Identification of novel 1,4-dioxane degraders and related genes from activated sludge by taxonomic and functional gene sequence analysis

This study used integrated omics technologies to investigate the potential novel pathways and enzymes for 1,4-dioxane degradation by a consortium enriched from activated sludge of a domestic wastewater treatment plant. An unclassified genus belonging to Xanthobacteraceae increased significantly afte...

Full description

Saved in:
Bibliographic Details
Published inJournal of hazardous materials Vol. 412; p. 125157
Main Authors Chen, Ruihuan, Miao, Yu, Liu, Yun, Zhang, Lan, Zhong, Ming, Adams, Jonathan Miles, Dong, Yuanhua, Mahendra, Shaily
Format Journal Article
LanguageEnglish
Published Netherlands Elsevier B.V 15.06.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract This study used integrated omics technologies to investigate the potential novel pathways and enzymes for 1,4-dioxane degradation by a consortium enriched from activated sludge of a domestic wastewater treatment plant. An unclassified genus belonging to Xanthobacteraceae increased significantly after magnetic nanoparticle-mediated isolation for 1,4-dioxane degraders. Species with relatively higher abundance (> 0.3%) were identified to present high metabolic activities in the biodegradation process through shotgun sequencing. The functional gene investigations revealed that Xanthobacter sp. 91, Xanthobacter sp. 126, and a Rhizobiales strain carried novel 1,4-dioxane-hydroxylating monooxygenase genes. Xanthobacter sp. 126 contained the genes coding for glycolate oxidase, which was the main enzyme responsible for utilization of 1,4-dioxane intermediates through the TCA cycle, and further proven by the specific glycolate oxidase inhibitor, α-hydroxy-2-pyridinemethanesulfonic acid. An expanded and detailed degradation pathway of 1,4-dioxane was proposed on the basis of the three major intermediates (2-hydroxy-1,4-dioxane, ethylene glycol, and oxalic acid) confirmed by metabolomics. These findings of microbial community and function as well as the novel pathway will be valuable in predicting natural attenuation or reconstruction of a bacterial consortium for enhanced remediation of 1,4-dioxane-contaminated sites as well as wastewater treatment. [Display omitted] •1,4-Dioxane degradation by a complex consortium was studied using integrated omics.•Key dioxane degraders in the consortium belonged to Xanthobacter and Rhizobiales.•YHS and 4-hydroxyphenylacetate 3-hydroxylase enriched in 1,4-dioxane hydroxylation.•1,4-Dioxane biodegradation pathway and enzymes and hosts in consortium was proposed.•The role of etherase in 1,4-dioxane degradation was a novel result in this study.
AbstractList This study used integrated omics technologies to investigate the potential novel pathways and enzymes for 1,4-dioxane degradation by a consortium enriched from activated sludge of a domestic wastewater treatment plant. An unclassified genus belonging to Xanthobacteraceae increased significantly after magnetic nanoparticle-mediated isolation for 1,4-dioxane degraders. Species with relatively higher abundance (> 0.3%) were identified to present high metabolic activities in the biodegradation process through shotgun sequencing. The functional gene investigations revealed that Xanthobacter sp. 91, Xanthobacter sp. 126, and a Rhizobiales strain carried novel 1,4-dioxane-hydroxylating monooxygenase genes. Xanthobacter sp. 126 contained the genes coding for glycolate oxidase, which was the main enzyme responsible for utilization of 1,4-dioxane intermediates through the TCA cycle, and further proven by the specific glycolate oxidase inhibitor, α-hydroxy-2-pyridinemethanesulfonic acid. An expanded and detailed degradation pathway of 1,4-dioxane was proposed on the basis of the three major intermediates (2-hydroxy-1,4-dioxane, ethylene glycol, and oxalic acid) confirmed by metabolomics. These findings of microbial community and function as well as the novel pathway will be valuable in predicting natural attenuation or reconstruction of a bacterial consortium for enhanced remediation of 1,4-dioxane-contaminated sites as well as wastewater treatment.
This study used integrated omics technologies to investigate the potential novel pathways and enzymes for 1,4-dioxane degradation by a consortium enriched from activated sludge of a domestic wastewater treatment plant. An unclassified genus belonging to Xanthobacteraceae increased significantly after magnetic nanoparticle-mediated isolation for 1,4-dioxane degraders. Species with relatively higher abundance (> 0.3%) were identified to present high metabolic activities in the biodegradation process through shotgun sequencing. The functional gene investigations revealed that Xanthobacter sp. 91, Xanthobacter sp. 126, and a Rhizobiales strain carried novel 1,4-dioxane-hydroxylating monooxygenase genes. Xanthobacter sp. 126 contained the genes coding for glycolate oxidase, which was the main enzyme responsible for utilization of 1,4-dioxane intermediates through the TCA cycle, and further proven by the specific glycolate oxidase inhibitor, α-hydroxy-2-pyridinemethanesulfonic acid. An expanded and detailed degradation pathway of 1,4-dioxane was proposed on the basis of the three major intermediates (2-hydroxy-1,4-dioxane, ethylene glycol, and oxalic acid) confirmed by metabolomics. These findings of microbial community and function as well as the novel pathway will be valuable in predicting natural attenuation or reconstruction of a bacterial consortium for enhanced remediation of 1,4-dioxane-contaminated sites as well as wastewater treatment.This study used integrated omics technologies to investigate the potential novel pathways and enzymes for 1,4-dioxane degradation by a consortium enriched from activated sludge of a domestic wastewater treatment plant. An unclassified genus belonging to Xanthobacteraceae increased significantly after magnetic nanoparticle-mediated isolation for 1,4-dioxane degraders. Species with relatively higher abundance (> 0.3%) were identified to present high metabolic activities in the biodegradation process through shotgun sequencing. The functional gene investigations revealed that Xanthobacter sp. 91, Xanthobacter sp. 126, and a Rhizobiales strain carried novel 1,4-dioxane-hydroxylating monooxygenase genes. Xanthobacter sp. 126 contained the genes coding for glycolate oxidase, which was the main enzyme responsible for utilization of 1,4-dioxane intermediates through the TCA cycle, and further proven by the specific glycolate oxidase inhibitor, α-hydroxy-2-pyridinemethanesulfonic acid. An expanded and detailed degradation pathway of 1,4-dioxane was proposed on the basis of the three major intermediates (2-hydroxy-1,4-dioxane, ethylene glycol, and oxalic acid) confirmed by metabolomics. These findings of microbial community and function as well as the novel pathway will be valuable in predicting natural attenuation or reconstruction of a bacterial consortium for enhanced remediation of 1,4-dioxane-contaminated sites as well as wastewater treatment.
This study used integrated omics technologies to investigate the potential novel pathways and enzymes for 1,4-dioxane degradation by a consortium enriched from activated sludge of a domestic wastewater treatment plant. An unclassified genus belonging to Xanthobacteraceae increased significantly after magnetic nanoparticle-mediated isolation for 1,4-dioxane degraders. Species with relatively higher abundance (> 0.3%) were identified to present high metabolic activities in the biodegradation process through shotgun sequencing. The functional gene investigations revealed that Xanthobacter sp. 91, Xanthobacter sp. 126, and a Rhizobiales strain carried novel 1,4-dioxane-hydroxylating monooxygenase genes. Xanthobacter sp. 126 contained the genes coding for glycolate oxidase, which was the main enzyme responsible for utilization of 1,4-dioxane intermediates through the TCA cycle, and further proven by the specific glycolate oxidase inhibitor, α-hydroxy-2-pyridinemethanesulfonic acid. An expanded and detailed degradation pathway of 1,4-dioxane was proposed on the basis of the three major intermediates (2-hydroxy-1,4-dioxane, ethylene glycol, and oxalic acid) confirmed by metabolomics. These findings of microbial community and function as well as the novel pathway will be valuable in predicting natural attenuation or reconstruction of a bacterial consortium for enhanced remediation of 1,4-dioxane-contaminated sites as well as wastewater treatment. [Display omitted] •1,4-Dioxane degradation by a complex consortium was studied using integrated omics.•Key dioxane degraders in the consortium belonged to Xanthobacter and Rhizobiales.•YHS and 4-hydroxyphenylacetate 3-hydroxylase enriched in 1,4-dioxane hydroxylation.•1,4-Dioxane biodegradation pathway and enzymes and hosts in consortium was proposed.•The role of etherase in 1,4-dioxane degradation was a novel result in this study.
ArticleNumber 125157
Author Adams, Jonathan Miles
Zhang, Lan
Mahendra, Shaily
Miao, Yu
Chen, Ruihuan
Dong, Yuanhua
Zhong, Ming
Liu, Yun
Author_xml – sequence: 1
  givenname: Ruihuan
  orcidid: 0000-0001-6061-3827
  surname: Chen
  fullname: Chen, Ruihuan
  organization: Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
– sequence: 2
  givenname: Yu
  orcidid: 0000-0002-1145-7298
  surname: Miao
  fullname: Miao, Yu
  organization: Civil and Environmental Engineering, University of California, Los Angeles, CA 90095, USA
– sequence: 3
  givenname: Yun
  orcidid: 0000-0002-7320-5766
  surname: Liu
  fullname: Liu, Yun
  email: yliu@issas.ac.cn
  organization: Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
– sequence: 4
  givenname: Lan
  surname: Zhang
  fullname: Zhang, Lan
  organization: Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
– sequence: 5
  givenname: Ming
  surname: Zhong
  fullname: Zhong, Ming
  organization: Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
– sequence: 6
  givenname: Jonathan Miles
  surname: Adams
  fullname: Adams, Jonathan Miles
  organization: School of Geography and Oceanography, Nanjing University, Nanjing 210023, China
– sequence: 7
  givenname: Yuanhua
  surname: Dong
  fullname: Dong, Yuanhua
  organization: Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
– sequence: 8
  givenname: Shaily
  orcidid: 0000-0003-3298-9602
  surname: Mahendra
  fullname: Mahendra, Shaily
  organization: Civil and Environmental Engineering, University of California, Los Angeles, CA 90095, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33540262$$D View this record in MEDLINE/PubMed
BookMark eNqFkctu1DAUhi1URKeFRwB5yaIZfE8iFghVtFSqxAbWlmOfDB4ldrGdUYcn6GOTudBFN7Oy5PN9xz7nv0BnIQZA6D0lS0qo-rRern-bv6MpS0YYXVImqaxfoQVtal5xztUZWhBORMWbVpyji5zXhBBaS_EGnXMuBWGKLdDTnYNQfO-tKT4GHHsc4gYGTK9E5Xx8NAGwg1UyDlLGJjicYDAFHF5BgIz7FEdsbPGb_WUeJrcC3G1xMY8xxNHbvdRPwe4eMMPewxn-TBAszEUzbLPPb9Hr3gwZ3h3PS_Tr5tvP6-_V_Y_bu-uv95UVSpRK0QaUNK0SpAahemUpiE51rJVNJ4ycB-c1J5xJ7kjX9pbXtaU9uM4K2cz1S_Tx0PchxfkLuejRZwvDMA8ap6yZZII1XFJ1GhVNTSWrm3ZGPxzRqRvB6YfkR5O2-v-iZ0AeAJtizgn6Z4QSvQtUr_UxUL0LVB8Cnb3PLzzryz6qkowfTtpfDjbMG914SDpbv1u78wls0S76Ex3-AefgwAQ
CitedBy_id crossref_primary_10_1111_gwmr_12649
crossref_primary_10_1021_acs_estlett_4c00641
crossref_primary_10_2139_ssrn_4016036
crossref_primary_10_1016_j_jes_2023_05_029
crossref_primary_10_3390_horticulturae8111036
crossref_primary_10_1016_j_jhazmat_2024_135098
crossref_primary_10_1002_geo2_148
crossref_primary_10_1016_j_jhazmat_2022_128719
crossref_primary_10_1016_j_envpol_2023_122572
crossref_primary_10_2139_ssrn_4062572
crossref_primary_10_1007_s10532_023_10019_4
crossref_primary_10_1016_j_envpol_2024_124628
crossref_primary_10_1016_j_chemosphere_2022_135580
crossref_primary_10_2166_wst_2022_296
crossref_primary_10_1007_s11783_022_1567_y
crossref_primary_10_1016_j_coesh_2022_100386
crossref_primary_10_1093_jimb_kuae047
crossref_primary_10_1016_j_seppur_2024_128752
crossref_primary_10_1016_j_scitotenv_2022_156221
crossref_primary_10_1016_j_bej_2021_108179
crossref_primary_10_1016_j_chemosphere_2022_134723
crossref_primary_10_3390_w15081535
crossref_primary_10_1080_09593330_2023_2178330
crossref_primary_10_1016_j_scitotenv_2023_166066
crossref_primary_10_1016_j_watres_2023_119945
crossref_primary_10_1007_s00253_023_12363_0
crossref_primary_10_1128_spectrum_01787_23
crossref_primary_10_1016_j_scitotenv_2021_148690
Cites_doi 10.1002/rem.21499
10.1016/j.copbio.2015.08.008
10.1128/AEM.01163-20
10.1128/AEM.69.12.7035-7043.2003
10.1016/j.chemosphere.2007.01.016
10.1016/j.fuel.2015.06.052
10.1099/ijs.0.63085-0
10.1021/ez500092u
10.1111/j.1574-6968.1985.tb00843.x
10.1038/ismej.2014.161
10.2166/wst.2017.498
10.1111/1751-7915.12850
10.1016/j.jhazmat.2020.123404
10.1021/acs.estlett.8b00312
10.1007/s10532-008-9240-0
10.1016/j.abb.2013.12.005
10.1038/s41467-020-19989-y
10.1111/gwmr.12093
10.1128/JB.186.10.3117-3123.2004
10.1021/es0705745
10.1021/acs.estlett.7b00504
10.1038/ismej.2011.111
10.2183/pjab.96.015
10.1007/s00253-016-7448-1
10.1016/j.jenvman.2017.05.033
10.1021/acs.est.0c01543
10.1038/s41579-020-0433-9
10.1080/07388551.2018.1500997
10.1038/s41396-018-0201-2
10.1016/j.scitotenv.2020.140435
10.1128/AEM.71.3.1254-1258.2005
10.1007/s10532-017-9808-7
10.1002/rem.21364
10.1016/j.chemosphere.2019.04.111
10.1007/s10532-016-9772-7
10.1128/AEM.66.7.2822-2828.2000
10.1186/s40168-019-0634-5
10.1038/s41467-020-19583-2
10.1016/S0021-9258(18)69624-3
10.1128/AEM.00244-19
10.1007/s00253-020-10512-3
10.1021/acs.est.8b04895
10.1007/s10532-019-09891-w
10.1021/es060714v
10.1128/AEM.02418-13
10.1016/j.watres.2020.115540
10.1128/AEM.00067-12
10.1016/j.watres.2020.115638
10.1016/j.envpol.2018.09.018
10.1021/acs.estlett.8b00591
10.1016/j.ibiod.2015.09.018
10.1016/j.cej.2019.03.285
10.1021/acs.est.7b03134
10.1006/meth.2001.1262
10.1016/j.watres.2018.10.070
10.1021/acs.est.5b01740
10.1186/s12864-017-3708-4
10.1021/acs.est.0c02834
10.1111/j.1462-2920.2006.01015.x
10.1128/AEM.04162-13
10.1007/s11783-018-1071-6
ContentType Journal Article
Copyright 2021
Copyright © 2021. Published by Elsevier B.V.
Copyright_xml – notice: 2021
– notice: Copyright © 2021. Published by Elsevier B.V.
DBID AAYXX
CITATION
NPM
7X8
7S9
L.6
DOI 10.1016/j.jhazmat.2021.125157
DatabaseName CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList PubMed
MEDLINE - Academic

AGRICOLA
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Law
EISSN 1873-3336
ExternalDocumentID 33540262
10_1016_j_jhazmat_2021_125157
S0304389421001205
Genre Journal Article
GroupedDBID ---
--K
--M
-~X
..I
.DC
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
53G
5GY
5VS
7-5
71M
8P~
9JM
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABFNM
ABFRF
ABFYP
ABJNI
ABLST
ABMAC
ABNUV
ABYKQ
ACDAQ
ACGFO
ACGFS
ACRLP
ADBBV
ADEWK
ADEZE
AEBSH
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHEUO
AHHHB
AHPOS
AIEXJ
AIKHN
AITUG
AJOXV
AKIFW
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLECG
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
ENUVR
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
KCYFY
KOM
LX7
LY9
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SSG
SSJ
SSZ
T5K
XPP
ZMT
~02
~G-
.HR
29K
AAHBH
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ABXDB
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
ADXHL
AEGFY
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AI.
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BBWZM
BNPGV
CITATION
D-I
EJD
FEDTE
FGOYB
G-2
HLY
HMC
HVGLF
HZ~
NDZJH
R2-
RIG
SCE
SEN
SEW
SSH
T9H
TAE
VH1
WUQ
NPM
7X8
7S9
EFKBS
L.6
ID FETCH-LOGICAL-c464t-618e65a96407e46f6c1e4b6b2958b4a533637303253d0b9fc377c1fedbc458a53
IEDL.DBID .~1
ISSN 0304-3894
1873-3336
IngestDate Tue Aug 05 09:42:02 EDT 2025
Fri Jul 11 00:24:18 EDT 2025
Wed Feb 19 02:28:42 EST 2025
Tue Jul 01 00:49:41 EDT 2025
Thu Apr 24 23:01:50 EDT 2025
Fri Feb 23 02:46:11 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Biodegradation
Synergetic
Microbial community
Multi omics
Language English
License Copyright © 2021. Published by Elsevier B.V.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c464t-618e65a96407e46f6c1e4b6b2958b4a533637303253d0b9fc377c1fedbc458a53
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-3298-9602
0000-0002-1145-7298
0000-0002-7320-5766
0000-0001-6061-3827
PMID 33540262
PQID 2487152789
PQPubID 23479
ParticipantIDs proquest_miscellaneous_2524283516
proquest_miscellaneous_2487152789
pubmed_primary_33540262
crossref_primary_10_1016_j_jhazmat_2021_125157
crossref_citationtrail_10_1016_j_jhazmat_2021_125157
elsevier_sciencedirect_doi_10_1016_j_jhazmat_2021_125157
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-06-15
PublicationDateYYYYMMDD 2021-06-15
PublicationDate_xml – month: 06
  year: 2021
  text: 2021-06-15
  day: 15
PublicationDecade 2020
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
PublicationTitle Journal of hazardous materials
PublicationTitleAlternate J Hazard Mater
PublicationYear 2021
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Gedalanga, Pornwongthong, Mora, Chiang, Baldwin, Ogles, Mahendra (bib16) 2014; 80
He, Mathieu, da Silva, Li, Alvarez (bib23) 2018; 11
Inoue, Hisada, Okumura, Yabuki, Yoshida, Kuroda, Ike (bib26) 2020; 31
Zelitch (bib63) 1959; 234
El Amrani, Dumas, Wick, Yergeau, Berthomé (bib2) 2015; 49
Mohr, DiGuiseppi, Hatton, Anderson (bib43) 2020
Zhou, Jiang, Qiu, Pan, Swanda, Shi, Li, Zhang (bib67) 2020; 54
Pei, Tao, Ling, Yu, Ji, Khan, Mamtimin, Liu, Li (bib47) 2020; 742
Mahendra, Alvarez-Cohen (bib35) 2006; 40
Polasko, Zulli, Gedalanga, Pornwongthong, Mahendra (bib48) 2019; 6
Qiu, Cheng, Xie, Jiang, Shi, Li, Swanda, Zhou, Wang (bib50) 2019; 228
Totsuka, Maesako, Ono, Nagai, Kato, Gi, Wanibuchi, Fukushima, Shiizaki, Nakagama (bib56) 2020; 96
Sutherland, Horne, Lacey, Harcourt, Russell, Oakeshott (bib55) 2000; 66
Guan, Liu, Wang, Li, Zheng (bib20) 2017; 77
Miao, Johnson, Heck, Guo, Powell, Phan, Gedalanga, Adamson, Newell, Wong, Mahendra (bib41) 2018; 12
Valdez-Vazquez, Perez-Rangel, Tapia, Buitron, Molina, Hernandez, Amaya-Delgado (bib58) 2015; 159
Aoyagi, Morishita, Sugiyama, Ichikawa, Mayumi, Kikuchi, Ogata, Muraoka, Habe, Hori (bib3) 2018; 12
Singh, Walker, Morgan, Wright (bib54) 2003; 69
Chen, Jin, Chen, Ye, Jiang, Chen (bib4) 2016; 106
Zhang, Gedalanga, Mahendra (bib65) 2017; 204
Fishman, Tao, Wood (bib14) 2004; 186
(bib25) 1999
Chen, Liu, Johnson, Zhang, Mahendra, Liu, Dong, Chen (bib5) 2019; 371
Miao, Johnson, Phan, Heck, Gedalanga, Zheng, Adamson, Newell, Wong, Mahendra (bib42) 2020; 173
Pandey, Tripathi, Tripathi, Pandey, Gangola (bib46) 2019
Xiong, Cui, Ru, Govindwar, Kurade, Jang, Kim, Jeon (bib59) 2021; 401
Men, Feil, VerBerkmoes, Shah, Johnson, Lee, West, Zinder, Andersen, Alvarez-Cohen (bib37) 2012; 6
Danczak, Chu, Fansler, Goldman, Graham, Tfaily, Toyoda, Stegen (bib7) 2020; 11
Livak, Schmittgen (bib33) 2001; 25
Grostern, Sales, Zhuang, Erbilgin, Alvarez-Cohen (bib19) 2012; 78
Yu, Yi, Li, Guo, Peng, Wang, Wu, Alvarez-Cohen, Zhang (bib62) 2019; 7
Meyer-Cifuentes, Werner, Jehmlich, Will, Neumann-Schaal, Öztürk (bib38) 2020; 11
Sales, Grostern, Parales, Parales, Alvarez-Cohen (bib52) 2013; 79
Ramalingam, Cupples (bib51) 2020; 104
Deng, Pham, Li, Li (bib12) 2020; 86
Zhang, Berry, Zhu, Wang, Chen, Jiang, Huang, Langford, Li, Davison, Xu, Aries, Huang (bib64) 2015; 9
Nakamiya, Hashimoto, Ito, Edmonds, Morita (bib45) 2005; 71
Prior, Dalton (bib49) 1985; 29
Dangi, Sharma, Hill, Shukla (bib8) 2019; 39
Karthikeyan, Kim, Heritier-Robbins, Hatt, Spain, Overholt, Huettel, Kostka, Konstantinidis (bib29) 2020; 54
Dang, Kanitkar, Stedtfeld, Hatzinger, Hashsham, Cupples (bib9) 2018; 52
Inoue, Tsunoda, Sawada, Yamamoto, Saito, Sei, Ike (bib27) 2016; 27
Grady, Malfatti, Gunasekera, Dalley, Lyman, Striebich, Mayhew, Zhou, Ruiz, Dugan (bib18) 2017; 18
Mahendra, Petzold, Baidoo, Keasling, Alvarez-Cohen (bib36) 2007; 41
Muñoz, Díaz, Bordel, Villaverde (bib44) 2007; 68
Jasmann, Gedalanga, Borch, Mahendra, Blotevogel (bib28) 2017; 51
Coleman, Bui, Holmes (bib6) 2006; 8
Miao, Johnson, Gedalanga, Adamson, Newell, Mahendra (bib40) 2019; 149
Mahendra, Alvarez-Cohen (bib34) 2005; 55
Hays, Patrick, Ziesack, Oxman, Silver (bib22) 2015; 36
Miao, Heintz, Bell, Johnson, Polasko, Favero, Mahendra (bib39) 2020
Gedalanga, Madison, Miao, Richards, Hatton, DiGuiseppi, Wilson, Mahendra (bib15) 2016; 27
Tupa, Masuda (bib57) 2018; 28
Deng, Li, Wu, Li (bib11) 2018; 5
Ghosh, Chowdhury, Bhattacharya (bib17) 2016; 100
Zhao, Lu, Polasko, Johnson, Miao, Yang, Mahendra, Gu (bib66) 2018; 243
Kim, Jeon, Murugesan, Kim, Chang (bib30) 2008; 20
Yang, Huang, Feng, Wei, Massey, Liang, Zhang, Yin, Kacew, Zhang, Pu (bib61) 2020; 174
Hatzinger, Banerjee, Rezes, Streger, McClay, Schaefer (bib21) 2017; 28
Schink, Stams (bib53) 2006
Adamson, Mahendra, Walker, Rauch, Sengupta, Newell (bib1) 2014; 1
Deng, Li, Li (bib10) 2018; 5
Fan, Pesersen (bib13) 2021; 19
Huijbers, Montersino, Westphal, Tischler, van Berkel (bib24) 2014; 544
Lan, Smith, Hyman (bib31) 2013; 23
Xiong, Mason, Lowe, Zhou, Chen, Tang (bib60) 2019; 85
Lippincott, Streger, Schaefer, Hinkle, Stormo, Steffan (bib32) 2015; 35
Prior (10.1016/j.jhazmat.2021.125157_bib49) 1985; 29
Tupa (10.1016/j.jhazmat.2021.125157_bib57) 2018; 28
Zhang (10.1016/j.jhazmat.2021.125157_bib64) 2015; 9
Zhang (10.1016/j.jhazmat.2021.125157_bib65) 2017; 204
Karthikeyan (10.1016/j.jhazmat.2021.125157_bib29) 2020; 54
Aoyagi (10.1016/j.jhazmat.2021.125157_bib3) 2018; 12
Jasmann (10.1016/j.jhazmat.2021.125157_bib28) 2017; 51
Sales (10.1016/j.jhazmat.2021.125157_bib52) 2013; 79
Hatzinger (10.1016/j.jhazmat.2021.125157_bib21) 2017; 28
Kim (10.1016/j.jhazmat.2021.125157_bib30) 2008; 20
Zelitch (10.1016/j.jhazmat.2021.125157_bib63) 1959; 234
Huijbers (10.1016/j.jhazmat.2021.125157_bib24) 2014; 544
Guan (10.1016/j.jhazmat.2021.125157_bib20) 2017; 77
(10.1016/j.jhazmat.2021.125157_bib25) 1999
Singh (10.1016/j.jhazmat.2021.125157_bib54) 2003; 69
Pei (10.1016/j.jhazmat.2021.125157_bib47) 2020; 742
Xiong (10.1016/j.jhazmat.2021.125157_bib59) 2021; 401
Mahendra (10.1016/j.jhazmat.2021.125157_bib36) 2007; 41
Nakamiya (10.1016/j.jhazmat.2021.125157_bib45) 2005; 71
Miao (10.1016/j.jhazmat.2021.125157_bib42) 2020; 173
Lippincott (10.1016/j.jhazmat.2021.125157_bib32) 2015; 35
Grostern (10.1016/j.jhazmat.2021.125157_bib19) 2012; 78
Pandey (10.1016/j.jhazmat.2021.125157_bib46) 2019
Coleman (10.1016/j.jhazmat.2021.125157_bib6) 2006; 8
Grady (10.1016/j.jhazmat.2021.125157_bib18) 2017; 18
Men (10.1016/j.jhazmat.2021.125157_bib37) 2012; 6
Yu (10.1016/j.jhazmat.2021.125157_bib62) 2019; 7
Chen (10.1016/j.jhazmat.2021.125157_bib5) 2019; 371
Gedalanga (10.1016/j.jhazmat.2021.125157_bib16) 2014; 80
Inoue (10.1016/j.jhazmat.2021.125157_bib26) 2020; 31
Miao (10.1016/j.jhazmat.2021.125157_bib39) 2020
Muñoz (10.1016/j.jhazmat.2021.125157_bib44) 2007; 68
Adamson (10.1016/j.jhazmat.2021.125157_bib1) 2014; 1
Totsuka (10.1016/j.jhazmat.2021.125157_bib56) 2020; 96
Valdez-Vazquez (10.1016/j.jhazmat.2021.125157_bib58) 2015; 159
Zhao (10.1016/j.jhazmat.2021.125157_bib66) 2018; 243
Yang (10.1016/j.jhazmat.2021.125157_bib61) 2020; 174
Xiong (10.1016/j.jhazmat.2021.125157_bib60) 2019; 85
Inoue (10.1016/j.jhazmat.2021.125157_bib27) 2016; 27
El Amrani (10.1016/j.jhazmat.2021.125157_bib2) 2015; 49
Danczak (10.1016/j.jhazmat.2021.125157_bib7) 2020; 11
He (10.1016/j.jhazmat.2021.125157_bib23) 2018; 11
Qiu (10.1016/j.jhazmat.2021.125157_bib50) 2019; 228
Ghosh (10.1016/j.jhazmat.2021.125157_bib17) 2016; 100
Deng (10.1016/j.jhazmat.2021.125157_bib11) 2018; 5
Chen (10.1016/j.jhazmat.2021.125157_bib4) 2016; 106
Polasko (10.1016/j.jhazmat.2021.125157_bib48) 2019; 6
Hays (10.1016/j.jhazmat.2021.125157_bib22) 2015; 36
Mahendra (10.1016/j.jhazmat.2021.125157_bib34) 2005; 55
Sutherland (10.1016/j.jhazmat.2021.125157_bib55) 2000; 66
Deng (10.1016/j.jhazmat.2021.125157_bib12) 2020; 86
Dang (10.1016/j.jhazmat.2021.125157_bib9) 2018; 52
Fishman (10.1016/j.jhazmat.2021.125157_bib14) 2004; 186
Mohr (10.1016/j.jhazmat.2021.125157_bib43) 2020
Schink (10.1016/j.jhazmat.2021.125157_bib53) 2006
Ramalingam (10.1016/j.jhazmat.2021.125157_bib51) 2020; 104
Fan (10.1016/j.jhazmat.2021.125157_bib13) 2021; 19
Dangi (10.1016/j.jhazmat.2021.125157_bib8) 2019; 39
Lan (10.1016/j.jhazmat.2021.125157_bib31) 2013; 23
Meyer-Cifuentes (10.1016/j.jhazmat.2021.125157_bib38) 2020; 11
Livak (10.1016/j.jhazmat.2021.125157_bib33) 2001; 25
Zhou (10.1016/j.jhazmat.2021.125157_bib67) 2020; 54
Mahendra (10.1016/j.jhazmat.2021.125157_bib35) 2006; 40
Deng (10.1016/j.jhazmat.2021.125157_bib10) 2018; 5
Gedalanga (10.1016/j.jhazmat.2021.125157_bib15) 2016; 27
Miao (10.1016/j.jhazmat.2021.125157_bib41) 2018; 12
Miao (10.1016/j.jhazmat.2021.125157_bib40) 2019; 149
References_xml – start-page: 309
  year: 2006
  end-page: 335
  ident: bib53
  article-title: Syntrophism among Prokaryotes
  publication-title: The Prokaryotes: A Handbook on the Biology of Bacteria
– volume: 41
  start-page: 7330
  year: 2007
  end-page: 7336
  ident: bib36
  article-title: Identification of the intermediates of in vivo oxidation of 1,4-dioxane by monooxygenase-containing bacteria
  publication-title: Environ. Sci. Technol.
– volume: 80
  start-page: 3209
  year: 2014
  end-page: 3218
  ident: bib16
  article-title: Identification of biomarker genes to predict biodegradation of 1,4-dioxane
  publication-title: Appl. Environ. Microbiol.
– volume: 1
  start-page: 254
  year: 2014
  end-page: 258
  ident: bib1
  article-title: A multisite survey to identify the scale of the 1,4-dioxane problem at contaminated groundwater sites
  publication-title: Environ. Sci. Technol. Lett.
– volume: 104
  start-page: 4155
  year: 2020
  end-page: 4170
  ident: bib51
  article-title: Anaerobic 1,4-dioxane biodegradation and microbial community analysis in microcosms inoculated with soils or sediments and different electron acceptors
  publication-title: Appl. Microbiol. Biotechnol.
– volume: 71
  start-page: 1254
  year: 2005
  end-page: 1258
  ident: bib45
  article-title: Degradation of 1,4-dioxane and cyclic ethers by an isolated fungus
  publication-title: Appl. Environ. Microbiol.
– volume: 28
  start-page: 453
  year: 2017
  end-page: 468
  ident: bib21
  article-title: Potential for cometabolic biodegradation of 1,4-dioxane in aquifers with methane or ethane as primary substrates
  publication-title: Biodegradation
– volume: 23
  start-page: 23
  year: 2013
  end-page: 42
  ident: bib31
  article-title: Oxidation of cyclic ethers by alkane-grown
  publication-title: Remediat. J.
– volume: 11
  start-page: 189
  year: 2018
  end-page: 198
  ident: bib23
  article-title: 1,4-Dioxane‐degrading consortia can be enriched from uncontaminated soils: prevalence of
  publication-title: Microb. Biotechnol.
– volume: 6
  start-page: 410
  year: 2012
  end-page: 421
  ident: bib37
  article-title: Sustainable syntrophic growth of
  publication-title: ISME J.
– volume: 12
  start-page: 1
  year: 2018
  end-page: 13
  ident: bib41
  article-title: Microbial responses to combined oxidation and catalysis treatment of 1,4-dioxane and co-contaminants in groundwater and soil
  publication-title: Front. Environ. Sci. Eng.
– volume: 39
  start-page: 79
  year: 2019
  end-page: 98
  ident: bib8
  article-title: Bioremediation through microbes: systems biology and metabolic engineering approach
  publication-title: Crit. Rev. Biotechnol.
– volume: 371
  start-page: 193
  year: 2019
  end-page: 202
  ident: bib5
  article-title: Removal of 1,4-dioxane by titanium silicalite-1: separation mechanisms and bioregeneration of sorption sites
  publication-title: Chem. Eng. J.
– volume: 742
  year: 2020
  ident: bib47
  article-title: Exploring novel Cr(VI) remediation genes for Cr(VI)-contaminated industrial wastewater treatment by comparative metatranscriptomics and metagenomics
  publication-title: Sci. Total Environ.
– volume: 149
  start-page: 74
  year: 2019
  end-page: 85
  ident: bib40
  article-title: Response and recovery of microbial communities subjected to oxidative and biological treatments of 1,4-dioxane and co-contaminants
  publication-title: Water Res.
– volume: 243
  start-page: 573
  year: 2018
  end-page: 581
  ident: bib66
  article-title: Co-contaminant effects on 1,4-dioxane biodegradation in packed soil column flow-through systems
  publication-title: Environ. Pollut.
– volume: 106
  start-page: 133
  year: 2016
  end-page: 140
  ident: bib4
  article-title: Intermediates and substrate interaction of 1,4-dioxane degradation by the effective metabolizer
  publication-title: Int. Biodeterior. Biodegrad.
– start-page: 589
  year: 1999
  end-page: 602
  ident: bib25
  article-title: 1,4-Dioxane
  publication-title: IARC Monographs on the Evaluation of Carcinogenic Risks to Humans: Re-evaluation of Some Organic Chemicals, Hydrazine and Hydrogen Peroxide
– volume: 85
  year: 2019
  ident: bib60
  article-title: Microbial community analysis provides insights into the effects of tetrahydrofuran on 1,4-dioxane biodegradation
  publication-title: Appl. Environ. Microbiol.
– volume: 28
  start-page: 107
  year: 2018
  end-page: 115
  ident: bib57
  article-title: Comparative proteomic analysis of propane metabolism in
  publication-title: J. Mol. Microbiol. Biotechnol.
– volume: 27
  start-page: 93
  year: 2016
  end-page: 114
  ident: bib15
  article-title: A multiple lines of evidence framework to evaluate intrinsic biodegradation of 1,4-dioxane
  publication-title: Remediat. J.
– year: 2020
  ident: bib39
  article-title: Profiling microbial community structures and functions in bioremediation strategies for treating 1, 4-dioxane-contaminated groundwater
  publication-title: J. Hazard. Mater.
– volume: 96
  start-page: 180
  year: 2020
  end-page: 187
  ident: bib56
  article-title: Comprehensive analysis of DNA adducts (DNA adductome analysis) in the liver of rats treated with 1,4-dioxane
  publication-title: Proc. Jpn. Acad. Ser. B Phys. Biol. Sci.
– volume: 29
  start-page: 105
  year: 1985
  end-page: 109
  ident: bib49
  article-title: Acetylene as a suicide substrate and active site probe for methane monooxygenase from
  publication-title: FEMS Microbiol. Lett.
– volume: 204
  start-page: 765
  year: 2017
  end-page: 774
  ident: bib65
  article-title: Advances in bioremediation of 1,4-dioxane-contaminated waters
  publication-title: J. Environ. Manag.
– volume: 12
  start-page: 2376
  year: 2018
  end-page: 2388
  ident: bib3
  article-title: Identification of active and taxonomically diverse 1,4-dioxane degraders in a full-scale activated sludge system by high-sensitivity stable isotope probing
  publication-title: ISME J.
– volume: 9
  start-page: 603
  year: 2015
  end-page: 614
  ident: bib64
  article-title: Magnetic nanoparticle-mediated isolation of functional bacteria in a complex microbial community
  publication-title: ISME J.
– volume: 54
  start-page: 10149
  year: 2020
  end-page: 10158
  ident: bib67
  article-title: Oral exposure to 1,4-dioxane induces hepatic inflammation in mice: the potential promoting effect of the gut microbiome
  publication-title: Environ. Sci. Technol.
– volume: 544
  start-page: 2
  year: 2014
  end-page: 17
  ident: bib24
  article-title: Flavin dependent monooxygenases
  publication-title: Arch. Biochem. Biophys.
– volume: 55
  start-page: 593
  year: 2005
  end-page: 598
  ident: bib34
  article-title: sp. nov., a novel actinomycete that grows on 1,4-dioxane
  publication-title: Int. J. Syst. Evolut. Microbiol.
– volume: 68
  start-page: 244
  year: 2007
  end-page: 252
  ident: bib44
  article-title: Inhibitory effects of catechol accumulation on benzene biodegradation in
  publication-title: Chemosphere
– volume: 51
  start-page: 12619
  year: 2017
  end-page: 12629
  ident: bib28
  article-title: Synergistic treatment of mixed 1, 4-dioxane and chlorinated solvent contaminations by coupling electrochemical oxidation with aerobic biodegradation
  publication-title: Environ. Sci. Technol.
– volume: 6
  start-page: 49
  year: 2019
  end-page: 54
  ident: bib48
  article-title: A mixed microbial community for the biodegradation of chlorinated ethenes and 1,4-dioxane
  publication-title: Environ. Sci. Technol. Lett.
– volume: 66
  start-page: 2822
  year: 2000
  end-page: 2828
  ident: bib55
  article-title: Enrichment of an endosulfan-degrading mixed cacterial culture
  publication-title: Appl. Environ. Microbiol.
– volume: 8
  start-page: 1228
  year: 2006
  end-page: 1239
  ident: bib6
  article-title: Soluble di-iron monooxygenase gene diversity in soils, sediments and ethene enrichments
  publication-title: Environ. Microbiol.
– volume: 52
  start-page: 13914
  year: 2018
  end-page: 13924
  ident: bib9
  article-title: Abundance of chlorinated solvent and 1,4-dioxane degrading microorganisms at five chlorinated solvent contaminated sites determined via shotgun sequencing
  publication-title: Environ. Sci. Technol.
– volume: 7
  start-page: 1
  year: 2019
  end-page: 13
  ident: bib62
  article-title: An integrated meta-omics approach reveals substrates involved in synergistic interactions in a bisphenol A (BPA)-degrading microbial community
  publication-title: Microbiome
– volume: 159
  start-page: 214
  year: 2015
  end-page: 222
  ident: bib58
  article-title: Hydrogen and butanol production from native wheat straw by synthetic microbial consortia integrated by species of
  publication-title: Fuel
– volume: 77
  start-page: 123
  year: 2017
  end-page: 133
  ident: bib20
  article-title: Mechanism of 1,4-dioxane microbial degradation revealed by 16S rRNA and metatranscriptomic analyses
  publication-title: Water Sci. Technol.
– volume: 19
  start-page: 55
  year: 2021
  end-page: 71
  ident: bib13
  article-title: Gut microbiota in human metabolic health and disease
  publication-title: Nat. Rev. Microbiol.
– year: 2020
  ident: bib43
  publication-title: Environmental Investigation and Remediation: 1,4-Dioxane and Other Solvent Stabilizers
– volume: 86
  year: 2020
  ident: bib12
  article-title: Discovery of an inducible toluene monooxygenase that cooxidizes 1,4-dioxane and 1,1-dichloroethylene in propanotrophic
  publication-title: Appl. Environ. Microbiol.
– volume: 174
  year: 2020
  ident: bib61
  article-title: A complete route for biodegradation of potentially carcinogenic cyanotoxin microcystin-LR in a novel indigenous bacterium
  publication-title: Water Res.
– volume: 401
  year: 2021
  ident: bib59
  article-title: Unravelling metabolism and microbial community of a phytobed co-planted with
  publication-title: J. Hazard. Mater.
– start-page: 23
  year: 2019
  end-page: 43
  ident: bib46
  article-title: Omics technology to study bioremediation and respective enzymes
  publication-title: Smart Bioremediation Technologies: Microbial Enzymes
– volume: 54
  start-page: 10088
  year: 2020
  end-page: 10099
  ident: bib29
  article-title: Integrated omics elucidate the mechanisms driving the rapid biodegradation of Deepwater Horizon oil in intertidal sediments undergoing oxic-anoxic cycles
  publication-title: Environ. Sci. Technol.
– volume: 79
  start-page: 7702
  year: 2013
  end-page: 7708
  ident: bib52
  article-title: Oxidation of the cyclic ethers 1,4-dioxane and tetrahydrofuran by a monooxygenase in two
  publication-title: Appl. Environ. Microbiol.
– volume: 228
  start-page: 149
  year: 2019
  end-page: 158
  ident: bib50
  article-title: 1,4-Dioxane exposure induces kidney damage in mice by perturbing specific renal metabolic pathways: an integrated omics insight into the underlying mechanisms
  publication-title: Chemosphere
– volume: 234
  start-page: 3077
  year: 1959
  end-page: 3081
  ident: bib63
  article-title: The relationship of glycolic acid to respiration and photosynthesis in tobacco leaves
  publication-title: J. Biol. Chem.
– volume: 31
  start-page: 23
  year: 2020
  end-page: 34
  ident: bib26
  article-title: Carbon sources that enable enrichment of 1, 4-dioxane-degrading bacteria in landfill leachate
  publication-title: Biodegradation
– volume: 11
  start-page: 5790
  year: 2020
  ident: bib38
  article-title: Synergistic biodegradation of aromatic-aliphatic copolyester plastic by a marine microbial consortium
  publication-title: Nat. Commun.
– volume: 49
  start-page: 11281
  year: 2015
  end-page: 11291
  ident: bib2
  article-title: “Omics” insights into PAH degradation toward improved green remediation biotechnologies
  publication-title: Environ. Sci. Technol.
– volume: 186
  start-page: 3117
  year: 2004
  end-page: 3123
  ident: bib14
  article-title: Toluene 3-monooxygenase of
  publication-title: J. Bacteriol.
– volume: 20
  start-page: 511
  year: 2008
  end-page: 519
  ident: bib30
  article-title: Biodegradation of 1,4-dioxane and transformation of related cyclic compounds by a newly isolated
  publication-title: Biodegradation
– volume: 40
  start-page: 5435
  year: 2006
  end-page: 5442
  ident: bib35
  article-title: Kinetics of 1,4-dioxane biodegradation by monooxygenase-expressing bacteria
  publication-title: Environ. Sci. Technol.
– volume: 11
  start-page: 6369
  year: 2020
  ident: bib7
  article-title: Using metacommunity ecology to understand environmental metabolomes
  publication-title: Nat. Commun.
– volume: 5
  start-page: 86
  year: 2018
  end-page: 91
  ident: bib10
  article-title: A novel propane monooxygenase initiating degradation of 1,4-dioxane by
  publication-title: Environ. Sci. Technol. Lett.
– volume: 69
  start-page: 7035
  year: 2003
  end-page: 7043
  ident: bib54
  article-title: Role of soil pH in the development of enhanced biodegradation of fenamiphos
  publication-title: Appl. Environ. Microbiol.
– volume: 18
  start-page: 334
  year: 2017
  ident: bib18
  article-title: A comprehensive multi-omics approach uncovers adaptations for growth and survival of
  publication-title: BMC Genom.
– volume: 100
  start-page: 4283
  year: 2016
  end-page: 4295
  ident: bib17
  article-title: Mixed consortia in bioprocesses: role of microbial interactions
  publication-title: Appl. Microbiol. Biotechnol.
– volume: 27
  start-page: 277
  year: 2016
  end-page: 286
  ident: bib27
  article-title: 1, 4-Dioxane degradation potential of members of the genera
  publication-title: Biodegradation
– volume: 36
  start-page: 40
  year: 2015
  end-page: 49
  ident: bib22
  article-title: Better together: engineering and application of microbial symbioses
  publication-title: Curr. Opin. Biotechnol.
– volume: 35
  start-page: 81
  year: 2015
  end-page: 92
  ident: bib32
  article-title: Bioaugmentation and propane biosparging for in situ biodegradation of 1, 4–dioxane
  publication-title: Groundw. Monit. Remediat.
– volume: 5
  start-page: 526
  year: 2018
  end-page: 532
  ident: bib11
  article-title: Synchronic biotransformation of 1,4-dioxane and 1,1-dichloroethylene by a gram-negative propanotroph
  publication-title: Environ. Sci. Technol. Lett.
– volume: 25
  start-page: 402
  year: 2001
  end-page: 408
  ident: bib33
  article-title: Analysis of relative gene expression data using real-time quantitative PCR and the 2
  publication-title: Methods
– volume: 78
  start-page: 3298
  year: 2012
  end-page: 3308
  ident: bib19
  article-title: Glyoxylate metabolism is a key feature of the metabolic degradation of 1,4-dioxane by
  publication-title: Appl. Environ. Microbiol.
– volume: 173
  year: 2020
  ident: bib42
  article-title: Monitoring, assessment, and prediction of microbial shifts in coupled catalysis and biodegradation of 1,4-dioxane and co-contaminants
  publication-title: Water Res.
– volume: 27
  start-page: 93
  issue: 1
  year: 2016
  ident: 10.1016/j.jhazmat.2021.125157_bib15
  article-title: A multiple lines of evidence framework to evaluate intrinsic biodegradation of 1,4-dioxane
  publication-title: Remediat. J.
  doi: 10.1002/rem.21499
– volume: 36
  start-page: 40
  year: 2015
  ident: 10.1016/j.jhazmat.2021.125157_bib22
  article-title: Better together: engineering and application of microbial symbioses
  publication-title: Curr. Opin. Biotechnol.
  doi: 10.1016/j.copbio.2015.08.008
– volume: 86
  issue: 17
  year: 2020
  ident: 10.1016/j.jhazmat.2021.125157_bib12
  article-title: Discovery of an inducible toluene monooxygenase that cooxidizes 1,4-dioxane and 1,1-dichloroethylene in propanotrophic Azoarcus sp. strain DD4
  publication-title: Appl. Environ. Microbiol.
  doi: 10.1128/AEM.01163-20
– volume: 69
  start-page: 7035
  issue: 12
  year: 2003
  ident: 10.1016/j.jhazmat.2021.125157_bib54
  article-title: Role of soil pH in the development of enhanced biodegradation of fenamiphos
  publication-title: Appl. Environ. Microbiol.
  doi: 10.1128/AEM.69.12.7035-7043.2003
– volume: 68
  start-page: 244
  issue: 2
  year: 2007
  ident: 10.1016/j.jhazmat.2021.125157_bib44
  article-title: Inhibitory effects of catechol accumulation on benzene biodegradation in Pseudomonas putida F1 cultures
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2007.01.016
– start-page: 309
  year: 2006
  ident: 10.1016/j.jhazmat.2021.125157_bib53
  article-title: Syntrophism among Prokaryotes
– volume: 159
  start-page: 214
  year: 2015
  ident: 10.1016/j.jhazmat.2021.125157_bib58
  article-title: Hydrogen and butanol production from native wheat straw by synthetic microbial consortia integrated by species of Enterococcus and Clostridium
  publication-title: Fuel
  doi: 10.1016/j.fuel.2015.06.052
– volume: 55
  start-page: 593
  issue: 2
  year: 2005
  ident: 10.1016/j.jhazmat.2021.125157_bib34
  article-title: Pseudonocardia dioxanivorans sp. nov., a novel actinomycete that grows on 1,4-dioxane
  publication-title: Int. J. Syst. Evolut. Microbiol.
  doi: 10.1099/ijs.0.63085-0
– volume: 1
  start-page: 254
  issue: 5
  year: 2014
  ident: 10.1016/j.jhazmat.2021.125157_bib1
  article-title: A multisite survey to identify the scale of the 1,4-dioxane problem at contaminated groundwater sites
  publication-title: Environ. Sci. Technol. Lett.
  doi: 10.1021/ez500092u
– volume: 29
  start-page: 105
  issue: 1–2
  year: 1985
  ident: 10.1016/j.jhazmat.2021.125157_bib49
  article-title: Acetylene as a suicide substrate and active site probe for methane monooxygenase from Methylococcus capsulatus (Bath)
  publication-title: FEMS Microbiol. Lett.
  doi: 10.1111/j.1574-6968.1985.tb00843.x
– start-page: 23
  year: 2019
  ident: 10.1016/j.jhazmat.2021.125157_bib46
  article-title: Omics technology to study bioremediation and respective enzymes
– volume: 9
  start-page: 603
  year: 2015
  ident: 10.1016/j.jhazmat.2021.125157_bib64
  article-title: Magnetic nanoparticle-mediated isolation of functional bacteria in a complex microbial community
  publication-title: ISME J.
  doi: 10.1038/ismej.2014.161
– volume: 77
  start-page: 123
  issue: 1
  year: 2017
  ident: 10.1016/j.jhazmat.2021.125157_bib20
  article-title: Mechanism of 1,4-dioxane microbial degradation revealed by 16S rRNA and metatranscriptomic analyses
  publication-title: Water Sci. Technol.
  doi: 10.2166/wst.2017.498
– volume: 11
  start-page: 189
  issue: 1
  year: 2018
  ident: 10.1016/j.jhazmat.2021.125157_bib23
  article-title: 1,4-Dioxane‐degrading consortia can be enriched from uncontaminated soils: prevalence of Mycobacterium and soluble di-iron monooxygenase genes
  publication-title: Microb. Biotechnol.
  doi: 10.1111/1751-7915.12850
– volume: 401
  year: 2021
  ident: 10.1016/j.jhazmat.2021.125157_bib59
  article-title: Unravelling metabolism and microbial community of a phytobed co-planted with Typha angustifolia and Ipomoea aquatica for biodegradation of doxylamine from wastewater
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2020.123404
– volume: 5
  start-page: 526
  issue: 8
  year: 2018
  ident: 10.1016/j.jhazmat.2021.125157_bib11
  article-title: Synchronic biotransformation of 1,4-dioxane and 1,1-dichloroethylene by a gram-negative propanotroph Azoarcus sp. DD4
  publication-title: Environ. Sci. Technol. Lett.
  doi: 10.1021/acs.estlett.8b00312
– volume: 20
  start-page: 511
  issue: 4
  year: 2008
  ident: 10.1016/j.jhazmat.2021.125157_bib30
  article-title: Biodegradation of 1,4-dioxane and transformation of related cyclic compounds by a newly isolated Mycobacterium sp. PH06
  publication-title: Biodegradation
  doi: 10.1007/s10532-008-9240-0
– volume: 544
  start-page: 2
  year: 2014
  ident: 10.1016/j.jhazmat.2021.125157_bib24
  article-title: Flavin dependent monooxygenases
  publication-title: Arch. Biochem. Biophys.
  doi: 10.1016/j.abb.2013.12.005
– volume: 11
  start-page: 6369
  year: 2020
  ident: 10.1016/j.jhazmat.2021.125157_bib7
  article-title: Using metacommunity ecology to understand environmental metabolomes
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-19989-y
– volume: 35
  start-page: 81
  issue: 2
  year: 2015
  ident: 10.1016/j.jhazmat.2021.125157_bib32
  article-title: Bioaugmentation and propane biosparging for in situ biodegradation of 1, 4–dioxane
  publication-title: Groundw. Monit. Remediat.
  doi: 10.1111/gwmr.12093
– volume: 186
  start-page: 3117
  issue: 10
  year: 2004
  ident: 10.1016/j.jhazmat.2021.125157_bib14
  article-title: Toluene 3-monooxygenase of Ralstonia pickettii PKO1 is a para-hydroxylating enzyme
  publication-title: J. Bacteriol.
  doi: 10.1128/JB.186.10.3117-3123.2004
– volume: 41
  start-page: 7330
  issue: 21
  year: 2007
  ident: 10.1016/j.jhazmat.2021.125157_bib36
  article-title: Identification of the intermediates of in vivo oxidation of 1,4-dioxane by monooxygenase-containing bacteria
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es0705745
– year: 2020
  ident: 10.1016/j.jhazmat.2021.125157_bib39
  article-title: Profiling microbial community structures and functions in bioremediation strategies for treating 1, 4-dioxane-contaminated groundwater
  publication-title: J. Hazard. Mater.
– volume: 5
  start-page: 86
  issue: 2
  year: 2018
  ident: 10.1016/j.jhazmat.2021.125157_bib10
  article-title: A novel propane monooxygenase initiating degradation of 1,4-dioxane by Mycobacterium dioxanotrophicus PH06
  publication-title: Environ. Sci. Technol. Lett.
  doi: 10.1021/acs.estlett.7b00504
– volume: 6
  start-page: 410
  issue: 2
  year: 2012
  ident: 10.1016/j.jhazmat.2021.125157_bib37
  article-title: Sustainable syntrophic growth of Dehalococcoides ethenogenes strain 195 with Desulfovibrio vulgaris Hildenborough and Methanobacterium congolense: global transcriptomic and proteomic analyses
  publication-title: ISME J.
  doi: 10.1038/ismej.2011.111
– volume: 96
  start-page: 180
  year: 2020
  ident: 10.1016/j.jhazmat.2021.125157_bib56
  article-title: Comprehensive analysis of DNA adducts (DNA adductome analysis) in the liver of rats treated with 1,4-dioxane
  publication-title: Proc. Jpn. Acad. Ser. B Phys. Biol. Sci.
  doi: 10.2183/pjab.96.015
– volume: 100
  start-page: 4283
  issue: 10
  year: 2016
  ident: 10.1016/j.jhazmat.2021.125157_bib17
  article-title: Mixed consortia in bioprocesses: role of microbial interactions
  publication-title: Appl. Microbiol. Biotechnol.
  doi: 10.1007/s00253-016-7448-1
– volume: 204
  start-page: 765
  year: 2017
  ident: 10.1016/j.jhazmat.2021.125157_bib65
  article-title: Advances in bioremediation of 1,4-dioxane-contaminated waters
  publication-title: J. Environ. Manag.
  doi: 10.1016/j.jenvman.2017.05.033
– volume: 54
  start-page: 10149
  issue: 16
  year: 2020
  ident: 10.1016/j.jhazmat.2021.125157_bib67
  article-title: Oral exposure to 1,4-dioxane induces hepatic inflammation in mice: the potential promoting effect of the gut microbiome
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.0c01543
– volume: 19
  start-page: 55
  year: 2021
  ident: 10.1016/j.jhazmat.2021.125157_bib13
  article-title: Gut microbiota in human metabolic health and disease
  publication-title: Nat. Rev. Microbiol.
  doi: 10.1038/s41579-020-0433-9
– volume: 39
  start-page: 79
  issue: 1
  year: 2019
  ident: 10.1016/j.jhazmat.2021.125157_bib8
  article-title: Bioremediation through microbes: systems biology and metabolic engineering approach
  publication-title: Crit. Rev. Biotechnol.
  doi: 10.1080/07388551.2018.1500997
– volume: 12
  start-page: 2376
  year: 2018
  ident: 10.1016/j.jhazmat.2021.125157_bib3
  article-title: Identification of active and taxonomically diverse 1,4-dioxane degraders in a full-scale activated sludge system by high-sensitivity stable isotope probing
  publication-title: ISME J.
  doi: 10.1038/s41396-018-0201-2
– volume: 742
  year: 2020
  ident: 10.1016/j.jhazmat.2021.125157_bib47
  article-title: Exploring novel Cr(VI) remediation genes for Cr(VI)-contaminated industrial wastewater treatment by comparative metatranscriptomics and metagenomics
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2020.140435
– volume: 71
  start-page: 1254
  issue: 3
  year: 2005
  ident: 10.1016/j.jhazmat.2021.125157_bib45
  article-title: Degradation of 1,4-dioxane and cyclic ethers by an isolated fungus
  publication-title: Appl. Environ. Microbiol.
  doi: 10.1128/AEM.71.3.1254-1258.2005
– volume: 28
  start-page: 453
  year: 2017
  ident: 10.1016/j.jhazmat.2021.125157_bib21
  article-title: Potential for cometabolic biodegradation of 1,4-dioxane in aquifers with methane or ethane as primary substrates
  publication-title: Biodegradation
  doi: 10.1007/s10532-017-9808-7
– volume: 23
  start-page: 23
  issue: 4
  year: 2013
  ident: 10.1016/j.jhazmat.2021.125157_bib31
  article-title: Oxidation of cyclic ethers by alkane-grown Mycobacterium vaccae JOB5
  publication-title: Remediat. J.
  doi: 10.1002/rem.21364
– volume: 228
  start-page: 149
  year: 2019
  ident: 10.1016/j.jhazmat.2021.125157_bib50
  article-title: 1,4-Dioxane exposure induces kidney damage in mice by perturbing specific renal metabolic pathways: an integrated omics insight into the underlying mechanisms
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2019.04.111
– volume: 27
  start-page: 277
  year: 2016
  ident: 10.1016/j.jhazmat.2021.125157_bib27
  article-title: 1, 4-Dioxane degradation potential of members of the genera Pseudonocardia and Rhodococcus
  publication-title: Biodegradation
  doi: 10.1007/s10532-016-9772-7
– volume: 66
  start-page: 2822
  issue: 7
  year: 2000
  ident: 10.1016/j.jhazmat.2021.125157_bib55
  article-title: Enrichment of an endosulfan-degrading mixed cacterial culture
  publication-title: Appl. Environ. Microbiol.
  doi: 10.1128/AEM.66.7.2822-2828.2000
– volume: 7
  start-page: 1
  issue: 1
  year: 2019
  ident: 10.1016/j.jhazmat.2021.125157_bib62
  article-title: An integrated meta-omics approach reveals substrates involved in synergistic interactions in a bisphenol A (BPA)-degrading microbial community
  publication-title: Microbiome
  doi: 10.1186/s40168-019-0634-5
– volume: 11
  start-page: 5790
  year: 2020
  ident: 10.1016/j.jhazmat.2021.125157_bib38
  article-title: Synergistic biodegradation of aromatic-aliphatic copolyester plastic by a marine microbial consortium
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-19583-2
– volume: 234
  start-page: 3077
  year: 1959
  ident: 10.1016/j.jhazmat.2021.125157_bib63
  article-title: The relationship of glycolic acid to respiration and photosynthesis in tobacco leaves
  publication-title: J. Biol. Chem.
  doi: 10.1016/S0021-9258(18)69624-3
– volume: 85
  issue: 11
  year: 2019
  ident: 10.1016/j.jhazmat.2021.125157_bib60
  article-title: Microbial community analysis provides insights into the effects of tetrahydrofuran on 1,4-dioxane biodegradation
  publication-title: Appl. Environ. Microbiol.
  doi: 10.1128/AEM.00244-19
– volume: 104
  start-page: 4155
  year: 2020
  ident: 10.1016/j.jhazmat.2021.125157_bib51
  article-title: Anaerobic 1,4-dioxane biodegradation and microbial community analysis in microcosms inoculated with soils or sediments and different electron acceptors
  publication-title: Appl. Microbiol. Biotechnol.
  doi: 10.1007/s00253-020-10512-3
– volume: 52
  start-page: 13914
  issue: 23
  year: 2018
  ident: 10.1016/j.jhazmat.2021.125157_bib9
  article-title: Abundance of chlorinated solvent and 1,4-dioxane degrading microorganisms at five chlorinated solvent contaminated sites determined via shotgun sequencing
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.8b04895
– volume: 31
  start-page: 23
  year: 2020
  ident: 10.1016/j.jhazmat.2021.125157_bib26
  article-title: Carbon sources that enable enrichment of 1, 4-dioxane-degrading bacteria in landfill leachate
  publication-title: Biodegradation
  doi: 10.1007/s10532-019-09891-w
– volume: 40
  start-page: 5435
  issue: 17
  year: 2006
  ident: 10.1016/j.jhazmat.2021.125157_bib35
  article-title: Kinetics of 1,4-dioxane biodegradation by monooxygenase-expressing bacteria
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es060714v
– volume: 79
  start-page: 7702
  issue: 24
  year: 2013
  ident: 10.1016/j.jhazmat.2021.125157_bib52
  article-title: Oxidation of the cyclic ethers 1,4-dioxane and tetrahydrofuran by a monooxygenase in two Pseudonocardia species
  publication-title: Appl. Environ. Microbiol.
  doi: 10.1128/AEM.02418-13
– volume: 173
  year: 2020
  ident: 10.1016/j.jhazmat.2021.125157_bib42
  article-title: Monitoring, assessment, and prediction of microbial shifts in coupled catalysis and biodegradation of 1,4-dioxane and co-contaminants
  publication-title: Water Res.
  doi: 10.1016/j.watres.2020.115540
– volume: 78
  start-page: 3298
  issue: 9
  year: 2012
  ident: 10.1016/j.jhazmat.2021.125157_bib19
  article-title: Glyoxylate metabolism is a key feature of the metabolic degradation of 1,4-dioxane by Pseudonocardia dioxanivorans strain CB1190
  publication-title: Appl. Environ. Microbiol.
  doi: 10.1128/AEM.00067-12
– volume: 174
  year: 2020
  ident: 10.1016/j.jhazmat.2021.125157_bib61
  article-title: A complete route for biodegradation of potentially carcinogenic cyanotoxin microcystin-LR in a novel indigenous bacterium
  publication-title: Water Res.
  doi: 10.1016/j.watres.2020.115638
– volume: 243
  start-page: 573
  year: 2018
  ident: 10.1016/j.jhazmat.2021.125157_bib66
  article-title: Co-contaminant effects on 1,4-dioxane biodegradation in packed soil column flow-through systems
  publication-title: Environ. Pollut.
  doi: 10.1016/j.envpol.2018.09.018
– volume: 6
  start-page: 49
  issue: 1
  year: 2019
  ident: 10.1016/j.jhazmat.2021.125157_bib48
  article-title: A mixed microbial community for the biodegradation of chlorinated ethenes and 1,4-dioxane
  publication-title: Environ. Sci. Technol. Lett.
  doi: 10.1021/acs.estlett.8b00591
– volume: 106
  start-page: 133
  year: 2016
  ident: 10.1016/j.jhazmat.2021.125157_bib4
  article-title: Intermediates and substrate interaction of 1,4-dioxane degradation by the effective metabolizer Xanthobacter flavus DT8
  publication-title: Int. Biodeterior. Biodegrad.
  doi: 10.1016/j.ibiod.2015.09.018
– volume: 371
  start-page: 193
  year: 2019
  ident: 10.1016/j.jhazmat.2021.125157_bib5
  article-title: Removal of 1,4-dioxane by titanium silicalite-1: separation mechanisms and bioregeneration of sorption sites
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2019.03.285
– volume: 51
  start-page: 12619
  issue: 21
  year: 2017
  ident: 10.1016/j.jhazmat.2021.125157_bib28
  article-title: Synergistic treatment of mixed 1, 4-dioxane and chlorinated solvent contaminations by coupling electrochemical oxidation with aerobic biodegradation
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.7b03134
– volume: 25
  start-page: 402
  issue: 4
  year: 2001
  ident: 10.1016/j.jhazmat.2021.125157_bib33
  article-title: Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method
  publication-title: Methods
  doi: 10.1006/meth.2001.1262
– volume: 149
  start-page: 74
  year: 2019
  ident: 10.1016/j.jhazmat.2021.125157_bib40
  article-title: Response and recovery of microbial communities subjected to oxidative and biological treatments of 1,4-dioxane and co-contaminants
  publication-title: Water Res.
  doi: 10.1016/j.watres.2018.10.070
– year: 2020
  ident: 10.1016/j.jhazmat.2021.125157_bib43
– volume: 49
  start-page: 11281
  issue: 19
  year: 2015
  ident: 10.1016/j.jhazmat.2021.125157_bib2
  article-title: “Omics” insights into PAH degradation toward improved green remediation biotechnologies
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.5b01740
– volume: 18
  start-page: 334
  issue: 1
  year: 2017
  ident: 10.1016/j.jhazmat.2021.125157_bib18
  article-title: A comprehensive multi-omics approach uncovers adaptations for growth and survival of Pseudomonas aeruginosa on n-alkanes
  publication-title: BMC Genom.
  doi: 10.1186/s12864-017-3708-4
– volume: 54
  start-page: 10088
  issue: 16
  year: 2020
  ident: 10.1016/j.jhazmat.2021.125157_bib29
  article-title: Integrated omics elucidate the mechanisms driving the rapid biodegradation of Deepwater Horizon oil in intertidal sediments undergoing oxic-anoxic cycles
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.0c02834
– volume: 8
  start-page: 1228
  issue: 7
  year: 2006
  ident: 10.1016/j.jhazmat.2021.125157_bib6
  article-title: Soluble di-iron monooxygenase gene diversity in soils, sediments and ethene enrichments
  publication-title: Environ. Microbiol.
  doi: 10.1111/j.1462-2920.2006.01015.x
– start-page: 589
  year: 1999
  ident: 10.1016/j.jhazmat.2021.125157_bib25
  article-title: 1,4-Dioxane
– volume: 28
  start-page: 107
  year: 2018
  ident: 10.1016/j.jhazmat.2021.125157_bib57
  article-title: Comparative proteomic analysis of propane metabolism in Mycobacterium sp. strain ENV421 and Rhodococcus sp. strain ENV425
  publication-title: J. Mol. Microbiol. Biotechnol.
– volume: 80
  start-page: 3209
  issue: 10
  year: 2014
  ident: 10.1016/j.jhazmat.2021.125157_bib16
  article-title: Identification of biomarker genes to predict biodegradation of 1,4-dioxane
  publication-title: Appl. Environ. Microbiol.
  doi: 10.1128/AEM.04162-13
– volume: 12
  start-page: 1
  issue: 5
  year: 2018
  ident: 10.1016/j.jhazmat.2021.125157_bib41
  article-title: Microbial responses to combined oxidation and catalysis treatment of 1,4-dioxane and co-contaminants in groundwater and soil
  publication-title: Front. Environ. Sci. Eng.
  doi: 10.1007/s11783-018-1071-6
SSID ssj0001754
Score 2.4896367
Snippet This study used integrated omics technologies to investigate the potential novel pathways and enzymes for 1,4-dioxane degradation by a consortium enriched from...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 125157
SubjectTerms (S)-2-hydroxy-acid oxidase
activated sludge
Biodegradation
ethylene glycol
genes
magnetism
metabolomics
microbial communities
Microbial community
Multi omics
nucleotide sequences
oxalic acid
remediation
sequence analysis
sewage treatment
Synergetic
tricarboxylic acid cycle
wastewater treatment
Xanthobacter
Title Identification of novel 1,4-dioxane degraders and related genes from activated sludge by taxonomic and functional gene sequence analysis
URI https://dx.doi.org/10.1016/j.jhazmat.2021.125157
https://www.ncbi.nlm.nih.gov/pubmed/33540262
https://www.proquest.com/docview/2487152789
https://www.proquest.com/docview/2524283516
Volume 412
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwELYoXNpDRelroUWu1GOzS5KxkxwRKtpCxaVF4mb5FbqrVYLKLgUOnPnZzNgJUIkWiWMcj2R57PnGnvnGjH1GjJESXeXEiUInkINLjDB1IgCHrb0BHbMtDuT4EPaOxNES2-m5MJRW2dn-aNODte5aRt1sjk4mk9EPCuoh3EKWBgYoEc0BClrlw6u7NA-Ex1hCiiIA2PuOxTOaDqe_9CU6hnhMzNIhQT2h1MP49C__M-DQ7ip72TmQfDuO8RVb8s0ae3GvrOAae_Zd_3nNriMHt-4u5Xhb86Y98zOefoHETdpz3XjuqFYE5TJz3TgeiC3e8WMygJyYJ5x4D2eh8XS2cMeemws-1-eRzRyECBnjhWKQ431yNv6M9U7esMPdrz93xkn37kJiQcIcT5Oll0JXFOPzIGtpUw9GmqwSJSoPHUSZo2HIM5G7LVPVNi8Km9beGQuixP9v2XLTNv4947rwprQeXLHlgWr5FbmVRC-XLpW2qAYM-tlWtitKTm9jzFSffTZVnZIUKUlFJQ3Y8FbsJFbleEyg7FWp_lpeCpHjMdFPveoVbj2Kp6B-2sWpyvCwR68Cl9V_-ogslLRL5YC9i-vmdsQ53bllMlt_-uA22HP6oty1VHxgy_PfC_8RvaS52QzbYJOtbH_bHx_cAMRbEZ4
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKOQAHVAqUhRaMBDey2zi2kxw4oEK1pUsvtFJvxq-UXa2Sit3tgwNn_g9_kBk7aUECKiH1Gmekkceeh2e-GUJegI2RElzlxIlcJzzjLjHCVIngwLb2hutYbbEnhwf8_aE4XCI_OiwMllW2uj_q9KCt2y-DdjcHx-Px4CMm9cDccpYGBGhXWbnrz08hbpu93nkLQn7J2Pa7_a1h0o4WSCyXfA4BU-Gl0CWmsTyXlbSp50YaVooC-AMfSGZw9jMmMrdpyspmeW7TyjtjuSg0jooAvX-Tg7rAsQn9b5d1JWCPY88qTDkAe5ewocGkP_msv4InCnEpS_voW6BZ_LNB_JvDGwzf9gq523qs9E3clHtkyder5M4vfQxXyY2RPr1PvkfQb9W-AtKmonVz4qc0fcUTN27OdO2pw-YUWDxNde1oQNJ4R49Q41KEulAEWpyEj7Ppwh15as7pXJ9F-HQgQlMcXzADHe2qwWExNlh5QA6uRRoPyXLd1P4RoTr3prCeu3zTc2wemGdWIp5dulTavOwR3u22sm0XdBzGMVVdudtEtUJSKCQVhdQj_Quy49gG5CqCohOl-u08KzBVV5E-70Sv4K5jAgfk0yxmikF0iWOIi_If_wgWeuilskfW4rm54DjDRz4m2eP_Z-4ZuTXc_zBSo5293SfkNq5g4Vwq1sny_MvCb4CLNjdPw5Wg5NN138Gf29JL-g
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Identification+of+novel+1%2C4-dioxane+degraders+and+related+genes+from+activated+sludge+by+taxonomic+and+functional+gene+sequence+analysis&rft.jtitle=Journal+of+hazardous+materials&rft.au=Chen%2C+Ruihuan&rft.au=Miao%2C+Yu&rft.au=Liu%2C+Yun&rft.au=Zhang%2C+Lan&rft.date=2021-06-15&rft.issn=0304-3894&rft.volume=412&rft.spage=125157&rft_id=info:doi/10.1016%2Fj.jhazmat.2021.125157&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_jhazmat_2021_125157
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0304-3894&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0304-3894&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0304-3894&client=summon