An in situ investigation of the thermal decomposition of metal-organic framework NH2-MIL-125 (Ti)

Titanium based metal-organic frameworks (MOFs) are interesting self-sacrificial precursors to derive semiconducting porous nanocomposites for highly efficient heterogeneous catalysis. However, there is a lack of systematic and in-depth mechanistic understanding of the pyrolytic conversion of MOF pre...

Full description

Saved in:
Bibliographic Details
Published inMicroporous and mesoporous materials Vol. 316; p. 110957
Main Authors Hussain, Mian Zahid, Bahri, Mounib, Heinz, Werner R., Jia, Quanli, Ersen, Ovidiu, Kratky, Tim, Fischer, Roland A., Zhu, Yanqiu, Xia, Yongde
Format Journal Article
LanguageEnglish
Published Elsevier Inc 01.03.2021
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Titanium based metal-organic frameworks (MOFs) are interesting self-sacrificial precursors to derive semiconducting porous nanocomposites for highly efficient heterogeneous catalysis. However, there is a lack of systematic and in-depth mechanistic understanding of the pyrolytic conversion of MOF precursors into the desired functional composite materials. In this work, TGA-MS and in situ STEM/EDX combined with other characterization techniques were employed to investigate the evolution of the structural, physicochemical, textural and morphological properties of NH2-MIL-125(Ti) pyrolysis at different temperatures in an inert gaseous atmosphere. In situ thermal analysis of NH2-MIL-125(Ti) reveals the presence of 3 rather defined stages of thermal transformation in the following order: phase-pure, highly porous and crystalline MOF → intermediate amorphous phase without accessible porosity → recrystallized porous phase. The three stages occur from room temperature till 300 °C, between 350 and 550 °C and above ~550 °C respectively. It is found that the framework of NH2-MIL-125(Ti) starts to collapse around 350 °C, accompanied with the cleavage of coordination and covalent bonds between organic linkers [O2C–C6H3(NH2)–CO2]6 and the Ti oxo-cluster Ti8O8(OH)4. The organic linker continues fragmentation at 450 °C causing the shrinkage of particle sizes. The dominant pore size of 0.7 nm for NH2-MIL-125(Ti) gradually expands to 1.4 nm at 800 °C along with the formation of mesopores. The derived disc-like particles exhibit an approximately 35% volume shrinkage compared to the pristine MOF precursor. Highly crystalline N and/or C self-doped TiO2 nanoparticles are homogeneously distributed in the porous carbon matrix. The original 3D tetragonal disc-like morphology of the NH2-MIL-125(Ti) remains preserved in derived N and/or C doped TiO2/C composites. This study will provide an in-depth understanding of the thermal conversion behavior of MOFs to rationally select and design the derived composites for the relevant applications. [Display omitted] •A number of techniques used in the characterization of the MOF decomposition process.•Some characterization techniques were carried out in situ to study MOF decomposition.•MOF NH2-MIL-125 (Ti) thermally decomposes to composites via 3 well defined stages.•TiO2/C with developed mesopores maintains particle shapes with 35% sizes shrinkage.
AbstractList Titanium based metal-organic frameworks (MOFs) are interesting self-sacrificial precursors to derive semiconducting porous nanocomposites for highly efficient heterogeneous catalysis. However, there is a lack of systematic and in-depth mechanistic understanding of the pyrolytic conversion of MOF precursors into the desired functional composite materials. In this work, TGA-MS and in situ STEM/EDX combined with other characterization techniques were employed to investigate the evolution of the structural, physicochemical, textural and morphological properties of NH2-MIL-125(Ti) pyrolysis at different temperatures in an inert gaseous atmosphere. In situ thermal analysis of NH2-MIL-125(Ti) reveals the presence of 3 rather defined stages of thermal transformation in the following order: phase-pure, highly porous and crystalline MOF -> intermediate amorphous phase without accessible porosity -> recrystallized porous phase. The three stages occur from mom temperature till 300 degrees C, between 350 and 550 degrees C and above similar to 550 degrees C respectively. It is found that the framework of NH2-MIL-125(Ti) starts to collapse around 350 degrees C, accompanied with the cleavage of coordination and covalent bonds between organic linkers [O2C-C6H3(NH2)-CO2](6) and the Ti oxo-cluster Ti8O8(OH)(4). The organic linker continues fragmentation at 450 degrees C causing the shrinkage of particle sizes. The dominant pore size of 0.7 nm for NH2-MIL-125(Ti) gradually expands to 1.4 nm at 800 degrees C along with the formation of mesopores. The derived disc-like particles exhibit an approximately 35% volume shrinkage compared to the pristine MOF precursor. Highly crystalline N and/or C self-doped TiO2 nanoparticles are homogeneously distributed in the porous carbon matrix. The original 3D tetragonal disc-like morphology of the NH2-MIL-125(Ti) remains preserved in derived N and/or C doped TiO2/C composites. This study will provide an in-depth understanding of the thermal conversion behavior of MOFs to rationally select and design the derived composites for the relevant applications.
Titanium based metal-organic frameworks (MOFs) are interesting self-sacrificial precursors to derive semiconducting porous nanocomposites for highly efficient heterogeneous catalysis. However, there is a lack of systematic and in-depth mechanistic understanding of the pyrolytic conversion of MOF precursors into the desired functional composite materials. In this work, TGA-MS and in situ STEM/EDX combined with other characterization techniques were employed to investigate the evolution of the structural, physicochemical, textural and morphological properties of NH2-MIL-125(Ti) pyrolysis at different temperatures in an inert gaseous atmosphere. In situ thermal analysis of NH2-MIL-125(Ti) reveals the presence of 3 rather defined stages of thermal transformation in the following order: phase-pure, highly porous and crystalline MOF → intermediate amorphous phase without accessible porosity → recrystallized porous phase. The three stages occur from room temperature till 300 °C, between 350 and 550 °C and above ~550 °C respectively. It is found that the framework of NH2-MIL-125(Ti) starts to collapse around 350 °C, accompanied with the cleavage of coordination and covalent bonds between organic linkers [O2C–C6H3(NH2)–CO2]6 and the Ti oxo-cluster Ti8O8(OH)4. The organic linker continues fragmentation at 450 °C causing the shrinkage of particle sizes. The dominant pore size of 0.7 nm for NH2-MIL-125(Ti) gradually expands to 1.4 nm at 800 °C along with the formation of mesopores. The derived disc-like particles exhibit an approximately 35% volume shrinkage compared to the pristine MOF precursor. Highly crystalline N and/or C self-doped TiO2 nanoparticles are homogeneously distributed in the porous carbon matrix. The original 3D tetragonal disc-like morphology of the NH2-MIL-125(Ti) remains preserved in derived N and/or C doped TiO2/C composites. This study will provide an in-depth understanding of the thermal conversion behavior of MOFs to rationally select and design the derived composites for the relevant applications. [Display omitted] •A number of techniques used in the characterization of the MOF decomposition process.•Some characterization techniques were carried out in situ to study MOF decomposition.•MOF NH2-MIL-125 (Ti) thermally decomposes to composites via 3 well defined stages.•TiO2/C with developed mesopores maintains particle shapes with 35% sizes shrinkage.
ArticleNumber 110957
Author Kratky, Tim
Bahri, Mounib
Heinz, Werner R.
Xia, Yongde
Ersen, Ovidiu
Hussain, Mian Zahid
Fischer, Roland A.
Zhu, Yanqiu
Jia, Quanli
Author_xml – sequence: 1
  givenname: Mian Zahid
  surname: Hussain
  fullname: Hussain, Mian Zahid
  organization: College of Engineering, Mathematics and Physical Sciences, University of Exeter, Exeter, EX4 4QF, United Kingdom
– sequence: 2
  givenname: Mounib
  surname: Bahri
  fullname: Bahri, Mounib
  organization: Institut de Physique et Chimie des Matériaux de Strasbourg (IPCMS), UMR 7504 CNRS, Université de Strasbourg, 23 rue du Loess, 67034, Strasbourg, France
– sequence: 3
  givenname: Werner R.
  surname: Heinz
  fullname: Heinz, Werner R.
  organization: Department of Chemistry and Catalysis Research Centre, Technical University of Munich, Garching, 85748, Germany
– sequence: 4
  givenname: Quanli
  surname: Jia
  fullname: Jia, Quanli
  organization: Henan Key Laboratory of High Temperature Functional Ceramics, Zhengzhou University, Zhengzhou, 450052, Henan, China
– sequence: 5
  givenname: Ovidiu
  surname: Ersen
  fullname: Ersen, Ovidiu
  organization: Institut de Physique et Chimie des Matériaux de Strasbourg (IPCMS), UMR 7504 CNRS, Université de Strasbourg, 23 rue du Loess, 67034, Strasbourg, France
– sequence: 6
  givenname: Tim
  surname: Kratky
  fullname: Kratky, Tim
  organization: Department of Chemistry, Technical University of Munich, Lichtenbergstraße 4, Garching, 85748, Germany
– sequence: 7
  givenname: Roland A.
  surname: Fischer
  fullname: Fischer, Roland A.
  organization: Department of Chemistry and Catalysis Research Centre, Technical University of Munich, Garching, 85748, Germany
– sequence: 8
  givenname: Yanqiu
  surname: Zhu
  fullname: Zhu, Yanqiu
  organization: College of Engineering, Mathematics and Physical Sciences, University of Exeter, Exeter, EX4 4QF, United Kingdom
– sequence: 9
  givenname: Yongde
  orcidid: 0000-0001-9686-8688
  surname: Xia
  fullname: Xia, Yongde
  email: Y.Xia@exeter.ac.uk
  organization: College of Engineering, Mathematics and Physical Sciences, University of Exeter, Exeter, EX4 4QF, United Kingdom
BackLink https://hal.science/hal-03450335$$DView record in HAL
BookMark eNqFkDFPwzAQhS1UJGjhN5ARhhSfncTNwFBVQCsVWGC2HOfcuiRxZZsi_j0pBQYWTrLu5HvvWf6GZNC5Dgm5ADoGCsX1Ztxa7V2LwY0ZZTAGoGUujsgpTARPOS35oJ_5RKQwATghwxA2lIIABqdETbvEdkmw8a3vOwzRrlS0rkucSeIa98e3qklq1K7dul74vWwxqiZ1fqU6qxPjVYvvzr8mj3OWPiyWKbA8uXy2V2fk2Kgm4Pl3H5GXu9vn2TxdPt0vZtNlqrMii6moWF3lokCoMyXyvrA0aoIFUwVFCsxUnFaq4KyoWCGoYYzyUmfGIHJVIh-Rq0PuWjVy622r_Id0ysr5dCn3d5RnOeU830GvvTloe3AheDRS2_j17eiVbSRQuWcrN_KXrdyzlQe2vV_88f88-L9zenBij2Jn0cugLXYaa-tRR1k7-2_GJ0-cmlQ
CitedBy_id crossref_primary_10_1016_j_scitotenv_2024_172215
crossref_primary_10_1016_j_aca_2022_339456
crossref_primary_10_1016_j_jcis_2024_11_031
crossref_primary_10_1038_s41467_023_39458_6
crossref_primary_10_1002_smll_202310348
crossref_primary_10_1016_j_materresbull_2023_112462
crossref_primary_10_1016_j_cej_2025_161233
crossref_primary_10_1016_j_surfin_2024_105188
crossref_primary_10_1021_acs_energyfuels_2c02319
crossref_primary_10_1016_j_memsci_2021_119962
crossref_primary_10_1016_j_jcis_2022_11_079
crossref_primary_10_1039_D3CY00815K
crossref_primary_10_1016_j_seppur_2024_128669
crossref_primary_10_1016_j_apcatb_2024_123795
crossref_primary_10_1016_j_memsci_2022_120613
crossref_primary_10_1002_batt_202400134
crossref_primary_10_1016_j_molliq_2025_126853
crossref_primary_10_1080_23746149_2022_2046157
crossref_primary_10_1021_acs_nanolett_2c00893
crossref_primary_10_1093_jmicro_dfae007
crossref_primary_10_1016_j_matlet_2023_134459
crossref_primary_10_1002_smtd_202201066
crossref_primary_10_1016_j_jece_2021_106428
crossref_primary_10_1016_j_cclet_2024_110720
crossref_primary_10_1016_j_inoche_2024_113118
crossref_primary_10_1016_j_mtener_2025_101854
crossref_primary_10_1016_j_cis_2025_103485
crossref_primary_10_1016_j_jmst_2021_05_052
crossref_primary_10_1016_j_micromeso_2024_113114
crossref_primary_10_1021_acs_langmuir_4c00090
crossref_primary_10_1016_j_molstruc_2023_135268
crossref_primary_10_1016_j_jece_2023_110133
crossref_primary_10_1016_j_jece_2024_113005
crossref_primary_10_1016_j_mcat_2024_113925
crossref_primary_10_1016_j_cej_2024_148919
crossref_primary_10_1039_D3MA01182H
crossref_primary_10_1016_j_mtcomm_2023_107228
crossref_primary_10_1021_acssuschemeng_3c03350
crossref_primary_10_1038_s41598_023_38309_0
crossref_primary_10_1016_j_chroma_2023_464403
crossref_primary_10_1016_j_micromeso_2023_112636
crossref_primary_10_61186_ijop_17_2_185
crossref_primary_10_1016_j_poly_2023_116430
crossref_primary_10_3390_molecules29133096
crossref_primary_10_1016_j_seppur_2023_123998
crossref_primary_10_1038_s41598_023_49290_z
crossref_primary_10_1016_j_apsusc_2024_159315
crossref_primary_10_1016_j_jssc_2022_122992
crossref_primary_10_1021_acsomega_3c02552
crossref_primary_10_2139_ssrn_4046611
crossref_primary_10_1016_j_apsusc_2022_155433
crossref_primary_10_1002_solr_202200552
crossref_primary_10_1016_j_mseb_2024_117492
crossref_primary_10_1039_D2DT00616B
crossref_primary_10_1016_j_jece_2021_106883
crossref_primary_10_3390_pr12091879
crossref_primary_10_1016_j_envres_2021_112368
crossref_primary_10_1002_advs_202100625
crossref_primary_10_1016_j_jwpe_2024_105947
crossref_primary_10_1088_1361_6528_ad0ef4
crossref_primary_10_1016_j_apsusc_2022_153922
crossref_primary_10_1039_D4MH01397B
crossref_primary_10_1016_j_apmt_2023_101844
Cites_doi 10.1039/C8TA11704G
10.1021/acs.cgd.6b01597
10.1039/C7CS00162B
10.1007/s41918-019-00056-0
10.1007/s41918-018-0024-x
10.1002/asia.201900026
10.1039/C9QI01120J
10.1016/j.jhazmat.2010.11.019
10.1126/science.1230444
10.1021/cm5035112
10.1016/j.matt.2019.08.022
10.1021/acsami.0c10721
10.1021/acscatal.6b02228
10.1039/C9QI00964G
10.1016/j.molstruc.2010.07.033
10.1002/aenm.201800165
10.1021/jp911043r
10.1016/j.apcatb.2019.04.040
10.1021/ja903726m
10.1063/1.351465
10.1016/j.electacta.2019.135335
10.1016/j.carbon.2019.02.013
10.1016/j.matchemphys.2005.07.048
10.1016/j.ccr.2018.02.008
10.1039/C4EE01299B
10.1039/C4RA12273A
10.1016/j.chemphys.2007.07.020
10.1039/C4EE02853H
10.1039/c2cp42763j
10.1039/C1NR11353D
10.1021/acsaem.7b00245
10.1016/j.diamond.2020.107999
10.1016/j.jphotochem.2018.06.044
10.1016/j.ccr.2015.09.002
10.1007/s12274-016-1078-x
10.1126/science.1061051
10.1038/nature01650
10.1038/natrevmats.2017.75
10.1016/j.materresbull.2018.12.038
10.1039/C9QI01268K
10.1039/C4RA05429F
10.1021/acsaem.8b00822
10.3390/polym11122090
10.1039/C8TA02091D
10.1016/S0008-6223(98)00312-1
10.1016/j.enchem.2019.100005
10.1103/PhysRevB.61.14095
10.1021/acscentsci.7b00197
10.1039/C7QM00007C
10.1002/adma.201704501
10.3390/inorganics5030040
10.1088/0022-3727/33/8/305
10.1021/acs.accounts.7b00259
10.1021/acsami.8b01462
10.1016/j.jhazmat.2017.12.057
10.1021/jp803567f
10.1039/C4CE01545B
10.1021/acs.chemmater.9b01897
10.1039/C4CE00032C
10.1103/PhysRevB.41.3738
10.1039/C5EE00762C
10.1007/s40820-018-0235-z
10.1016/j.ensm.2019.12.019
10.1016/j.apcatb.2018.10.043
10.1039/C6CS00426A
10.1002/cssc.201601855
10.1002/tcr.201500304
10.1016/j.jechem.2020.08.048
10.1038/46248
10.1063/1.362745
10.1016/0008-6223(95)00154-6
10.1016/j.chemosphere.2019.125144
10.1016/j.carbon.2015.12.092
ContentType Journal Article
Copyright 2021 Elsevier Inc.
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: 2021 Elsevier Inc.
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID AAYXX
CITATION
1XC
DOI 10.1016/j.micromeso.2021.110957
DatabaseName CrossRef
Hyper Article en Ligne (HAL)
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1873-3093
ExternalDocumentID oai_HAL_hal_03450335v1
10_1016_j_micromeso_2021_110957
S1387181121000834
GroupedDBID --K
--M
.~1
0R~
123
1B1
1~.
1~5
29M
4.4
457
4G.
5VS
7-5
71M
8P~
AABNK
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABFNM
ABMAC
ABNUV
ABXDB
ABXRA
ABYKQ
ACDAQ
ACGFS
ACNNM
ACRLP
ADBBV
ADEWK
ADEZE
ADMUD
AEBSH
AEKER
AENEX
AEZYN
AFKWA
AFRZQ
AFTJW
AGHFR
AGUBO
AGYEJ
AHPOS
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
ENUVR
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
KOM
M41
MAGPM
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SDF
SDG
SES
SEW
SPC
SPCBC
SSG
SSM
SSZ
T5K
XPP
ZMT
~02
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
1XC
ID FETCH-LOGICAL-c464t-7b2db576e1d4a75555e9fa8e62a60e012fb30ba6326b2670f22039c4ffee3a9e3
IEDL.DBID .~1
ISSN 1387-1811
IngestDate Thu Jul 10 07:15:58 EDT 2025
Thu Apr 24 23:05:22 EDT 2025
Tue Jul 01 03:00:37 EDT 2025
Fri Feb 23 02:44:46 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords MOF derivative
Nanocomposite
MOF
Thermal decomposition
Carbon
TiO2
Language English
License Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c464t-7b2db576e1d4a75555e9fa8e62a60e012fb30ba6326b2670f22039c4ffee3a9e3
ORCID 0000-0001-9686-8688
0000-0002-1553-0915
OpenAccessLink http://hdl.handle.net/10871/124689
ParticipantIDs hal_primary_oai_HAL_hal_03450335v1
crossref_citationtrail_10_1016_j_micromeso_2021_110957
crossref_primary_10_1016_j_micromeso_2021_110957
elsevier_sciencedirect_doi_10_1016_j_micromeso_2021_110957
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-03-01
PublicationDateYYYYMMDD 2021-03-01
PublicationDate_xml – month: 03
  year: 2021
  text: 2021-03-01
  day: 01
PublicationDecade 2020
PublicationTitle Microporous and mesoporous materials
PublicationYear 2021
Publisher Elsevier Inc
Elsevier
Publisher_xml – name: Elsevier Inc
– name: Elsevier
References Cao, Tan, Sindoro, Zhang (bib29) 2017; 46
Lu, Wu, Shi, Cheng (bib6) 2019; 6
Li, Xu, Jiao, Jiang (bib25) 2019; 1
Li, He, Wang, Lv, Gu, Dai, Liu, Zhao (bib13) 2019; 7
Hendon, Rieth, Korzynski, Dinca (bib23) 2017; 3
Oveisi, Asli, Mahmoodi (bib52) 2018; 347
Li, Wang, Xing, Zhou, Liu, Li, Zheng, Ye, Zou (bib69) 2019; 243
Karabacak, Cinar, Unal, Kurt (bib51) 2010; 982
Karthik, Vinoth, Zhang, Choi, Balaraman, Neppolian (bib19) 2018; 1
Wang, Zhu, Zou, Xu (bib39) 2017; 2
Oar-Arteta, Wezendonk, Sun, Kapteijn, Gascon (bib21) 2017; 1
Guo, Cheng, Hu, Zhang, Xu, Kang, Zhao (bib65) 2014; 4
Kidanemariam, Lee, Park (bib12) 2019; 11
Pels, Kapteijn, Moulijn, Zhu, Thomas (bib74) 1995; 33
Karimi, Heidari, Emrooz, Shokouhimehr (bib58) 2020; 108
Frank, Zukalova, Laskova, Kürti, Koltai, Kavan (bib53) 2012; 14
Jagadale, Takale, Sonawane, Joshi, Patil, Kale, Ogale (bib68) 2008; 112
Hu, Liu, Li, Zuo, Zhang, Song, Zhang, Guo (bib46) 2014; 16
Dissegna, Epp, Heinz, Kieslich, Fischer (bib76) 2018; 30
Li, Eddaoudi, O'Keeffe, Yaghi (bib2) 1999; 402
Sohail, Yun, Lee, Kim, Cho, Kim, Kim, Moon, Kim (bib45) 2017; 17
Schwan, Ulrich, Batori, Ehrhardt, Silva (bib59) 1996; 80
Hussain, van der Linden, Yang, Jia, Chang, Fischer, Kapteijn, Zhu, Xia (bib48) 2021; 9
Iamprasertkun, Krittayavathananon, Sawangphruk (bib66) 2016; 102
Xie, Xu, Cui, Wang (bib18) 2017; 10
Zhang, Wang, Dong, Lv (bib7) 2020; 242
He, Cao, Liu, Miao, Ma, Ding (bib37) 2016; 9
Wang, Jia, Wu, Lu, Xu (bib64) 2012; 4
Di Valentin, Finazzi, Pacchioni, Selloni, Livraghi, Paganini, Giamello (bib75) 2007; 339
Ferrari, Robertson (bib56) 2000; 61
Feng, Wang, Powell, Zhou (bib10) 2019; 1
Heinz, Agirrezabal-Telleria, Junk, Berger, Wang, Sharapa, Gil-Calvo, Luz, Soukri, Studt, Wang, Wöll, Bunzen, Drees, Fischer (bib35) 2020; 12
Qiu, Yang, Li, Yao (bib72) 2019; 112
Shroder, Nemanich, Glass (bib60) 1990; 41
Kapteijn, Moulijn, Matzner, Boehm (bib73) 1999; 37
Zhang, Zhang, Tan, Shao, Shi, Zheng, Zhang, Yang, Han (bib20) 2018; 10
Yaghi, O'Keeffe, Ockwig, Chae, Eddaoudi, Kim (bib1) 2003; 423
Yang, Im, Kim, Lee, Park (bib42) 2011; 186
Chen, Li (bib3) 2016; 16
Sun, Tang, Wang (bib33) 2020; 3
Zhang, Chen, Zhong, Zhang, Zhang, Zhou, Bu (bib11) 2019; 2
Dan-Hardi, Serre, Frot, Rozes, Maurin, Sanchez, Férey (bib38) 2009; 131
Luo, Poyraz, Kuo, Miao, Meng, Chen, Jiang, Wenos, Suib (bib47) 2014; 27
Hussain, Schneemann, Fischer, Zhu, Xia (bib70) 2018; 1
Nasalevich, van der Veen, Kapteijn, Gascon (bib24) 2014; 16
Lee, Lee, Jeoung, Moon (bib34) 2017; 50
Asahi, Morikawa, Ohwaki, Aoki, Taga (bib63) 2001; 293
Hussain, Yang, van der Linden, Huang, Jia, Cerrato, Fischer, Kapteijn, Zhu, Xia (bib49) 2021; 57
Furukawa, Cordova, O'Keeffe, Yaghi (bib9) 2013; 341
Zhan, Sun, Han (bib30) 2019; 11
Saha, Tompkins (bib62) 1992; 72
Huang, Yang, Hussain, Chen, Jia, Zhu, Xia (bib27) 2020; 330
Wang, Li, Lv, Zhang, Guo (bib14) 2014; 7
Chu, Li (bib55) 2006; 96
Xia, Mahmood, Zou, Xu (bib4) 2015; 8
Medishetty, Zaręba, Mayer, Samoć, Fischer (bib15) 2017; 46
Marpaung, Kim, Khan, Konstantinov, Yamauchi, Hossain, Na, Kim (bib44) 2019; 14
Song, Li, Sun, Wang (bib26) 2015; 5
Nasalevich, Becker, Ramos-Fernandez, Castellanos, Veber, Fedin, Kapteijn, Reek, van der Vlugt, Gascon (bib40) 2015; 8
Wang, Gao, Al-Enizi, Nafady, Ma (bib8) 2020; 7
Song, Li, Sun (bib17) 2017; 5
Chen, Liu, Niu, Gong, Li, Xu, Pan (bib31) 2020; 7
Zhang, Hu (bib36) 2010; 114
Wang, Wang, Liang, Dong, Zhang (bib61) 2019; 467–468
Chen, Zhang, Jiao, Jiang (bib43) 2018; 362
Gong, Tang, Mao, Wu, Liu, Hu, Xiong, Wang (bib57) 2018; 6
Zeng, Guo, He, Duan (bib41) 2016; 6
Gómez-Avilés, Peñas-Garzón, Bedia, Dionysiou, Rodríguez, Belver (bib50) 2019; 253
Hussain, Pawar, Huang, Tahir, Fischer, Zhu, Xia (bib28) 2019; 146
Liu, Xu, Shao, Jiang (bib32) 2020; 26
Wang, Vagin, Lane, Lin, Shyta, Heinz, Van Dyck, Bergren, Gardner, Rieger, Meldrum (bib16) 2019; 31
Dang, Zhu, Xu (bib22) 2017; 3
Song, Li, He, Wu, Ke, Jiang, Wang, Xiao (bib67) 2018; 8
Zhang, He, Zhang, Yin, Chen (bib54) 2000; 33
Wang, Han, Feng, Zhou, Qi, Wang (bib5) 2016; 307
Ao, Zhang, Liu (bib71) 2018; 364
Frank (10.1016/j.micromeso.2021.110957_bib53) 2012; 14
Wang (10.1016/j.micromeso.2021.110957_bib61) 2019; 467–468
Lu (10.1016/j.micromeso.2021.110957_bib6) 2019; 6
Li (10.1016/j.micromeso.2021.110957_bib13) 2019; 7
Li (10.1016/j.micromeso.2021.110957_bib25) 2019; 1
Kidanemariam (10.1016/j.micromeso.2021.110957_bib12) 2019; 11
Wang (10.1016/j.micromeso.2021.110957_bib16) 2019; 31
Hendon (10.1016/j.micromeso.2021.110957_bib23) 2017; 3
Marpaung (10.1016/j.micromeso.2021.110957_bib44) 2019; 14
Zhang (10.1016/j.micromeso.2021.110957_bib54) 2000; 33
Ao (10.1016/j.micromeso.2021.110957_bib71) 2018; 364
Xie (10.1016/j.micromeso.2021.110957_bib18) 2017; 10
Jagadale (10.1016/j.micromeso.2021.110957_bib68) 2008; 112
Zeng (10.1016/j.micromeso.2021.110957_bib41) 2016; 6
Qiu (10.1016/j.micromeso.2021.110957_bib72) 2019; 112
Karimi (10.1016/j.micromeso.2021.110957_bib58) 2020; 108
Chen (10.1016/j.micromeso.2021.110957_bib31) 2020; 7
Li (10.1016/j.micromeso.2021.110957_bib2) 1999; 402
Sun (10.1016/j.micromeso.2021.110957_bib33) 2020; 3
Zhang (10.1016/j.micromeso.2021.110957_bib7) 2020; 242
Song (10.1016/j.micromeso.2021.110957_bib26) 2015; 5
Chu (10.1016/j.micromeso.2021.110957_bib55) 2006; 96
Yang (10.1016/j.micromeso.2021.110957_bib42) 2011; 186
Chen (10.1016/j.micromeso.2021.110957_bib3) 2016; 16
Schwan (10.1016/j.micromeso.2021.110957_bib59) 1996; 80
Wang (10.1016/j.micromeso.2021.110957_bib5) 2016; 307
Dan-Hardi (10.1016/j.micromeso.2021.110957_bib38) 2009; 131
Yaghi (10.1016/j.micromeso.2021.110957_bib1) 2003; 423
Liu (10.1016/j.micromeso.2021.110957_bib32) 2020; 26
Heinz (10.1016/j.micromeso.2021.110957_bib35) 2020; 12
Dissegna (10.1016/j.micromeso.2021.110957_bib76) 2018; 30
Chen (10.1016/j.micromeso.2021.110957_bib43) 2018; 362
Hussain (10.1016/j.micromeso.2021.110957_bib48) 2021; 9
Wang (10.1016/j.micromeso.2021.110957_bib64) 2012; 4
Zhan (10.1016/j.micromeso.2021.110957_bib30) 2019; 11
Gong (10.1016/j.micromeso.2021.110957_bib57) 2018; 6
Huang (10.1016/j.micromeso.2021.110957_bib27) 2020; 330
Hussain (10.1016/j.micromeso.2021.110957_bib49) 2021; 57
Wang (10.1016/j.micromeso.2021.110957_bib14) 2014; 7
Zhang (10.1016/j.micromeso.2021.110957_bib20) 2018; 10
Sohail (10.1016/j.micromeso.2021.110957_bib45) 2017; 17
Zhang (10.1016/j.micromeso.2021.110957_bib36) 2010; 114
Gómez-Avilés (10.1016/j.micromeso.2021.110957_bib50) 2019; 253
He (10.1016/j.micromeso.2021.110957_bib37) 2016; 9
Saha (10.1016/j.micromeso.2021.110957_bib62) 1992; 72
Zhang (10.1016/j.micromeso.2021.110957_bib11) 2019; 2
Wang (10.1016/j.micromeso.2021.110957_bib39) 2017; 2
Asahi (10.1016/j.micromeso.2021.110957_bib63) 2001; 293
Nasalevich (10.1016/j.micromeso.2021.110957_bib24) 2014; 16
Lee (10.1016/j.micromeso.2021.110957_bib34) 2017; 50
Hu (10.1016/j.micromeso.2021.110957_bib46) 2014; 16
Cao (10.1016/j.micromeso.2021.110957_bib29) 2017; 46
Medishetty (10.1016/j.micromeso.2021.110957_bib15) 2017; 46
Luo (10.1016/j.micromeso.2021.110957_bib47) 2014; 27
Oar-Arteta (10.1016/j.micromeso.2021.110957_bib21) 2017; 1
Karabacak (10.1016/j.micromeso.2021.110957_bib51) 2010; 982
Wang (10.1016/j.micromeso.2021.110957_bib8) 2020; 7
Iamprasertkun (10.1016/j.micromeso.2021.110957_bib66) 2016; 102
Oveisi (10.1016/j.micromeso.2021.110957_bib52) 2018; 347
Song (10.1016/j.micromeso.2021.110957_bib17) 2017; 5
Di Valentin (10.1016/j.micromeso.2021.110957_bib75) 2007; 339
Karthik (10.1016/j.micromeso.2021.110957_bib19) 2018; 1
Ferrari (10.1016/j.micromeso.2021.110957_bib56) 2000; 61
Li (10.1016/j.micromeso.2021.110957_bib69) 2019; 243
Pels (10.1016/j.micromeso.2021.110957_bib74) 1995; 33
Furukawa (10.1016/j.micromeso.2021.110957_bib9) 2013; 341
Feng (10.1016/j.micromeso.2021.110957_bib10) 2019; 1
Guo (10.1016/j.micromeso.2021.110957_bib65) 2014; 4
Dang (10.1016/j.micromeso.2021.110957_bib22) 2017; 3
Kapteijn (10.1016/j.micromeso.2021.110957_bib73) 1999; 37
Shroder (10.1016/j.micromeso.2021.110957_bib60) 1990; 41
Hussain (10.1016/j.micromeso.2021.110957_bib28) 2019; 146
Hussain (10.1016/j.micromeso.2021.110957_bib70) 2018; 1
Xia (10.1016/j.micromeso.2021.110957_bib4) 2015; 8
Nasalevich (10.1016/j.micromeso.2021.110957_bib40) 2015; 8
Song (10.1016/j.micromeso.2021.110957_bib67) 2018; 8
References_xml – volume: 112
  start-page: 297
  year: 2019
  end-page: 306
  ident: bib72
  publication-title: Mater. Res. Bull.
– volume: 402
  start-page: 276
  year: 1999
  end-page: 279
  ident: bib2
  publication-title: Nature
– volume: 6
  start-page: 7935
  year: 2016
  end-page: 7947
  ident: bib41
  publication-title: ACS Catal.
– volume: 3
  start-page: 17075
  year: 2017
  ident: bib22
  publication-title: Nat. Rev. Mater.
– volume: 5
  year: 2017
  ident: bib17
  publication-title: INORGA
– volume: 7
  start-page: 567
  year: 2020
  end-page: 582
  ident: bib31
  publication-title: Inorg. Chem. Front.
– volume: 11
  year: 2019
  ident: bib12
  publication-title: Polymers
– volume: 243
  start-page: 621
  year: 2019
  end-page: 628
  ident: bib69
  publication-title: Appl. Catal., B
– volume: 1
  start-page: 100005
  year: 2019
  ident: bib25
  publication-title: Energy Chem.
– volume: 16
  start-page: 4919
  year: 2014
  end-page: 4926
  ident: bib24
  publication-title: CrystEngComm
– volume: 7
  start-page: 1964
  year: 2019
  end-page: 1988
  ident: bib13
  publication-title: J. Mater. Chem. A
– volume: 14
  start-page: 1331
  year: 2019
  end-page: 1343
  ident: bib44
  publication-title: Chem. Asian J.
– volume: 3
  start-page: 127
  year: 2020
  end-page: 154
  ident: bib33
  publication-title: Electrochem. Energy Rev.
– volume: 7
  start-page: 300
  year: 2020
  end-page: 339
  ident: bib8
  publication-title: Inorg. Chem. Front.
– volume: 9
  year: 2021
  ident: bib48
  publication-title: J. Mater. Chem. A
– volume: 253
  start-page: 253
  year: 2019
  end-page: 262
  ident: bib50
  publication-title: Appl. Catal., B
– volume: 131
  start-page: 10857
  year: 2009
  end-page: 10859
  ident: bib38
  publication-title: J. Am. Chem. Soc.
– volume: 33
  start-page: 1641
  year: 1995
  end-page: 1653
  ident: bib74
  publication-title: Carbon
– volume: 114
  start-page: 2566
  year: 2010
  end-page: 2572
  ident: bib36
  publication-title: J. Phys. Chem. C
– volume: 10
  start-page: 16418
  year: 2018
  end-page: 16423
  ident: bib20
  publication-title: ACS Appl. Mater. Interfaces
– volume: 330
  start-page: 135335
  year: 2020
  ident: bib27
  publication-title: Electrochim. Acta
– volume: 8
  start-page: 1800165
  year: 2018
  ident: bib67
  publication-title: Adv. Energy Mater.
– volume: 2
  start-page: 29
  year: 2019
  end-page: 104
  ident: bib11
  publication-title: Electrochem. Energy Rev.
– volume: 293
  start-page: 269
  year: 2001
  end-page: 271
  ident: bib63
  publication-title: Science
– volume: 46
  start-page: 2660
  year: 2017
  end-page: 2677
  ident: bib29
  publication-title: Chem. Soc. Rev.
– volume: 4
  start-page: 576
  year: 2012
  end-page: 584
  ident: bib64
  publication-title: Nanoscale
– volume: 7
  start-page: 2831
  year: 2014
  end-page: 2867
  ident: bib14
  publication-title: Energy Environ. Sci.
– volume: 31
  start-page: 5816
  year: 2019
  end-page: 5823
  ident: bib16
  publication-title: Chem. Mater.
– volume: 362
  start-page: 1
  year: 2018
  end-page: 23
  ident: bib43
  publication-title: Coord. Chem. Rev.
– volume: 6
  start-page: 13696
  year: 2018
  end-page: 13704
  ident: bib57
  publication-title: J. Mater. Chem. A
– volume: 339
  start-page: 44
  year: 2007
  end-page: 56
  ident: bib75
  publication-title: Chem. Phys.
– volume: 37
  start-page: 1143
  year: 1999
  end-page: 1150
  ident: bib73
  publication-title: Carbon
– volume: 30
  start-page: 1704501
  year: 2018
  ident: bib76
  publication-title: Adv. Mater.
– volume: 982
  start-page: 22
  year: 2010
  end-page: 27
  ident: bib51
  publication-title: J. Mol. Struct.
– volume: 1
  start-page: 801
  year: 2019
  end-page: 824
  ident: bib10
  publication-title: Matter
– volume: 26
  start-page: 1
  year: 2020
  end-page: 22
  ident: bib32
  publication-title: Energy Storage Mater.
– volume: 364
  start-page: 524
  year: 2018
  end-page: 533
  ident: bib71
  publication-title: J. Photochem. Photobiol. A Chem.
– volume: 341
  start-page: 1230444
  year: 2013
  ident: bib9
  publication-title: Science
– volume: 61
  start-page: 14095
  year: 2000
  end-page: 14107
  ident: bib56
  publication-title: Phys. Rev. B
– volume: 12
  start-page: 40635
  year: 2020
  end-page: 40647
  ident: bib35
  publication-title: ACS Appl. Mater. Interfaces
– volume: 2
  start-page: 52
  year: 2017
  end-page: 80
  ident: bib39
  publication-title: Inside Chem.
– volume: 17
  start-page: 1208
  year: 2017
  end-page: 1213
  ident: bib45
  publication-title: Cryst. Growth Des.
– volume: 33
  start-page: 912
  year: 2000
  ident: bib54
  publication-title: J. Phys. D Appl. Phys.
– volume: 96
  start-page: 253
  year: 2006
  end-page: 277
  ident: bib55
  publication-title: Mater. Chem. Phys.
– volume: 108
  start-page: 107999
  year: 2020
  ident: bib58
  publication-title: Diam. Relat. Mater.
– volume: 50
  start-page: 2684
  year: 2017
  end-page: 2692
  ident: bib34
  publication-title: Acc. Chem. Res.
– volume: 8
  start-page: 364
  year: 2015
  end-page: 375
  ident: bib40
  publication-title: Energy Environ. Sci.
– volume: 1
  start-page: 1709
  year: 2017
  end-page: 1745
  ident: bib21
  publication-title: Mater. Chem. Front.
– volume: 57
  start-page: 485
  year: 2021
  end-page: 495
  ident: bib49
  publication-title: J. Energy Chem.
– volume: 1
  start-page: 4695
  year: 2018
  end-page: 4707
  ident: bib70
  publication-title: ACS Appl. Energy Mater.
– volume: 8
  start-page: 1837
  year: 2015
  end-page: 1866
  ident: bib4
  publication-title: Energy Environ. Sci.
– volume: 1
  start-page: 1913
  year: 2018
  end-page: 1923
  ident: bib19
  publication-title: ACS Appl. Energy Mater.
– volume: 102
  start-page: 455
  year: 2016
  end-page: 461
  ident: bib66
  publication-title: Carbon
– volume: 16
  start-page: 1456
  year: 2016
  end-page: 1476
  ident: bib3
  publication-title: Chem. Rec.
– volume: 6
  start-page: 3456
  year: 2019
  end-page: 3467
  ident: bib6
  publication-title: Inorg. Chem. Front.
– volume: 9
  start-page: 1856
  year: 2016
  end-page: 1865
  ident: bib37
  publication-title: Nano Res.
– volume: 41
  start-page: 3738
  year: 1990
  end-page: 3745
  ident: bib60
  publication-title: Phys. Rev. B
– volume: 347
  start-page: 123
  year: 2018
  end-page: 140
  ident: bib52
  publication-title: J. Hazard Mater.
– volume: 5
  start-page: 7267
  year: 2015
  end-page: 7279
  ident: bib26
  publication-title: RSC Adv.
– volume: 11
  start-page: 1
  year: 2019
  ident: bib30
  publication-title: Nano-Micro Lett.
– volume: 186
  start-page: 376
  year: 2011
  end-page: 382
  ident: bib42
  publication-title: J. Hazard Mater.
– volume: 80
  start-page: 440
  year: 1996
  end-page: 447
  ident: bib59
  publication-title: J. Appl. Phys.
– volume: 3
  start-page: 554
  year: 2017
  end-page: 563
  ident: bib23
  publication-title: ACS Cent. Sci.
– volume: 467–468
  start-page: 320
  year: 2019
  end-page: 327
  ident: bib61
  publication-title: Appl. Surf. Sci.
– volume: 27
  start-page: 6
  year: 2014
  end-page: 17
  ident: bib47
  publication-title: Chem. Mater.
– volume: 14
  start-page: 14567
  year: 2012
  end-page: 14572
  ident: bib53
  publication-title: Phys. Chem. Chem. Phys.
– volume: 423
  start-page: 705
  year: 2003
  end-page: 714
  ident: bib1
  publication-title: Nature
– volume: 146
  start-page: 348
  year: 2019
  end-page: 363
  ident: bib28
  publication-title: Carbon
– volume: 4
  start-page: 34221
  year: 2014
  end-page: 34225
  ident: bib65
  publication-title: RSC Adv.
– volume: 10
  start-page: 1645
  year: 2017
  end-page: 1663
  ident: bib18
  publication-title: ChemSusChem
– volume: 307
  start-page: 361
  year: 2016
  end-page: 381
  ident: bib5
  publication-title: Coord. Chem. Rev.
– volume: 242
  start-page: 125144
  year: 2020
  ident: bib7
  publication-title: Chemosphere
– volume: 46
  start-page: 4976
  year: 2017
  end-page: 5004
  ident: bib15
  publication-title: Chem. Soc. Rev.
– volume: 72
  start-page: 3072
  year: 1992
  end-page: 3079
  ident: bib62
  publication-title: J. Appl. Phys.
– volume: 16
  start-page: 9645
  year: 2014
  end-page: 9650
  ident: bib46
  publication-title: CrystEngComm
– volume: 112
  start-page: 14595
  year: 2008
  end-page: 14602
  ident: bib68
  publication-title: J. Phys. Chem. C
– volume: 7
  start-page: 1964
  year: 2019
  ident: 10.1016/j.micromeso.2021.110957_bib13
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C8TA11704G
– volume: 17
  start-page: 1208
  year: 2017
  ident: 10.1016/j.micromeso.2021.110957_bib45
  publication-title: Cryst. Growth Des.
  doi: 10.1021/acs.cgd.6b01597
– volume: 46
  start-page: 4976
  year: 2017
  ident: 10.1016/j.micromeso.2021.110957_bib15
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C7CS00162B
– volume: 3
  start-page: 127
  year: 2020
  ident: 10.1016/j.micromeso.2021.110957_bib33
  publication-title: Electrochem. Energy Rev.
  doi: 10.1007/s41918-019-00056-0
– volume: 2
  start-page: 29
  year: 2019
  ident: 10.1016/j.micromeso.2021.110957_bib11
  publication-title: Electrochem. Energy Rev.
  doi: 10.1007/s41918-018-0024-x
– volume: 14
  start-page: 1331
  year: 2019
  ident: 10.1016/j.micromeso.2021.110957_bib44
  publication-title: Chem. Asian J.
  doi: 10.1002/asia.201900026
– volume: 7
  start-page: 300
  year: 2020
  ident: 10.1016/j.micromeso.2021.110957_bib8
  publication-title: Inorg. Chem. Front.
  doi: 10.1039/C9QI01120J
– volume: 186
  start-page: 376
  year: 2011
  ident: 10.1016/j.micromeso.2021.110957_bib42
  publication-title: J. Hazard Mater.
  doi: 10.1016/j.jhazmat.2010.11.019
– volume: 341
  start-page: 1230444
  year: 2013
  ident: 10.1016/j.micromeso.2021.110957_bib9
  publication-title: Science
  doi: 10.1126/science.1230444
– volume: 27
  start-page: 6
  year: 2014
  ident: 10.1016/j.micromeso.2021.110957_bib47
  publication-title: Chem. Mater.
  doi: 10.1021/cm5035112
– volume: 467–468
  start-page: 320
  year: 2019
  ident: 10.1016/j.micromeso.2021.110957_bib61
  publication-title: Appl. Surf. Sci.
– volume: 1
  start-page: 801
  year: 2019
  ident: 10.1016/j.micromeso.2021.110957_bib10
  publication-title: Matter
  doi: 10.1016/j.matt.2019.08.022
– volume: 12
  start-page: 40635
  year: 2020
  ident: 10.1016/j.micromeso.2021.110957_bib35
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.0c10721
– volume: 6
  start-page: 7935
  year: 2016
  ident: 10.1016/j.micromeso.2021.110957_bib41
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.6b02228
– volume: 6
  start-page: 3456
  year: 2019
  ident: 10.1016/j.micromeso.2021.110957_bib6
  publication-title: Inorg. Chem. Front.
  doi: 10.1039/C9QI00964G
– volume: 982
  start-page: 22
  year: 2010
  ident: 10.1016/j.micromeso.2021.110957_bib51
  publication-title: J. Mol. Struct.
  doi: 10.1016/j.molstruc.2010.07.033
– volume: 8
  start-page: 1800165
  year: 2018
  ident: 10.1016/j.micromeso.2021.110957_bib67
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201800165
– volume: 114
  start-page: 2566
  year: 2010
  ident: 10.1016/j.micromeso.2021.110957_bib36
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp911043r
– volume: 253
  start-page: 253
  year: 2019
  ident: 10.1016/j.micromeso.2021.110957_bib50
  publication-title: Appl. Catal., B
  doi: 10.1016/j.apcatb.2019.04.040
– volume: 131
  start-page: 10857
  year: 2009
  ident: 10.1016/j.micromeso.2021.110957_bib38
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja903726m
– volume: 72
  start-page: 3072
  year: 1992
  ident: 10.1016/j.micromeso.2021.110957_bib62
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.351465
– volume: 330
  start-page: 135335
  year: 2020
  ident: 10.1016/j.micromeso.2021.110957_bib27
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2019.135335
– volume: 146
  start-page: 348
  year: 2019
  ident: 10.1016/j.micromeso.2021.110957_bib28
  publication-title: Carbon
  doi: 10.1016/j.carbon.2019.02.013
– volume: 96
  start-page: 253
  year: 2006
  ident: 10.1016/j.micromeso.2021.110957_bib55
  publication-title: Mater. Chem. Phys.
  doi: 10.1016/j.matchemphys.2005.07.048
– volume: 362
  start-page: 1
  year: 2018
  ident: 10.1016/j.micromeso.2021.110957_bib43
  publication-title: Coord. Chem. Rev.
  doi: 10.1016/j.ccr.2018.02.008
– volume: 7
  start-page: 2831
  year: 2014
  ident: 10.1016/j.micromeso.2021.110957_bib14
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C4EE01299B
– volume: 5
  start-page: 7267
  year: 2015
  ident: 10.1016/j.micromeso.2021.110957_bib26
  publication-title: RSC Adv.
  doi: 10.1039/C4RA12273A
– volume: 9
  year: 2021
  ident: 10.1016/j.micromeso.2021.110957_bib48
  publication-title: J. Mater. Chem. A
– volume: 339
  start-page: 44
  year: 2007
  ident: 10.1016/j.micromeso.2021.110957_bib75
  publication-title: Chem. Phys.
  doi: 10.1016/j.chemphys.2007.07.020
– volume: 8
  start-page: 364
  year: 2015
  ident: 10.1016/j.micromeso.2021.110957_bib40
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C4EE02853H
– volume: 14
  start-page: 14567
  year: 2012
  ident: 10.1016/j.micromeso.2021.110957_bib53
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/c2cp42763j
– volume: 4
  start-page: 576
  year: 2012
  ident: 10.1016/j.micromeso.2021.110957_bib64
  publication-title: Nanoscale
  doi: 10.1039/C1NR11353D
– volume: 1
  start-page: 1913
  year: 2018
  ident: 10.1016/j.micromeso.2021.110957_bib19
  publication-title: ACS Appl. Energy Mater.
  doi: 10.1021/acsaem.7b00245
– volume: 108
  start-page: 107999
  year: 2020
  ident: 10.1016/j.micromeso.2021.110957_bib58
  publication-title: Diam. Relat. Mater.
  doi: 10.1016/j.diamond.2020.107999
– volume: 364
  start-page: 524
  year: 2018
  ident: 10.1016/j.micromeso.2021.110957_bib71
  publication-title: J. Photochem. Photobiol. A Chem.
  doi: 10.1016/j.jphotochem.2018.06.044
– volume: 307
  start-page: 361
  year: 2016
  ident: 10.1016/j.micromeso.2021.110957_bib5
  publication-title: Coord. Chem. Rev.
  doi: 10.1016/j.ccr.2015.09.002
– volume: 9
  start-page: 1856
  year: 2016
  ident: 10.1016/j.micromeso.2021.110957_bib37
  publication-title: Nano Res.
  doi: 10.1007/s12274-016-1078-x
– volume: 293
  start-page: 269
  year: 2001
  ident: 10.1016/j.micromeso.2021.110957_bib63
  publication-title: Science
  doi: 10.1126/science.1061051
– volume: 423
  start-page: 705
  year: 2003
  ident: 10.1016/j.micromeso.2021.110957_bib1
  publication-title: Nature
  doi: 10.1038/nature01650
– volume: 3
  start-page: 17075
  year: 2017
  ident: 10.1016/j.micromeso.2021.110957_bib22
  publication-title: Nat. Rev. Mater.
  doi: 10.1038/natrevmats.2017.75
– volume: 112
  start-page: 297
  year: 2019
  ident: 10.1016/j.micromeso.2021.110957_bib72
  publication-title: Mater. Res. Bull.
  doi: 10.1016/j.materresbull.2018.12.038
– volume: 7
  start-page: 567
  year: 2020
  ident: 10.1016/j.micromeso.2021.110957_bib31
  publication-title: Inorg. Chem. Front.
  doi: 10.1039/C9QI01268K
– volume: 4
  start-page: 34221
  year: 2014
  ident: 10.1016/j.micromeso.2021.110957_bib65
  publication-title: RSC Adv.
  doi: 10.1039/C4RA05429F
– volume: 1
  start-page: 4695
  year: 2018
  ident: 10.1016/j.micromeso.2021.110957_bib70
  publication-title: ACS Appl. Energy Mater.
  doi: 10.1021/acsaem.8b00822
– volume: 11
  year: 2019
  ident: 10.1016/j.micromeso.2021.110957_bib12
  publication-title: Polymers
  doi: 10.3390/polym11122090
– volume: 6
  start-page: 13696
  year: 2018
  ident: 10.1016/j.micromeso.2021.110957_bib57
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C8TA02091D
– volume: 37
  start-page: 1143
  year: 1999
  ident: 10.1016/j.micromeso.2021.110957_bib73
  publication-title: Carbon
  doi: 10.1016/S0008-6223(98)00312-1
– volume: 1
  start-page: 100005
  year: 2019
  ident: 10.1016/j.micromeso.2021.110957_bib25
  publication-title: Energy Chem.
  doi: 10.1016/j.enchem.2019.100005
– volume: 61
  start-page: 14095
  year: 2000
  ident: 10.1016/j.micromeso.2021.110957_bib56
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.61.14095
– volume: 3
  start-page: 554
  year: 2017
  ident: 10.1016/j.micromeso.2021.110957_bib23
  publication-title: ACS Cent. Sci.
  doi: 10.1021/acscentsci.7b00197
– volume: 2
  start-page: 52
  year: 2017
  ident: 10.1016/j.micromeso.2021.110957_bib39
  publication-title: Inside Chem.
– volume: 1
  start-page: 1709
  year: 2017
  ident: 10.1016/j.micromeso.2021.110957_bib21
  publication-title: Mater. Chem. Front.
  doi: 10.1039/C7QM00007C
– volume: 30
  start-page: 1704501
  year: 2018
  ident: 10.1016/j.micromeso.2021.110957_bib76
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201704501
– volume: 5
  year: 2017
  ident: 10.1016/j.micromeso.2021.110957_bib17
  publication-title: INORGA
  doi: 10.3390/inorganics5030040
– volume: 33
  start-page: 912
  year: 2000
  ident: 10.1016/j.micromeso.2021.110957_bib54
  publication-title: J. Phys. D Appl. Phys.
  doi: 10.1088/0022-3727/33/8/305
– volume: 50
  start-page: 2684
  year: 2017
  ident: 10.1016/j.micromeso.2021.110957_bib34
  publication-title: Acc. Chem. Res.
  doi: 10.1021/acs.accounts.7b00259
– volume: 10
  start-page: 16418
  year: 2018
  ident: 10.1016/j.micromeso.2021.110957_bib20
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.8b01462
– volume: 347
  start-page: 123
  year: 2018
  ident: 10.1016/j.micromeso.2021.110957_bib52
  publication-title: J. Hazard Mater.
  doi: 10.1016/j.jhazmat.2017.12.057
– volume: 112
  start-page: 14595
  year: 2008
  ident: 10.1016/j.micromeso.2021.110957_bib68
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp803567f
– volume: 16
  start-page: 9645
  year: 2014
  ident: 10.1016/j.micromeso.2021.110957_bib46
  publication-title: CrystEngComm
  doi: 10.1039/C4CE01545B
– volume: 31
  start-page: 5816
  year: 2019
  ident: 10.1016/j.micromeso.2021.110957_bib16
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.9b01897
– volume: 16
  start-page: 4919
  year: 2014
  ident: 10.1016/j.micromeso.2021.110957_bib24
  publication-title: CrystEngComm
  doi: 10.1039/C4CE00032C
– volume: 41
  start-page: 3738
  year: 1990
  ident: 10.1016/j.micromeso.2021.110957_bib60
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.41.3738
– volume: 8
  start-page: 1837
  year: 2015
  ident: 10.1016/j.micromeso.2021.110957_bib4
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C5EE00762C
– volume: 11
  start-page: 1
  year: 2019
  ident: 10.1016/j.micromeso.2021.110957_bib30
  publication-title: Nano-Micro Lett.
  doi: 10.1007/s40820-018-0235-z
– volume: 26
  start-page: 1
  year: 2020
  ident: 10.1016/j.micromeso.2021.110957_bib32
  publication-title: Energy Storage Mater.
  doi: 10.1016/j.ensm.2019.12.019
– volume: 243
  start-page: 621
  year: 2019
  ident: 10.1016/j.micromeso.2021.110957_bib69
  publication-title: Appl. Catal., B
  doi: 10.1016/j.apcatb.2018.10.043
– volume: 46
  start-page: 2660
  year: 2017
  ident: 10.1016/j.micromeso.2021.110957_bib29
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C6CS00426A
– volume: 10
  start-page: 1645
  year: 2017
  ident: 10.1016/j.micromeso.2021.110957_bib18
  publication-title: ChemSusChem
  doi: 10.1002/cssc.201601855
– volume: 16
  start-page: 1456
  year: 2016
  ident: 10.1016/j.micromeso.2021.110957_bib3
  publication-title: Chem. Rec.
  doi: 10.1002/tcr.201500304
– volume: 57
  start-page: 485
  year: 2021
  ident: 10.1016/j.micromeso.2021.110957_bib49
  publication-title: J. Energy Chem.
  doi: 10.1016/j.jechem.2020.08.048
– volume: 402
  start-page: 276
  year: 1999
  ident: 10.1016/j.micromeso.2021.110957_bib2
  publication-title: Nature
  doi: 10.1038/46248
– volume: 80
  start-page: 440
  year: 1996
  ident: 10.1016/j.micromeso.2021.110957_bib59
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.362745
– volume: 33
  start-page: 1641
  year: 1995
  ident: 10.1016/j.micromeso.2021.110957_bib74
  publication-title: Carbon
  doi: 10.1016/0008-6223(95)00154-6
– volume: 242
  start-page: 125144
  year: 2020
  ident: 10.1016/j.micromeso.2021.110957_bib7
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2019.125144
– volume: 102
  start-page: 455
  year: 2016
  ident: 10.1016/j.micromeso.2021.110957_bib66
  publication-title: Carbon
  doi: 10.1016/j.carbon.2015.12.092
SSID ssj0017121
Score 2.5804095
Snippet Titanium based metal-organic frameworks (MOFs) are interesting self-sacrificial precursors to derive semiconducting porous nanocomposites for highly efficient...
SourceID hal
crossref
elsevier
SourceType Open Access Repository
Enrichment Source
Index Database
Publisher
StartPage 110957
SubjectTerms Carbon
Chemical Sciences
Material chemistry
MOF
MOF derivative
Nanocomposite
Thermal decomposition
TiO2
Title An in situ investigation of the thermal decomposition of metal-organic framework NH2-MIL-125 (Ti)
URI https://dx.doi.org/10.1016/j.micromeso.2021.110957
https://hal.science/hal-03450335
Volume 316
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS8MwFA5TX_RBvOJ1BPFBH-KaNE1b38ZQOt2G6Aa-lV4SrGgnbvPR3-45vaEg-GChlKYNKSfJOV_b73wh5FQZLhI_TZlMuMdgJrosEkYyz4ldYUuVKB-zkYcjFUzkzaPz2CK9OhcGaZWV7y99euGtq5JOZc3OW5Z1HrgNYN_jqICFQAI1QaV0cZRffDY0D-7yKvcKJhPe_YPj9VqQ3vQMswAFL9Q3MU79HqGWnupvrUXsud4g6xVopN3yuTZJS-dbZO2blOA2ibo5zXI6y-YLODbaGdOcTg0FkIc7-OAXmmpkkVdULbz4qgF_s3J1p4SamqxFR4Fgw_6AATahZ-PsfIdMrq_GvYBVyyewRCo5Z24s0hheJzRPZeQ6sGnfRJ5WIlKWhsBkYtuKIwUALhbKtYwQlu0n0hit7cjX9i5Zzqe53iNU2dDTjjRSAxxQnoqNJzRXjp84PiAws09UbbIwqbTFcYmLl7AmkT2Hja1DtHVY2nqfWE3Ft1Je4-8ql3WfhD9GSghB4O_KJ9CLTVOorR10ByGWWbbEX7rOBz_4TwuHZBXPSpraEVmevy_0MeCWedwuBmabrHR794M7PPZvg9EXuf7s9Q
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1La9wwEB6S9NDmUPqkSV-itNAe1LVkWbYLPSxtg7fZ3Us3kJvqh0QdEm_Iblp6yZ_KH-yMLZsGCjmUGIxBQpaZkWY-29_MALzWTsgyrSquSpFw3Ikxz6VTPImKWIZKlzqlaOTZXGcH6uthdLgBl30sDNEqve3vbHprrX3LyEtzdFrXo28iRLCfCMqARUBCeWblvv39C9_bVh8nn1HJb6Tc-7L4lHFfWoCXSqs1jwtZFQi1rahUHkd42NTlidUy14FFo-2KMChyjeCmkDoOnJRBmJbKOWvDPLUh3ncTbik0F1Q24f3FwCsRsfDBXrh76fGukMpOWpadXVHYoRRtuk9yjP92iZs_-o-7rbPbuwd3PUpl404Q92HDNg9g-6_chQ8hHzesbtiqXp_jdUjWsWzY0jFElXSi0T9mlSXauueGUeeJRcDPu3JSJXM9O4zNM8lnkylHMMTeLup3j-DgRoT6GLaaZWOfANMhLq1IOWURf-hEFy6RVugoLaMUIZ_bAd2LzJQ-mTnV1Dg2PWvtyAyyNiRr08l6B4Jh4GmXz-P6IR96nZgrS9Og17l-8CvU4jAVJfPOxlNDbUGo6B9y9FPs_s8ML-F2tphNzXQy338Kd6in48g9g6312bl9jqBpXbxoFymD7ze9K_4Am_wnJQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+in+situ+investigation+of+the+thermal+decomposition+of+metal-organic+framework+NH2-MIL-125+%28Ti%29&rft.jtitle=Microporous+and+mesoporous+materials&rft.au=Hussain%2C+Mian+Zahid&rft.au=Bahri%2C+Mounib&rft.au=Heinz%2C+Werner+R.&rft.au=Jia%2C+Quanli&rft.date=2021-03-01&rft.issn=1387-1811&rft.volume=316&rft.spage=110957&rft_id=info:doi/10.1016%2Fj.micromeso.2021.110957&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_micromeso_2021_110957
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1387-1811&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1387-1811&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1387-1811&client=summon