Computational Models of Transcranial Direct Current Stimulation
During transcranial direct current stimulation (tDCS), controllable dose parameters are electrode number (typically 1 anode and 1 cathode), position, size, shape, and applied electric current. Because different electrode montages result in distinct brain current flow patterns across the brain, tDCS...
Saved in:
Published in | Clinical EEG and neuroscience Vol. 43; no. 3; pp. 176 - 183 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Los Angeles, CA
SAGE Publications
01.07.2012
SAGE PUBLICATIONS, INC |
Subjects | |
Online Access | Get full text |
ISSN | 1550-0594 2169-5202 |
DOI | 10.1177/1550059412445138 |
Cover
Loading…
Abstract | During transcranial direct current stimulation (tDCS), controllable dose parameters are electrode number (typically 1 anode and 1 cathode), position, size, shape, and applied electric current. Because different electrode montages result in distinct brain current flow patterns across the brain, tDCS dose parameters can be adjusted, in an application-specific manner, to target or avoid specific brain regions. Though the tDCS electrode montage often follows basic rules of thumb (increased/decreased excitability “under” the anode/cathode electrode), computational forward models of brain current flow provide more accurate insight into detailed current flow patterns and, in some cases, can even challenge simplified electrode-placement assumptions. With the increased recognized value of computational forward models in informing tDCS montage design and interpretation of results, there have been recent advances in modeling tools and a greater proliferation of publications. In addition, the importance of customizing tDCS for potentially vulnerable populations (eg, skull defects, brain damage/stroke, and extremes of age) can be considered. Finally, computational models can be used to design new electrode montages, for example, to improve spatial targeting such as high-definition tDCS. Pending further validation and dissemination of modeling tools, computational forward models of neuromodulation will become standard tools to guide the optimization of clinical trials and electrotherapy. |
---|---|
AbstractList | During transcranial direct current stimulation (tDCS), controllable dose parameters are electrode number, position, size, shape, and applied electric current. Because different electrode montages result in distinct brain current flow patterns across the brain, tDCS dose parameters can be adjusted, in an application-specific manner, to target or avoid specific brain regions. Though, the tDCS electrode montage often follows basic rules of thumb, computational forward models of brain current flow provide more accurate insight into detailed current flow patterns and, in some cases, can even challenge simplified electrode-placement assumptions. With the increased recognized value of computational forward models in informing tDCS montage design and interpretation of results, there have been recent advances in modeling tools and a greater proliferation of publications. Finally, computational models can be used to design new electrode montages, for example, to improve spatial targeting such as high-definition tDCS. During transcranial direct current stimulation (tDCS), controllable dose parameters are electrode number (typically 1 anode and 1 cathode), position, size, shape, and applied electric current. Because different electrode montages result in distinct brain current flow patterns across the brain, tDCS dose parameters can be adjusted, in an application-specific manner, to target or avoid specific brain regions. Though the tDCS electrode montage often follows basic rules of thumb (increased/decreased excitability “under” the anode/cathode electrode), computational forward models of brain current flow provide more accurate insight into detailed current flow patterns and, in some cases, can even challenge simplified electrode-placement assumptions. With the increased recognized value of computational forward models in informing tDCS montage design and interpretation of results, there have been recent advances in modeling tools and a greater proliferation of publications. In addition, the importance of customizing tDCS for potentially vulnerable populations (eg, skull defects, brain damage/stroke, and extremes of age) can be considered. Finally, computational models can be used to design new electrode montages, for example, to improve spatial targeting such as high-definition tDCS. Pending further validation and dissemination of modeling tools, computational forward models of neuromodulation will become standard tools to guide the optimization of clinical trials and electrotherapy. During transcranial direct current stimulation (tDCS), controllable dose parameters are electrode number (typically 1 anode and 1 cathode), position, size, shape, and applied electric current. Because different electrode montages result in distinct brain current flow patterns across the brain, tDCS dose parameters can be adjusted, in an application-specific manner, to target or avoid specific brain regions. Though the tDCS electrode montage often follows basic rules of thumb (increased/decreased excitability "under" the anode/cathode electrode), computational forward models of brain current flow provide more accurate insight into detailed current flow patterns and, in some cases, can even challenge simplified electrode-placement assumptions. With the increased recognized value of computational forward models in informing tDCS montage design and interpretation of results, there have been recent advances in modeling tools and a greater proliferation of publications. In addition, the importance of customizing tDCS for potentially vulnerable populations (eg, skull defects, brain damage/stroke, and extremes of age) can be considered. Finally, computational models can be used to design new electrode montages, for example, to improve spatial targeting such as high-definition tDCS. Pending further validation and dissemination of modeling tools, computational forward models of neuromodulation will become standard tools to guide the optimization of clinical trials and electrotherapy.During transcranial direct current stimulation (tDCS), controllable dose parameters are electrode number (typically 1 anode and 1 cathode), position, size, shape, and applied electric current. Because different electrode montages result in distinct brain current flow patterns across the brain, tDCS dose parameters can be adjusted, in an application-specific manner, to target or avoid specific brain regions. Though the tDCS electrode montage often follows basic rules of thumb (increased/decreased excitability "under" the anode/cathode electrode), computational forward models of brain current flow provide more accurate insight into detailed current flow patterns and, in some cases, can even challenge simplified electrode-placement assumptions. With the increased recognized value of computational forward models in informing tDCS montage design and interpretation of results, there have been recent advances in modeling tools and a greater proliferation of publications. In addition, the importance of customizing tDCS for potentially vulnerable populations (eg, skull defects, brain damage/stroke, and extremes of age) can be considered. Finally, computational models can be used to design new electrode montages, for example, to improve spatial targeting such as high-definition tDCS. Pending further validation and dissemination of modeling tools, computational forward models of neuromodulation will become standard tools to guide the optimization of clinical trials and electrotherapy. |
Author | Bikson, Marom Datta, Abhishek Rahman, Asif |
Author_xml | – sequence: 1 givenname: Marom surname: Bikson fullname: Bikson, Marom email: bikson@ccny.cuny.edu – sequence: 2 givenname: Asif surname: Rahman fullname: Rahman, Asif – sequence: 3 givenname: Abhishek surname: Datta fullname: Datta, Abhishek |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/22956646$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkUtLxDAUhYOMOA_du5KCGzfVvJqmK5H6hBEXjuuSSRPJ0DZjki7896bODMiAusmF3O-c5J47BaPOdgqAUwQvEcrzK5RlEGYFRZjSDBF-ACYYsSLNMMQjMBna6dAfg6n3KwgJw4QegTHGRcYYZRNwXdp23QcRjO1EkzzbWjU-sTpZONF5GQ8Tr2-NUzIkZe-c6kLyGkzbN9-aY3CoRePVybbOwNv93aJ8TOcvD0_lzTyVlNGQMkpqpQnjOatzyqnASw5rLLHQiGCpaiWZ1nwpMee6FlBxqWkcLSdU5gRrMgMXG9-1sx-98qFqjZeqaUSnbO8rRAvGi4wX_H8UEs4gRQxG9HwPXdnexSAGw5zRAhOeR-psS_XLVtXV2plWuM9ql2IE2AaQznrvlK6k2UQanDBNfLEa1lXtrysK4Z5w5_2HJN1IvHhXP777G_8Fr-2gmQ |
CitedBy_id | crossref_primary_10_1016_j_arr_2016_05_006 crossref_primary_10_1016_j_nicl_2013_05_011 crossref_primary_10_3389_fnins_2019_01231 crossref_primary_10_3389_fnins_2015_00174 crossref_primary_10_1007_s11517_021_02338_6 crossref_primary_10_1016_j_brs_2017_02_005 crossref_primary_10_1016_j_bpsc_2021_05_007 crossref_primary_10_1016_j_brs_2014_12_007 crossref_primary_10_1016_j_brs_2016_02_002 crossref_primary_10_1016_j_brs_2017_12_008 crossref_primary_10_1016_j_neuropsychologia_2016_01_030 crossref_primary_10_3389_fnhum_2021_747840 crossref_primary_10_1016_j_eurpsy_2019_06_007 crossref_primary_10_1016_j_mri_2019_03_010 crossref_primary_10_1038_s41598_024_52355_2 crossref_primary_10_3389_fnins_2020_00152 crossref_primary_10_12677_AP_2019_92038 crossref_primary_10_1162_jocn_a_01449 crossref_primary_10_1007_s40141_020_00262_8 crossref_primary_10_1016_j_ynirp_2021_100048 crossref_primary_10_3389_fped_2018_00056 crossref_primary_10_1016_j_neuroimage_2013_05_117 crossref_primary_10_1016_j_neuropsychologia_2015_02_002 crossref_primary_10_1016_j_neuroimage_2016_02_015 crossref_primary_10_3389_fneur_2017_00058 crossref_primary_10_1088_1741_2560_11_3_036002 crossref_primary_10_1007_s41465_017_0010_y crossref_primary_10_1016_j_compbiomed_2022_106472 crossref_primary_10_3389_fnins_2017_00641 crossref_primary_10_1016_j_neuropsychologia_2015_06_021 crossref_primary_10_1038_s41598_019_55045_6 crossref_primary_10_1016_j_neuroscience_2019_06_034 crossref_primary_10_3389_fnhum_2024_1305446 crossref_primary_10_1016_j_compbiomed_2024_109366 crossref_primary_10_1111_ejn_14957 crossref_primary_10_1109_TBME_2014_2322774 crossref_primary_10_3389_fnins_2016_00157 crossref_primary_10_3389_fnbeh_2015_00257 crossref_primary_10_1111_cns_13204 crossref_primary_10_3389_fnins_2021_665707 crossref_primary_10_1016_j_nicl_2024_103599 crossref_primary_10_1016_j_brainres_2019_146318 crossref_primary_10_1016_j_brs_2017_12_002 crossref_primary_10_1093_scan_nsy069 crossref_primary_10_3389_fnhum_2023_1075741 crossref_primary_10_1088_1741_2552_ac160f crossref_primary_10_1007_s40473_021_00226_9 crossref_primary_10_1088_1361_6560_ad2638 crossref_primary_10_2217_nmt_2017_0021 crossref_primary_10_1007_s41465_024_00315_z crossref_primary_10_1088_1741_2552_ad625e crossref_primary_10_1080_09602011_2021_1927761 crossref_primary_10_1109_TMI_2019_2915206 crossref_primary_10_3389_fnins_2023_1197452 crossref_primary_10_3389_fnhum_2020_588671 crossref_primary_10_1109_TBME_2022_3213266 crossref_primary_10_1080_00207454_2016_1216415 crossref_primary_10_1016_j_tins_2014_08_003 crossref_primary_10_1016_j_schres_2018_01_010 crossref_primary_10_1371_journal_pcbi_1007277 crossref_primary_10_1027_0269_8803_a000144 crossref_primary_10_3758_s13414_015_0932_3 crossref_primary_10_1038_nn_3422 crossref_primary_10_1016_j_neuroimage_2020_116598 crossref_primary_10_3389_fnhum_2019_00388 crossref_primary_10_1007_s00221_015_4213_0 crossref_primary_10_1016_j_neubiorev_2022_104867 crossref_primary_10_3389_fphys_2015_00318 crossref_primary_10_3390_biomedicines10102333 crossref_primary_10_1016_j_biopsych_2021_07_008 crossref_primary_10_1186_s12984_019_0481_4 crossref_primary_10_3389_fnrgo_2022_932542 crossref_primary_10_1016_j_jneumeth_2016_12_008 crossref_primary_10_1016_j_bandl_2020_104791 crossref_primary_10_1016_j_bbih_2022_100566 crossref_primary_10_1016_j_cobme_2018_09_007 crossref_primary_10_3389_fnhum_2015_00114 crossref_primary_10_1007_s00406_016_0674_9 crossref_primary_10_1016_j_compbiomed_2024_108697 crossref_primary_10_1002_hbm_24079 crossref_primary_10_1016_j_neulet_2016_06_056 crossref_primary_10_1080_09602011_2020_1805335 crossref_primary_10_52547_shefa_11_1_69 crossref_primary_10_1016_j_neuropsychologia_2018_03_030 crossref_primary_10_1097_WNR_0000000000000621 crossref_primary_10_1016_j_enganabound_2021_10_026 crossref_primary_10_1016_j_neuroimage_2018_10_025 crossref_primary_10_3390_biomedicines11051283 crossref_primary_10_1186_s13195_018_0465_9 crossref_primary_10_1016_j_jad_2014_06_022 crossref_primary_10_1016_j_neuropsychologia_2016_10_011 crossref_primary_10_1080_13651501_2020_1728340 crossref_primary_10_1155_2015_963293 crossref_primary_10_1002_hbm_24908 crossref_primary_10_1038_s41537_024_00529_2 crossref_primary_10_12786_bn_2024_17_e21 crossref_primary_10_1016_j_neuroimage_2014_08_016 crossref_primary_10_3389_fneur_2018_01145 crossref_primary_10_1088_1361_6560_abe223 crossref_primary_10_1088_1361_6560_61_24_8825 crossref_primary_10_1093_scan_nsv057 crossref_primary_10_1109_TBME_2014_2311071 crossref_primary_10_3389_fncel_2015_00181 crossref_primary_10_1523_JNEUROSCI_0510_14_2014 crossref_primary_10_1016_j_brs_2015_11_001 crossref_primary_10_1016_j_brs_2014_03_009 crossref_primary_10_1016_j_neuropsychologia_2015_03_006 crossref_primary_10_1016_j_neuroimage_2024_120792 crossref_primary_10_1038_s41598_021_92670_6 crossref_primary_10_3390_brainsci12060701 crossref_primary_10_1212_01_CPJ_0000437088_98407_fa crossref_primary_10_1016_j_mad_2021_111575 crossref_primary_10_3390_jcm11071845 crossref_primary_10_1016_j_neures_2017_08_005 crossref_primary_10_1159_000502149 crossref_primary_10_1080_14737175_2019_1567332 crossref_primary_10_2147_NDT_S259499 crossref_primary_10_1080_09540261_2017_1286299 crossref_primary_10_3233_JAD_180732 crossref_primary_10_3758_s13414_016_1224_2 crossref_primary_10_1088_1741_2552_aa8d8a crossref_primary_10_1016_j_neulet_2016_01_035 crossref_primary_10_34088_kojose_1233583 crossref_primary_10_1016_j_clinph_2017_06_035 crossref_primary_10_1007_s40473_018_0149_6 crossref_primary_10_1080_17434440_2020_1816168 crossref_primary_10_1016_j_intell_2021_101563 crossref_primary_10_1007_s40473_021_00238_5 crossref_primary_10_3389_fnhum_2015_00654 crossref_primary_10_1093_cercor_bhx085 crossref_primary_10_1098_rsta_2015_0187 crossref_primary_10_1007_s10916_019_1490_3 crossref_primary_10_1016_j_avb_2020_101463 crossref_primary_10_1016_j_neuropsychologia_2018_07_037 crossref_primary_10_1186_s13195_014_0074_1 crossref_primary_10_1016_j_schres_2015_05_029 crossref_primary_10_1109_TNSRE_2021_3120148 crossref_primary_10_1038_s41598_020_80279_0 crossref_primary_10_1111_ner_12786 crossref_primary_10_1016_j_brs_2018_12_227 crossref_primary_10_1088_1741_2552_ac297d crossref_primary_10_1016_j_physbeh_2016_03_025 crossref_primary_10_1177_1545968314567152 crossref_primary_10_3758_s13415_020_00850_0 crossref_primary_10_1162_jocn_a_00848 crossref_primary_10_1016_j_neuroimage_2017_03_001 crossref_primary_10_1007_s00115_014_4167_7 crossref_primary_10_1016_j_brs_2022_03_007 crossref_primary_10_3390_brainsci12050522 crossref_primary_10_1016_j_brs_2020_04_007 crossref_primary_10_1016_j_cortex_2018_11_022 crossref_primary_10_1016_j_jneumeth_2013_07_016 crossref_primary_10_1016_j_neuroscience_2019_04_032 crossref_primary_10_3389_fnhum_2014_00739 crossref_primary_10_3390_brainsci10050304 crossref_primary_10_1016_j_tics_2014_10_003 crossref_primary_10_1016_j_neurobiolaging_2024_02_011 crossref_primary_10_1111_ejn_14085 crossref_primary_10_1002_bem_22542 crossref_primary_10_1089_brain_2020_0762 crossref_primary_10_1097_YCT_0000000000000302 crossref_primary_10_1523_JNEUROSCI_1717_15_2015 crossref_primary_10_1007_s00221_021_06229_y crossref_primary_10_1093_cercor_bhx021 crossref_primary_10_1371_journal_pone_0076112 crossref_primary_10_1142_S012906571430006X crossref_primary_10_5674_jjppp_1602ci crossref_primary_10_3389_fnins_2024_1389651 crossref_primary_10_1016_j_clinph_2014_03_022 crossref_primary_10_1016_j_clinph_2016_10_087 crossref_primary_10_2522_ptj_20130565 crossref_primary_10_1111_nyas_12110 crossref_primary_10_1371_journal_pone_0194640 crossref_primary_10_1038_srep34385 crossref_primary_10_3389_fnbeh_2014_00093 crossref_primary_10_3390_jcm13113084 crossref_primary_10_3389_fnimg_2022_1069500 crossref_primary_10_1038_s41598_023_39161_y crossref_primary_10_1016_j_brs_2016_06_052 crossref_primary_10_1162_nol_a_00020 crossref_primary_10_1093_brain_awae307 crossref_primary_10_1186_s12887_015_0498_1 crossref_primary_10_1016_j_neuroscience_2014_01_052 crossref_primary_10_1038_srep25160 crossref_primary_10_1155_2020_4795267 crossref_primary_10_14474_ptrs_2022_11_1_8 crossref_primary_10_3389_fneur_2017_00029 crossref_primary_10_1016_j_neucli_2021_05_002 crossref_primary_10_1016_j_clinph_2016_04_015 |
Cites_doi | 10.1113/jphysiol.2003.055772 10.1002/hbm.10062 10.1016/j.neuroimage.2010.07.061 10.1016/j.jneumeth.2010.05.007 10.1016/j.clinph.2009.03.023 10.1016/j.neuroimage.2010.04.252 10.1016/j.neuroimage.2011.06.069 10.1213/00000539-196811000-00016 10.1113/jphysiol.1981.sp013897 10.1109/TBME.2011.2116019 10.1038/285227a0 10.1016/j.neuroimage.2005.10.014 10.1016/j.neuroimage.2011.05.026 10.1088/1741-2560/8/4/046011 10.1016/j.neuroimage.2007.01.027 10.1088/0031-9155/53/11/N03 10.1212/WNL.57.10.1899 10.1016/j.compbiomed.2003.12.005 10.1111/j.1528-1167.2006.00426.x 10.1016/j.brs.2010.11.001 10.1016/j.clinph.2006.04.009 10.1016/j.clinph.2010.05.020 10.1088/1741-2560/5/2/007 10.1016/j.jpain.2010.12.015 10.1111/j.1469-7793.2000.t01-1-00633.x 10.1093/cercor/bhn032 10.1016/j.brs.2009.03.005 10.3109/02699206.2011.570852 |
ContentType | Journal Article |
Copyright | The Author(s) 2012 Copyright SAGE PUBLICATIONS, INC. 2012 |
Copyright_xml | – notice: The Author(s) 2012 – notice: Copyright SAGE PUBLICATIONS, INC. 2012 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 4T- 7RV 7TK 7X7 7XB 88E 8AO 8FI 8FJ 8FK ABUWG AFKRA BENPR CCPQU FYUFA GHDGH K9. KB0 M0S M1P NAPCQ PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI PRINS 7X8 |
DOI | 10.1177/1550059412445138 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Docstoc Nursing & Allied Health Database Neurosciences Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central ProQuest One Community College Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Health & Medical Complete (Alumni) Nursing & Allied Health Database (Alumni Edition) ProQuest Health & Medical Collection PML(ProQuest Medical Library) Nursing & Allied Health Premium ProQuest Central Premium ProQuest One Academic ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Pharma Collection ProQuest Central China ProQuest Central Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Health & Medical Research Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest One Academic Eastern Edition ProQuest Nursing & Allied Health Source ProQuest Hospital Collection Health Research Premium Collection (Alumni) Neurosciences Abstracts ProQuest Hospital Collection (Alumni) Nursing & Allied Health Premium ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition Docstoc ProQuest Nursing & Allied Health Source (Alumni) ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | Neurosciences Abstracts ProQuest One Academic Middle East (New) CrossRef MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 2169-5202 |
EndPage | 183 |
ExternalDocumentID | 3178392841 22956646 10_1177_1550059412445138 10.1177_1550059412445138 |
Genre | Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NIGMS NIH HHS grantid: S06 GM008168 – fundername: NINDS NIH HHS grantid: NS054783 |
GroupedDBID | --- -TM .2E .2J .2N 01A 0R~ 29B 4.4 53G 54M 5GY 7RV 7X7 88E 8AO 8FI 8FJ 8R4 8R5 AABMB AABOD AACMV AACTG AADUE AAEWN AAGLT AAGMC AAJPV AAKGS AAQDB AAQXI AARDL AARIX AATAA AATBZ AAUAS ABAWP ABCCA ABCJG ABEIX ABFWQ ABIDT ABJNI ABJZC ABKRH ABLUO ABNCE ABPNF ABQXT ABRHV ABUJY ABUWG ABVFX ACABN ACARO ACDSZ ACDXX ACFEJ ACGFS ACGZU ACIWK ACJER ACJTF ACLFY ACLZU ACOFE ACOXC ACPRK ACROE ACRPL ACSIQ ACUAV ACUIR ACXKE ACXMB ADBBV ADDLC ADEBD ADNMO ADNON ADRRZ ADVBO ADYCS ADZYD ADZZY AECGH AEDTQ AEKYL AENEX AEONT AEPTA AEQLS AERKM AESZF AEUHG AEWDL AEWHI AEXNY AFEET AFKRA AFKRG AFMOU AFQAA AFRAH AFUIA AFWMB AGHKR AGKLV AGNHF AGPXR AGQPQ AGWFA AHDMH AHHFK AHMBA AJUZI AJXAJ ALKWR ALMA_UNASSIGNED_HOLDINGS AMCVQ ANDLU ARTOV ASPBG AUTPY AUVAJ AVWKF AYAKG AZFZN B8M BBRGL BDDNI BENPR BKEYQ BKIIM BKSCU BPACV BPHCQ BSEHC BVXVI BWJAD BYIEH CCPQU CDWPY CFDXU DB0 DC- DC. DF0 DO- DOPDO DV7 EBS EJD EMOBN EX3 F5P FEDTE FHBDP FYUFA GROUPED_SAGE_PREMIER_JOURNAL_COLLECTION H13 HMCUK HVGLF HZ~ J8X K.F M1P NAPCQ O9- OVD P.B P2P PHGZM PHGZT PQQKQ PROAC PSQYO Q2X ROL RXW S01 SASJQ SAUOL SCNPE SFC SHG SPQ SPV TEORI UKHRP WOW ZONMY ZPPRI ZRKOI ZSSAH ZXP AAYXX AJGYC CITATION AAPII AJVBE CGR CUY CVF ECM EIF NPM PJZUB PPXIY 3V. 4T- 7TK 7XB 8FK K9. PKEHL PQEST PQUKI PRINS 7X8 |
ID | FETCH-LOGICAL-c464t-643def36876d7484a2b80d2c2af132cedec6ff8bc288fda0e8cf4005734c732f3 |
IEDL.DBID | 7X7 |
ISSN | 1550-0594 |
IngestDate | Mon Jul 21 10:55:11 EDT 2025 Thu Jul 10 22:53:00 EDT 2025 Fri Jul 25 05:58:29 EDT 2025 Mon Jul 21 05:59:54 EDT 2025 Tue Jul 01 00:54:53 EDT 2025 Thu Apr 24 22:50:59 EDT 2025 Tue Jun 17 22:31:30 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | computer model tDCS transcranial electrical stimulation forward model current density current flow electric field FEM |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c464t-643def36876d7484a2b80d2c2af132cedec6ff8bc288fda0e8cf4005734c732f3 |
Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 |
PMID | 22956646 |
PQID | 1476492387 |
PQPubID | 39840 |
PageCount | 8 |
ParticipantIDs | proquest_miscellaneous_1496895898 proquest_miscellaneous_1038604160 proquest_journals_1476492387 pubmed_primary_22956646 crossref_citationtrail_10_1177_1550059412445138 crossref_primary_10_1177_1550059412445138 sage_journals_10_1177_1550059412445138 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2012-07-01 |
PublicationDateYYYYMMDD | 2012-07-01 |
PublicationDate_xml | – month: 07 year: 2012 text: 2012-07-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Los Angeles, CA |
PublicationPlace_xml | – name: Los Angeles, CA – name: United States – name: Wheaton |
PublicationTitle | Clinical EEG and neuroscience |
PublicationTitleAlternate | Clin EEG Neurosci |
PublicationYear | 2012 |
Publisher | SAGE Publications SAGE PUBLICATIONS, INC |
Publisher_xml | – name: SAGE Publications – name: SAGE PUBLICATIONS, INC |
References | Nitsche, Paulus 2001; 57 Thielscher, Opitz, Windhoff 2011; 54 Mendonca, Santana, Baptista, Datta, Bikson, Fregni 2011; 12 Suh, Lee, Cho, Kim, Kim 2010; 2010 Fregni, Thome-Souza, Nitsche, Freedman, Valente, Pascual-Leone 2006; 47 Bikson, Datta, Rahman, Scaturro 2010; 121 Parazzini, Fiocchi, Rossi, Paglialonga, Ravazzani 2011; 58 Miranda, Faria, Hallett 2009; 120 Suh, Kim, Lee, Kim 2009; 2009 Im, Jung, Choi, Lee, Jung 2008; 53 Dmochowski, Datta, Bikson, Su, Parra 2011; 8 Oostendorp, Hengeveld, Wolters, Stinstra, van Elswijk, Stegeman 2008; 2008 Datta, Baker, Bikson, Fridriksson 2011; 4 Sadleir, Vannorsdall, Schretlen, Gordon 2010 Stecker 2005; 35 Opitz, Windhoff, Heidemann, Turner, Thielscher 2011; 58 Freitas, Mondragon-Llorca, Pascual-Leone 2011; 46 Nitsche, Paulus 2000; 5279 Datta, Elwassif, Battaglia, Bikson 2008; 5 Bikson, Datta 2011 Datta, Bikson, Fregni 2010; 52 Salvador, Mekonnen, Ruffini, Miranda 2010; 2010 Datta, Bansal, Diaz, Patel, Reato, Bikson 2009; 2 Wolters, Anwander, Tricoche, Weinstein, Koch, MacLeod 2006; 30 Brunoni, Bolognini, Bikson, Wagner, Merabet, Edwards 2011 Halko, Datta, Plow, Scaturro, Bikson, Merabet 2011; 57 Smith 2002; 17 Antal, Lang, Boros, Nitsche, Siebner, Paulus 2008; 18 Turkeltaub, Benson, Hamilton, Datta, Bikson, Coslett 2011 Schneider, Hopp 2011; 25 Wagner, Fregni, Fecteau, Grodzinsky, Zahn, Pascual-Leone 2007; 35 Rush, Driscoll 1968; 47 Minhas, Bansal, Patel, Ho, Diaz, Datta 2010; 190 Merton, Morton 1980; 285 Miranda, Lomarev, Hallett 2006; 117 Liebetanz, Klinker, Hering, Koch, Nitsche, Potschka 1981; 319 Bikson, Inoue, Akiyama, Deans, Fox, Miyakawa 2004; 557 Suh HS (bibr21-1550059412445138) 2010; 2010 bibr29-1550059412445138 bibr16-1550059412445138 bibr2-1550059412445138 bibr8-1550059412445138 bibr20-1550059412445138 Oostendorp TF (bibr28-1550059412445138) 2008; 2008 bibr11-1550059412445138 bibr24-1550059412445138 bibr34-1550059412445138 bibr17-1550059412445138 bibr25-1550059412445138 Freitas C (bibr33-1550059412445138) 2011; 46 bibr7-1550059412445138 bibr3-1550059412445138 Turkeltaub PE (bibr6-1550059412445138) 2011 bibr22-1550059412445138 bibr27-1550059412445138 Bikson M (bibr18-1550059412445138) 2011 bibr35-1550059412445138 bibr19-1550059412445138 Liebetanz D (bibr36-1550059412445138) 1981; 319 bibr30-1550059412445138 bibr26-1550059412445138 bibr4-1550059412445138 bibr10-1550059412445138 bibr15-1550059412445138 Brunoni AR (bibr5-1550059412445138) 2011 Rush S (bibr12-1550059412445138) 1968; 47 bibr9-1550059412445138 bibr31-1550059412445138 bibr32-1550059412445138 Sadleir RJ (bibr37-1550059412445138) 2010 bibr1-1550059412445138 Salvador R (bibr14-1550059412445138) 2010; 2010 bibr23-1550059412445138 Suh HS (bibr13-1550059412445138) 2009; 2009 |
References_xml | – volume: 120 start-page: 1183 issue: (6) year: 2009 end-page: 1187 article-title: What does the ratio of injected current to electrode area tell us about current density in the brain during tDCS? publication-title: Clin Neurophysiol – volume: 35 start-page: 133 issue: (2) year: 2005 end-page: 155 article-title: Transcranial electric stimulation of motor pathways: a theoretical analysis publication-title: Comput Biol Med – volume: 57 start-page: 885 issue: (3) year: 2011 end-page: 891 article-title: Neuroplastic changes following rehabilitative training correlate with regional electric field induced with tDCS publication-title: Neuroimage – volume: 2010 start-page: 2073 year: 2010 end-page: 2076 article-title: Modeling the electric field induced in a high resolution head model during transcranial current stimulation publication-title: Conf Proc IEEE Eng Med Biol Soc – volume: 319 start-page: 143 year: 1981 end-page: 152 article-title: Anticonvulsant effects of transcranial direct-current stimulation (tDCS) in the rat cortical ramp model of focal epilepsy. 2006;47(7):1216-1224.37. Jefferys JG. Influence of electric fields on the excitability of granule cells in guinea-pig hippocampal slices publication-title: J Physiol – volume: 4 start-page: 169 issue: (3) year: 2011 end-page: 174 article-title: Individualized model predicts brain current flow during transcranial direct-current stimulation treatment in responsive stroke patient publication-title: Brain Stimul – volume: 18 start-page: 2701 issue: (11) year: 2008 end-page: 2705 article-title: Homeostatic metaplasticity of the motor cortex is altered during headache-free intervals in migraine with aura publication-title: Cerebral cortex – volume: 30 start-page: 813 issue: (3) year: 2006 end-page: 826 article-title: Influence of tissue conductivity anisotropy on EEG/MEG field and return current computation in a realistic head model: a simulation and visualization study using high-resolution finite element modeling publication-title: Neuroimage – start-page: 51 1310 issue: 4 year: 2010 end-page: 8 article-title: Transcranial direct current stimulation (tDCS) in a realistic head model publication-title: Neuroimage – volume: 2009 start-page: 638 year: 2009 end-page: 641 article-title: Realistic simulation of transcranial direct current stimulation via 3-d high resolution finite element analysis: effect of tissue anisotropy publication-title: Conf Proc IEEE Eng Med Biol Soc – volume: 46 start-page: 611 issue: (8) year: 2011 end-page: 627 article-title: Noninvasive brain stimulation in Alzheimer's disease: systematic review and perspectives for the future publication-title: Exp Gerontol – volume: 17 start-page: 143 issue: (3) year: 2002 end-page: 155 article-title: Fast robust automated brain extraction publication-title: Hum Brain Mapp – volume: 12 start-page: 610 issue: (5) year: 2011 end-page: 617 article-title: Transcranial DC stimulation in fibromyalgia: optimized cortical target supported by high-resolution computational models publication-title: J Pain – volume: 25 start-page: 640 issue: (6-7) year: 2011 end-page: 654 article-title: The use of the Bilingual Aphasia Test for assessment and transcranial direct current stimulation to modulate language acquisition in minimally verbal children with autism publication-title: Clin Linguist Phonet – volume: 121 start-page: 1976 issue: (12) year: 2010 end-page: 1978 article-title: Electrode montages for tDCS and weak transcranial electrical stimulation: role of “return” electrode's position and size publication-title: Clin Neurophysiol – volume: 52 start-page: 1268 issue: (4) year: 2010 end-page: 1278 article-title: Transcranial direct current stimulation in patients with skull defects and skull plates: high-resolution computational FEM study of factors altering cortical current flow publication-title: Neuroimage – volume: 117 start-page: 1623 issue: (7) year: 2006 end-page: 1629 article-title: Modeling the current distribution during transcranial direct current stimulation publication-title: Clin Neurophysiol – volume: 5 start-page: 163 issue: (2) year: 2008 end-page: 174 article-title: Transcranial current stimulation focality using disc and ring electrode configurations: FEM analysis publication-title: J Neural Eng – volume: 190 start-page: 188 issue: (2) year: 2010 end-page: 197 article-title: Electrodes for high-definition transcutaneous DC stimulation for applications in drug delivery and electrotherapy, including tDCS publication-title: J Neurosci Methods – year: 2011 article-title: Clinical research with transcranial direct current stimulation (tDCS): challenges and future directions publication-title: Brain Stimul – volume: 54 start-page: 234 issue: (1) year: 2011 end-page: 243 article-title: Impact of the gyral geometry on the electric field induced by transcranial magnetic stimulation publication-title: Neuroimage – volume: 53 start-page: N219 issue: (11) year: 2008 end-page: N225 article-title: Determination of optimal electrode positions for transcranial direct current stimulation (tDCS) publication-title: Phys Med Biol – year: 2011 article-title: Left lateralizing transcranial direct current stimulation improves reading efficiency publication-title: Brain Stimul – volume: 2008 start-page: 4226 year: 2008 end-page: 4229 article-title: Modeling transcranial DC stimulation publication-title: Conf Proc IEEE Eng Med Biol Soc – volume: 58 start-page: 849 issue: (3) year: 2011 end-page: 859 article-title: How the brain tissue shapes the electric field induced by transcranial magnetic stimulation publication-title: Neuroimage – volume: 5279 start-page: 633 issue: (pt 3) year: 2000 end-page: 639 article-title: Excitability changes induced in the human motor cortex by weak transcranial direct current stimulation publication-title: J Physiol – volume: 285 start-page: 227 issue: (5762) year: 1980 article-title: Stimulation of the cerebral cortex in the intact human subject publication-title: Nature – volume: 58 start-page: 1773 issue: (6) year: 2011 end-page: 1780 article-title: Transcranial direct current stimulation: estimation of the electric field and of the current density in an anatomical head model publication-title: IEEE Trans Biomed Eng – volume: 2 start-page: 201 issue: (4) year: 2009 end-page: 207 article-title: Gyri-precise head model of transcranial direct current stimulation: improved spatial focality using a ring electrode versus conventional rectangular pad publication-title: Brain Stimul – volume: 8 start-page: 046011 issue: (4) year: 2011 article-title: Optimized multi-electrode stimulation increases focality and intensity at target publication-title: J Neural Eng – volume: 47 start-page: 335 issue: (2) year: 2006 end-page: 342 article-title: A controlled clinical trial of cathodal DC polarization in patients with refractory epilepsy publication-title: Epliepsia – volume: 57 start-page: 1899 issue: (10) year: 2001 end-page: 1901 article-title: Sustained excitability elevations induced by transcranial DC motor cortex stimulation in humans publication-title: Neurology – volume: 557 start-page: 175 issue: (pt 1) year: 2004 end-page: 190 article-title: Effects of uniform extracellular DC electric fields on excitability in rat hippocampal slices in vitro publication-title: J Physiol – volume: 47 start-page: 717 issue: (6) year: 1968 end-page: 723 article-title: Current distribution in the brain from surface electrodes publication-title: Anesth Analg – year: 2011 article-title: Guidelines for precise and accurate computational models of tDCS publication-title: Brain Stimul – volume: 2010 start-page: 2053 year: 2010 end-page: 2056 article-title: Reduced spatial focality of electrical field in tDCS with ring electrodes due to tissue anisotropy publication-title: Conf Proc IEEE Eng Med Biol Soc – volume: 35 start-page: 1113 issue: (3) year: 2007 end-page: 1124 article-title: Transcranial direct current stimulation: a computer-based human model study publication-title: Neuroimage – volume: 2008 start-page: 4226 year: 2008 ident: bibr28-1550059412445138 publication-title: Conf Proc IEEE Eng Med Biol Soc – ident: bibr20-1550059412445138 doi: 10.1113/jphysiol.2003.055772 – volume: 2009 start-page: 638 year: 2009 ident: bibr13-1550059412445138 publication-title: Conf Proc IEEE Eng Med Biol Soc – ident: bibr19-1550059412445138 doi: 10.1002/hbm.10062 – year: 2011 ident: bibr5-1550059412445138 publication-title: Brain Stimul – ident: bibr30-1550059412445138 doi: 10.1016/j.neuroimage.2010.07.061 – ident: bibr25-1550059412445138 doi: 10.1016/j.jneumeth.2010.05.007 – ident: bibr23-1550059412445138 doi: 10.1016/j.clinph.2009.03.023 – ident: bibr34-1550059412445138 doi: 10.1016/j.neuroimage.2010.04.252 – year: 2011 ident: bibr6-1550059412445138 publication-title: Brain Stimul – ident: bibr31-1550059412445138 doi: 10.1016/j.neuroimage.2011.06.069 – volume: 47 start-page: 717 issue: 6 year: 1968 ident: bibr12-1550059412445138 publication-title: Anesth Analg doi: 10.1213/00000539-196811000-00016 – volume: 319 start-page: 143 year: 1981 ident: bibr36-1550059412445138 publication-title: J Physiol doi: 10.1113/jphysiol.1981.sp013897 – year: 2011 ident: bibr18-1550059412445138 publication-title: Brain Stimul – volume: 46 start-page: 611 issue: 8 year: 2011 ident: bibr33-1550059412445138 publication-title: Exp Gerontol – ident: bibr15-1550059412445138 doi: 10.1109/TBME.2011.2116019 – volume: 2010 start-page: 2053 year: 2010 ident: bibr21-1550059412445138 publication-title: Conf Proc IEEE Eng Med Biol Soc – ident: bibr2-1550059412445138 doi: 10.1038/285227a0 – ident: bibr16-1550059412445138 doi: 10.1016/j.neuroimage.2005.10.014 – ident: bibr17-1550059412445138 doi: 10.1016/j.neuroimage.2011.05.026 – ident: bibr27-1550059412445138 doi: 10.1088/1741-2560/8/4/046011 – start-page: 51 issue: 4 year: 2010 ident: bibr37-1550059412445138 publication-title: Neuroimage – ident: bibr9-1550059412445138 doi: 10.1016/j.neuroimage.2007.01.027 – ident: bibr24-1550059412445138 doi: 10.1088/0031-9155/53/11/N03 – ident: bibr3-1550059412445138 doi: 10.1212/WNL.57.10.1899 – volume: 2010 start-page: 2073 year: 2010 ident: bibr14-1550059412445138 publication-title: Conf Proc IEEE Eng Med Biol Soc – ident: bibr11-1550059412445138 doi: 10.1016/j.compbiomed.2003.12.005 – ident: bibr29-1550059412445138 doi: 10.1111/j.1528-1167.2006.00426.x – ident: bibr8-1550059412445138 doi: 10.1016/j.brs.2010.11.001 – ident: bibr10-1550059412445138 doi: 10.1016/j.clinph.2006.04.009 – ident: bibr22-1550059412445138 doi: 10.1016/j.clinph.2010.05.020 – ident: bibr7-1550059412445138 doi: 10.1088/1741-2560/5/2/007 – ident: bibr35-1550059412445138 doi: 10.1016/j.jpain.2010.12.015 – ident: bibr1-1550059412445138 doi: 10.1111/j.1469-7793.2000.t01-1-00633.x – ident: bibr4-1550059412445138 doi: 10.1093/cercor/bhn032 – ident: bibr26-1550059412445138 doi: 10.1016/j.brs.2009.03.005 – ident: bibr32-1550059412445138 doi: 10.3109/02699206.2011.570852 |
SSID | ssj0036234 |
Score | 2.4131403 |
Snippet | During transcranial direct current stimulation (tDCS), controllable dose parameters are electrode number (typically 1 anode and 1 cathode), position, size,... During transcranial direct current stimulation (tDCS), controllable dose parameters are electrode number, position, size, shape, and applied electric current.... |
SourceID | proquest pubmed crossref sage |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 176 |
SubjectTerms | Action Potentials - physiology Action Potentials - radiation effects Animals Automation Brain Brain - physiology Brain - radiation effects Brain research Computer Simulation Defects Electrodes Humans Models, Neurological Neural networks Neurons - physiology Neurons - radiation effects Neurosciences Software Studies Transcranial Magnetic Stimulation - methods |
Title | Computational Models of Transcranial Direct Current Stimulation |
URI | https://journals.sagepub.com/doi/full/10.1177/1550059412445138 https://www.ncbi.nlm.nih.gov/pubmed/22956646 https://www.proquest.com/docview/1476492387 https://www.proquest.com/docview/1038604160 https://www.proquest.com/docview/1496895898 |
Volume | 43 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1bS8MwFD7oBuKLeLc6RwURfAjrJU2zp6GyMYQN8QJ7G20uIMx2uu7_m9NmFxX30oc0pSHn9JwvOen3AVz7jBvXUZLIQMWEatkmKY8EYYmIPCaZ5mX1fDBk_Tf6OIpGdsNtZo9VLmJiGahlLnCPvOXTmCGZGI8700-CqlFYXbUSGttQR-oyXHzFo-WCy8TmqqpsUDhBXpJVmbKFbdiE6S3y8e-U9bT0B2v-OOdVpp7ePuxZzOjeVUY-gC2VHcLOwFbFj6BTSTPYbT0X5c0mMzfXbpmIhLkYJ3Or4OZaQib3pXj_sNJdx_DW674-9IkVRiCCMloQgyKk0iEzkUwiF2gSpNyTgQgSbRaXQkklmNY8FQHnWiae4kLTkvqQijgMdHgCtSzP1Bm4SeilPk2o9oRZKUcB18r3VSSECiJtoI0DrcW8jIVlDUfxisnYt0Thv2fSgdvlE9OKMWND38Ziqsf225mNV5Z24Gp523g9ljKSTOVz08cLOfMMmPQ29KFtxtuRcTYHTiszLgeEIuaMUebADdp17eX_jPR880gvYNcgKXuOtwG14muuLg1aKdJm6ZJNqN93h0_P3y3_4mA |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB5RkFouVemLFNoaiVbqwVrHcRzvoUIVLVoKy6Ug7S1N_JAqwS50F1X8KX4jM4mz0KLujUsOiZNY47FnxjP-PoDtVBtUHe-4k77gKrg-r01uua5sLrTTwTTZ8-GRHpyo76N8tATX3VkYKqvs1sRmoXYTS3vkvVQVmsDETLFzfsGJNYqyqx2FRqsWB_7qD4Zs08_7X3F8P0i59-14d8AjqwC3SqsZRxPsfMg0LgOOgDQrWRvhpJVVwMjMeuetDsHUVhoTXCW8sUE1uIHKFpkMGX73Eayg4RVUQliM5gEe2oI2i41ePycclNu0aI_u0S0yp3lKp2HumsF7vu1fdWWNqdt7Bk-jj8q-tEq1Bkt-_BweD2MW_gXstFQQcRuREZ3a6ZRNAmsMn8ULKjVrF1MWAaDYj9mvs0gV9hJOHkRkr2B5PBn7dWBVJupUVSoIi5F5Lk3waepza73MA7pSCfQ6uZQ2opQTWcZpmUZg8n8lmcCn-RvnLULHgrabnajLOFen5a1mJbA1f4yzjFIn1dhPLrGNyIwW6LyKBW1UX5t-jsqdwOt2GOcdItJ0rZVO4CON652f_6enbxb39D08GRwPD8vD_aODDVhFLy7WEG_C8uz3pX-LntKsfteoJ4OfDz0fbgBxzh6m |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1JS-xAEC5cQLyIu3nPpQUVPDSTdDqdnoOIqIM7ggpzi0kvIOiM782I-Nf8dVYnnXHDuXnJIekkTXWtXdX1AWxEQiLrGE01MynlVjdpIRNFRa6SUGhhZZk9P78QRzf8pJ20R-C1PgvjyiprnVgqat1Vbo-8EfFUuGZiMm1YXxZxedDaffxHHYKUy7TWcBoVi5yal2cM33o7xwe41puMtQ6v94-oRxigigvep2iOtbGxQJWgXVPNnBUy1Eyx3GKUpow2SlgrC8WktDoPjVSWlz0EuUpjZmP87iiMpzGaTZSltD0I9tAuVBltjACo64nyniJtuHvuljOtSeROxnw0id_83E81ZqXZa03DlPdXyV7FYDMwYjqzMHHuM_JzsFvBQvgtReKg1e57pGtJaQQVXpDBSaVYiW8GRa76dw8eNmwebn6FZAsw1ul2zBKQPA6LiOfchgqj9IRJa6LIJEoZllh0qwJo1HTJlO9Y7oAz7rPINyn_SskAtgdvPFbdOoaMXa5JnXm57WXvXBbA-uAxSpxLo-Qd033CMWEsRYiObDhkDG8K2UyQ0QNYrJZxMCEHoC4EFwFsuXX98PMfZvpn-EzXYAIlITs7vjj9C5Po0Ply4mUY6_9_MivoNPWL1ZI7Cdz-tji8AQNtItw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Computational+Models+of+Transcranial+Direct+Current+Stimulation&rft.jtitle=Clinical+EEG+and+neuroscience&rft.au=Bikson%2C+Marom&rft.au=Rahman%2C+Asif&rft.au=Datta%2C+Abhishek&rft.date=2012-07-01&rft.pub=SAGE+PUBLICATIONS%2C+INC&rft.issn=1550-0594&rft.eissn=2169-5202&rft.volume=43&rft.issue=3&rft.spage=176&rft_id=info:doi/10.1177%2F1550059412445138&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=3178392841 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1550-0594&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1550-0594&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1550-0594&client=summon |