Responsive shape-shifting nanoarchitectonics and its application in tumor diagnosis and therapy

Nanodrug delivery system has a great application in the treatment of solid tumors by virtue of EPR effect, though its success in clinics is still limited by its poor extravasation, small intratumoral accumulation, and weak tumor penetration. The shape of nanoparticles (NPs) greatly affects their cir...

Full description

Saved in:
Bibliographic Details
Published inJournal of controlled release Vol. 352; pp. 600 - 618
Main Authors Shao, Yaru, Xiang, Li, Zhang, Wenhui, Chen, Yuping
Format Journal Article
LanguageEnglish
Published Netherlands Elsevier B.V 01.12.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Nanodrug delivery system has a great application in the treatment of solid tumors by virtue of EPR effect, though its success in clinics is still limited by its poor extravasation, small intratumoral accumulation, and weak tumor penetration. The shape of nanoparticles (NPs) greatly affects their circulation time, flow behavior, intratumoral amassing, cell internalization as well as tumor tissue penetration. Generally, short nanorods and 100–200 nm spherical nanocarriers possess nice circulation behaviors, nanorods and nanofibers with a large aspect ratio (AR) cumulate well at tumor sites, and tiny nanospheres/disks (< 50 nm) and short nanorods with a low AR achieve a favorable tumor tissue penetration. The AR and surface evenness of NPs also tune their cell contact, cell ingestion, and drug accumulation at tumor sites. Therefore, adopting stimulus-responsive shape-switching (namely, shape-shifting nanoarchitectonics) can not only ensure a good circulation and extravasation for NPs, but also and more importantly, promote their amassing, retention, and penetration in tumor tissues to maximize therapeutic efficacy. Here we review the recently developed shape-switching nanoarchitectonics of antitumoral NPs based on stimulus-responsiveness, demonstrate how successful they are in tumor shrinking and elimination, and provide new ideas for the optimization of anticancer nanotherapeutics. [Display omitted]
AbstractList Nanodrug delivery system has a great application in the treatment of solid tumors by virtue of EPR effect, though its success in clinics is still limited by its poor extravasation, small intratumoral accumulation, and weak tumor penetration. The shape of nanoparticles (NPs) greatly affects their circulation time, flow behavior, intratumoral amassing, cell internalization as well as tumor tissue penetration. Generally, short nanorods and 100–200 nm spherical nanocarriers possess nice circulation behaviors, nanorods and nanofibers with a large aspect ratio (AR) cumulate well at tumor sites, and tiny nanospheres/disks (< 50 nm) and short nanorods with a low AR achieve a favorable tumor tissue penetration. The AR and surface evenness of NPs also tune their cell contact, cell ingestion, and drug accumulation at tumor sites. Therefore, adopting stimulus-responsive shape-switching (namely, shape-shifting nanoarchitectonics) can not only ensure a good circulation and extravasation for NPs, but also and more importantly, promote their amassing, retention, and penetration in tumor tissues to maximize therapeutic efficacy. Here we review the recently developed shape-switching nanoarchitectonics of antitumoral NPs based on stimulus-responsiveness, demonstrate how successful they are in tumor shrinking and elimination, and provide new ideas for the optimization of anticancer nanotherapeutics.
Nanodrug delivery system has a great application in the treatment of solid tumors by virtue of EPR effect, though its success in clinics is still limited by its poor extravasation, small intratumoral accumulation, and weak tumor penetration. The shape of nanoparticles (NPs) greatly affects their circulation time, flow behavior, intratumoral amassing, cell internalization as well as tumor tissue penetration. Generally, short nanorods and 100–200 nm spherical nanocarriers possess nice circulation behaviors, nanorods and nanofibers with a large aspect ratio (AR) cumulate well at tumor sites, and tiny nanospheres/disks (< 50 nm) and short nanorods with a low AR achieve a favorable tumor tissue penetration. The AR and surface evenness of NPs also tune their cell contact, cell ingestion, and drug accumulation at tumor sites. Therefore, adopting stimulus-responsive shape-switching (namely, shape-shifting nanoarchitectonics) can not only ensure a good circulation and extravasation for NPs, but also and more importantly, promote their amassing, retention, and penetration in tumor tissues to maximize therapeutic efficacy. Here we review the recently developed shape-switching nanoarchitectonics of antitumoral NPs based on stimulus-responsiveness, demonstrate how successful they are in tumor shrinking and elimination, and provide new ideas for the optimization of anticancer nanotherapeutics. [Display omitted]
Nanodrug delivery system has a great application in the treatment of solid tumors by virtue of EPR effect, though its success in clinics is still limited by its poor extravasation, small intratumoral accumulation, and weak tumor penetration. The shape of nanoparticles (NPs) greatly affects their circulation time, flow behavior, intratumoral amassing, cell internalization as well as tumor tissue penetration. Generally, short nanorods and 100-200 nm spherical nanocarriers possess nice circulation behaviors, nanorods and nanofibers with a large aspect ratio (AR) cumulate well at tumor sites, and tiny nanospheres/disks (< 50 nm) and short nanorods with a low AR achieve a favorable tumor tissue penetration. The AR and surface evenness of NPs also tune their cell contact, cell ingestion, and drug accumulation at tumor sites. Therefore, adopting stimulus-responsive shape-switching (namely, shape-shifting nanoarchitectonics) can not only ensure a good circulation and extravasation for NPs, but also and more importantly, promote their amassing, retention, and penetration in tumor tissues to maximize therapeutic efficacy. Here we review the recently developed shape-switching nanoarchitectonics of antitumoral NPs based on stimulus-responsiveness, demonstrate how successful they are in tumor shrinking and elimination, and provide new ideas for the optimization of anticancer nanotherapeutics.Nanodrug delivery system has a great application in the treatment of solid tumors by virtue of EPR effect, though its success in clinics is still limited by its poor extravasation, small intratumoral accumulation, and weak tumor penetration. The shape of nanoparticles (NPs) greatly affects their circulation time, flow behavior, intratumoral amassing, cell internalization as well as tumor tissue penetration. Generally, short nanorods and 100-200 nm spherical nanocarriers possess nice circulation behaviors, nanorods and nanofibers with a large aspect ratio (AR) cumulate well at tumor sites, and tiny nanospheres/disks (< 50 nm) and short nanorods with a low AR achieve a favorable tumor tissue penetration. The AR and surface evenness of NPs also tune their cell contact, cell ingestion, and drug accumulation at tumor sites. Therefore, adopting stimulus-responsive shape-switching (namely, shape-shifting nanoarchitectonics) can not only ensure a good circulation and extravasation for NPs, but also and more importantly, promote their amassing, retention, and penetration in tumor tissues to maximize therapeutic efficacy. Here we review the recently developed shape-switching nanoarchitectonics of antitumoral NPs based on stimulus-responsiveness, demonstrate how successful they are in tumor shrinking and elimination, and provide new ideas for the optimization of anticancer nanotherapeutics.
Nanodrug delivery system has a great application in the treatment of solid tumors by virtue of EPR effect, though its success in clinics is still limited by its poor extravasation, small intratumoral accumulation, and weak tumor penetration. The shape of nanoparticles (NPs) greatly affects their circulation time, flow behavior, intratumoral amassing, cell internalization as well as tumor tissue penetration. Generally, short nanorods and 100-200 nm spherical nanocarriers possess nice circulation behaviors, nanorods and nanofibers with a large aspect ratio (AR) cumulate well at tumor sites, and tiny nanospheres/disks (< 50 nm) and short nanorods with a low AR achieve a favorable tumor tissue penetration. The AR and surface evenness of NPs also tune their cell contact, cell ingestion, and drug accumulation at tumor sites. Therefore, adopting stimulus-responsive shape-switching (namely, shape-shifting nanoarchitectonics) can not only ensure a good circulation and extravasation for NPs, but also and more importantly, promote their amassing, retention, and penetration in tumor tissues to maximize therapeutic efficacy. Here we review the recently developed shape-switching nanoarchitectonics of antitumoral NPs based on stimulus-responsiveness, demonstrate how successful they are in tumor shrinking and elimination, and provide new ideas for the optimization of anticancer nanotherapeutics.
Author Xiang, Li
Zhang, Wenhui
Shao, Yaru
Chen, Yuping
Author_xml – sequence: 1
  givenname: Yaru
  surname: Shao
  fullname: Shao, Yaru
  organization: Institute of Pharmacy & Pharmacology, School of Pharmaceutical Science, University of South China, Hengyang 421001, China
– sequence: 2
  givenname: Li
  surname: Xiang
  fullname: Xiang, Li
  organization: Hengyang Medical School, University of South China, Hengyang 410001, China
– sequence: 3
  givenname: Wenhui
  surname: Zhang
  fullname: Zhang, Wenhui
  organization: Institute of Pharmacy & Pharmacology, School of Pharmaceutical Science, University of South China, Hengyang 421001, China
– sequence: 4
  givenname: Yuping
  surname: Chen
  fullname: Chen, Yuping
  email: yupingc@usc.edu.cn
  organization: Institute of Pharmacy & Pharmacology, School of Pharmaceutical Science, University of South China, Hengyang 421001, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36341936$$D View this record in MEDLINE/PubMed
BookMark eNqFkUtrGzEUhUVISZzHT2iZZTfjXj1GGtNFKaFtAoFCaddCo7kTXzOWppIcyL_PuHa76MarC5fvnMX5rth5iAEZe8thyYHrD5vlxseQcFwKEGL-LUHpM7bgrZG1Wq2ac7aYubaWulldsqucNwDQSGUu2KXUUvGV1Atmf2CeYsj0jFVeuwnrvKahUHiqggvRJb-mgr7EQD5XLvQVlflO00jeFYqholCV3Tamqif3FGKmA1bWmNz0csPeDG7MeHu81-zX1y8_7-7rx-_fHu4-P9ZeaVVqg16gMEZ0g3ZKYwvKKQAvOAyqQz40bjC8R-9RQyclOGOUV74X0redGuQ1e3_onVL8vcNc7Jayx3F0AeMuW8kb2QrQHE6iwkgpAATIGX13RHfdFns7Jdq69GL_7jcDzQHwKeaccPiHcLB7T3Zjj57s3tP-PXuacx__y3kqf_YsydF4Mv3pkMZ50WfCZLMnDB57SrMr20c60fAKthizZg
CitedBy_id crossref_primary_10_1039_D3TB00322A
crossref_primary_10_1039_D3TB02618C
crossref_primary_10_1093_bulcsj_uoad001
crossref_primary_10_1002_smtd_202401860
crossref_primary_10_1142_S1088424623300045
crossref_primary_10_1002_wnan_1964
crossref_primary_10_1007_s10904_024_03065_9
crossref_primary_10_1002_anie_202409169
crossref_primary_10_1002_ange_202409169
crossref_primary_10_3390_mi15020282
crossref_primary_10_1016_j_ijbiomac_2024_136034
crossref_primary_10_1021_acs_chemrev_3c00705
crossref_primary_10_1021_acsami_4c13504
crossref_primary_10_1002_apxr_202200113
crossref_primary_10_1016_j_jconrel_2025_01_038
crossref_primary_10_3389_fbioe_2023_1249875
crossref_primary_10_3390_ma17010271
crossref_primary_10_1016_j_apsb_2024_12_016
crossref_primary_10_1002_cnma_202300120
crossref_primary_10_1039_D4NR00230J
Cites_doi 10.1515/ntrev-2022-0148
10.1002/pol.20210430
10.1039/D1BM00631B
10.1002/smll.201903060
10.3390/biom10081138
10.1016/j.jconrel.2019.07.004
10.1021/acsnano.9b05749
10.1021/acs.nanolett.9b04752
10.3389/fbioe.2021.707319
10.1021/acsabm.0c00707
10.1021/acsnano.0c08384
10.1016/j.bioactmat.2020.12.010
10.1039/C9CS00011A
10.1021/acs.biomac.0c00773
10.1021/acsami.1c03211
10.7150/thno.30915
10.1039/D0BM01324B
10.1128/AEM.01758-21
10.1039/C6CS00592F
10.1002/adhm.202001207
10.1016/j.semcancer.2019.10.020
10.1002/adma.201501803
10.1007/s42242-020-00105-4
10.1021/acs.macromol.1c02402
10.1002/adfm.202009765
10.1016/j.actbio.2020.12.045
10.1039/D0NH00680G
10.1021/acs.chemrev.7b00194
10.1021/acs.nanolett.1c00488
10.1002/adma.201502598
10.1021/acsami.1c04953
10.1021/acscentsci.7b00257
10.1002/marc.202100025
10.7150/thno.38069
10.1016/j.semcancer.2019.11.002
10.1038/ncomms14943
10.1021/acsami.9b20062
10.1021/acs.nanolett.1c03031
10.1016/j.addr.2018.10.002
10.1002/adhm.201900352
10.1021/acs.biomac.0c00726
10.1016/j.mtbio.2021.100170
10.1039/D1CC04053G
10.1016/j.tips.2018.06.003
10.3390/ijms23010146
10.1039/C9CC10071G
10.1039/D0TB00143K
10.1016/j.jmrt.2018.03.007
10.1016/j.jconrel.2021.12.032
10.1016/j.addr.2022.114177
10.1016/j.biomaterials.2020.119902
10.1021/acs.biomac.8b00422
10.1021/acsnano.7b00216
10.1016/j.addr.2021.01.009
10.1021/acsnano.5b03874
10.1021/acsnano.0c00118
10.1039/D0BM01406K
10.1016/j.addr.2021.05.017
10.1016/j.jcis.2020.09.073
10.1021/acsami.1c15858
10.1016/j.msec.2018.04.010
10.1016/j.biomaterials.2013.01.084
10.1016/j.tibtech.2019.11.001
10.1002/anie.201900135
10.2174/1389450122666210114095614
10.1038/s41467-020-15206-y
10.1016/j.msec.2020.111250
10.1002/marc.202000236
10.1016/j.actbio.2021.04.011
10.1021/acs.biomac.1c00669
10.1258/ebm.2010.010243
10.1038/s41573-020-0090-8
10.1016/j.ajps.2019.06.003
10.1021/acsami.7b04447
10.1002/smll.202007073
10.1016/j.bioactmat.2021.02.011
10.1021/acscentsci.9b01139
10.1002/marc.202000106
10.1002/smll.202104632
10.1186/s13045-021-01096-0
10.1039/D0CS01127D
10.1021/jacs.1c06435
10.1039/C9TB01846H
10.1166/jbn.2020.2996
10.1039/C8TB00651B
10.1016/j.addr.2019.01.002
10.1016/j.ijpharm.2021.120326
10.1002/wnan.1788
10.1016/j.colsurfb.2020.110811
10.2174/1389450117666160401124624
10.1021/acs.molpharmaceut.1c00036
10.1021/acsami.8b01114
10.1038/s41565-021-00858-8
10.1016/j.ejpb.2021.03.012
10.1016/j.biomaterials.2009.09.060
10.1155/2020/5194780
10.1016/j.biomaterials.2016.04.011
10.1021/acsnano.9b05425
10.1021/acssensors.0c01989
10.1517/17425247.2014.950564
10.1038/s41428-021-00576-x
10.1021/acs.langmuir.7b03893
10.1146/annurev-pharmtox-032320-110338
10.1007/s12274-017-1939-y
10.1039/D0BM00895H
10.1002/asia.201801366
10.1246/bcsj.20210200
10.1021/acs.bioconjchem.6b00437
10.1039/C9MH00664H
10.2174/1389450122999210128180058
10.1039/C9BM01872G
10.1039/D1TB01690C
10.1021/nn406258m
10.1002/anie.202008708
10.1016/j.jconrel.2017.02.021
10.1021/acs.nanolett.9b03136
10.1021/ja409686x
ContentType Journal Article
Copyright 2022 Elsevier B.V.
Copyright © 2022 Elsevier B.V. All rights reserved.
Copyright_xml – notice: 2022 Elsevier B.V.
– notice: Copyright © 2022 Elsevier B.V. All rights reserved.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
DOI 10.1016/j.jconrel.2022.10.046
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA

MEDLINE - Academic
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Pharmacy, Therapeutics, & Pharmacology
EISSN 1873-4995
EndPage 618
ExternalDocumentID 36341936
10_1016_j_jconrel_2022_10_046
S0168365922007246
Genre Research Support, Non-U.S. Gov't
Journal Article
Review
GroupedDBID ---
--K
--M
.GJ
.~1
0R~
1B1
1RT
1~.
1~5
29K
3O-
4.4
457
4G.
53G
5GY
5VS
7-5
71M
8P~
9JM
AABNK
AABXZ
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATCM
AAXUO
AAYOK
ABFNM
ABFRF
ABJNI
ABMAC
ABOCM
ABXDB
ABYKQ
ABZDS
ACDAQ
ACGFO
ACGFS
ACIUM
ACNNM
ACRLP
ADBBV
ADEZE
ADMUD
AEBSH
AEFWE
AEKER
AENEX
AEZYN
AFKWA
AFRZQ
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALCLG
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
C45
CS3
D-I
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HMT
HVGLF
HZ~
IHE
J1W
KOM
M34
M41
MO0
N9A
O-L
O9-
OAUVE
OGGZJ
OVD
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SCC
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SPT
SSM
SSP
SSZ
T5K
TEORI
WUQ
~G-
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
CGR
CUY
CVF
ECM
EIF
NPM
7X8
EFKBS
7S9
L.6
ID FETCH-LOGICAL-c464t-7ec2e2772bf6a46e804a400c210f4be1f5af71decce60b330a774c4cd23c8b4f3
IEDL.DBID .~1
ISSN 0168-3659
1873-4995
IngestDate Fri Jul 11 09:47:48 EDT 2025
Tue Aug 05 09:07:48 EDT 2025
Wed Feb 19 02:26:23 EST 2025
Thu Apr 24 23:07:24 EDT 2025
Tue Jul 01 04:10:08 EDT 2025
Fri Feb 23 02:41:39 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Nanoarchitectonics
Tumor diagnosis and therapy
Shape-shifting
Stimulus responsiveness
Nanodrug delivery systems
Language English
License Copyright © 2022 Elsevier B.V. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c464t-7ec2e2772bf6a46e804a400c210f4be1f5af71decce60b330a774c4cd23c8b4f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
PMID 36341936
PQID 2733200203
PQPubID 23479
PageCount 19
ParticipantIDs proquest_miscellaneous_3153820610
proquest_miscellaneous_2733200203
pubmed_primary_36341936
crossref_primary_10_1016_j_jconrel_2022_10_046
crossref_citationtrail_10_1016_j_jconrel_2022_10_046
elsevier_sciencedirect_doi_10_1016_j_jconrel_2022_10_046
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate December 2022
2022-12-00
20221201
PublicationDateYYYYMMDD 2022-12-01
PublicationDate_xml – month: 12
  year: 2022
  text: December 2022
PublicationDecade 2020
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
PublicationTitle Journal of controlled release
PublicationTitleAlternate J Control Release
PublicationYear 2022
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Xiao, Xu, Lv, Cheng, Huang, Li (bb0440) 2021; 122
Dai, Xu, Sun, Chen (bb0075) 2017; 46
Wang, Gaus, Tilley, Gooding (bb0115) 2019; 6
Wang, Wang, Tang, Elzatahry, Wang, Al-Dahyan (bb0520) 2017; 3
Wang, Wang, Jia, Han, Qian, Li (bb0310) 2019; 9
He, He, Younis, Blum, Lei, Zhang (bb0450) 2021; 13
Guo, Fan, Shen, Xue, Zhu, Xu (bb0390) 2021; 9
Campora, Ghersi (bb0550) 2022; 11
Truong, Whittaker, Mak, Davis (bb0525) 2015; 12
Liu, Li, Xue, Cao, Zhang, Wang (bb0265) 2021; 128
Li, Montague, Pollinzi, Lofts, Hoare (bb0595) 2022; 18
Han, Zhang, Ma, Wang, Xu, Liu (bb0205) 2017; 9
Jahns, Warwas, Krey, Nolte, Konig, Froba (bb0250) 2020; 8
Yang, Liu, Ye, Deng, Dong, Zhang (bb0065) 2020; 116
Zhang, Jin, Stenzel (bb0560) 2021; 22
Black, Wang, Luehmann, Cai, Xing, Pang (bb0125) 2014; 8
Jenjob, Phakkeeree, Crespy (bb0255) 2020; 8
Son, Yi, Yoo, Park, Koo, Choi (bb0420) 2019; 138
Hu, Hu, Tian, Ge, Zhang, Luo (bb0100) 2013; 135
He, Cong, Li, Luo, He, Hao (bb0045) 2020; 12
Han, Zhang, Zhang, Wang, Xu, Zhang (bb0200) 2017; 11
Sun, Ji, Hu, Yu, Wang, Qian (bb0345) 2016; 96
Li, Peng, Cai, Yang, Zhang (bb0465) 2020; 15
Bazban-Shotorbani, Hasani-Sadrabadi, Karkhaneh, Serpooshan, Jacob, Moshaverinia (bb0160) 2017; 253
Li, Lin, Wang, Luo, Lin, Zhang (bb0260) 2019; 13
Arno, Inam, Weems, Li, Binch, Platt (bb0600) 2020; 11
Rennick, Johnston, Parton (bb0505) 2021; 16
Ou, Wen, Bardhan (bb0090) 2020; 38
Zhang, Cheng, Ji, An, Wang, Yang (bb0490) 2020; 20
Huang, Gao, Lin, Hu, Liao, Yan (bb0335) 2015; 9
Zhan, Nie, Gao, Zhang, You, Yu (bb0060) 2020; 8
Le-Vinh, Akkuş-Dağdeviren, Le, Nazir, Bernkop-Schnürch (bb0330) 2022; 5
Vilches, Quidant (bb0530) 2020
Kyu Shim, Yang, Sun, Kim (bb0585) 2022; 183
Yu, Liu, Zhou, Gao (bb0080) 2020; 6
Wu, Wang, Wang, Zou, Wu, Liu (bb0315) 2021; 18
Ge, Qiao, Tang, Zhang, Jiang (bb0380) 2021; 21
Yusa (bb0215) 2022; 54
He, Qin, Fan, Feng, Wang, Fang (bb0455) 2021; 13
Shi, Javorskis, Bergquist, Ulcinas, Niaura, Matulaitiene (bb0230) 2017; 8
Yang, Li, Lee (bb0070) 2020; 41
Jia, Zhu, Liu, Pan, Gao, Sun (bb0480) 2019; 13
Zhang, Qi, Zhao, Qiao, Yang, Wang (bb0320) 2015; 27
Wang, Liu, Wu, Wang (bb0445) 2021; 583
Chang, Ma, Xu, Xie, Ju (bb0565) 2021; 9
Bai, Jia, Ma, Liang, Xue, Kang (bb0055) 2021; 6
Yang, Zhou, Song, Chen (bb0140) 2019; 48
Mitchell, Billingsley, Haley, Wechsler, Peppas, Langer (bb0015) 2021; 20
Liu, Shi, Nie, Wang, Liu, Cai (bb0570) 2020; 10
Unsoy, Gunduz (bb0185) 2018; 19
Zhao, Ukidve, Krishnan, Mitragotri (bb0120) 2019; 143
Sun, Chang, Cao, Yuan, Zhao, Yang (bb0240) 2020; 59
Yang, Li, Gu, Fan (bb0540) 2021; 6
Zhou, Dong, Fan, Jiang, Xiang, Qiu (bb0040) 2020; 240
Yao, Kou, Tu, Zhu (bb0290) 2018; 39
Kapate, Clegg, Mitragotri (bb0135) 2021; 177
Chen, Zhang, Cheng, Zhang, Liu, Ji (bb0435) 2020; 14
Wagner, Gossl, Ustyanovska, Xiong, Hauser, Zhuzhgova (bb0170) 2021; 15
Schoppa, Jung, Rust, Mulac, Kuckling, Langer (bb0385) 2021; 597
Mo, Xiang, Chen (bb0175) 2021; 42
Serra (bb0295) 2020; 10
Xiang, Tong, Shi, Yan, Yu, Zhao (bb0415) 2018; 6
Cheng, Li, Dey, Chen (bb0030) 2021; 14
Raza, Hayat, Rasheed, Bilal, Iqbal (bb0410) 2019; 8
Sousa de Almeida, Susnik, Drasler, Taladriz-Blanco, Petri-Fink, Rothen-Rutishauser (bb0510) 2021; 50
Wang, Yin, Su, Qiu, Wang, Zheng (bb0225) 2018; 11
Qin, Zhu, Zheng, Zhao (bb0180) 2021; 4
Bai, Liu, Song, Zhuo, Bu, Tian (bb0425) 2018; 13
Zare, Zheng, Makvandi, Gheybi, Sartorius, Yiu (bb0555) 2021; 17
Kinnear, Moore, Rodriguez-Lorenzo, Rothen-Rutishauser, Petri-Fink (bb0105) 2017; 117
Sarkar, Lee, Ryu, Singha, Lee, Reo (bb0355) 2021; 6
Mirza, Karim (bb0005) 2021; 69
Bilardo, Traldi, Vdovchenko, Resmini (bb0535) 2022
Haryadi, Hafner, Amin, Schubel, Jordan, Winter (bb0590) 2019; 8
Sethuraman, Janakiraman, Krishnaswami, Kandasamy (bb0150) 2021; 22
Callmann, Barback, Thompson, Hall, Mattrey, Gianneschi (bb0305) 2015; 27
Huang, Teng, Chen, Tang, He (bb0515) 2010; 31
Cong, Ji, Gao, Liu, Cheng, Hu (bb0220) 2019; 58
Mi (bb0280) 2020; 10
Zhou, Ye, Chen, Zhu, Yin (bb0395) 2018; 19
Yap, Zhang, Lovegrove, Beves, Stenzel (bb0375) 2020; 41
Shahriari, Zahiri, Abnous, Taghdisi, Ramezani, Alibolandi (bb0270) 2019; 308
Zhou, Liu, Hu, Yang, Zhao, Zheng (bb0020) 2020; 8
Nishikawa, Kang, Zou, Takeuchi, Matsuno, Suzuki (bb0025) 2021; 94
Han, Gong, Li, Guo, Chen, Jin (bb0300) 2022; 13
Nakamura, Mochida, Choyke, Kobayashi (bb0050) 2016; 27
Tao, Hu, Liu, Huang, Sumer, Gao (bb0095) 2011; 236
Hu, Song, Cao, Li, Liu, Zhou (bb0365) 2021; 143
Phan, Taresco, Penelle, Couturaud (bb0195) 2021; 9
Li, Chen, Xin, Huang, Wu (bb0035) 2020; 16
Lou, Du, Xu (bb0275) 2021; 22
Wang, Weng, Wen, Hu, Ye (bb0575) 2021; 9
Mumtaz Virk, Reimhult (bb0340) 2018; 34
Niland, Riscanevo, Eble (bb0285) 2021; 23
Ma, Yang, Zhu, Jia, Zhang, Liu (bb0155) 2022
Chen, Zhao (bb0405) 2018; 10
Thangudu, Kaur, Korupalli, Sharma, Kalluru, Vankayala (bb0430) 2021; 9
Zhou, Xu, Tong, Yang, Jiang (bb0475) 2018; 89
Hadji, Bouchemal (bb0495) 2022; 342
Su, Jiang, Liu, Xie, Chen, Wang (bb0235) 2022; 55
Ridolfo, Tavakoli, Junnuthula, Williams, Urtti, van Hest (bb0110) 2021; 22
Karayianni, Pispas (bb0190) 2021
Lo, Tsai, Soorni, Hsu, Liao, Wang (bb0460) 2020; 21
Zhang, Lv, Gao, Feng, Wang, Cheng (bb0145) 2021; 21
Zhao, Zhao, Wang, Liu, Sun, Zhang (bb0400) 2019; 15
Yang, An, Wang (bb0580) 2021; 4
Rapp, DeForest (bb0370) 2021; 171
Zein, Sharrouf, Selting (bb0500) 2020; 2020
Li, Ning, Chen, Duan, Song, Ding (bb0245) 2019; 19
Raj, Khurana, Choudhari, Kesari, Kamal, Garg (bb0010) 2021; 69
Liang, Bi, Hu, Chen, Jin, Song (bb0350) 2020; 56
Ariga (bb0130) 2021; 6
Le-Vinh, Steinbring, Wibel, Friedl, Bernkop-Schnurch (bb0325) 2021; 163
Madathiparambil Visalakshan, Gonzalez Garcia, Benzigar, Ghazaryan, Simon, Mierczynska-Vasilev (bb0085) 2020; 16
Yang, Zheng, Zheng, He, Kong, Ding (bb0605) 2021; 13
Zhou, Lv, Li, Li, Yan, Liu (bb0360) 2021; 87
Jia, Wang, Liu, Yu, Gao (bb0485) 2021; 31
Zhang, Li, Xiao, Chen (bb0165) 2021; 57
Gong, Lao, Gao, Lin, Yu, Zhou (bb0210) 2020; 188
Yang, Wang, Mettenbrink, DeAngelis, Wilhelm (bb0545) 2021; 61
Cheng, Meng, Deng, Klok, Zhong (bb0470) 2013; 34
Unsoy (10.1016/j.jconrel.2022.10.046_bb0185) 2018; 19
Rapp (10.1016/j.jconrel.2022.10.046_bb0370) 2021; 171
Hu (10.1016/j.jconrel.2022.10.046_bb0100) 2013; 135
Lou (10.1016/j.jconrel.2022.10.046_bb0275) 2021; 22
Callmann (10.1016/j.jconrel.2022.10.046_bb0305) 2015; 27
Zhang (10.1016/j.jconrel.2022.10.046_bb0320) 2015; 27
Ridolfo (10.1016/j.jconrel.2022.10.046_bb0110) 2021; 22
Yang (10.1016/j.jconrel.2022.10.046_bb0580) 2021; 4
Cheng (10.1016/j.jconrel.2022.10.046_bb0470) 2013; 34
Cong (10.1016/j.jconrel.2022.10.046_bb0220) 2019; 58
Han (10.1016/j.jconrel.2022.10.046_bb0200) 2017; 11
Ou (10.1016/j.jconrel.2022.10.046_bb0090) 2020; 38
He (10.1016/j.jconrel.2022.10.046_bb0045) 2020; 12
Tao (10.1016/j.jconrel.2022.10.046_bb0095) 2011; 236
Yao (10.1016/j.jconrel.2022.10.046_bb0290) 2018; 39
Zare (10.1016/j.jconrel.2022.10.046_bb0555) 2021; 17
Mo (10.1016/j.jconrel.2022.10.046_bb0175) 2021; 42
Thangudu (10.1016/j.jconrel.2022.10.046_bb0430) 2021; 9
Ma (10.1016/j.jconrel.2022.10.046_bb0155) 2022
Raj (10.1016/j.jconrel.2022.10.046_bb0010) 2021; 69
Sun (10.1016/j.jconrel.2022.10.046_bb0345) 2016; 96
Li (10.1016/j.jconrel.2022.10.046_bb0465) 2020; 15
Kapate (10.1016/j.jconrel.2022.10.046_bb0135) 2021; 177
Zhou (10.1016/j.jconrel.2022.10.046_bb0475) 2018; 89
Yang (10.1016/j.jconrel.2022.10.046_bb0065) 2020; 116
Wu (10.1016/j.jconrel.2022.10.046_bb0315) 2021; 18
Zhou (10.1016/j.jconrel.2022.10.046_bb0020) 2020; 8
Black (10.1016/j.jconrel.2022.10.046_bb0125) 2014; 8
He (10.1016/j.jconrel.2022.10.046_bb0450) 2021; 13
Li (10.1016/j.jconrel.2022.10.046_bb0595) 2022; 18
Cheng (10.1016/j.jconrel.2022.10.046_bb0030) 2021; 14
Li (10.1016/j.jconrel.2022.10.046_bb0260) 2019; 13
Mitchell (10.1016/j.jconrel.2022.10.046_bb0015) 2021; 20
Yang (10.1016/j.jconrel.2022.10.046_bb0140) 2019; 48
Wagner (10.1016/j.jconrel.2022.10.046_bb0170) 2021; 15
Schoppa (10.1016/j.jconrel.2022.10.046_bb0385) 2021; 597
Yap (10.1016/j.jconrel.2022.10.046_bb0375) 2020; 41
Han (10.1016/j.jconrel.2022.10.046_bb0300) 2022; 13
Zein (10.1016/j.jconrel.2022.10.046_bb0500) 2020; 2020
Jia (10.1016/j.jconrel.2022.10.046_bb0485) 2021; 31
Arno (10.1016/j.jconrel.2022.10.046_bb0600) 2020; 11
Shi (10.1016/j.jconrel.2022.10.046_bb0230) 2017; 8
Yang (10.1016/j.jconrel.2022.10.046_bb0605) 2021; 13
Kyu Shim (10.1016/j.jconrel.2022.10.046_bb0585) 2022; 183
Huang (10.1016/j.jconrel.2022.10.046_bb0515) 2010; 31
Sousa de Almeida (10.1016/j.jconrel.2022.10.046_bb0510) 2021; 50
Karayianni (10.1016/j.jconrel.2022.10.046_bb0190) 2021
Zhang (10.1016/j.jconrel.2022.10.046_bb0490) 2020; 20
Serra (10.1016/j.jconrel.2022.10.046_bb0295) 2020; 10
Mumtaz Virk (10.1016/j.jconrel.2022.10.046_bb0340) 2018; 34
Wang (10.1016/j.jconrel.2022.10.046_bb0445) 2021; 583
Chang (10.1016/j.jconrel.2022.10.046_bb0565) 2021; 9
Han (10.1016/j.jconrel.2022.10.046_bb0205) 2017; 9
He (10.1016/j.jconrel.2022.10.046_bb0455) 2021; 13
Phan (10.1016/j.jconrel.2022.10.046_bb0195) 2021; 9
Guo (10.1016/j.jconrel.2022.10.046_bb0390) 2021; 9
Liang (10.1016/j.jconrel.2022.10.046_bb0350) 2020; 56
Lo (10.1016/j.jconrel.2022.10.046_bb0460) 2020; 21
Wang (10.1016/j.jconrel.2022.10.046_bb0575) 2021; 9
Le-Vinh (10.1016/j.jconrel.2022.10.046_bb0325) 2021; 163
Wang (10.1016/j.jconrel.2022.10.046_bb0225) 2018; 11
Haryadi (10.1016/j.jconrel.2022.10.046_bb0590) 2019; 8
Qin (10.1016/j.jconrel.2022.10.046_bb0180) 2021; 4
Shahriari (10.1016/j.jconrel.2022.10.046_bb0270) 2019; 308
Zhan (10.1016/j.jconrel.2022.10.046_bb0060) 2020; 8
Hu (10.1016/j.jconrel.2022.10.046_bb0365) 2021; 143
Raza (10.1016/j.jconrel.2022.10.046_bb0410) 2019; 8
Zhao (10.1016/j.jconrel.2022.10.046_bb0400) 2019; 15
Yu (10.1016/j.jconrel.2022.10.046_bb0080) 2020; 6
Jia (10.1016/j.jconrel.2022.10.046_bb0480) 2019; 13
Zhang (10.1016/j.jconrel.2022.10.046_bb0165) 2021; 57
Yang (10.1016/j.jconrel.2022.10.046_bb0545) 2021; 61
Chen (10.1016/j.jconrel.2022.10.046_bb0405) 2018; 10
Campora (10.1016/j.jconrel.2022.10.046_bb0550) 2022; 11
Truong (10.1016/j.jconrel.2022.10.046_bb0525) 2015; 12
Bai (10.1016/j.jconrel.2022.10.046_bb0425) 2018; 13
Hadji (10.1016/j.jconrel.2022.10.046_bb0495) 2022; 342
Niland (10.1016/j.jconrel.2022.10.046_bb0285) 2021; 23
Ge (10.1016/j.jconrel.2022.10.046_bb0380) 2021; 21
Huang (10.1016/j.jconrel.2022.10.046_bb0335) 2015; 9
Nakamura (10.1016/j.jconrel.2022.10.046_bb0050) 2016; 27
Yang (10.1016/j.jconrel.2022.10.046_bb0070) 2020; 41
Su (10.1016/j.jconrel.2022.10.046_bb0235) 2022; 55
Xiao (10.1016/j.jconrel.2022.10.046_bb0440) 2021; 122
Ariga (10.1016/j.jconrel.2022.10.046_bb0130) 2021; 6
Wang (10.1016/j.jconrel.2022.10.046_bb0115) 2019; 6
Zhao (10.1016/j.jconrel.2022.10.046_bb0120) 2019; 143
Zhang (10.1016/j.jconrel.2022.10.046_bb0560) 2021; 22
Bazban-Shotorbani (10.1016/j.jconrel.2022.10.046_bb0160) 2017; 253
Xiang (10.1016/j.jconrel.2022.10.046_bb0415) 2018; 6
Mirza (10.1016/j.jconrel.2022.10.046_bb0005) 2021; 69
Jahns (10.1016/j.jconrel.2022.10.046_bb0250) 2020; 8
Jenjob (10.1016/j.jconrel.2022.10.046_bb0255) 2020; 8
Le-Vinh (10.1016/j.jconrel.2022.10.046_bb0330) 2022; 5
Zhang (10.1016/j.jconrel.2022.10.046_bb0145) 2021; 21
Rennick (10.1016/j.jconrel.2022.10.046_bb0505) 2021; 16
Sethuraman (10.1016/j.jconrel.2022.10.046_bb0150) 2021; 22
Son (10.1016/j.jconrel.2022.10.046_bb0420) 2019; 138
Zhou (10.1016/j.jconrel.2022.10.046_bb0040) 2020; 240
Gong (10.1016/j.jconrel.2022.10.046_bb0210) 2020; 188
Bilardo (10.1016/j.jconrel.2022.10.046_bb0535) 2022
Sarkar (10.1016/j.jconrel.2022.10.046_bb0355) 2021; 6
Wang (10.1016/j.jconrel.2022.10.046_bb0310) 2019; 9
Wang (10.1016/j.jconrel.2022.10.046_bb0520) 2017; 3
Mi (10.1016/j.jconrel.2022.10.046_bb0280) 2020; 10
Yusa (10.1016/j.jconrel.2022.10.046_bb0215) 2022; 54
Zhou (10.1016/j.jconrel.2022.10.046_bb0395) 2018; 19
Li (10.1016/j.jconrel.2022.10.046_bb0035) 2020; 16
Yang (10.1016/j.jconrel.2022.10.046_bb0540) 2021; 6
Zhou (10.1016/j.jconrel.2022.10.046_bb0360) 2021; 87
Liu (10.1016/j.jconrel.2022.10.046_bb0265) 2021; 128
Li (10.1016/j.jconrel.2022.10.046_bb0245) 2019; 19
Chen (10.1016/j.jconrel.2022.10.046_bb0435) 2020; 14
Sun (10.1016/j.jconrel.2022.10.046_bb0240) 2020; 59
Vilches (10.1016/j.jconrel.2022.10.046_bb0530) 2020
Madathiparambil Visalakshan (10.1016/j.jconrel.2022.10.046_bb0085) 2020; 16
Kinnear (10.1016/j.jconrel.2022.10.046_bb0105) 2017; 117
Bai (10.1016/j.jconrel.2022.10.046_bb0055) 2021; 6
Liu (10.1016/j.jconrel.2022.10.046_bb0570) 2020; 10
Dai (10.1016/j.jconrel.2022.10.046_bb0075) 2017; 46
Nishikawa (10.1016/j.jconrel.2022.10.046_bb0025) 2021; 94
References_xml – volume: 15
  start-page: 4450
  year: 2021
  end-page: 4466
  ident: bb0170
  article-title: Mesoporous silica nanoparticles as pH-responsive carrier for the immune-activating drug resiquimod enhance the local immune response in mice
  publication-title: ACS Nano
– volume: 27
  start-page: 2225
  year: 2016
  end-page: 2238
  ident: bb0050
  article-title: Nanodrug delivery: is the enhanced permeability and retention effect sufficient for curing cancer?
  publication-title: Bioconjug. Chem.
– volume: 236
  start-page: 20
  year: 2011
  end-page: 29
  ident: bb0095
  article-title: Shape-specific polymeric nanomedicine: emerging opportunities and challenges
  publication-title: Exp. Biol. Med. (Maywood)
– volume: 46
  start-page: 3830
  year: 2017
  end-page: 3852
  ident: bb0075
  article-title: Nanoparticle design strategies for enhanced anticancer therapy by exploiting the tumour microenvironment
  publication-title: Chem. Soc. Rev.
– volume: 12
  start-page: 129
  year: 2015
  end-page: 142
  ident: bb0525
  article-title: The importance of nanoparticle shape in cancer drug delivery
  publication-title: Expert Opin. Drug Deliv.
– volume: 8
  start-page: 2756
  year: 2020
  end-page: 2770
  ident: bb0255
  article-title: Core-shell particles for drug-delivery, bioimaging, sensing, and tissue engineering
  publication-title: Biomater. Sci.
– volume: 138
  start-page: 133
  year: 2019
  end-page: 147
  ident: bb0420
  article-title: Light-responsive nanomedicine for biophotonic imaging and targeted therapy
  publication-title: Adv. Drug Deliv. Rev.
– volume: 16
  year: 2020
  ident: bb0085
  article-title: The influence of nanoparticle shape on protein corona formation
  publication-title: Small
– volume: 89
  start-page: 237
  year: 2018
  end-page: 244
  ident: bb0475
  article-title: Photo/pH-controlled host-guest interaction between an azobenzene-containing block copolymer and water-soluble pillar[6]arene as a strategy to construct the “compound vesicles” for controlled drug delivery
  publication-title: Mater. Sci. Eng. C Mater. Biol. Appl.
– volume: 38
  start-page: 388
  year: 2020
  end-page: 403
  ident: bb0090
  article-title: Cancer immunoimaging with smart nanoparticles
  publication-title: Trends Biotechnol.
– volume: 21
  start-page: 3342
  year: 2020
  end-page: 3352
  ident: bb0460
  article-title: Dual stimuli-responsive block copolymers with adjacent redox- and photo-cleavable linkages for smart drug delivery
  publication-title: Biomacromolecules
– volume: 13
  start-page: 11781
  year: 2019
  end-page: 11792
  ident: bb0480
  article-title: Construction of dually responsive nanotransformers with nanosphere-nanofiber-nanosphere transition for overcoming the size paradox of anticancer nanodrugs
  publication-title: ACS Nano
– volume: 42
  year: 2021
  ident: bb0175
  article-title: Advances in injectable and self-healing polysaccharide hydrogel based on the Schiff base reaction
  publication-title: Macromol. Rapid Commun.
– volume: 10
  year: 2020
  ident: bb0295
  article-title: Matrix metalloproteinases in health and disease
  publication-title: Biomolecules
– volume: 8
  start-page: 4385
  year: 2014
  end-page: 4394
  ident: bb0125
  article-title: Radioactive 198Au-doped nanostructures with different shapes for in vivo analyses of their biodistribution, tumor uptake, and intratumoral distribution
  publication-title: ACS Nano
– volume: 27
  start-page: 6125
  year: 2015
  end-page: 6130
  ident: bb0320
  article-title: In situ formation of nanofibers from Purpurin18-peptide conjugates and the assembly induced retention effect in tumor sites
  publication-title: Adv. Mater.
– volume: 6
  start-page: 148
  year: 2021
  end-page: 155
  ident: bb0355
  article-title: A study on hypoxia susceptibility of organ tissues by fluorescence imaging with a ratiometric nitroreductase probe
  publication-title: ACS Sens.
– volume: 59
  start-page: 20582
  year: 2020
  end-page: 20588
  ident: bb0240
  article-title: Acid-activatable transmorphic peptide-based nanomaterials for photodynamic therapy
  publication-title: Angew. Chem. Int. Ed. Eng.
– volume: 13
  start-page: 22204
  year: 2021
  end-page: 22212
  ident: bb0450
  article-title: Dual-stimuli-responsive nanotheranostics for dual-targeting photothermal-enhanced chemotherapy of tumor
  publication-title: ACS Appl. Mater. Interfaces
– volume: 9
  start-page: 8615
  year: 2021
  end-page: 8625
  ident: bb0390
  article-title: A photo-responsive membrane for tailored drug delivery with spatially and temporally controlled release
  publication-title: J. Mater. Chem. B
– volume: 128
  start-page: 474
  year: 2021
  end-page: 485
  ident: bb0265
  article-title: Shape switching of CaCO3-templated nanorods into stiffness-adjustable nanocapsules to promote efficient drug delivery
  publication-title: Acta Biomater.
– start-page: 307
  year: 2020
  end-page: 352
  ident: bb0530
  article-title: Targeted hyperthermia with plasmonic nanoparticles
  publication-title: Colloids for Nanobiotechnology - Synthesis, Characterization and Potential Applications
– volume: 8
  start-page: 776
  year: 2020
  end-page: 786
  ident: bb0250
  article-title: Nanoporous hybrid core-shell nanoparticles for sequential release
  publication-title: J. Mater. Chem. B
– volume: 20
  start-page: 1286
  year: 2020
  end-page: 1295
  ident: bb0490
  article-title: Photothermal-promoted morphology transformation in vivo monitored by photoacoustic imaging
  publication-title: Nano Lett.
– volume: 10
  start-page: 4557
  year: 2020
  end-page: 4588
  ident: bb0280
  article-title: Stimuli-responsive nanocarriers for drug delivery, tumor imaging, therapy and theranostics
  publication-title: Theranostics
– volume: 31
  start-page: 438
  year: 2010
  end-page: 448
  ident: bb0515
  article-title: The effect of the shape of mesoporous silica nanoparticles on cellular uptake and cell function
  publication-title: Biomaterials
– volume: 21
  start-page: 3218
  year: 2021
  end-page: 3224
  ident: bb0380
  article-title: Light-activated hypoxia-sensitive covalent organic framework for tandem-responsive drug delivery
  publication-title: Nano Lett.
– volume: 9
  start-page: 707319
  year: 2021
  ident: bb0565
  article-title: Stimuli-responsive polymeric nanoplatforms for cancer therapy
  publication-title: Front. Bioeng. Biotechnol.
– volume: 87
  year: 2021
  ident: bb0360
  article-title: Nitroreductase increases menadione-mediated oxidative stress in aspergillus nidulans
  publication-title: Appl. Environ. Microbiol.
– volume: 183
  start-page: 114177
  year: 2022
  ident: bb0585
  article-title: Tumor-activated carrier-free prodrug nanoparticles for targeted cancer immunotherapy: preclinical evidence for safe and effective drug delivery
  publication-title: Adv. Drug Deliv. Rev.
– volume: 15
  start-page: 311
  year: 2020
  end-page: 325
  ident: bb0465
  article-title: Redox dual-stimuli responsive drug delivery systems for improving tumor-targeting ability and reducing adverse side effects
  publication-title: Asian J. Pharm. Sci.
– volume: 19
  start-page: 202
  year: 2018
  end-page: 212
  ident: bb0185
  article-title: Smart drug delivery systems in cancer therapy
  publication-title: Curr. Drug Targets
– volume: 56
  start-page: 6949
  year: 2020
  end-page: 6952
  ident: bb0350
  article-title: A nitroreductase and glutathione responsive nanoplatform for integration of gene delivery and near-infrared fluorescence imaging
  publication-title: Chem. Commun. (Camb.)
– volume: 117
  start-page: 11476
  year: 2017
  end-page: 11521
  ident: bb0105
  article-title: Form follows function: nanoparticle shape and its implications for nanomedicine
  publication-title: Chem. Rev.
– volume: 9
  start-page: 5472
  year: 2021
  end-page: 5483
  ident: bb0430
  article-title: Recent advances in near infrared light responsive multi-functional nanostructures for phototheranostic applications
  publication-title: Biomater. Sci.
– volume: 143
  start-page: 13854
  year: 2021
  end-page: 13864
  ident: bb0365
  article-title: Noncanonical amino acids for hypoxia-responsive peptide self-assembly and fluorescence
  publication-title: J. Am. Chem. Soc.
– volume: 50
  start-page: 5397
  year: 2021
  end-page: 5434
  ident: bb0510
  article-title: Understanding nanoparticle endocytosis to improve targeting strategies in nanomedicine
  publication-title: Chem. Soc. Rev.
– volume: 16
  start-page: 1570
  year: 2020
  end-page: 1587
  ident: bb0035
  article-title: Multistage nanoparticle delivery system-a new approach to cancer therapeutics
  publication-title: J. Biomed. Nanotechnol.
– volume: 10
  start-page: 21021
  year: 2018
  end-page: 21034
  ident: bb0405
  article-title: Applications of light-responsive systems for cancer theranostics
  publication-title: ACS Appl. Mater. Interfaces
– volume: 8
  start-page: 3801
  year: 2020
  end-page: 3813
  ident: bb0020
  article-title: Tumor-mediated shape-transformable nanogels with pH/redox/enzymatic-sensitivity for anticancer therapy
  publication-title: J. Mater. Chem. B
– volume: 13
  start-page: 3903
  year: 2018
  end-page: 3911
  ident: bb0425
  article-title: Photo- and pH- dual-responsive beta-cyclodextrin-based supramolecular prodrug complex self-assemblies for programmed drug delivery
  publication-title: Chem. Asian J.
– volume: 308
  start-page: 172
  year: 2019
  end-page: 189
  ident: bb0270
  article-title: Enzyme responsive drug delivery systems in cancer treatment
  publication-title: J. Control. Release
– volume: 9
  start-page: 406
  year: 2021
  end-page: 421
  ident: bb0575
  article-title: Recent advances in stimuli-responsive in situ self-assembly of small molecule probes for in vivo imaging of enzymatic activity
  publication-title: Biomater. Sci.
– volume: 6
  start-page: 1973
  year: 2021
  end-page: 1987
  ident: bb0540
  article-title: The application of nanoparticles in cancer immunotherapy: targeting tumor microenvironment
  publication-title: Bioact. Mater.
– volume: 58
  start-page: 4632
  year: 2019
  end-page: 4637
  ident: bb0220
  article-title: Microenvironment-induced in situ self-assembly of polymer-peptide conjugates that attack solid tumors deeply
  publication-title: Angew. Chem. Int. Ed. Eng.
– volume: 6
  start-page: 100
  year: 2020
  end-page: 116
  ident: bb0080
  article-title: Size-tunable strategies for a tumor targeted drug delivery system
  publication-title: ACS Cent. Sci.
– volume: 22
  start-page: 3168
  year: 2021
  end-page: 3201
  ident: bb0560
  article-title: Polymer-functionalized upconversion nanoparticles for light/imaging-guided drug delivery
  publication-title: Biomacromolecules
– volume: 22
  start-page: 947
  year: 2021
  end-page: 966
  ident: bb0150
  article-title: Recent progress in stimuli-responsive intelligent nano scale drug delivery systems: a special focus towards pH-sensitive systems
  publication-title: Curr. Drug Targets
– volume: 116
  start-page: 111250
  year: 2020
  ident: bb0065
  article-title: Multi-transformable nanocarrier with tumor extracellular acidity-activated charge reversal, size reduction and ligand reemergence for in vitro efficient doxorubicin loading and delivery
  publication-title: Mater. Sci. Eng. C Mater. Biol. Appl.
– volume: 13
  start-page: 100170
  year: 2022
  ident: bb0300
  article-title: Immunologically modified enzyme-responsive micelles regulate the tumor microenvironment for cancer immunotherapy
  publication-title: Mater. Today Bio
– volume: 13
  start-page: 21076
  year: 2021
  end-page: 21086
  ident: bb0455
  article-title: Dual-stimuli responsive polymeric micelles for the effective treatment of rheumatoid arthritis
  publication-title: ACS Appl. Mater. Interfaces
– volume: 11
  start-page: 3178
  year: 2017
  end-page: 3188
  ident: bb0200
  article-title: Tumor-triggered geometrical shape switch of chimeric peptide for enhanced in vivo tumor internalization and photodynamic therapy
  publication-title: ACS Nano
– volume: 22
  start-page: 126
  year: 2021
  end-page: 133
  ident: bb0110
  article-title: Exploring the impact of morphology on the properties of biodegradable nanoparticles and their diffusion in complex biological medium
  publication-title: Biomacromolecules
– volume: 9
  start-page: 9517
  year: 2015
  end-page: 9527
  ident: bb0335
  article-title: Tumor-specific formation of enzyme-instructed supramolecular self-assemblies as cancer theranostics
  publication-title: ACS Nano
– volume: 94
  start-page: 2302
  year: 2021
  end-page: 2312
  ident: bb0025
  article-title: Conjugation of phenylboronic acid moiety through multistep organic transformations on nanodiamond surface for an anticancer nanodrug for boron neutron capture therapy
  publication-title: Bull. Chem. Soc. Jpn.
– volume: 6
  start-page: 364
  year: 2021
  end-page: 378
  ident: bb0130
  article-title: Nanoarchitectonics: what's coming next after nanotechnology?
  publication-title: Nanoscale Horiz.
– volume: 27
  start-page: 4611
  year: 2015
  end-page: 4615
  ident: bb0305
  article-title: Therapeutic enzyme-responsive nanoparticles for targeted delivery and accumulation in tumors
  publication-title: Adv. Mater.
– volume: 597
  start-page: 120326
  year: 2021
  ident: bb0385
  article-title: Light-responsive polymeric nanoparticles based on a novel nitropiperonal based polyester as drug delivery systems for photosensitizers in PDT
  publication-title: Int. J. Pharm.
– volume: 143
  start-page: 3
  year: 2019
  end-page: 21
  ident: bb0120
  article-title: Effect of physicochemical and surface properties on in vivo fate of drug nanocarriers
  publication-title: Adv. Drug Deliv. Rev.
– volume: 9
  start-page: 1728
  year: 2019
  end-page: 1740
  ident: bb0310
  article-title: MMP-2-controlled transforming micelles for heterogeneic targeting and programmable cancer therapy
  publication-title: Theranostics
– year: 2022
  ident: bb0535
  article-title: Influence of surface chemistry and morphology of nanoparticles on protein corona formation
  publication-title: Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol.
– volume: 13
  start-page: 54715
  year: 2021
  end-page: 54726
  ident: bb0605
  article-title: Precise control of shape-variable nanomicelles in nanofibers reveals the enhancement mechanism of passive delivery
  publication-title: ACS Appl. Mater. Interfaces
– volume: 14
  start-page: 3640
  year: 2020
  end-page: 3650
  ident: bb0435
  article-title: Near-infrared laser-triggered in situ dimorphic transformation of BF2-azadipyrromethene nanoaggregates for enhanced solid tumor penetration
  publication-title: ACS Nano
– volume: 8
  start-page: 5931
  year: 2020
  end-page: 5940
  ident: bb0060
  article-title: An NIR-activated polymeric nanoplatform with ROS- and temperature-sensitivity for combined photothermal therapy and chemotherapy of pancreatic cancer
  publication-title: Biomater. Sci.
– volume: 20
  start-page: 101
  year: 2021
  end-page: 124
  ident: bb0015
  article-title: Engineering precision nanoparticles for drug delivery
  publication-title: Nat. Rev. Drug Discov.
– volume: 54
  start-page: 235
  year: 2022
  end-page: 242
  ident: bb0215
  article-title: Development and application of pH-responsive polymers
  publication-title: Polym. J.
– volume: 19
  start-page: 1840
  year: 2018
  end-page: 1857
  ident: bb0395
  article-title: Photoresponsive drug/gene delivery systems
  publication-title: Biomacromolecules
– volume: 41
  year: 2020
  ident: bb0070
  article-title: Recent advances of pH-induced charge-convertible polymer-mediated inorganic nanoparticles for biomedical applications
  publication-title: Macromol. Rapid Commun.
– volume: 17
  year: 2021
  ident: bb0555
  article-title: Nonspherical metal-based nanoarchitectures: synthesis and impact of size, shape, and composition on their biological activity
  publication-title: Small
– volume: 171
  start-page: 94
  year: 2021
  end-page: 107
  ident: bb0370
  article-title: Targeting drug delivery with light: a highly focused approach
  publication-title: Adv. Drug Deliv. Rev.
– volume: 342
  start-page: 93
  year: 2022
  end-page: 110
  ident: bb0495
  article-title: Effect of micro- and nanoparticle shape on biological processes
  publication-title: J. Control. Release
– volume: 10
  year: 2020
  ident: bb0570
  article-title: Recent progress in the development of multifunctional nanoplatform for precise tumor phototherapy
  publication-title: Adv. Healthc. Mater.
– volume: 13
  start-page: 12912
  year: 2019
  end-page: 12928
  ident: bb0260
  article-title: Tumor microenvironment responsive shape-reversal self-targeting virus-inspired nanodrug for imaging-guided near-infrared-II photothermal chemotherapy
  publication-title: ACS Nano
– volume: 3
  start-page: 839
  year: 2017
  end-page: 846
  ident: bb0520
  article-title: Facile synthesis of uniform virus-like mesoporous silica nanoparticles for enhanced cellular internalization
  publication-title: ACS Cent. Sci.
– volume: 18
  year: 2022
  ident: bb0595
  article-title: Design of smart size-, surface-, and shape-switching nanoparticles to improve therapeutic efficacy
  publication-title: Small
– volume: 12
  start-page: 8978
  year: 2020
  end-page: 8988
  ident: bb0045
  article-title: Sequential intra-intercellular delivery of nanomedicine for deep drug-resistant solid tumor penetration
  publication-title: ACS Appl. Mater. Interfaces
– volume: 57
  start-page: 9489
  year: 2021
  end-page: 9503
  ident: bb0165
  article-title: Stimuli-responsive polypeptides for controlled drug delivery
  publication-title: Chem. Commun. (Camb.)
– volume: 69
  start-page: 166
  year: 2021
  end-page: 177
  ident: bb0010
  article-title: Specific targeting cancer cells with nanoparticles and drug delivery in cancer therapy
  publication-title: Semin. Cancer Biol.
– volume: 11
  start-page: 2595
  year: 2022
  end-page: 2631
  ident: bb0550
  article-title: Recent developments and applications of smart nanoparticles in biomedicine
  publication-title: Nanotechnol. Rev.
– volume: 8
  start-page: 14943
  year: 2017
  ident: bb0230
  article-title: Stimuli-controlled self-assembly of diverse tubular aggregates from one single small monomer
  publication-title: Nat. Commun.
– volume: 8
  start-page: 1497
  year: 2019
  end-page: 1509
  ident: bb0410
  article-title: “Smart” materials-based near-infrared light-responsive drug delivery systems for cancer treatment: a review
  publication-title: J. Mater. Res. Technol.
– volume: 22
  start-page: 845
  year: 2021
  end-page: 855
  ident: bb0275
  article-title: Endogenous enzyme-responsive nanoplatforms for anti-tumor therapy
  publication-title: Curr. Drug Targets
– volume: 5
  year: 2022
  ident: bb0330
  article-title: Alkaline phosphatase: a reliable endogenous partner for drug delivery and diagnostics
  publication-title: Adv. Ther.
– volume: 9
  start-page: 16043
  year: 2017
  end-page: 16053
  ident: bb0205
  article-title: Acidity-triggered tumor retention/internalization of chimeric peptide for enhanced photodynamic therapy and real-time monitoring of therapeutic effects
  publication-title: ACS Appl. Mater. Interfaces
– volume: 583
  start-page: 470
  year: 2021
  end-page: 486
  ident: bb0445
  article-title: Temperature and pH dual-stimuli-responsive phase-change microcapsules for multipurpose applications in smart drug delivery
  publication-title: J. Colloid Interface Sci.
– volume: 18
  start-page: 2039
  year: 2021
  end-page: 2052
  ident: bb0315
  article-title: Morphology/interstitial fluid pressure-tunable nanopomegranate designed by alteration of membrane fluidity under tumor enzyme and PEGylation
  publication-title: Mol. Pharm.
– year: 2021
  ident: bb0190
  article-title: Block copolymer solution self-assembly: recent advances, emerging trends, and applications
  publication-title: J. Polym. Sci.
– volume: 4
  start-page: 24
  year: 2021
  end-page: 46
  ident: bb0580
  article-title: Self-assembled peptide drug delivery systems
  publication-title: ACS Appl. Bio. Mater.
– volume: 163
  start-page: 109
  year: 2021
  end-page: 119
  ident: bb0325
  article-title: Size shifting of solid lipid nanoparticle system triggered by alkaline phosphatase for site specific mucosal drug delivery
  publication-title: Eur. J. Pharm. Biopharm.
– volume: 240
  start-page: 119902
  year: 2020
  ident: bb0040
  article-title: Tumor extravasation and infiltration as barriers of nanomedicine for high efficacy: the current status and transcytosis strategy
  publication-title: Biomaterials
– volume: 15
  year: 2019
  ident: bb0400
  article-title: Remote light-responsive nanocarriers for controlled drug delivery: advances and perspectives
  publication-title: Small
– volume: 55
  start-page: 1067
  year: 2022
  end-page: 1076
  ident: bb0235
  article-title: Hydrogen-bond-regulated platelet micelles by crystallization-driven self-assembly and templated growth for poly(ε-caprolactone) block copolymers
  publication-title: Macromolecules
– volume: 177
  start-page: 113807
  year: 2021
  ident: bb0135
  article-title: Non-spherical micro- and nanoparticles for drug delivery: Progress over 15 years
  publication-title: Adv. Drug Deliv. Rev.
– volume: 16
  start-page: 266
  year: 2021
  end-page: 276
  ident: bb0505
  article-title: Key principles and methods for studying the endocytosis of biological and nanoparticle therapeutics
  publication-title: Nat. Nanotechnol.
– volume: 14
  start-page: 85
  year: 2021
  ident: bb0030
  article-title: Nanomaterials for cancer therapy: current progress and perspectives
  publication-title: J. Hematol. Oncol.
– year: 2022
  ident: bb0155
  article-title: Biomimetic nanoerythrosome-coated aptamer-DNA tetrahedron/maytansine conjugates: pH-responsive and targeted cytotoxicity for HER2-positive breast cancer
  publication-title: Adv. Mater.
– volume: 6
  start-page: 1538
  year: 2019
  end-page: 1547
  ident: bb0115
  article-title: The impact of nanoparticle shape on cellular internalisation and transport: what do the different analysis methods tell us?
  publication-title: Mater. Horiz.
– volume: 34
  start-page: 3647
  year: 2013
  end-page: 3657
  ident: bb0470
  article-title: Dual and multi-stimuli responsive polymeric nanoparticles for programmed site-specific drug delivery
  publication-title: Biomaterials
– volume: 41
  year: 2020
  ident: bb0375
  article-title: Visible light-responsive drug delivery nanoparticle via donor-acceptor stenhouse adducts (DASA)
  publication-title: Macromol. Rapid Commun.
– volume: 31
  year: 2021
  ident: bb0485
  article-title: Shape transformable strategies for drug delivery
  publication-title: Adv. Funct. Mater.
– volume: 21
  start-page: 7855
  year: 2021
  end-page: 7861
  ident: bb0145
  article-title: A pH-responsive phase-transition polymer with high serum stability in cytosolic protein delivery
  publication-title: Nano Lett.
– volume: 122
  start-page: 291
  year: 2021
  end-page: 305
  ident: bb0440
  article-title: Dual stimuli-responsive metal-organic framework-based nanosystem for synergistic photothermal/pharmacological antibacterial therapy
  publication-title: Acta Biomater.
– volume: 48
  start-page: 5140
  year: 2019
  end-page: 5176
  ident: bb0140
  article-title: Anisotropic nanomaterials for shape-dependent physicochemical and biomedical applications
  publication-title: Chem. Soc. Rev.
– volume: 135
  start-page: 17617
  year: 2013
  end-page: 17629
  ident: bb0100
  article-title: Polyprodrug amphiphiles: hierarchical assemblies for shape-regulated cellular internalization, trafficking, and drug delivery
  publication-title: J. Am. Chem. Soc.
– volume: 61
  start-page: 269
  year: 2021
  end-page: 289
  ident: bb0545
  article-title: Nanoparticle toxicology
  publication-title: Annu. Rev. Pharmacol. Toxicol.
– volume: 96
  start-page: 1
  year: 2016
  end-page: 10
  ident: bb0345
  article-title: Transformable DNA nanocarriers for plasma membrane targeted delivery of cytokine
  publication-title: Biomaterials
– volume: 69
  start-page: 226
  year: 2021
  end-page: 237
  ident: bb0005
  article-title: Nanoparticles-based drug delivery and gene therapy for breast cancer: recent advancements and future challenges
  publication-title: Semin. Cancer Biol.
– volume: 19
  start-page: 7965
  year: 2019
  end-page: 7976
  ident: bb0245
  article-title: Proline isomerization-regulated tumor microenvironment-adaptable self-assembly of peptides for enhanced therapeutic efficacy
  publication-title: Nano Lett.
– volume: 34
  start-page: 395
  year: 2018
  end-page: 405
  ident: bb0340
  article-title: Phospholipase A2-induced degradation and release from lipid-containing polymersomes
  publication-title: Langmuir
– volume: 11
  start-page: 3710
  year: 2018
  end-page: 3721
  ident: bb0225
  article-title: Highly uniform ultrasound-sensitive nanospheres produced by a pH-induced micelle-to-vesicle transition for tumor-targeted drug delivery
  publication-title: Nano Res.
– volume: 4
  start-page: 612
  year: 2021
  end-page: 626
  ident: bb0180
  article-title: pH-sensitive polymeric nanocarriers for antitumor biotherapeutic molecules targeting delivery
  publication-title: Bio-Des. Manuf.
– volume: 6
  start-page: 3531
  year: 2018
  end-page: 3540
  ident: bb0415
  article-title: Near-infrared light-triggered drug release from UV-responsive diblock copolymer-coated upconversion nanoparticles with high monodispersity
  publication-title: J. Mater. Chem. B
– volume: 8
  year: 2019
  ident: bb0590
  article-title: Nonspherical nanoparticle shape stability is affected by complex manufacturing aspects: its implications for drug delivery and targeting
  publication-title: Adv. Healthc. Mater.
– volume: 188
  start-page: 110811
  year: 2020
  ident: bb0210
  article-title: pH-triggered geometrical shape switching of a cationic peptide nanoparticle for cellular uptake and drug delivery
  publication-title: Colloids Surf. B: Biointerfaces
– volume: 39
  start-page: 766
  year: 2018
  end-page: 781
  ident: bb0290
  article-title: MMP-responsive ‘smart’ drug delivery and tumor targeting
  publication-title: Trends Pharmacol. Sci.
– volume: 2020
  start-page: 5194780
  year: 2020
  ident: bb0500
  article-title: Physical properties of nanoparticles that result in improved cancer targeting
  publication-title: J. Oncol.
– volume: 9
  start-page: 38
  year: 2021
  end-page: 50
  ident: bb0195
  article-title: Polymerisation-induced self-assembly (PISA) as a straightforward formulation strategy for stimuli-responsive drug delivery systems and biomaterials: recent advances
  publication-title: Biomater. Sci.
– volume: 6
  start-page: 2894
  year: 2021
  end-page: 2904
  ident: bb0055
  article-title: Cylindrical polymer brushes-anisotropic unimolecular micelle drug delivery system for enhancing the effectiveness of chemotherapy
  publication-title: Bioact. Mater.
– volume: 253
  start-page: 46
  year: 2017
  end-page: 63
  ident: bb0160
  article-title: Revisiting structure-property relationship of pH-responsive polymers for drug delivery applications
  publication-title: J. Control. Release
– volume: 23
  year: 2021
  ident: bb0285
  article-title: Matrix metalloproteinases shape the tumor microenvironment in cancer progression
  publication-title: Int. J. Mol. Sci.
– volume: 11
  start-page: 1420
  year: 2020
  ident: bb0600
  article-title: Exploiting the role of nanoparticle shape in enhancing hydrogel adhesive and mechanical properties
  publication-title: Nat. Commun.
– volume: 11
  start-page: 2595
  issue: 1
  year: 2022
  ident: 10.1016/j.jconrel.2022.10.046_bb0550
  article-title: Recent developments and applications of smart nanoparticles in biomedicine
  publication-title: Nanotechnol. Rev.
  doi: 10.1515/ntrev-2022-0148
– year: 2021
  ident: 10.1016/j.jconrel.2022.10.046_bb0190
  article-title: Block copolymer solution self-assembly: recent advances, emerging trends, and applications
  publication-title: J. Polym. Sci.
  doi: 10.1002/pol.20210430
– volume: 9
  start-page: 5472
  issue: 16
  year: 2021
  ident: 10.1016/j.jconrel.2022.10.046_bb0430
  article-title: Recent advances in near infrared light responsive multi-functional nanostructures for phototheranostic applications
  publication-title: Biomater. Sci.
  doi: 10.1039/D1BM00631B
– volume: 15
  issue: 45
  year: 2019
  ident: 10.1016/j.jconrel.2022.10.046_bb0400
  article-title: Remote light-responsive nanocarriers for controlled drug delivery: advances and perspectives
  publication-title: Small
  doi: 10.1002/smll.201903060
– volume: 10
  issue: 8
  year: 2020
  ident: 10.1016/j.jconrel.2022.10.046_bb0295
  article-title: Matrix metalloproteinases in health and disease
  publication-title: Biomolecules
  doi: 10.3390/biom10081138
– volume: 308
  start-page: 172
  year: 2019
  ident: 10.1016/j.jconrel.2022.10.046_bb0270
  article-title: Enzyme responsive drug delivery systems in cancer treatment
  publication-title: J. Control. Release
  doi: 10.1016/j.jconrel.2019.07.004
– volume: 13
  start-page: 11781
  issue: 10
  year: 2019
  ident: 10.1016/j.jconrel.2022.10.046_bb0480
  article-title: Construction of dually responsive nanotransformers with nanosphere-nanofiber-nanosphere transition for overcoming the size paradox of anticancer nanodrugs
  publication-title: ACS Nano
  doi: 10.1021/acsnano.9b05749
– start-page: 307
  year: 2020
  ident: 10.1016/j.jconrel.2022.10.046_bb0530
  article-title: Targeted hyperthermia with plasmonic nanoparticles
– volume: 20
  start-page: 1286
  issue: 2
  year: 2020
  ident: 10.1016/j.jconrel.2022.10.046_bb0490
  article-title: Photothermal-promoted morphology transformation in vivo monitored by photoacoustic imaging
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.9b04752
– volume: 9
  start-page: 707319
  year: 2021
  ident: 10.1016/j.jconrel.2022.10.046_bb0565
  article-title: Stimuli-responsive polymeric nanoplatforms for cancer therapy
  publication-title: Front. Bioeng. Biotechnol.
  doi: 10.3389/fbioe.2021.707319
– volume: 4
  start-page: 24
  issue: 1
  year: 2021
  ident: 10.1016/j.jconrel.2022.10.046_bb0580
  article-title: Self-assembled peptide drug delivery systems
  publication-title: ACS Appl. Bio. Mater.
  doi: 10.1021/acsabm.0c00707
– volume: 15
  start-page: 4450
  issue: 3
  year: 2021
  ident: 10.1016/j.jconrel.2022.10.046_bb0170
  article-title: Mesoporous silica nanoparticles as pH-responsive carrier for the immune-activating drug resiquimod enhance the local immune response in mice
  publication-title: ACS Nano
  doi: 10.1021/acsnano.0c08384
– volume: 16
  issue: 25
  year: 2020
  ident: 10.1016/j.jconrel.2022.10.046_bb0085
  article-title: The influence of nanoparticle shape on protein corona formation
  publication-title: Small
– volume: 6
  start-page: 1973
  issue: 7
  year: 2021
  ident: 10.1016/j.jconrel.2022.10.046_bb0540
  article-title: The application of nanoparticles in cancer immunotherapy: targeting tumor microenvironment
  publication-title: Bioact. Mater.
  doi: 10.1016/j.bioactmat.2020.12.010
– volume: 48
  start-page: 5140
  issue: 19
  year: 2019
  ident: 10.1016/j.jconrel.2022.10.046_bb0140
  article-title: Anisotropic nanomaterials for shape-dependent physicochemical and biomedical applications
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C9CS00011A
– volume: 21
  start-page: 3342
  issue: 8
  year: 2020
  ident: 10.1016/j.jconrel.2022.10.046_bb0460
  article-title: Dual stimuli-responsive block copolymers with adjacent redox- and photo-cleavable linkages for smart drug delivery
  publication-title: Biomacromolecules
  doi: 10.1021/acs.biomac.0c00773
– volume: 13
  start-page: 22204
  issue: 19
  year: 2021
  ident: 10.1016/j.jconrel.2022.10.046_bb0450
  article-title: Dual-stimuli-responsive nanotheranostics for dual-targeting photothermal-enhanced chemotherapy of tumor
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.1c03211
– volume: 9
  start-page: 1728
  issue: 6
  year: 2019
  ident: 10.1016/j.jconrel.2022.10.046_bb0310
  article-title: MMP-2-controlled transforming micelles for heterogeneic targeting and programmable cancer therapy
  publication-title: Theranostics
  doi: 10.7150/thno.30915
– volume: 8
  start-page: 5931
  issue: 21
  year: 2020
  ident: 10.1016/j.jconrel.2022.10.046_bb0060
  article-title: An NIR-activated polymeric nanoplatform with ROS- and temperature-sensitivity for combined photothermal therapy and chemotherapy of pancreatic cancer
  publication-title: Biomater. Sci.
  doi: 10.1039/D0BM01324B
– volume: 87
  issue: 24
  year: 2021
  ident: 10.1016/j.jconrel.2022.10.046_bb0360
  article-title: Nitroreductase increases menadione-mediated oxidative stress in aspergillus nidulans
  publication-title: Appl. Environ. Microbiol.
  doi: 10.1128/AEM.01758-21
– volume: 46
  start-page: 3830
  issue: 12
  year: 2017
  ident: 10.1016/j.jconrel.2022.10.046_bb0075
  article-title: Nanoparticle design strategies for enhanced anticancer therapy by exploiting the tumour microenvironment
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C6CS00592F
– volume: 10
  issue: 1
  year: 2020
  ident: 10.1016/j.jconrel.2022.10.046_bb0570
  article-title: Recent progress in the development of multifunctional nanoplatform for precise tumor phototherapy
  publication-title: Adv. Healthc. Mater.
  doi: 10.1002/adhm.202001207
– volume: 69
  start-page: 226
  year: 2021
  ident: 10.1016/j.jconrel.2022.10.046_bb0005
  article-title: Nanoparticles-based drug delivery and gene therapy for breast cancer: recent advancements and future challenges
  publication-title: Semin. Cancer Biol.
  doi: 10.1016/j.semcancer.2019.10.020
– volume: 27
  start-page: 4611
  issue: 31
  year: 2015
  ident: 10.1016/j.jconrel.2022.10.046_bb0305
  article-title: Therapeutic enzyme-responsive nanoparticles for targeted delivery and accumulation in tumors
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201501803
– volume: 4
  start-page: 612
  issue: 3
  year: 2021
  ident: 10.1016/j.jconrel.2022.10.046_bb0180
  article-title: pH-sensitive polymeric nanocarriers for antitumor biotherapeutic molecules targeting delivery
  publication-title: Bio-Des. Manuf.
  doi: 10.1007/s42242-020-00105-4
– volume: 55
  start-page: 1067
  issue: 3
  year: 2022
  ident: 10.1016/j.jconrel.2022.10.046_bb0235
  article-title: Hydrogen-bond-regulated platelet micelles by crystallization-driven self-assembly and templated growth for poly(ε-caprolactone) block copolymers
  publication-title: Macromolecules
  doi: 10.1021/acs.macromol.1c02402
– volume: 31
  issue: 18
  year: 2021
  ident: 10.1016/j.jconrel.2022.10.046_bb0485
  article-title: Shape transformable strategies for drug delivery
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202009765
– volume: 122
  start-page: 291
  year: 2021
  ident: 10.1016/j.jconrel.2022.10.046_bb0440
  article-title: Dual stimuli-responsive metal-organic framework-based nanosystem for synergistic photothermal/pharmacological antibacterial therapy
  publication-title: Acta Biomater.
  doi: 10.1016/j.actbio.2020.12.045
– volume: 6
  start-page: 364
  issue: 5
  year: 2021
  ident: 10.1016/j.jconrel.2022.10.046_bb0130
  article-title: Nanoarchitectonics: what's coming next after nanotechnology?
  publication-title: Nanoscale Horiz.
  doi: 10.1039/D0NH00680G
– volume: 117
  start-page: 11476
  issue: 17
  year: 2017
  ident: 10.1016/j.jconrel.2022.10.046_bb0105
  article-title: Form follows function: nanoparticle shape and its implications for nanomedicine
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.7b00194
– volume: 21
  start-page: 3218
  issue: 7
  year: 2021
  ident: 10.1016/j.jconrel.2022.10.046_bb0380
  article-title: Light-activated hypoxia-sensitive covalent organic framework for tandem-responsive drug delivery
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.1c00488
– volume: 27
  start-page: 6125
  issue: 40
  year: 2015
  ident: 10.1016/j.jconrel.2022.10.046_bb0320
  article-title: In situ formation of nanofibers from Purpurin18-peptide conjugates and the assembly induced retention effect in tumor sites
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201502598
– volume: 13
  start-page: 21076
  issue: 18
  year: 2021
  ident: 10.1016/j.jconrel.2022.10.046_bb0455
  article-title: Dual-stimuli responsive polymeric micelles for the effective treatment of rheumatoid arthritis
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.1c04953
– volume: 3
  start-page: 839
  issue: 8
  year: 2017
  ident: 10.1016/j.jconrel.2022.10.046_bb0520
  article-title: Facile synthesis of uniform virus-like mesoporous silica nanoparticles for enhanced cellular internalization
  publication-title: ACS Cent. Sci.
  doi: 10.1021/acscentsci.7b00257
– volume: 42
  issue: 10
  year: 2021
  ident: 10.1016/j.jconrel.2022.10.046_bb0175
  article-title: Advances in injectable and self-healing polysaccharide hydrogel based on the Schiff base reaction
  publication-title: Macromol. Rapid Commun.
  doi: 10.1002/marc.202100025
– volume: 10
  start-page: 4557
  issue: 10
  year: 2020
  ident: 10.1016/j.jconrel.2022.10.046_bb0280
  article-title: Stimuli-responsive nanocarriers for drug delivery, tumor imaging, therapy and theranostics
  publication-title: Theranostics
  doi: 10.7150/thno.38069
– volume: 69
  start-page: 166
  year: 2021
  ident: 10.1016/j.jconrel.2022.10.046_bb0010
  article-title: Specific targeting cancer cells with nanoparticles and drug delivery in cancer therapy
  publication-title: Semin. Cancer Biol.
  doi: 10.1016/j.semcancer.2019.11.002
– volume: 8
  start-page: 14943
  year: 2017
  ident: 10.1016/j.jconrel.2022.10.046_bb0230
  article-title: Stimuli-controlled self-assembly of diverse tubular aggregates from one single small monomer
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms14943
– volume: 12
  start-page: 8978
  issue: 8
  year: 2020
  ident: 10.1016/j.jconrel.2022.10.046_bb0045
  article-title: Sequential intra-intercellular delivery of nanomedicine for deep drug-resistant solid tumor penetration
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.9b20062
– volume: 21
  start-page: 7855
  issue: 18
  year: 2021
  ident: 10.1016/j.jconrel.2022.10.046_bb0145
  article-title: A pH-responsive phase-transition polymer with high serum stability in cytosolic protein delivery
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.1c03031
– volume: 138
  start-page: 133
  year: 2019
  ident: 10.1016/j.jconrel.2022.10.046_bb0420
  article-title: Light-responsive nanomedicine for biophotonic imaging and targeted therapy
  publication-title: Adv. Drug Deliv. Rev.
  doi: 10.1016/j.addr.2018.10.002
– volume: 8
  issue: 18
  year: 2019
  ident: 10.1016/j.jconrel.2022.10.046_bb0590
  article-title: Nonspherical nanoparticle shape stability is affected by complex manufacturing aspects: its implications for drug delivery and targeting
  publication-title: Adv. Healthc. Mater.
  doi: 10.1002/adhm.201900352
– volume: 22
  start-page: 126
  issue: 1
  year: 2021
  ident: 10.1016/j.jconrel.2022.10.046_bb0110
  article-title: Exploring the impact of morphology on the properties of biodegradable nanoparticles and their diffusion in complex biological medium
  publication-title: Biomacromolecules
  doi: 10.1021/acs.biomac.0c00726
– volume: 13
  start-page: 100170
  year: 2022
  ident: 10.1016/j.jconrel.2022.10.046_bb0300
  article-title: Immunologically modified enzyme-responsive micelles regulate the tumor microenvironment for cancer immunotherapy
  publication-title: Mater. Today Bio
  doi: 10.1016/j.mtbio.2021.100170
– volume: 57
  start-page: 9489
  issue: 75
  year: 2021
  ident: 10.1016/j.jconrel.2022.10.046_bb0165
  article-title: Stimuli-responsive polypeptides for controlled drug delivery
  publication-title: Chem. Commun. (Camb.)
  doi: 10.1039/D1CC04053G
– volume: 39
  start-page: 766
  issue: 8
  year: 2018
  ident: 10.1016/j.jconrel.2022.10.046_bb0290
  article-title: MMP-responsive ‘smart’ drug delivery and tumor targeting
  publication-title: Trends Pharmacol. Sci.
  doi: 10.1016/j.tips.2018.06.003
– volume: 23
  issue: 1
  year: 2021
  ident: 10.1016/j.jconrel.2022.10.046_bb0285
  article-title: Matrix metalloproteinases shape the tumor microenvironment in cancer progression
  publication-title: Int. J. Mol. Sci.
  doi: 10.3390/ijms23010146
– volume: 56
  start-page: 6949
  issue: 51
  year: 2020
  ident: 10.1016/j.jconrel.2022.10.046_bb0350
  article-title: A nitroreductase and glutathione responsive nanoplatform for integration of gene delivery and near-infrared fluorescence imaging
  publication-title: Chem. Commun. (Camb.)
  doi: 10.1039/C9CC10071G
– volume: 8
  start-page: 3801
  issue: 17
  year: 2020
  ident: 10.1016/j.jconrel.2022.10.046_bb0020
  article-title: Tumor-mediated shape-transformable nanogels with pH/redox/enzymatic-sensitivity for anticancer therapy
  publication-title: J. Mater. Chem. B
  doi: 10.1039/D0TB00143K
– volume: 8
  start-page: 1497
  issue: 1
  year: 2019
  ident: 10.1016/j.jconrel.2022.10.046_bb0410
  article-title: “Smart” materials-based near-infrared light-responsive drug delivery systems for cancer treatment: a review
  publication-title: J. Mater. Res. Technol.
  doi: 10.1016/j.jmrt.2018.03.007
– volume: 342
  start-page: 93
  year: 2022
  ident: 10.1016/j.jconrel.2022.10.046_bb0495
  article-title: Effect of micro- and nanoparticle shape on biological processes
  publication-title: J. Control. Release
  doi: 10.1016/j.jconrel.2021.12.032
– volume: 183
  start-page: 114177
  year: 2022
  ident: 10.1016/j.jconrel.2022.10.046_bb0585
  article-title: Tumor-activated carrier-free prodrug nanoparticles for targeted cancer immunotherapy: preclinical evidence for safe and effective drug delivery
  publication-title: Adv. Drug Deliv. Rev.
  doi: 10.1016/j.addr.2022.114177
– volume: 240
  start-page: 119902
  year: 2020
  ident: 10.1016/j.jconrel.2022.10.046_bb0040
  article-title: Tumor extravasation and infiltration as barriers of nanomedicine for high efficacy: the current status and transcytosis strategy
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2020.119902
– volume: 19
  start-page: 1840
  issue: 6
  year: 2018
  ident: 10.1016/j.jconrel.2022.10.046_bb0395
  article-title: Photoresponsive drug/gene delivery systems
  publication-title: Biomacromolecules
  doi: 10.1021/acs.biomac.8b00422
– volume: 11
  start-page: 3178
  issue: 3
  year: 2017
  ident: 10.1016/j.jconrel.2022.10.046_bb0200
  article-title: Tumor-triggered geometrical shape switch of chimeric peptide for enhanced in vivo tumor internalization and photodynamic therapy
  publication-title: ACS Nano
  doi: 10.1021/acsnano.7b00216
– volume: 171
  start-page: 94
  year: 2021
  ident: 10.1016/j.jconrel.2022.10.046_bb0370
  article-title: Targeting drug delivery with light: a highly focused approach
  publication-title: Adv. Drug Deliv. Rev.
  doi: 10.1016/j.addr.2021.01.009
– volume: 9
  start-page: 9517
  issue: 10
  year: 2015
  ident: 10.1016/j.jconrel.2022.10.046_bb0335
  article-title: Tumor-specific formation of enzyme-instructed supramolecular self-assemblies as cancer theranostics
  publication-title: ACS Nano
  doi: 10.1021/acsnano.5b03874
– volume: 14
  start-page: 3640
  issue: 3
  year: 2020
  ident: 10.1016/j.jconrel.2022.10.046_bb0435
  article-title: Near-infrared laser-triggered in situ dimorphic transformation of BF2-azadipyrromethene nanoaggregates for enhanced solid tumor penetration
  publication-title: ACS Nano
  doi: 10.1021/acsnano.0c00118
– volume: 9
  start-page: 38
  issue: 1
  year: 2021
  ident: 10.1016/j.jconrel.2022.10.046_bb0195
  article-title: Polymerisation-induced self-assembly (PISA) as a straightforward formulation strategy for stimuli-responsive drug delivery systems and biomaterials: recent advances
  publication-title: Biomater. Sci.
  doi: 10.1039/D0BM01406K
– volume: 177
  start-page: 113807
  year: 2021
  ident: 10.1016/j.jconrel.2022.10.046_bb0135
  article-title: Non-spherical micro- and nanoparticles for drug delivery: Progress over 15 years
  publication-title: Adv. Drug Deliv. Rev.
  doi: 10.1016/j.addr.2021.05.017
– volume: 583
  start-page: 470
  year: 2021
  ident: 10.1016/j.jconrel.2022.10.046_bb0445
  article-title: Temperature and pH dual-stimuli-responsive phase-change microcapsules for multipurpose applications in smart drug delivery
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/j.jcis.2020.09.073
– volume: 13
  start-page: 54715
  issue: 46
  year: 2021
  ident: 10.1016/j.jconrel.2022.10.046_bb0605
  article-title: Precise control of shape-variable nanomicelles in nanofibers reveals the enhancement mechanism of passive delivery
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.1c15858
– volume: 89
  start-page: 237
  year: 2018
  ident: 10.1016/j.jconrel.2022.10.046_bb0475
  article-title: Photo/pH-controlled host-guest interaction between an azobenzene-containing block copolymer and water-soluble pillar[6]arene as a strategy to construct the “compound vesicles” for controlled drug delivery
  publication-title: Mater. Sci. Eng. C Mater. Biol. Appl.
  doi: 10.1016/j.msec.2018.04.010
– volume: 34
  start-page: 3647
  issue: 14
  year: 2013
  ident: 10.1016/j.jconrel.2022.10.046_bb0470
  article-title: Dual and multi-stimuli responsive polymeric nanoparticles for programmed site-specific drug delivery
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2013.01.084
– volume: 38
  start-page: 388
  issue: 4
  year: 2020
  ident: 10.1016/j.jconrel.2022.10.046_bb0090
  article-title: Cancer immunoimaging with smart nanoparticles
  publication-title: Trends Biotechnol.
  doi: 10.1016/j.tibtech.2019.11.001
– volume: 58
  start-page: 4632
  issue: 14
  year: 2019
  ident: 10.1016/j.jconrel.2022.10.046_bb0220
  article-title: Microenvironment-induced in situ self-assembly of polymer-peptide conjugates that attack solid tumors deeply
  publication-title: Angew. Chem. Int. Ed. Eng.
  doi: 10.1002/anie.201900135
– volume: 22
  start-page: 845
  issue: 8
  year: 2021
  ident: 10.1016/j.jconrel.2022.10.046_bb0275
  article-title: Endogenous enzyme-responsive nanoplatforms for anti-tumor therapy
  publication-title: Curr. Drug Targets
  doi: 10.2174/1389450122666210114095614
– volume: 11
  start-page: 1420
  issue: 1
  year: 2020
  ident: 10.1016/j.jconrel.2022.10.046_bb0600
  article-title: Exploiting the role of nanoparticle shape in enhancing hydrogel adhesive and mechanical properties
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-15206-y
– volume: 116
  start-page: 111250
  year: 2020
  ident: 10.1016/j.jconrel.2022.10.046_bb0065
  article-title: Multi-transformable nanocarrier with tumor extracellular acidity-activated charge reversal, size reduction and ligand reemergence for in vitro efficient doxorubicin loading and delivery
  publication-title: Mater. Sci. Eng. C Mater. Biol. Appl.
  doi: 10.1016/j.msec.2020.111250
– year: 2022
  ident: 10.1016/j.jconrel.2022.10.046_bb0155
  article-title: Biomimetic nanoerythrosome-coated aptamer-DNA tetrahedron/maytansine conjugates: pH-responsive and targeted cytotoxicity for HER2-positive breast cancer
  publication-title: Adv. Mater.
– volume: 41
  issue: 21
  year: 2020
  ident: 10.1016/j.jconrel.2022.10.046_bb0375
  article-title: Visible light-responsive drug delivery nanoparticle via donor-acceptor stenhouse adducts (DASA)
  publication-title: Macromol. Rapid Commun.
  doi: 10.1002/marc.202000236
– volume: 128
  start-page: 474
  year: 2021
  ident: 10.1016/j.jconrel.2022.10.046_bb0265
  article-title: Shape switching of CaCO3-templated nanorods into stiffness-adjustable nanocapsules to promote efficient drug delivery
  publication-title: Acta Biomater.
  doi: 10.1016/j.actbio.2021.04.011
– volume: 22
  start-page: 3168
  issue: 8
  year: 2021
  ident: 10.1016/j.jconrel.2022.10.046_bb0560
  article-title: Polymer-functionalized upconversion nanoparticles for light/imaging-guided drug delivery
  publication-title: Biomacromolecules
  doi: 10.1021/acs.biomac.1c00669
– volume: 236
  start-page: 20
  issue: 1
  year: 2011
  ident: 10.1016/j.jconrel.2022.10.046_bb0095
  article-title: Shape-specific polymeric nanomedicine: emerging opportunities and challenges
  publication-title: Exp. Biol. Med. (Maywood)
  doi: 10.1258/ebm.2010.010243
– volume: 20
  start-page: 101
  issue: 2
  year: 2021
  ident: 10.1016/j.jconrel.2022.10.046_bb0015
  article-title: Engineering precision nanoparticles for drug delivery
  publication-title: Nat. Rev. Drug Discov.
  doi: 10.1038/s41573-020-0090-8
– volume: 15
  start-page: 311
  issue: 3
  year: 2020
  ident: 10.1016/j.jconrel.2022.10.046_bb0465
  article-title: Redox dual-stimuli responsive drug delivery systems for improving tumor-targeting ability and reducing adverse side effects
  publication-title: Asian J. Pharm. Sci.
  doi: 10.1016/j.ajps.2019.06.003
– volume: 9
  start-page: 16043
  issue: 19
  year: 2017
  ident: 10.1016/j.jconrel.2022.10.046_bb0205
  article-title: Acidity-triggered tumor retention/internalization of chimeric peptide for enhanced photodynamic therapy and real-time monitoring of therapeutic effects
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.7b04447
– volume: 17
  issue: 17
  year: 2021
  ident: 10.1016/j.jconrel.2022.10.046_bb0555
  article-title: Nonspherical metal-based nanoarchitectures: synthesis and impact of size, shape, and composition on their biological activity
  publication-title: Small
  doi: 10.1002/smll.202007073
– volume: 6
  start-page: 2894
  issue: 9
  year: 2021
  ident: 10.1016/j.jconrel.2022.10.046_bb0055
  article-title: Cylindrical polymer brushes-anisotropic unimolecular micelle drug delivery system for enhancing the effectiveness of chemotherapy
  publication-title: Bioact. Mater.
  doi: 10.1016/j.bioactmat.2021.02.011
– volume: 6
  start-page: 100
  issue: 2
  year: 2020
  ident: 10.1016/j.jconrel.2022.10.046_bb0080
  article-title: Size-tunable strategies for a tumor targeted drug delivery system
  publication-title: ACS Cent. Sci.
  doi: 10.1021/acscentsci.9b01139
– volume: 41
  issue: 21
  year: 2020
  ident: 10.1016/j.jconrel.2022.10.046_bb0070
  article-title: Recent advances of pH-induced charge-convertible polymer-mediated inorganic nanoparticles for biomedical applications
  publication-title: Macromol. Rapid Commun.
  doi: 10.1002/marc.202000106
– volume: 18
  issue: 6
  year: 2022
  ident: 10.1016/j.jconrel.2022.10.046_bb0595
  article-title: Design of smart size-, surface-, and shape-switching nanoparticles to improve therapeutic efficacy
  publication-title: Small
  doi: 10.1002/smll.202104632
– volume: 14
  start-page: 85
  issue: 1
  year: 2021
  ident: 10.1016/j.jconrel.2022.10.046_bb0030
  article-title: Nanomaterials for cancer therapy: current progress and perspectives
  publication-title: J. Hematol. Oncol.
  doi: 10.1186/s13045-021-01096-0
– volume: 50
  start-page: 5397
  issue: 9
  year: 2021
  ident: 10.1016/j.jconrel.2022.10.046_bb0510
  article-title: Understanding nanoparticle endocytosis to improve targeting strategies in nanomedicine
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/D0CS01127D
– volume: 143
  start-page: 13854
  issue: 34
  year: 2021
  ident: 10.1016/j.jconrel.2022.10.046_bb0365
  article-title: Noncanonical amino acids for hypoxia-responsive peptide self-assembly and fluorescence
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.1c06435
– volume: 8
  start-page: 776
  issue: 4
  year: 2020
  ident: 10.1016/j.jconrel.2022.10.046_bb0250
  article-title: Nanoporous hybrid core-shell nanoparticles for sequential release
  publication-title: J. Mater. Chem. B
  doi: 10.1039/C9TB01846H
– volume: 16
  start-page: 1570
  issue: 11
  year: 2020
  ident: 10.1016/j.jconrel.2022.10.046_bb0035
  article-title: Multistage nanoparticle delivery system-a new approach to cancer therapeutics
  publication-title: J. Biomed. Nanotechnol.
  doi: 10.1166/jbn.2020.2996
– volume: 6
  start-page: 3531
  issue: 21
  year: 2018
  ident: 10.1016/j.jconrel.2022.10.046_bb0415
  article-title: Near-infrared light-triggered drug release from UV-responsive diblock copolymer-coated upconversion nanoparticles with high monodispersity
  publication-title: J. Mater. Chem. B
  doi: 10.1039/C8TB00651B
– volume: 143
  start-page: 3
  year: 2019
  ident: 10.1016/j.jconrel.2022.10.046_bb0120
  article-title: Effect of physicochemical and surface properties on in vivo fate of drug nanocarriers
  publication-title: Adv. Drug Deliv. Rev.
  doi: 10.1016/j.addr.2019.01.002
– volume: 597
  start-page: 120326
  year: 2021
  ident: 10.1016/j.jconrel.2022.10.046_bb0385
  article-title: Light-responsive polymeric nanoparticles based on a novel nitropiperonal based polyester as drug delivery systems for photosensitizers in PDT
  publication-title: Int. J. Pharm.
  doi: 10.1016/j.ijpharm.2021.120326
– year: 2022
  ident: 10.1016/j.jconrel.2022.10.046_bb0535
  article-title: Influence of surface chemistry and morphology of nanoparticles on protein corona formation
  publication-title: Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol.
  doi: 10.1002/wnan.1788
– volume: 188
  start-page: 110811
  year: 2020
  ident: 10.1016/j.jconrel.2022.10.046_bb0210
  article-title: pH-triggered geometrical shape switching of a cationic peptide nanoparticle for cellular uptake and drug delivery
  publication-title: Colloids Surf. B: Biointerfaces
  doi: 10.1016/j.colsurfb.2020.110811
– volume: 19
  start-page: 202
  issue: 3
  year: 2018
  ident: 10.1016/j.jconrel.2022.10.046_bb0185
  article-title: Smart drug delivery systems in cancer therapy
  publication-title: Curr. Drug Targets
  doi: 10.2174/1389450117666160401124624
– volume: 18
  start-page: 2039
  issue: 5
  year: 2021
  ident: 10.1016/j.jconrel.2022.10.046_bb0315
  article-title: Morphology/interstitial fluid pressure-tunable nanopomegranate designed by alteration of membrane fluidity under tumor enzyme and PEGylation
  publication-title: Mol. Pharm.
  doi: 10.1021/acs.molpharmaceut.1c00036
– volume: 10
  start-page: 21021
  issue: 25
  year: 2018
  ident: 10.1016/j.jconrel.2022.10.046_bb0405
  article-title: Applications of light-responsive systems for cancer theranostics
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.8b01114
– volume: 16
  start-page: 266
  issue: 3
  year: 2021
  ident: 10.1016/j.jconrel.2022.10.046_bb0505
  article-title: Key principles and methods for studying the endocytosis of biological and nanoparticle therapeutics
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/s41565-021-00858-8
– volume: 163
  start-page: 109
  year: 2021
  ident: 10.1016/j.jconrel.2022.10.046_bb0325
  article-title: Size shifting of solid lipid nanoparticle system triggered by alkaline phosphatase for site specific mucosal drug delivery
  publication-title: Eur. J. Pharm. Biopharm.
  doi: 10.1016/j.ejpb.2021.03.012
– volume: 31
  start-page: 438
  issue: 3
  year: 2010
  ident: 10.1016/j.jconrel.2022.10.046_bb0515
  article-title: The effect of the shape of mesoporous silica nanoparticles on cellular uptake and cell function
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2009.09.060
– volume: 2020
  start-page: 5194780
  year: 2020
  ident: 10.1016/j.jconrel.2022.10.046_bb0500
  article-title: Physical properties of nanoparticles that result in improved cancer targeting
  publication-title: J. Oncol.
  doi: 10.1155/2020/5194780
– volume: 96
  start-page: 1
  year: 2016
  ident: 10.1016/j.jconrel.2022.10.046_bb0345
  article-title: Transformable DNA nanocarriers for plasma membrane targeted delivery of cytokine
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2016.04.011
– volume: 13
  start-page: 12912
  issue: 11
  year: 2019
  ident: 10.1016/j.jconrel.2022.10.046_bb0260
  article-title: Tumor microenvironment responsive shape-reversal self-targeting virus-inspired nanodrug for imaging-guided near-infrared-II photothermal chemotherapy
  publication-title: ACS Nano
  doi: 10.1021/acsnano.9b05425
– volume: 6
  start-page: 148
  issue: 1
  year: 2021
  ident: 10.1016/j.jconrel.2022.10.046_bb0355
  article-title: A study on hypoxia susceptibility of organ tissues by fluorescence imaging with a ratiometric nitroreductase probe
  publication-title: ACS Sens.
  doi: 10.1021/acssensors.0c01989
– volume: 12
  start-page: 129
  issue: 1
  year: 2015
  ident: 10.1016/j.jconrel.2022.10.046_bb0525
  article-title: The importance of nanoparticle shape in cancer drug delivery
  publication-title: Expert Opin. Drug Deliv.
  doi: 10.1517/17425247.2014.950564
– volume: 54
  start-page: 235
  issue: 3
  year: 2022
  ident: 10.1016/j.jconrel.2022.10.046_bb0215
  article-title: Development and application of pH-responsive polymers
  publication-title: Polym. J.
  doi: 10.1038/s41428-021-00576-x
– volume: 5
  issue: 2
  year: 2022
  ident: 10.1016/j.jconrel.2022.10.046_bb0330
  article-title: Alkaline phosphatase: a reliable endogenous partner for drug delivery and diagnostics
  publication-title: Adv. Ther.
– volume: 34
  start-page: 395
  issue: 1
  year: 2018
  ident: 10.1016/j.jconrel.2022.10.046_bb0340
  article-title: Phospholipase A2-induced degradation and release from lipid-containing polymersomes
  publication-title: Langmuir
  doi: 10.1021/acs.langmuir.7b03893
– volume: 61
  start-page: 269
  year: 2021
  ident: 10.1016/j.jconrel.2022.10.046_bb0545
  article-title: Nanoparticle toxicology
  publication-title: Annu. Rev. Pharmacol. Toxicol.
  doi: 10.1146/annurev-pharmtox-032320-110338
– volume: 11
  start-page: 3710
  issue: 7
  year: 2018
  ident: 10.1016/j.jconrel.2022.10.046_bb0225
  article-title: Highly uniform ultrasound-sensitive nanospheres produced by a pH-induced micelle-to-vesicle transition for tumor-targeted drug delivery
  publication-title: Nano Res.
  doi: 10.1007/s12274-017-1939-y
– volume: 9
  start-page: 406
  issue: 2
  year: 2021
  ident: 10.1016/j.jconrel.2022.10.046_bb0575
  article-title: Recent advances in stimuli-responsive in situ self-assembly of small molecule probes for in vivo imaging of enzymatic activity
  publication-title: Biomater. Sci.
  doi: 10.1039/D0BM00895H
– volume: 13
  start-page: 3903
  issue: 24
  year: 2018
  ident: 10.1016/j.jconrel.2022.10.046_bb0425
  article-title: Photo- and pH- dual-responsive beta-cyclodextrin-based supramolecular prodrug complex self-assemblies for programmed drug delivery
  publication-title: Chem. Asian J.
  doi: 10.1002/asia.201801366
– volume: 94
  start-page: 2302
  issue: 9
  year: 2021
  ident: 10.1016/j.jconrel.2022.10.046_bb0025
  article-title: Conjugation of phenylboronic acid moiety through multistep organic transformations on nanodiamond surface for an anticancer nanodrug for boron neutron capture therapy
  publication-title: Bull. Chem. Soc. Jpn.
  doi: 10.1246/bcsj.20210200
– volume: 27
  start-page: 2225
  issue: 10
  year: 2016
  ident: 10.1016/j.jconrel.2022.10.046_bb0050
  article-title: Nanodrug delivery: is the enhanced permeability and retention effect sufficient for curing cancer?
  publication-title: Bioconjug. Chem.
  doi: 10.1021/acs.bioconjchem.6b00437
– volume: 6
  start-page: 1538
  issue: 8
  year: 2019
  ident: 10.1016/j.jconrel.2022.10.046_bb0115
  article-title: The impact of nanoparticle shape on cellular internalisation and transport: what do the different analysis methods tell us?
  publication-title: Mater. Horiz.
  doi: 10.1039/C9MH00664H
– volume: 22
  start-page: 947
  issue: 8
  year: 2021
  ident: 10.1016/j.jconrel.2022.10.046_bb0150
  article-title: Recent progress in stimuli-responsive intelligent nano scale drug delivery systems: a special focus towards pH-sensitive systems
  publication-title: Curr. Drug Targets
  doi: 10.2174/1389450122999210128180058
– volume: 8
  start-page: 2756
  issue: 10
  year: 2020
  ident: 10.1016/j.jconrel.2022.10.046_bb0255
  article-title: Core-shell particles for drug-delivery, bioimaging, sensing, and tissue engineering
  publication-title: Biomater. Sci.
  doi: 10.1039/C9BM01872G
– volume: 9
  start-page: 8615
  issue: 41
  year: 2021
  ident: 10.1016/j.jconrel.2022.10.046_bb0390
  article-title: A photo-responsive membrane for tailored drug delivery with spatially and temporally controlled release
  publication-title: J. Mater. Chem. B
  doi: 10.1039/D1TB01690C
– volume: 8
  start-page: 4385
  issue: 5
  year: 2014
  ident: 10.1016/j.jconrel.2022.10.046_bb0125
  article-title: Radioactive 198Au-doped nanostructures with different shapes for in vivo analyses of their biodistribution, tumor uptake, and intratumoral distribution
  publication-title: ACS Nano
  doi: 10.1021/nn406258m
– volume: 59
  start-page: 20582
  issue: 46
  year: 2020
  ident: 10.1016/j.jconrel.2022.10.046_bb0240
  article-title: Acid-activatable transmorphic peptide-based nanomaterials for photodynamic therapy
  publication-title: Angew. Chem. Int. Ed. Eng.
  doi: 10.1002/anie.202008708
– volume: 253
  start-page: 46
  year: 2017
  ident: 10.1016/j.jconrel.2022.10.046_bb0160
  article-title: Revisiting structure-property relationship of pH-responsive polymers for drug delivery applications
  publication-title: J. Control. Release
  doi: 10.1016/j.jconrel.2017.02.021
– volume: 19
  start-page: 7965
  issue: 11
  year: 2019
  ident: 10.1016/j.jconrel.2022.10.046_bb0245
  article-title: Proline isomerization-regulated tumor microenvironment-adaptable self-assembly of peptides for enhanced therapeutic efficacy
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.9b03136
– volume: 135
  start-page: 17617
  issue: 46
  year: 2013
  ident: 10.1016/j.jconrel.2022.10.046_bb0100
  article-title: Polyprodrug amphiphiles: hierarchical assemblies for shape-regulated cellular internalization, trafficking, and drug delivery
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja409686x
SSID ssj0005347
Score 2.5062783
SecondaryResourceType review_article
Snippet Nanodrug delivery system has a great application in the treatment of solid tumors by virtue of EPR effect, though its success in clinics is still limited by...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 600
SubjectTerms Cell Line, Tumor
Drug Delivery Systems - methods
drugs
Humans
ingestion
Nanoarchitectonics
nanocarriers
Nanodrug delivery systems
Nanofibers
Nanoparticles
nanorods
Nanospheres
Nanotubes
neoplasms
Neoplasms - diagnosis
Neoplasms - drug therapy
Shape-shifting
Stimulus responsiveness
Tumor diagnosis and therapy
Title Responsive shape-shifting nanoarchitectonics and its application in tumor diagnosis and therapy
URI https://dx.doi.org/10.1016/j.jconrel.2022.10.046
https://www.ncbi.nlm.nih.gov/pubmed/36341936
https://www.proquest.com/docview/2733200203
https://www.proquest.com/docview/3153820610
Volume 352
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fSyMxEA5FX3yR--Gd9TyJID6Zdpuk6faxiKWnKOIp-Bay2QS36Fa6W6Ev97ffzGa3VTgR7mnZZbIbMpPMl51vJoQcqTQFUOsjJgfKMqm4YwBiLfMW3IOx4OGriO7llZrcyfP7_n2LnDa5MEirrNf-sKZXq3X9pFuPZvc5y7q_AazEAqOC-LuNSyy7LeGLYNOdP69oHkKGlGkVM5ReZ_F0p50p7DnnDiMQnHeQ5IU4-N_-6T38Wfmh8SeyXQNIOgp9_ExaLv9Cjq9DBerlCb1dJ1QVJ_SYXq9rUy-_En1Tc2JfHC0eQI4VD5lH6jPNTT5bhRWwYG5BTZ7SrITrOspNs5yWi6fZnKaBpJcFsZDHtdwhd-Oz29MJq89YYFYqWbKBs9xxgNiJV0YqF0fSwLS2sBP0MnE93zd-0EtB0U5FiRCRAbxopU25sHEivfhGNvJZ7nYJdbDXhPnvACDCmKfcCOWH8NreUNrImmGbyGZkta0LkOM5GI-6YZpNda0QjQrBx6CQNumsmj2HChwfNYgbtek3pqTBS3zU9LBRs4ZphrETk7vZotCA8gSvwrbvywj0HhwAUtQm34ONrHosFBbOE2rv_zv3g2zhXeDS7JONcr5wPwERlclBZfIHZHP062Jy9Rd9bQzv
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxEB6VcoALKu_wNBL0VCcb23U2Bw4IqFL6UAWp1Jvxem11o3ZTZTdFufCn-IOM194EJKpKSD2ttGuvnBnvzDeZb8YAb2WeI6h1CRUDaaiQzFIEsYY6g-5BG_TwTUb34FCOjsWXk-2TNfjV1sJ4WmW0_cGmN9Y63ulFafYuiqL3DcFKyn1W0P_dxoSMzMo9u_iBcVv1fvcTKvkdYzufxx9HNB4tQI2QoqYDa5hliCwzJ7WQNk2Ext1sMAByIrN9t63doJ_j77MyyTDm1wiTjDA54ybNhOP43ltwW6C58McmdH_-wSvhItRoy5T65a3KhnqT7gSD3Jn1KQ_Gup5V5oH3vx3iVYC3cXw7G3AvIlbyIQjlPqzZ8gFsHoWW14stMl5VcFVbZJMcrZphLx6C-hpJuJeWVKc4jlanhfNca1LqcrrMY_gOvRXRZU6KGq-rtDopSlLPz6czkgdWYBGGhcKxxSM4vhHJP4b1clrap0AsBrdocCwiUpR5zjSXboiv7Q-FSYwedkC0klUmdjz3B2-cqZbaNlFRIcorxN9GhXSgu5x2EVp-XDchbdWm_tq7Ct3SdVPftGpW-F37ZI0u7XReKYSVnDV54qvHcO-uGCKypANPwh5ZrphL36mPy2f_v7jXcGc0PthX-7uHe8_hrn8SiDwvYL2eze1LhGN19qrZ_gS-3_T39htpj0mf
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Responsive+shape-shifting+nanoarchitectonics+and+its+application+in+tumor+diagnosis+and+therapy&rft.jtitle=Journal+of+controlled+release&rft.au=Shao%2C+Yaru&rft.au=Xiang%2C+Li&rft.au=Zhang%2C+Wenhui&rft.au=Chen%2C+Yuping&rft.date=2022-12-01&rft.eissn=1873-4995&rft.volume=352&rft.spage=600&rft_id=info:doi/10.1016%2Fj.jconrel.2022.10.046&rft_id=info%3Apmid%2F36341936&rft.externalDocID=36341936
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0168-3659&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0168-3659&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0168-3659&client=summon