Development of a SARS-CoV-2 Vaccine Candidate Using Plant-Based Manufacturing and a Tobacco Mosaic Virus-like Nano-Particle
Stable, effective, easy-to-manufacture vaccines are critical to stopping the COVID-19 pandemic resulting from the coronavirus SARS-CoV-2. We constructed a vaccine candidate CoV-RBD121-NP, which is comprised of the SARS-CoV-2 receptor-binding domain (RBD) of the spike glycoprotein (S) fused to a huma...
Saved in:
Published in | Vaccines (Basel) Vol. 9; no. 11; p. 1347 |
---|---|
Main Authors | , , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
17.11.2021
MDPI |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Stable, effective, easy-to-manufacture vaccines are critical to stopping the COVID-19 pandemic resulting from the coronavirus SARS-CoV-2. We constructed a vaccine candidate CoV-RBD121-NP, which is comprised of the SARS-CoV-2 receptor-binding domain (RBD) of the spike glycoprotein (S) fused to a human IgG1 Fc domain (CoV-RBD121) and conjugated to a modified tobacco mosaic virus (TMV) nanoparticle. In vitro, CoV-RBD121 bound to the host virus receptor ACE2 and to the monoclonal antibody CR3022, a neutralizing antibody that blocks S binding to ACE2. The CoV-RBD121-NP vaccine candidate retained key SARS-CoV-2 spike protein epitopes, had consistent manufacturing release properties of safety, identity, and strength, and displayed stable potency when stored for 12 months at 2–8 °C or 22–28 °C. Immunogenicity studies revealed strong antibody responses in C57BL/6 mice with non-adjuvanted or adjuvanted (7909 CpG) formulations. The non-adjuvanted vaccine induced a balanced Th1/Th2 response and antibodies that recognized both the S1 domain and full S protein from SARS2-CoV-2, whereas the adjuvanted vaccine induced a Th1-biased response. Both adjuvanted and non-adjuvanted vaccines induced virus neutralizing titers as measured by three different assays. Collectively, these data showed the production of a stable candidate vaccine for COVID-19 through the association of the SARS-CoV-2 RBD with the TMV-like nanoparticle. |
---|---|
AbstractList | Stable, effective, easy-to-manufacture vaccines are critical to stopping the COVID-19 pandemic resulting from the coronavirus SARS-CoV-2. We constructed a vaccine candidate CoV-RBD121-NP, which is comprised of the SARS-CoV-2 receptor-binding domain (RBD) of the spike glycoprotein (S) fused to a human IgG1 Fc domain (CoV-RBD121) and conjugated to a modified tobacco mosaic virus (TMV) nanoparticle. In vitro, CoV-RBD121 bound to the host virus receptor ACE2 and to the monoclonal antibody CR3022, a neutralizing antibody that blocks S binding to ACE2. The CoV-RBD121-NP vaccine candidate retained key SARS-CoV-2 spike protein epitopes, had consistent manufacturing release properties of safety, identity, and strength, and displayed stable potency when stored for 12 months at 2–8 °C or 22–28 °C. Immunogenicity studies revealed strong antibody responses in C57BL/6 mice with non-adjuvanted or adjuvanted (7909 CpG) formulations. The non-adjuvanted vaccine induced a balanced Th1/Th2 response and antibodies that recognized both the S1 domain and full S protein from SARS2-CoV-2, whereas the adjuvanted vaccine induced a Th1-biased response. Both adjuvanted and non-adjuvanted vaccines induced virus neutralizing titers as measured by three different assays. Collectively, these data showed the production of a stable candidate vaccine for COVID-19 through the association of the SARS-CoV-2 RBD with the TMV-like nanoparticle. Stable, effective, easy-to-manufacture vaccines are critical to stopping the COVID-19 pandemic resulting from the coronavirus SARS-CoV-2. We constructed a vaccine candidate CoV-RBD121-NP, which is comprised of the SARS-CoV-2 receptor-binding domain (RBD) of the spike glycoprotein (S) fused to a human IgG1 Fc domain (CoV-RBD121) and conjugated to a modified tobacco mosaic virus (TMV) nanoparticle. In vitro, CoV-RBD121 bound to the host virus receptor ACE2 and to the monoclonal antibody CR3022, a neutralizing antibody that blocks S binding to ACE2. The CoV-RBD121-NP vaccine candidate retained key SARS-CoV-2 spike protein epitopes, had consistent manufacturing release properties of safety, identity, and strength, and displayed stable potency when stored for 12 months at 2-8 °C or 22-28 °C. Immunogenicity studies revealed strong antibody responses in C57BL/6 mice with non-adjuvanted or adjuvanted (7909 CpG) formulations. The non-adjuvanted vaccine induced a balanced Th1/Th2 response and antibodies that recognized both the S1 domain and full S protein from SARS2-CoV-2, whereas the adjuvanted vaccine induced a Th1-biased response. Both adjuvanted and non-adjuvanted vaccines induced virus neutralizing titers as measured by three different assays. Collectively, these data showed the production of a stable candidate vaccine for COVID-19 through the association of the SARS-CoV-2 RBD with the TMV-like nanoparticle.Stable, effective, easy-to-manufacture vaccines are critical to stopping the COVID-19 pandemic resulting from the coronavirus SARS-CoV-2. We constructed a vaccine candidate CoV-RBD121-NP, which is comprised of the SARS-CoV-2 receptor-binding domain (RBD) of the spike glycoprotein (S) fused to a human IgG1 Fc domain (CoV-RBD121) and conjugated to a modified tobacco mosaic virus (TMV) nanoparticle. In vitro, CoV-RBD121 bound to the host virus receptor ACE2 and to the monoclonal antibody CR3022, a neutralizing antibody that blocks S binding to ACE2. The CoV-RBD121-NP vaccine candidate retained key SARS-CoV-2 spike protein epitopes, had consistent manufacturing release properties of safety, identity, and strength, and displayed stable potency when stored for 12 months at 2-8 °C or 22-28 °C. Immunogenicity studies revealed strong antibody responses in C57BL/6 mice with non-adjuvanted or adjuvanted (7909 CpG) formulations. The non-adjuvanted vaccine induced a balanced Th1/Th2 response and antibodies that recognized both the S1 domain and full S protein from SARS2-CoV-2, whereas the adjuvanted vaccine induced a Th1-biased response. Both adjuvanted and non-adjuvanted vaccines induced virus neutralizing titers as measured by three different assays. Collectively, these data showed the production of a stable candidate vaccine for COVID-19 through the association of the SARS-CoV-2 RBD with the TMV-like nanoparticle. |
Author | Demarco, Jennifer K. Borisevich, Viktoriya Shepherd, John Pogue, Gregory P. Webby, Richard J. Hume, Steve Morton, Josh Phillips, Amanda McCormick, Alison A. Swope, Kelsi Royal, Joshua M. Oh, Youngjun Bratcher, Barry Simpson, Carrie A. Geisbert, Thomas W. Cross, Robert W. DeBeauchamp, Jennifer L. Haydon, Hugh |
AuthorAffiliation | 3 Department of Infectious Disease, St. Jude Children’s Hospital, Memphis, TN 38105, USA; Jennifer.DeBeauchamp@stjude.org (J.L.D.); richard.webby@stjude.org (R.J.W.) 2 Department of Biological & Pharmaceutical Sciences, Touro University California, Vallejo, CA 95688, USA; amccormi@touro.edu 4 Galveston National Laboratory, Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77550, USA; rwcross@UTMB.EDU (R.W.C.); viborise@utmb.edu (V.B.); twgeisbe@utmb.edu (T.W.G.) 6 IC² Institute, University of Texas at Austin, Austin, TX 78805, USA 5 Center for Predictive Medicine for Biodefense and Emerging Infectious Diseases, School of Medicine, University of Louisville, Louisville, KY 40202, USA; jennifer.wolf.2@louisville.edu 1 Kentucky BioProcessing, Inc., Owensboro, KY 42301, USA; simpsoc3@kentuckybioprocessing.com (C.A.S.); phillia2@kentuckybioprocessing.com (A.P.); humes@kentuckybioprocessing.com (S.H.); mortonj2@kentuckybioprocessing.com (J.M.); shephej@ke |
AuthorAffiliation_xml | – name: 2 Department of Biological & Pharmaceutical Sciences, Touro University California, Vallejo, CA 95688, USA; amccormi@touro.edu – name: 6 IC² Institute, University of Texas at Austin, Austin, TX 78805, USA – name: 1 Kentucky BioProcessing, Inc., Owensboro, KY 42301, USA; simpsoc3@kentuckybioprocessing.com (C.A.S.); phillia2@kentuckybioprocessing.com (A.P.); humes@kentuckybioprocessing.com (S.H.); mortonj2@kentuckybioprocessing.com (J.M.); shephej@kentuckybioprocessing.com (J.S.); ohy@kentuckybioprocessing.com (Y.O.); swopek@kentuckybioprocessing.com (K.S.); bratchb1@rjrt.com (B.B.); haydonh@kentuckybioprocessing.com (H.H.); pogueg1@RJRT.com (G.P.P.) – name: 3 Department of Infectious Disease, St. Jude Children’s Hospital, Memphis, TN 38105, USA; Jennifer.DeBeauchamp@stjude.org (J.L.D.); richard.webby@stjude.org (R.J.W.) – name: 4 Galveston National Laboratory, Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77550, USA; rwcross@UTMB.EDU (R.W.C.); viborise@utmb.edu (V.B.); twgeisbe@utmb.edu (T.W.G.) – name: 5 Center for Predictive Medicine for Biodefense and Emerging Infectious Diseases, School of Medicine, University of Louisville, Louisville, KY 40202, USA; jennifer.wolf.2@louisville.edu |
Author_xml | – sequence: 1 givenname: Joshua M. orcidid: 0000-0002-4243-2667 surname: Royal fullname: Royal, Joshua M. – sequence: 2 givenname: Carrie A. surname: Simpson fullname: Simpson, Carrie A. – sequence: 3 givenname: Alison A. surname: McCormick fullname: McCormick, Alison A. – sequence: 4 givenname: Amanda surname: Phillips fullname: Phillips, Amanda – sequence: 5 givenname: Steve surname: Hume fullname: Hume, Steve – sequence: 6 givenname: Josh surname: Morton fullname: Morton, Josh – sequence: 7 givenname: John surname: Shepherd fullname: Shepherd, John – sequence: 8 givenname: Youngjun surname: Oh fullname: Oh, Youngjun – sequence: 9 givenname: Kelsi orcidid: 0000-0003-1085-0319 surname: Swope fullname: Swope, Kelsi – sequence: 10 givenname: Jennifer L. surname: DeBeauchamp fullname: DeBeauchamp, Jennifer L. – sequence: 11 givenname: Richard J. orcidid: 0000-0002-4397-7132 surname: Webby fullname: Webby, Richard J. – sequence: 12 givenname: Robert W. orcidid: 0000-0001-7718-1522 surname: Cross fullname: Cross, Robert W. – sequence: 13 givenname: Viktoriya surname: Borisevich fullname: Borisevich, Viktoriya – sequence: 14 givenname: Thomas W. surname: Geisbert fullname: Geisbert, Thomas W. – sequence: 15 givenname: Jennifer K. surname: Demarco fullname: Demarco, Jennifer K. – sequence: 16 givenname: Barry surname: Bratcher fullname: Bratcher, Barry – sequence: 17 givenname: Hugh surname: Haydon fullname: Haydon, Hugh – sequence: 18 givenname: Gregory P. surname: Pogue fullname: Pogue, Gregory P. |
BookMark | eNp1ks1v1DAQxSNUREvpmaslLlxC_RUnviCV5atSCxVtV9ysiTNZvGTtxU5WQvzzeNlFoivhiy3Pe79nj-ZpceSDx6J4zugrITQ934C1zmPSjDEh60fFCae1KoUWX4_-OR8XZyktaV6aiUbVT4pjIRtR8bo5KX69xQ0OYb1CP5LQEyC3F19uy1mYl5zMdwFkBr5zHYxI7pPzC3IzgB_LN5CwI9fgpx7sOMVtJQsz4i602RnIdUjgLJm7OKVycN-RfAIfyhuIo7MDPise9zAkPNvvp8X9-3d3s4_l1ecPl7OLq9JKJcey6tsKu962rBWItlaATPAeaM8kdgo0o9hxQTslqcXOCtvyXNJaaewVR3FaXO64XYClWUe3gvjTBHDmz0WIC7N_kZGiVczyutISpEVsWg21YgwUr2yFTWa93rHWU7vKYbltEYYH0IcV776ZRdiYRjFN9Rbwcg-I4ceEaTQrlywOuaUYpmS4opIyoRuWpS8OpMswRZ9btVVxzmquqqyqdiobQ0oRe2PdCKML23w3GEbNdlrMwbRk3_mB7-8n_uf4DVZbxaU |
CitedBy_id | crossref_primary_10_3390_bioengineering10020148 crossref_primary_10_1039_D4NR05354K crossref_primary_10_1016_j_cropd_2023_100028 crossref_primary_10_3389_fpls_2022_963756 crossref_primary_10_3389_fpls_2023_1202570 crossref_primary_10_3390_vaccines12010037 crossref_primary_10_1007_s40259_022_00544_8 crossref_primary_10_3389_fpls_2023_1325162 crossref_primary_10_1371_journal_pone_0277668 crossref_primary_10_1111_pbi_13908 crossref_primary_10_3389_fpls_2022_995429 crossref_primary_10_1021_jacs_2c09160 crossref_primary_10_1002_bip_23563 crossref_primary_10_3390_life13030617 crossref_primary_10_3390_biology12070983 crossref_primary_10_1136_bmj_q1153 crossref_primary_10_3389_fbioe_2022_867119 crossref_primary_10_3390_vaccines11081347 crossref_primary_10_3390_ijms252211979 crossref_primary_10_1134_S1021443724607778 crossref_primary_10_31857_S0026898424030047 crossref_primary_10_3390_ijms24021701 crossref_primary_10_1016_j_hlife_2024_09_002 crossref_primary_10_1128_iai_00019_24 crossref_primary_10_1186_s12951_022_01469_8 crossref_primary_10_1016_j_heliyon_2024_e37634 crossref_primary_10_31857_S0015330324050045 crossref_primary_10_3389_fimmu_2024_1392898 crossref_primary_10_3389_fpls_2023_1146234 crossref_primary_10_3390_plants11243425 crossref_primary_10_1016_j_colsurfb_2024_114251 crossref_primary_10_1080_21645515_2022_2087412 crossref_primary_10_3389_fpls_2023_1290042 crossref_primary_10_3390_ijms232415684 crossref_primary_10_3390_vaccines9111346 crossref_primary_10_1007_s12257_022_0107_8 crossref_primary_10_1016_j_virol_2022_11_004 crossref_primary_10_1021_acsnano_2c06143 crossref_primary_10_1021_acsanm_3c00787 crossref_primary_10_1016_j_trechm_2024_06_004 crossref_primary_10_3390_vaccines12050448 crossref_primary_10_1016_j_ejmech_2023_116000 crossref_primary_10_1134_S0026893324700043 crossref_primary_10_1002_cbic_202200040 crossref_primary_10_1038_s42003_024_06982_0 crossref_primary_10_3390_vaccines11081372 crossref_primary_10_1002_agt2_274 crossref_primary_10_3390_plants11081093 |
Cites_doi | 10.1016/j.cell.2019.01.046 10.1016/S1473-3099(10)70262-0 10.1038/nri1732 10.1016/j.vaccine.2006.06.003 10.1038/s41579-020-00468-6 10.3389/fmicb.2018.01195 10.1038/s41586-020-2798-3 10.4161/hv.27567 10.1038/s41423-020-0400-4 10.1101/2020.04.20.051219 10.1002/adma.202005637 10.1371/annotation/3b62fdef-4cdd-40cc-b69d-69afd2000c4f 10.1038/s41586-021-03365-x 10.1016/j.cell.2020.10.043 10.1016/j.vaccine.2006.04.058 10.1016/j.cell.2020.06.025 10.1007/s00281-017-0629-x 10.3389/fimmu.2019.01722 10.1021/bc060124m 10.1016/j.vaccine.2016.09.063 10.1016/S0140-6736(20)32014-6 10.1128/JVI.79.17.11335-11342.2005 10.3389/fimmu.2019.00736 10.1002/wnan.1447 10.1038/srep00124 10.1038/s41467-020-16256-y 10.1021/acsnano.8b02805 10.1016/j.vaccine.2006.08.011 10.1007/s12250-018-0009-2 10.1038/s41591-021-01370-1 10.1002/jcp.28120 10.1016/j.vaccine.2014.04.051 10.1371/annotation/2965cfae-b77d-4014-8b7b-236e01a35492 10.1126/science.abc2241 10.3389/fcimb.2013.00013 10.1016/j.smim.2017.08.014 10.1128/JVI.00671-11 10.1016/j.virol.2005.12.039 10.1371/journal.pone.0130858 10.1016/j.virol.2009.07.018 10.1586/14760584.7.1.33 10.1126/science.abc5902 10.1038/s41577-020-00434-6 10.1016/j.vaccine.2006.10.031 10.1016/S0065-2776(07)96002-2 |
ContentType | Journal Article |
Copyright | 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2021 by the authors. 2021 |
Copyright_xml | – notice: 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2021 by the authors. 2021 |
DBID | AAYXX CITATION 3V. 7T7 7XB 8FD 8FE 8FH 8FK 8G5 ABUWG AEUYN AFKRA AZQEC BBNVY BENPR BHPHI C1K CCPQU COVID DWQXO FR3 GNUQQ GUQSH HCIFZ LK8 M2O M7P MBDVC P64 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 5PM DOA |
DOI | 10.3390/vaccines9111347 |
DatabaseName | CrossRef ProQuest Central (Corporate) Industrial and Applied Microbiology Abstracts (Microbiology A) ProQuest Central (purchase pre-March 2016) Technology Research Database ProQuest SciTech Collection ProQuest Natural Science Collection ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Research Library ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection Environmental Sciences and Pollution Management ProQuest One Community College Coronavirus Research Database ProQuest Central Korea Engineering Research Database ProQuest Central Student Research Library Prep SciTech Premium Collection Biological Sciences Research Library Biological Science Database Research Library (Corporate) Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) Directory of Open Access Journals - May need to register for free articles |
DatabaseTitle | CrossRef Publicly Available Content Database Research Library Prep ProQuest Central Student Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College Research Library (Alumni Edition) ProQuest Natural Science Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability Natural Science Collection ProQuest Central Korea Biological Science Collection ProQuest Research Library Industrial and Applied Microbiology Abstracts (Microbiology A) ProQuest Central (New) ProQuest Biological Science Collection ProQuest Central Basic ProQuest One Academic Eastern Edition Coronavirus Research Database Biological Science Database ProQuest SciTech Collection Biotechnology and BioEngineering Abstracts ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | Publicly Available Content Database MEDLINE - Academic CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Pharmacy, Therapeutics, & Pharmacology |
EISSN | 2076-393X |
ExternalDocumentID | oai_doaj_org_article_43b61c27594a4cee8b9a7611a625c5e8 PMC8619098 10_3390_vaccines9111347 |
GeographicLocations | United States--US |
GeographicLocations_xml | – name: United States--US |
GroupedDBID | 53G 5VS 8FE 8FH 8G5 AADQD AAHBH AAYXX ABUWG ADBBV AEUYN AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS AOIJS AZQEC BBNVY BCNDV BENPR BHPHI BPHCQ CCPQU CITATION DIK DWQXO GNUQQ GROUPED_DOAJ GUQSH HCIFZ HYE IAO IHR ITC KQ8 LK8 M2O M48 M7P MODMG M~E OK1 PGMZT PHGZM PHGZT PIMPY PQQKQ PROAC RNS RPM 3V. 7T7 7XB 8FD 8FK C1K COVID FR3 MBDVC P64 PKEHL PQEST PQGLB PQUKI PRINS Q9U 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c464t-5fb5edfcb1b3eec76ae132fa0f14ed6a910ed230d640cedc3cb2f149969ef62e3 |
IEDL.DBID | M48 |
ISSN | 2076-393X |
IngestDate | Wed Aug 27 01:29:44 EDT 2025 Thu Aug 21 18:01:30 EDT 2025 Mon Jul 21 10:26:44 EDT 2025 Fri Jul 25 11:01:01 EDT 2025 Tue Jul 01 02:25:01 EDT 2025 Thu Apr 24 22:58:33 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 11 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c464t-5fb5edfcb1b3eec76ae132fa0f14ed6a910ed230d640cedc3cb2f149969ef62e3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-4397-7132 0000-0003-1085-0319 0000-0002-4243-2667 0000-0001-7718-1522 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.3390/vaccines9111347 |
PMID | 34835278 |
PQID | 2602217265 |
PQPubID | 2032320 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_43b61c27594a4cee8b9a7611a625c5e8 pubmedcentral_primary_oai_pubmedcentral_nih_gov_8619098 proquest_miscellaneous_2604013981 proquest_journals_2602217265 crossref_citationtrail_10_3390_vaccines9111347 crossref_primary_10_3390_vaccines9111347 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20211117 |
PublicationDateYYYYMMDD | 2021-11-17 |
PublicationDate_xml | – month: 11 year: 2021 text: 20211117 day: 17 |
PublicationDecade | 2020 |
PublicationPlace | Basel |
PublicationPlace_xml | – name: Basel |
PublicationTitle | Vaccines (Basel) |
PublicationYear | 2021 |
Publisher | MDPI AG MDPI |
Publisher_xml | – name: MDPI AG – name: MDPI |
References | Ward (ref_38) 2021; 27 Krueger (ref_44) 2019; 10 Wu (ref_37) 2020; 368 Barnes (ref_45) 2020; 182 Andreano (ref_4) 2019; 10 Kemnade (ref_16) 2014; 32 Krammer (ref_5) 2020; 586 ref_19 Bruun (ref_11) 2018; 12 Gregory (ref_6) 2013; 3 Wang (ref_47) 2020; 11 Palmer (ref_23) 2006; 24 Jeyanathan (ref_48) 2020; 20 Mekhaiel (ref_36) 2011; 1 Walls (ref_39) 2020; 183 ref_25 Cole (ref_49) 2005; 302 Mohsen (ref_8) 2017; 34 Olotu (ref_42) 2011; 11 Channappanavar (ref_32) 2017; 39 Steele (ref_12) 2017; 9 Brouwer (ref_46) 2020; 369 Ward (ref_14) 2020; 396 McCormick (ref_15) 2008; 7 Darroudi (ref_7) 2019; 234 Pewe (ref_31) 2005; 79 Arnaboldi (ref_20) 2016; 34 Mallajosyula (ref_21) 2014; 10 Mansour (ref_22) 2018; 9 Jaume (ref_27) 2011; 85 ref_33 McCormick (ref_13) 2006; 17 Jaume (ref_28) 2012; 18 Perlman (ref_30) 2005; 5 Du (ref_35) 2007; 25 Kratzel (ref_1) 2021; 19 Marcandalli (ref_9) 2019; 176 McCormick (ref_17) 2006; 24 Smith (ref_18) 2006; 348 Du (ref_34) 2009; 393 ref_43 Tai (ref_24) 2020; 17 Petrosillo (ref_2) 2020; 26 Luo (ref_29) 2018; 33 ref_40 Schoenborn (ref_50) 2007; 96 ref_3 Ellis (ref_10) 2021; 592 Kam (ref_26) 2007; 25 Huang (ref_41) 2020; 32 |
References_xml | – volume: 176 start-page: 1420 year: 2019 ident: ref_9 article-title: Induction of Potent Neutralizing Antibody Responses by a Designed Protein Nanoparticle Vaccine for Respiratory Syncytial Virus publication-title: Cell doi: 10.1016/j.cell.2019.01.046 – volume: 11 start-page: 102 year: 2011 ident: ref_42 article-title: Efficacy of RTS,S/AS01E Malaria Vaccine and Exploratory Analysis on Anti-Circumsporozoite Antibody Titres and Protection in Children Aged 5-17 Months in Kenya and Tanzania: A Randomised Controlled Trial publication-title: Lancet Infect. Dis. doi: 10.1016/S1473-3099(10)70262-0 – volume: 5 start-page: 917 year: 2005 ident: ref_30 article-title: Immunopathogenesis of Coronavirus Infections: Implications for SARS publication-title: Nat. Rev. Immunol. doi: 10.1038/nri1732 – volume: 24 start-page: 6414 year: 2006 ident: ref_17 article-title: TMV-Peptide Fusion Vaccines Induce Cell-Mediated Immune Responses and Tumor Protection in Two Murine Models publication-title: Vaccine doi: 10.1016/j.vaccine.2006.06.003 – volume: 302 start-page: 191 year: 2005 ident: ref_49 article-title: Interferon-Gamma ELISPOT Assay for the Quantitative Measurement of Antigen-Specific Murine CD8+ T-Cells publication-title: Methods Mol. Biol. – volume: 19 start-page: 155 year: 2021 ident: ref_1 article-title: Coronavirus Biology and Replication: Implications for SARS-CoV-2 publication-title: Nat. Rev. Microbiol. doi: 10.1038/s41579-020-00468-6 – volume: 9 start-page: 1195 year: 2018 ident: ref_22 article-title: An Improved Tobacco Mosaic Virus (TMV)-Conjugated Multiantigen Subunit Vaccine Against Respiratory Tularemia publication-title: Front. Microbiol. doi: 10.3389/fmicb.2018.01195 – volume: 586 start-page: 516 year: 2020 ident: ref_5 article-title: SARS-CoV-2 Vaccines in Development publication-title: Nature doi: 10.1038/s41586-020-2798-3 – volume: 10 start-page: 586 year: 2014 ident: ref_21 article-title: Single-Dose Monomeric HA Subunit Vaccine Generates Full Protection from Influenza Challenge publication-title: Hum. Vaccines Immunother. doi: 10.4161/hv.27567 – volume: 17 start-page: 613 year: 2020 ident: ref_24 article-title: Characterization of the Receptor-Binding Domain (RBD) of 2019 Novel Coronavirus: Implication for Development of RBD Protein as a Viral Attachment Inhibitor and Vaccine publication-title: Cell. Mol. Immunol. doi: 10.1038/s41423-020-0400-4 – ident: ref_25 doi: 10.1101/2020.04.20.051219 – volume: 32 start-page: e2005637 year: 2020 ident: ref_41 article-title: SARS-CoV-2 RBD Neutralizing Antibody Induction Is Enhanced by Particulate Vaccination publication-title: Adv. Mater. Deerfield Beach Fla doi: 10.1002/adma.202005637 – ident: ref_43 doi: 10.1371/annotation/3b62fdef-4cdd-40cc-b69d-69afd2000c4f – volume: 592 start-page: 623 year: 2021 ident: ref_10 article-title: Quadrivalent Influenza Nanoparticle Vaccines Induce Broad Protection publication-title: Nature doi: 10.1038/s41586-021-03365-x – volume: 183 start-page: 1367 year: 2020 ident: ref_39 article-title: Elicitation of Potent Neutralizing Antibody Responses by Designed Protein Nanoparticle Vaccines for SARS-CoV-2 publication-title: Cell doi: 10.1016/j.cell.2020.10.043 – volume: 24 start-page: 5516 year: 2006 ident: ref_23 article-title: Protection of Rabbits against Cutaneous Papillomavirus Infection Using Recombinant Tobacco Mosaic Virus Containing L2 Capsid Epitopes publication-title: Vaccine doi: 10.1016/j.vaccine.2006.04.058 – volume: 182 start-page: 828 year: 2020 ident: ref_45 article-title: Structures of Human Antibodies Bound to SARS-CoV-2 Spike Reveal Common Epitopes and Recurrent Features of Antibodies publication-title: Cell doi: 10.1016/j.cell.2020.06.025 – volume: 26 start-page: 729 year: 2020 ident: ref_2 article-title: COVID-19, SARS and MERS: Are They Closely Related? publication-title: Clin. Microbiol. Infect. Off. Publ. Eur. Soc. Clin. Microbiol. Infect. Dis. – volume: 39 start-page: 529 year: 2017 ident: ref_32 article-title: Pathogenic Human Coronavirus Infections: Causes and Consequences of Cytokine Storm and Immunopathology publication-title: Semin. Immunopathol. doi: 10.1007/s00281-017-0629-x – volume: 10 start-page: 1722 year: 2019 ident: ref_4 article-title: Vaccine Evolution and Its Application to Fight Modern Threats publication-title: Front. Immunol. doi: 10.3389/fimmu.2019.01722 – volume: 17 start-page: 1330 year: 2006 ident: ref_13 article-title: Chemical Conjugate TMV-Peptide Bivalent Fusion Vaccines Improve Cellular Immunity and Tumor Protection publication-title: Bioconjug. Chem. doi: 10.1021/bc060124m – volume: 34 start-page: 5768 year: 2016 ident: ref_20 article-title: Intranasal Delivery of a Protein Subunit Vaccine Using a Tobacco Mosaic Virus Platform Protects against Pneumonic Plague publication-title: Vaccine doi: 10.1016/j.vaccine.2016.09.063 – volume: 396 start-page: 1491 year: 2020 ident: ref_14 article-title: Efficacy, Immunogenicity, and Safety of a Plant-Derived, Quadrivalent, Virus-like Particle Influenza Vaccine in Adults (18-64 Years) and Older Adults (≥65 Years): Two Multicentre, Randomised Phase 3 Trials publication-title: Lancet Lond. Engl. doi: 10.1016/S0140-6736(20)32014-6 – volume: 79 start-page: 11335 year: 2005 ident: ref_31 article-title: A Severe Acute Respiratory Syndrome-Associated Coronavirus-Specific Protein Enhances Virulence of an Attenuated Murine Coronavirus publication-title: J. Virol. doi: 10.1128/JVI.79.17.11335-11342.2005 – volume: 10 start-page: 736 year: 2019 ident: ref_44 article-title: RNA and Toll-Like Receptor 7 License the Generation of Superior Secondary Plasma Cells at Multiple Levels in a B Cell Intrinsic Fashion publication-title: Front. Immunol. doi: 10.3389/fimmu.2019.00736 – volume: 9 start-page: e1447 year: 2017 ident: ref_12 article-title: Synthetic Plant Virology for Nanobiotechnology and Nanomedicine publication-title: Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. doi: 10.1002/wnan.1447 – volume: 1 start-page: 124 year: 2011 ident: ref_36 article-title: Polymeric Human Fc-Fusion Proteins with Modified Effector Functions publication-title: Sci. Rep. doi: 10.1038/srep00124 – volume: 11 start-page: 2251 year: 2020 ident: ref_47 article-title: A Human Monoclonal Antibody Blocking SARS-CoV-2 Infection publication-title: Nat. Commun. doi: 10.1038/s41467-020-16256-y – volume: 18 start-page: 31 year: 2012 ident: ref_28 article-title: SARS CoV Subunit Vaccine: Antibody-Mediated Neutralisation and Enhancement publication-title: Hong Kong Med. J. – ident: ref_3 – volume: 12 start-page: 8855 year: 2018 ident: ref_11 article-title: Engineering a Rugged Nanoscaffold To Enhance Plug-and-Display Vaccination publication-title: ACS Nano doi: 10.1021/acsnano.8b02805 – volume: 25 start-page: 729 year: 2007 ident: ref_26 article-title: Antibodies against Trimeric S Glycoprotein Protect Hamsters against SARS-CoV Challenge despite Their Capacity to Mediate FcgammaRII-Dependent Entry into B Cells in Vitro publication-title: Vaccine doi: 10.1016/j.vaccine.2006.08.011 – volume: 33 start-page: 201 year: 2018 ident: ref_29 article-title: Evaluation of Antibody-Dependent Enhancement of SARS-CoV Infection in Rhesus Macaques Immunized with an Inactivated SARS-CoV Vaccine publication-title: Virol. Sin. doi: 10.1007/s12250-018-0009-2 – volume: 27 start-page: 1071 year: 2021 ident: ref_38 article-title: Phase 1 Randomized Trial of a Plant-Derived Virus-like Particle Vaccine for COVID-19 publication-title: Nat. Med. doi: 10.1038/s41591-021-01370-1 – volume: 234 start-page: 12530 year: 2019 ident: ref_7 article-title: Nanovaccine: A Novel Approach in Immunization publication-title: J. Cell. Physiol. doi: 10.1002/jcp.28120 – ident: ref_40 – volume: 32 start-page: 4228 year: 2014 ident: ref_16 article-title: Tobacco Mosaic Virus Efficiently Targets DC Uptake, Activation and Antigen-Specific T Cell Responses in Vivo publication-title: Vaccine doi: 10.1016/j.vaccine.2014.04.051 – ident: ref_33 doi: 10.1371/annotation/2965cfae-b77d-4014-8b7b-236e01a35492 – volume: 368 start-page: 1274 year: 2020 ident: ref_37 article-title: A Noncompeting Pair of Human Neutralizing Antibodies Block COVID-19 Virus Binding to Its Receptor ACE2 publication-title: Science doi: 10.1126/science.abc2241 – volume: 3 start-page: 13 year: 2013 ident: ref_6 article-title: Vaccine Delivery Using Nanoparticles publication-title: Front. Cell. Infect. Microbiol. doi: 10.3389/fcimb.2013.00013 – volume: 34 start-page: 123 year: 2017 ident: ref_8 article-title: Major Findings and Recent Advances in Virus-like Particle (VLP)-Based Vaccines publication-title: Semin. Immunol. doi: 10.1016/j.smim.2017.08.014 – volume: 85 start-page: 10582 year: 2011 ident: ref_27 article-title: Anti-Severe Acute Respiratory Syndrome Coronavirus Spike Antibodies Trigger Infection of Human Immune Cells via a PH- and Cysteine Protease-Independent FcγR Pathway publication-title: J. Virol. doi: 10.1128/JVI.00671-11 – volume: 348 start-page: 475 year: 2006 ident: ref_18 article-title: Modified Tobacco Mosaic Virus Particles as Scaffolds for Display of Protein Antigens for Vaccine Applications publication-title: Virology doi: 10.1016/j.virol.2005.12.039 – ident: ref_19 doi: 10.1371/journal.pone.0130858 – volume: 393 start-page: 144 year: 2009 ident: ref_34 article-title: Recombinant Receptor-Binding Domain of SARS-CoV Spike Protein Expressed in Mammalian, Insect and E. Coli Cells Elicits Potent Neutralizing Antibody and Protective Immunity publication-title: Virology doi: 10.1016/j.virol.2009.07.018 – volume: 7 start-page: 33 year: 2008 ident: ref_15 article-title: Genetically Engineered Tobacco Mosaic Virus as Nanoparticle Vaccines publication-title: Expert Rev. Vaccines doi: 10.1586/14760584.7.1.33 – volume: 369 start-page: 643 year: 2020 ident: ref_46 article-title: Potent Neutralizing Antibodies from COVID-19 Patients Define Multiple Targets of Vulnerability publication-title: Science doi: 10.1126/science.abc5902 – volume: 20 start-page: 615 year: 2020 ident: ref_48 article-title: Immunological Considerations for COVID-19 Vaccine Strategies publication-title: Nat. Rev. Immunol. doi: 10.1038/s41577-020-00434-6 – volume: 25 start-page: 2832 year: 2007 ident: ref_35 article-title: Receptor-Binding Domain of SARS-CoV Spike Protein Induces Long-Term Protective Immunity in an Animal Model publication-title: Vaccine doi: 10.1016/j.vaccine.2006.10.031 – volume: 96 start-page: 41 year: 2007 ident: ref_50 article-title: Regulation of Interferon-Gamma during Innate and Adaptive Immune Responses publication-title: Adv. Immunol. doi: 10.1016/S0065-2776(07)96002-2 |
SSID | ssj0000913867 |
Score | 2.4167645 |
Snippet | Stable, effective, easy-to-manufacture vaccines are critical to stopping the COVID-19 pandemic resulting from the coronavirus SARS-CoV-2. We constructed a... |
SourceID | doaj pubmedcentral proquest crossref |
SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database |
StartPage | 1347 |
SubjectTerms | ACE2 Angiotensin-converting enzyme 2 Antigens Binding Chromatography Coronaviruses COVID-19 COVID-19 vaccines CpG islands Disease transmission Epitopes Fatalities Glycoproteins Humidity Immunogenicity Immunoglobulin G Infections Influenza Lymphocytes T Manufacturing Monoclonal antibodies nanoparticle Nanoparticles Neutralizing Pandemics Pathogens Peptides plant-based manufacturing Proteins receptor-binding domain Receptors Respiratory diseases SARS-CoV-2 vaccine Severe acute respiratory syndrome coronavirus 2 Spike glycoprotein Spike protein Tobacco Transmission electron microscopy Vaccines Viral diseases Viruses |
SummonAdditionalLinks | – databaseName: Directory of Open Access Journals - May need to register for free articles dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEBYlp15Kn9RtWlQooYeosS1Zso_J0hAKW5Zms-Rm9KRLg13i3ULIn8-M7GzsQumlV0s28mhGMx-a-YaQj8oVmefasaBsyoQqU6ZzLpgR0gnlwelrBIrzb_LsQny9LC5Hrb4wJ6ynB-4FdyS4kZnNVVEJLeBEL02lAXpnGgJ3W_hY5gs-bwSm4hlcZbyUqufy4YDrj35rizfVHRo3x2YqIzcU2fonIeY0QXLkcU6fkidDqEiP-yU-I49885wcLHqu6ZtDunwoneoO6QFdPLBQ37wgt6N0INoGqun58fdzNmtXLKerfpl0hkUtiPlpTB2g2MJow07Aszk6180Wyx5iHSOFifCJJVi_tS2dt51eW7paX287drX-6Smc0i1bDOJ8SS5OvyxnZ2zotMCskGLDimAK74I1meHeWyW1B5QadBoy4Z3UEFN4B2DFSZFaEAu3JochwEqVDzL3_BXZa9rGvya0ghhGKIM3wJWoONcBYjzHXeDeuqwICfl8L_jaDjTk2A3jqgY4gjtV_7FTCfm0e-FXz8Dx96knuJO7aUidHR-AQtWDBOp_KVRC9u_1oB7suasB9eXYyksWCfmwGwZLxOsV3fh2G-cgWK3KLCFqoj-TBU1HmvWPyOldApBNq_LN__iDt-Rxjpk3mKyo9sne5nrr30HotDHvo5XcAT7HGvQ priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELZge-GCykuEFmQkVHGoaRI7dnJC3VWrCrHVqt2ueoscP8oKlJTNLlLFn2cmyT6CBNfYSSzb8_g8428I-aBsEjmuLfPKhEyoNGQ65oIVQlqhHBh9jUBxfCkvbsSX2-S2O3Cru7TKtU5sFLWtDJ6Rn4DfHWMxJZl8vv_JsGoURle7EhqPyR6o4DQdkL3h2eXkanPKgqyXqVQtpw8HfH_ySxuMWNco5ByLquyYo4a1v-dq9hMldyzP-T552rmM9LRd42fkkSufk6NJyzn9cEyn2ytU9TE9opMtG_XDC_J7Jy2IVp5qen16dc1G1YzFdNYOk47wcgtif9qkEFAsZbRkQ7Bwlo51ucLrD819Rgod4RNT0ALGVHRc1Xpu6Gy-WNXs6_y7o6CtKzbp9uNLcnN-Nh1dsK7iAjNCiiVLfJE4600RFdw5o6R2gFa9Dn0knJUafAtnAbRYKUID08JNEUMTYKbMeRk7_ooMyqp0rwnNwJcRqsBIcCYyzrUHX89y67kzNkp8QD6tJz43HR05VsX4kQMswZXK_1qpgHzcvHDfMnH8u-sQV3LTDSm0mwfV4i7vZiAXvJCRiVWSCS3AVUiLTCsZRRoQoUlcGpDD9T7IO7mu8-0uDMj7TTNIJIZZdOmqVdMHQWuWRgFRvf3TG1C_pZx_a7i9UwC0YZa--f_PD8iTGHNrMB1RHZLBcrFyb8E5WhbvOgn4A8CBE-g priority: 102 providerName: ProQuest |
Title | Development of a SARS-CoV-2 Vaccine Candidate Using Plant-Based Manufacturing and a Tobacco Mosaic Virus-like Nano-Particle |
URI | https://www.proquest.com/docview/2602217265 https://www.proquest.com/docview/2604013981 https://pubmed.ncbi.nlm.nih.gov/PMC8619098 https://doaj.org/article/43b61c27594a4cee8b9a7611a625c5e8 |
Volume | 9 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3Nb9MwFLdgu3BBfIrAqIyEJg7zSGLHjg8IrdWmCalTtbVVb5FjO6OiSqBpERX_PM9O2i5oSFxjx0reh9_72e8DoffCJJGlypBC6JAwkYZExZSRnHHDhAWjrxxQHF7xywn7Mktm-3ZALQHre6Gd6yc1WS5Of_3YfAaF_-QQJ0D2jz-VdpfQtdNbysRDdAhmSbh2BsPW1_fbsoxo6jvKxoDdCZV01pT6uW-NjpXyxfw7Hmg3fvKOQbp4gh63niQ-a1j_FD2w5TN0PGpKUW9O8HifWVWf4GM82hep3jxHv-9EC-GqwArfnF3fkEE1JTGeNp-JBy7nxR0JYB9ZgF2HoxXpg-EzeKjKtcuK8GmOGCbCEmPYHLSu8LCq1Vzj6Xy5rsli_s1i2MQrMmrF9AWaXJyPB5ekbcRANONsRZIiT6wpdB7l1FotuLIAYgsVFhGzhitwOawBLGM4CzWQheo8hiGAUtIWPLb0JTooq9K-QliCi8NE7i6IJZOUqgJcQENNQa02UVIE6HRL-Ey3Vcpds4xFBmjFcSr7i1MB-rB74XtToOPfU_uOk7tprrK2f1Atb7OWAhmjOY90LBLJFAMPIs2lEjyKFABFndg0QEdbOci20poBKIxdpy-eBOjdbhgU1d2-qNJWaz_HYVmZRgESHfnpfFB3pJx_9SW_U8C5oUxf___PvkGPYhd-4yIWxRE6WC3X9i34T6u8hw7751ej654_f-h5LfkDehAfew |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELdG9wAviE9RGGAkmHiYWRI7TvKA0Fo2daytqq2r9pY5trNVoGQ0Lajif-Jv5C5Jv5Dgba-xk1i-893vfF-EvA2M71quDEsD7TARhA5THhcsEdKIwILSV2go9vqycy6-XPgXW-T3IhcGwyoXMrEU1CbXeEe-D7jbw2ZK0v90851h1yj0ri5aaFRscWLnP8FkKz4efwb6vvO8o8Nhu8PqrgJMCymmzE8T35pUJ27CrdWBVBYsslQ5qSuskQr0pzUAzI0UjrZGc514MAR2QWRT6VkO371DtgWHBTXIduuwPzhd3upglc1QBlUNIc4jZ_-H0ughL1CocGzisqb-yi4BG9B2MzBzTdMdPSD3a4hKDyqeeki2bPaI7A6qGtfzPTpcpWwVe3SXDlbVr-ePya-1MCSap1TRs4PTM9bOR8yjo2qZtI3JNHjXQMuQBYqtk6asBRrV0J7KZphuUeZPUpgInxiC1NE6p728UGNNR-PJrGDd8VdLQTvkbFDz_xNyfiu0eEoaWZ7ZZ4RGgJ1EkKDnORIR5yoFbGm4SbnVxvXTJvmw2PhY1-XPsQvHtxjMIKRU_BelmuT98oWbqvLHv6e2kJLLaViyu3yQT67iegdiwRPpai_wI6EEQJMwiVQgXVeBBap9GzbJzoIP4lqOFPGK65vkzXIYJAC6dVRm81k5B43kKHSbJNjgn40FbY5k4-uylngIBrQThc____PX5G5n2OvG3eP-yQtyz8O4HgyFDHZIYzqZ2ZcAzKbJq_o0UHJ52wfwD9ovU3M |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLZGJyFeEFdRNsBIMPEw0yR24uQBobVbtbG1qrau2ltwbIdVoGQ0Lajin_HrOCdJb0jwttfYcSIfn8vncyPkjTS-a7kyLJXaYUKGDlMeFywRgRHSgtJXCBR7_eD4Uny68q-2yO9FLgyGVS5kYimoTa7xjrwFdreHzZQCv5XWYRGDw-7Hm-8MO0ihp3XRTqM6Iqd2_hPgW_Hh5BBo_dbzukfDzjGrOwwwLQIxZX6a-NakOnETbq2WgbKAzlLlpK6wJlCgS60BI90EwtHWaK4TD4YAI0Q2DTzLYd07ZFsiKmqQ7fZRf3C-vOHBipthIKt6QpxHTuuH0ugtL1DAcGzosqYKy44BG2buZpDmmtbrPiD3a3OVHlTn6yHZstkjsjeo6l3P9-lwlb5V7NM9OlhVwp4_Jr_WQpJonlJFLw7OL1gnHzGPjqrfpB1MrMF7B1qGL1BsozRlbdCuhvZUNsPUizKXksJEWGIIEkjrnPbyQo01HY0ns4Kdjb9aCpoiZ4OaF56Qy1uhxVPSyPLMPiM0AjtKyAS90JGIOFcp2JmGm5RbbVw_bZL3i42PdV0KHTtyfIsBEiGl4r8o1STvli_cVFVA_j21jZRcTsPy3eWDfPIlrncgFjwJXO1JPxJKgJkSJpGSgesqQKPat2GT7C7OQVzLlCJecUCTvF4OgzRAF4_KbD4r5yBgjkK3SeTG-dn4oc2RbHxd1hUPAUw7Ufj8_x9_Re4C48VnJ_3THXLPwxAfjIqUu6QxnczsC7DRpsnLmhko-Xzb_PcHNH1XqA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Development+of+a+SARS-CoV-2+Vaccine+Candidate+Using+Plant-Based+Manufacturing+and+a+Tobacco+Mosaic+Virus-like+Nano-Particle&rft.jtitle=Vaccines+%28Basel%29&rft.au=Royal%2C+Joshua+M.&rft.au=Simpson%2C+Carrie+A.&rft.au=McCormick%2C+Alison+A.&rft.au=Phillips%2C+Amanda&rft.date=2021-11-17&rft.issn=2076-393X&rft.eissn=2076-393X&rft.volume=9&rft.issue=11&rft.spage=1347&rft_id=info:doi/10.3390%2Fvaccines9111347&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_vaccines9111347 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2076-393X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2076-393X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2076-393X&client=summon |