Identification of novel 1,4-dioxane degraders and related genes from activated sludge by taxonomic and functional gene sequence analysis
This study used integrated omics technologies to investigate the potential novel pathways and enzymes for 1,4-dioxane degradation by a consortium enriched from activated sludge of a domestic wastewater treatment plant. An unclassified genus belonging to Xanthobacteraceae increased significantly afte...
Saved in:
Published in | Journal of hazardous materials Vol. 412; p. 125157 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Netherlands
Elsevier B.V
15.06.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | This study used integrated omics technologies to investigate the potential novel pathways and enzymes for 1,4-dioxane degradation by a consortium enriched from activated sludge of a domestic wastewater treatment plant. An unclassified genus belonging to Xanthobacteraceae increased significantly after magnetic nanoparticle-mediated isolation for 1,4-dioxane degraders. Species with relatively higher abundance (> 0.3%) were identified to present high metabolic activities in the biodegradation process through shotgun sequencing. The functional gene investigations revealed that Xanthobacter sp. 91, Xanthobacter sp. 126, and a Rhizobiales strain carried novel 1,4-dioxane-hydroxylating monooxygenase genes. Xanthobacter sp. 126 contained the genes coding for glycolate oxidase, which was the main enzyme responsible for utilization of 1,4-dioxane intermediates through the TCA cycle, and further proven by the specific glycolate oxidase inhibitor, α-hydroxy-2-pyridinemethanesulfonic acid. An expanded and detailed degradation pathway of 1,4-dioxane was proposed on the basis of the three major intermediates (2-hydroxy-1,4-dioxane, ethylene glycol, and oxalic acid) confirmed by metabolomics. These findings of microbial community and function as well as the novel pathway will be valuable in predicting natural attenuation or reconstruction of a bacterial consortium for enhanced remediation of 1,4-dioxane-contaminated sites as well as wastewater treatment.
[Display omitted]
•1,4-Dioxane degradation by a complex consortium was studied using integrated omics.•Key dioxane degraders in the consortium belonged to Xanthobacter and Rhizobiales.•YHS and 4-hydroxyphenylacetate 3-hydroxylase enriched in 1,4-dioxane hydroxylation.•1,4-Dioxane biodegradation pathway and enzymes and hosts in consortium was proposed.•The role of etherase in 1,4-dioxane degradation was a novel result in this study. |
---|---|
AbstractList | This study used integrated omics technologies to investigate the potential novel pathways and enzymes for 1,4-dioxane degradation by a consortium enriched from activated sludge of a domestic wastewater treatment plant. An unclassified genus belonging to Xanthobacteraceae increased significantly after magnetic nanoparticle-mediated isolation for 1,4-dioxane degraders. Species with relatively higher abundance (> 0.3%) were identified to present high metabolic activities in the biodegradation process through shotgun sequencing. The functional gene investigations revealed that Xanthobacter sp. 91, Xanthobacter sp. 126, and a Rhizobiales strain carried novel 1,4-dioxane-hydroxylating monooxygenase genes. Xanthobacter sp. 126 contained the genes coding for glycolate oxidase, which was the main enzyme responsible for utilization of 1,4-dioxane intermediates through the TCA cycle, and further proven by the specific glycolate oxidase inhibitor, α-hydroxy-2-pyridinemethanesulfonic acid. An expanded and detailed degradation pathway of 1,4-dioxane was proposed on the basis of the three major intermediates (2-hydroxy-1,4-dioxane, ethylene glycol, and oxalic acid) confirmed by metabolomics. These findings of microbial community and function as well as the novel pathway will be valuable in predicting natural attenuation or reconstruction of a bacterial consortium for enhanced remediation of 1,4-dioxane-contaminated sites as well as wastewater treatment. This study used integrated omics technologies to investigate the potential novel pathways and enzymes for 1,4-dioxane degradation by a consortium enriched from activated sludge of a domestic wastewater treatment plant. An unclassified genus belonging to Xanthobacteraceae increased significantly after magnetic nanoparticle-mediated isolation for 1,4-dioxane degraders. Species with relatively higher abundance (> 0.3%) were identified to present high metabolic activities in the biodegradation process through shotgun sequencing. The functional gene investigations revealed that Xanthobacter sp. 91, Xanthobacter sp. 126, and a Rhizobiales strain carried novel 1,4-dioxane-hydroxylating monooxygenase genes. Xanthobacter sp. 126 contained the genes coding for glycolate oxidase, which was the main enzyme responsible for utilization of 1,4-dioxane intermediates through the TCA cycle, and further proven by the specific glycolate oxidase inhibitor, α-hydroxy-2-pyridinemethanesulfonic acid. An expanded and detailed degradation pathway of 1,4-dioxane was proposed on the basis of the three major intermediates (2-hydroxy-1,4-dioxane, ethylene glycol, and oxalic acid) confirmed by metabolomics. These findings of microbial community and function as well as the novel pathway will be valuable in predicting natural attenuation or reconstruction of a bacterial consortium for enhanced remediation of 1,4-dioxane-contaminated sites as well as wastewater treatment.This study used integrated omics technologies to investigate the potential novel pathways and enzymes for 1,4-dioxane degradation by a consortium enriched from activated sludge of a domestic wastewater treatment plant. An unclassified genus belonging to Xanthobacteraceae increased significantly after magnetic nanoparticle-mediated isolation for 1,4-dioxane degraders. Species with relatively higher abundance (> 0.3%) were identified to present high metabolic activities in the biodegradation process through shotgun sequencing. The functional gene investigations revealed that Xanthobacter sp. 91, Xanthobacter sp. 126, and a Rhizobiales strain carried novel 1,4-dioxane-hydroxylating monooxygenase genes. Xanthobacter sp. 126 contained the genes coding for glycolate oxidase, which was the main enzyme responsible for utilization of 1,4-dioxane intermediates through the TCA cycle, and further proven by the specific glycolate oxidase inhibitor, α-hydroxy-2-pyridinemethanesulfonic acid. An expanded and detailed degradation pathway of 1,4-dioxane was proposed on the basis of the three major intermediates (2-hydroxy-1,4-dioxane, ethylene glycol, and oxalic acid) confirmed by metabolomics. These findings of microbial community and function as well as the novel pathway will be valuable in predicting natural attenuation or reconstruction of a bacterial consortium for enhanced remediation of 1,4-dioxane-contaminated sites as well as wastewater treatment. This study used integrated omics technologies to investigate the potential novel pathways and enzymes for 1,4-dioxane degradation by a consortium enriched from activated sludge of a domestic wastewater treatment plant. An unclassified genus belonging to Xanthobacteraceae increased significantly after magnetic nanoparticle-mediated isolation for 1,4-dioxane degraders. Species with relatively higher abundance (> 0.3%) were identified to present high metabolic activities in the biodegradation process through shotgun sequencing. The functional gene investigations revealed that Xanthobacter sp. 91, Xanthobacter sp. 126, and a Rhizobiales strain carried novel 1,4-dioxane-hydroxylating monooxygenase genes. Xanthobacter sp. 126 contained the genes coding for glycolate oxidase, which was the main enzyme responsible for utilization of 1,4-dioxane intermediates through the TCA cycle, and further proven by the specific glycolate oxidase inhibitor, α-hydroxy-2-pyridinemethanesulfonic acid. An expanded and detailed degradation pathway of 1,4-dioxane was proposed on the basis of the three major intermediates (2-hydroxy-1,4-dioxane, ethylene glycol, and oxalic acid) confirmed by metabolomics. These findings of microbial community and function as well as the novel pathway will be valuable in predicting natural attenuation or reconstruction of a bacterial consortium for enhanced remediation of 1,4-dioxane-contaminated sites as well as wastewater treatment. [Display omitted] •1,4-Dioxane degradation by a complex consortium was studied using integrated omics.•Key dioxane degraders in the consortium belonged to Xanthobacter and Rhizobiales.•YHS and 4-hydroxyphenylacetate 3-hydroxylase enriched in 1,4-dioxane hydroxylation.•1,4-Dioxane biodegradation pathway and enzymes and hosts in consortium was proposed.•The role of etherase in 1,4-dioxane degradation was a novel result in this study. |
ArticleNumber | 125157 |
Author | Adams, Jonathan Miles Zhang, Lan Mahendra, Shaily Miao, Yu Chen, Ruihuan Dong, Yuanhua Zhong, Ming Liu, Yun |
Author_xml | – sequence: 1 givenname: Ruihuan orcidid: 0000-0001-6061-3827 surname: Chen fullname: Chen, Ruihuan organization: Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China – sequence: 2 givenname: Yu orcidid: 0000-0002-1145-7298 surname: Miao fullname: Miao, Yu organization: Civil and Environmental Engineering, University of California, Los Angeles, CA 90095, USA – sequence: 3 givenname: Yun orcidid: 0000-0002-7320-5766 surname: Liu fullname: Liu, Yun email: yliu@issas.ac.cn organization: Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China – sequence: 4 givenname: Lan surname: Zhang fullname: Zhang, Lan organization: Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China – sequence: 5 givenname: Ming surname: Zhong fullname: Zhong, Ming organization: Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China – sequence: 6 givenname: Jonathan Miles surname: Adams fullname: Adams, Jonathan Miles organization: School of Geography and Oceanography, Nanjing University, Nanjing 210023, China – sequence: 7 givenname: Yuanhua surname: Dong fullname: Dong, Yuanhua organization: Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China – sequence: 8 givenname: Shaily orcidid: 0000-0003-3298-9602 surname: Mahendra fullname: Mahendra, Shaily organization: Civil and Environmental Engineering, University of California, Los Angeles, CA 90095, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33540262$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkctu1DAUhi1URKeFRwB5yaIZfE8iFghVtFSqxAbWlmOfDB4ldrGdUYcn6GOTudBFN7Oy5PN9xz7nv0BnIQZA6D0lS0qo-rRern-bv6MpS0YYXVImqaxfoQVtal5xztUZWhBORMWbVpyji5zXhBBaS_EGnXMuBWGKLdDTnYNQfO-tKT4GHHsc4gYGTK9E5Xx8NAGwg1UyDlLGJjicYDAFHF5BgIz7FEdsbPGb_WUeJrcC3G1xMY8xxNHbvdRPwe4eMMPewxn-TBAszEUzbLPPb9Hr3gwZ3h3PS_Tr5tvP6-_V_Y_bu-uv95UVSpRK0QaUNK0SpAahemUpiE51rJVNJ4ycB-c1J5xJ7kjX9pbXtaU9uM4K2cz1S_Tx0PchxfkLuejRZwvDMA8ap6yZZII1XFJ1GhVNTSWrm3ZGPxzRqRvB6YfkR5O2-v-iZ0AeAJtizgn6Z4QSvQtUr_UxUL0LVB8Cnb3PLzzryz6qkowfTtpfDjbMG914SDpbv1u78wls0S76Ex3-AefgwAQ |
CitedBy_id | crossref_primary_10_1111_gwmr_12649 crossref_primary_10_1021_acs_estlett_4c00641 crossref_primary_10_2139_ssrn_4016036 crossref_primary_10_1016_j_jes_2023_05_029 crossref_primary_10_3390_horticulturae8111036 crossref_primary_10_1016_j_jhazmat_2024_135098 crossref_primary_10_1002_geo2_148 crossref_primary_10_1016_j_jhazmat_2022_128719 crossref_primary_10_1016_j_envpol_2023_122572 crossref_primary_10_2139_ssrn_4062572 crossref_primary_10_1007_s10532_023_10019_4 crossref_primary_10_1016_j_envpol_2024_124628 crossref_primary_10_1016_j_chemosphere_2022_135580 crossref_primary_10_2166_wst_2022_296 crossref_primary_10_1007_s11783_022_1567_y crossref_primary_10_1016_j_coesh_2022_100386 crossref_primary_10_1093_jimb_kuae047 crossref_primary_10_1016_j_seppur_2024_128752 crossref_primary_10_1016_j_scitotenv_2022_156221 crossref_primary_10_1016_j_bej_2021_108179 crossref_primary_10_1016_j_chemosphere_2022_134723 crossref_primary_10_3390_w15081535 crossref_primary_10_1080_09593330_2023_2178330 crossref_primary_10_1016_j_scitotenv_2023_166066 crossref_primary_10_1016_j_watres_2023_119945 crossref_primary_10_1007_s00253_023_12363_0 crossref_primary_10_1128_spectrum_01787_23 crossref_primary_10_1016_j_scitotenv_2021_148690 |
Cites_doi | 10.1002/rem.21499 10.1016/j.copbio.2015.08.008 10.1128/AEM.01163-20 10.1128/AEM.69.12.7035-7043.2003 10.1016/j.chemosphere.2007.01.016 10.1016/j.fuel.2015.06.052 10.1099/ijs.0.63085-0 10.1021/ez500092u 10.1111/j.1574-6968.1985.tb00843.x 10.1038/ismej.2014.161 10.2166/wst.2017.498 10.1111/1751-7915.12850 10.1016/j.jhazmat.2020.123404 10.1021/acs.estlett.8b00312 10.1007/s10532-008-9240-0 10.1016/j.abb.2013.12.005 10.1038/s41467-020-19989-y 10.1111/gwmr.12093 10.1128/JB.186.10.3117-3123.2004 10.1021/es0705745 10.1021/acs.estlett.7b00504 10.1038/ismej.2011.111 10.2183/pjab.96.015 10.1007/s00253-016-7448-1 10.1016/j.jenvman.2017.05.033 10.1021/acs.est.0c01543 10.1038/s41579-020-0433-9 10.1080/07388551.2018.1500997 10.1038/s41396-018-0201-2 10.1016/j.scitotenv.2020.140435 10.1128/AEM.71.3.1254-1258.2005 10.1007/s10532-017-9808-7 10.1002/rem.21364 10.1016/j.chemosphere.2019.04.111 10.1007/s10532-016-9772-7 10.1128/AEM.66.7.2822-2828.2000 10.1186/s40168-019-0634-5 10.1038/s41467-020-19583-2 10.1016/S0021-9258(18)69624-3 10.1128/AEM.00244-19 10.1007/s00253-020-10512-3 10.1021/acs.est.8b04895 10.1007/s10532-019-09891-w 10.1021/es060714v 10.1128/AEM.02418-13 10.1016/j.watres.2020.115540 10.1128/AEM.00067-12 10.1016/j.watres.2020.115638 10.1016/j.envpol.2018.09.018 10.1021/acs.estlett.8b00591 10.1016/j.ibiod.2015.09.018 10.1016/j.cej.2019.03.285 10.1021/acs.est.7b03134 10.1006/meth.2001.1262 10.1016/j.watres.2018.10.070 10.1021/acs.est.5b01740 10.1186/s12864-017-3708-4 10.1021/acs.est.0c02834 10.1111/j.1462-2920.2006.01015.x 10.1128/AEM.04162-13 10.1007/s11783-018-1071-6 |
ContentType | Journal Article |
Copyright | 2021 Copyright © 2021. Published by Elsevier B.V. |
Copyright_xml | – notice: 2021 – notice: Copyright © 2021. Published by Elsevier B.V. |
DBID | AAYXX CITATION NPM 7X8 7S9 L.6 |
DOI | 10.1016/j.jhazmat.2021.125157 |
DatabaseName | CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | PubMed MEDLINE - Academic AGRICOLA |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Law |
EISSN | 1873-3336 |
ExternalDocumentID | 33540262 10_1016_j_jhazmat_2021_125157 S0304389421001205 |
Genre | Journal Article |
GroupedDBID | --- --K --M -~X ..I .DC .~1 0R~ 1B1 1RT 1~. 1~5 4.4 457 4G. 53G 5GY 5VS 7-5 71M 8P~ 9JM 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABFNM ABFRF ABFYP ABJNI ABLST ABMAC ABNUV ABYKQ ACDAQ ACGFO ACGFS ACRLP ADBBV ADEWK ADEZE AEBSH AEFWE AEKER AENEX AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHEUO AHHHB AHPOS AIEXJ AIKHN AITUG AJOXV AKIFW AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLECG BLXMC CS3 DU5 EBS EFJIC EFLBG ENUVR EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W KCYFY KOM LX7 LY9 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 ROL RPZ SDF SDG SDP SES SPC SPCBC SSG SSJ SSZ T5K XPP ZMT ~02 ~G- .HR 29K AAHBH AAQXK AATTM AAXKI AAYWO AAYXX ABWVN ABXDB ACRPL ACVFH ADCNI ADMUD ADNMO ADXHL AEGFY AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AI. AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BBWZM BNPGV CITATION D-I EJD FEDTE FGOYB G-2 HLY HMC HVGLF HZ~ NDZJH R2- RIG SCE SEN SEW SSH T9H TAE VH1 WUQ NPM 7X8 7S9 EFKBS L.6 |
ID | FETCH-LOGICAL-c464t-618e65a96407e46f6c1e4b6b2958b4a533637303253d0b9fc377c1fedbc458a53 |
IEDL.DBID | .~1 |
ISSN | 0304-3894 1873-3336 |
IngestDate | Tue Aug 05 09:42:02 EDT 2025 Fri Jul 11 00:24:18 EDT 2025 Wed Feb 19 02:28:42 EST 2025 Tue Jul 01 00:49:41 EDT 2025 Thu Apr 24 23:01:50 EDT 2025 Fri Feb 23 02:46:11 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Biodegradation Synergetic Microbial community Multi omics |
Language | English |
License | Copyright © 2021. Published by Elsevier B.V. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c464t-618e65a96407e46f6c1e4b6b2958b4a533637303253d0b9fc377c1fedbc458a53 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0003-3298-9602 0000-0002-1145-7298 0000-0002-7320-5766 0000-0001-6061-3827 |
PMID | 33540262 |
PQID | 2487152789 |
PQPubID | 23479 |
ParticipantIDs | proquest_miscellaneous_2524283516 proquest_miscellaneous_2487152789 pubmed_primary_33540262 crossref_primary_10_1016_j_jhazmat_2021_125157 crossref_citationtrail_10_1016_j_jhazmat_2021_125157 elsevier_sciencedirect_doi_10_1016_j_jhazmat_2021_125157 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-06-15 |
PublicationDateYYYYMMDD | 2021-06-15 |
PublicationDate_xml | – month: 06 year: 2021 text: 2021-06-15 day: 15 |
PublicationDecade | 2020 |
PublicationPlace | Netherlands |
PublicationPlace_xml | – name: Netherlands |
PublicationTitle | Journal of hazardous materials |
PublicationTitleAlternate | J Hazard Mater |
PublicationYear | 2021 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Gedalanga, Pornwongthong, Mora, Chiang, Baldwin, Ogles, Mahendra (bib16) 2014; 80 He, Mathieu, da Silva, Li, Alvarez (bib23) 2018; 11 Inoue, Hisada, Okumura, Yabuki, Yoshida, Kuroda, Ike (bib26) 2020; 31 Zelitch (bib63) 1959; 234 El Amrani, Dumas, Wick, Yergeau, Berthomé (bib2) 2015; 49 Mohr, DiGuiseppi, Hatton, Anderson (bib43) 2020 Zhou, Jiang, Qiu, Pan, Swanda, Shi, Li, Zhang (bib67) 2020; 54 Pei, Tao, Ling, Yu, Ji, Khan, Mamtimin, Liu, Li (bib47) 2020; 742 Mahendra, Alvarez-Cohen (bib35) 2006; 40 Polasko, Zulli, Gedalanga, Pornwongthong, Mahendra (bib48) 2019; 6 Qiu, Cheng, Xie, Jiang, Shi, Li, Swanda, Zhou, Wang (bib50) 2019; 228 Totsuka, Maesako, Ono, Nagai, Kato, Gi, Wanibuchi, Fukushima, Shiizaki, Nakagama (bib56) 2020; 96 Sutherland, Horne, Lacey, Harcourt, Russell, Oakeshott (bib55) 2000; 66 Guan, Liu, Wang, Li, Zheng (bib20) 2017; 77 Miao, Johnson, Heck, Guo, Powell, Phan, Gedalanga, Adamson, Newell, Wong, Mahendra (bib41) 2018; 12 Valdez-Vazquez, Perez-Rangel, Tapia, Buitron, Molina, Hernandez, Amaya-Delgado (bib58) 2015; 159 Aoyagi, Morishita, Sugiyama, Ichikawa, Mayumi, Kikuchi, Ogata, Muraoka, Habe, Hori (bib3) 2018; 12 Singh, Walker, Morgan, Wright (bib54) 2003; 69 Chen, Jin, Chen, Ye, Jiang, Chen (bib4) 2016; 106 Zhang, Gedalanga, Mahendra (bib65) 2017; 204 Fishman, Tao, Wood (bib14) 2004; 186 (bib25) 1999 Chen, Liu, Johnson, Zhang, Mahendra, Liu, Dong, Chen (bib5) 2019; 371 Miao, Johnson, Phan, Heck, Gedalanga, Zheng, Adamson, Newell, Wong, Mahendra (bib42) 2020; 173 Pandey, Tripathi, Tripathi, Pandey, Gangola (bib46) 2019 Xiong, Cui, Ru, Govindwar, Kurade, Jang, Kim, Jeon (bib59) 2021; 401 Men, Feil, VerBerkmoes, Shah, Johnson, Lee, West, Zinder, Andersen, Alvarez-Cohen (bib37) 2012; 6 Danczak, Chu, Fansler, Goldman, Graham, Tfaily, Toyoda, Stegen (bib7) 2020; 11 Livak, Schmittgen (bib33) 2001; 25 Grostern, Sales, Zhuang, Erbilgin, Alvarez-Cohen (bib19) 2012; 78 Yu, Yi, Li, Guo, Peng, Wang, Wu, Alvarez-Cohen, Zhang (bib62) 2019; 7 Meyer-Cifuentes, Werner, Jehmlich, Will, Neumann-Schaal, Öztürk (bib38) 2020; 11 Sales, Grostern, Parales, Parales, Alvarez-Cohen (bib52) 2013; 79 Ramalingam, Cupples (bib51) 2020; 104 Deng, Pham, Li, Li (bib12) 2020; 86 Zhang, Berry, Zhu, Wang, Chen, Jiang, Huang, Langford, Li, Davison, Xu, Aries, Huang (bib64) 2015; 9 Nakamiya, Hashimoto, Ito, Edmonds, Morita (bib45) 2005; 71 Prior, Dalton (bib49) 1985; 29 Dangi, Sharma, Hill, Shukla (bib8) 2019; 39 Karthikeyan, Kim, Heritier-Robbins, Hatt, Spain, Overholt, Huettel, Kostka, Konstantinidis (bib29) 2020; 54 Dang, Kanitkar, Stedtfeld, Hatzinger, Hashsham, Cupples (bib9) 2018; 52 Inoue, Tsunoda, Sawada, Yamamoto, Saito, Sei, Ike (bib27) 2016; 27 Grady, Malfatti, Gunasekera, Dalley, Lyman, Striebich, Mayhew, Zhou, Ruiz, Dugan (bib18) 2017; 18 Mahendra, Petzold, Baidoo, Keasling, Alvarez-Cohen (bib36) 2007; 41 Muñoz, Díaz, Bordel, Villaverde (bib44) 2007; 68 Jasmann, Gedalanga, Borch, Mahendra, Blotevogel (bib28) 2017; 51 Coleman, Bui, Holmes (bib6) 2006; 8 Miao, Johnson, Gedalanga, Adamson, Newell, Mahendra (bib40) 2019; 149 Mahendra, Alvarez-Cohen (bib34) 2005; 55 Hays, Patrick, Ziesack, Oxman, Silver (bib22) 2015; 36 Miao, Heintz, Bell, Johnson, Polasko, Favero, Mahendra (bib39) 2020 Gedalanga, Madison, Miao, Richards, Hatton, DiGuiseppi, Wilson, Mahendra (bib15) 2016; 27 Tupa, Masuda (bib57) 2018; 28 Deng, Li, Wu, Li (bib11) 2018; 5 Ghosh, Chowdhury, Bhattacharya (bib17) 2016; 100 Zhao, Lu, Polasko, Johnson, Miao, Yang, Mahendra, Gu (bib66) 2018; 243 Kim, Jeon, Murugesan, Kim, Chang (bib30) 2008; 20 Yang, Huang, Feng, Wei, Massey, Liang, Zhang, Yin, Kacew, Zhang, Pu (bib61) 2020; 174 Hatzinger, Banerjee, Rezes, Streger, McClay, Schaefer (bib21) 2017; 28 Schink, Stams (bib53) 2006 Adamson, Mahendra, Walker, Rauch, Sengupta, Newell (bib1) 2014; 1 Deng, Li, Li (bib10) 2018; 5 Fan, Pesersen (bib13) 2021; 19 Huijbers, Montersino, Westphal, Tischler, van Berkel (bib24) 2014; 544 Lan, Smith, Hyman (bib31) 2013; 23 Xiong, Mason, Lowe, Zhou, Chen, Tang (bib60) 2019; 85 Lippincott, Streger, Schaefer, Hinkle, Stormo, Steffan (bib32) 2015; 35 Prior (10.1016/j.jhazmat.2021.125157_bib49) 1985; 29 Tupa (10.1016/j.jhazmat.2021.125157_bib57) 2018; 28 Zhang (10.1016/j.jhazmat.2021.125157_bib64) 2015; 9 Zhang (10.1016/j.jhazmat.2021.125157_bib65) 2017; 204 Karthikeyan (10.1016/j.jhazmat.2021.125157_bib29) 2020; 54 Aoyagi (10.1016/j.jhazmat.2021.125157_bib3) 2018; 12 Jasmann (10.1016/j.jhazmat.2021.125157_bib28) 2017; 51 Sales (10.1016/j.jhazmat.2021.125157_bib52) 2013; 79 Hatzinger (10.1016/j.jhazmat.2021.125157_bib21) 2017; 28 Kim (10.1016/j.jhazmat.2021.125157_bib30) 2008; 20 Zelitch (10.1016/j.jhazmat.2021.125157_bib63) 1959; 234 Huijbers (10.1016/j.jhazmat.2021.125157_bib24) 2014; 544 Guan (10.1016/j.jhazmat.2021.125157_bib20) 2017; 77 (10.1016/j.jhazmat.2021.125157_bib25) 1999 Singh (10.1016/j.jhazmat.2021.125157_bib54) 2003; 69 Pei (10.1016/j.jhazmat.2021.125157_bib47) 2020; 742 Xiong (10.1016/j.jhazmat.2021.125157_bib59) 2021; 401 Mahendra (10.1016/j.jhazmat.2021.125157_bib36) 2007; 41 Nakamiya (10.1016/j.jhazmat.2021.125157_bib45) 2005; 71 Miao (10.1016/j.jhazmat.2021.125157_bib42) 2020; 173 Lippincott (10.1016/j.jhazmat.2021.125157_bib32) 2015; 35 Grostern (10.1016/j.jhazmat.2021.125157_bib19) 2012; 78 Pandey (10.1016/j.jhazmat.2021.125157_bib46) 2019 Coleman (10.1016/j.jhazmat.2021.125157_bib6) 2006; 8 Grady (10.1016/j.jhazmat.2021.125157_bib18) 2017; 18 Men (10.1016/j.jhazmat.2021.125157_bib37) 2012; 6 Yu (10.1016/j.jhazmat.2021.125157_bib62) 2019; 7 Chen (10.1016/j.jhazmat.2021.125157_bib5) 2019; 371 Gedalanga (10.1016/j.jhazmat.2021.125157_bib16) 2014; 80 Inoue (10.1016/j.jhazmat.2021.125157_bib26) 2020; 31 Miao (10.1016/j.jhazmat.2021.125157_bib39) 2020 Muñoz (10.1016/j.jhazmat.2021.125157_bib44) 2007; 68 Adamson (10.1016/j.jhazmat.2021.125157_bib1) 2014; 1 Totsuka (10.1016/j.jhazmat.2021.125157_bib56) 2020; 96 Valdez-Vazquez (10.1016/j.jhazmat.2021.125157_bib58) 2015; 159 Zhao (10.1016/j.jhazmat.2021.125157_bib66) 2018; 243 Yang (10.1016/j.jhazmat.2021.125157_bib61) 2020; 174 Xiong (10.1016/j.jhazmat.2021.125157_bib60) 2019; 85 Inoue (10.1016/j.jhazmat.2021.125157_bib27) 2016; 27 El Amrani (10.1016/j.jhazmat.2021.125157_bib2) 2015; 49 Danczak (10.1016/j.jhazmat.2021.125157_bib7) 2020; 11 He (10.1016/j.jhazmat.2021.125157_bib23) 2018; 11 Qiu (10.1016/j.jhazmat.2021.125157_bib50) 2019; 228 Ghosh (10.1016/j.jhazmat.2021.125157_bib17) 2016; 100 Deng (10.1016/j.jhazmat.2021.125157_bib11) 2018; 5 Chen (10.1016/j.jhazmat.2021.125157_bib4) 2016; 106 Polasko (10.1016/j.jhazmat.2021.125157_bib48) 2019; 6 Hays (10.1016/j.jhazmat.2021.125157_bib22) 2015; 36 Mahendra (10.1016/j.jhazmat.2021.125157_bib34) 2005; 55 Sutherland (10.1016/j.jhazmat.2021.125157_bib55) 2000; 66 Deng (10.1016/j.jhazmat.2021.125157_bib12) 2020; 86 Dang (10.1016/j.jhazmat.2021.125157_bib9) 2018; 52 Fishman (10.1016/j.jhazmat.2021.125157_bib14) 2004; 186 Mohr (10.1016/j.jhazmat.2021.125157_bib43) 2020 Schink (10.1016/j.jhazmat.2021.125157_bib53) 2006 Ramalingam (10.1016/j.jhazmat.2021.125157_bib51) 2020; 104 Fan (10.1016/j.jhazmat.2021.125157_bib13) 2021; 19 Dangi (10.1016/j.jhazmat.2021.125157_bib8) 2019; 39 Lan (10.1016/j.jhazmat.2021.125157_bib31) 2013; 23 Meyer-Cifuentes (10.1016/j.jhazmat.2021.125157_bib38) 2020; 11 Livak (10.1016/j.jhazmat.2021.125157_bib33) 2001; 25 Zhou (10.1016/j.jhazmat.2021.125157_bib67) 2020; 54 Mahendra (10.1016/j.jhazmat.2021.125157_bib35) 2006; 40 Deng (10.1016/j.jhazmat.2021.125157_bib10) 2018; 5 Gedalanga (10.1016/j.jhazmat.2021.125157_bib15) 2016; 27 Miao (10.1016/j.jhazmat.2021.125157_bib41) 2018; 12 Miao (10.1016/j.jhazmat.2021.125157_bib40) 2019; 149 |
References_xml | – start-page: 309 year: 2006 end-page: 335 ident: bib53 article-title: Syntrophism among Prokaryotes publication-title: The Prokaryotes: A Handbook on the Biology of Bacteria – volume: 41 start-page: 7330 year: 2007 end-page: 7336 ident: bib36 article-title: Identification of the intermediates of in vivo oxidation of 1,4-dioxane by monooxygenase-containing bacteria publication-title: Environ. Sci. Technol. – volume: 80 start-page: 3209 year: 2014 end-page: 3218 ident: bib16 article-title: Identification of biomarker genes to predict biodegradation of 1,4-dioxane publication-title: Appl. Environ. Microbiol. – volume: 1 start-page: 254 year: 2014 end-page: 258 ident: bib1 article-title: A multisite survey to identify the scale of the 1,4-dioxane problem at contaminated groundwater sites publication-title: Environ. Sci. Technol. Lett. – volume: 104 start-page: 4155 year: 2020 end-page: 4170 ident: bib51 article-title: Anaerobic 1,4-dioxane biodegradation and microbial community analysis in microcosms inoculated with soils or sediments and different electron acceptors publication-title: Appl. Microbiol. Biotechnol. – volume: 71 start-page: 1254 year: 2005 end-page: 1258 ident: bib45 article-title: Degradation of 1,4-dioxane and cyclic ethers by an isolated fungus publication-title: Appl. Environ. Microbiol. – volume: 28 start-page: 453 year: 2017 end-page: 468 ident: bib21 article-title: Potential for cometabolic biodegradation of 1,4-dioxane in aquifers with methane or ethane as primary substrates publication-title: Biodegradation – volume: 23 start-page: 23 year: 2013 end-page: 42 ident: bib31 article-title: Oxidation of cyclic ethers by alkane-grown publication-title: Remediat. J. – volume: 11 start-page: 189 year: 2018 end-page: 198 ident: bib23 article-title: 1,4-Dioxane‐degrading consortia can be enriched from uncontaminated soils: prevalence of publication-title: Microb. Biotechnol. – volume: 6 start-page: 410 year: 2012 end-page: 421 ident: bib37 article-title: Sustainable syntrophic growth of publication-title: ISME J. – volume: 12 start-page: 1 year: 2018 end-page: 13 ident: bib41 article-title: Microbial responses to combined oxidation and catalysis treatment of 1,4-dioxane and co-contaminants in groundwater and soil publication-title: Front. Environ. Sci. Eng. – volume: 39 start-page: 79 year: 2019 end-page: 98 ident: bib8 article-title: Bioremediation through microbes: systems biology and metabolic engineering approach publication-title: Crit. Rev. Biotechnol. – volume: 371 start-page: 193 year: 2019 end-page: 202 ident: bib5 article-title: Removal of 1,4-dioxane by titanium silicalite-1: separation mechanisms and bioregeneration of sorption sites publication-title: Chem. Eng. J. – volume: 742 year: 2020 ident: bib47 article-title: Exploring novel Cr(VI) remediation genes for Cr(VI)-contaminated industrial wastewater treatment by comparative metatranscriptomics and metagenomics publication-title: Sci. Total Environ. – volume: 149 start-page: 74 year: 2019 end-page: 85 ident: bib40 article-title: Response and recovery of microbial communities subjected to oxidative and biological treatments of 1,4-dioxane and co-contaminants publication-title: Water Res. – volume: 243 start-page: 573 year: 2018 end-page: 581 ident: bib66 article-title: Co-contaminant effects on 1,4-dioxane biodegradation in packed soil column flow-through systems publication-title: Environ. Pollut. – volume: 106 start-page: 133 year: 2016 end-page: 140 ident: bib4 article-title: Intermediates and substrate interaction of 1,4-dioxane degradation by the effective metabolizer publication-title: Int. Biodeterior. Biodegrad. – start-page: 589 year: 1999 end-page: 602 ident: bib25 article-title: 1,4-Dioxane publication-title: IARC Monographs on the Evaluation of Carcinogenic Risks to Humans: Re-evaluation of Some Organic Chemicals, Hydrazine and Hydrogen Peroxide – volume: 85 year: 2019 ident: bib60 article-title: Microbial community analysis provides insights into the effects of tetrahydrofuran on 1,4-dioxane biodegradation publication-title: Appl. Environ. Microbiol. – volume: 28 start-page: 107 year: 2018 end-page: 115 ident: bib57 article-title: Comparative proteomic analysis of propane metabolism in publication-title: J. Mol. Microbiol. Biotechnol. – volume: 27 start-page: 93 year: 2016 end-page: 114 ident: bib15 article-title: A multiple lines of evidence framework to evaluate intrinsic biodegradation of 1,4-dioxane publication-title: Remediat. J. – year: 2020 ident: bib39 article-title: Profiling microbial community structures and functions in bioremediation strategies for treating 1, 4-dioxane-contaminated groundwater publication-title: J. Hazard. Mater. – volume: 96 start-page: 180 year: 2020 end-page: 187 ident: bib56 article-title: Comprehensive analysis of DNA adducts (DNA adductome analysis) in the liver of rats treated with 1,4-dioxane publication-title: Proc. Jpn. Acad. Ser. B Phys. Biol. Sci. – volume: 29 start-page: 105 year: 1985 end-page: 109 ident: bib49 article-title: Acetylene as a suicide substrate and active site probe for methane monooxygenase from publication-title: FEMS Microbiol. Lett. – volume: 204 start-page: 765 year: 2017 end-page: 774 ident: bib65 article-title: Advances in bioremediation of 1,4-dioxane-contaminated waters publication-title: J. Environ. Manag. – volume: 12 start-page: 2376 year: 2018 end-page: 2388 ident: bib3 article-title: Identification of active and taxonomically diverse 1,4-dioxane degraders in a full-scale activated sludge system by high-sensitivity stable isotope probing publication-title: ISME J. – volume: 9 start-page: 603 year: 2015 end-page: 614 ident: bib64 article-title: Magnetic nanoparticle-mediated isolation of functional bacteria in a complex microbial community publication-title: ISME J. – volume: 54 start-page: 10149 year: 2020 end-page: 10158 ident: bib67 article-title: Oral exposure to 1,4-dioxane induces hepatic inflammation in mice: the potential promoting effect of the gut microbiome publication-title: Environ. Sci. Technol. – volume: 544 start-page: 2 year: 2014 end-page: 17 ident: bib24 article-title: Flavin dependent monooxygenases publication-title: Arch. Biochem. Biophys. – volume: 55 start-page: 593 year: 2005 end-page: 598 ident: bib34 article-title: sp. nov., a novel actinomycete that grows on 1,4-dioxane publication-title: Int. J. Syst. Evolut. Microbiol. – volume: 68 start-page: 244 year: 2007 end-page: 252 ident: bib44 article-title: Inhibitory effects of catechol accumulation on benzene biodegradation in publication-title: Chemosphere – volume: 51 start-page: 12619 year: 2017 end-page: 12629 ident: bib28 article-title: Synergistic treatment of mixed 1, 4-dioxane and chlorinated solvent contaminations by coupling electrochemical oxidation with aerobic biodegradation publication-title: Environ. Sci. Technol. – volume: 6 start-page: 49 year: 2019 end-page: 54 ident: bib48 article-title: A mixed microbial community for the biodegradation of chlorinated ethenes and 1,4-dioxane publication-title: Environ. Sci. Technol. Lett. – volume: 66 start-page: 2822 year: 2000 end-page: 2828 ident: bib55 article-title: Enrichment of an endosulfan-degrading mixed cacterial culture publication-title: Appl. Environ. Microbiol. – volume: 8 start-page: 1228 year: 2006 end-page: 1239 ident: bib6 article-title: Soluble di-iron monooxygenase gene diversity in soils, sediments and ethene enrichments publication-title: Environ. Microbiol. – volume: 52 start-page: 13914 year: 2018 end-page: 13924 ident: bib9 article-title: Abundance of chlorinated solvent and 1,4-dioxane degrading microorganisms at five chlorinated solvent contaminated sites determined via shotgun sequencing publication-title: Environ. Sci. Technol. – volume: 7 start-page: 1 year: 2019 end-page: 13 ident: bib62 article-title: An integrated meta-omics approach reveals substrates involved in synergistic interactions in a bisphenol A (BPA)-degrading microbial community publication-title: Microbiome – volume: 159 start-page: 214 year: 2015 end-page: 222 ident: bib58 article-title: Hydrogen and butanol production from native wheat straw by synthetic microbial consortia integrated by species of publication-title: Fuel – volume: 77 start-page: 123 year: 2017 end-page: 133 ident: bib20 article-title: Mechanism of 1,4-dioxane microbial degradation revealed by 16S rRNA and metatranscriptomic analyses publication-title: Water Sci. Technol. – volume: 19 start-page: 55 year: 2021 end-page: 71 ident: bib13 article-title: Gut microbiota in human metabolic health and disease publication-title: Nat. Rev. Microbiol. – year: 2020 ident: bib43 publication-title: Environmental Investigation and Remediation: 1,4-Dioxane and Other Solvent Stabilizers – volume: 86 year: 2020 ident: bib12 article-title: Discovery of an inducible toluene monooxygenase that cooxidizes 1,4-dioxane and 1,1-dichloroethylene in propanotrophic publication-title: Appl. Environ. Microbiol. – volume: 174 year: 2020 ident: bib61 article-title: A complete route for biodegradation of potentially carcinogenic cyanotoxin microcystin-LR in a novel indigenous bacterium publication-title: Water Res. – volume: 401 year: 2021 ident: bib59 article-title: Unravelling metabolism and microbial community of a phytobed co-planted with publication-title: J. Hazard. Mater. – start-page: 23 year: 2019 end-page: 43 ident: bib46 article-title: Omics technology to study bioremediation and respective enzymes publication-title: Smart Bioremediation Technologies: Microbial Enzymes – volume: 54 start-page: 10088 year: 2020 end-page: 10099 ident: bib29 article-title: Integrated omics elucidate the mechanisms driving the rapid biodegradation of Deepwater Horizon oil in intertidal sediments undergoing oxic-anoxic cycles publication-title: Environ. Sci. Technol. – volume: 79 start-page: 7702 year: 2013 end-page: 7708 ident: bib52 article-title: Oxidation of the cyclic ethers 1,4-dioxane and tetrahydrofuran by a monooxygenase in two publication-title: Appl. Environ. Microbiol. – volume: 228 start-page: 149 year: 2019 end-page: 158 ident: bib50 article-title: 1,4-Dioxane exposure induces kidney damage in mice by perturbing specific renal metabolic pathways: an integrated omics insight into the underlying mechanisms publication-title: Chemosphere – volume: 234 start-page: 3077 year: 1959 end-page: 3081 ident: bib63 article-title: The relationship of glycolic acid to respiration and photosynthesis in tobacco leaves publication-title: J. Biol. Chem. – volume: 31 start-page: 23 year: 2020 end-page: 34 ident: bib26 article-title: Carbon sources that enable enrichment of 1, 4-dioxane-degrading bacteria in landfill leachate publication-title: Biodegradation – volume: 11 start-page: 5790 year: 2020 ident: bib38 article-title: Synergistic biodegradation of aromatic-aliphatic copolyester plastic by a marine microbial consortium publication-title: Nat. Commun. – volume: 49 start-page: 11281 year: 2015 end-page: 11291 ident: bib2 article-title: “Omics” insights into PAH degradation toward improved green remediation biotechnologies publication-title: Environ. Sci. Technol. – volume: 186 start-page: 3117 year: 2004 end-page: 3123 ident: bib14 article-title: Toluene 3-monooxygenase of publication-title: J. Bacteriol. – volume: 20 start-page: 511 year: 2008 end-page: 519 ident: bib30 article-title: Biodegradation of 1,4-dioxane and transformation of related cyclic compounds by a newly isolated publication-title: Biodegradation – volume: 40 start-page: 5435 year: 2006 end-page: 5442 ident: bib35 article-title: Kinetics of 1,4-dioxane biodegradation by monooxygenase-expressing bacteria publication-title: Environ. Sci. Technol. – volume: 11 start-page: 6369 year: 2020 ident: bib7 article-title: Using metacommunity ecology to understand environmental metabolomes publication-title: Nat. Commun. – volume: 5 start-page: 86 year: 2018 end-page: 91 ident: bib10 article-title: A novel propane monooxygenase initiating degradation of 1,4-dioxane by publication-title: Environ. Sci. Technol. Lett. – volume: 69 start-page: 7035 year: 2003 end-page: 7043 ident: bib54 article-title: Role of soil pH in the development of enhanced biodegradation of fenamiphos publication-title: Appl. Environ. Microbiol. – volume: 18 start-page: 334 year: 2017 ident: bib18 article-title: A comprehensive multi-omics approach uncovers adaptations for growth and survival of publication-title: BMC Genom. – volume: 100 start-page: 4283 year: 2016 end-page: 4295 ident: bib17 article-title: Mixed consortia in bioprocesses: role of microbial interactions publication-title: Appl. Microbiol. Biotechnol. – volume: 27 start-page: 277 year: 2016 end-page: 286 ident: bib27 article-title: 1, 4-Dioxane degradation potential of members of the genera publication-title: Biodegradation – volume: 36 start-page: 40 year: 2015 end-page: 49 ident: bib22 article-title: Better together: engineering and application of microbial symbioses publication-title: Curr. Opin. Biotechnol. – volume: 35 start-page: 81 year: 2015 end-page: 92 ident: bib32 article-title: Bioaugmentation and propane biosparging for in situ biodegradation of 1, 4–dioxane publication-title: Groundw. Monit. Remediat. – volume: 5 start-page: 526 year: 2018 end-page: 532 ident: bib11 article-title: Synchronic biotransformation of 1,4-dioxane and 1,1-dichloroethylene by a gram-negative propanotroph publication-title: Environ. Sci. Technol. Lett. – volume: 25 start-page: 402 year: 2001 end-page: 408 ident: bib33 article-title: Analysis of relative gene expression data using real-time quantitative PCR and the 2 publication-title: Methods – volume: 78 start-page: 3298 year: 2012 end-page: 3308 ident: bib19 article-title: Glyoxylate metabolism is a key feature of the metabolic degradation of 1,4-dioxane by publication-title: Appl. Environ. Microbiol. – volume: 173 year: 2020 ident: bib42 article-title: Monitoring, assessment, and prediction of microbial shifts in coupled catalysis and biodegradation of 1,4-dioxane and co-contaminants publication-title: Water Res. – volume: 27 start-page: 93 issue: 1 year: 2016 ident: 10.1016/j.jhazmat.2021.125157_bib15 article-title: A multiple lines of evidence framework to evaluate intrinsic biodegradation of 1,4-dioxane publication-title: Remediat. J. doi: 10.1002/rem.21499 – volume: 36 start-page: 40 year: 2015 ident: 10.1016/j.jhazmat.2021.125157_bib22 article-title: Better together: engineering and application of microbial symbioses publication-title: Curr. Opin. Biotechnol. doi: 10.1016/j.copbio.2015.08.008 – volume: 86 issue: 17 year: 2020 ident: 10.1016/j.jhazmat.2021.125157_bib12 article-title: Discovery of an inducible toluene monooxygenase that cooxidizes 1,4-dioxane and 1,1-dichloroethylene in propanotrophic Azoarcus sp. strain DD4 publication-title: Appl. Environ. Microbiol. doi: 10.1128/AEM.01163-20 – volume: 69 start-page: 7035 issue: 12 year: 2003 ident: 10.1016/j.jhazmat.2021.125157_bib54 article-title: Role of soil pH in the development of enhanced biodegradation of fenamiphos publication-title: Appl. Environ. Microbiol. doi: 10.1128/AEM.69.12.7035-7043.2003 – volume: 68 start-page: 244 issue: 2 year: 2007 ident: 10.1016/j.jhazmat.2021.125157_bib44 article-title: Inhibitory effects of catechol accumulation on benzene biodegradation in Pseudomonas putida F1 cultures publication-title: Chemosphere doi: 10.1016/j.chemosphere.2007.01.016 – start-page: 309 year: 2006 ident: 10.1016/j.jhazmat.2021.125157_bib53 article-title: Syntrophism among Prokaryotes – volume: 159 start-page: 214 year: 2015 ident: 10.1016/j.jhazmat.2021.125157_bib58 article-title: Hydrogen and butanol production from native wheat straw by synthetic microbial consortia integrated by species of Enterococcus and Clostridium publication-title: Fuel doi: 10.1016/j.fuel.2015.06.052 – volume: 55 start-page: 593 issue: 2 year: 2005 ident: 10.1016/j.jhazmat.2021.125157_bib34 article-title: Pseudonocardia dioxanivorans sp. nov., a novel actinomycete that grows on 1,4-dioxane publication-title: Int. J. Syst. Evolut. Microbiol. doi: 10.1099/ijs.0.63085-0 – volume: 1 start-page: 254 issue: 5 year: 2014 ident: 10.1016/j.jhazmat.2021.125157_bib1 article-title: A multisite survey to identify the scale of the 1,4-dioxane problem at contaminated groundwater sites publication-title: Environ. Sci. Technol. Lett. doi: 10.1021/ez500092u – volume: 29 start-page: 105 issue: 1–2 year: 1985 ident: 10.1016/j.jhazmat.2021.125157_bib49 article-title: Acetylene as a suicide substrate and active site probe for methane monooxygenase from Methylococcus capsulatus (Bath) publication-title: FEMS Microbiol. Lett. doi: 10.1111/j.1574-6968.1985.tb00843.x – start-page: 23 year: 2019 ident: 10.1016/j.jhazmat.2021.125157_bib46 article-title: Omics technology to study bioremediation and respective enzymes – volume: 9 start-page: 603 year: 2015 ident: 10.1016/j.jhazmat.2021.125157_bib64 article-title: Magnetic nanoparticle-mediated isolation of functional bacteria in a complex microbial community publication-title: ISME J. doi: 10.1038/ismej.2014.161 – volume: 77 start-page: 123 issue: 1 year: 2017 ident: 10.1016/j.jhazmat.2021.125157_bib20 article-title: Mechanism of 1,4-dioxane microbial degradation revealed by 16S rRNA and metatranscriptomic analyses publication-title: Water Sci. Technol. doi: 10.2166/wst.2017.498 – volume: 11 start-page: 189 issue: 1 year: 2018 ident: 10.1016/j.jhazmat.2021.125157_bib23 article-title: 1,4-Dioxane‐degrading consortia can be enriched from uncontaminated soils: prevalence of Mycobacterium and soluble di-iron monooxygenase genes publication-title: Microb. Biotechnol. doi: 10.1111/1751-7915.12850 – volume: 401 year: 2021 ident: 10.1016/j.jhazmat.2021.125157_bib59 article-title: Unravelling metabolism and microbial community of a phytobed co-planted with Typha angustifolia and Ipomoea aquatica for biodegradation of doxylamine from wastewater publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2020.123404 – volume: 5 start-page: 526 issue: 8 year: 2018 ident: 10.1016/j.jhazmat.2021.125157_bib11 article-title: Synchronic biotransformation of 1,4-dioxane and 1,1-dichloroethylene by a gram-negative propanotroph Azoarcus sp. DD4 publication-title: Environ. Sci. Technol. Lett. doi: 10.1021/acs.estlett.8b00312 – volume: 20 start-page: 511 issue: 4 year: 2008 ident: 10.1016/j.jhazmat.2021.125157_bib30 article-title: Biodegradation of 1,4-dioxane and transformation of related cyclic compounds by a newly isolated Mycobacterium sp. PH06 publication-title: Biodegradation doi: 10.1007/s10532-008-9240-0 – volume: 544 start-page: 2 year: 2014 ident: 10.1016/j.jhazmat.2021.125157_bib24 article-title: Flavin dependent monooxygenases publication-title: Arch. Biochem. Biophys. doi: 10.1016/j.abb.2013.12.005 – volume: 11 start-page: 6369 year: 2020 ident: 10.1016/j.jhazmat.2021.125157_bib7 article-title: Using metacommunity ecology to understand environmental metabolomes publication-title: Nat. Commun. doi: 10.1038/s41467-020-19989-y – volume: 35 start-page: 81 issue: 2 year: 2015 ident: 10.1016/j.jhazmat.2021.125157_bib32 article-title: Bioaugmentation and propane biosparging for in situ biodegradation of 1, 4–dioxane publication-title: Groundw. Monit. Remediat. doi: 10.1111/gwmr.12093 – volume: 186 start-page: 3117 issue: 10 year: 2004 ident: 10.1016/j.jhazmat.2021.125157_bib14 article-title: Toluene 3-monooxygenase of Ralstonia pickettii PKO1 is a para-hydroxylating enzyme publication-title: J. Bacteriol. doi: 10.1128/JB.186.10.3117-3123.2004 – volume: 41 start-page: 7330 issue: 21 year: 2007 ident: 10.1016/j.jhazmat.2021.125157_bib36 article-title: Identification of the intermediates of in vivo oxidation of 1,4-dioxane by monooxygenase-containing bacteria publication-title: Environ. Sci. Technol. doi: 10.1021/es0705745 – year: 2020 ident: 10.1016/j.jhazmat.2021.125157_bib39 article-title: Profiling microbial community structures and functions in bioremediation strategies for treating 1, 4-dioxane-contaminated groundwater publication-title: J. Hazard. Mater. – volume: 5 start-page: 86 issue: 2 year: 2018 ident: 10.1016/j.jhazmat.2021.125157_bib10 article-title: A novel propane monooxygenase initiating degradation of 1,4-dioxane by Mycobacterium dioxanotrophicus PH06 publication-title: Environ. Sci. Technol. Lett. doi: 10.1021/acs.estlett.7b00504 – volume: 6 start-page: 410 issue: 2 year: 2012 ident: 10.1016/j.jhazmat.2021.125157_bib37 article-title: Sustainable syntrophic growth of Dehalococcoides ethenogenes strain 195 with Desulfovibrio vulgaris Hildenborough and Methanobacterium congolense: global transcriptomic and proteomic analyses publication-title: ISME J. doi: 10.1038/ismej.2011.111 – volume: 96 start-page: 180 year: 2020 ident: 10.1016/j.jhazmat.2021.125157_bib56 article-title: Comprehensive analysis of DNA adducts (DNA adductome analysis) in the liver of rats treated with 1,4-dioxane publication-title: Proc. Jpn. Acad. Ser. B Phys. Biol. Sci. doi: 10.2183/pjab.96.015 – volume: 100 start-page: 4283 issue: 10 year: 2016 ident: 10.1016/j.jhazmat.2021.125157_bib17 article-title: Mixed consortia in bioprocesses: role of microbial interactions publication-title: Appl. Microbiol. Biotechnol. doi: 10.1007/s00253-016-7448-1 – volume: 204 start-page: 765 year: 2017 ident: 10.1016/j.jhazmat.2021.125157_bib65 article-title: Advances in bioremediation of 1,4-dioxane-contaminated waters publication-title: J. Environ. Manag. doi: 10.1016/j.jenvman.2017.05.033 – volume: 54 start-page: 10149 issue: 16 year: 2020 ident: 10.1016/j.jhazmat.2021.125157_bib67 article-title: Oral exposure to 1,4-dioxane induces hepatic inflammation in mice: the potential promoting effect of the gut microbiome publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.0c01543 – volume: 19 start-page: 55 year: 2021 ident: 10.1016/j.jhazmat.2021.125157_bib13 article-title: Gut microbiota in human metabolic health and disease publication-title: Nat. Rev. Microbiol. doi: 10.1038/s41579-020-0433-9 – volume: 39 start-page: 79 issue: 1 year: 2019 ident: 10.1016/j.jhazmat.2021.125157_bib8 article-title: Bioremediation through microbes: systems biology and metabolic engineering approach publication-title: Crit. Rev. Biotechnol. doi: 10.1080/07388551.2018.1500997 – volume: 12 start-page: 2376 year: 2018 ident: 10.1016/j.jhazmat.2021.125157_bib3 article-title: Identification of active and taxonomically diverse 1,4-dioxane degraders in a full-scale activated sludge system by high-sensitivity stable isotope probing publication-title: ISME J. doi: 10.1038/s41396-018-0201-2 – volume: 742 year: 2020 ident: 10.1016/j.jhazmat.2021.125157_bib47 article-title: Exploring novel Cr(VI) remediation genes for Cr(VI)-contaminated industrial wastewater treatment by comparative metatranscriptomics and metagenomics publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2020.140435 – volume: 71 start-page: 1254 issue: 3 year: 2005 ident: 10.1016/j.jhazmat.2021.125157_bib45 article-title: Degradation of 1,4-dioxane and cyclic ethers by an isolated fungus publication-title: Appl. Environ. Microbiol. doi: 10.1128/AEM.71.3.1254-1258.2005 – volume: 28 start-page: 453 year: 2017 ident: 10.1016/j.jhazmat.2021.125157_bib21 article-title: Potential for cometabolic biodegradation of 1,4-dioxane in aquifers with methane or ethane as primary substrates publication-title: Biodegradation doi: 10.1007/s10532-017-9808-7 – volume: 23 start-page: 23 issue: 4 year: 2013 ident: 10.1016/j.jhazmat.2021.125157_bib31 article-title: Oxidation of cyclic ethers by alkane-grown Mycobacterium vaccae JOB5 publication-title: Remediat. J. doi: 10.1002/rem.21364 – volume: 228 start-page: 149 year: 2019 ident: 10.1016/j.jhazmat.2021.125157_bib50 article-title: 1,4-Dioxane exposure induces kidney damage in mice by perturbing specific renal metabolic pathways: an integrated omics insight into the underlying mechanisms publication-title: Chemosphere doi: 10.1016/j.chemosphere.2019.04.111 – volume: 27 start-page: 277 year: 2016 ident: 10.1016/j.jhazmat.2021.125157_bib27 article-title: 1, 4-Dioxane degradation potential of members of the genera Pseudonocardia and Rhodococcus publication-title: Biodegradation doi: 10.1007/s10532-016-9772-7 – volume: 66 start-page: 2822 issue: 7 year: 2000 ident: 10.1016/j.jhazmat.2021.125157_bib55 article-title: Enrichment of an endosulfan-degrading mixed cacterial culture publication-title: Appl. Environ. Microbiol. doi: 10.1128/AEM.66.7.2822-2828.2000 – volume: 7 start-page: 1 issue: 1 year: 2019 ident: 10.1016/j.jhazmat.2021.125157_bib62 article-title: An integrated meta-omics approach reveals substrates involved in synergistic interactions in a bisphenol A (BPA)-degrading microbial community publication-title: Microbiome doi: 10.1186/s40168-019-0634-5 – volume: 11 start-page: 5790 year: 2020 ident: 10.1016/j.jhazmat.2021.125157_bib38 article-title: Synergistic biodegradation of aromatic-aliphatic copolyester plastic by a marine microbial consortium publication-title: Nat. Commun. doi: 10.1038/s41467-020-19583-2 – volume: 234 start-page: 3077 year: 1959 ident: 10.1016/j.jhazmat.2021.125157_bib63 article-title: The relationship of glycolic acid to respiration and photosynthesis in tobacco leaves publication-title: J. Biol. Chem. doi: 10.1016/S0021-9258(18)69624-3 – volume: 85 issue: 11 year: 2019 ident: 10.1016/j.jhazmat.2021.125157_bib60 article-title: Microbial community analysis provides insights into the effects of tetrahydrofuran on 1,4-dioxane biodegradation publication-title: Appl. Environ. Microbiol. doi: 10.1128/AEM.00244-19 – volume: 104 start-page: 4155 year: 2020 ident: 10.1016/j.jhazmat.2021.125157_bib51 article-title: Anaerobic 1,4-dioxane biodegradation and microbial community analysis in microcosms inoculated with soils or sediments and different electron acceptors publication-title: Appl. Microbiol. Biotechnol. doi: 10.1007/s00253-020-10512-3 – volume: 52 start-page: 13914 issue: 23 year: 2018 ident: 10.1016/j.jhazmat.2021.125157_bib9 article-title: Abundance of chlorinated solvent and 1,4-dioxane degrading microorganisms at five chlorinated solvent contaminated sites determined via shotgun sequencing publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.8b04895 – volume: 31 start-page: 23 year: 2020 ident: 10.1016/j.jhazmat.2021.125157_bib26 article-title: Carbon sources that enable enrichment of 1, 4-dioxane-degrading bacteria in landfill leachate publication-title: Biodegradation doi: 10.1007/s10532-019-09891-w – volume: 40 start-page: 5435 issue: 17 year: 2006 ident: 10.1016/j.jhazmat.2021.125157_bib35 article-title: Kinetics of 1,4-dioxane biodegradation by monooxygenase-expressing bacteria publication-title: Environ. Sci. Technol. doi: 10.1021/es060714v – volume: 79 start-page: 7702 issue: 24 year: 2013 ident: 10.1016/j.jhazmat.2021.125157_bib52 article-title: Oxidation of the cyclic ethers 1,4-dioxane and tetrahydrofuran by a monooxygenase in two Pseudonocardia species publication-title: Appl. Environ. Microbiol. doi: 10.1128/AEM.02418-13 – volume: 173 year: 2020 ident: 10.1016/j.jhazmat.2021.125157_bib42 article-title: Monitoring, assessment, and prediction of microbial shifts in coupled catalysis and biodegradation of 1,4-dioxane and co-contaminants publication-title: Water Res. doi: 10.1016/j.watres.2020.115540 – volume: 78 start-page: 3298 issue: 9 year: 2012 ident: 10.1016/j.jhazmat.2021.125157_bib19 article-title: Glyoxylate metabolism is a key feature of the metabolic degradation of 1,4-dioxane by Pseudonocardia dioxanivorans strain CB1190 publication-title: Appl. Environ. Microbiol. doi: 10.1128/AEM.00067-12 – volume: 174 year: 2020 ident: 10.1016/j.jhazmat.2021.125157_bib61 article-title: A complete route for biodegradation of potentially carcinogenic cyanotoxin microcystin-LR in a novel indigenous bacterium publication-title: Water Res. doi: 10.1016/j.watres.2020.115638 – volume: 243 start-page: 573 year: 2018 ident: 10.1016/j.jhazmat.2021.125157_bib66 article-title: Co-contaminant effects on 1,4-dioxane biodegradation in packed soil column flow-through systems publication-title: Environ. Pollut. doi: 10.1016/j.envpol.2018.09.018 – volume: 6 start-page: 49 issue: 1 year: 2019 ident: 10.1016/j.jhazmat.2021.125157_bib48 article-title: A mixed microbial community for the biodegradation of chlorinated ethenes and 1,4-dioxane publication-title: Environ. Sci. Technol. Lett. doi: 10.1021/acs.estlett.8b00591 – volume: 106 start-page: 133 year: 2016 ident: 10.1016/j.jhazmat.2021.125157_bib4 article-title: Intermediates and substrate interaction of 1,4-dioxane degradation by the effective metabolizer Xanthobacter flavus DT8 publication-title: Int. Biodeterior. Biodegrad. doi: 10.1016/j.ibiod.2015.09.018 – volume: 371 start-page: 193 year: 2019 ident: 10.1016/j.jhazmat.2021.125157_bib5 article-title: Removal of 1,4-dioxane by titanium silicalite-1: separation mechanisms and bioregeneration of sorption sites publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2019.03.285 – volume: 51 start-page: 12619 issue: 21 year: 2017 ident: 10.1016/j.jhazmat.2021.125157_bib28 article-title: Synergistic treatment of mixed 1, 4-dioxane and chlorinated solvent contaminations by coupling electrochemical oxidation with aerobic biodegradation publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.7b03134 – volume: 25 start-page: 402 issue: 4 year: 2001 ident: 10.1016/j.jhazmat.2021.125157_bib33 article-title: Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method publication-title: Methods doi: 10.1006/meth.2001.1262 – volume: 149 start-page: 74 year: 2019 ident: 10.1016/j.jhazmat.2021.125157_bib40 article-title: Response and recovery of microbial communities subjected to oxidative and biological treatments of 1,4-dioxane and co-contaminants publication-title: Water Res. doi: 10.1016/j.watres.2018.10.070 – year: 2020 ident: 10.1016/j.jhazmat.2021.125157_bib43 – volume: 49 start-page: 11281 issue: 19 year: 2015 ident: 10.1016/j.jhazmat.2021.125157_bib2 article-title: “Omics” insights into PAH degradation toward improved green remediation biotechnologies publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.5b01740 – volume: 18 start-page: 334 issue: 1 year: 2017 ident: 10.1016/j.jhazmat.2021.125157_bib18 article-title: A comprehensive multi-omics approach uncovers adaptations for growth and survival of Pseudomonas aeruginosa on n-alkanes publication-title: BMC Genom. doi: 10.1186/s12864-017-3708-4 – volume: 54 start-page: 10088 issue: 16 year: 2020 ident: 10.1016/j.jhazmat.2021.125157_bib29 article-title: Integrated omics elucidate the mechanisms driving the rapid biodegradation of Deepwater Horizon oil in intertidal sediments undergoing oxic-anoxic cycles publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.0c02834 – volume: 8 start-page: 1228 issue: 7 year: 2006 ident: 10.1016/j.jhazmat.2021.125157_bib6 article-title: Soluble di-iron monooxygenase gene diversity in soils, sediments and ethene enrichments publication-title: Environ. Microbiol. doi: 10.1111/j.1462-2920.2006.01015.x – start-page: 589 year: 1999 ident: 10.1016/j.jhazmat.2021.125157_bib25 article-title: 1,4-Dioxane – volume: 28 start-page: 107 year: 2018 ident: 10.1016/j.jhazmat.2021.125157_bib57 article-title: Comparative proteomic analysis of propane metabolism in Mycobacterium sp. strain ENV421 and Rhodococcus sp. strain ENV425 publication-title: J. Mol. Microbiol. Biotechnol. – volume: 80 start-page: 3209 issue: 10 year: 2014 ident: 10.1016/j.jhazmat.2021.125157_bib16 article-title: Identification of biomarker genes to predict biodegradation of 1,4-dioxane publication-title: Appl. Environ. Microbiol. doi: 10.1128/AEM.04162-13 – volume: 12 start-page: 1 issue: 5 year: 2018 ident: 10.1016/j.jhazmat.2021.125157_bib41 article-title: Microbial responses to combined oxidation and catalysis treatment of 1,4-dioxane and co-contaminants in groundwater and soil publication-title: Front. Environ. Sci. Eng. doi: 10.1007/s11783-018-1071-6 |
SSID | ssj0001754 |
Score | 2.4896367 |
Snippet | This study used integrated omics technologies to investigate the potential novel pathways and enzymes for 1,4-dioxane degradation by a consortium enriched from... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 125157 |
SubjectTerms | (S)-2-hydroxy-acid oxidase activated sludge Biodegradation ethylene glycol genes magnetism metabolomics microbial communities Microbial community Multi omics nucleotide sequences oxalic acid remediation sequence analysis sewage treatment Synergetic tricarboxylic acid cycle wastewater treatment Xanthobacter |
Title | Identification of novel 1,4-dioxane degraders and related genes from activated sludge by taxonomic and functional gene sequence analysis |
URI | https://dx.doi.org/10.1016/j.jhazmat.2021.125157 https://www.ncbi.nlm.nih.gov/pubmed/33540262 https://www.proquest.com/docview/2487152789 https://www.proquest.com/docview/2524283516 |
Volume | 412 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwELYoXNpDRelroUWu1GOzS5KxkxwRKtpCxaVF4mb5FbqrVYLKLgUOnPnZzNgJUIkWiWMcj2R57PnGnvnGjH1GjJESXeXEiUInkINLjDB1IgCHrb0BHbMtDuT4EPaOxNES2-m5MJRW2dn-aNODte5aRt1sjk4mk9EPCuoh3EKWBgYoEc0BClrlw6u7NA-Ex1hCiiIA2PuOxTOaDqe_9CU6hnhMzNIhQT2h1MP49C__M-DQ7ip72TmQfDuO8RVb8s0ae3GvrOAae_Zd_3nNriMHt-4u5Xhb86Y98zOefoHETdpz3XjuqFYE5TJz3TgeiC3e8WMygJyYJ5x4D2eh8XS2cMeemws-1-eRzRyECBnjhWKQ431yNv6M9U7esMPdrz93xkn37kJiQcIcT5Oll0JXFOPzIGtpUw9GmqwSJSoPHUSZo2HIM5G7LVPVNi8Km9beGQuixP9v2XLTNv4947rwprQeXLHlgWr5FbmVRC-XLpW2qAYM-tlWtitKTm9jzFSffTZVnZIUKUlFJQ3Y8FbsJFbleEyg7FWp_lpeCpHjMdFPveoVbj2Kp6B-2sWpyvCwR68Cl9V_-ogslLRL5YC9i-vmdsQ53bllMlt_-uA22HP6oty1VHxgy_PfC_8RvaS52QzbYJOtbH_bHx_cAMRbEZ4 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKOQAHVAqUhRaMBDey2zi2kxw4oEK1pUsvtFJvxq-UXa2Sit3tgwNn_g9_kBk7aUECKiH1Gmekkceeh2e-GUJegI2RElzlxIlcJzzjLjHCVIngwLb2hutYbbEnhwf8_aE4XCI_OiwMllW2uj_q9KCt2y-DdjcHx-Px4CMm9cDccpYGBGhXWbnrz08hbpu93nkLQn7J2Pa7_a1h0o4WSCyXfA4BU-Gl0CWmsTyXlbSp50YaVooC-AMfSGZw9jMmMrdpyspmeW7TyjtjuSg0jooAvX-Tg7rAsQn9b5d1JWCPY88qTDkAe5ewocGkP_msv4InCnEpS_voW6BZ_LNB_JvDGwzf9gq523qs9E3clHtkyder5M4vfQxXyY2RPr1PvkfQb9W-AtKmonVz4qc0fcUTN27OdO2pw-YUWDxNde1oQNJ4R49Q41KEulAEWpyEj7Ppwh15as7pXJ9F-HQgQlMcXzADHe2qwWExNlh5QA6uRRoPyXLd1P4RoTr3prCeu3zTc2wemGdWIp5dulTavOwR3u22sm0XdBzGMVVdudtEtUJSKCQVhdQj_Quy49gG5CqCohOl-u08KzBVV5E-70Sv4K5jAgfk0yxmikF0iWOIi_If_wgWeuilskfW4rm54DjDRz4m2eP_Z-4ZuTXc_zBSo5293SfkNq5g4Vwq1sny_MvCb4CLNjdPw5Wg5NN138Gf29JL-g |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Identification+of+novel+1%2C4-dioxane+degraders+and+related+genes+from+activated+sludge+by+taxonomic+and+functional+gene+sequence+analysis&rft.jtitle=Journal+of+hazardous+materials&rft.au=Chen%2C+Ruihuan&rft.au=Miao%2C+Yu&rft.au=Liu%2C+Yun&rft.au=Zhang%2C+Lan&rft.date=2021-06-15&rft.issn=0304-3894&rft.volume=412&rft.spage=125157&rft_id=info:doi/10.1016%2Fj.jhazmat.2021.125157&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_jhazmat_2021_125157 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0304-3894&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0304-3894&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0304-3894&client=summon |