Computational Models of Transcranial Direct Current Stimulation

During transcranial direct current stimulation (tDCS), controllable dose parameters are electrode number (typically 1 anode and 1 cathode), position, size, shape, and applied electric current. Because different electrode montages result in distinct brain current flow patterns across the brain, tDCS...

Full description

Saved in:
Bibliographic Details
Published inClinical EEG and neuroscience Vol. 43; no. 3; pp. 176 - 183
Main Authors Bikson, Marom, Rahman, Asif, Datta, Abhishek
Format Journal Article
LanguageEnglish
Published Los Angeles, CA SAGE Publications 01.07.2012
SAGE PUBLICATIONS, INC
Subjects
Online AccessGet full text
ISSN1550-0594
2169-5202
DOI10.1177/1550059412445138

Cover

Loading…
Abstract During transcranial direct current stimulation (tDCS), controllable dose parameters are electrode number (typically 1 anode and 1 cathode), position, size, shape, and applied electric current. Because different electrode montages result in distinct brain current flow patterns across the brain, tDCS dose parameters can be adjusted, in an application-specific manner, to target or avoid specific brain regions. Though the tDCS electrode montage often follows basic rules of thumb (increased/decreased excitability “under” the anode/cathode electrode), computational forward models of brain current flow provide more accurate insight into detailed current flow patterns and, in some cases, can even challenge simplified electrode-placement assumptions. With the increased recognized value of computational forward models in informing tDCS montage design and interpretation of results, there have been recent advances in modeling tools and a greater proliferation of publications.  In addition, the importance of customizing tDCS for potentially vulnerable populations (eg, skull defects, brain damage/stroke, and extremes of age) can be considered. Finally, computational models can be used to design new electrode montages, for example, to improve spatial targeting such as high-definition tDCS. Pending further validation and dissemination of modeling tools, computational forward models of neuromodulation will become standard tools to guide the optimization of clinical trials and electrotherapy.
AbstractList During transcranial direct current stimulation (tDCS), controllable dose parameters are electrode number, position, size, shape, and applied electric current. Because different electrode montages result in distinct brain current flow patterns across the brain, tDCS dose parameters can be adjusted, in an application-specific manner, to target or avoid specific brain regions. Though, the tDCS electrode montage often follows basic rules of thumb, computational forward models of brain current flow provide more accurate insight into detailed current flow patterns and, in some cases, can even challenge simplified electrode-placement assumptions. With the increased recognized value of computational forward models in informing tDCS montage design and interpretation of results, there have been recent advances in modeling tools and a greater proliferation of publications. Finally, computational models can be used to design new electrode montages, for example, to improve spatial targeting such as high-definition tDCS.
During transcranial direct current stimulation (tDCS), controllable dose parameters are electrode number (typically 1 anode and 1 cathode), position, size, shape, and applied electric current. Because different electrode montages result in distinct brain current flow patterns across the brain, tDCS dose parameters can be adjusted, in an application-specific manner, to target or avoid specific brain regions. Though the tDCS electrode montage often follows basic rules of thumb (increased/decreased excitability “under” the anode/cathode electrode), computational forward models of brain current flow provide more accurate insight into detailed current flow patterns and, in some cases, can even challenge simplified electrode-placement assumptions. With the increased recognized value of computational forward models in informing tDCS montage design and interpretation of results, there have been recent advances in modeling tools and a greater proliferation of publications.  In addition, the importance of customizing tDCS for potentially vulnerable populations (eg, skull defects, brain damage/stroke, and extremes of age) can be considered. Finally, computational models can be used to design new electrode montages, for example, to improve spatial targeting such as high-definition tDCS. Pending further validation and dissemination of modeling tools, computational forward models of neuromodulation will become standard tools to guide the optimization of clinical trials and electrotherapy.
During transcranial direct current stimulation (tDCS), controllable dose parameters are electrode number (typically 1 anode and 1 cathode), position, size, shape, and applied electric current. Because different electrode montages result in distinct brain current flow patterns across the brain, tDCS dose parameters can be adjusted, in an application-specific manner, to target or avoid specific brain regions. Though the tDCS electrode montage often follows basic rules of thumb (increased/decreased excitability "under" the anode/cathode electrode), computational forward models of brain current flow provide more accurate insight into detailed current flow patterns and, in some cases, can even challenge simplified electrode-placement assumptions. With the increased recognized value of computational forward models in informing tDCS montage design and interpretation of results, there have been recent advances in modeling tools and a greater proliferation of publications. In addition, the importance of customizing tDCS for potentially vulnerable populations (eg, skull defects, brain damage/stroke, and extremes of age) can be considered. Finally, computational models can be used to design new electrode montages, for example, to improve spatial targeting such as high-definition tDCS. Pending further validation and dissemination of modeling tools, computational forward models of neuromodulation will become standard tools to guide the optimization of clinical trials and electrotherapy.During transcranial direct current stimulation (tDCS), controllable dose parameters are electrode number (typically 1 anode and 1 cathode), position, size, shape, and applied electric current. Because different electrode montages result in distinct brain current flow patterns across the brain, tDCS dose parameters can be adjusted, in an application-specific manner, to target or avoid specific brain regions. Though the tDCS electrode montage often follows basic rules of thumb (increased/decreased excitability "under" the anode/cathode electrode), computational forward models of brain current flow provide more accurate insight into detailed current flow patterns and, in some cases, can even challenge simplified electrode-placement assumptions. With the increased recognized value of computational forward models in informing tDCS montage design and interpretation of results, there have been recent advances in modeling tools and a greater proliferation of publications. In addition, the importance of customizing tDCS for potentially vulnerable populations (eg, skull defects, brain damage/stroke, and extremes of age) can be considered. Finally, computational models can be used to design new electrode montages, for example, to improve spatial targeting such as high-definition tDCS. Pending further validation and dissemination of modeling tools, computational forward models of neuromodulation will become standard tools to guide the optimization of clinical trials and electrotherapy.
Author Bikson, Marom
Datta, Abhishek
Rahman, Asif
Author_xml – sequence: 1
  givenname: Marom
  surname: Bikson
  fullname: Bikson, Marom
  email: bikson@ccny.cuny.edu
– sequence: 2
  givenname: Asif
  surname: Rahman
  fullname: Rahman, Asif
– sequence: 3
  givenname: Abhishek
  surname: Datta
  fullname: Datta, Abhishek
BackLink https://www.ncbi.nlm.nih.gov/pubmed/22956646$$D View this record in MEDLINE/PubMed
BookMark eNqFkUtLxDAUhYOMOA_du5KCGzfVvJqmK5H6hBEXjuuSSRPJ0DZjki7896bODMiAusmF3O-c5J47BaPOdgqAUwQvEcrzK5RlEGYFRZjSDBF-ACYYsSLNMMQjMBna6dAfg6n3KwgJw4QegTHGRcYYZRNwXdp23QcRjO1EkzzbWjU-sTpZONF5GQ8Tr2-NUzIkZe-c6kLyGkzbN9-aY3CoRePVybbOwNv93aJ8TOcvD0_lzTyVlNGQMkpqpQnjOatzyqnASw5rLLHQiGCpaiWZ1nwpMee6FlBxqWkcLSdU5gRrMgMXG9-1sx-98qFqjZeqaUSnbO8rRAvGi4wX_H8UEs4gRQxG9HwPXdnexSAGw5zRAhOeR-psS_XLVtXV2plWuM9ql2IE2AaQznrvlK6k2UQanDBNfLEa1lXtrysK4Z5w5_2HJN1IvHhXP777G_8Fr-2gmQ
CitedBy_id crossref_primary_10_1016_j_arr_2016_05_006
crossref_primary_10_1016_j_nicl_2013_05_011
crossref_primary_10_3389_fnins_2019_01231
crossref_primary_10_3389_fnins_2015_00174
crossref_primary_10_1007_s11517_021_02338_6
crossref_primary_10_1016_j_brs_2017_02_005
crossref_primary_10_1016_j_bpsc_2021_05_007
crossref_primary_10_1016_j_brs_2014_12_007
crossref_primary_10_1016_j_brs_2016_02_002
crossref_primary_10_1016_j_brs_2017_12_008
crossref_primary_10_1016_j_neuropsychologia_2016_01_030
crossref_primary_10_3389_fnhum_2021_747840
crossref_primary_10_1016_j_eurpsy_2019_06_007
crossref_primary_10_1016_j_mri_2019_03_010
crossref_primary_10_1038_s41598_024_52355_2
crossref_primary_10_3389_fnins_2020_00152
crossref_primary_10_12677_AP_2019_92038
crossref_primary_10_1162_jocn_a_01449
crossref_primary_10_1007_s40141_020_00262_8
crossref_primary_10_1016_j_ynirp_2021_100048
crossref_primary_10_3389_fped_2018_00056
crossref_primary_10_1016_j_neuroimage_2013_05_117
crossref_primary_10_1016_j_neuropsychologia_2015_02_002
crossref_primary_10_1016_j_neuroimage_2016_02_015
crossref_primary_10_3389_fneur_2017_00058
crossref_primary_10_1088_1741_2560_11_3_036002
crossref_primary_10_1007_s41465_017_0010_y
crossref_primary_10_1016_j_compbiomed_2022_106472
crossref_primary_10_3389_fnins_2017_00641
crossref_primary_10_1016_j_neuropsychologia_2015_06_021
crossref_primary_10_1038_s41598_019_55045_6
crossref_primary_10_1016_j_neuroscience_2019_06_034
crossref_primary_10_3389_fnhum_2024_1305446
crossref_primary_10_1016_j_compbiomed_2024_109366
crossref_primary_10_1111_ejn_14957
crossref_primary_10_1109_TBME_2014_2322774
crossref_primary_10_3389_fnins_2016_00157
crossref_primary_10_3389_fnbeh_2015_00257
crossref_primary_10_1111_cns_13204
crossref_primary_10_3389_fnins_2021_665707
crossref_primary_10_1016_j_nicl_2024_103599
crossref_primary_10_1016_j_brainres_2019_146318
crossref_primary_10_1016_j_brs_2017_12_002
crossref_primary_10_1093_scan_nsy069
crossref_primary_10_3389_fnhum_2023_1075741
crossref_primary_10_1088_1741_2552_ac160f
crossref_primary_10_1007_s40473_021_00226_9
crossref_primary_10_1088_1361_6560_ad2638
crossref_primary_10_2217_nmt_2017_0021
crossref_primary_10_1007_s41465_024_00315_z
crossref_primary_10_1088_1741_2552_ad625e
crossref_primary_10_1080_09602011_2021_1927761
crossref_primary_10_1109_TMI_2019_2915206
crossref_primary_10_3389_fnins_2023_1197452
crossref_primary_10_3389_fnhum_2020_588671
crossref_primary_10_1109_TBME_2022_3213266
crossref_primary_10_1080_00207454_2016_1216415
crossref_primary_10_1016_j_tins_2014_08_003
crossref_primary_10_1016_j_schres_2018_01_010
crossref_primary_10_1371_journal_pcbi_1007277
crossref_primary_10_1027_0269_8803_a000144
crossref_primary_10_3758_s13414_015_0932_3
crossref_primary_10_1038_nn_3422
crossref_primary_10_1016_j_neuroimage_2020_116598
crossref_primary_10_3389_fnhum_2019_00388
crossref_primary_10_1007_s00221_015_4213_0
crossref_primary_10_1016_j_neubiorev_2022_104867
crossref_primary_10_3389_fphys_2015_00318
crossref_primary_10_3390_biomedicines10102333
crossref_primary_10_1016_j_biopsych_2021_07_008
crossref_primary_10_1186_s12984_019_0481_4
crossref_primary_10_3389_fnrgo_2022_932542
crossref_primary_10_1016_j_jneumeth_2016_12_008
crossref_primary_10_1016_j_bandl_2020_104791
crossref_primary_10_1016_j_bbih_2022_100566
crossref_primary_10_1016_j_cobme_2018_09_007
crossref_primary_10_3389_fnhum_2015_00114
crossref_primary_10_1007_s00406_016_0674_9
crossref_primary_10_1016_j_compbiomed_2024_108697
crossref_primary_10_1002_hbm_24079
crossref_primary_10_1016_j_neulet_2016_06_056
crossref_primary_10_1080_09602011_2020_1805335
crossref_primary_10_52547_shefa_11_1_69
crossref_primary_10_1016_j_neuropsychologia_2018_03_030
crossref_primary_10_1097_WNR_0000000000000621
crossref_primary_10_1016_j_enganabound_2021_10_026
crossref_primary_10_1016_j_neuroimage_2018_10_025
crossref_primary_10_3390_biomedicines11051283
crossref_primary_10_1186_s13195_018_0465_9
crossref_primary_10_1016_j_jad_2014_06_022
crossref_primary_10_1016_j_neuropsychologia_2016_10_011
crossref_primary_10_1080_13651501_2020_1728340
crossref_primary_10_1155_2015_963293
crossref_primary_10_1002_hbm_24908
crossref_primary_10_1038_s41537_024_00529_2
crossref_primary_10_12786_bn_2024_17_e21
crossref_primary_10_1016_j_neuroimage_2014_08_016
crossref_primary_10_3389_fneur_2018_01145
crossref_primary_10_1088_1361_6560_abe223
crossref_primary_10_1088_1361_6560_61_24_8825
crossref_primary_10_1093_scan_nsv057
crossref_primary_10_1109_TBME_2014_2311071
crossref_primary_10_3389_fncel_2015_00181
crossref_primary_10_1523_JNEUROSCI_0510_14_2014
crossref_primary_10_1016_j_brs_2015_11_001
crossref_primary_10_1016_j_brs_2014_03_009
crossref_primary_10_1016_j_neuropsychologia_2015_03_006
crossref_primary_10_1016_j_neuroimage_2024_120792
crossref_primary_10_1038_s41598_021_92670_6
crossref_primary_10_3390_brainsci12060701
crossref_primary_10_1212_01_CPJ_0000437088_98407_fa
crossref_primary_10_1016_j_mad_2021_111575
crossref_primary_10_3390_jcm11071845
crossref_primary_10_1016_j_neures_2017_08_005
crossref_primary_10_1159_000502149
crossref_primary_10_1080_14737175_2019_1567332
crossref_primary_10_2147_NDT_S259499
crossref_primary_10_1080_09540261_2017_1286299
crossref_primary_10_3233_JAD_180732
crossref_primary_10_3758_s13414_016_1224_2
crossref_primary_10_1088_1741_2552_aa8d8a
crossref_primary_10_1016_j_neulet_2016_01_035
crossref_primary_10_34088_kojose_1233583
crossref_primary_10_1016_j_clinph_2017_06_035
crossref_primary_10_1007_s40473_018_0149_6
crossref_primary_10_1080_17434440_2020_1816168
crossref_primary_10_1016_j_intell_2021_101563
crossref_primary_10_1007_s40473_021_00238_5
crossref_primary_10_3389_fnhum_2015_00654
crossref_primary_10_1093_cercor_bhx085
crossref_primary_10_1098_rsta_2015_0187
crossref_primary_10_1007_s10916_019_1490_3
crossref_primary_10_1016_j_avb_2020_101463
crossref_primary_10_1016_j_neuropsychologia_2018_07_037
crossref_primary_10_1186_s13195_014_0074_1
crossref_primary_10_1016_j_schres_2015_05_029
crossref_primary_10_1109_TNSRE_2021_3120148
crossref_primary_10_1038_s41598_020_80279_0
crossref_primary_10_1111_ner_12786
crossref_primary_10_1016_j_brs_2018_12_227
crossref_primary_10_1088_1741_2552_ac297d
crossref_primary_10_1016_j_physbeh_2016_03_025
crossref_primary_10_1177_1545968314567152
crossref_primary_10_3758_s13415_020_00850_0
crossref_primary_10_1162_jocn_a_00848
crossref_primary_10_1016_j_neuroimage_2017_03_001
crossref_primary_10_1007_s00115_014_4167_7
crossref_primary_10_1016_j_brs_2022_03_007
crossref_primary_10_3390_brainsci12050522
crossref_primary_10_1016_j_brs_2020_04_007
crossref_primary_10_1016_j_cortex_2018_11_022
crossref_primary_10_1016_j_jneumeth_2013_07_016
crossref_primary_10_1016_j_neuroscience_2019_04_032
crossref_primary_10_3389_fnhum_2014_00739
crossref_primary_10_3390_brainsci10050304
crossref_primary_10_1016_j_tics_2014_10_003
crossref_primary_10_1016_j_neurobiolaging_2024_02_011
crossref_primary_10_1111_ejn_14085
crossref_primary_10_1002_bem_22542
crossref_primary_10_1089_brain_2020_0762
crossref_primary_10_1097_YCT_0000000000000302
crossref_primary_10_1523_JNEUROSCI_1717_15_2015
crossref_primary_10_1007_s00221_021_06229_y
crossref_primary_10_1093_cercor_bhx021
crossref_primary_10_1371_journal_pone_0076112
crossref_primary_10_1142_S012906571430006X
crossref_primary_10_5674_jjppp_1602ci
crossref_primary_10_3389_fnins_2024_1389651
crossref_primary_10_1016_j_clinph_2014_03_022
crossref_primary_10_1016_j_clinph_2016_10_087
crossref_primary_10_2522_ptj_20130565
crossref_primary_10_1111_nyas_12110
crossref_primary_10_1371_journal_pone_0194640
crossref_primary_10_1038_srep34385
crossref_primary_10_3389_fnbeh_2014_00093
crossref_primary_10_3390_jcm13113084
crossref_primary_10_3389_fnimg_2022_1069500
crossref_primary_10_1038_s41598_023_39161_y
crossref_primary_10_1016_j_brs_2016_06_052
crossref_primary_10_1162_nol_a_00020
crossref_primary_10_1093_brain_awae307
crossref_primary_10_1186_s12887_015_0498_1
crossref_primary_10_1016_j_neuroscience_2014_01_052
crossref_primary_10_1038_srep25160
crossref_primary_10_1155_2020_4795267
crossref_primary_10_14474_ptrs_2022_11_1_8
crossref_primary_10_3389_fneur_2017_00029
crossref_primary_10_1016_j_neucli_2021_05_002
crossref_primary_10_1016_j_clinph_2016_04_015
Cites_doi 10.1113/jphysiol.2003.055772
10.1002/hbm.10062
10.1016/j.neuroimage.2010.07.061
10.1016/j.jneumeth.2010.05.007
10.1016/j.clinph.2009.03.023
10.1016/j.neuroimage.2010.04.252
10.1016/j.neuroimage.2011.06.069
10.1213/00000539-196811000-00016
10.1113/jphysiol.1981.sp013897
10.1109/TBME.2011.2116019
10.1038/285227a0
10.1016/j.neuroimage.2005.10.014
10.1016/j.neuroimage.2011.05.026
10.1088/1741-2560/8/4/046011
10.1016/j.neuroimage.2007.01.027
10.1088/0031-9155/53/11/N03
10.1212/WNL.57.10.1899
10.1016/j.compbiomed.2003.12.005
10.1111/j.1528-1167.2006.00426.x
10.1016/j.brs.2010.11.001
10.1016/j.clinph.2006.04.009
10.1016/j.clinph.2010.05.020
10.1088/1741-2560/5/2/007
10.1016/j.jpain.2010.12.015
10.1111/j.1469-7793.2000.t01-1-00633.x
10.1093/cercor/bhn032
10.1016/j.brs.2009.03.005
10.3109/02699206.2011.570852
ContentType Journal Article
Copyright The Author(s) 2012
Copyright SAGE PUBLICATIONS, INC. 2012
Copyright_xml – notice: The Author(s) 2012
– notice: Copyright SAGE PUBLICATIONS, INC. 2012
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
4T-
7RV
7TK
7X7
7XB
88E
8AO
8FI
8FJ
8FK
ABUWG
AFKRA
BENPR
CCPQU
FYUFA
GHDGH
K9.
KB0
M0S
M1P
NAPCQ
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
PRINS
7X8
DOI 10.1177/1550059412445138
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Docstoc
Nursing & Allied Health Database
Neurosciences Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central
ProQuest One Community College
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Database (Alumni Edition)
ProQuest Health & Medical Collection
PML(ProQuest Medical Library)
Nursing & Allied Health Premium
ProQuest Central Premium
ProQuest One Academic
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Pharma Collection
ProQuest Central China
ProQuest Central
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Health & Medical Research Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest One Academic Eastern Edition
ProQuest Nursing & Allied Health Source
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
Nursing & Allied Health Premium
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
Docstoc
ProQuest Nursing & Allied Health Source (Alumni)
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList Neurosciences Abstracts
ProQuest One Academic Middle East (New)
CrossRef
MEDLINE
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 2169-5202
EndPage 183
ExternalDocumentID 3178392841
22956646
10_1177_1550059412445138
10.1177_1550059412445138
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIGMS NIH HHS
  grantid: S06 GM008168
– fundername: NINDS NIH HHS
  grantid: NS054783
GroupedDBID ---
-TM
.2E
.2J
.2N
01A
0R~
29B
4.4
53G
54M
5GY
7RV
7X7
88E
8AO
8FI
8FJ
8R4
8R5
AABMB
AABOD
AACMV
AACTG
AADUE
AAEWN
AAGLT
AAGMC
AAJPV
AAKGS
AAQDB
AAQXI
AARDL
AARIX
AATAA
AATBZ
AAUAS
ABAWP
ABCCA
ABCJG
ABEIX
ABFWQ
ABIDT
ABJNI
ABJZC
ABKRH
ABLUO
ABNCE
ABPNF
ABQXT
ABRHV
ABUJY
ABUWG
ABVFX
ACABN
ACARO
ACDSZ
ACDXX
ACFEJ
ACGFS
ACGZU
ACIWK
ACJER
ACJTF
ACLFY
ACLZU
ACOFE
ACOXC
ACPRK
ACROE
ACRPL
ACSIQ
ACUAV
ACUIR
ACXKE
ACXMB
ADBBV
ADDLC
ADEBD
ADNMO
ADNON
ADRRZ
ADVBO
ADYCS
ADZYD
ADZZY
AECGH
AEDTQ
AEKYL
AENEX
AEONT
AEPTA
AEQLS
AERKM
AESZF
AEUHG
AEWDL
AEWHI
AEXNY
AFEET
AFKRA
AFKRG
AFMOU
AFQAA
AFRAH
AFUIA
AFWMB
AGHKR
AGKLV
AGNHF
AGPXR
AGQPQ
AGWFA
AHDMH
AHHFK
AHMBA
AJUZI
AJXAJ
ALKWR
ALMA_UNASSIGNED_HOLDINGS
AMCVQ
ANDLU
ARTOV
ASPBG
AUTPY
AUVAJ
AVWKF
AYAKG
AZFZN
B8M
BBRGL
BDDNI
BENPR
BKEYQ
BKIIM
BKSCU
BPACV
BPHCQ
BSEHC
BVXVI
BWJAD
BYIEH
CCPQU
CDWPY
CFDXU
DB0
DC-
DC.
DF0
DO-
DOPDO
DV7
EBS
EJD
EMOBN
EX3
F5P
FEDTE
FHBDP
FYUFA
GROUPED_SAGE_PREMIER_JOURNAL_COLLECTION
H13
HMCUK
HVGLF
HZ~
J8X
K.F
M1P
NAPCQ
O9-
OVD
P.B
P2P
PHGZM
PHGZT
PQQKQ
PROAC
PSQYO
Q2X
ROL
RXW
S01
SASJQ
SAUOL
SCNPE
SFC
SHG
SPQ
SPV
TEORI
UKHRP
WOW
ZONMY
ZPPRI
ZRKOI
ZSSAH
ZXP
AAYXX
AJGYC
CITATION
AAPII
AJVBE
CGR
CUY
CVF
ECM
EIF
NPM
PJZUB
PPXIY
3V.
4T-
7TK
7XB
8FK
K9.
PKEHL
PQEST
PQUKI
PRINS
7X8
ID FETCH-LOGICAL-c464t-643def36876d7484a2b80d2c2af132cedec6ff8bc288fda0e8cf4005734c732f3
IEDL.DBID 7X7
ISSN 1550-0594
IngestDate Mon Jul 21 10:55:11 EDT 2025
Thu Jul 10 22:53:00 EDT 2025
Fri Jul 25 05:58:29 EDT 2025
Mon Jul 21 05:59:54 EDT 2025
Tue Jul 01 00:54:53 EDT 2025
Thu Apr 24 22:50:59 EDT 2025
Tue Jun 17 22:31:30 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords computer model
tDCS
transcranial electrical stimulation
forward model
current density
current flow
electric field
FEM
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c464t-643def36876d7484a2b80d2c2af132cedec6ff8bc288fda0e8cf4005734c732f3
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
PMID 22956646
PQID 1476492387
PQPubID 39840
PageCount 8
ParticipantIDs proquest_miscellaneous_1496895898
proquest_miscellaneous_1038604160
proquest_journals_1476492387
pubmed_primary_22956646
crossref_citationtrail_10_1177_1550059412445138
crossref_primary_10_1177_1550059412445138
sage_journals_10_1177_1550059412445138
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2012-07-01
PublicationDateYYYYMMDD 2012-07-01
PublicationDate_xml – month: 07
  year: 2012
  text: 2012-07-01
  day: 01
PublicationDecade 2010
PublicationPlace Los Angeles, CA
PublicationPlace_xml – name: Los Angeles, CA
– name: United States
– name: Wheaton
PublicationTitle Clinical EEG and neuroscience
PublicationTitleAlternate Clin EEG Neurosci
PublicationYear 2012
Publisher SAGE Publications
SAGE PUBLICATIONS, INC
Publisher_xml – name: SAGE Publications
– name: SAGE PUBLICATIONS, INC
References Nitsche, Paulus 2001; 57
Thielscher, Opitz, Windhoff 2011; 54
Mendonca, Santana, Baptista, Datta, Bikson, Fregni 2011; 12
Suh, Lee, Cho, Kim, Kim 2010; 2010
Fregni, Thome-Souza, Nitsche, Freedman, Valente, Pascual-Leone 2006; 47
Bikson, Datta, Rahman, Scaturro 2010; 121
Parazzini, Fiocchi, Rossi, Paglialonga, Ravazzani 2011; 58
Miranda, Faria, Hallett 2009; 120
Suh, Kim, Lee, Kim 2009; 2009
Im, Jung, Choi, Lee, Jung 2008; 53
Dmochowski, Datta, Bikson, Su, Parra 2011; 8
Oostendorp, Hengeveld, Wolters, Stinstra, van Elswijk, Stegeman 2008; 2008
Datta, Baker, Bikson, Fridriksson 2011; 4
Sadleir, Vannorsdall, Schretlen, Gordon 2010
Stecker 2005; 35
Opitz, Windhoff, Heidemann, Turner, Thielscher 2011; 58
Freitas, Mondragon-Llorca, Pascual-Leone 2011; 46
Nitsche, Paulus 2000; 5279
Datta, Elwassif, Battaglia, Bikson 2008; 5
Bikson, Datta 2011
Datta, Bikson, Fregni 2010; 52
Salvador, Mekonnen, Ruffini, Miranda 2010; 2010
Datta, Bansal, Diaz, Patel, Reato, Bikson 2009; 2
Wolters, Anwander, Tricoche, Weinstein, Koch, MacLeod 2006; 30
Brunoni, Bolognini, Bikson, Wagner, Merabet, Edwards 2011
Halko, Datta, Plow, Scaturro, Bikson, Merabet 2011; 57
Smith 2002; 17
Antal, Lang, Boros, Nitsche, Siebner, Paulus 2008; 18
Turkeltaub, Benson, Hamilton, Datta, Bikson, Coslett 2011
Schneider, Hopp 2011; 25
Wagner, Fregni, Fecteau, Grodzinsky, Zahn, Pascual-Leone 2007; 35
Rush, Driscoll 1968; 47
Minhas, Bansal, Patel, Ho, Diaz, Datta 2010; 190
Merton, Morton 1980; 285
Miranda, Lomarev, Hallett 2006; 117
Liebetanz, Klinker, Hering, Koch, Nitsche, Potschka 1981; 319
Bikson, Inoue, Akiyama, Deans, Fox, Miyakawa 2004; 557
Suh HS (bibr21-1550059412445138) 2010; 2010
bibr29-1550059412445138
bibr16-1550059412445138
bibr2-1550059412445138
bibr8-1550059412445138
bibr20-1550059412445138
Oostendorp TF (bibr28-1550059412445138) 2008; 2008
bibr11-1550059412445138
bibr24-1550059412445138
bibr34-1550059412445138
bibr17-1550059412445138
bibr25-1550059412445138
Freitas C (bibr33-1550059412445138) 2011; 46
bibr7-1550059412445138
bibr3-1550059412445138
Turkeltaub PE (bibr6-1550059412445138) 2011
bibr22-1550059412445138
bibr27-1550059412445138
Bikson M (bibr18-1550059412445138) 2011
bibr35-1550059412445138
bibr19-1550059412445138
Liebetanz D (bibr36-1550059412445138) 1981; 319
bibr30-1550059412445138
bibr26-1550059412445138
bibr4-1550059412445138
bibr10-1550059412445138
bibr15-1550059412445138
Brunoni AR (bibr5-1550059412445138) 2011
Rush S (bibr12-1550059412445138) 1968; 47
bibr9-1550059412445138
bibr31-1550059412445138
bibr32-1550059412445138
Sadleir RJ (bibr37-1550059412445138) 2010
bibr1-1550059412445138
Salvador R (bibr14-1550059412445138) 2010; 2010
bibr23-1550059412445138
Suh HS (bibr13-1550059412445138) 2009; 2009
References_xml – volume: 120
  start-page: 1183
  issue: (6)
  year: 2009
  end-page: 1187
  article-title: What does the ratio of injected current to electrode area tell us about current density in the brain during tDCS?
  publication-title: Clin Neurophysiol
– volume: 35
  start-page: 133
  issue: (2)
  year: 2005
  end-page: 155
  article-title: Transcranial electric stimulation of motor pathways: a theoretical analysis
  publication-title: Comput Biol Med
– volume: 57
  start-page: 885
  issue: (3)
  year: 2011
  end-page: 891
  article-title: Neuroplastic changes following rehabilitative training correlate with regional electric field induced with tDCS
  publication-title: Neuroimage
– volume: 2010
  start-page: 2073
  year: 2010
  end-page: 2076
  article-title: Modeling the electric field induced in a high resolution head model during transcranial current stimulation
  publication-title: Conf Proc IEEE Eng Med Biol Soc
– volume: 319
  start-page: 143
  year: 1981
  end-page: 152
  article-title: Anticonvulsant effects of transcranial direct-current stimulation (tDCS) in the rat cortical ramp model of focal epilepsy. 2006;47(7):1216-1224.37. Jefferys JG. Influence of electric fields on the excitability of granule cells in guinea-pig hippocampal slices
  publication-title: J Physiol
– volume: 4
  start-page: 169
  issue: (3)
  year: 2011
  end-page: 174
  article-title: Individualized model predicts brain current flow during transcranial direct-current stimulation treatment in responsive stroke patient
  publication-title: Brain Stimul
– volume: 18
  start-page: 2701
  issue: (11)
  year: 2008
  end-page: 2705
  article-title: Homeostatic metaplasticity of the motor cortex is altered during headache-free intervals in migraine with aura
  publication-title: Cerebral cortex
– volume: 30
  start-page: 813
  issue: (3)
  year: 2006
  end-page: 826
  article-title: Influence of tissue conductivity anisotropy on EEG/MEG field and return current computation in a realistic head model: a simulation and visualization study using high-resolution finite element modeling
  publication-title: Neuroimage
– start-page: 51 1310
  issue: 4
  year: 2010
  end-page: 8
  article-title: Transcranial direct current stimulation (tDCS) in a realistic head model
  publication-title: Neuroimage
– volume: 2009
  start-page: 638
  year: 2009
  end-page: 641
  article-title: Realistic simulation of transcranial direct current stimulation via 3-d high resolution finite element analysis: effect of tissue anisotropy
  publication-title: Conf Proc IEEE Eng Med Biol Soc
– volume: 46
  start-page: 611
  issue: (8)
  year: 2011
  end-page: 627
  article-title: Noninvasive brain stimulation in Alzheimer's disease: systematic review and perspectives for the future
  publication-title: Exp Gerontol
– volume: 17
  start-page: 143
  issue: (3)
  year: 2002
  end-page: 155
  article-title: Fast robust automated brain extraction
  publication-title: Hum Brain Mapp
– volume: 12
  start-page: 610
  issue: (5)
  year: 2011
  end-page: 617
  article-title: Transcranial DC stimulation in fibromyalgia: optimized cortical target supported by high-resolution computational models
  publication-title: J Pain
– volume: 25
  start-page: 640
  issue: (6-7)
  year: 2011
  end-page: 654
  article-title: The use of the Bilingual Aphasia Test for assessment and transcranial direct current stimulation to modulate language acquisition in minimally verbal children with autism
  publication-title: Clin Linguist Phonet
– volume: 121
  start-page: 1976
  issue: (12)
  year: 2010
  end-page: 1978
  article-title: Electrode montages for tDCS and weak transcranial electrical stimulation: role of “return” electrode's position and size
  publication-title: Clin Neurophysiol
– volume: 52
  start-page: 1268
  issue: (4)
  year: 2010
  end-page: 1278
  article-title: Transcranial direct current stimulation in patients with skull defects and skull plates: high-resolution computational FEM study of factors altering cortical current flow
  publication-title: Neuroimage
– volume: 117
  start-page: 1623
  issue: (7)
  year: 2006
  end-page: 1629
  article-title: Modeling the current distribution during transcranial direct current stimulation
  publication-title: Clin Neurophysiol
– volume: 5
  start-page: 163
  issue: (2)
  year: 2008
  end-page: 174
  article-title: Transcranial current stimulation focality using disc and ring electrode configurations: FEM analysis
  publication-title: J Neural Eng
– volume: 190
  start-page: 188
  issue: (2)
  year: 2010
  end-page: 197
  article-title: Electrodes for high-definition transcutaneous DC stimulation for applications in drug delivery and electrotherapy, including tDCS
  publication-title: J Neurosci Methods
– year: 2011
  article-title: Clinical research with transcranial direct current stimulation (tDCS): challenges and future directions
  publication-title: Brain Stimul
– volume: 54
  start-page: 234
  issue: (1)
  year: 2011
  end-page: 243
  article-title: Impact of the gyral geometry on the electric field induced by transcranial magnetic stimulation
  publication-title: Neuroimage
– volume: 53
  start-page: N219
  issue: (11)
  year: 2008
  end-page: N225
  article-title: Determination of optimal electrode positions for transcranial direct current stimulation (tDCS)
  publication-title: Phys Med Biol
– year: 2011
  article-title: Left lateralizing transcranial direct current stimulation improves reading efficiency
  publication-title: Brain Stimul
– volume: 2008
  start-page: 4226
  year: 2008
  end-page: 4229
  article-title: Modeling transcranial DC stimulation
  publication-title: Conf Proc IEEE Eng Med Biol Soc
– volume: 58
  start-page: 849
  issue: (3)
  year: 2011
  end-page: 859
  article-title: How the brain tissue shapes the electric field induced by transcranial magnetic stimulation
  publication-title: Neuroimage
– volume: 5279
  start-page: 633
  issue: (pt 3)
  year: 2000
  end-page: 639
  article-title: Excitability changes induced in the human motor cortex by weak transcranial direct current stimulation
  publication-title: J Physiol
– volume: 285
  start-page: 227
  issue: (5762)
  year: 1980
  article-title: Stimulation of the cerebral cortex in the intact human subject
  publication-title: Nature
– volume: 58
  start-page: 1773
  issue: (6)
  year: 2011
  end-page: 1780
  article-title: Transcranial direct current stimulation: estimation of the electric field and of the current density in an anatomical head model
  publication-title: IEEE Trans Biomed Eng
– volume: 2
  start-page: 201
  issue: (4)
  year: 2009
  end-page: 207
  article-title: Gyri-precise head model of transcranial direct current stimulation: improved spatial focality using a ring electrode versus conventional rectangular pad
  publication-title: Brain Stimul
– volume: 8
  start-page: 046011
  issue: (4)
  year: 2011
  article-title: Optimized multi-electrode stimulation increases focality and intensity at target
  publication-title: J Neural Eng
– volume: 47
  start-page: 335
  issue: (2)
  year: 2006
  end-page: 342
  article-title: A controlled clinical trial of cathodal DC polarization in patients with refractory epilepsy
  publication-title: Epliepsia
– volume: 57
  start-page: 1899
  issue: (10)
  year: 2001
  end-page: 1901
  article-title: Sustained excitability elevations induced by transcranial DC motor cortex stimulation in humans
  publication-title: Neurology
– volume: 557
  start-page: 175
  issue: (pt 1)
  year: 2004
  end-page: 190
  article-title: Effects of uniform extracellular DC electric fields on excitability in rat hippocampal slices in vitro
  publication-title: J Physiol
– volume: 47
  start-page: 717
  issue: (6)
  year: 1968
  end-page: 723
  article-title: Current distribution in the brain from surface electrodes
  publication-title: Anesth Analg
– year: 2011
  article-title: Guidelines for precise and accurate computational models of tDCS
  publication-title: Brain Stimul
– volume: 2010
  start-page: 2053
  year: 2010
  end-page: 2056
  article-title: Reduced spatial focality of electrical field in tDCS with ring electrodes due to tissue anisotropy
  publication-title: Conf Proc IEEE Eng Med Biol Soc
– volume: 35
  start-page: 1113
  issue: (3)
  year: 2007
  end-page: 1124
  article-title: Transcranial direct current stimulation: a computer-based human model study
  publication-title: Neuroimage
– volume: 2008
  start-page: 4226
  year: 2008
  ident: bibr28-1550059412445138
  publication-title: Conf Proc IEEE Eng Med Biol Soc
– ident: bibr20-1550059412445138
  doi: 10.1113/jphysiol.2003.055772
– volume: 2009
  start-page: 638
  year: 2009
  ident: bibr13-1550059412445138
  publication-title: Conf Proc IEEE Eng Med Biol Soc
– ident: bibr19-1550059412445138
  doi: 10.1002/hbm.10062
– year: 2011
  ident: bibr5-1550059412445138
  publication-title: Brain Stimul
– ident: bibr30-1550059412445138
  doi: 10.1016/j.neuroimage.2010.07.061
– ident: bibr25-1550059412445138
  doi: 10.1016/j.jneumeth.2010.05.007
– ident: bibr23-1550059412445138
  doi: 10.1016/j.clinph.2009.03.023
– ident: bibr34-1550059412445138
  doi: 10.1016/j.neuroimage.2010.04.252
– year: 2011
  ident: bibr6-1550059412445138
  publication-title: Brain Stimul
– ident: bibr31-1550059412445138
  doi: 10.1016/j.neuroimage.2011.06.069
– volume: 47
  start-page: 717
  issue: 6
  year: 1968
  ident: bibr12-1550059412445138
  publication-title: Anesth Analg
  doi: 10.1213/00000539-196811000-00016
– volume: 319
  start-page: 143
  year: 1981
  ident: bibr36-1550059412445138
  publication-title: J Physiol
  doi: 10.1113/jphysiol.1981.sp013897
– year: 2011
  ident: bibr18-1550059412445138
  publication-title: Brain Stimul
– volume: 46
  start-page: 611
  issue: 8
  year: 2011
  ident: bibr33-1550059412445138
  publication-title: Exp Gerontol
– ident: bibr15-1550059412445138
  doi: 10.1109/TBME.2011.2116019
– volume: 2010
  start-page: 2053
  year: 2010
  ident: bibr21-1550059412445138
  publication-title: Conf Proc IEEE Eng Med Biol Soc
– ident: bibr2-1550059412445138
  doi: 10.1038/285227a0
– ident: bibr16-1550059412445138
  doi: 10.1016/j.neuroimage.2005.10.014
– ident: bibr17-1550059412445138
  doi: 10.1016/j.neuroimage.2011.05.026
– ident: bibr27-1550059412445138
  doi: 10.1088/1741-2560/8/4/046011
– start-page: 51
  issue: 4
  year: 2010
  ident: bibr37-1550059412445138
  publication-title: Neuroimage
– ident: bibr9-1550059412445138
  doi: 10.1016/j.neuroimage.2007.01.027
– ident: bibr24-1550059412445138
  doi: 10.1088/0031-9155/53/11/N03
– ident: bibr3-1550059412445138
  doi: 10.1212/WNL.57.10.1899
– volume: 2010
  start-page: 2073
  year: 2010
  ident: bibr14-1550059412445138
  publication-title: Conf Proc IEEE Eng Med Biol Soc
– ident: bibr11-1550059412445138
  doi: 10.1016/j.compbiomed.2003.12.005
– ident: bibr29-1550059412445138
  doi: 10.1111/j.1528-1167.2006.00426.x
– ident: bibr8-1550059412445138
  doi: 10.1016/j.brs.2010.11.001
– ident: bibr10-1550059412445138
  doi: 10.1016/j.clinph.2006.04.009
– ident: bibr22-1550059412445138
  doi: 10.1016/j.clinph.2010.05.020
– ident: bibr7-1550059412445138
  doi: 10.1088/1741-2560/5/2/007
– ident: bibr35-1550059412445138
  doi: 10.1016/j.jpain.2010.12.015
– ident: bibr1-1550059412445138
  doi: 10.1111/j.1469-7793.2000.t01-1-00633.x
– ident: bibr4-1550059412445138
  doi: 10.1093/cercor/bhn032
– ident: bibr26-1550059412445138
  doi: 10.1016/j.brs.2009.03.005
– ident: bibr32-1550059412445138
  doi: 10.3109/02699206.2011.570852
SSID ssj0036234
Score 2.4131403
Snippet During transcranial direct current stimulation (tDCS), controllable dose parameters are electrode number (typically 1 anode and 1 cathode), position, size,...
During transcranial direct current stimulation (tDCS), controllable dose parameters are electrode number, position, size, shape, and applied electric current....
SourceID proquest
pubmed
crossref
sage
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 176
SubjectTerms Action Potentials - physiology
Action Potentials - radiation effects
Animals
Automation
Brain
Brain - physiology
Brain - radiation effects
Brain research
Computer Simulation
Defects
Electrodes
Humans
Models, Neurological
Neural networks
Neurons - physiology
Neurons - radiation effects
Neurosciences
Software
Studies
Transcranial Magnetic Stimulation - methods
Title Computational Models of Transcranial Direct Current Stimulation
URI https://journals.sagepub.com/doi/full/10.1177/1550059412445138
https://www.ncbi.nlm.nih.gov/pubmed/22956646
https://www.proquest.com/docview/1476492387
https://www.proquest.com/docview/1038604160
https://www.proquest.com/docview/1496895898
Volume 43
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1bS8MwFD7oBuKLeLc6RwURfAjrJU2zp6GyMYQN8QJ7G20uIMx2uu7_m9NmFxX30oc0pSHn9JwvOen3AVz7jBvXUZLIQMWEatkmKY8EYYmIPCaZ5mX1fDBk_Tf6OIpGdsNtZo9VLmJiGahlLnCPvOXTmCGZGI8700-CqlFYXbUSGttQR-oyXHzFo-WCy8TmqqpsUDhBXpJVmbKFbdiE6S3y8e-U9bT0B2v-OOdVpp7ePuxZzOjeVUY-gC2VHcLOwFbFj6BTSTPYbT0X5c0mMzfXbpmIhLkYJ3Or4OZaQib3pXj_sNJdx_DW674-9IkVRiCCMloQgyKk0iEzkUwiF2gSpNyTgQgSbRaXQkklmNY8FQHnWiae4kLTkvqQijgMdHgCtSzP1Bm4SeilPk2o9oRZKUcB18r3VSSECiJtoI0DrcW8jIVlDUfxisnYt0Thv2fSgdvlE9OKMWND38Ziqsf225mNV5Z24Gp523g9ljKSTOVz08cLOfMMmPQ29KFtxtuRcTYHTiszLgeEIuaMUebADdp17eX_jPR880gvYNcgKXuOtwG14muuLg1aKdJm6ZJNqN93h0_P3y3_4mA
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB5RkFouVemLFNoaiVbqwVrHcRzvoUIVLVoKy6Ug7S1N_JAqwS50F1X8KX4jM4mz0KLujUsOiZNY47FnxjP-PoDtVBtUHe-4k77gKrg-r01uua5sLrTTwTTZ8-GRHpyo76N8tATX3VkYKqvs1sRmoXYTS3vkvVQVmsDETLFzfsGJNYqyqx2FRqsWB_7qD4Zs08_7X3F8P0i59-14d8AjqwC3SqsZRxPsfMg0LgOOgDQrWRvhpJVVwMjMeuetDsHUVhoTXCW8sUE1uIHKFpkMGX73Eayg4RVUQliM5gEe2oI2i41ePycclNu0aI_u0S0yp3lKp2HumsF7vu1fdWWNqdt7Bk-jj8q-tEq1Bkt-_BweD2MW_gXstFQQcRuREZ3a6ZRNAmsMn8ULKjVrF1MWAaDYj9mvs0gV9hJOHkRkr2B5PBn7dWBVJupUVSoIi5F5Lk3waepza73MA7pSCfQ6uZQ2opQTWcZpmUZg8n8lmcCn-RvnLULHgrabnajLOFen5a1mJbA1f4yzjFIn1dhPLrGNyIwW6LyKBW1UX5t-jsqdwOt2GOcdItJ0rZVO4CON652f_6enbxb39D08GRwPD8vD_aODDVhFLy7WEG_C8uz3pX-LntKsfteoJ4OfDz0fbgBxzh6m
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1JS-xAEC5cQLyIu3nPpQUVPDSTdDqdnoOIqIM7ggpzi0kvIOiM782I-Nf8dVYnnXHDuXnJIekkTXWtXdX1AWxEQiLrGE01MynlVjdpIRNFRa6SUGhhZZk9P78QRzf8pJ20R-C1PgvjyiprnVgqat1Vbo-8EfFUuGZiMm1YXxZxedDaffxHHYKUy7TWcBoVi5yal2cM33o7xwe41puMtQ6v94-oRxigigvep2iOtbGxQJWgXVPNnBUy1Eyx3GKUpow2SlgrC8WktDoPjVSWlz0EuUpjZmP87iiMpzGaTZSltD0I9tAuVBltjACo64nyniJtuHvuljOtSeROxnw0id_83E81ZqXZa03DlPdXyV7FYDMwYjqzMHHuM_JzsFvBQvgtReKg1e57pGtJaQQVXpDBSaVYiW8GRa76dw8eNmwebn6FZAsw1ul2zBKQPA6LiOfchgqj9IRJa6LIJEoZllh0qwJo1HTJlO9Y7oAz7rPINyn_SskAtgdvPFbdOoaMXa5JnXm57WXvXBbA-uAxSpxLo-Qd033CMWEsRYiObDhkDG8K2UyQ0QNYrJZxMCEHoC4EFwFsuXX98PMfZvpn-EzXYAIlITs7vjj9C5Po0Ply4mUY6_9_MivoNPWL1ZI7Cdz-tji8AQNtItw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Computational+Models+of+Transcranial+Direct+Current+Stimulation&rft.jtitle=Clinical+EEG+and+neuroscience&rft.au=Bikson%2C+Marom&rft.au=Rahman%2C+Asif&rft.au=Datta%2C+Abhishek&rft.date=2012-07-01&rft.pub=SAGE+PUBLICATIONS%2C+INC&rft.issn=1550-0594&rft.eissn=2169-5202&rft.volume=43&rft.issue=3&rft.spage=176&rft_id=info:doi/10.1177%2F1550059412445138&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=3178392841
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1550-0594&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1550-0594&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1550-0594&client=summon