnma_202300120 crossref_primary_10_1039_D4NR00230J |
Cites_doi | 10.1515/ntrev-2022-0148 10.1002/pol.20210430 10.1039/D1BM00631B 10.1002/smll.201903060 10.3390/biom10081138 10.1016/j.jconrel.2019.07.004 10.1021/acsnano.9b05749 10.1021/acs.nanolett.9b04752 10.3389/fbioe.2021.707319 10.1021/acsabm.0c00707 10.1021/acsnano.0c08384 10.1016/j.bioactmat.2020.12.010 10.1039/C9CS00011A 10.1021/acs.biomac.0c00773 10.1021/acsami.1c03211 10.7150/thno.30915 10.1039/D0BM01324B 10.1128/AEM.01758-21 10.1039/C6CS00592F 10.1002/adhm.202001207 10.1016/j.semcancer.2019.10.020 10.1002/adma.201501803 10.1007/s42242-020-00105-4 10.1021/acs.macromol.1c02402 10.1002/adfm.202009765 10.1016/j.actbio.2020.12.045 10.1039/D0NH00680G 10.1021/acs.chemrev.7b00194 10.1021/acs.nanolett.1c00488 10.1002/adma.201502598 10.1021/acsami.1c04953 10.1021/acscentsci.7b00257 10.1002/marc.202100025 10.7150/thno.38069 10.1016/j.semcancer.2019.11.002 10.1038/ncomms14943 10.1021/acsami.9b20062 10.1021/acs.nanolett.1c03031 10.1016/j.addr.2018.10.002 10.1002/adhm.201900352 10.1021/acs.biomac.0c00726 10.1016/j.mtbio.2021.100170 10.1039/D1CC04053G 10.1016/j.tips.2018.06.003 10.3390/ijms23010146 10.1039/C9CC10071G 10.1039/D0TB00143K 10.1016/j.jmrt.2018.03.007 10.1016/j.jconrel.2021.12.032 10.1016/j.addr.2022.114177 10.1016/j.biomaterials.2020.119902 10.1021/acs.biomac.8b00422 10.1021/acsnano.7b00216 10.1016/j.addr.2021.01.009 10.1021/acsnano.5b03874 10.1021/acsnano.0c00118 10.1039/D0BM01406K 10.1016/j.addr.2021.05.017 10.1016/j.jcis.2020.09.073 10.1021/acsami.1c15858 10.1016/j.msec.2018.04.010 10.1016/j.biomaterials.2013.01.084 10.1016/j.tibtech.2019.11.001 10.1002/anie.201900135 10.2174/1389450122666210114095614 10.1038/s41467-020-15206-y 10.1016/j.msec.2020.111250 10.1002/marc.202000236 10.1016/j.actbio.2021.04.011 10.1021/acs.biomac.1c00669 10.1258/ebm.2010.010243 10.1038/s41573-020-0090-8 10.1016/j.ajps.2019.06.003 10.1021/acsami.7b04447 10.1002/smll.202007073 10.1016/j.bioactmat.2021.02.011 10.1021/acscentsci.9b01139 10.1002/marc.202000106 10.1002/smll.202104632 10.1186/s13045-021-01096-0 10.1039/D0CS01127D 10.1021/jacs.1c06435 10.1039/C9TB01846H 10.1166/jbn.2020.2996 10.1039/C8TB00651B 10.1016/j.addr.2019.01.002 10.1016/j.ijpharm.2021.120326 10.1002/wnan.1788 10.1016/j.colsurfb.2020.110811 10.2174/1389450117666160401124624 10.1021/acs.molpharmaceut.1c00036 10.1021/acsami.8b01114 10.1038/s41565-021-00858-8 10.1016/j.ejpb.2021.03.012 10.1016/j.biomaterials.2009.09.060 10.1155/2020/5194780 10.1016/j.biomaterials.2016.04.011 10.1021/acsnano.9b05425 10.1021/acssensors.0c01989 10.1517/17425247.2014.950564 10.1038/s41428-021-00576-x 10.1021/acs.langmuir.7b03893 10.1146/annurev-pharmtox-032320-110338 10.1007/s12274-017-1939-y 10.1039/D0BM00895H 10.1002/asia.201801366 10.1246/bcsj.20210200 10.1021/acs.bioconjchem.6b00437 10.1039/C9MH00664H 10.2174/1389450122999210128180058 10.1039/C9BM01872G 10.1039/D1TB01690C 10.1021/nn406258m 10.1002/anie.202008708 10.1016/j.jconrel.2017.02.021 10.1021/acs.nanolett.9b03136 10.1021/ja409686x |
ContentType | Journal Article |
Copyright | 2022 Elsevier B.V. Copyright © 2022 Elsevier B.V. All rights reserved. |
Copyright_xml | – notice: 2022 Elsevier B.V. – notice: Copyright © 2022 Elsevier B.V. All rights reserved. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 |
DOI | 10.1016/j.jconrel.2022.10.046 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Pharmacy, Therapeutics, & Pharmacology |
EISSN | 1873-4995 |
EndPage | 618 |
ExternalDocumentID | 36341936 10_1016_j_jconrel_2022_10_046 S0168365922007246 |
Genre | Research Support, Non-U.S. Gov't Journal Article Review |
GroupedDBID | --- --K --M .GJ .~1 0R~ 1B1 1RT 1~. 1~5 29K 3O- 4.4 457 4G. 53G 5GY 5VS 7-5 71M 8P~ 9JM AABNK AABXZ AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AATCM AAXUO AAYOK ABFNM ABFRF ABJNI ABMAC ABOCM ABXDB ABYKQ ABZDS ACDAQ ACGFO ACGFS ACIUM ACNNM ACRLP ADBBV ADEZE ADMUD AEBSH AEFWE AEKER AENEX AEZYN AFKWA AFRZQ AFTJW AFXIZ AGHFR AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AJBFU AJOXV ALCLG ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC C45 CS3 D-I DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HMT HVGLF HZ~ IHE J1W KOM M34 M41 MO0 N9A O-L O9- OAUVE OGGZJ OVD OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SCC SDF SDG SDP SES SEW SPC SPCBC SPT SSM SSP SSZ T5K TEORI WUQ ~G- AAHBH AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH CGR CUY CVF ECM EIF NPM 7X8 EFKBS 7S9 L.6 |
ID | FETCH-LOGICAL-c464t-7ec2e2772bf6a46e804a400c210f4be1f5af71decce60b330a774c4cd23c8b4f3 |
IEDL.DBID | .~1 |
ISSN | 0168-3659 1873-4995 |
IngestDate | Fri Jul 11 09:47:48 EDT 2025 Tue Aug 05 09:07:48 EDT 2025 Wed Feb 19 02:26:23 EST 2025 Thu Apr 24 23:07:24 EDT 2025 Tue Jul 01 04:10:08 EDT 2025 Fri Feb 23 02:41:39 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Nanoarchitectonics Tumor diagnosis and therapy Shape-shifting Stimulus responsiveness Nanodrug delivery systems |
Language | English |
License | Copyright © 2022 Elsevier B.V. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c464t-7ec2e2772bf6a46e804a400c210f4be1f5af71decce60b330a774c4cd23c8b4f3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 |
PMID | 36341936 |
PQID | 2733200203 |
PQPubID | 23479 |
PageCount | 19 |
ParticipantIDs | proquest_miscellaneous_3153820610 proquest_miscellaneous_2733200203 pubmed_primary_36341936 crossref_primary_10_1016_j_jconrel_2022_10_046 crossref_citationtrail_10_1016_j_jconrel_2022_10_046 elsevier_sciencedirect_doi_10_1016_j_jconrel_2022_10_046 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | December 2022 2022-12-00 20221201 |
PublicationDateYYYYMMDD | 2022-12-01 |
PublicationDate_xml | – month: 12 year: 2022 text: December 2022 |
PublicationDecade | 2020 |
PublicationPlace | Netherlands |
PublicationPlace_xml | – name: Netherlands |
PublicationTitle | Journal of controlled release |
PublicationTitleAlternate | J Control Release |
PublicationYear | 2022 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Xiao, Xu, Lv, Cheng, Huang, Li (bb0440) 2021; 122 Dai, Xu, Sun, Chen (bb0075) 2017; 46 Wang, Gaus, Tilley, Gooding (bb0115) 2019; 6 Wang, Wang, Tang, Elzatahry, Wang, Al-Dahyan (bb0520) 2017; 3 Wang, Wang, Jia, Han, Qian, Li (bb0310) 2019; 9 He, He, Younis, Blum, Lei, Zhang (bb0450) 2021; 13 Guo, Fan, Shen, Xue, Zhu, Xu (bb0390) 2021; 9 Campora, Ghersi (bb0550) 2022; 11 Truong, Whittaker, Mak, Davis (bb0525) 2015; 12 Liu, Li, Xue, Cao, Zhang, Wang (bb0265) 2021; 128 Li, Montague, Pollinzi, Lofts, Hoare (bb0595) 2022; 18 Han, Zhang, Ma, Wang, Xu, Liu (bb0205) 2017; 9 Jahns, Warwas, Krey, Nolte, Konig, Froba (bb0250) 2020; 8 Yang, Liu, Ye, Deng, Dong, Zhang (bb0065) 2020; 116 Zhang, Jin, Stenzel (bb0560) 2021; 22 Black, Wang, Luehmann, Cai, Xing, Pang (bb0125) 2014; 8 Jenjob, Phakkeeree, Crespy (bb0255) 2020; 8 Son, Yi, Yoo, Park, Koo, Choi (bb0420) 2019; 138 Hu, Hu, Tian, Ge, Zhang, Luo (bb0100) 2013; 135 He, Cong, Li, Luo, He, Hao (bb0045) 2020; 12 Han, Zhang, Zhang, Wang, Xu, Zhang (bb0200) 2017; 11 Sun, Ji, Hu, Yu, Wang, Qian (bb0345) 2016; 96 Li, Peng, Cai, Yang, Zhang (bb0465) 2020; 15 Bazban-Shotorbani, Hasani-Sadrabadi, Karkhaneh, Serpooshan, Jacob, Moshaverinia (bb0160) 2017; 253 Li, Lin, Wang, Luo, Lin, Zhang (bb0260) 2019; 13 Arno, Inam, Weems, Li, Binch, Platt (bb0600) 2020; 11 Rennick, Johnston, Parton (bb0505) 2021; 16 Ou, Wen, Bardhan (bb0090) 2020; 38 Zhang, Cheng, Ji, An, Wang, Yang (bb0490) 2020; 20 Huang, Gao, Lin, Hu, Liao, Yan (bb0335) 2015; 9 Zhan, Nie, Gao, Zhang, You, Yu (bb0060) 2020; 8 Le-Vinh, Akkuş-Dağdeviren, Le, Nazir, Bernkop-Schnürch (bb0330) 2022; 5 Vilches, Quidant (bb0530) 2020 Kyu Shim, Yang, Sun, Kim (bb0585) 2022; 183 Yu, Liu, Zhou, Gao (bb0080) 2020; 6 Wu, Wang, Wang, Zou, Wu, Liu (bb0315) 2021; 18 Ge, Qiao, Tang, Zhang, Jiang (bb0380) 2021; 21 Yusa (bb0215) 2022; 54 He, Qin, Fan, Feng, Wang, Fang (bb0455) 2021; 13 Shi, Javorskis, Bergquist, Ulcinas, Niaura, Matulaitiene (bb0230) 2017; 8 Yang, Li, Lee (bb0070) 2020; 41 Jia, Zhu, Liu, Pan, Gao, Sun (bb0480) 2019; 13 Zhang, Qi, Zhao, Qiao, Yang, Wang (bb0320) 2015; 27 Wang, Liu, Wu, Wang (bb0445) 2021; 583 Chang, Ma, Xu, Xie, Ju (bb0565) 2021; 9 Bai, Jia, Ma, Liang, Xue, Kang (bb0055) 2021; 6 Yang, Zhou, Song, Chen (bb0140) 2019; 48 Mitchell, Billingsley, Haley, Wechsler, Peppas, Langer (bb0015) 2021; 20 Liu, Shi, Nie, Wang, Liu, Cai (bb0570) 2020; 10 Unsoy, Gunduz (bb0185) 2018; 19 Zhao, Ukidve, Krishnan, Mitragotri (bb0120) 2019; 143 Sun, Chang, Cao, Yuan, Zhao, Yang (bb0240) 2020; 59 Yang, Li, Gu, Fan (bb0540) 2021; 6 Zhou, Dong, Fan, Jiang, Xiang, Qiu (bb0040) 2020; 240 Yao, Kou, Tu, Zhu (bb0290) 2018; 39 Kapate, Clegg, Mitragotri (bb0135) 2021; 177 Chen, Zhang, Cheng, Zhang, Liu, Ji (bb0435) 2020; 14 Wagner, Gossl, Ustyanovska, Xiong, Hauser, Zhuzhgova (bb0170) 2021; 15 Schoppa, Jung, Rust, Mulac, Kuckling, Langer (bb0385) 2021; 597 Mo, Xiang, Chen (bb0175) 2021; 42 Serra (bb0295) 2020; 10 Xiang, Tong, Shi, Yan, Yu, Zhao (bb0415) 2018; 6 Cheng, Li, Dey, Chen (bb0030) 2021; 14 Raza, Hayat, Rasheed, Bilal, Iqbal (bb0410) 2019; 8 Sousa de Almeida, Susnik, Drasler, Taladriz-Blanco, Petri-Fink, Rothen-Rutishauser (bb0510) 2021; 50 Wang, Yin, Su, Qiu, Wang, Zheng (bb0225) 2018; 11 Qin, Zhu, Zheng, Zhao (bb0180) 2021; 4 Bai, Liu, Song, Zhuo, Bu, Tian (bb0425) 2018; 13 Zare, Zheng, Makvandi, Gheybi, Sartorius, Yiu (bb0555) 2021; 17 Kinnear, Moore, Rodriguez-Lorenzo, Rothen-Rutishauser, Petri-Fink (bb0105) 2017; 117 Sarkar, Lee, Ryu, Singha, Lee, Reo (bb0355) 2021; 6 Mirza, Karim (bb0005) 2021; 69 Bilardo, Traldi, Vdovchenko, Resmini (bb0535) 2022 Haryadi, Hafner, Amin, Schubel, Jordan, Winter (bb0590) 2019; 8 Sethuraman, Janakiraman, Krishnaswami, Kandasamy (bb0150) 2021; 22 Callmann, Barback, Thompson, Hall, Mattrey, Gianneschi (bb0305) 2015; 27 Huang, Teng, Chen, Tang, He (bb0515) 2010; 31 Cong, Ji, Gao, Liu, Cheng, Hu (bb0220) 2019; 58 Mi (bb0280) 2020; 10 Zhou, Ye, Chen, Zhu, Yin (bb0395) 2018; 19 Yap, Zhang, Lovegrove, Beves, Stenzel (bb0375) 2020; 41 Shahriari, Zahiri, Abnous, Taghdisi, Ramezani, Alibolandi (bb0270) 2019; 308 Zhou, Liu, Hu, Yang, Zhao, Zheng (bb0020) 2020; 8 Nishikawa, Kang, Zou, Takeuchi, Matsuno, Suzuki (bb0025) 2021; 94 Han, Gong, Li, Guo, Chen, Jin (bb0300) 2022; 13 Nakamura, Mochida, Choyke, Kobayashi (bb0050) 2016; 27 Tao, Hu, Liu, Huang, Sumer, Gao (bb0095) 2011; 236 Hu, Song, Cao, Li, Liu, Zhou (bb0365) 2021; 143 Phan, Taresco, Penelle, Couturaud (bb0195) 2021; 9 Li, Chen, Xin, Huang, Wu (bb0035) 2020; 16 Lou, Du, Xu (bb0275) 2021; 22 Wang, Weng, Wen, Hu, Ye (bb0575) 2021; 9 Mumtaz Virk, Reimhult (bb0340) 2018; 34 Niland, Riscanevo, Eble (bb0285) 2021; 23 Ma, Yang, Zhu, Jia, Zhang, Liu (bb0155) 2022 Chen, Zhao (bb0405) 2018; 10 Thangudu, Kaur, Korupalli, Sharma, Kalluru, Vankayala (bb0430) 2021; 9 Zhou, Xu, Tong, Yang, Jiang (bb0475) 2018; 89 Hadji, Bouchemal (bb0495) 2022; 342 Su, Jiang, Liu, Xie, Chen, Wang (bb0235) 2022; 55 Ridolfo, Tavakoli, Junnuthula, Williams, Urtti, van Hest (bb0110) 2021; 22 Karayianni, Pispas (bb0190) 2021 Lo, Tsai, Soorni, Hsu, Liao, Wang (bb0460) 2020; 21 Zhang, Lv, Gao, Feng, Wang, Cheng (bb0145) 2021; 21 Zhao, Zhao, Wang, Liu, Sun, Zhang (bb0400) 2019; 15 Yang, An, Wang (bb0580) 2021; 4 Rapp, DeForest (bb0370) 2021; 171 Zein, Sharrouf, Selting (bb0500) 2020; 2020 Li, Ning, Chen, Duan, Song, Ding (bb0245) 2019; 19 Raj, Khurana, Choudhari, Kesari, Kamal, Garg (bb0010) 2021; 69 Liang, Bi, Hu, Chen, Jin, Song (bb0350) 2020; 56 Ariga (bb0130) 2021; 6 Le-Vinh, Steinbring, Wibel, Friedl, Bernkop-Schnurch (bb0325) 2021; 163 Madathiparambil Visalakshan, Gonzalez Garcia, Benzigar, Ghazaryan, Simon, Mierczynska-Vasilev (bb0085) 2020; 16 Yang, Zheng, Zheng, He, Kong, Ding (bb0605) 2021; 13 Zhou, Lv, Li, Li, Yan, Liu (bb0360) 2021; 87 Jia, Wang, Liu, Yu, Gao (bb0485) 2021; 31 Zhang, Li, Xiao, Chen (bb0165) 2021; 57 Gong, Lao, Gao, Lin, Yu, Zhou (bb0210) 2020; 188 Yang, Wang, Mettenbrink, DeAngelis, Wilhelm (bb0545) 2021; 61 Cheng, Meng, Deng, Klok, Zhong (bb0470) 2013; 34 Unsoy (10.1016/j.jconrel.2022.10.046_bb0185) 2018; 19 Rapp (10.1016/j.jconrel.2022.10.046_bb0370) 2021; 171 Hu (10.1016/j.jconrel.2022.10.046_bb0100) 2013; 135 Lou (10.1016/j.jconrel.2022.10.046_bb0275) 2021; 22 Callmann (10.1016/j.jconrel.2022.10.046_bb0305) 2015; 27 Zhang (10.1016/j.jconrel.2022.10.046_bb0320) 2015; 27 Ridolfo (10.1016/j.jconrel.2022.10.046_bb0110) 2021; 22 Yang (10.1016/j.jconrel.2022.10.046_bb0580) 2021; 4 Cheng (10.1016/j.jconrel.2022.10.046_bb0470) 2013; 34 Cong (10.1016/j.jconrel.2022.10.046_bb0220) 2019; 58 Han (10.1016/j.jconrel.2022.10.046_bb0200) 2017; 11 Ou (10.1016/j.jconrel.2022.10.046_bb0090) 2020; 38 He (10.1016/j.jconrel.2022.10.046_bb0045) 2020; 12 Tao (10.1016/j.jconrel.2022.10.046_bb0095) 2011; 236 Yao (10.1016/j.jconrel.2022.10.046_bb0290) 2018; 39 Zare (10.1016/j.jconrel.2022.10.046_bb0555) 2021; 17 Mo (10.1016/j.jconrel.2022.10.046_bb0175) 2021; 42 Thangudu (10.1016/j.jconrel.2022.10.046_bb0430) 2021; 9 Ma (10.1016/j.jconrel.2022.10.046_bb0155) 2022 Raj (10.1016/j.jconrel.2022.10.046_bb0010) 2021; 69 Sun (10.1016/j.jconrel.2022.10.046_bb0345) 2016; 96 Li (10.1016/j.jconrel.2022.10.046_bb0465) 2020; 15 Kapate (10.1016/j.jconrel.2022.10.046_bb0135) 2021; 177 Zhou (10.1016/j.jconrel.2022.10.046_bb0475) 2018; 89 Yang (10.1016/j.jconrel.2022.10.046_bb0065) 2020; 116 Wu (10.1016/j.jconrel.2022.10.046_bb0315) 2021; 18 Zhou (10.1016/j.jconrel.2022.10.046_bb0020) 2020; 8 Black (10.1016/j.jconrel.2022.10.046_bb0125) 2014; 8 He (10.1016/j.jconrel.2022.10.046_bb0450) 2021; 13 Li (10.1016/j.jconrel.2022.10.046_bb0595) 2022; 18 Cheng (10.1016/j.jconrel.2022.10.046_bb0030) 2021; 14 Li (10.1016/j.jconrel.2022.10.046_bb0260) 2019; 13 Mitchell (10.1016/j.jconrel.2022.10.046_bb0015) 2021; 20 Yang (10.1016/j.jconrel.2022.10.046_bb0140) 2019; 48 Wagner (10.1016/j.jconrel.2022.10.046_bb0170) 2021; 15 Schoppa (10.1016/j.jconrel.2022.10.046_bb0385) 2021; 597 Yap (10.1016/j.jconrel.2022.10.046_bb0375) 2020; 41 Han (10.1016/j.jconrel.2022.10.046_bb0300) 2022; 13 Zein (10.1016/j.jconrel.2022.10.046_bb0500) 2020; 2020 Jia (10.1016/j.jconrel.2022.10.046_bb0485) 2021; 31 Arno (10.1016/j.jconrel.2022.10.046_bb0600) 2020; 11 Shi (10.1016/j.jconrel.2022.10.046_bb0230) 2017; 8 Yang (10.1016/j.jconrel.2022.10.046_bb0605) 2021; 13 Kyu Shim (10.1016/j.jconrel.2022.10.046_bb0585) 2022; 183 Huang (10.1016/j.jconrel.2022.10.046_bb0515) 2010; 31 Sousa de Almeida (10.1016/j.jconrel.2022.10.046_bb0510) 2021; 50 Karayianni (10.1016/j.jconrel.2022.10.046_bb0190) 2021 Zhang (10.1016/j.jconrel.2022.10.046_bb0490) 2020; 20 Serra (10.1016/j.jconrel.2022.10.046_bb0295) 2020; 10 Mumtaz Virk (10.1016/j.jconrel.2022.10.046_bb0340) 2018; 34 Wang (10.1016/j.jconrel.2022.10.046_bb0445) 2021; 583 Chang (10.1016/j.jconrel.2022.10.046_bb0565) 2021; 9 Han (10.1016/j.jconrel.2022.10.046_bb0205) 2017; 9 He (10.1016/j.jconrel.2022.10.046_bb0455) 2021; 13 Phan (10.1016/j.jconrel.2022.10.046_bb0195) 2021; 9 Guo (10.1016/j.jconrel.2022.10.046_bb0390) 2021; 9 Liang (10.1016/j.jconrel.2022.10.046_bb0350) 2020; 56 Lo (10.1016/j.jconrel.2022.10.046_bb0460) 2020; 21 Wang (10.1016/j.jconrel.2022.10.046_bb0575) 2021; 9 Le-Vinh (10.1016/j.jconrel.2022.10.046_bb0325) 2021; 163 Wang (10.1016/j.jconrel.2022.10.046_bb0225) 2018; 11 Haryadi (10.1016/j.jconrel.2022.10.046_bb0590) 2019; 8 Qin (10.1016/j.jconrel.2022.10.046_bb0180) 2021; 4 Shahriari (10.1016/j.jconrel.2022.10.046_bb0270) 2019; 308 Zhan (10.1016/j.jconrel.2022.10.046_bb0060) 2020; 8 Hu (10.1016/j.jconrel.2022.10.046_bb0365) 2021; 143 Raza (10.1016/j.jconrel.2022.10.046_bb0410) 2019; 8 Zhao (10.1016/j.jconrel.2022.10.046_bb0400) 2019; 15 Yu (10.1016/j.jconrel.2022.10.046_bb0080) 2020; 6 Jia (10.1016/j.jconrel.2022.10.046_bb0480) 2019; 13 Zhang (10.1016/j.jconrel.2022.10.046_bb0165) 2021; 57 Yang (10.1016/j.jconrel.2022.10.046_bb0545) 2021; 61 Chen (10.1016/j.jconrel.2022.10.046_bb0405) 2018; 10 Campora (10.1016/j.jconrel.2022.10.046_bb0550) 2022; 11 Truong (10.1016/j.jconrel.2022.10.046_bb0525) 2015; 12 Bai (10.1016/j.jconrel.2022.10.046_bb0425) 2018; 13 Hadji (10.1016/j.jconrel.2022.10.046_bb0495) 2022; 342 Niland (10.1016/j.jconrel.2022.10.046_bb0285) 2021; 23 Ge (10.1016/j.jconrel.2022.10.046_bb0380) 2021; 21 Huang (10.1016/j.jconrel.2022.10.046_bb0335) 2015; 9 Nakamura (10.1016/j.jconrel.2022.10.046_bb0050) 2016; 27 Yang (10.1016/j.jconrel.2022.10.046_bb0070) 2020; 41 Su (10.1016/j.jconrel.2022.10.046_bb0235) 2022; 55 Xiao (10.1016/j.jconrel.2022.10.046_bb0440) 2021; 122 Ariga (10.1016/j.jconrel.2022.10.046_bb0130) 2021; 6 Wang (10.1016/j.jconrel.2022.10.046_bb0115) 2019; 6 Zhao (10.1016/j.jconrel.2022.10.046_bb0120) 2019; 143 Zhang (10.1016/j.jconrel.2022.10.046_bb0560) 2021; 22 Bazban-Shotorbani (10.1016/j.jconrel.2022.10.046_bb0160) 2017; 253 Xiang (10.1016/j.jconrel.2022.10.046_bb0415) 2018; 6 Mirza (10.1016/j.jconrel.2022.10.046_bb0005) 2021; 69 Jahns (10.1016/j.jconrel.2022.10.046_bb0250) 2020; 8 Jenjob (10.1016/j.jconrel.2022.10.046_bb0255) 2020; 8 Le-Vinh (10.1016/j.jconrel.2022.10.046_bb0330) 2022; 5 Zhang (10.1016/j.jconrel.2022.10.046_bb0145) 2021; 21 Rennick (10.1016/j.jconrel.2022.10.046_bb0505) 2021; 16 Sethuraman (10.1016/j.jconrel.2022.10.046_bb0150) 2021; 22 Son (10.1016/j.jconrel.2022.10.046_bb0420) 2019; 138 Zhou (10.1016/j.jconrel.2022.10.046_bb0040) 2020; 240 Gong (10.1016/j.jconrel.2022.10.046_bb0210) 2020; 188 Bilardo (10.1016/j.jconrel.2022.10.046_bb0535) 2022 Sarkar (10.1016/j.jconrel.2022.10.046_bb0355) 2021; 6 Wang (10.1016/j.jconrel.2022.10.046_bb0310) 2019; 9 Wang (10.1016/j.jconrel.2022.10.046_bb0520) 2017; 3 Mi (10.1016/j.jconrel.2022.10.046_bb0280) 2020; 10 Yusa (10.1016/j.jconrel.2022.10.046_bb0215) 2022; 54 Zhou (10.1016/j.jconrel.2022.10.046_bb0395) 2018; 19 Li (10.1016/j.jconrel.2022.10.046_bb0035) 2020; 16 Yang (10.1016/j.jconrel.2022.10.046_bb0540) 2021; 6 Zhou (10.1016/j.jconrel.2022.10.046_bb0360) 2021; 87 Liu (10.1016/j.jconrel.2022.10.046_bb0265) 2021; 128 Li (10.1016/j.jconrel.2022.10.046_bb0245) 2019; 19 Chen (10.1016/j.jconrel.2022.10.046_bb0435) 2020; 14 Sun (10.1016/j.jconrel.2022.10.046_bb0240) 2020; 59 Vilches (10.1016/j.jconrel.2022.10.046_bb0530) 2020 Madathiparambil Visalakshan (10.1016/j.jconrel.2022.10.046_bb0085) 2020; 16 Kinnear (10.1016/j.jconrel.2022.10.046_bb0105) 2017; 117 Bai (10.1016/j.jconrel.2022.10.046_bb0055) 2021; 6 Liu (10.1016/j.jconrel.2022.10.046_bb0570) 2020; 10 Dai (10.1016/j.jconrel.2022.10.046_bb0075) 2017; 46 Nishikawa (10.1016/j.jconrel.2022.10.046_bb0025) 2021; 94 |
References_xml | – volume: 15 start-page: 4450 year: 2021 end-page: 4466 ident: bb0170 article-title: Mesoporous silica nanoparticles as pH-responsive carrier for the immune-activating drug resiquimod enhance the local immune response in mice publication-title: ACS Nano – volume: 27 start-page: 2225 year: 2016 end-page: 2238 ident: bb0050 article-title: Nanodrug delivery: is the enhanced permeability and retention effect sufficient for curing cancer? publication-title: Bioconjug. Chem. – volume: 236 start-page: 20 year: 2011 end-page: 29 ident: bb0095 article-title: Shape-specific polymeric nanomedicine: emerging opportunities and challenges publication-title: Exp. Biol. Med. (Maywood) – volume: 46 start-page: 3830 year: 2017 end-page: 3852 ident: bb0075 article-title: Nanoparticle design strategies for enhanced anticancer therapy by exploiting the tumour microenvironment publication-title: Chem. Soc. Rev. – volume: 12 start-page: 129 year: 2015 end-page: 142 ident: bb0525 article-title: The importance of nanoparticle shape in cancer drug delivery publication-title: Expert Opin. Drug Deliv. – volume: 8 start-page: 2756 year: 2020 end-page: 2770 ident: bb0255 article-title: Core-shell particles for drug-delivery, bioimaging, sensing, and tissue engineering publication-title: Biomater. Sci. – volume: 138 start-page: 133 year: 2019 end-page: 147 ident: bb0420 article-title: Light-responsive nanomedicine for biophotonic imaging and targeted therapy publication-title: Adv. Drug Deliv. Rev. – volume: 16 year: 2020 ident: bb0085 article-title: The influence of nanoparticle shape on protein corona formation publication-title: Small – volume: 89 start-page: 237 year: 2018 end-page: 244 ident: bb0475 article-title: Photo/pH-controlled host-guest interaction between an azobenzene-containing block copolymer and water-soluble pillar[6]arene as a strategy to construct the “compound vesicles” for controlled drug delivery publication-title: Mater. Sci. Eng. C Mater. Biol. Appl. – volume: 38 start-page: 388 year: 2020 end-page: 403 ident: bb0090 article-title: Cancer immunoimaging with smart nanoparticles publication-title: Trends Biotechnol. – volume: 21 start-page: 3342 year: 2020 end-page: 3352 ident: bb0460 article-title: Dual stimuli-responsive block copolymers with adjacent redox- and photo-cleavable linkages for smart drug delivery publication-title: Biomacromolecules – volume: 13 start-page: 11781 year: 2019 end-page: 11792 ident: bb0480 article-title: Construction of dually responsive nanotransformers with nanosphere-nanofiber-nanosphere transition for overcoming the size paradox of anticancer nanodrugs publication-title: ACS Nano – volume: 42 year: 2021 ident: bb0175 article-title: Advances in injectable and self-healing polysaccharide hydrogel based on the Schiff base reaction publication-title: Macromol. Rapid Commun. – volume: 10 year: 2020 ident: bb0295 article-title: Matrix metalloproteinases in health and disease publication-title: Biomolecules – volume: 8 start-page: 4385 year: 2014 end-page: 4394 ident: bb0125 article-title: Radioactive 198Au-doped nanostructures with different shapes for in vivo analyses of their biodistribution, tumor uptake, and intratumoral distribution publication-title: ACS Nano – volume: 27 start-page: 6125 year: 2015 end-page: 6130 ident: bb0320 article-title: In situ formation of nanofibers from Purpurin18-peptide conjugates and the assembly induced retention effect in tumor sites publication-title: Adv. Mater. – volume: 6 start-page: 148 year: 2021 end-page: 155 ident: bb0355 article-title: A study on hypoxia susceptibility of organ tissues by fluorescence imaging with a ratiometric nitroreductase probe publication-title: ACS Sens. – volume: 59 start-page: 20582 year: 2020 end-page: 20588 ident: bb0240 article-title: Acid-activatable transmorphic peptide-based nanomaterials for photodynamic therapy publication-title: Angew. Chem. Int. Ed. Eng. – volume: 13 start-page: 22204 year: 2021 end-page: 22212 ident: bb0450 article-title: Dual-stimuli-responsive nanotheranostics for dual-targeting photothermal-enhanced chemotherapy of tumor publication-title: ACS Appl. Mater. Interfaces – volume: 9 start-page: 8615 year: 2021 end-page: 8625 ident: bb0390 article-title: A photo-responsive membrane for tailored drug delivery with spatially and temporally controlled release publication-title: J. Mater. Chem. B – volume: 128 start-page: 474 year: 2021 end-page: 485 ident: bb0265 article-title: Shape switching of CaCO3-templated nanorods into stiffness-adjustable nanocapsules to promote efficient drug delivery publication-title: Acta Biomater. – start-page: 307 year: 2020 end-page: 352 ident: bb0530 article-title: Targeted hyperthermia with plasmonic nanoparticles publication-title: Colloids for Nanobiotechnology - Synthesis, Characterization and Potential Applications – volume: 8 start-page: 776 year: 2020 end-page: 786 ident: bb0250 article-title: Nanoporous hybrid core-shell nanoparticles for sequential release publication-title: J. Mater. Chem. B – volume: 20 start-page: 1286 year: 2020 end-page: 1295 ident: bb0490 article-title: Photothermal-promoted morphology transformation in vivo monitored by photoacoustic imaging publication-title: Nano Lett. – volume: 10 start-page: 4557 year: 2020 end-page: 4588 ident: bb0280 article-title: Stimuli-responsive nanocarriers for drug delivery, tumor imaging, therapy and theranostics publication-title: Theranostics – volume: 31 start-page: 438 year: 2010 end-page: 448 ident: bb0515 article-title: The effect of the shape of mesoporous silica nanoparticles on cellular uptake and cell function publication-title: Biomaterials – volume: 21 start-page: 3218 year: 2021 end-page: 3224 ident: bb0380 article-title: Light-activated hypoxia-sensitive covalent organic framework for tandem-responsive drug delivery publication-title: Nano Lett. – volume: 9 start-page: 707319 year: 2021 ident: bb0565 article-title: Stimuli-responsive polymeric nanoplatforms for cancer therapy publication-title: Front. Bioeng. Biotechnol. – volume: 87 year: 2021 ident: bb0360 article-title: Nitroreductase increases menadione-mediated oxidative stress in aspergillus nidulans publication-title: Appl. Environ. Microbiol. – volume: 183 start-page: 114177 year: 2022 ident: bb0585 article-title: Tumor-activated carrier-free prodrug nanoparticles for targeted cancer immunotherapy: preclinical evidence for safe and effective drug delivery publication-title: Adv. Drug Deliv. Rev. – volume: 15 start-page: 311 year: 2020 end-page: 325 ident: bb0465 article-title: Redox dual-stimuli responsive drug delivery systems for improving tumor-targeting ability and reducing adverse side effects publication-title: Asian J. Pharm. Sci. – volume: 19 start-page: 202 year: 2018 end-page: 212 ident: bb0185 article-title: Smart drug delivery systems in cancer therapy publication-title: Curr. Drug Targets – volume: 56 start-page: 6949 year: 2020 end-page: 6952 ident: bb0350 article-title: A nitroreductase and glutathione responsive nanoplatform for integration of gene delivery and near-infrared fluorescence imaging publication-title: Chem. Commun. (Camb.) – volume: 117 start-page: 11476 year: 2017 end-page: 11521 ident: bb0105 article-title: Form follows function: nanoparticle shape and its implications for nanomedicine publication-title: Chem. Rev. – volume: 9 start-page: 5472 year: 2021 end-page: 5483 ident: bb0430 article-title: Recent advances in near infrared light responsive multi-functional nanostructures for phototheranostic applications publication-title: Biomater. Sci. – volume: 143 start-page: 13854 year: 2021 end-page: 13864 ident: bb0365 article-title: Noncanonical amino acids for hypoxia-responsive peptide self-assembly and fluorescence publication-title: J. Am. Chem. Soc. – volume: 50 start-page: 5397 year: 2021 end-page: 5434 ident: bb0510 article-title: Understanding nanoparticle endocytosis to improve targeting strategies in nanomedicine publication-title: Chem. Soc. Rev. – volume: 16 start-page: 1570 year: 2020 end-page: 1587 ident: bb0035 article-title: Multistage nanoparticle delivery system-a new approach to cancer therapeutics publication-title: J. Biomed. Nanotechnol. – volume: 10 start-page: 21021 year: 2018 end-page: 21034 ident: bb0405 article-title: Applications of light-responsive systems for cancer theranostics publication-title: ACS Appl. Mater. Interfaces – volume: 8 start-page: 3801 year: 2020 end-page: 3813 ident: bb0020 article-title: Tumor-mediated shape-transformable nanogels with pH/redox/enzymatic-sensitivity for anticancer therapy publication-title: J. Mater. Chem. B – volume: 13 start-page: 3903 year: 2018 end-page: 3911 ident: bb0425 article-title: Photo- and pH- dual-responsive beta-cyclodextrin-based supramolecular prodrug complex self-assemblies for programmed drug delivery publication-title: Chem. Asian J. – volume: 308 start-page: 172 year: 2019 end-page: 189 ident: bb0270 article-title: Enzyme responsive drug delivery systems in cancer treatment publication-title: J. Control. Release – volume: 9 start-page: 406 year: 2021 end-page: 421 ident: bb0575 article-title: Recent advances in stimuli-responsive in situ self-assembly of small molecule probes for in vivo imaging of enzymatic activity publication-title: Biomater. Sci. – volume: 6 start-page: 1973 year: 2021 end-page: 1987 ident: bb0540 article-title: The application of nanoparticles in cancer immunotherapy: targeting tumor microenvironment publication-title: Bioact. Mater. – volume: 58 start-page: 4632 year: 2019 end-page: 4637 ident: bb0220 article-title: Microenvironment-induced in situ self-assembly of polymer-peptide conjugates that attack solid tumors deeply publication-title: Angew. Chem. Int. Ed. Eng. – volume: 6 start-page: 100 year: 2020 end-page: 116 ident: bb0080 article-title: Size-tunable strategies for a tumor targeted drug delivery system publication-title: ACS Cent. Sci. – volume: 22 start-page: 3168 year: 2021 end-page: 3201 ident: bb0560 article-title: Polymer-functionalized upconversion nanoparticles for light/imaging-guided drug delivery publication-title: Biomacromolecules – volume: 22 start-page: 947 year: 2021 end-page: 966 ident: bb0150 article-title: Recent progress in stimuli-responsive intelligent nano scale drug delivery systems: a special focus towards pH-sensitive systems publication-title: Curr. Drug Targets – volume: 116 start-page: 111250 year: 2020 ident: bb0065 article-title: Multi-transformable nanocarrier with tumor extracellular acidity-activated charge reversal, size reduction and ligand reemergence for in vitro efficient doxorubicin loading and delivery publication-title: Mater. Sci. Eng. C Mater. Biol. Appl. – volume: 13 start-page: 100170 year: 2022 ident: bb0300 article-title: Immunologically modified enzyme-responsive micelles regulate the tumor microenvironment for cancer immunotherapy publication-title: Mater. Today Bio – volume: 13 start-page: 21076 year: 2021 end-page: 21086 ident: bb0455 article-title: Dual-stimuli responsive polymeric micelles for the effective treatment of rheumatoid arthritis publication-title: ACS Appl. Mater. Interfaces – volume: 11 start-page: 3178 year: 2017 end-page: 3188 ident: bb0200 article-title: Tumor-triggered geometrical shape switch of chimeric peptide for enhanced in vivo tumor internalization and photodynamic therapy publication-title: ACS Nano – volume: 22 start-page: 126 year: 2021 end-page: 133 ident: bb0110 article-title: Exploring the impact of morphology on the properties of biodegradable nanoparticles and their diffusion in complex biological medium publication-title: Biomacromolecules – volume: 9 start-page: 9517 year: 2015 end-page: 9527 ident: bb0335 article-title: Tumor-specific formation of enzyme-instructed supramolecular self-assemblies as cancer theranostics publication-title: ACS Nano – volume: 94 start-page: 2302 year: 2021 end-page: 2312 ident: bb0025 article-title: Conjugation of phenylboronic acid moiety through multistep organic transformations on nanodiamond surface for an anticancer nanodrug for boron neutron capture therapy publication-title: Bull. Chem. Soc. Jpn. – volume: 6 start-page: 364 year: 2021 end-page: 378 ident: bb0130 article-title: Nanoarchitectonics: what's coming next after nanotechnology? publication-title: Nanoscale Horiz. – volume: 27 start-page: 4611 year: 2015 end-page: 4615 ident: bb0305 article-title: Therapeutic enzyme-responsive nanoparticles for targeted delivery and accumulation in tumors publication-title: Adv. Mater. – volume: 597 start-page: 120326 year: 2021 ident: bb0385 article-title: Light-responsive polymeric nanoparticles based on a novel nitropiperonal based polyester as drug delivery systems for photosensitizers in PDT publication-title: Int. J. Pharm. – volume: 143 start-page: 3 year: 2019 end-page: 21 ident: bb0120 article-title: Effect of physicochemical and surface properties on in vivo fate of drug nanocarriers publication-title: Adv. Drug Deliv. Rev. – volume: 9 start-page: 1728 year: 2019 end-page: 1740 ident: bb0310 article-title: MMP-2-controlled transforming micelles for heterogeneic targeting and programmable cancer therapy publication-title: Theranostics – year: 2022 ident: bb0535 article-title: Influence of surface chemistry and morphology of nanoparticles on protein corona formation publication-title: Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. – volume: 13 start-page: 54715 year: 2021 end-page: 54726 ident: bb0605 article-title: Precise control of shape-variable nanomicelles in nanofibers reveals the enhancement mechanism of passive delivery publication-title: ACS Appl. Mater. Interfaces – volume: 14 start-page: 3640 year: 2020 end-page: 3650 ident: bb0435 article-title: Near-infrared laser-triggered in situ dimorphic transformation of BF2-azadipyrromethene nanoaggregates for enhanced solid tumor penetration publication-title: ACS Nano – volume: 8 start-page: 5931 year: 2020 end-page: 5940 ident: bb0060 article-title: An NIR-activated polymeric nanoplatform with ROS- and temperature-sensitivity for combined photothermal therapy and chemotherapy of pancreatic cancer publication-title: Biomater. Sci. – volume: 20 start-page: 101 year: 2021 end-page: 124 ident: bb0015 article-title: Engineering precision nanoparticles for drug delivery publication-title: Nat. Rev. Drug Discov. – volume: 54 start-page: 235 year: 2022 end-page: 242 ident: bb0215 article-title: Development and application of pH-responsive polymers publication-title: Polym. J. – volume: 19 start-page: 1840 year: 2018 end-page: 1857 ident: bb0395 article-title: Photoresponsive drug/gene delivery systems publication-title: Biomacromolecules – volume: 41 year: 2020 ident: bb0070 article-title: Recent advances of pH-induced charge-convertible polymer-mediated inorganic nanoparticles for biomedical applications publication-title: Macromol. Rapid Commun. – volume: 17 year: 2021 ident: bb0555 article-title: Nonspherical metal-based nanoarchitectures: synthesis and impact of size, shape, and composition on their biological activity publication-title: Small – volume: 171 start-page: 94 year: 2021 end-page: 107 ident: bb0370 article-title: Targeting drug delivery with light: a highly focused approach publication-title: Adv. Drug Deliv. Rev. – volume: 342 start-page: 93 year: 2022 end-page: 110 ident: bb0495 article-title: Effect of micro- and nanoparticle shape on biological processes publication-title: J. Control. Release – volume: 10 year: 2020 ident: bb0570 article-title: Recent progress in the development of multifunctional nanoplatform for precise tumor phototherapy publication-title: Adv. Healthc. Mater. – volume: 13 start-page: 12912 year: 2019 end-page: 12928 ident: bb0260 article-title: Tumor microenvironment responsive shape-reversal self-targeting virus-inspired nanodrug for imaging-guided near-infrared-II photothermal chemotherapy publication-title: ACS Nano – volume: 3 start-page: 839 year: 2017 end-page: 846 ident: bb0520 article-title: Facile synthesis of uniform virus-like mesoporous silica nanoparticles for enhanced cellular internalization publication-title: ACS Cent. Sci. – volume: 18 year: 2022 ident: bb0595 article-title: Design of smart size-, surface-, and shape-switching nanoparticles to improve therapeutic efficacy publication-title: Small – volume: 12 start-page: 8978 year: 2020 end-page: 8988 ident: bb0045 article-title: Sequential intra-intercellular delivery of nanomedicine for deep drug-resistant solid tumor penetration publication-title: ACS Appl. Mater. Interfaces – volume: 57 start-page: 9489 year: 2021 end-page: 9503 ident: bb0165 article-title: Stimuli-responsive polypeptides for controlled drug delivery publication-title: Chem. Commun. (Camb.) – volume: 69 start-page: 166 year: 2021 end-page: 177 ident: bb0010 article-title: Specific targeting cancer cells with nanoparticles and drug delivery in cancer therapy publication-title: Semin. Cancer Biol. – volume: 11 start-page: 2595 year: 2022 end-page: 2631 ident: bb0550 article-title: Recent developments and applications of smart nanoparticles in biomedicine publication-title: Nanotechnol. Rev. – volume: 8 start-page: 14943 year: 2017 ident: bb0230 article-title: Stimuli-controlled self-assembly of diverse tubular aggregates from one single small monomer publication-title: Nat. Commun. – volume: 8 start-page: 1497 year: 2019 end-page: 1509 ident: bb0410 article-title: “Smart” materials-based near-infrared light-responsive drug delivery systems for cancer treatment: a review publication-title: J. Mater. Res. Technol. – volume: 22 start-page: 845 year: 2021 end-page: 855 ident: bb0275 article-title: Endogenous enzyme-responsive nanoplatforms for anti-tumor therapy publication-title: Curr. Drug Targets – volume: 5 year: 2022 ident: bb0330 article-title: Alkaline phosphatase: a reliable endogenous partner for drug delivery and diagnostics publication-title: Adv. Ther. – volume: 9 start-page: 16043 year: 2017 end-page: 16053 ident: bb0205 article-title: Acidity-triggered tumor retention/internalization of chimeric peptide for enhanced photodynamic therapy and real-time monitoring of therapeutic effects publication-title: ACS Appl. Mater. Interfaces – volume: 583 start-page: 470 year: 2021 end-page: 486 ident: bb0445 article-title: Temperature and pH dual-stimuli-responsive phase-change microcapsules for multipurpose applications in smart drug delivery publication-title: J. Colloid Interface Sci. – volume: 18 start-page: 2039 year: 2021 end-page: 2052 ident: bb0315 article-title: Morphology/interstitial fluid pressure-tunable nanopomegranate designed by alteration of membrane fluidity under tumor enzyme and PEGylation publication-title: Mol. Pharm. – year: 2021 ident: bb0190 article-title: Block copolymer solution self-assembly: recent advances, emerging trends, and applications publication-title: J. Polym. Sci. – volume: 4 start-page: 24 year: 2021 end-page: 46 ident: bb0580 article-title: Self-assembled peptide drug delivery systems publication-title: ACS Appl. Bio. Mater. – volume: 163 start-page: 109 year: 2021 end-page: 119 ident: bb0325 article-title: Size shifting of solid lipid nanoparticle system triggered by alkaline phosphatase for site specific mucosal drug delivery publication-title: Eur. J. Pharm. Biopharm. – volume: 240 start-page: 119902 year: 2020 ident: bb0040 article-title: Tumor extravasation and infiltration as barriers of nanomedicine for high efficacy: the current status and transcytosis strategy publication-title: Biomaterials – volume: 15 year: 2019 ident: bb0400 article-title: Remote light-responsive nanocarriers for controlled drug delivery: advances and perspectives publication-title: Small – volume: 55 start-page: 1067 year: 2022 end-page: 1076 ident: bb0235 article-title: Hydrogen-bond-regulated platelet micelles by crystallization-driven self-assembly and templated growth for poly(ε-caprolactone) block copolymers publication-title: Macromolecules – volume: 177 start-page: 113807 year: 2021 ident: bb0135 article-title: Non-spherical micro- and nanoparticles for drug delivery: Progress over 15 years publication-title: Adv. Drug Deliv. Rev. – volume: 16 start-page: 266 year: 2021 end-page: 276 ident: bb0505 article-title: Key principles and methods for studying the endocytosis of biological and nanoparticle therapeutics publication-title: Nat. Nanotechnol. – volume: 14 start-page: 85 year: 2021 ident: bb0030 article-title: Nanomaterials for cancer therapy: current progress and perspectives publication-title: J. Hematol. Oncol. – year: 2022 ident: bb0155 article-title: Biomimetic nanoerythrosome-coated aptamer-DNA tetrahedron/maytansine conjugates: pH-responsive and targeted cytotoxicity for HER2-positive breast cancer publication-title: Adv. Mater. – volume: 6 start-page: 1538 year: 2019 end-page: 1547 ident: bb0115 article-title: The impact of nanoparticle shape on cellular internalisation and transport: what do the different analysis methods tell us? publication-title: Mater. Horiz. – volume: 34 start-page: 3647 year: 2013 end-page: 3657 ident: bb0470 article-title: Dual and multi-stimuli responsive polymeric nanoparticles for programmed site-specific drug delivery publication-title: Biomaterials – volume: 41 year: 2020 ident: bb0375 article-title: Visible light-responsive drug delivery nanoparticle via donor-acceptor stenhouse adducts (DASA) publication-title: Macromol. Rapid Commun. – volume: 31 year: 2021 ident: bb0485 article-title: Shape transformable strategies for drug delivery publication-title: Adv. Funct. Mater. – volume: 21 start-page: 7855 year: 2021 end-page: 7861 ident: bb0145 article-title: A pH-responsive phase-transition polymer with high serum stability in cytosolic protein delivery publication-title: Nano Lett. – volume: 122 start-page: 291 year: 2021 end-page: 305 ident: bb0440 article-title: Dual stimuli-responsive metal-organic framework-based nanosystem for synergistic photothermal/pharmacological antibacterial therapy publication-title: Acta Biomater. – volume: 48 start-page: 5140 year: 2019 end-page: 5176 ident: bb0140 article-title: Anisotropic nanomaterials for shape-dependent physicochemical and biomedical applications publication-title: Chem. Soc. Rev. – volume: 135 start-page: 17617 year: 2013 end-page: 17629 ident: bb0100 article-title: Polyprodrug amphiphiles: hierarchical assemblies for shape-regulated cellular internalization, trafficking, and drug delivery publication-title: J. Am. Chem. Soc. – volume: 61 start-page: 269 year: 2021 end-page: 289 ident: bb0545 article-title: Nanoparticle toxicology publication-title: Annu. Rev. Pharmacol. Toxicol. – volume: 96 start-page: 1 year: 2016 end-page: 10 ident: bb0345 article-title: Transformable DNA nanocarriers for plasma membrane targeted delivery of cytokine publication-title: Biomaterials – volume: 69 start-page: 226 year: 2021 end-page: 237 ident: bb0005 article-title: Nanoparticles-based drug delivery and gene therapy for breast cancer: recent advancements and future challenges publication-title: Semin. Cancer Biol. – volume: 19 start-page: 7965 year: 2019 end-page: 7976 ident: bb0245 article-title: Proline isomerization-regulated tumor microenvironment-adaptable self-assembly of peptides for enhanced therapeutic efficacy publication-title: Nano Lett. – volume: 34 start-page: 395 year: 2018 end-page: 405 ident: bb0340 article-title: Phospholipase A2-induced degradation and release from lipid-containing polymersomes publication-title: Langmuir – volume: 11 start-page: 3710 year: 2018 end-page: 3721 ident: bb0225 article-title: Highly uniform ultrasound-sensitive nanospheres produced by a pH-induced micelle-to-vesicle transition for tumor-targeted drug delivery publication-title: Nano Res. – volume: 4 start-page: 612 year: 2021 end-page: 626 ident: bb0180 article-title: pH-sensitive polymeric nanocarriers for antitumor biotherapeutic molecules targeting delivery publication-title: Bio-Des. Manuf. – volume: 6 start-page: 3531 year: 2018 end-page: 3540 ident: bb0415 article-title: Near-infrared light-triggered drug release from UV-responsive diblock copolymer-coated upconversion nanoparticles with high monodispersity publication-title: J. Mater. Chem. B – volume: 8 year: 2019 ident: bb0590 article-title: Nonspherical nanoparticle shape stability is affected by complex manufacturing aspects: its implications for drug delivery and targeting publication-title: Adv. Healthc. Mater. – volume: 188 start-page: 110811 year: 2020 ident: bb0210 article-title: pH-triggered geometrical shape switching of a cationic peptide nanoparticle for cellular uptake and drug delivery publication-title: Colloids Surf. B: Biointerfaces – volume: 39 start-page: 766 year: 2018 end-page: 781 ident: bb0290 article-title: MMP-responsive ‘smart’ drug delivery and tumor targeting publication-title: Trends Pharmacol. Sci. – volume: 2020 start-page: 5194780 year: 2020 ident: bb0500 article-title: Physical properties of nanoparticles that result in improved cancer targeting publication-title: J. Oncol. – volume: 9 start-page: 38 year: 2021 end-page: 50 ident: bb0195 article-title: Polymerisation-induced self-assembly (PISA) as a straightforward formulation strategy for stimuli-responsive drug delivery systems and biomaterials: recent advances publication-title: Biomater. Sci. – volume: 6 start-page: 2894 year: 2021 end-page: 2904 ident: bb0055 article-title: Cylindrical polymer brushes-anisotropic unimolecular micelle drug delivery system for enhancing the effectiveness of chemotherapy publication-title: Bioact. Mater. – volume: 253 start-page: 46 year: 2017 end-page: 63 ident: bb0160 article-title: Revisiting structure-property relationship of pH-responsive polymers for drug delivery applications publication-title: J. Control. Release – volume: 23 year: 2021 ident: bb0285 article-title: Matrix metalloproteinases shape the tumor microenvironment in cancer progression publication-title: Int. J. Mol. Sci. – volume: 11 start-page: 1420 year: 2020 ident: bb0600 article-title: Exploiting the role of nanoparticle shape in enhancing hydrogel adhesive and mechanical properties publication-title: Nat. Commun. – volume: 11 start-page: 2595 issue: 1 year: 2022 ident: 10.1016/j.jconrel.2022.10.046_bb0550 article-title: Recent developments and applications of smart nanoparticles in biomedicine publication-title: Nanotechnol. Rev. doi: 10.1515/ntrev-2022-0148 – year: 2021 ident: 10.1016/j.jconrel.2022.10.046_bb0190 article-title: Block copolymer solution self-assembly: recent advances, emerging trends, and applications publication-title: J. Polym. Sci. doi: 10.1002/pol.20210430 – volume: 9 start-page: 5472 issue: 16 year: 2021 ident: 10.1016/j.jconrel.2022.10.046_bb0430 article-title: Recent advances in near infrared light responsive multi-functional nanostructures for phototheranostic applications publication-title: Biomater. Sci. doi: 10.1039/D1BM00631B – volume: 15 issue: 45 year: 2019 ident: 10.1016/j.jconrel.2022.10.046_bb0400 article-title: Remote light-responsive nanocarriers for controlled drug delivery: advances and perspectives publication-title: Small doi: 10.1002/smll.201903060 – volume: 10 issue: 8 year: 2020 ident: 10.1016/j.jconrel.2022.10.046_bb0295 article-title: Matrix metalloproteinases in health and disease publication-title: Biomolecules doi: 10.3390/biom10081138 – volume: 308 start-page: 172 year: 2019 ident: 10.1016/j.jconrel.2022.10.046_bb0270 article-title: Enzyme responsive drug delivery systems in cancer treatment publication-title: J. Control. Release doi: 10.1016/j.jconrel.2019.07.004 – volume: 13 start-page: 11781 issue: 10 year: 2019 ident: 10.1016/j.jconrel.2022.10.046_bb0480 article-title: Construction of dually responsive nanotransformers with nanosphere-nanofiber-nanosphere transition for overcoming the size paradox of anticancer nanodrugs publication-title: ACS Nano doi: 10.1021/acsnano.9b05749 – start-page: 307 year: 2020 ident: 10.1016/j.jconrel.2022.10.046_bb0530 article-title: Targeted hyperthermia with plasmonic nanoparticles – volume: 20 start-page: 1286 issue: 2 year: 2020 ident: 10.1016/j.jconrel.2022.10.046_bb0490 article-title: Photothermal-promoted morphology transformation in vivo monitored by photoacoustic imaging publication-title: Nano Lett. doi: 10.1021/acs.nanolett.9b04752 – volume: 9 start-page: 707319 year: 2021 ident: 10.1016/j.jconrel.2022.10.046_bb0565 article-title: Stimuli-responsive polymeric nanoplatforms for cancer therapy publication-title: Front. Bioeng. Biotechnol. doi: 10.3389/fbioe.2021.707319 – volume: 4 start-page: 24 issue: 1 year: 2021 ident: 10.1016/j.jconrel.2022.10.046_bb0580 article-title: Self-assembled peptide drug delivery systems publication-title: ACS Appl. Bio. Mater. doi: 10.1021/acsabm.0c00707 – volume: 15 start-page: 4450 issue: 3 year: 2021 ident: 10.1016/j.jconrel.2022.10.046_bb0170 article-title: Mesoporous silica nanoparticles as pH-responsive carrier for the immune-activating drug resiquimod enhance the local immune response in mice publication-title: ACS Nano doi: 10.1021/acsnano.0c08384 – volume: 16 issue: 25 year: 2020 ident: 10.1016/j.jconrel.2022.10.046_bb0085 article-title: The influence of nanoparticle shape on protein corona formation publication-title: Small – volume: 6 start-page: 1973 issue: 7 year: 2021 ident: 10.1016/j.jconrel.2022.10.046_bb0540 article-title: The application of nanoparticles in cancer immunotherapy: targeting tumor microenvironment publication-title: Bioact. Mater. doi: 10.1016/j.bioactmat.2020.12.010 – volume: 48 start-page: 5140 issue: 19 year: 2019 ident: 10.1016/j.jconrel.2022.10.046_bb0140 article-title: Anisotropic nanomaterials for shape-dependent physicochemical and biomedical applications publication-title: Chem. Soc. Rev. doi: 10.1039/C9CS00011A – volume: 21 start-page: 3342 issue: 8 year: 2020 ident: 10.1016/j.jconrel.2022.10.046_bb0460 article-title: Dual stimuli-responsive block copolymers with adjacent redox- and photo-cleavable linkages for smart drug delivery publication-title: Biomacromolecules doi: 10.1021/acs.biomac.0c00773 – volume: 13 start-page: 22204 issue: 19 year: 2021 ident: 10.1016/j.jconrel.2022.10.046_bb0450 article-title: Dual-stimuli-responsive nanotheranostics for dual-targeting photothermal-enhanced chemotherapy of tumor publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.1c03211 – volume: 9 start-page: 1728 issue: 6 year: 2019 ident: 10.1016/j.jconrel.2022.10.046_bb0310 article-title: MMP-2-controlled transforming micelles for heterogeneic targeting and programmable cancer therapy publication-title: Theranostics doi: 10.7150/thno.30915 – volume: 8 start-page: 5931 issue: 21 year: 2020 ident: 10.1016/j.jconrel.2022.10.046_bb0060 article-title: An NIR-activated polymeric nanoplatform with ROS- and temperature-sensitivity for combined photothermal therapy and chemotherapy of pancreatic cancer publication-title: Biomater. Sci. doi: 10.1039/D0BM01324B – volume: 87 issue: 24 year: 2021 ident: 10.1016/j.jconrel.2022.10.046_bb0360 article-title: Nitroreductase increases menadione-mediated oxidative stress in aspergillus nidulans publication-title: Appl. Environ. Microbiol. doi: 10.1128/AEM.01758-21 – volume: 46 start-page: 3830 issue: 12 year: 2017 ident: 10.1016/j.jconrel.2022.10.046_bb0075 article-title: Nanoparticle design strategies for enhanced anticancer therapy by exploiting the tumour microenvironment publication-title: Chem. Soc. Rev. doi: 10.1039/C6CS00592F – volume: 10 issue: 1 year: 2020 ident: 10.1016/j.jconrel.2022.10.046_bb0570 article-title: Recent progress in the development of multifunctional nanoplatform for precise tumor phototherapy publication-title: Adv. Healthc. Mater. doi: 10.1002/adhm.202001207 – volume: 69 start-page: 226 year: 2021 ident: 10.1016/j.jconrel.2022.10.046_bb0005 article-title: Nanoparticles-based drug delivery and gene therapy for breast cancer: recent advancements and future challenges publication-title: Semin. Cancer Biol. doi: 10.1016/j.semcancer.2019.10.020 – volume: 27 start-page: 4611 issue: 31 year: 2015 ident: 10.1016/j.jconrel.2022.10.046_bb0305 article-title: Therapeutic enzyme-responsive nanoparticles for targeted delivery and accumulation in tumors publication-title: Adv. Mater. doi: 10.1002/adma.201501803 – volume: 4 start-page: 612 issue: 3 year: 2021 ident: 10.1016/j.jconrel.2022.10.046_bb0180 article-title: pH-sensitive polymeric nanocarriers for antitumor biotherapeutic molecules targeting delivery publication-title: Bio-Des. Manuf. doi: 10.1007/s42242-020-00105-4 – volume: 55 start-page: 1067 issue: 3 year: 2022 ident: 10.1016/j.jconrel.2022.10.046_bb0235 article-title: Hydrogen-bond-regulated platelet micelles by crystallization-driven self-assembly and templated growth for poly(ε-caprolactone) block copolymers publication-title: Macromolecules doi: 10.1021/acs.macromol.1c02402 – volume: 31 issue: 18 year: 2021 ident: 10.1016/j.jconrel.2022.10.046_bb0485 article-title: Shape transformable strategies for drug delivery publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202009765 – volume: 122 start-page: 291 year: 2021 ident: 10.1016/j.jconrel.2022.10.046_bb0440 article-title: Dual stimuli-responsive metal-organic framework-based nanosystem for synergistic photothermal/pharmacological antibacterial therapy publication-title: Acta Biomater. doi: 10.1016/j.actbio.2020.12.045 – volume: 6 start-page: 364 issue: 5 year: 2021 ident: 10.1016/j.jconrel.2022.10.046_bb0130 article-title: Nanoarchitectonics: what's coming next after nanotechnology? publication-title: Nanoscale Horiz. doi: 10.1039/D0NH00680G – volume: 117 start-page: 11476 issue: 17 year: 2017 ident: 10.1016/j.jconrel.2022.10.046_bb0105 article-title: Form follows function: nanoparticle shape and its implications for nanomedicine publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.7b00194 – volume: 21 start-page: 3218 issue: 7 year: 2021 ident: 10.1016/j.jconrel.2022.10.046_bb0380 article-title: Light-activated hypoxia-sensitive covalent organic framework for tandem-responsive drug delivery publication-title: Nano Lett. doi: 10.1021/acs.nanolett.1c00488 – volume: 27 start-page: 6125 issue: 40 year: 2015 ident: 10.1016/j.jconrel.2022.10.046_bb0320 article-title: In situ formation of nanofibers from Purpurin18-peptide conjugates and the assembly induced retention effect in tumor sites publication-title: Adv. Mater. doi: 10.1002/adma.201502598 – volume: 13 start-page: 21076 issue: 18 year: 2021 ident: 10.1016/j.jconrel.2022.10.046_bb0455 article-title: Dual-stimuli responsive polymeric micelles for the effective treatment of rheumatoid arthritis publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.1c04953 – volume: 3 start-page: 839 issue: 8 year: 2017 ident: 10.1016/j.jconrel.2022.10.046_bb0520 article-title: Facile synthesis of uniform virus-like mesoporous silica nanoparticles for enhanced cellular internalization publication-title: ACS Cent. Sci. doi: 10.1021/acscentsci.7b00257 – volume: 42 issue: 10 year: 2021 ident: 10.1016/j.jconrel.2022.10.046_bb0175 article-title: Advances in injectable and self-healing polysaccharide hydrogel based on the Schiff base reaction publication-title: Macromol. Rapid Commun. doi: 10.1002/marc.202100025 – volume: 10 start-page: 4557 issue: 10 year: 2020 ident: 10.1016/j.jconrel.2022.10.046_bb0280 article-title: Stimuli-responsive nanocarriers for drug delivery, tumor imaging, therapy and theranostics publication-title: Theranostics doi: 10.7150/thno.38069 – volume: 69 start-page: 166 year: 2021 ident: 10.1016/j.jconrel.2022.10.046_bb0010 article-title: Specific targeting cancer cells with nanoparticles and drug delivery in cancer therapy publication-title: Semin. Cancer Biol. doi: 10.1016/j.semcancer.2019.11.002 – volume: 8 start-page: 14943 year: 2017 ident: 10.1016/j.jconrel.2022.10.046_bb0230 article-title: Stimuli-controlled self-assembly of diverse tubular aggregates from one single small monomer publication-title: Nat. Commun. doi: 10.1038/ncomms14943 – volume: 12 start-page: 8978 issue: 8 year: 2020 ident: 10.1016/j.jconrel.2022.10.046_bb0045 article-title: Sequential intra-intercellular delivery of nanomedicine for deep drug-resistant solid tumor penetration publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.9b20062 – volume: 21 start-page: 7855 issue: 18 year: 2021 ident: 10.1016/j.jconrel.2022.10.046_bb0145 article-title: A pH-responsive phase-transition polymer with high serum stability in cytosolic protein delivery publication-title: Nano Lett. doi: 10.1021/acs.nanolett.1c03031 – volume: 138 start-page: 133 year: 2019 ident: 10.1016/j.jconrel.2022.10.046_bb0420 article-title: Light-responsive nanomedicine for biophotonic imaging and targeted therapy publication-title: Adv. Drug Deliv. Rev. doi: 10.1016/j.addr.2018.10.002 – volume: 8 issue: 18 year: 2019 ident: 10.1016/j.jconrel.2022.10.046_bb0590 article-title: Nonspherical nanoparticle shape stability is affected by complex manufacturing aspects: its implications for drug delivery and targeting publication-title: Adv. Healthc. Mater. doi: 10.1002/adhm.201900352 – volume: 22 start-page: 126 issue: 1 year: 2021 ident: 10.1016/j.jconrel.2022.10.046_bb0110 article-title: Exploring the impact of morphology on the properties of biodegradable nanoparticles and their diffusion in complex biological medium publication-title: Biomacromolecules doi: 10.1021/acs.biomac.0c00726 – volume: 13 start-page: 100170 year: 2022 ident: 10.1016/j.jconrel.2022.10.046_bb0300 article-title: Immunologically modified enzyme-responsive micelles regulate the tumor microenvironment for cancer immunotherapy publication-title: Mater. Today Bio doi: 10.1016/j.mtbio.2021.100170 – volume: 57 start-page: 9489 issue: 75 year: 2021 ident: 10.1016/j.jconrel.2022.10.046_bb0165 article-title: Stimuli-responsive polypeptides for controlled drug delivery publication-title: Chem. Commun. (Camb.) doi: 10.1039/D1CC04053G – volume: 39 start-page: 766 issue: 8 year: 2018 ident: 10.1016/j.jconrel.2022.10.046_bb0290 article-title: MMP-responsive ‘smart’ drug delivery and tumor targeting publication-title: Trends Pharmacol. Sci. doi: 10.1016/j.tips.2018.06.003 – volume: 23 issue: 1 year: 2021 ident: 10.1016/j.jconrel.2022.10.046_bb0285 article-title: Matrix metalloproteinases shape the tumor microenvironment in cancer progression publication-title: Int. J. Mol. Sci. doi: 10.3390/ijms23010146 – volume: 56 start-page: 6949 issue: 51 year: 2020 ident: 10.1016/j.jconrel.2022.10.046_bb0350 article-title: A nitroreductase and glutathione responsive nanoplatform for integration of gene delivery and near-infrared fluorescence imaging publication-title: Chem. Commun. (Camb.) doi: 10.1039/C9CC10071G – volume: 8 start-page: 3801 issue: 17 year: 2020 ident: 10.1016/j.jconrel.2022.10.046_bb0020 article-title: Tumor-mediated shape-transformable nanogels with pH/redox/enzymatic-sensitivity for anticancer therapy publication-title: J. Mater. Chem. B doi: 10.1039/D0TB00143K – volume: 8 start-page: 1497 issue: 1 year: 2019 ident: 10.1016/j.jconrel.2022.10.046_bb0410 article-title: “Smart” materials-based near-infrared light-responsive drug delivery systems for cancer treatment: a review publication-title: J. Mater. Res. Technol. doi: 10.1016/j.jmrt.2018.03.007 – volume: 342 start-page: 93 year: 2022 ident: 10.1016/j.jconrel.2022.10.046_bb0495 article-title: Effect of micro- and nanoparticle shape on biological processes publication-title: J. Control. Release doi: 10.1016/j.jconrel.2021.12.032 – volume: 183 start-page: 114177 year: 2022 ident: 10.1016/j.jconrel.2022.10.046_bb0585 article-title: Tumor-activated carrier-free prodrug nanoparticles for targeted cancer immunotherapy: preclinical evidence for safe and effective drug delivery publication-title: Adv. Drug Deliv. Rev. doi: 10.1016/j.addr.2022.114177 – volume: 240 start-page: 119902 year: 2020 ident: 10.1016/j.jconrel.2022.10.046_bb0040 article-title: Tumor extravasation and infiltration as barriers of nanomedicine for high efficacy: the current status and transcytosis strategy publication-title: Biomaterials doi: 10.1016/j.biomaterials.2020.119902 – volume: 19 start-page: 1840 issue: 6 year: 2018 ident: 10.1016/j.jconrel.2022.10.046_bb0395 article-title: Photoresponsive drug/gene delivery systems publication-title: Biomacromolecules doi: 10.1021/acs.biomac.8b00422 – volume: 11 start-page: 3178 issue: 3 year: 2017 ident: 10.1016/j.jconrel.2022.10.046_bb0200 article-title: Tumor-triggered geometrical shape switch of chimeric peptide for enhanced in vivo tumor internalization and photodynamic therapy publication-title: ACS Nano doi: 10.1021/acsnano.7b00216 – volume: 171 start-page: 94 year: 2021 ident: 10.1016/j.jconrel.2022.10.046_bb0370 article-title: Targeting drug delivery with light: a highly focused approach publication-title: Adv. Drug Deliv. Rev. doi: 10.1016/j.addr.2021.01.009 – volume: 9 start-page: 9517 issue: 10 year: 2015 ident: 10.1016/j.jconrel.2022.10.046_bb0335 article-title: Tumor-specific formation of enzyme-instructed supramolecular self-assemblies as cancer theranostics publication-title: ACS Nano doi: 10.1021/acsnano.5b03874 – volume: 14 start-page: 3640 issue: 3 year: 2020 ident: 10.1016/j.jconrel.2022.10.046_bb0435 article-title: Near-infrared laser-triggered in situ dimorphic transformation of BF2-azadipyrromethene nanoaggregates for enhanced solid tumor penetration publication-title: ACS Nano doi: 10.1021/acsnano.0c00118 – volume: 9 start-page: 38 issue: 1 year: 2021 ident: 10.1016/j.jconrel.2022.10.046_bb0195 article-title: Polymerisation-induced self-assembly (PISA) as a straightforward formulation strategy for stimuli-responsive drug delivery systems and biomaterials: recent advances publication-title: Biomater. Sci. doi: 10.1039/D0BM01406K – volume: 177 start-page: 113807 year: 2021 ident: 10.1016/j.jconrel.2022.10.046_bb0135 article-title: Non-spherical micro- and nanoparticles for drug delivery: Progress over 15 years publication-title: Adv. Drug Deliv. Rev. doi: 10.1016/j.addr.2021.05.017 – volume: 583 start-page: 470 year: 2021 ident: 10.1016/j.jconrel.2022.10.046_bb0445 article-title: Temperature and pH dual-stimuli-responsive phase-change microcapsules for multipurpose applications in smart drug delivery publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2020.09.073 – volume: 13 start-page: 54715 issue: 46 year: 2021 ident: 10.1016/j.jconrel.2022.10.046_bb0605 article-title: Precise control of shape-variable nanomicelles in nanofibers reveals the enhancement mechanism of passive delivery publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.1c15858 – volume: 89 start-page: 237 year: 2018 ident: 10.1016/j.jconrel.2022.10.046_bb0475 article-title: Photo/pH-controlled host-guest interaction between an azobenzene-containing block copolymer and water-soluble pillar[6]arene as a strategy to construct the “compound vesicles” for controlled drug delivery publication-title: Mater. Sci. Eng. C Mater. Biol. Appl. doi: 10.1016/j.msec.2018.04.010 – volume: 34 start-page: 3647 issue: 14 year: 2013 ident: 10.1016/j.jconrel.2022.10.046_bb0470 article-title: Dual and multi-stimuli responsive polymeric nanoparticles for programmed site-specific drug delivery publication-title: Biomaterials doi: 10.1016/j.biomaterials.2013.01.084 – volume: 38 start-page: 388 issue: 4 year: 2020 ident: 10.1016/j.jconrel.2022.10.046_bb0090 article-title: Cancer immunoimaging with smart nanoparticles publication-title: Trends Biotechnol. doi: 10.1016/j.tibtech.2019.11.001 – volume: 58 start-page: 4632 issue: 14 year: 2019 ident: 10.1016/j.jconrel.2022.10.046_bb0220 article-title: Microenvironment-induced in situ self-assembly of polymer-peptide conjugates that attack solid tumors deeply publication-title: Angew. Chem. Int. Ed. Eng. doi: 10.1002/anie.201900135 – volume: 22 start-page: 845 issue: 8 year: 2021 ident: 10.1016/j.jconrel.2022.10.046_bb0275 article-title: Endogenous enzyme-responsive nanoplatforms for anti-tumor therapy publication-title: Curr. Drug Targets doi: 10.2174/1389450122666210114095614 – volume: 11 start-page: 1420 issue: 1 year: 2020 ident: 10.1016/j.jconrel.2022.10.046_bb0600 article-title: Exploiting the role of nanoparticle shape in enhancing hydrogel adhesive and mechanical properties publication-title: Nat. Commun. doi: 10.1038/s41467-020-15206-y – volume: 116 start-page: 111250 year: 2020 ident: 10.1016/j.jconrel.2022.10.046_bb0065 article-title: Multi-transformable nanocarrier with tumor extracellular acidity-activated charge reversal, size reduction and ligand reemergence for in vitro efficient doxorubicin loading and delivery publication-title: Mater. Sci. Eng. C Mater. Biol. Appl. doi: 10.1016/j.msec.2020.111250 – year: 2022 ident: 10.1016/j.jconrel.2022.10.046_bb0155 article-title: Biomimetic nanoerythrosome-coated aptamer-DNA tetrahedron/maytansine conjugates: pH-responsive and targeted cytotoxicity for HER2-positive breast cancer publication-title: Adv. Mater. – volume: 41 issue: 21 year: 2020 ident: 10.1016/j.jconrel.2022.10.046_bb0375 article-title: Visible light-responsive drug delivery nanoparticle via donor-acceptor stenhouse adducts (DASA) publication-title: Macromol. Rapid Commun. doi: 10.1002/marc.202000236 – volume: 128 start-page: 474 year: 2021 ident: 10.1016/j.jconrel.2022.10.046_bb0265 article-title: Shape switching of CaCO3-templated nanorods into stiffness-adjustable nanocapsules to promote efficient drug delivery publication-title: Acta Biomater. doi: 10.1016/j.actbio.2021.04.011 – volume: 22 start-page: 3168 issue: 8 year: 2021 ident: 10.1016/j.jconrel.2022.10.046_bb0560 article-title: Polymer-functionalized upconversion nanoparticles for light/imaging-guided drug delivery publication-title: Biomacromolecules doi: 10.1021/acs.biomac.1c00669 – volume: 236 start-page: 20 issue: 1 year: 2011 ident: 10.1016/j.jconrel.2022.10.046_bb0095 article-title: Shape-specific polymeric nanomedicine: emerging opportunities and challenges publication-title: Exp. Biol. Med. (Maywood) doi: 10.1258/ebm.2010.010243 – volume: 20 start-page: 101 issue: 2 year: 2021 ident: 10.1016/j.jconrel.2022.10.046_bb0015 article-title: Engineering precision nanoparticles for drug delivery publication-title: Nat. Rev. Drug Discov. doi: 10.1038/s41573-020-0090-8 – volume: 15 start-page: 311 issue: 3 year: 2020 ident: 10.1016/j.jconrel.2022.10.046_bb0465 article-title: Redox dual-stimuli responsive drug delivery systems for improving tumor-targeting ability and reducing adverse side effects publication-title: Asian J. Pharm. Sci. doi: 10.1016/j.ajps.2019.06.003 – volume: 9 start-page: 16043 issue: 19 year: 2017 ident: 10.1016/j.jconrel.2022.10.046_bb0205 article-title: Acidity-triggered tumor retention/internalization of chimeric peptide for enhanced photodynamic therapy and real-time monitoring of therapeutic effects publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.7b04447 – volume: 17 issue: 17 year: 2021 ident: 10.1016/j.jconrel.2022.10.046_bb0555 article-title: Nonspherical metal-based nanoarchitectures: synthesis and impact of size, shape, and composition on their biological activity publication-title: Small doi: 10.1002/smll.202007073 – volume: 6 start-page: 2894 issue: 9 year: 2021 ident: 10.1016/j.jconrel.2022.10.046_bb0055 article-title: Cylindrical polymer brushes-anisotropic unimolecular micelle drug delivery system for enhancing the effectiveness of chemotherapy publication-title: Bioact. Mater. doi: 10.1016/j.bioactmat.2021.02.011 – volume: 6 start-page: 100 issue: 2 year: 2020 ident: 10.1016/j.jconrel.2022.10.046_bb0080 article-title: Size-tunable strategies for a tumor targeted drug delivery system publication-title: ACS Cent. Sci. doi: 10.1021/acscentsci.9b01139 – volume: 41 issue: 21 year: 2020 ident: 10.1016/j.jconrel.2022.10.046_bb0070 article-title: Recent advances of pH-induced charge-convertible polymer-mediated inorganic nanoparticles for biomedical applications publication-title: Macromol. Rapid Commun. doi: 10.1002/marc.202000106 – volume: 18 issue: 6 year: 2022 ident: 10.1016/j.jconrel.2022.10.046_bb0595 article-title: Design of smart size-, surface-, and shape-switching nanoparticles to improve therapeutic efficacy publication-title: Small doi: 10.1002/smll.202104632 – volume: 14 start-page: 85 issue: 1 year: 2021 ident: 10.1016/j.jconrel.2022.10.046_bb0030 article-title: Nanomaterials for cancer therapy: current progress and perspectives publication-title: J. Hematol. Oncol. doi: 10.1186/s13045-021-01096-0 – volume: 50 start-page: 5397 issue: 9 year: 2021 ident: 10.1016/j.jconrel.2022.10.046_bb0510 article-title: Understanding nanoparticle endocytosis to improve targeting strategies in nanomedicine publication-title: Chem. Soc. Rev. doi: 10.1039/D0CS01127D – volume: 143 start-page: 13854 issue: 34 year: 2021 ident: 10.1016/j.jconrel.2022.10.046_bb0365 article-title: Noncanonical amino acids for hypoxia-responsive peptide self-assembly and fluorescence publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.1c06435 – volume: 8 start-page: 776 issue: 4 year: 2020 ident: 10.1016/j.jconrel.2022.10.046_bb0250 article-title: Nanoporous hybrid core-shell nanoparticles for sequential release publication-title: J. Mater. Chem. B doi: 10.1039/C9TB01846H – volume: 16 start-page: 1570 issue: 11 year: 2020 ident: 10.1016/j.jconrel.2022.10.046_bb0035 article-title: Multistage nanoparticle delivery system-a new approach to cancer therapeutics publication-title: J. Biomed. Nanotechnol. doi: 10.1166/jbn.2020.2996 – volume: 6 start-page: 3531 issue: 21 year: 2018 ident: 10.1016/j.jconrel.2022.10.046_bb0415 article-title: Near-infrared light-triggered drug release from UV-responsive diblock copolymer-coated upconversion nanoparticles with high monodispersity publication-title: J. Mater. Chem. B doi: 10.1039/C8TB00651B – volume: 143 start-page: 3 year: 2019 ident: 10.1016/j.jconrel.2022.10.046_bb0120 article-title: Effect of physicochemical and surface properties on in vivo fate of drug nanocarriers publication-title: Adv. Drug Deliv. Rev. doi: 10.1016/j.addr.2019.01.002 – volume: 597 start-page: 120326 year: 2021 ident: 10.1016/j.jconrel.2022.10.046_bb0385 article-title: Light-responsive polymeric nanoparticles based on a novel nitropiperonal based polyester as drug delivery systems for photosensitizers in PDT publication-title: Int. J. Pharm. doi: 10.1016/j.ijpharm.2021.120326 – year: 2022 ident: 10.1016/j.jconrel.2022.10.046_bb0535 article-title: Influence of surface chemistry and morphology of nanoparticles on protein corona formation publication-title: Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. doi: 10.1002/wnan.1788 – volume: 188 start-page: 110811 year: 2020 ident: 10.1016/j.jconrel.2022.10.046_bb0210 article-title: pH-triggered geometrical shape switching of a cationic peptide nanoparticle for cellular uptake and drug delivery publication-title: Colloids Surf. B: Biointerfaces doi: 10.1016/j.colsurfb.2020.110811 – volume: 19 start-page: 202 issue: 3 year: 2018 ident: 10.1016/j.jconrel.2022.10.046_bb0185 article-title: Smart drug delivery systems in cancer therapy publication-title: Curr. Drug Targets doi: 10.2174/1389450117666160401124624 – volume: 18 start-page: 2039 issue: 5 year: 2021 ident: 10.1016/j.jconrel.2022.10.046_bb0315 article-title: Morphology/interstitial fluid pressure-tunable nanopomegranate designed by alteration of membrane fluidity under tumor enzyme and PEGylation publication-title: Mol. Pharm. doi: 10.1021/acs.molpharmaceut.1c00036 – volume: 10 start-page: 21021 issue: 25 year: 2018 ident: 10.1016/j.jconrel.2022.10.046_bb0405 article-title: Applications of light-responsive systems for cancer theranostics publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.8b01114 – volume: 16 start-page: 266 issue: 3 year: 2021 ident: 10.1016/j.jconrel.2022.10.046_bb0505 article-title: Key principles and methods for studying the endocytosis of biological and nanoparticle therapeutics publication-title: Nat. Nanotechnol. doi: 10.1038/s41565-021-00858-8 – volume: 163 start-page: 109 year: 2021 ident: 10.1016/j.jconrel.2022.10.046_bb0325 article-title: Size shifting of solid lipid nanoparticle system triggered by alkaline phosphatase for site specific mucosal drug delivery publication-title: Eur. J. Pharm. Biopharm. doi: 10.1016/j.ejpb.2021.03.012 – volume: 31 start-page: 438 issue: 3 year: 2010 ident: 10.1016/j.jconrel.2022.10.046_bb0515 article-title: The effect of the shape of mesoporous silica nanoparticles on cellular uptake and cell function publication-title: Biomaterials doi: 10.1016/j.biomaterials.2009.09.060 – volume: 2020 start-page: 5194780 year: 2020 ident: 10.1016/j.jconrel.2022.10.046_bb0500 article-title: Physical properties of nanoparticles that result in improved cancer targeting publication-title: J. Oncol. doi: 10.1155/2020/5194780 – volume: 96 start-page: 1 year: 2016 ident: 10.1016/j.jconrel.2022.10.046_bb0345 article-title: Transformable DNA nanocarriers for plasma membrane targeted delivery of cytokine publication-title: Biomaterials doi: 10.1016/j.biomaterials.2016.04.011 – volume: 13 start-page: 12912 issue: 11 year: 2019 ident: 10.1016/j.jconrel.2022.10.046_bb0260 article-title: Tumor microenvironment responsive shape-reversal self-targeting virus-inspired nanodrug for imaging-guided near-infrared-II photothermal chemotherapy publication-title: ACS Nano doi: 10.1021/acsnano.9b05425 – volume: 6 start-page: 148 issue: 1 year: 2021 ident: 10.1016/j.jconrel.2022.10.046_bb0355 article-title: A study on hypoxia susceptibility of organ tissues by fluorescence imaging with a ratiometric nitroreductase probe publication-title: ACS Sens. doi: 10.1021/acssensors.0c01989 – volume: 12 start-page: 129 issue: 1 year: 2015 ident: 10.1016/j.jconrel.2022.10.046_bb0525 article-title: The importance of nanoparticle shape in cancer drug delivery publication-title: Expert Opin. Drug Deliv. doi: 10.1517/17425247.2014.950564 – volume: 54 start-page: 235 issue: 3 year: 2022 ident: 10.1016/j.jconrel.2022.10.046_bb0215 article-title: Development and application of pH-responsive polymers publication-title: Polym. J. doi: 10.1038/s41428-021-00576-x – volume: 5 issue: 2 year: 2022 ident: 10.1016/j.jconrel.2022.10.046_bb0330 article-title: Alkaline phosphatase: a reliable endogenous partner for drug delivery and diagnostics publication-title: Adv. Ther. – volume: 34 start-page: 395 issue: 1 year: 2018 ident: 10.1016/j.jconrel.2022.10.046_bb0340 article-title: Phospholipase A2-induced degradation and release from lipid-containing polymersomes publication-title: Langmuir doi: 10.1021/acs.langmuir.7b03893 – volume: 61 start-page: 269 year: 2021 ident: 10.1016/j.jconrel.2022.10.046_bb0545 article-title: Nanoparticle toxicology publication-title: Annu. Rev. Pharmacol. Toxicol. doi: 10.1146/annurev-pharmtox-032320-110338 – volume: 11 start-page: 3710 issue: 7 year: 2018 ident: 10.1016/j.jconrel.2022.10.046_bb0225 article-title: Highly uniform ultrasound-sensitive nanospheres produced by a pH-induced micelle-to-vesicle transition for tumor-targeted drug delivery publication-title: Nano Res. doi: 10.1007/s12274-017-1939-y – volume: 9 start-page: 406 issue: 2 year: 2021 ident: 10.1016/j.jconrel.2022.10.046_bb0575 article-title: Recent advances in stimuli-responsive in situ self-assembly of small molecule probes for in vivo imaging of enzymatic activity publication-title: Biomater. Sci. doi: 10.1039/D0BM00895H – volume: 13 start-page: 3903 issue: 24 year: 2018 ident: 10.1016/j.jconrel.2022.10.046_bb0425 article-title: Photo- and pH- dual-responsive beta-cyclodextrin-based supramolecular prodrug complex self-assemblies for programmed drug delivery publication-title: Chem. Asian J. doi: 10.1002/asia.201801366 – volume: 94 start-page: 2302 issue: 9 year: 2021 ident: 10.1016/j.jconrel.2022.10.046_bb0025 article-title: Conjugation of phenylboronic acid moiety through multistep organic transformations on nanodiamond surface for an anticancer nanodrug for boron neutron capture therapy publication-title: Bull. Chem. Soc. Jpn. doi: 10.1246/bcsj.20210200 – volume: 27 start-page: 2225 issue: 10 year: 2016 ident: 10.1016/j.jconrel.2022.10.046_bb0050 article-title: Nanodrug delivery: is the enhanced permeability and retention effect sufficient for curing cancer? publication-title: Bioconjug. Chem. doi: 10.1021/acs.bioconjchem.6b00437 – volume: 6 start-page: 1538 issue: 8 year: 2019 ident: 10.1016/j.jconrel.2022.10.046_bb0115 article-title: The impact of nanoparticle shape on cellular internalisation and transport: what do the different analysis methods tell us? publication-title: Mater. Horiz. doi: 10.1039/C9MH00664H – volume: 22 start-page: 947 issue: 8 year: 2021 ident: 10.1016/j.jconrel.2022.10.046_bb0150 article-title: Recent progress in stimuli-responsive intelligent nano scale drug delivery systems: a special focus towards pH-sensitive systems publication-title: Curr. Drug Targets doi: 10.2174/1389450122999210128180058 – volume: 8 start-page: 2756 issue: 10 year: 2020 ident: 10.1016/j.jconrel.2022.10.046_bb0255 article-title: Core-shell particles for drug-delivery, bioimaging, sensing, and tissue engineering publication-title: Biomater. Sci. doi: 10.1039/C9BM01872G – volume: 9 start-page: 8615 issue: 41 year: 2021 ident: 10.1016/j.jconrel.2022.10.046_bb0390 article-title: A photo-responsive membrane for tailored drug delivery with spatially and temporally controlled release publication-title: J. Mater. Chem. B doi: 10.1039/D1TB01690C – volume: 8 start-page: 4385 issue: 5 year: 2014 ident: 10.1016/j.jconrel.2022.10.046_bb0125 article-title: Radioactive 198Au-doped nanostructures with different shapes for in vivo analyses of their biodistribution, tumor uptake, and intratumoral distribution publication-title: ACS Nano doi: 10.1021/nn406258m – volume: 59 start-page: 20582 issue: 46 year: 2020 ident: 10.1016/j.jconrel.2022.10.046_bb0240 article-title: Acid-activatable transmorphic peptide-based nanomaterials for photodynamic therapy publication-title: Angew. Chem. Int. Ed. Eng. doi: 10.1002/anie.202008708 – volume: 253 start-page: 46 year: 2017 ident: 10.1016/j.jconrel.2022.10.046_bb0160 article-title: Revisiting structure-property relationship of pH-responsive polymers for drug delivery applications publication-title: J. Control. Release doi: 10.1016/j.jconrel.2017.02.021 – volume: 19 start-page: 7965 issue: 11 year: 2019 ident: 10.1016/j.jconrel.2022.10.046_bb0245 article-title: Proline isomerization-regulated tumor microenvironment-adaptable self-assembly of peptides for enhanced therapeutic efficacy publication-title: Nano Lett. doi: 10.1021/acs.nanolett.9b03136 – volume: 135 start-page: 17617 issue: 46 year: 2013 ident: 10.1016/j.jconrel.2022.10.046_bb0100 article-title: Polyprodrug amphiphiles: hierarchical assemblies for shape-regulated cellular internalization, trafficking, and drug delivery publication-title: J. Am. Chem. Soc. doi: 10.1021/ja409686x |
SSID | ssj0005347 |
Score | 2.5062783 |
SecondaryResourceType | review_article |
Snippet | Nanodrug delivery system has a great application in the treatment of solid tumors by virtue of EPR effect, though its success in clinics is still limited by... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 600 |
SubjectTerms | Cell Line, Tumor Drug Delivery Systems - methods drugs Humans ingestion Nanoarchitectonics nanocarriers Nanodrug delivery systems Nanofibers Nanoparticles nanorods Nanospheres Nanotubes neoplasms Neoplasms - diagnosis Neoplasms - drug therapy Shape-shifting Stimulus responsiveness Tumor diagnosis and therapy |
Title | Responsive shape-shifting nanoarchitectonics and its application in tumor diagnosis and therapy |
URI | https://dx.doi.org/10.1016/j.jconrel.2022.10.046 https://www.ncbi.nlm.nih.gov/pubmed/36341936 https://www.proquest.com/docview/2733200203 https://www.proquest.com/docview/3153820610 |
Volume | 352 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fSyMxEA5FX3yR--Gd9TyJID6Zdpuk6faxiKWnKOIp-Bay2QS36Fa6W6Ev97ffzGa3VTgR7mnZZbIbMpPMl51vJoQcqTQFUOsjJgfKMqm4YwBiLfMW3IOx4OGriO7llZrcyfP7_n2LnDa5MEirrNf-sKZXq3X9pFuPZvc5y7q_AazEAqOC-LuNSyy7LeGLYNOdP69oHkKGlGkVM5ReZ_F0p50p7DnnDiMQnHeQ5IU4-N_-6T38Wfmh8SeyXQNIOgp9_ExaLv9Cjq9DBerlCb1dJ1QVJ_SYXq9rUy-_En1Tc2JfHC0eQI4VD5lH6jPNTT5bhRWwYG5BTZ7SrITrOspNs5yWi6fZnKaBpJcFsZDHtdwhd-Oz29MJq89YYFYqWbKBs9xxgNiJV0YqF0fSwLS2sBP0MnE93zd-0EtB0U5FiRCRAbxopU25sHEivfhGNvJZ7nYJdbDXhPnvACDCmKfcCOWH8NreUNrImmGbyGZkta0LkOM5GI-6YZpNda0QjQrBx6CQNumsmj2HChwfNYgbtek3pqTBS3zU9LBRs4ZphrETk7vZotCA8gSvwrbvywj0HhwAUtQm34ONrHosFBbOE2rv_zv3g2zhXeDS7JONcr5wPwERlclBZfIHZHP062Jy9Rd9bQzv |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxEB6VcoALKu_wNBL0VCcb23U2Bw4IqFL6UAWp1Jvxem11o3ZTZTdFufCn-IOM194EJKpKSD2ttGuvnBnvzDeZb8YAb2WeI6h1CRUDaaiQzFIEsYY6g-5BG_TwTUb34FCOjsWXk-2TNfjV1sJ4WmW0_cGmN9Y63ulFafYuiqL3DcFKyn1W0P_dxoSMzMo9u_iBcVv1fvcTKvkdYzufxx9HNB4tQI2QoqYDa5hliCwzJ7WQNk2Ext1sMAByIrN9t63doJ_j77MyyTDm1wiTjDA54ybNhOP43ltwW6C58McmdH_-wSvhItRoy5T65a3KhnqT7gSD3Jn1KQ_Gup5V5oH3vx3iVYC3cXw7G3AvIlbyIQjlPqzZ8gFsHoWW14stMl5VcFVbZJMcrZphLx6C-hpJuJeWVKc4jlanhfNca1LqcrrMY_gOvRXRZU6KGq-rtDopSlLPz6czkgdWYBGGhcKxxSM4vhHJP4b1clrap0AsBrdocCwiUpR5zjSXboiv7Q-FSYwedkC0klUmdjz3B2-cqZbaNlFRIcorxN9GhXSgu5x2EVp-XDchbdWm_tq7Ct3SdVPftGpW-F37ZI0u7XReKYSVnDV54qvHcO-uGCKypANPwh5ZrphL36mPy2f_v7jXcGc0PthX-7uHe8_hrn8SiDwvYL2eze1LhGN19qrZ_gS-3_T39htpj0mf |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Responsive+shape-shifting+nanoarchitectonics+and+its+application+in+tumor+diagnosis+and+therapy&rft.jtitle=Journal+of+controlled+release&rft.au=Shao%2C+Yaru&rft.au=Xiang%2C+Li&rft.au=Zhang%2C+Wenhui&rft.au=Chen%2C+Yuping&rft.date=2022-12-01&rft.eissn=1873-4995&rft.volume=352&rft.spage=600&rft_id=info:doi/10.1016%2Fj.jconrel.2022.10.046&rft_id=info%3Apmid%2F36341936&rft.externalDocID=36341936 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0168-3659&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0168-3659&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0168-3659&client=summon |