An in situ investigation of the thermal decomposition of metal-organic framework NH2-MIL-125 (Ti)
Titanium based metal-organic frameworks (MOFs) are interesting self-sacrificial precursors to derive semiconducting porous nanocomposites for highly efficient heterogeneous catalysis. However, there is a lack of systematic and in-depth mechanistic understanding of the pyrolytic conversion of MOF pre...
Saved in:
Published in | Microporous and mesoporous materials Vol. 316; p. 110957 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Inc
01.03.2021
Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Titanium based metal-organic frameworks (MOFs) are interesting self-sacrificial precursors to derive semiconducting porous nanocomposites for highly efficient heterogeneous catalysis. However, there is a lack of systematic and in-depth mechanistic understanding of the pyrolytic conversion of MOF precursors into the desired functional composite materials. In this work, TGA-MS and in situ STEM/EDX combined with other characterization techniques were employed to investigate the evolution of the structural, physicochemical, textural and morphological properties of NH2-MIL-125(Ti) pyrolysis at different temperatures in an inert gaseous atmosphere. In situ thermal analysis of NH2-MIL-125(Ti) reveals the presence of 3 rather defined stages of thermal transformation in the following order: phase-pure, highly porous and crystalline MOF → intermediate amorphous phase without accessible porosity → recrystallized porous phase. The three stages occur from room temperature till 300 °C, between 350 and 550 °C and above ~550 °C respectively. It is found that the framework of NH2-MIL-125(Ti) starts to collapse around 350 °C, accompanied with the cleavage of coordination and covalent bonds between organic linkers [O2C–C6H3(NH2)–CO2]6 and the Ti oxo-cluster Ti8O8(OH)4. The organic linker continues fragmentation at 450 °C causing the shrinkage of particle sizes. The dominant pore size of 0.7 nm for NH2-MIL-125(Ti) gradually expands to 1.4 nm at 800 °C along with the formation of mesopores. The derived disc-like particles exhibit an approximately 35% volume shrinkage compared to the pristine MOF precursor. Highly crystalline N and/or C self-doped TiO2 nanoparticles are homogeneously distributed in the porous carbon matrix. The original 3D tetragonal disc-like morphology of the NH2-MIL-125(Ti) remains preserved in derived N and/or C doped TiO2/C composites. This study will provide an in-depth understanding of the thermal conversion behavior of MOFs to rationally select and design the derived composites for the relevant applications.
[Display omitted]
•A number of techniques used in the characterization of the MOF decomposition process.•Some characterization techniques were carried out in situ to study MOF decomposition.•MOF NH2-MIL-125 (Ti) thermally decomposes to composites via 3 well defined stages.•TiO2/C with developed mesopores maintains particle shapes with 35% sizes shrinkage. |
---|---|
AbstractList | Titanium based metal-organic frameworks (MOFs) are interesting self-sacrificial precursors to derive semiconducting porous nanocomposites for highly efficient heterogeneous catalysis. However, there is a lack of systematic and in-depth mechanistic understanding of the pyrolytic conversion of MOF precursors into the desired functional composite materials. In this work, TGA-MS and in situ STEM/EDX combined with other characterization techniques were employed to investigate the evolution of the structural, physicochemical, textural and morphological properties of NH2-MIL-125(Ti) pyrolysis at different temperatures in an inert gaseous atmosphere. In situ thermal analysis of NH2-MIL-125(Ti) reveals the presence of 3 rather defined stages of thermal transformation in the following order: phase-pure, highly porous and crystalline MOF -> intermediate amorphous phase without accessible porosity -> recrystallized porous phase. The three stages occur from mom temperature till 300 degrees C, between 350 and 550 degrees C and above similar to 550 degrees C respectively. It is found that the framework of NH2-MIL-125(Ti) starts to collapse around 350 degrees C, accompanied with the cleavage of coordination and covalent bonds between organic linkers [O2C-C6H3(NH2)-CO2](6) and the Ti oxo-cluster Ti8O8(OH)(4). The organic linker continues fragmentation at 450 degrees C causing the shrinkage of particle sizes. The dominant pore size of 0.7 nm for NH2-MIL-125(Ti) gradually expands to 1.4 nm at 800 degrees C along with the formation of mesopores. The derived disc-like particles exhibit an approximately 35% volume shrinkage compared to the pristine MOF precursor. Highly crystalline N and/or C self-doped TiO2 nanoparticles are homogeneously distributed in the porous carbon matrix. The original 3D tetragonal disc-like morphology of the NH2-MIL-125(Ti) remains preserved in derived N and/or C doped TiO2/C composites. This study will provide an in-depth understanding of the thermal conversion behavior of MOFs to rationally select and design the derived composites for the relevant applications. Titanium based metal-organic frameworks (MOFs) are interesting self-sacrificial precursors to derive semiconducting porous nanocomposites for highly efficient heterogeneous catalysis. However, there is a lack of systematic and in-depth mechanistic understanding of the pyrolytic conversion of MOF precursors into the desired functional composite materials. In this work, TGA-MS and in situ STEM/EDX combined with other characterization techniques were employed to investigate the evolution of the structural, physicochemical, textural and morphological properties of NH2-MIL-125(Ti) pyrolysis at different temperatures in an inert gaseous atmosphere. In situ thermal analysis of NH2-MIL-125(Ti) reveals the presence of 3 rather defined stages of thermal transformation in the following order: phase-pure, highly porous and crystalline MOF → intermediate amorphous phase without accessible porosity → recrystallized porous phase. The three stages occur from room temperature till 300 °C, between 350 and 550 °C and above ~550 °C respectively. It is found that the framework of NH2-MIL-125(Ti) starts to collapse around 350 °C, accompanied with the cleavage of coordination and covalent bonds between organic linkers [O2C–C6H3(NH2)–CO2]6 and the Ti oxo-cluster Ti8O8(OH)4. The organic linker continues fragmentation at 450 °C causing the shrinkage of particle sizes. The dominant pore size of 0.7 nm for NH2-MIL-125(Ti) gradually expands to 1.4 nm at 800 °C along with the formation of mesopores. The derived disc-like particles exhibit an approximately 35% volume shrinkage compared to the pristine MOF precursor. Highly crystalline N and/or C self-doped TiO2 nanoparticles are homogeneously distributed in the porous carbon matrix. The original 3D tetragonal disc-like morphology of the NH2-MIL-125(Ti) remains preserved in derived N and/or C doped TiO2/C composites. This study will provide an in-depth understanding of the thermal conversion behavior of MOFs to rationally select and design the derived composites for the relevant applications. [Display omitted] •A number of techniques used in the characterization of the MOF decomposition process.•Some characterization techniques were carried out in situ to study MOF decomposition.•MOF NH2-MIL-125 (Ti) thermally decomposes to composites via 3 well defined stages.•TiO2/C with developed mesopores maintains particle shapes with 35% sizes shrinkage. |
ArticleNumber | 110957 |
Author | Kratky, Tim Bahri, Mounib Heinz, Werner R. Xia, Yongde Ersen, Ovidiu Hussain, Mian Zahid Fischer, Roland A. Zhu, Yanqiu Jia, Quanli |
Author_xml | – sequence: 1 givenname: Mian Zahid surname: Hussain fullname: Hussain, Mian Zahid organization: College of Engineering, Mathematics and Physical Sciences, University of Exeter, Exeter, EX4 4QF, United Kingdom – sequence: 2 givenname: Mounib surname: Bahri fullname: Bahri, Mounib organization: Institut de Physique et Chimie des Matériaux de Strasbourg (IPCMS), UMR 7504 CNRS, Université de Strasbourg, 23 rue du Loess, 67034, Strasbourg, France – sequence: 3 givenname: Werner R. surname: Heinz fullname: Heinz, Werner R. organization: Department of Chemistry and Catalysis Research Centre, Technical University of Munich, Garching, 85748, Germany – sequence: 4 givenname: Quanli surname: Jia fullname: Jia, Quanli organization: Henan Key Laboratory of High Temperature Functional Ceramics, Zhengzhou University, Zhengzhou, 450052, Henan, China – sequence: 5 givenname: Ovidiu surname: Ersen fullname: Ersen, Ovidiu organization: Institut de Physique et Chimie des Matériaux de Strasbourg (IPCMS), UMR 7504 CNRS, Université de Strasbourg, 23 rue du Loess, 67034, Strasbourg, France – sequence: 6 givenname: Tim surname: Kratky fullname: Kratky, Tim organization: Department of Chemistry, Technical University of Munich, Lichtenbergstraße 4, Garching, 85748, Germany – sequence: 7 givenname: Roland A. surname: Fischer fullname: Fischer, Roland A. organization: Department of Chemistry and Catalysis Research Centre, Technical University of Munich, Garching, 85748, Germany – sequence: 8 givenname: Yanqiu surname: Zhu fullname: Zhu, Yanqiu organization: College of Engineering, Mathematics and Physical Sciences, University of Exeter, Exeter, EX4 4QF, United Kingdom – sequence: 9 givenname: Yongde orcidid: 0000-0001-9686-8688 surname: Xia fullname: Xia, Yongde email: Y.Xia@exeter.ac.uk organization: College of Engineering, Mathematics and Physical Sciences, University of Exeter, Exeter, EX4 4QF, United Kingdom |
BackLink | https://hal.science/hal-03450335$$DView record in HAL |
BookMark | eNqFkDFPwzAQhS1UJGjhN5ARhhSfncTNwFBVQCsVWGC2HOfcuiRxZZsi_j0pBQYWTrLu5HvvWf6GZNC5Dgm5ADoGCsX1Ztxa7V2LwY0ZZTAGoGUujsgpTARPOS35oJ_5RKQwATghwxA2lIIABqdETbvEdkmw8a3vOwzRrlS0rkucSeIa98e3qklq1K7dul74vWwxqiZ1fqU6qxPjVYvvzr8mj3OWPiyWKbA8uXy2V2fk2Kgm4Pl3H5GXu9vn2TxdPt0vZtNlqrMii6moWF3lokCoMyXyvrA0aoIFUwVFCsxUnFaq4KyoWCGoYYzyUmfGIHJVIh-Rq0PuWjVy622r_Id0ysr5dCn3d5RnOeU830GvvTloe3AheDRS2_j17eiVbSRQuWcrN_KXrdyzlQe2vV_88f88-L9zenBij2Jn0cugLXYaa-tRR1k7-2_GJ0-cmlQ |
CitedBy_id | crossref_primary_10_1016_j_scitotenv_2024_172215 crossref_primary_10_1016_j_aca_2022_339456 crossref_primary_10_1016_j_jcis_2024_11_031 crossref_primary_10_1038_s41467_023_39458_6 crossref_primary_10_1002_smll_202310348 crossref_primary_10_1016_j_materresbull_2023_112462 crossref_primary_10_1016_j_cej_2025_161233 crossref_primary_10_1016_j_surfin_2024_105188 crossref_primary_10_1021_acs_energyfuels_2c02319 crossref_primary_10_1016_j_memsci_2021_119962 crossref_primary_10_1016_j_jcis_2022_11_079 crossref_primary_10_1039_D3CY00815K crossref_primary_10_1016_j_seppur_2024_128669 crossref_primary_10_1016_j_apcatb_2024_123795 crossref_primary_10_1016_j_memsci_2022_120613 crossref_primary_10_1002_batt_202400134 crossref_primary_10_1016_j_molliq_2025_126853 crossref_primary_10_1080_23746149_2022_2046157 crossref_primary_10_1021_acs_nanolett_2c00893 crossref_primary_10_1093_jmicro_dfae007 crossref_primary_10_1016_j_matlet_2023_134459 crossref_primary_10_1002_smtd_202201066 crossref_primary_10_1016_j_jece_2021_106428 crossref_primary_10_1016_j_cclet_2024_110720 crossref_primary_10_1016_j_inoche_2024_113118 crossref_primary_10_1016_j_mtener_2025_101854 crossref_primary_10_1016_j_cis_2025_103485 crossref_primary_10_1016_j_jmst_2021_05_052 crossref_primary_10_1016_j_micromeso_2024_113114 crossref_primary_10_1021_acs_langmuir_4c00090 crossref_primary_10_1016_j_molstruc_2023_135268 crossref_primary_10_1016_j_jece_2023_110133 crossref_primary_10_1016_j_jece_2024_113005 crossref_primary_10_1016_j_mcat_2024_113925 crossref_primary_10_1016_j_cej_2024_148919 crossref_primary_10_1039_D3MA01182H crossref_primary_10_1016_j_mtcomm_2023_107228 crossref_primary_10_1021_acssuschemeng_3c03350 crossref_primary_10_1038_s41598_023_38309_0 crossref_primary_10_1016_j_chroma_2023_464403 crossref_primary_10_1016_j_micromeso_2023_112636 crossref_primary_10_61186_ijop_17_2_185 crossref_primary_10_1016_j_poly_2023_116430 crossref_primary_10_3390_molecules29133096 crossref_primary_10_1016_j_seppur_2023_123998 crossref_primary_10_1038_s41598_023_49290_z crossref_primary_10_1016_j_apsusc_2024_159315 crossref_primary_10_1016_j_jssc_2022_122992 crossref_primary_10_1021_acsomega_3c02552 crossref_primary_10_2139_ssrn_4046611 crossref_primary_10_1016_j_apsusc_2022_155433 crossref_primary_10_1002_solr_202200552 crossref_primary_10_1016_j_mseb_2024_117492 crossref_primary_10_1039_D2DT00616B crossref_primary_10_1016_j_jece_2021_106883 crossref_primary_10_3390_pr12091879 crossref_primary_10_1016_j_envres_2021_112368 crossref_primary_10_1002_advs_202100625 crossref_primary_10_1016_j_jwpe_2024_105947 crossref_primary_10_1088_1361_6528_ad0ef4 crossref_primary_10_1016_j_apsusc_2022_153922 crossref_primary_10_1039_D4MH01397B crossref_primary_10_1016_j_apmt_2023_101844 |
Cites_doi | 10.1039/C8TA11704G 10.1021/acs.cgd.6b01597 10.1039/C7CS00162B 10.1007/s41918-019-00056-0 10.1007/s41918-018-0024-x 10.1002/asia.201900026 10.1039/C9QI01120J 10.1016/j.jhazmat.2010.11.019 10.1126/science.1230444 10.1021/cm5035112 10.1016/j.matt.2019.08.022 10.1021/acsami.0c10721 10.1021/acscatal.6b02228 10.1039/C9QI00964G 10.1016/j.molstruc.2010.07.033 10.1002/aenm.201800165 10.1021/jp911043r 10.1016/j.apcatb.2019.04.040 10.1021/ja903726m 10.1063/1.351465 10.1016/j.electacta.2019.135335 10.1016/j.carbon.2019.02.013 10.1016/j.matchemphys.2005.07.048 10.1016/j.ccr.2018.02.008 10.1039/C4EE01299B 10.1039/C4RA12273A 10.1016/j.chemphys.2007.07.020 10.1039/C4EE02853H 10.1039/c2cp42763j 10.1039/C1NR11353D 10.1021/acsaem.7b00245 10.1016/j.diamond.2020.107999 10.1016/j.jphotochem.2018.06.044 10.1016/j.ccr.2015.09.002 10.1007/s12274-016-1078-x 10.1126/science.1061051 10.1038/nature01650 10.1038/natrevmats.2017.75 10.1016/j.materresbull.2018.12.038 10.1039/C9QI01268K 10.1039/C4RA05429F 10.1021/acsaem.8b00822 10.3390/polym11122090 10.1039/C8TA02091D 10.1016/S0008-6223(98)00312-1 10.1016/j.enchem.2019.100005 10.1103/PhysRevB.61.14095 10.1021/acscentsci.7b00197 10.1039/C7QM00007C 10.1002/adma.201704501 10.3390/inorganics5030040 10.1088/0022-3727/33/8/305 10.1021/acs.accounts.7b00259 10.1021/acsami.8b01462 10.1016/j.jhazmat.2017.12.057 10.1021/jp803567f 10.1039/C4CE01545B 10.1021/acs.chemmater.9b01897 10.1039/C4CE00032C 10.1103/PhysRevB.41.3738 10.1039/C5EE00762C 10.1007/s40820-018-0235-z 10.1016/j.ensm.2019.12.019 10.1016/j.apcatb.2018.10.043 10.1039/C6CS00426A 10.1002/cssc.201601855 10.1002/tcr.201500304 10.1016/j.jechem.2020.08.048 10.1038/46248 10.1063/1.362745 10.1016/0008-6223(95)00154-6 10.1016/j.chemosphere.2019.125144 10.1016/j.carbon.2015.12.092 |
ContentType | Journal Article |
Copyright | 2021 Elsevier Inc. Distributed under a Creative Commons Attribution 4.0 International License |
Copyright_xml | – notice: 2021 Elsevier Inc. – notice: Distributed under a Creative Commons Attribution 4.0 International License |
DBID | AAYXX CITATION 1XC |
DOI | 10.1016/j.micromeso.2021.110957 |
DatabaseName | CrossRef Hyper Article en Ligne (HAL) |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1873-3093 |
ExternalDocumentID | oai_HAL_hal_03450335v1 10_1016_j_micromeso_2021_110957 S1387181121000834 |
GroupedDBID | --K --M .~1 0R~ 123 1B1 1~. 1~5 29M 4.4 457 4G. 5VS 7-5 71M 8P~ AABNK AABXZ AACTN AAEDT AAEDW AAEPC AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABFNM ABMAC ABNUV ABXDB ABXRA ABYKQ ACDAQ ACGFS ACNNM ACRLP ADBBV ADEWK ADEZE ADMUD AEBSH AEKER AENEX AEZYN AFKWA AFRZQ AFTJW AGHFR AGUBO AGYEJ AHPOS AIEXJ AIKHN AITUG AJBFU AJOXV AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD ENUVR EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA HVGLF HZ~ IHE J1W KOM M41 MAGPM MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SDF SDG SES SEW SPC SPCBC SSG SSM SSZ T5K XPP ZMT ~02 ~G- AATTM AAXKI AAYWO AAYXX ABJNI ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH 1XC |
ID | FETCH-LOGICAL-c464t-7b2db576e1d4a75555e9fa8e62a60e012fb30ba6326b2670f22039c4ffee3a9e3 |
IEDL.DBID | .~1 |
ISSN | 1387-1811 |
IngestDate | Thu Jul 10 07:15:58 EDT 2025 Thu Apr 24 23:05:22 EDT 2025 Tue Jul 01 03:00:37 EDT 2025 Fri Feb 23 02:44:46 EST 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | MOF derivative Nanocomposite MOF Thermal decomposition Carbon TiO2 |
Language | English |
License | Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c464t-7b2db576e1d4a75555e9fa8e62a60e012fb30ba6326b2670f22039c4ffee3a9e3 |
ORCID | 0000-0001-9686-8688 0000-0002-1553-0915 |
OpenAccessLink | http://hdl.handle.net/10871/124689 |
ParticipantIDs | hal_primary_oai_HAL_hal_03450335v1 crossref_citationtrail_10_1016_j_micromeso_2021_110957 crossref_primary_10_1016_j_micromeso_2021_110957 elsevier_sciencedirect_doi_10_1016_j_micromeso_2021_110957 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-03-01 |
PublicationDateYYYYMMDD | 2021-03-01 |
PublicationDate_xml | – month: 03 year: 2021 text: 2021-03-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | Microporous and mesoporous materials |
PublicationYear | 2021 |
Publisher | Elsevier Inc Elsevier |
Publisher_xml | – name: Elsevier Inc – name: Elsevier |
References | Cao, Tan, Sindoro, Zhang (bib29) 2017; 46 Lu, Wu, Shi, Cheng (bib6) 2019; 6 Li, Xu, Jiao, Jiang (bib25) 2019; 1 Li, He, Wang, Lv, Gu, Dai, Liu, Zhao (bib13) 2019; 7 Hendon, Rieth, Korzynski, Dinca (bib23) 2017; 3 Oveisi, Asli, Mahmoodi (bib52) 2018; 347 Li, Wang, Xing, Zhou, Liu, Li, Zheng, Ye, Zou (bib69) 2019; 243 Karabacak, Cinar, Unal, Kurt (bib51) 2010; 982 Karthik, Vinoth, Zhang, Choi, Balaraman, Neppolian (bib19) 2018; 1 Wang, Zhu, Zou, Xu (bib39) 2017; 2 Oar-Arteta, Wezendonk, Sun, Kapteijn, Gascon (bib21) 2017; 1 Guo, Cheng, Hu, Zhang, Xu, Kang, Zhao (bib65) 2014; 4 Kidanemariam, Lee, Park (bib12) 2019; 11 Pels, Kapteijn, Moulijn, Zhu, Thomas (bib74) 1995; 33 Karimi, Heidari, Emrooz, Shokouhimehr (bib58) 2020; 108 Frank, Zukalova, Laskova, Kürti, Koltai, Kavan (bib53) 2012; 14 Jagadale, Takale, Sonawane, Joshi, Patil, Kale, Ogale (bib68) 2008; 112 Hu, Liu, Li, Zuo, Zhang, Song, Zhang, Guo (bib46) 2014; 16 Dissegna, Epp, Heinz, Kieslich, Fischer (bib76) 2018; 30 Li, Eddaoudi, O'Keeffe, Yaghi (bib2) 1999; 402 Sohail, Yun, Lee, Kim, Cho, Kim, Kim, Moon, Kim (bib45) 2017; 17 Schwan, Ulrich, Batori, Ehrhardt, Silva (bib59) 1996; 80 Hussain, van der Linden, Yang, Jia, Chang, Fischer, Kapteijn, Zhu, Xia (bib48) 2021; 9 Iamprasertkun, Krittayavathananon, Sawangphruk (bib66) 2016; 102 Xie, Xu, Cui, Wang (bib18) 2017; 10 Zhang, Wang, Dong, Lv (bib7) 2020; 242 He, Cao, Liu, Miao, Ma, Ding (bib37) 2016; 9 Wang, Jia, Wu, Lu, Xu (bib64) 2012; 4 Di Valentin, Finazzi, Pacchioni, Selloni, Livraghi, Paganini, Giamello (bib75) 2007; 339 Ferrari, Robertson (bib56) 2000; 61 Feng, Wang, Powell, Zhou (bib10) 2019; 1 Heinz, Agirrezabal-Telleria, Junk, Berger, Wang, Sharapa, Gil-Calvo, Luz, Soukri, Studt, Wang, Wöll, Bunzen, Drees, Fischer (bib35) 2020; 12 Qiu, Yang, Li, Yao (bib72) 2019; 112 Shroder, Nemanich, Glass (bib60) 1990; 41 Kapteijn, Moulijn, Matzner, Boehm (bib73) 1999; 37 Zhang, Zhang, Tan, Shao, Shi, Zheng, Zhang, Yang, Han (bib20) 2018; 10 Yaghi, O'Keeffe, Ockwig, Chae, Eddaoudi, Kim (bib1) 2003; 423 Yang, Im, Kim, Lee, Park (bib42) 2011; 186 Chen, Li (bib3) 2016; 16 Sun, Tang, Wang (bib33) 2020; 3 Zhang, Chen, Zhong, Zhang, Zhang, Zhou, Bu (bib11) 2019; 2 Dan-Hardi, Serre, Frot, Rozes, Maurin, Sanchez, Férey (bib38) 2009; 131 Luo, Poyraz, Kuo, Miao, Meng, Chen, Jiang, Wenos, Suib (bib47) 2014; 27 Hussain, Schneemann, Fischer, Zhu, Xia (bib70) 2018; 1 Nasalevich, van der Veen, Kapteijn, Gascon (bib24) 2014; 16 Lee, Lee, Jeoung, Moon (bib34) 2017; 50 Asahi, Morikawa, Ohwaki, Aoki, Taga (bib63) 2001; 293 Hussain, Yang, van der Linden, Huang, Jia, Cerrato, Fischer, Kapteijn, Zhu, Xia (bib49) 2021; 57 Furukawa, Cordova, O'Keeffe, Yaghi (bib9) 2013; 341 Zhan, Sun, Han (bib30) 2019; 11 Saha, Tompkins (bib62) 1992; 72 Huang, Yang, Hussain, Chen, Jia, Zhu, Xia (bib27) 2020; 330 Wang, Li, Lv, Zhang, Guo (bib14) 2014; 7 Chu, Li (bib55) 2006; 96 Xia, Mahmood, Zou, Xu (bib4) 2015; 8 Medishetty, Zaręba, Mayer, Samoć, Fischer (bib15) 2017; 46 Marpaung, Kim, Khan, Konstantinov, Yamauchi, Hossain, Na, Kim (bib44) 2019; 14 Song, Li, Sun, Wang (bib26) 2015; 5 Nasalevich, Becker, Ramos-Fernandez, Castellanos, Veber, Fedin, Kapteijn, Reek, van der Vlugt, Gascon (bib40) 2015; 8 Wang, Gao, Al-Enizi, Nafady, Ma (bib8) 2020; 7 Song, Li, Sun (bib17) 2017; 5 Chen, Liu, Niu, Gong, Li, Xu, Pan (bib31) 2020; 7 Zhang, Hu (bib36) 2010; 114 Wang, Wang, Liang, Dong, Zhang (bib61) 2019; 467–468 Chen, Zhang, Jiao, Jiang (bib43) 2018; 362 Gong, Tang, Mao, Wu, Liu, Hu, Xiong, Wang (bib57) 2018; 6 Zeng, Guo, He, Duan (bib41) 2016; 6 Gómez-Avilés, Peñas-Garzón, Bedia, Dionysiou, Rodríguez, Belver (bib50) 2019; 253 Hussain, Pawar, Huang, Tahir, Fischer, Zhu, Xia (bib28) 2019; 146 Liu, Xu, Shao, Jiang (bib32) 2020; 26 Wang, Vagin, Lane, Lin, Shyta, Heinz, Van Dyck, Bergren, Gardner, Rieger, Meldrum (bib16) 2019; 31 Dang, Zhu, Xu (bib22) 2017; 3 Song, Li, He, Wu, Ke, Jiang, Wang, Xiao (bib67) 2018; 8 Zhang, He, Zhang, Yin, Chen (bib54) 2000; 33 Wang, Han, Feng, Zhou, Qi, Wang (bib5) 2016; 307 Ao, Zhang, Liu (bib71) 2018; 364 Frank (10.1016/j.micromeso.2021.110957_bib53) 2012; 14 Wang (10.1016/j.micromeso.2021.110957_bib61) 2019; 467–468 Lu (10.1016/j.micromeso.2021.110957_bib6) 2019; 6 Li (10.1016/j.micromeso.2021.110957_bib13) 2019; 7 Li (10.1016/j.micromeso.2021.110957_bib25) 2019; 1 Kidanemariam (10.1016/j.micromeso.2021.110957_bib12) 2019; 11 Wang (10.1016/j.micromeso.2021.110957_bib16) 2019; 31 Hendon (10.1016/j.micromeso.2021.110957_bib23) 2017; 3 Marpaung (10.1016/j.micromeso.2021.110957_bib44) 2019; 14 Zhang (10.1016/j.micromeso.2021.110957_bib54) 2000; 33 Ao (10.1016/j.micromeso.2021.110957_bib71) 2018; 364 Xie (10.1016/j.micromeso.2021.110957_bib18) 2017; 10 Jagadale (10.1016/j.micromeso.2021.110957_bib68) 2008; 112 Zeng (10.1016/j.micromeso.2021.110957_bib41) 2016; 6 Qiu (10.1016/j.micromeso.2021.110957_bib72) 2019; 112 Karimi (10.1016/j.micromeso.2021.110957_bib58) 2020; 108 Chen (10.1016/j.micromeso.2021.110957_bib31) 2020; 7 Li (10.1016/j.micromeso.2021.110957_bib2) 1999; 402 Sun (10.1016/j.micromeso.2021.110957_bib33) 2020; 3 Zhang (10.1016/j.micromeso.2021.110957_bib7) 2020; 242 Song (10.1016/j.micromeso.2021.110957_bib26) 2015; 5 Chu (10.1016/j.micromeso.2021.110957_bib55) 2006; 96 Yang (10.1016/j.micromeso.2021.110957_bib42) 2011; 186 Chen (10.1016/j.micromeso.2021.110957_bib3) 2016; 16 Schwan (10.1016/j.micromeso.2021.110957_bib59) 1996; 80 Wang (10.1016/j.micromeso.2021.110957_bib5) 2016; 307 Dan-Hardi (10.1016/j.micromeso.2021.110957_bib38) 2009; 131 Yaghi (10.1016/j.micromeso.2021.110957_bib1) 2003; 423 Liu (10.1016/j.micromeso.2021.110957_bib32) 2020; 26 Heinz (10.1016/j.micromeso.2021.110957_bib35) 2020; 12 Dissegna (10.1016/j.micromeso.2021.110957_bib76) 2018; 30 Chen (10.1016/j.micromeso.2021.110957_bib43) 2018; 362 Hussain (10.1016/j.micromeso.2021.110957_bib48) 2021; 9 Wang (10.1016/j.micromeso.2021.110957_bib64) 2012; 4 Zhan (10.1016/j.micromeso.2021.110957_bib30) 2019; 11 Gong (10.1016/j.micromeso.2021.110957_bib57) 2018; 6 Huang (10.1016/j.micromeso.2021.110957_bib27) 2020; 330 Hussain (10.1016/j.micromeso.2021.110957_bib49) 2021; 57 Wang (10.1016/j.micromeso.2021.110957_bib14) 2014; 7 Zhang (10.1016/j.micromeso.2021.110957_bib20) 2018; 10 Sohail (10.1016/j.micromeso.2021.110957_bib45) 2017; 17 Zhang (10.1016/j.micromeso.2021.110957_bib36) 2010; 114 Gómez-Avilés (10.1016/j.micromeso.2021.110957_bib50) 2019; 253 He (10.1016/j.micromeso.2021.110957_bib37) 2016; 9 Saha (10.1016/j.micromeso.2021.110957_bib62) 1992; 72 Zhang (10.1016/j.micromeso.2021.110957_bib11) 2019; 2 Wang (10.1016/j.micromeso.2021.110957_bib39) 2017; 2 Asahi (10.1016/j.micromeso.2021.110957_bib63) 2001; 293 Nasalevich (10.1016/j.micromeso.2021.110957_bib24) 2014; 16 Lee (10.1016/j.micromeso.2021.110957_bib34) 2017; 50 Hu (10.1016/j.micromeso.2021.110957_bib46) 2014; 16 Cao (10.1016/j.micromeso.2021.110957_bib29) 2017; 46 Medishetty (10.1016/j.micromeso.2021.110957_bib15) 2017; 46 Luo (10.1016/j.micromeso.2021.110957_bib47) 2014; 27 Oar-Arteta (10.1016/j.micromeso.2021.110957_bib21) 2017; 1 Karabacak (10.1016/j.micromeso.2021.110957_bib51) 2010; 982 Wang (10.1016/j.micromeso.2021.110957_bib8) 2020; 7 Iamprasertkun (10.1016/j.micromeso.2021.110957_bib66) 2016; 102 Oveisi (10.1016/j.micromeso.2021.110957_bib52) 2018; 347 Song (10.1016/j.micromeso.2021.110957_bib17) 2017; 5 Di Valentin (10.1016/j.micromeso.2021.110957_bib75) 2007; 339 Karthik (10.1016/j.micromeso.2021.110957_bib19) 2018; 1 Ferrari (10.1016/j.micromeso.2021.110957_bib56) 2000; 61 Li (10.1016/j.micromeso.2021.110957_bib69) 2019; 243 Pels (10.1016/j.micromeso.2021.110957_bib74) 1995; 33 Furukawa (10.1016/j.micromeso.2021.110957_bib9) 2013; 341 Feng (10.1016/j.micromeso.2021.110957_bib10) 2019; 1 Guo (10.1016/j.micromeso.2021.110957_bib65) 2014; 4 Dang (10.1016/j.micromeso.2021.110957_bib22) 2017; 3 Kapteijn (10.1016/j.micromeso.2021.110957_bib73) 1999; 37 Shroder (10.1016/j.micromeso.2021.110957_bib60) 1990; 41 Hussain (10.1016/j.micromeso.2021.110957_bib28) 2019; 146 Hussain (10.1016/j.micromeso.2021.110957_bib70) 2018; 1 Xia (10.1016/j.micromeso.2021.110957_bib4) 2015; 8 Nasalevich (10.1016/j.micromeso.2021.110957_bib40) 2015; 8 Song (10.1016/j.micromeso.2021.110957_bib67) 2018; 8 |
References_xml | – volume: 112 start-page: 297 year: 2019 end-page: 306 ident: bib72 publication-title: Mater. Res. Bull. – volume: 402 start-page: 276 year: 1999 end-page: 279 ident: bib2 publication-title: Nature – volume: 6 start-page: 7935 year: 2016 end-page: 7947 ident: bib41 publication-title: ACS Catal. – volume: 3 start-page: 17075 year: 2017 ident: bib22 publication-title: Nat. Rev. Mater. – volume: 5 year: 2017 ident: bib17 publication-title: INORGA – volume: 7 start-page: 567 year: 2020 end-page: 582 ident: bib31 publication-title: Inorg. Chem. Front. – volume: 11 year: 2019 ident: bib12 publication-title: Polymers – volume: 243 start-page: 621 year: 2019 end-page: 628 ident: bib69 publication-title: Appl. Catal., B – volume: 1 start-page: 100005 year: 2019 ident: bib25 publication-title: Energy Chem. – volume: 16 start-page: 4919 year: 2014 end-page: 4926 ident: bib24 publication-title: CrystEngComm – volume: 7 start-page: 1964 year: 2019 end-page: 1988 ident: bib13 publication-title: J. Mater. Chem. A – volume: 14 start-page: 1331 year: 2019 end-page: 1343 ident: bib44 publication-title: Chem. Asian J. – volume: 3 start-page: 127 year: 2020 end-page: 154 ident: bib33 publication-title: Electrochem. Energy Rev. – volume: 7 start-page: 300 year: 2020 end-page: 339 ident: bib8 publication-title: Inorg. Chem. Front. – volume: 9 year: 2021 ident: bib48 publication-title: J. Mater. Chem. A – volume: 253 start-page: 253 year: 2019 end-page: 262 ident: bib50 publication-title: Appl. Catal., B – volume: 131 start-page: 10857 year: 2009 end-page: 10859 ident: bib38 publication-title: J. Am. Chem. Soc. – volume: 33 start-page: 1641 year: 1995 end-page: 1653 ident: bib74 publication-title: Carbon – volume: 114 start-page: 2566 year: 2010 end-page: 2572 ident: bib36 publication-title: J. Phys. Chem. C – volume: 10 start-page: 16418 year: 2018 end-page: 16423 ident: bib20 publication-title: ACS Appl. Mater. Interfaces – volume: 330 start-page: 135335 year: 2020 ident: bib27 publication-title: Electrochim. Acta – volume: 8 start-page: 1800165 year: 2018 ident: bib67 publication-title: Adv. Energy Mater. – volume: 2 start-page: 29 year: 2019 end-page: 104 ident: bib11 publication-title: Electrochem. Energy Rev. – volume: 293 start-page: 269 year: 2001 end-page: 271 ident: bib63 publication-title: Science – volume: 46 start-page: 2660 year: 2017 end-page: 2677 ident: bib29 publication-title: Chem. Soc. Rev. – volume: 4 start-page: 576 year: 2012 end-page: 584 ident: bib64 publication-title: Nanoscale – volume: 7 start-page: 2831 year: 2014 end-page: 2867 ident: bib14 publication-title: Energy Environ. Sci. – volume: 31 start-page: 5816 year: 2019 end-page: 5823 ident: bib16 publication-title: Chem. Mater. – volume: 362 start-page: 1 year: 2018 end-page: 23 ident: bib43 publication-title: Coord. Chem. Rev. – volume: 6 start-page: 13696 year: 2018 end-page: 13704 ident: bib57 publication-title: J. Mater. Chem. A – volume: 339 start-page: 44 year: 2007 end-page: 56 ident: bib75 publication-title: Chem. Phys. – volume: 37 start-page: 1143 year: 1999 end-page: 1150 ident: bib73 publication-title: Carbon – volume: 30 start-page: 1704501 year: 2018 ident: bib76 publication-title: Adv. Mater. – volume: 982 start-page: 22 year: 2010 end-page: 27 ident: bib51 publication-title: J. Mol. Struct. – volume: 1 start-page: 801 year: 2019 end-page: 824 ident: bib10 publication-title: Matter – volume: 26 start-page: 1 year: 2020 end-page: 22 ident: bib32 publication-title: Energy Storage Mater. – volume: 364 start-page: 524 year: 2018 end-page: 533 ident: bib71 publication-title: J. Photochem. Photobiol. A Chem. – volume: 341 start-page: 1230444 year: 2013 ident: bib9 publication-title: Science – volume: 61 start-page: 14095 year: 2000 end-page: 14107 ident: bib56 publication-title: Phys. Rev. B – volume: 12 start-page: 40635 year: 2020 end-page: 40647 ident: bib35 publication-title: ACS Appl. Mater. Interfaces – volume: 2 start-page: 52 year: 2017 end-page: 80 ident: bib39 publication-title: Inside Chem. – volume: 17 start-page: 1208 year: 2017 end-page: 1213 ident: bib45 publication-title: Cryst. Growth Des. – volume: 33 start-page: 912 year: 2000 ident: bib54 publication-title: J. Phys. D Appl. Phys. – volume: 96 start-page: 253 year: 2006 end-page: 277 ident: bib55 publication-title: Mater. Chem. Phys. – volume: 108 start-page: 107999 year: 2020 ident: bib58 publication-title: Diam. Relat. Mater. – volume: 50 start-page: 2684 year: 2017 end-page: 2692 ident: bib34 publication-title: Acc. Chem. Res. – volume: 8 start-page: 364 year: 2015 end-page: 375 ident: bib40 publication-title: Energy Environ. Sci. – volume: 1 start-page: 1709 year: 2017 end-page: 1745 ident: bib21 publication-title: Mater. Chem. Front. – volume: 57 start-page: 485 year: 2021 end-page: 495 ident: bib49 publication-title: J. Energy Chem. – volume: 1 start-page: 4695 year: 2018 end-page: 4707 ident: bib70 publication-title: ACS Appl. Energy Mater. – volume: 8 start-page: 1837 year: 2015 end-page: 1866 ident: bib4 publication-title: Energy Environ. Sci. – volume: 1 start-page: 1913 year: 2018 end-page: 1923 ident: bib19 publication-title: ACS Appl. Energy Mater. – volume: 102 start-page: 455 year: 2016 end-page: 461 ident: bib66 publication-title: Carbon – volume: 16 start-page: 1456 year: 2016 end-page: 1476 ident: bib3 publication-title: Chem. Rec. – volume: 6 start-page: 3456 year: 2019 end-page: 3467 ident: bib6 publication-title: Inorg. Chem. Front. – volume: 9 start-page: 1856 year: 2016 end-page: 1865 ident: bib37 publication-title: Nano Res. – volume: 41 start-page: 3738 year: 1990 end-page: 3745 ident: bib60 publication-title: Phys. Rev. B – volume: 347 start-page: 123 year: 2018 end-page: 140 ident: bib52 publication-title: J. Hazard Mater. – volume: 5 start-page: 7267 year: 2015 end-page: 7279 ident: bib26 publication-title: RSC Adv. – volume: 11 start-page: 1 year: 2019 ident: bib30 publication-title: Nano-Micro Lett. – volume: 186 start-page: 376 year: 2011 end-page: 382 ident: bib42 publication-title: J. Hazard Mater. – volume: 80 start-page: 440 year: 1996 end-page: 447 ident: bib59 publication-title: J. Appl. Phys. – volume: 3 start-page: 554 year: 2017 end-page: 563 ident: bib23 publication-title: ACS Cent. Sci. – volume: 467–468 start-page: 320 year: 2019 end-page: 327 ident: bib61 publication-title: Appl. Surf. Sci. – volume: 27 start-page: 6 year: 2014 end-page: 17 ident: bib47 publication-title: Chem. Mater. – volume: 14 start-page: 14567 year: 2012 end-page: 14572 ident: bib53 publication-title: Phys. Chem. Chem. Phys. – volume: 423 start-page: 705 year: 2003 end-page: 714 ident: bib1 publication-title: Nature – volume: 146 start-page: 348 year: 2019 end-page: 363 ident: bib28 publication-title: Carbon – volume: 4 start-page: 34221 year: 2014 end-page: 34225 ident: bib65 publication-title: RSC Adv. – volume: 10 start-page: 1645 year: 2017 end-page: 1663 ident: bib18 publication-title: ChemSusChem – volume: 307 start-page: 361 year: 2016 end-page: 381 ident: bib5 publication-title: Coord. Chem. Rev. – volume: 242 start-page: 125144 year: 2020 ident: bib7 publication-title: Chemosphere – volume: 46 start-page: 4976 year: 2017 end-page: 5004 ident: bib15 publication-title: Chem. Soc. Rev. – volume: 72 start-page: 3072 year: 1992 end-page: 3079 ident: bib62 publication-title: J. Appl. Phys. – volume: 16 start-page: 9645 year: 2014 end-page: 9650 ident: bib46 publication-title: CrystEngComm – volume: 112 start-page: 14595 year: 2008 end-page: 14602 ident: bib68 publication-title: J. Phys. Chem. C – volume: 7 start-page: 1964 year: 2019 ident: 10.1016/j.micromeso.2021.110957_bib13 publication-title: J. Mater. Chem. A doi: 10.1039/C8TA11704G – volume: 17 start-page: 1208 year: 2017 ident: 10.1016/j.micromeso.2021.110957_bib45 publication-title: Cryst. Growth Des. doi: 10.1021/acs.cgd.6b01597 – volume: 46 start-page: 4976 year: 2017 ident: 10.1016/j.micromeso.2021.110957_bib15 publication-title: Chem. Soc. Rev. doi: 10.1039/C7CS00162B – volume: 3 start-page: 127 year: 2020 ident: 10.1016/j.micromeso.2021.110957_bib33 publication-title: Electrochem. Energy Rev. doi: 10.1007/s41918-019-00056-0 – volume: 2 start-page: 29 year: 2019 ident: 10.1016/j.micromeso.2021.110957_bib11 publication-title: Electrochem. Energy Rev. doi: 10.1007/s41918-018-0024-x – volume: 14 start-page: 1331 year: 2019 ident: 10.1016/j.micromeso.2021.110957_bib44 publication-title: Chem. Asian J. doi: 10.1002/asia.201900026 – volume: 7 start-page: 300 year: 2020 ident: 10.1016/j.micromeso.2021.110957_bib8 publication-title: Inorg. Chem. Front. doi: 10.1039/C9QI01120J – volume: 186 start-page: 376 year: 2011 ident: 10.1016/j.micromeso.2021.110957_bib42 publication-title: J. Hazard Mater. doi: 10.1016/j.jhazmat.2010.11.019 – volume: 341 start-page: 1230444 year: 2013 ident: 10.1016/j.micromeso.2021.110957_bib9 publication-title: Science doi: 10.1126/science.1230444 – volume: 27 start-page: 6 year: 2014 ident: 10.1016/j.micromeso.2021.110957_bib47 publication-title: Chem. Mater. doi: 10.1021/cm5035112 – volume: 467–468 start-page: 320 year: 2019 ident: 10.1016/j.micromeso.2021.110957_bib61 publication-title: Appl. Surf. Sci. – volume: 1 start-page: 801 year: 2019 ident: 10.1016/j.micromeso.2021.110957_bib10 publication-title: Matter doi: 10.1016/j.matt.2019.08.022 – volume: 12 start-page: 40635 year: 2020 ident: 10.1016/j.micromeso.2021.110957_bib35 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.0c10721 – volume: 6 start-page: 7935 year: 2016 ident: 10.1016/j.micromeso.2021.110957_bib41 publication-title: ACS Catal. doi: 10.1021/acscatal.6b02228 – volume: 6 start-page: 3456 year: 2019 ident: 10.1016/j.micromeso.2021.110957_bib6 publication-title: Inorg. Chem. Front. doi: 10.1039/C9QI00964G – volume: 982 start-page: 22 year: 2010 ident: 10.1016/j.micromeso.2021.110957_bib51 publication-title: J. Mol. Struct. doi: 10.1016/j.molstruc.2010.07.033 – volume: 8 start-page: 1800165 year: 2018 ident: 10.1016/j.micromeso.2021.110957_bib67 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201800165 – volume: 114 start-page: 2566 year: 2010 ident: 10.1016/j.micromeso.2021.110957_bib36 publication-title: J. Phys. Chem. C doi: 10.1021/jp911043r – volume: 253 start-page: 253 year: 2019 ident: 10.1016/j.micromeso.2021.110957_bib50 publication-title: Appl. Catal., B doi: 10.1016/j.apcatb.2019.04.040 – volume: 131 start-page: 10857 year: 2009 ident: 10.1016/j.micromeso.2021.110957_bib38 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja903726m – volume: 72 start-page: 3072 year: 1992 ident: 10.1016/j.micromeso.2021.110957_bib62 publication-title: J. Appl. Phys. doi: 10.1063/1.351465 – volume: 330 start-page: 135335 year: 2020 ident: 10.1016/j.micromeso.2021.110957_bib27 publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2019.135335 – volume: 146 start-page: 348 year: 2019 ident: 10.1016/j.micromeso.2021.110957_bib28 publication-title: Carbon doi: 10.1016/j.carbon.2019.02.013 – volume: 96 start-page: 253 year: 2006 ident: 10.1016/j.micromeso.2021.110957_bib55 publication-title: Mater. Chem. Phys. doi: 10.1016/j.matchemphys.2005.07.048 – volume: 362 start-page: 1 year: 2018 ident: 10.1016/j.micromeso.2021.110957_bib43 publication-title: Coord. Chem. Rev. doi: 10.1016/j.ccr.2018.02.008 – volume: 7 start-page: 2831 year: 2014 ident: 10.1016/j.micromeso.2021.110957_bib14 publication-title: Energy Environ. Sci. doi: 10.1039/C4EE01299B – volume: 5 start-page: 7267 year: 2015 ident: 10.1016/j.micromeso.2021.110957_bib26 publication-title: RSC Adv. doi: 10.1039/C4RA12273A – volume: 9 year: 2021 ident: 10.1016/j.micromeso.2021.110957_bib48 publication-title: J. Mater. Chem. A – volume: 339 start-page: 44 year: 2007 ident: 10.1016/j.micromeso.2021.110957_bib75 publication-title: Chem. Phys. doi: 10.1016/j.chemphys.2007.07.020 – volume: 8 start-page: 364 year: 2015 ident: 10.1016/j.micromeso.2021.110957_bib40 publication-title: Energy Environ. Sci. doi: 10.1039/C4EE02853H – volume: 14 start-page: 14567 year: 2012 ident: 10.1016/j.micromeso.2021.110957_bib53 publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/c2cp42763j – volume: 4 start-page: 576 year: 2012 ident: 10.1016/j.micromeso.2021.110957_bib64 publication-title: Nanoscale doi: 10.1039/C1NR11353D – volume: 1 start-page: 1913 year: 2018 ident: 10.1016/j.micromeso.2021.110957_bib19 publication-title: ACS Appl. Energy Mater. doi: 10.1021/acsaem.7b00245 – volume: 108 start-page: 107999 year: 2020 ident: 10.1016/j.micromeso.2021.110957_bib58 publication-title: Diam. Relat. Mater. doi: 10.1016/j.diamond.2020.107999 – volume: 364 start-page: 524 year: 2018 ident: 10.1016/j.micromeso.2021.110957_bib71 publication-title: J. Photochem. Photobiol. A Chem. doi: 10.1016/j.jphotochem.2018.06.044 – volume: 307 start-page: 361 year: 2016 ident: 10.1016/j.micromeso.2021.110957_bib5 publication-title: Coord. Chem. Rev. doi: 10.1016/j.ccr.2015.09.002 – volume: 9 start-page: 1856 year: 2016 ident: 10.1016/j.micromeso.2021.110957_bib37 publication-title: Nano Res. doi: 10.1007/s12274-016-1078-x – volume: 293 start-page: 269 year: 2001 ident: 10.1016/j.micromeso.2021.110957_bib63 publication-title: Science doi: 10.1126/science.1061051 – volume: 423 start-page: 705 year: 2003 ident: 10.1016/j.micromeso.2021.110957_bib1 publication-title: Nature doi: 10.1038/nature01650 – volume: 3 start-page: 17075 year: 2017 ident: 10.1016/j.micromeso.2021.110957_bib22 publication-title: Nat. Rev. Mater. doi: 10.1038/natrevmats.2017.75 – volume: 112 start-page: 297 year: 2019 ident: 10.1016/j.micromeso.2021.110957_bib72 publication-title: Mater. Res. Bull. doi: 10.1016/j.materresbull.2018.12.038 – volume: 7 start-page: 567 year: 2020 ident: 10.1016/j.micromeso.2021.110957_bib31 publication-title: Inorg. Chem. Front. doi: 10.1039/C9QI01268K – volume: 4 start-page: 34221 year: 2014 ident: 10.1016/j.micromeso.2021.110957_bib65 publication-title: RSC Adv. doi: 10.1039/C4RA05429F – volume: 1 start-page: 4695 year: 2018 ident: 10.1016/j.micromeso.2021.110957_bib70 publication-title: ACS Appl. Energy Mater. doi: 10.1021/acsaem.8b00822 – volume: 11 year: 2019 ident: 10.1016/j.micromeso.2021.110957_bib12 publication-title: Polymers doi: 10.3390/polym11122090 – volume: 6 start-page: 13696 year: 2018 ident: 10.1016/j.micromeso.2021.110957_bib57 publication-title: J. Mater. Chem. A doi: 10.1039/C8TA02091D – volume: 37 start-page: 1143 year: 1999 ident: 10.1016/j.micromeso.2021.110957_bib73 publication-title: Carbon doi: 10.1016/S0008-6223(98)00312-1 – volume: 1 start-page: 100005 year: 2019 ident: 10.1016/j.micromeso.2021.110957_bib25 publication-title: Energy Chem. doi: 10.1016/j.enchem.2019.100005 – volume: 61 start-page: 14095 year: 2000 ident: 10.1016/j.micromeso.2021.110957_bib56 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.61.14095 – volume: 3 start-page: 554 year: 2017 ident: 10.1016/j.micromeso.2021.110957_bib23 publication-title: ACS Cent. Sci. doi: 10.1021/acscentsci.7b00197 – volume: 2 start-page: 52 year: 2017 ident: 10.1016/j.micromeso.2021.110957_bib39 publication-title: Inside Chem. – volume: 1 start-page: 1709 year: 2017 ident: 10.1016/j.micromeso.2021.110957_bib21 publication-title: Mater. Chem. Front. doi: 10.1039/C7QM00007C – volume: 30 start-page: 1704501 year: 2018 ident: 10.1016/j.micromeso.2021.110957_bib76 publication-title: Adv. Mater. doi: 10.1002/adma.201704501 – volume: 5 year: 2017 ident: 10.1016/j.micromeso.2021.110957_bib17 publication-title: INORGA doi: 10.3390/inorganics5030040 – volume: 33 start-page: 912 year: 2000 ident: 10.1016/j.micromeso.2021.110957_bib54 publication-title: J. Phys. D Appl. Phys. doi: 10.1088/0022-3727/33/8/305 – volume: 50 start-page: 2684 year: 2017 ident: 10.1016/j.micromeso.2021.110957_bib34 publication-title: Acc. Chem. Res. doi: 10.1021/acs.accounts.7b00259 – volume: 10 start-page: 16418 year: 2018 ident: 10.1016/j.micromeso.2021.110957_bib20 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.8b01462 – volume: 347 start-page: 123 year: 2018 ident: 10.1016/j.micromeso.2021.110957_bib52 publication-title: J. Hazard Mater. doi: 10.1016/j.jhazmat.2017.12.057 – volume: 112 start-page: 14595 year: 2008 ident: 10.1016/j.micromeso.2021.110957_bib68 publication-title: J. Phys. Chem. C doi: 10.1021/jp803567f – volume: 16 start-page: 9645 year: 2014 ident: 10.1016/j.micromeso.2021.110957_bib46 publication-title: CrystEngComm doi: 10.1039/C4CE01545B – volume: 31 start-page: 5816 year: 2019 ident: 10.1016/j.micromeso.2021.110957_bib16 publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.9b01897 – volume: 16 start-page: 4919 year: 2014 ident: 10.1016/j.micromeso.2021.110957_bib24 publication-title: CrystEngComm doi: 10.1039/C4CE00032C – volume: 41 start-page: 3738 year: 1990 ident: 10.1016/j.micromeso.2021.110957_bib60 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.41.3738 – volume: 8 start-page: 1837 year: 2015 ident: 10.1016/j.micromeso.2021.110957_bib4 publication-title: Energy Environ. Sci. doi: 10.1039/C5EE00762C – volume: 11 start-page: 1 year: 2019 ident: 10.1016/j.micromeso.2021.110957_bib30 publication-title: Nano-Micro Lett. doi: 10.1007/s40820-018-0235-z – volume: 26 start-page: 1 year: 2020 ident: 10.1016/j.micromeso.2021.110957_bib32 publication-title: Energy Storage Mater. doi: 10.1016/j.ensm.2019.12.019 – volume: 243 start-page: 621 year: 2019 ident: 10.1016/j.micromeso.2021.110957_bib69 publication-title: Appl. Catal., B doi: 10.1016/j.apcatb.2018.10.043 – volume: 46 start-page: 2660 year: 2017 ident: 10.1016/j.micromeso.2021.110957_bib29 publication-title: Chem. Soc. Rev. doi: 10.1039/C6CS00426A – volume: 10 start-page: 1645 year: 2017 ident: 10.1016/j.micromeso.2021.110957_bib18 publication-title: ChemSusChem doi: 10.1002/cssc.201601855 – volume: 16 start-page: 1456 year: 2016 ident: 10.1016/j.micromeso.2021.110957_bib3 publication-title: Chem. Rec. doi: 10.1002/tcr.201500304 – volume: 57 start-page: 485 year: 2021 ident: 10.1016/j.micromeso.2021.110957_bib49 publication-title: J. Energy Chem. doi: 10.1016/j.jechem.2020.08.048 – volume: 402 start-page: 276 year: 1999 ident: 10.1016/j.micromeso.2021.110957_bib2 publication-title: Nature doi: 10.1038/46248 – volume: 80 start-page: 440 year: 1996 ident: 10.1016/j.micromeso.2021.110957_bib59 publication-title: J. Appl. Phys. doi: 10.1063/1.362745 – volume: 33 start-page: 1641 year: 1995 ident: 10.1016/j.micromeso.2021.110957_bib74 publication-title: Carbon doi: 10.1016/0008-6223(95)00154-6 – volume: 242 start-page: 125144 year: 2020 ident: 10.1016/j.micromeso.2021.110957_bib7 publication-title: Chemosphere doi: 10.1016/j.chemosphere.2019.125144 – volume: 102 start-page: 455 year: 2016 ident: 10.1016/j.micromeso.2021.110957_bib66 publication-title: Carbon doi: 10.1016/j.carbon.2015.12.092 |
SSID | ssj0017121 |
Score | 2.5804095 |
Snippet | Titanium based metal-organic frameworks (MOFs) are interesting self-sacrificial precursors to derive semiconducting porous nanocomposites for highly efficient... |
SourceID | hal crossref elsevier |
SourceType | Open Access Repository Enrichment Source Index Database Publisher |
StartPage | 110957 |
SubjectTerms | Carbon Chemical Sciences Material chemistry MOF MOF derivative Nanocomposite Thermal decomposition TiO2 |
Title | An in situ investigation of the thermal decomposition of metal-organic framework NH2-MIL-125 (Ti) |
URI | https://dx.doi.org/10.1016/j.micromeso.2021.110957 https://hal.science/hal-03450335 |
Volume | 316 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS8MwFA5TX_RBvOJ1BPFBH-KaNE1b38ZQOt2G6Aa-lV4SrGgnbvPR3-45vaEg-GChlKYNKSfJOV_b73wh5FQZLhI_TZlMuMdgJrosEkYyz4ldYUuVKB-zkYcjFUzkzaPz2CK9OhcGaZWV7y99euGtq5JOZc3OW5Z1HrgNYN_jqICFQAI1QaV0cZRffDY0D-7yKvcKJhPe_YPj9VqQ3vQMswAFL9Q3MU79HqGWnupvrUXsud4g6xVopN3yuTZJS-dbZO2blOA2ibo5zXI6y-YLODbaGdOcTg0FkIc7-OAXmmpkkVdULbz4qgF_s3J1p4SamqxFR4Fgw_6AATahZ-PsfIdMrq_GvYBVyyewRCo5Z24s0hheJzRPZeQ6sGnfRJ5WIlKWhsBkYtuKIwUALhbKtYwQlu0n0hit7cjX9i5Zzqe53iNU2dDTjjRSAxxQnoqNJzRXjp84PiAws09UbbIwqbTFcYmLl7AmkT2Hja1DtHVY2nqfWE3Ft1Je4-8ql3WfhD9GSghB4O_KJ9CLTVOorR10ByGWWbbEX7rOBz_4TwuHZBXPSpraEVmevy_0MeCWedwuBmabrHR794M7PPZvg9EXuf7s9Q |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1La9wwEB6S9NDmUPqkSV-itNAe1LVkWbYLPSxtg7fZ3Us3kJvqh0QdEm_Iblp6yZ_KH-yMLZsGCjmUGIxBQpaZkWY-29_MALzWTsgyrSquSpFw3Ikxz6VTPImKWIZKlzqlaOTZXGcH6uthdLgBl30sDNEqve3vbHprrX3LyEtzdFrXo28iRLCfCMqARUBCeWblvv39C9_bVh8nn1HJb6Tc-7L4lHFfWoCXSqs1jwtZFQi1rahUHkd42NTlidUy14FFo-2KMChyjeCmkDoOnJRBmJbKOWvDPLUh3ncTbik0F1Q24f3FwCsRsfDBXrh76fGukMpOWpadXVHYoRRtuk9yjP92iZs_-o-7rbPbuwd3PUpl404Q92HDNg9g-6_chQ8hHzesbtiqXp_jdUjWsWzY0jFElXSi0T9mlSXauueGUeeJRcDPu3JSJXM9O4zNM8lnkylHMMTeLup3j-DgRoT6GLaaZWOfANMhLq1IOWURf-hEFy6RVugoLaMUIZ_bAd2LzJQ-mTnV1Dg2PWvtyAyyNiRr08l6B4Jh4GmXz-P6IR96nZgrS9Og17l-8CvU4jAVJfPOxlNDbUGo6B9y9FPs_s8ML-F2tphNzXQy338Kd6in48g9g6312bl9jqBpXbxoFymD7ze9K_4Am_wnJQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+in+situ+investigation+of+the+thermal+decomposition+of+metal-organic+framework+NH2-MIL-125+%28Ti%29&rft.jtitle=Microporous+and+mesoporous+materials&rft.au=Hussain%2C+Mian+Zahid&rft.au=Bahri%2C+Mounib&rft.au=Heinz%2C+Werner+R.&rft.au=Jia%2C+Quanli&rft.date=2021-03-01&rft.issn=1387-1811&rft.volume=316&rft.spage=110957&rft_id=info:doi/10.1016%2Fj.micromeso.2021.110957&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_micromeso_2021_110957 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1387-1811&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1387-1811&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1387-1811&client=summon |