Benchmarking the robustness of the correct identification of flexible 3D objects using common machine learning models

True three-dimensional (3D) data are prevalent in domains such as molecular science or computer vision. In these data, machine learning models are often asked to identify objects subject to intrinsic flexibility. Our study introduces two datasets from molecular science to assess the classification r...

Full description

Saved in:
Bibliographic Details
Published inPatterns (New York, N.Y.) Vol. 6; no. 1; p. 101147
Main Authors Zhang, Yang, Vitalis, Andreas
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 10.01.2025
Elsevier
Subjects
Online AccessGet full text
ISSN2666-3899
2666-3899
DOI10.1016/j.patter.2024.101147

Cover

Abstract True three-dimensional (3D) data are prevalent in domains such as molecular science or computer vision. In these data, machine learning models are often asked to identify objects subject to intrinsic flexibility. Our study introduces two datasets from molecular science to assess the classification robustness of common model/feature combinations. Molecules are flexible, and shapes alone offer intra-class heterogeneities that yield a high risk for confusions. By blocking training and test sets to reduce overlap, we establish a baseline requiring the trained models to abstract from shape. As training data coverage grows, all tested architectures perform better on unseen data with reduced overfitting. Empirically, 2D embeddings of voxelized data produced the best-performing models. Evidently, both featurization and task-appropriate model design are of continued importance, the latter point reinforced by comparisons to recent, more specialized models. Finally, we show that the shape abstraction learned from database samples extends to samples that are evolving explicitly in time. •Recognizing different poses of flexible objects can be challenging•We derive benchmark sets from molecular science as prototypical examples•Representation continues to matter in modern machine learning•Flexibility across proteins and flexibility in time are understood and compatible Many natural objects have intrinsic flexibility, for example, through articulated joints in living beings such as humans. In applications like autonomous vehicles, it is important that a class of object captured through imaging devices in either 2D or 3D is safely identified. Differences caused by motion and flexibility are often confounded by intrinsic differences, as seen, for example, in different plants of the same type of tree. Thus, reliably recognizing such objects is a challenging problem. Our study creates a bridge to this problem scope from molecular science by offering datasets for benchmarking methods trying to solve this recognition task. Molecules are flexible and offer many unequivocal classes that can “look” very similar. We were interested in how well modern machine learning methods perform in this task when they have to rely on spatial information alone. Taking a dataset from molecular science cures some technical issues seen with imaging data, such as differences in scale, resolution, and ambiguous labels. Our research shows that the exact way in which the spatial information is encoded continues to be important, and this holds for both accuracy and transferability. The latter can be thought of as a proxy for the appropriateness and generalizability of the strategy a given model learns. Transferability is the biggest concern in fields where there are limited and often non-extensible amounts of data, such as drug discovery, digital humanities, or financial modeling, and we touch upon the implications of our results for applications of machine learning in such a setting. Molecular science benchmark sets (FEater) are introduced for machine learning tasks involving flexible object recognition. The impact of differences in featurization and model architectures on both the expected accuracy and the achievable transferability is discussed. In addition, numerical evaluations of the performance of the workflows are provided, and the compatibility of the flexibility observed over time (molecular dynamics) with the heterogeneity found across independent observations (structural databases) is evaluated.
AbstractList True three-dimensional (3D) data are prevalent in domains such as molecular science or computer vision. In these data, machine learning models are often asked to identify objects subject to intrinsic flexibility. Our study introduces two datasets from molecular science to assess the classification robustness of common model/feature combinations. Molecules are flexible, and shapes alone offer intra-class heterogeneities that yield a high risk for confusions. By blocking training and test sets to reduce overlap, we establish a baseline requiring the trained models to abstract from shape. As training data coverage grows, all tested architectures perform better on unseen data with reduced overfitting. Empirically, 2D embeddings of voxelized data produced the best-performing models. Evidently, both featurization and task-appropriate model design are of continued importance, the latter point reinforced by comparisons to recent, more specialized models. Finally, we show that the shape abstraction learned from database samples extends to samples that are evolving explicitly in time. •Recognizing different poses of flexible objects can be challenging•We derive benchmark sets from molecular science as prototypical examples•Representation continues to matter in modern machine learning•Flexibility across proteins and flexibility in time are understood and compatible Many natural objects have intrinsic flexibility, for example, through articulated joints in living beings such as humans. In applications like autonomous vehicles, it is important that a class of object captured through imaging devices in either 2D or 3D is safely identified. Differences caused by motion and flexibility are often confounded by intrinsic differences, as seen, for example, in different plants of the same type of tree. Thus, reliably recognizing such objects is a challenging problem. Our study creates a bridge to this problem scope from molecular science by offering datasets for benchmarking methods trying to solve this recognition task. Molecules are flexible and offer many unequivocal classes that can “look” very similar. We were interested in how well modern machine learning methods perform in this task when they have to rely on spatial information alone. Taking a dataset from molecular science cures some technical issues seen with imaging data, such as differences in scale, resolution, and ambiguous labels. Our research shows that the exact way in which the spatial information is encoded continues to be important, and this holds for both accuracy and transferability. The latter can be thought of as a proxy for the appropriateness and generalizability of the strategy a given model learns. Transferability is the biggest concern in fields where there are limited and often non-extensible amounts of data, such as drug discovery, digital humanities, or financial modeling, and we touch upon the implications of our results for applications of machine learning in such a setting. Molecular science benchmark sets (FEater) are introduced for machine learning tasks involving flexible object recognition. The impact of differences in featurization and model architectures on both the expected accuracy and the achievable transferability is discussed. In addition, numerical evaluations of the performance of the workflows are provided, and the compatibility of the flexibility observed over time (molecular dynamics) with the heterogeneity found across independent observations (structural databases) is evaluated.
True three-dimensional (3D) data are prevalent in domains such as molecular science or computer vision. In these data, machine learning models are often asked to identify objects subject to intrinsic flexibility. Our study introduces two datasets from molecular science to assess the classification robustness of common model/feature combinations. Molecules are flexible, and shapes alone offer intra-class heterogeneities that yield a high risk for confusions. By blocking training and test sets to reduce overlap, we establish a baseline requiring the trained models to abstract from shape. As training data coverage grows, all tested architectures perform better on unseen data with reduced overfitting. Empirically, 2D embeddings of voxelized data produced the best-performing models. Evidently, both featurization and task-appropriate model design are of continued importance, the latter point reinforced by comparisons to recent, more specialized models. Finally, we show that the shape abstraction learned from database samples extends to samples that are evolving explicitly in time.True three-dimensional (3D) data are prevalent in domains such as molecular science or computer vision. In these data, machine learning models are often asked to identify objects subject to intrinsic flexibility. Our study introduces two datasets from molecular science to assess the classification robustness of common model/feature combinations. Molecules are flexible, and shapes alone offer intra-class heterogeneities that yield a high risk for confusions. By blocking training and test sets to reduce overlap, we establish a baseline requiring the trained models to abstract from shape. As training data coverage grows, all tested architectures perform better on unseen data with reduced overfitting. Empirically, 2D embeddings of voxelized data produced the best-performing models. Evidently, both featurization and task-appropriate model design are of continued importance, the latter point reinforced by comparisons to recent, more specialized models. Finally, we show that the shape abstraction learned from database samples extends to samples that are evolving explicitly in time.
True three-dimensional (3D) data are prevalent in domains such as molecular science or computer vision. In these data, machine learning models are often asked to identify objects subject to intrinsic flexibility. Our study introduces two datasets from molecular science to assess the classification robustness of common model/feature combinations. Molecules are flexible, and shapes alone offer intra-class heterogeneities that yield a high risk for confusions. By blocking training and test sets to reduce overlap, we establish a baseline requiring the trained models to abstract from shape. As training data coverage grows, all tested architectures perform better on unseen data with reduced overfitting. Empirically, 2D embeddings of voxelized data produced the best-performing models. Evidently, both featurization and task-appropriate model design are of continued importance, the latter point reinforced by comparisons to recent, more specialized models. Finally, we show that the shape abstraction learned from database samples extends to samples that are evolving explicitly in time.
True three-dimensional (3D) data are prevalent in domains such as molecular science or computer vision. In these data, machine learning models are often asked to identify objects subject to intrinsic flexibility. Our study introduces two datasets from molecular science to assess the classification robustness of common model/feature combinations. Molecules are flexible, and shapes alone offer intra-class heterogeneities that yield a high risk for confusions. By blocking training and test sets to reduce overlap, we establish a baseline requiring the trained models to abstract from shape. As training data coverage grows, all tested architectures perform better on unseen data with reduced overfitting. Empirically, 2D embeddings of voxelized data produced the best-performing models. Evidently, both featurization and task-appropriate model design are of continued importance, the latter point reinforced by comparisons to recent, more specialized models. Finally, we show that the shape abstraction learned from database samples extends to samples that are evolving explicitly in time. • Recognizing different poses of flexible objects can be challenging • We derive benchmark sets from molecular science as prototypical examples • Representation continues to matter in modern machine learning • Flexibility across proteins and flexibility in time are understood and compatible Many natural objects have intrinsic flexibility, for example, through articulated joints in living beings such as humans. In applications like autonomous vehicles, it is important that a class of object captured through imaging devices in either 2D or 3D is safely identified. Differences caused by motion and flexibility are often confounded by intrinsic differences, as seen, for example, in different plants of the same type of tree. Thus, reliably recognizing such objects is a challenging problem. Our study creates a bridge to this problem scope from molecular science by offering datasets for benchmarking methods trying to solve this recognition task. Molecules are flexible and offer many unequivocal classes that can “look” very similar. We were interested in how well modern machine learning methods perform in this task when they have to rely on spatial information alone. Taking a dataset from molecular science cures some technical issues seen with imaging data, such as differences in scale, resolution, and ambiguous labels. Our research shows that the exact way in which the spatial information is encoded continues to be important, and this holds for both accuracy and transferability. The latter can be thought of as a proxy for the appropriateness and generalizability of the strategy a given model learns. Transferability is the biggest concern in fields where there are limited and often non-extensible amounts of data, such as drug discovery, digital humanities, or financial modeling, and we touch upon the implications of our results for applications of machine learning in such a setting. Molecular science benchmark sets (FEater) are introduced for machine learning tasks involving flexible object recognition. The impact of differences in featurization and model architectures on both the expected accuracy and the achievable transferability is discussed. In addition, numerical evaluations of the performance of the workflows are provided, and the compatibility of the flexibility observed over time (molecular dynamics) with the heterogeneity found across independent observations (structural databases) is evaluated.
ArticleNumber 101147
Author Vitalis, Andreas
Zhang, Yang
Author_xml – sequence: 1
  givenname: Yang
  orcidid: 0000-0003-0801-8064
  surname: Zhang
  fullname: Zhang, Yang
  organization: Department of Biochemistry, University of Zurich, 8057 Zurich, Switzerland
– sequence: 2
  givenname: Andreas
  orcidid: 0000-0002-5422-5278
  surname: Vitalis
  fullname: Vitalis, Andreas
  email: a.vitalis@bioc.uzh.ch
  organization: Department of Biochemistry, University of Zurich, 8057 Zurich, Switzerland
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39896260$$D View this record in MEDLINE/PubMed
BookMark eNqFUU1v1TAQtFARLaX_AKEcubyH13GcmAOolE-pEhc4W46z6fPDsR-2U8G_x2laVDjAydbuzOzuzGNy5INHQp4C3QIF8WK_PeicMW4ZZXwpAW8fkBMmhNjUnZRH9_7H5CylPaWUNQBSwCNyXMtOCiboCZnfoDe7Scdv1l9VeYdVDP2csseUqjDeVEyIEU2u7IA-29EanW3wS3d0-MP2Dqv6bRX6fQGlak6LkgnTVDCTNjvrsXKoo1_qUxjQpSfk4ahdwrPb95R8ff_uy8XHzeXnD58uzi83hgueN21Hey1BAIi2GVlbo2l0g7VoJcpeUxRcMOCcag3IaujZMEpotTR9ubZj9Sl5veoe5n7CwZT9o3bqEG25-KcK2qo_O97u1FW4VgBtV7xrisLzW4UYvs-YsppsMuic9hjmpGoQrOOy4bxAn90f9nvKndkF8HIFmBhSijgqY_ONl2W2dQqoWsJVe7WGq5Zw1RpuIfO_yHf6_6G9WmnFdby2pZuMLZHjYJdM1RDsvwV-Ad_8whM
CitedBy_id crossref_primary_10_1039_D4MD00869C
Cites_doi 10.1109/TPAMI.2022.3159003
10.1016/j.bdr.2020.100178
10.1038/s41586-021-03819-2
10.1021/acs.jcim.2c00484
10.1021/ct400341p
10.3389/fbinf.2022.885983
10.1109/TGRS.2009.2030180
10.1007/s10462-021-10058-4
10.1093/bioinformatics/bty374
10.1038/s41592-019-0666-6
10.1021/acs.jcim.3c00799
10.1021/acs.accounts.0c00699
10.1093/bioinformatics/btx350
10.1126/science.abj8754
10.1186/s13321-023-00745-5
10.1021/acs.jcim.3c00322
10.1038/s41467-021-27396-0
10.1111/j.1467-8659.2009.01515.x
10.1093/bioinformatics/btq112
10.1089/10665270360688228
10.1038/s41467-023-37701-8
10.1038/s43588-024-00627-2
10.1007/BF01199431
10.1109/MSP.2017.2693418
10.1038/s42256-021-00418-8
10.1109/TITS.2022.3195555
10.1021/acs.jcim.6b00778
10.1109/LRA.2022.3211493
10.21105/joss.05983
10.1021/acs.chemrev.0c01303
10.1021/acs.jcim.3c00472
10.1038/s41586-024-07487-w
10.1021/acs.jcim.0c00075
10.1002/prot.21782
10.1038/s41573-019-0050-3
10.1007/s10822-022-00478-x
10.1016/j.eswa.2023.122498
10.1021/acs.jcim.7b00650
10.1021/ci9803381
10.1038/s41573-019-0024-5
10.1186/s13321-021-00522-2
10.1021/acs.jcim.3c00005
10.1021/jm030580l
10.1063/1.1751381
10.1021/acs.jcim.6b00740
ContentType Journal Article
Copyright 2024 The Author(s)
2024 The Author(s).
2024 The Author(s) 2024
Copyright_xml – notice: 2024 The Author(s)
– notice: 2024 The Author(s).
– notice: 2024 The Author(s) 2024
DBID 6I.
AAFTH
AAYXX
CITATION
NPM
7X8
5PM
DOI 10.1016/j.patter.2024.101147
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
PubMed

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
EISSN 2666-3899
ExternalDocumentID PMC11783895
39896260
10_1016_j_patter_2024_101147
S2666389924003192
Genre Journal Article
GroupedDBID 0R~
6I.
AAEDW
AAFTH
AAMRU
AAXUO
ADVLN
AITUG
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
EBS
FDB
GROUPED_DOAJ
M41
OK1
ROL
RPM
AALRI
AAYWO
AAYXX
ACVFH
ADCNI
AEUPX
AFPUW
AIGII
AKBMS
AKYEP
APXCP
CITATION
NPM
7X8
5PM
ID FETCH-LOGICAL-c464t-780ba91611675f273ec5a5e3679e9ba0e64621440aa1e231b2df917a9cb002823
ISSN 2666-3899
IngestDate Thu Aug 21 18:39:04 EDT 2025
Fri Jul 11 09:59:57 EDT 2025
Mon Jul 21 05:47:38 EDT 2025
Thu Apr 24 23:02:55 EDT 2025
Tue Jul 01 03:04:28 EDT 2025
Sun Apr 06 06:53:23 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords structural representation
3D spatial data
featurization
molecular science
flexible object recognition
machine learning
molecular dynamics
benchmark set
Language English
License This is an open access article under the CC BY license.
2024 The Author(s).
This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c464t-780ba91611675f273ec5a5e3679e9ba0e64621440aa1e231b2df917a9cb002823
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Lead contact
ORCID 0000-0002-5422-5278
0000-0003-0801-8064
OpenAccessLink http://dx.doi.org/10.1016/j.patter.2024.101147
PMID 39896260
PQID 3162849544
PQPubID 23479
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_11783895
proquest_miscellaneous_3162849544
pubmed_primary_39896260
crossref_citationtrail_10_1016_j_patter_2024_101147
crossref_primary_10_1016_j_patter_2024_101147
elsevier_sciencedirect_doi_10_1016_j_patter_2024_101147
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2025-01-10
PublicationDateYYYYMMDD 2025-01-10
PublicationDate_xml – month: 01
  year: 2025
  text: 2025-01-10
  day: 10
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Patterns (New York, N.Y.)
PublicationTitleAlternate Patterns (N Y)
PublicationYear 2025
Publisher Elsevier Inc
Elsevier
Publisher_xml – name: Elsevier Inc
– name: Elsevier
References Bronstein, Kokkinos (bib36) 2010
Paszke, Gross, Massa, Lerer, Bradbury, Chanan, Killeen, Lin, Gimelshein, Antiga (bib82) 2019
Sun, Ovsjanikov, Guibas (bib37) 2009; 28
Gorostiola González, van den Broek, Braun, Chatzopoulou, Jespers, IJzerman, Heitman, van Westen (bib51) 2023; 15
Gainza, Sverrisson, Monti, Rodolà, Boscaini, Bronstein, Correia (bib28) 2020; 17
Tosstorff, Rudolph, Cole, Reutlinger, Kramer, Schaffhauser, Nilly, Flohr, Kuhn (bib74) 2022; 36
Riniker (bib50) 2017; 57
Zuffi, Kanazawa, Jacobs, Black (bib8) 2017
Rappoport, Jinich (bib56) 2023; 63
Liu, Lin, Cao, Hu, Wei, Zhang, Lin, Guo (bib66) 2021
Van der Maaten, Hinton (bib60) 2008; 9
Janoch, Karayev, Jia, Barron, Fritz, Saenko, Darrell (bib10) 2013
Vamathevan, Clark, Czodrowski, Dunham, Ferran, Lee, Li, Madabhushi, Shah, Spitzer, Zhao (bib18) 2019; 18
Liu, Li, Chen, Cao, Zeng (bib22) 2024; 240
Huang, Wang, Koltun (bib4) 2015; 34
Meli, Morris, Biggin (bib79) 2022; 2
Stepniewska-Dziubinska, Zielenkiewicz, Siedlecki (bib43) 2018; 34
Rusu, Blodow, Beetz (bib38) 2009
Dara, Dhamercherla, Jadav, Babu, Ahsan (bib19) 2022; 55
Renaud, Geng, Georgievska, Ambrosetti, Ridder, Marzella, Réau, Bonvin, Xue (bib30) 2021; 12
Siebenmorgen, Menezes, Benassou, Merdivan, Didi, Mourão, Kitel, Liò, Kesselheim, Piraud (bib70) 2024; 4
Wu, Song, Khosla, Yu, Zhang, Tang, Xiao (bib6) 2015
He, Zhang, Ren, Sun (bib68) 2015
Jiménez, Skalic, Martinez-Rosell, De Fabritiis (bib25) 2018; 58
Zhang, Y., and Vitalis, A. (2024). FEater Dataset: A Molecular Fragment Dataset to Benchmark the Robustness of 3D Flexible Object Recognition. Zenodo.
Huang, von Lilienfeld (bib73) 2021; 121
Roe, Cheatham III (bib83) 2013; 9
Bronstein, Bruna, LeCun, Szlam, Vandergheynst (bib23) 2017; 34
Qi, Yi, Su, Guibas (bib12) 2017
Riegler, Osman Ulusoy, Geiger (bib15) 2017
Feng, Feng, You, Zhao, Gao (bib14) 2019; 33
.
Krapp, Abriata, Cortés Rodriguez, Dal Peraro (bib29) 2023; 14
Liang, Jacobson (bib45) 2022
Crocioni, Bodor, Baakman, Parizi, Rademaker, Ramakrishnan, van der Burg, Marzella, Teixeira, Xue (bib64) 2024; 9
Qi, Su, Mo, Guibas (bib11) 2017
Zhu, Yang, Meng, Zheng, Ku, Luo, Hu, Liang (bib52) 2022; 62
Zeng, Chen, Shi, Shen (bib75) 2024
Jiménez, Doerr, Martínez-Rosell, Rose, De Fabritiis (bib27) 2017; 33
Jumper, Evans, Pritzel, Green, Figurnov, Ronneberger, Tunyasuvunakool, Bates, Žídek, Potapenko (bib31) 2021; 596
Amini, Shrimpton, Muggleton, Sternberg (bib47) 2007; 69
Faroni, Beschi, Pedrocchi (bib17) 2022; 7
Zhang, Y. (2023). SiESTA-Surf a python Interface for GPU-Based Surface Generation. Zenodo.
Choi, Kim (bib3) 2021
Schneider, Walters, Plowright, Sieroka, Listgarten, Goodnow, Fisher, Jansen, Duca, Rush (bib20) 2020; 19
Pinheiro, Jamasb, Mahmood, Sresht, Saremi (bib46) 2024
Hilbert (bib58) 1891; 38
McNutt, Francoeur, Aggarwal, Masuda, Meli, Ragoza, Sunseri, Koes (bib42) 2021; 13
Gilmer, Schoenholz, Riley, Vinyals, Dahl (bib71) 2017
Fei, Yang, Chen, Li, Li, Ma, Hu, Ma (bib13) 2022; 23
Wen, Xiang, Han, Cao, Wan, Zheng, Liu (bib39) 2023; 45
Teodoro, Phillips, Kavraki (bib49) 2003; 10
Lian, Godil, Fabry, Furuya, Hermans, Ohbuchi, Shu, Smeets, Suetens, Vandermeulen, Wuhrer (bib7) 2010
Heyndrickx, Mervin, Morawietz, Sturm, Friedrich, Zalewski, Pentina, Humbeck, Oldenhof, Niwayama (bib76) 2024; 64
Sampath, Shan (bib5) 2009; 48
Maturana, Scherer (bib41) 2015
Scantlebury, Vost, Carbery, Hadfield, Turnbull, Brown, Chenthamarakshan, Das, Grosjean, Von Delft, Deane (bib78) 2023; 63
Alujaim, Park, Kim (bib16) 2020
Zheng, Zhang, Li, Pearce, Bell, Zhang (bib33) 2021; 1
Wang, Sun, Liu, Sarma, Bronstein, Solomon (bib62) 2019; 38
Silberman, Hoiem, Kohli, Fergus (bib9) 2012; 2012
Mandikal, Radhakrishnan (bib40) 2019
Shan, Englot (bib2) 2018
Wallach, Dzamba, Heifets (bib24) 2015
Walters, Barzilay (bib72) 2021; 54
Ballester, Mitchell (bib48) 2010; 26
Shaw (bib69) 2020
Skilling (bib57) 2004; 707
Wang, Fang, Lu, Wang (bib54) 2004; 47
Atz, Grisoni, Schneider (bib21) 2021; 3
Ren, Li, Ren, Song, Xu, Deng, Wang (bib77) 2021; 23
Ragoza, Hochuli, Idrobo, Sunseri, Koes (bib26) 2017; 57
Martinez, Krone, Baaden (bib35) 2019
He, Zhang, Ren, Sun (bib61) 2016
Newcombe, Izadi, Hilliges, Molyneaux, Kim, Davison, Kohi, Shotton, Hodges, Fitzgibbon (bib1) 2011
Abramson, Adler, Dunger, Evans, Green, Pritzel, Ronneberger, Willmore, Ballard, Bambrick (bib34) 2024; 630
Li, Gilbert, Farrell, Zarzycki (bib53) 2023; 63
Baek, DiMaio, Anishchenko, Dauparas, Ovchinnikov, Lee, Wang, Cong, Kinch, Schaeffer (bib32) 2021; 373
Xu, Ding, Zhao, Qi (bib63) 2021
Dosovitskiy, Beyer, Kolesnikov, Weissenborn, Zhai, Unterthiner, Dehghani, Minderer, Heigold, Gelly (bib67) 2020
Liu, Mao, Wu, Feichtenhofer, Darrell, Xie (bib65) 2022
Butina (bib59) 1999; 39
Zhang, Y. (2024). FEater: A Protein Fragment Dataset for Benchmarking Flexible Object Recognition. Zenodo.
Hassan-Harrirou, Zhang, Lemmin (bib44) 2020; 60
Wallach (10.1016/j.patter.2024.101147_bib24) 2015
McNutt (10.1016/j.patter.2024.101147_bib42) 2021; 13
Riegler (10.1016/j.patter.2024.101147_bib15) 2017
He (10.1016/j.patter.2024.101147_bib68) 2015
Shaw (10.1016/j.patter.2024.101147_bib69) 2020
Tosstorff (10.1016/j.patter.2024.101147_bib74) 2022; 36
Xu (10.1016/j.patter.2024.101147_bib63) 2021
Hassan-Harrirou (10.1016/j.patter.2024.101147_bib44) 2020; 60
Newcombe (10.1016/j.patter.2024.101147_bib1) 2011
Rappoport (10.1016/j.patter.2024.101147_bib56) 2023; 63
Teodoro (10.1016/j.patter.2024.101147_bib49) 2003; 10
Crocioni (10.1016/j.patter.2024.101147_bib64) 2024; 9
Sun (10.1016/j.patter.2024.101147_bib37) 2009; 28
Schneider (10.1016/j.patter.2024.101147_bib20) 2020; 19
He (10.1016/j.patter.2024.101147_bib61) 2016
Ragoza (10.1016/j.patter.2024.101147_bib26) 2017; 57
Liu (10.1016/j.patter.2024.101147_bib65) 2022
Van der Maaten (10.1016/j.patter.2024.101147_bib60) 2008; 9
Baek (10.1016/j.patter.2024.101147_bib32) 2021; 373
Abramson (10.1016/j.patter.2024.101147_bib34) 2024; 630
Scantlebury (10.1016/j.patter.2024.101147_bib78) 2023; 63
Siebenmorgen (10.1016/j.patter.2024.101147_bib70) 2024; 4
Faroni (10.1016/j.patter.2024.101147_bib17) 2022; 7
Liu (10.1016/j.patter.2024.101147_bib22) 2024; 240
Krapp (10.1016/j.patter.2024.101147_bib29) 2023; 14
Gorostiola González (10.1016/j.patter.2024.101147_bib51) 2023; 15
Choi (10.1016/j.patter.2024.101147_bib3) 2021
Atz (10.1016/j.patter.2024.101147_bib21) 2021; 3
Pinheiro (10.1016/j.patter.2024.101147_bib46) 2024
Zuffi (10.1016/j.patter.2024.101147_bib8) 2017
Gilmer (10.1016/j.patter.2024.101147_bib71) 2017
Huang (10.1016/j.patter.2024.101147_bib73) 2021; 121
Huang (10.1016/j.patter.2024.101147_bib4) 2015; 34
Zhu (10.1016/j.patter.2024.101147_bib52) 2022; 62
Jumper (10.1016/j.patter.2024.101147_bib31) 2021; 596
Martinez (10.1016/j.patter.2024.101147_bib35) 2019
Amini (10.1016/j.patter.2024.101147_bib47) 2007; 69
Paszke (10.1016/j.patter.2024.101147_bib82) 2019
Qi (10.1016/j.patter.2024.101147_bib12) 2017
Skilling (10.1016/j.patter.2024.101147_bib57) 2004; 707
Dosovitskiy (10.1016/j.patter.2024.101147_bib67) 2020
Walters (10.1016/j.patter.2024.101147_bib72) 2021; 54
Renaud (10.1016/j.patter.2024.101147_bib30) 2021; 12
10.1016/j.patter.2024.101147_bib81
10.1016/j.patter.2024.101147_bib80
Wang (10.1016/j.patter.2024.101147_bib54) 2004; 47
Wen (10.1016/j.patter.2024.101147_bib39) 2023; 45
Maturana (10.1016/j.patter.2024.101147_bib41) 2015
Liang (10.1016/j.patter.2024.101147_bib45) 2022
Wang (10.1016/j.patter.2024.101147_bib62) 2019; 38
Hilbert (10.1016/j.patter.2024.101147_bib58) 1891; 38
Mandikal (10.1016/j.patter.2024.101147_bib40) 2019
Liu (10.1016/j.patter.2024.101147_bib66) 2021
Butina (10.1016/j.patter.2024.101147_bib59) 1999; 39
Heyndrickx (10.1016/j.patter.2024.101147_bib76) 2024; 64
Rusu (10.1016/j.patter.2024.101147_bib38) 2009
Li (10.1016/j.patter.2024.101147_bib53) 2023; 63
Bronstein (10.1016/j.patter.2024.101147_bib23) 2017; 34
Riniker (10.1016/j.patter.2024.101147_bib50) 2017; 57
Ren (10.1016/j.patter.2024.101147_bib77) 2021; 23
10.1016/j.patter.2024.101147_bib55
Fei (10.1016/j.patter.2024.101147_bib13) 2022; 23
Feng (10.1016/j.patter.2024.101147_bib14) 2019; 33
Meli (10.1016/j.patter.2024.101147_bib79) 2022; 2
Vamathevan (10.1016/j.patter.2024.101147_bib18) 2019; 18
Gainza (10.1016/j.patter.2024.101147_bib28) 2020; 17
Lian (10.1016/j.patter.2024.101147_bib7) 2010
Jiménez (10.1016/j.patter.2024.101147_bib27) 2017; 33
Zheng (10.1016/j.patter.2024.101147_bib33) 2021; 1
Stepniewska-Dziubinska (10.1016/j.patter.2024.101147_bib43) 2018; 34
Sampath (10.1016/j.patter.2024.101147_bib5) 2009; 48
Dara (10.1016/j.patter.2024.101147_bib19) 2022; 55
Qi (10.1016/j.patter.2024.101147_bib11) 2017
Zeng (10.1016/j.patter.2024.101147_bib75) 2024
Ballester (10.1016/j.patter.2024.101147_bib48) 2010; 26
Jiménez (10.1016/j.patter.2024.101147_bib25) 2018; 58
Janoch (10.1016/j.patter.2024.101147_bib10) 2013
Alujaim (10.1016/j.patter.2024.101147_bib16) 2020
Roe (10.1016/j.patter.2024.101147_bib83) 2013; 9
Wu (10.1016/j.patter.2024.101147_bib6) 2015
Bronstein (10.1016/j.patter.2024.101147_bib36) 2010
Shan (10.1016/j.patter.2024.101147_bib2) 2018
Silberman (10.1016/j.patter.2024.101147_bib9) 2012; 2012
References_xml – volume: 39
  start-page: 747
  year: 1999
  end-page: 750
  ident: bib59
  article-title: Unsupervised data base clustering based on Daylight’s fingerprint and Tanimoto similarity: A fast and automated way to cluster small and large data sets
  publication-title: J. Chem. Inf. Comput. Sci.
– volume: 596
  start-page: 583
  year: 2021
  end-page: 589
  ident: bib31
  article-title: Highly accurate protein structure prediction with AlphaFold
  publication-title: Nature
– volume: 33
  start-page: 3036
  year: 2017
  end-page: 3042
  ident: bib27
  article-title: DeepSite: Protein-binding site predictor using 3D-convolutional neural networks
  publication-title: Bioinformatics
– volume: 62
  start-page: 3331
  year: 2022
  end-page: 3345
  ident: bib52
  article-title: Leveraging protein dynamics to identify functional phosphorylation sites using deep learning models
  publication-title: J. Chem. Inf. Model.
– reference: Zhang, Y. (2024). FEater: A Protein Fragment Dataset for Benchmarking Flexible Object Recognition. Zenodo.
– volume: 3
  start-page: 1023
  year: 2021
  end-page: 1032
  ident: bib21
  article-title: Geometric deep learning on molecular representations
  publication-title: Nat. Mach. Intell.
– start-page: 1704
  year: 2010
  end-page: 1711
  ident: bib36
  article-title: Scale-invariant heat kernel signatures for non-rigid shape recognition
  publication-title: 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition
– volume: 38
  start-page: 459
  year: 1891
  end-page: 460
  ident: bib58
  article-title: Über die stetige Abbildung einer Linie auf ein Flächenstück
  publication-title: Math. Ann.
– volume: 121
  start-page: 10001
  year: 2021
  end-page: 10036
  ident: bib73
  article-title: Ab initio machine learning in chemical compound space
  publication-title: Chem. Rev.
– volume: 23
  start-page: 22862
  year: 2022
  end-page: 22883
  ident: bib13
  article-title: Comprehensive review of deep learning-based 3D point cloud completion processing and analysis
  publication-title: IEEE Trans. Intell. Transport. Syst.
– year: 2020
  ident: bib67
  article-title: An image is worth 16x16 words: Transformers for image recognition at scale
  publication-title: arXiv
– start-page: 3577
  year: 2017
  end-page: 3586
  ident: bib15
  article-title: OctNet: Learning deep 3D representations at high resolutions
  publication-title: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
– volume: 7
  start-page: 12219
  year: 2022
  end-page: 12226
  ident: bib17
  article-title: Safety-aware time-optimal motion planning with uncertain human state estimation
  publication-title: IEEE Rob. Autom. Lett.
– volume: 54
  start-page: 263
  year: 2021
  end-page: 270
  ident: bib72
  article-title: Applications of deep learning in molecule generation and molecular property prediction
  publication-title: Acc. Chem. Res.
– volume: 55
  start-page: 1947
  year: 2022
  end-page: 1999
  ident: bib19
  article-title: Machine learning in drug discovery: A review
  publication-title: Artif. Intell. Rev.
– start-page: 922
  year: 2015
  end-page: 928
  ident: bib41
  article-title: VoxNet: A 3D convolutional neural network for real-time object recognition
  publication-title: 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
– volume: 34
  start-page: 1
  year: 2015
  end-page: 10
  ident: bib4
  article-title: Single-view reconstruction via joint analysis of image and shape collections
  publication-title: ACM Trans. Graph.
– volume: 13
  start-page: 43
  year: 2021
  ident: bib42
  article-title: GNINA 1.0: Molecular docking with deep learning
  publication-title: J. Cheminf.
– volume: 4
  start-page: 367
  year: 2024
  end-page: 378
  ident: bib70
  article-title: MISATO: Machine learning dataset of protein-ligand complexes for structure-based drug discovery
  publication-title: Nat. Comput. Sci.
– volume: 64
  start-page: 2331
  year: 2024
  end-page: 2344
  ident: bib76
  article-title: MELLODDY: Cross-pharma federated learning at unprecedented scale unlocks benefits in QSAR without compromising proprietary information
  publication-title: J. Chem. Inf. Model.
– volume: 36
  start-page: 753
  year: 2022
  end-page: 765
  ident: bib74
  article-title: A high quality, industrial data set for binding affinity prediction: Performance comparison in different early drug discovery scenarios
  publication-title: J. Comput. Aided. Mol. Des.
– volume: 2012
  start-page: 746
  year: 2012
  end-page: 760
  ident: bib9
  article-title: Indoor segmentation and support inference from RGBD images
  publication-title: Computer Vision – ECCV
– start-page: 1
  year: 2020
  end-page: 3
  ident: bib16
  article-title: Human motion detection using planar array FMCW radar through 3D point clouds
  publication-title: 2020 European Conference on Antennas and Propagation (EuCAP)
– start-page: 3173
  year: 2021
  end-page: 3182
  ident: bib63
  article-title: PAConv: Position adaptive convolution with dynamic kernel assembling on point clouds
  publication-title: 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). IEEE
– year: 2024
  ident: bib46
  article-title: Structure-based drug design by denoising voxel grids
  publication-title: arXiv
– volume: 23
  year: 2021
  ident: bib77
  article-title: Deep learning-based weather prediction: A Survey
  publication-title: Big Data Res.
– volume: 48
  start-page: 1554
  year: 2009
  end-page: 1567
  ident: bib5
  article-title: Segmentation and reconstruction of polyhedral building roofs from aerial lidar point clouds
  publication-title: IEEE Trans. Geosci. Rem. Sens.
– year: 2015
  ident: bib24
  article-title: AtomNet: A deep convolutional neural network for bioactivity prediction in structure-based drug discovery
  publication-title: arXiv
– start-page: 1052
  year: 2019
  end-page: 1060
  ident: bib40
  article-title: Dense 3D point cloud reconstruction using a deep pyramid network
  publication-title: 2019 IEEE Winter Conference on Applications of Computer Vision (WACV)
– volume: 9
  start-page: 5983
  year: 2024
  ident: bib64
  article-title: DeepRank2: Mining 3D protein structures with geometric deep learning
  publication-title: J. Open Source Softw.
– reference: Zhang, Y., and Vitalis, A. (2024). FEater Dataset: A Molecular Fragment Dataset to Benchmark the Robustness of 3D Flexible Object Recognition. Zenodo.
– volume: 34
  start-page: 18
  year: 2017
  end-page: 42
  ident: bib23
  article-title: Geometric deep learning: Going beyond Euclidean data
  publication-title: IEEE Signal Process. Mag.
– start-page: 6365
  year: 2017
  end-page: 6373
  ident: bib8
  article-title: 3D Menagerie: Modeling the 3D shape and pose of animals
  publication-title: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
– volume: 12
  start-page: 7068
  year: 2021
  ident: bib30
  article-title: DeepRank: A deep learning framework for data mining 3D protein-protein interfaces
  publication-title: Nat. Commun.
– volume: 2
  year: 2022
  ident: bib79
  article-title: Scoring functions for protein-ligand binding affinity prediction using structure-based deep learning: A review
  publication-title: Front. Bioinf.
– volume: 240
  year: 2024
  ident: bib22
  article-title: Geometric deep learning for drug discovery
  publication-title: Expert Syst. Appl.
– volume: 707
  start-page: 381
  year: 2004
  end-page: 387
  ident: bib57
  article-title: Programming the Hilbert curve
  publication-title: AIP Conf. Proc.
– volume: 63
  start-page: 2960
  year: 2023
  end-page: 2974
  ident: bib78
  article-title: A small step toward generalizability: Training a machine learning scoring function for structure-based virtual screening
  publication-title: J. Chem. Inf. Model.
– volume: 47
  start-page: 2977
  year: 2004
  end-page: 2980
  ident: bib54
  article-title: The PDBbind database: Collection of binding affinities for protein-ligand complexes with known three-dimensional structures
  publication-title: J. Med. Chem.
– volume: 69
  start-page: 823
  year: 2007
  end-page: 831
  ident: bib47
  article-title: A general approach for developing system-specific functions to score protein-ligand docked complexes using support vector inductive logic programming
  publication-title: Proteins
– start-page: 10012
  year: 2021
  end-page: 10022
  ident: bib66
  article-title: Swin Transformer: Hierarchical vision transformer using shifted windows
  publication-title: 2021 IEEE/CVF International Conference on Computer Vision (ICCV). IEEE
– volume: 57
  start-page: 726
  year: 2017
  end-page: 741
  ident: bib50
  article-title: Molecular Dynamics Fingerprints (MDFP): Machine learning from MD data to predict free-energy differences
  publication-title: J. Chem. Inf. Model.
– start-page: 3446
  year: 2022
  end-page: 3453
  ident: bib45
  article-title: An efficient voxel-based deep learning approach for ligand binding site detection
  publication-title: 2022 IEEE International Conference on Bioinformatics and Biomedicine (BIBM)
– start-page: 652
  year: 2017
  end-page: 660
  ident: bib11
  article-title: PointNet: Deep learning on point sets for 3D classification and segmentation
  publication-title: 2017 IEEE Conference on Computer Vision and Pattern Recognition
– start-page: 1912
  year: 2015
  end-page: 1920
  ident: bib6
  article-title: 3D ShapeNets: A deep representation for volumetric shapes
  publication-title: 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
– volume: 17
  start-page: 184
  year: 2020
  end-page: 192
  ident: bib28
  article-title: Deciphering interaction fingerprints from protein molecular surfaces using geometric deep learning
  publication-title: Nat. Methods
– volume: 28
  start-page: 1383
  year: 2009
  end-page: 1392
  ident: bib37
  article-title: A concise and provably informative multi-scale signature based on heat diffusion
  publication-title: Comput. Graph. Forum
– volume: 15
  start-page: 74
  year: 2023
  ident: bib51
  article-title: 3DDPDs: Describing protein dynamics for proteochemometric bioactivity prediction. A case for (mutant) G protein-coupled receptors
  publication-title: J. Cheminf.
– volume: 630
  start-page: 493
  year: 2024
  end-page: 500
  ident: bib34
  article-title: Accurate structure prediction of biomolecular interactions with AlphaFold 3
  publication-title: Nature
– year: 2017
  ident: bib12
  article-title: PointNet++: Deep hierarchical feature learning on point sets in a metric space.
  publication-title: arXiv
– start-page: 8026
  year: 2019
  end-page: 8037
  ident: bib82
  article-title: PyTorch: An imperative style, high-performance deep learning library
  publication-title: 33rd Conference on Neural Information Processing Systems (NeurIPS 2019)
– volume: 38
  start-page: 1
  year: 2019
  end-page: 12
  ident: bib62
  article-title: Dynamic graph CNN for learning on point clouds
  publication-title: ACM Trans. Graph.
– year: 2017
  ident: bib71
  article-title: Neural Message Passing for Quantum Chemistry.
  publication-title: Preprint at arXiv.
– volume: 60
  start-page: 2791
  year: 2020
  end-page: 2802
  ident: bib44
  article-title: RosENet: Improving binding affinity prediction by leveraging molecular mechanics energies with an ensemble of 3D convolutional neural networks
  publication-title: J. Chem. Inf. Model.
– volume: 26
  start-page: 1169
  year: 2010
  end-page: 1175
  ident: bib48
  article-title: A machine learning approach to predicting protein-ligand binding affinity with applications to molecular docking
  publication-title: Bioinformatics
– volume: 19
  start-page: 353
  year: 2020
  end-page: 364
  ident: bib20
  article-title: Rethinking drug design in the artificial intelligence era
  publication-title: Nat. Rev. Drug. Discov.
– start-page: 11966
  year: 2022
  end-page: 11976
  ident: bib65
  article-title: A ConvNet for the 2020s
  publication-title: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). IEEE
– start-page: 4758
  year: 2018
  end-page: 4765
  ident: bib2
  article-title: LeGO-LOAM: Lightweight and ground-optimized lidar odometry and mapping on variable terrain
  publication-title: 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
– volume: 45
  start-page: 852
  year: 2023
  end-page: 867
  ident: bib39
  article-title: PMP-Net++: Point cloud completion by transformer-enhanced multi-step point moving paths
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– start-page: 1026
  year: 2015
  end-page: 1034
  ident: bib68
  article-title: Delving deep into rectifiers: Surpassing human-level performance on ImageNet classification
  publication-title: 2015 IEEE International Conference on Computer Vision (ICCV)
– start-page: 3212
  year: 2009
  end-page: 3217
  ident: bib38
  article-title: Fast Point Feature Histograms (FPFH) for 3D registration
  publication-title: 2009 IEEE International Conference on Robotics and Automation
– volume: 34
  start-page: 3666
  year: 2018
  end-page: 3674
  ident: bib43
  article-title: Development and evaluation of a deep learning model for protein-ligand binding affinity prediction
  publication-title: Bioinformatics
– volume: 10
  start-page: 617
  year: 2003
  end-page: 634
  ident: bib49
  article-title: Understanding protein flexibility through dimensionality reduction
  publication-title: J. Comput. Biol.
– start-page: 101
  year: 2010
  end-page: 108
  ident: bib7
  article-title: SHREC’10 Track: Non-rigid 3D shape retrieval
  publication-title: Eurographics 2010 Workshop on 3D Object Retrieval
– start-page: 127
  year: 2011
  end-page: 136
  ident: bib1
  article-title: KinectFusion: Real-time dense surface mapping and tracking
  publication-title: 2011 10th IEEE International Symposium on Mixed and Augmented Reality
– start-page: 361
  year: 2021
  end-page: 365
  ident: bib3
  article-title: A sensor fusion system with thermal infrared camera and LiDAR for autonomous vehicles: Its calibration and application
  publication-title: 2021 International Conference on Ubiquitous and Future Networks (ICUFN)
– volume: 63
  start-page: 3742
  year: 2023
  end-page: 3750
  ident: bib53
  article-title: Rapid prediction of a liquid structure from a single molecular configuration using deep learning
  publication-title: J. Chem. Inf. Model.
– volume: 33
  start-page: 8279
  year: 2019
  end-page: 8286
  ident: bib14
  article-title: MeshNet: Mesh neural network for 3D shape representation
  publication-title: Proc. AAAI Conf. Artif. Intell.
– volume: 18
  start-page: 463
  year: 2019
  end-page: 477
  ident: bib18
  article-title: Applications of machine learning in drug discovery and development
  publication-title: Nat. Rev. Drug. Discov.
– start-page: 11
  year: 2019
  end-page: 15
  ident: bib35
  article-title: QuickSES: A library for fast computation of solvent excluded surfaces
  publication-title: MolVa: Workshop on Molecular Graphics and Visual Analysis of Molecular Data 2019
– reference: .
– volume: 373
  start-page: 871
  year: 2021
  end-page: 876
  ident: bib32
  article-title: Accurate prediction of protein structures and interactions using a three-track neural network
  publication-title: Science
– volume: 57
  start-page: 942
  year: 2017
  end-page: 957
  ident: bib26
  article-title: Protein-ligand scoring with convolutional neural networks
  publication-title: J. Chem. Inf. Model.
– reference: Zhang, Y. (2023). SiESTA-Surf a python Interface for GPU-Based Surface Generation. Zenodo.
– year: 2024
  ident: bib75
  article-title: Feature noise boosts DNN generalization under label noise
  publication-title: IEEE Transact. Neural Networks Learn. Syst.
– volume: 58
  start-page: 287
  year: 2018
  end-page: 296
  ident: bib25
  article-title: K deep: Protein-ligand absolute binding affinity prediction via 3D-convolutional neural networks
  publication-title: J. Chem. Inf. Model.
– volume: 14
  start-page: 2175
  year: 2023
  ident: bib29
  article-title: PeSTo: Parameter-free geometric deep learning for accurate prediction of protein binding interfaces
  publication-title: Nat. Commun.
– volume: 63
  start-page: 1637
  year: 2023
  end-page: 1648
  ident: bib56
  article-title: Enzyme substrate prediction from three-dimensional feature representations using space-filling curves
  publication-title: J. Chem. Inf. Model.
– volume: 9
  start-page: 2579
  year: 2008
  end-page: 2605
  ident: bib60
  article-title: Visualizing data using t-SNE
  publication-title: J. Mach. Learn. Res.
– volume: 1
  year: 2021
  ident: bib33
  article-title: Folding non-homologous proteins by coupling deep-learning contact maps with I-TASSER assembly simulations
  publication-title: Cell Rep. Methods
– year: 2020
  ident: bib69
  article-title: Molecular Dynamics Simulations Related to Sars-Cov-2
– volume: 9
  start-page: 3084
  year: 2013
  end-page: 3095
  ident: bib83
  article-title: PTRAJ and CPPTRAJ: Software for processing and analysis of molecular dynamics trajectory data
  publication-title: J. Chem. Theor. Comput.
– start-page: 141
  year: 2013
  end-page: 165
  ident: bib10
  article-title: A category-level 3D object dataset: Putting the Kinect to work
  publication-title: Consumer Depth Cameras for Computer Vision
– start-page: 770
  year: 2016
  end-page: 778
  ident: bib61
  article-title: Deep residual learning for image recognition
  publication-title: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). IEEE
– volume: 45
  start-page: 852
  year: 2023
  ident: 10.1016/j.patter.2024.101147_bib39
  article-title: PMP-Net++: Point cloud completion by transformer-enhanced multi-step point moving paths
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2022.3159003
– year: 2017
  ident: 10.1016/j.patter.2024.101147_bib71
  article-title: Neural Message Passing for Quantum Chemistry.
  publication-title: Preprint at arXiv.
– volume: 23
  year: 2021
  ident: 10.1016/j.patter.2024.101147_bib77
  article-title: Deep learning-based weather prediction: A Survey
  publication-title: Big Data Res.
  doi: 10.1016/j.bdr.2020.100178
– volume: 596
  start-page: 583
  year: 2021
  ident: 10.1016/j.patter.2024.101147_bib31
  article-title: Highly accurate protein structure prediction with AlphaFold
  publication-title: Nature
  doi: 10.1038/s41586-021-03819-2
– volume: 62
  start-page: 3331
  year: 2022
  ident: 10.1016/j.patter.2024.101147_bib52
  article-title: Leveraging protein dynamics to identify functional phosphorylation sites using deep learning models
  publication-title: J. Chem. Inf. Model.
  doi: 10.1021/acs.jcim.2c00484
– volume: 2012
  start-page: 746
  year: 2012
  ident: 10.1016/j.patter.2024.101147_bib9
  article-title: Indoor segmentation and support inference from RGBD images
  publication-title: Computer Vision – ECCV
– volume: 9
  start-page: 3084
  year: 2013
  ident: 10.1016/j.patter.2024.101147_bib83
  article-title: PTRAJ and CPPTRAJ: Software for processing and analysis of molecular dynamics trajectory data
  publication-title: J. Chem. Theor. Comput.
  doi: 10.1021/ct400341p
– volume: 2
  year: 2022
  ident: 10.1016/j.patter.2024.101147_bib79
  article-title: Scoring functions for protein-ligand binding affinity prediction using structure-based deep learning: A review
  publication-title: Front. Bioinf.
  doi: 10.3389/fbinf.2022.885983
– ident: 10.1016/j.patter.2024.101147_bib81
– volume: 48
  start-page: 1554
  year: 2009
  ident: 10.1016/j.patter.2024.101147_bib5
  article-title: Segmentation and reconstruction of polyhedral building roofs from aerial lidar point clouds
  publication-title: IEEE Trans. Geosci. Rem. Sens.
  doi: 10.1109/TGRS.2009.2030180
– volume: 55
  start-page: 1947
  year: 2022
  ident: 10.1016/j.patter.2024.101147_bib19
  article-title: Machine learning in drug discovery: A review
  publication-title: Artif. Intell. Rev.
  doi: 10.1007/s10462-021-10058-4
– volume: 34
  start-page: 3666
  year: 2018
  ident: 10.1016/j.patter.2024.101147_bib43
  article-title: Development and evaluation of a deep learning model for protein-ligand binding affinity prediction
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bty374
– volume: 9
  start-page: 2579
  year: 2008
  ident: 10.1016/j.patter.2024.101147_bib60
  article-title: Visualizing data using t-SNE
  publication-title: J. Mach. Learn. Res.
– volume: 17
  start-page: 184
  year: 2020
  ident: 10.1016/j.patter.2024.101147_bib28
  article-title: Deciphering interaction fingerprints from protein molecular surfaces using geometric deep learning
  publication-title: Nat. Methods
  doi: 10.1038/s41592-019-0666-6
– start-page: 127
  year: 2011
  ident: 10.1016/j.patter.2024.101147_bib1
  article-title: KinectFusion: Real-time dense surface mapping and tracking
– volume: 64
  start-page: 2331
  year: 2024
  ident: 10.1016/j.patter.2024.101147_bib76
  article-title: MELLODDY: Cross-pharma federated learning at unprecedented scale unlocks benefits in QSAR without compromising proprietary information
  publication-title: J. Chem. Inf. Model.
  doi: 10.1021/acs.jcim.3c00799
– year: 2017
  ident: 10.1016/j.patter.2024.101147_bib12
  article-title: PointNet++: Deep hierarchical feature learning on point sets in a metric space.
  publication-title: arXiv
– volume: 54
  start-page: 263
  year: 2021
  ident: 10.1016/j.patter.2024.101147_bib72
  article-title: Applications of deep learning in molecule generation and molecular property prediction
  publication-title: Acc. Chem. Res.
  doi: 10.1021/acs.accounts.0c00699
– start-page: 11966
  year: 2022
  ident: 10.1016/j.patter.2024.101147_bib65
  article-title: A ConvNet for the 2020s
– start-page: 652
  year: 2017
  ident: 10.1016/j.patter.2024.101147_bib11
  article-title: PointNet: Deep learning on point sets for 3D classification and segmentation
– start-page: 1912
  year: 2015
  ident: 10.1016/j.patter.2024.101147_bib6
  article-title: 3D ShapeNets: A deep representation for volumetric shapes
– volume: 33
  start-page: 3036
  year: 2017
  ident: 10.1016/j.patter.2024.101147_bib27
  article-title: DeepSite: Protein-binding site predictor using 3D-convolutional neural networks
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btx350
– volume: 373
  start-page: 871
  year: 2021
  ident: 10.1016/j.patter.2024.101147_bib32
  article-title: Accurate prediction of protein structures and interactions using a three-track neural network
  publication-title: Science
  doi: 10.1126/science.abj8754
– volume: 38
  start-page: 1
  year: 2019
  ident: 10.1016/j.patter.2024.101147_bib62
  article-title: Dynamic graph CNN for learning on point clouds
  publication-title: ACM Trans. Graph.
– year: 2015
  ident: 10.1016/j.patter.2024.101147_bib24
  article-title: AtomNet: A deep convolutional neural network for bioactivity prediction in structure-based drug discovery
  publication-title: arXiv
– start-page: 361
  year: 2021
  ident: 10.1016/j.patter.2024.101147_bib3
  article-title: A sensor fusion system with thermal infrared camera and LiDAR for autonomous vehicles: Its calibration and application
– start-page: 3173
  year: 2021
  ident: 10.1016/j.patter.2024.101147_bib63
  article-title: PAConv: Position adaptive convolution with dynamic kernel assembling on point clouds
– ident: 10.1016/j.patter.2024.101147_bib80
– start-page: 3212
  year: 2009
  ident: 10.1016/j.patter.2024.101147_bib38
  article-title: Fast Point Feature Histograms (FPFH) for 3D registration
– volume: 15
  start-page: 74
  year: 2023
  ident: 10.1016/j.patter.2024.101147_bib51
  article-title: 3DDPDs: Describing protein dynamics for proteochemometric bioactivity prediction. A case for (mutant) G protein-coupled receptors
  publication-title: J. Cheminf.
  doi: 10.1186/s13321-023-00745-5
– volume: 63
  start-page: 2960
  year: 2023
  ident: 10.1016/j.patter.2024.101147_bib78
  article-title: A small step toward generalizability: Training a machine learning scoring function for structure-based virtual screening
  publication-title: J. Chem. Inf. Model.
  doi: 10.1021/acs.jcim.3c00322
– volume: 12
  start-page: 7068
  year: 2021
  ident: 10.1016/j.patter.2024.101147_bib30
  article-title: DeepRank: A deep learning framework for data mining 3D protein-protein interfaces
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-021-27396-0
– volume: 28
  start-page: 1383
  year: 2009
  ident: 10.1016/j.patter.2024.101147_bib37
  article-title: A concise and provably informative multi-scale signature based on heat diffusion
  publication-title: Comput. Graph. Forum
  doi: 10.1111/j.1467-8659.2009.01515.x
– start-page: 3577
  year: 2017
  ident: 10.1016/j.patter.2024.101147_bib15
  article-title: OctNet: Learning deep 3D representations at high resolutions
– volume: 26
  start-page: 1169
  year: 2010
  ident: 10.1016/j.patter.2024.101147_bib48
  article-title: A machine learning approach to predicting protein-ligand binding affinity with applications to molecular docking
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btq112
– volume: 10
  start-page: 617
  year: 2003
  ident: 10.1016/j.patter.2024.101147_bib49
  article-title: Understanding protein flexibility through dimensionality reduction
  publication-title: J. Comput. Biol.
  doi: 10.1089/10665270360688228
– year: 2020
  ident: 10.1016/j.patter.2024.101147_bib67
  article-title: An image is worth 16x16 words: Transformers for image recognition at scale
  publication-title: arXiv
– volume: 14
  start-page: 2175
  year: 2023
  ident: 10.1016/j.patter.2024.101147_bib29
  article-title: PeSTo: Parameter-free geometric deep learning for accurate prediction of protein binding interfaces
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-023-37701-8
– year: 2020
  ident: 10.1016/j.patter.2024.101147_bib69
– start-page: 1
  year: 2020
  ident: 10.1016/j.patter.2024.101147_bib16
  article-title: Human motion detection using planar array FMCW radar through 3D point clouds
– start-page: 1026
  year: 2015
  ident: 10.1016/j.patter.2024.101147_bib68
  article-title: Delving deep into rectifiers: Surpassing human-level performance on ImageNet classification
– start-page: 1704
  year: 2010
  ident: 10.1016/j.patter.2024.101147_bib36
  article-title: Scale-invariant heat kernel signatures for non-rigid shape recognition
– volume: 4
  start-page: 367
  year: 2024
  ident: 10.1016/j.patter.2024.101147_bib70
  article-title: MISATO: Machine learning dataset of protein-ligand complexes for structure-based drug discovery
  publication-title: Nat. Comput. Sci.
  doi: 10.1038/s43588-024-00627-2
– volume: 38
  start-page: 459
  year: 1891
  ident: 10.1016/j.patter.2024.101147_bib58
  article-title: Über die stetige Abbildung einer Linie auf ein Flächenstück
  publication-title: Math. Ann.
  doi: 10.1007/BF01199431
– volume: 34
  start-page: 18
  year: 2017
  ident: 10.1016/j.patter.2024.101147_bib23
  article-title: Geometric deep learning: Going beyond Euclidean data
  publication-title: IEEE Signal Process. Mag.
  doi: 10.1109/MSP.2017.2693418
– start-page: 11
  year: 2019
  ident: 10.1016/j.patter.2024.101147_bib35
  article-title: QuickSES: A library for fast computation of solvent excluded surfaces
– start-page: 10012
  year: 2021
  ident: 10.1016/j.patter.2024.101147_bib66
  article-title: Swin Transformer: Hierarchical vision transformer using shifted windows
– start-page: 101
  year: 2010
  ident: 10.1016/j.patter.2024.101147_bib7
  article-title: SHREC’10 Track: Non-rigid 3D shape retrieval
– year: 2024
  ident: 10.1016/j.patter.2024.101147_bib46
  article-title: Structure-based drug design by denoising voxel grids
  publication-title: arXiv
– volume: 3
  start-page: 1023
  year: 2021
  ident: 10.1016/j.patter.2024.101147_bib21
  article-title: Geometric deep learning on molecular representations
  publication-title: Nat. Mach. Intell.
  doi: 10.1038/s42256-021-00418-8
– volume: 23
  start-page: 22862
  year: 2022
  ident: 10.1016/j.patter.2024.101147_bib13
  article-title: Comprehensive review of deep learning-based 3D point cloud completion processing and analysis
  publication-title: IEEE Trans. Intell. Transport. Syst.
  doi: 10.1109/TITS.2022.3195555
– volume: 57
  start-page: 726
  year: 2017
  ident: 10.1016/j.patter.2024.101147_bib50
  article-title: Molecular Dynamics Fingerprints (MDFP): Machine learning from MD data to predict free-energy differences
  publication-title: J. Chem. Inf. Model.
  doi: 10.1021/acs.jcim.6b00778
– volume: 7
  start-page: 12219
  year: 2022
  ident: 10.1016/j.patter.2024.101147_bib17
  article-title: Safety-aware time-optimal motion planning with uncertain human state estimation
  publication-title: IEEE Rob. Autom. Lett.
  doi: 10.1109/LRA.2022.3211493
– start-page: 1052
  year: 2019
  ident: 10.1016/j.patter.2024.101147_bib40
  article-title: Dense 3D point cloud reconstruction using a deep pyramid network
– volume: 9
  start-page: 5983
  year: 2024
  ident: 10.1016/j.patter.2024.101147_bib64
  article-title: DeepRank2: Mining 3D protein structures with geometric deep learning
  publication-title: J. Open Source Softw.
  doi: 10.21105/joss.05983
– start-page: 6365
  year: 2017
  ident: 10.1016/j.patter.2024.101147_bib8
  article-title: 3D Menagerie: Modeling the 3D shape and pose of animals
– volume: 121
  start-page: 10001
  year: 2021
  ident: 10.1016/j.patter.2024.101147_bib73
  article-title: Ab initio machine learning in chemical compound space
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.0c01303
– year: 2024
  ident: 10.1016/j.patter.2024.101147_bib75
  article-title: Feature noise boosts DNN generalization under label noise
  publication-title: IEEE Transact. Neural Networks Learn. Syst.
– start-page: 141
  year: 2013
  ident: 10.1016/j.patter.2024.101147_bib10
  article-title: A category-level 3D object dataset: Putting the Kinect to work
– volume: 33
  start-page: 8279
  year: 2019
  ident: 10.1016/j.patter.2024.101147_bib14
  article-title: MeshNet: Mesh neural network for 3D shape representation
  publication-title: Proc. AAAI Conf. Artif. Intell.
– volume: 63
  start-page: 3742
  year: 2023
  ident: 10.1016/j.patter.2024.101147_bib53
  article-title: Rapid prediction of a liquid structure from a single molecular configuration using deep learning
  publication-title: J. Chem. Inf. Model.
  doi: 10.1021/acs.jcim.3c00472
– start-page: 3446
  year: 2022
  ident: 10.1016/j.patter.2024.101147_bib45
  article-title: An efficient voxel-based deep learning approach for ligand binding site detection
– volume: 1
  year: 2021
  ident: 10.1016/j.patter.2024.101147_bib33
  article-title: Folding non-homologous proteins by coupling deep-learning contact maps with I-TASSER assembly simulations
  publication-title: Cell Rep. Methods
– start-page: 922
  year: 2015
  ident: 10.1016/j.patter.2024.101147_bib41
  article-title: VoxNet: A 3D convolutional neural network for real-time object recognition
– volume: 630
  start-page: 493
  year: 2024
  ident: 10.1016/j.patter.2024.101147_bib34
  article-title: Accurate structure prediction of biomolecular interactions with AlphaFold 3
  publication-title: Nature
  doi: 10.1038/s41586-024-07487-w
– volume: 60
  start-page: 2791
  year: 2020
  ident: 10.1016/j.patter.2024.101147_bib44
  article-title: RosENet: Improving binding affinity prediction by leveraging molecular mechanics energies with an ensemble of 3D convolutional neural networks
  publication-title: J. Chem. Inf. Model.
  doi: 10.1021/acs.jcim.0c00075
– volume: 69
  start-page: 823
  year: 2007
  ident: 10.1016/j.patter.2024.101147_bib47
  article-title: A general approach for developing system-specific functions to score protein-ligand docked complexes using support vector inductive logic programming
  publication-title: Proteins
  doi: 10.1002/prot.21782
– start-page: 4758
  year: 2018
  ident: 10.1016/j.patter.2024.101147_bib2
  article-title: LeGO-LOAM: Lightweight and ground-optimized lidar odometry and mapping on variable terrain
– volume: 19
  start-page: 353
  year: 2020
  ident: 10.1016/j.patter.2024.101147_bib20
  article-title: Rethinking drug design in the artificial intelligence era
  publication-title: Nat. Rev. Drug. Discov.
  doi: 10.1038/s41573-019-0050-3
– volume: 36
  start-page: 753
  year: 2022
  ident: 10.1016/j.patter.2024.101147_bib74
  article-title: A high quality, industrial data set for binding affinity prediction: Performance comparison in different early drug discovery scenarios
  publication-title: J. Comput. Aided. Mol. Des.
  doi: 10.1007/s10822-022-00478-x
– start-page: 8026
  year: 2019
  ident: 10.1016/j.patter.2024.101147_bib82
  article-title: PyTorch: An imperative style, high-performance deep learning library
– volume: 240
  year: 2024
  ident: 10.1016/j.patter.2024.101147_bib22
  article-title: Geometric deep learning for drug discovery
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2023.122498
– volume: 58
  start-page: 287
  year: 2018
  ident: 10.1016/j.patter.2024.101147_bib25
  article-title: K deep: Protein-ligand absolute binding affinity prediction via 3D-convolutional neural networks
  publication-title: J. Chem. Inf. Model.
  doi: 10.1021/acs.jcim.7b00650
– volume: 39
  start-page: 747
  year: 1999
  ident: 10.1016/j.patter.2024.101147_bib59
  article-title: Unsupervised data base clustering based on Daylight’s fingerprint and Tanimoto similarity: A fast and automated way to cluster small and large data sets
  publication-title: J. Chem. Inf. Comput. Sci.
  doi: 10.1021/ci9803381
– volume: 18
  start-page: 463
  year: 2019
  ident: 10.1016/j.patter.2024.101147_bib18
  article-title: Applications of machine learning in drug discovery and development
  publication-title: Nat. Rev. Drug. Discov.
  doi: 10.1038/s41573-019-0024-5
– ident: 10.1016/j.patter.2024.101147_bib55
– volume: 13
  start-page: 43
  year: 2021
  ident: 10.1016/j.patter.2024.101147_bib42
  article-title: GNINA 1.0: Molecular docking with deep learning
  publication-title: J. Cheminf.
  doi: 10.1186/s13321-021-00522-2
– volume: 63
  start-page: 1637
  year: 2023
  ident: 10.1016/j.patter.2024.101147_bib56
  article-title: Enzyme substrate prediction from three-dimensional feature representations using space-filling curves
  publication-title: J. Chem. Inf. Model.
  doi: 10.1021/acs.jcim.3c00005
– volume: 34
  start-page: 1
  year: 2015
  ident: 10.1016/j.patter.2024.101147_bib4
  article-title: Single-view reconstruction via joint analysis of image and shape collections
  publication-title: ACM Trans. Graph.
– volume: 47
  start-page: 2977
  year: 2004
  ident: 10.1016/j.patter.2024.101147_bib54
  article-title: The PDBbind database: Collection of binding affinities for protein-ligand complexes with known three-dimensional structures
  publication-title: J. Med. Chem.
  doi: 10.1021/jm030580l
– volume: 707
  start-page: 381
  year: 2004
  ident: 10.1016/j.patter.2024.101147_bib57
  article-title: Programming the Hilbert curve
  publication-title: AIP Conf. Proc.
  doi: 10.1063/1.1751381
– volume: 57
  start-page: 942
  year: 2017
  ident: 10.1016/j.patter.2024.101147_bib26
  article-title: Protein-ligand scoring with convolutional neural networks
  publication-title: J. Chem. Inf. Model.
  doi: 10.1021/acs.jcim.6b00740
– start-page: 770
  year: 2016
  ident: 10.1016/j.patter.2024.101147_bib61
  article-title: Deep residual learning for image recognition
SSID ssj0002511961
Score 2.2929187
Snippet True three-dimensional (3D) data are prevalent in domains such as molecular science or computer vision. In these data, machine learning models are often asked...
SourceID pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 101147
SubjectTerms 3D spatial data
benchmark set
featurization
flexible object recognition
machine learning
molecular dynamics
molecular science
structural representation
Title Benchmarking the robustness of the correct identification of flexible 3D objects using common machine learning models
URI https://dx.doi.org/10.1016/j.patter.2024.101147
https://www.ncbi.nlm.nih.gov/pubmed/39896260
https://www.proquest.com/docview/3162849544
https://pubmed.ncbi.nlm.nih.gov/PMC11783895
Volume 6
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Nb9MwFLdgXLigIb46YDISt8pTEjtOfIQNNCEN7bBJ4xTZqcNasXSiyWV_Pe_5I0vbocEuUeXEjtvfr_Z7z--DkI_CKFjzjGGmlDkTNiuYSnTChGkyyaHTzGKg8Ml3eXwuvl3kF7FWe4gu6cxBfXNnXMlDUIU2wBWjZP8D2WFQaIDPgC9cAWG4_hPGn2Eyl1fambuDr6DpV51bvcLZf43VN-puOp8Ft6BBRGwwFSbGTfGj6dIsnFdHH2Nw4StMr5yfpY2FJX76qjmrsTh76rJztqu7avqMbAyDVfqHDhsllviau-SLg1elXrNAZOjsx4IvqjOLhT3c7yhu6YJdXzLM3DdeZ-UmnbZWb29IWBxcu8mD8p4JbEx9Ts6NvNinJ4dpWpTwlvwxeZIVhTulj8Ya3IhRe1IyjQGTzqtve-i_CSTbCsem3-xIEDnbJc-CBkE_eTo8J49s-4L0YypQAJ7eUoEuG9cSqEDXqYB3IxUoP6KBCtRRgXoq0EAFGqlAPRVekvOvX84Oj1moqMFqIUXHijIxGhQCPHzLG5BcbZ3r3HJZKKuMTqwUEnPoJVqnFiR_k80a0Oe1qr1yzl-RnXbZ2jeEplZpMyt5wU0mrIGRG2tBnDQGNGjDiwnh8Wet6pBuHque_KqiX-Gi8mBUCEblwZgQNvS69ulW7nm-iIhVQWT0omAFnLqn54cIcAUrKh6T6dYu-1XFUwkym8qFmJDXHvBhLlyVCk0AE1KuUWF4ALO1r99p55cua3sk697Du74lT2__f-_ITve7t-9BJu7MvrMl7Tv-_wFQRsIN
linkProvider National Library of Medicine
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Benchmarking+the+robustness+of+the+correct+identification+of+flexible+3D+objects+using+common+machine+learning+models&rft.jtitle=Patterns+%28New+York%2C+N.Y.%29&rft.au=Zhang%2C+Yang&rft.au=Vitalis%2C+Andreas&rft.date=2025-01-10&rft.pub=Elsevier&rft.eissn=2666-3899&rft.volume=6&rft.issue=1&rft_id=info:doi/10.1016%2Fj.patter.2024.101147&rft.externalDocID=PMC11783895
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2666-3899&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2666-3899&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2666-3899&client=summon