Federated learning for medical image analysis: A survey
Machine learning in medical imaging often faces a fundamental dilemma, namely, the small sample size problem. Many recent studies suggest using multi-domain data pooled from different acquisition sites/centers to improve statistical power. However, medical images from different sites cannot be easil...
Saved in:
Published in | Pattern recognition Vol. 151; p. 110424 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
England
Elsevier Ltd
01.07.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Machine learning in medical imaging often faces a fundamental dilemma, namely, the small sample size problem. Many recent studies suggest using multi-domain data pooled from different acquisition sites/centers to improve statistical power. However, medical images from different sites cannot be easily shared to build large datasets for model training due to privacy protection reasons. As a promising solution, federated learning, which enables collaborative training of machine learning models based on data from different sites without cross-site data sharing, has attracted considerable attention recently. In this paper, we conduct a comprehensive survey of the recent development of federated learning methods in medical image analysis. We have systematically gathered research papers on federated learning and its applications in medical image analysis published between 2017 and 2023. Our search and compilation were conducted using databases from IEEE Xplore, ACM Digital Library, Science Direct, Springer Link, Web of Science, Google Scholar, and PubMed. In this survey, we first introduce the background of federated learning for dealing with privacy protection and collaborative learning issues. We then present a comprehensive review of recent advances in federated learning methods for medical image analysis. Specifically, existing methods are categorized based on three critical aspects of a federated learning system, including client end, server end, and communication techniques. In each category, we summarize the existing federated learning methods according to specific research problems in medical image analysis and also provide insights into the motivations of different approaches. In addition, we provide a review of existing benchmark medical imaging datasets and software platforms for current federated learning research. We also conduct an experimental study to empirically evaluate typical federated learning methods for medical image analysis. This survey can help to better understand the current research status, challenges, and potential research opportunities in this promising research field.
•Summarize existing methods from a system perspective.•Introduce different methods in a “question–answer” paradigm.•Introduce software platforms and benchmark datasets.•Conduct an experimental study. |
---|---|
AbstractList | Machine learning in medical imaging often faces a fundamental dilemma, namely, the small sample size problem. Many recent studies suggest using multi-domain data pooled from different acquisition sites/centers to improve statistical power. However, medical images from different sites cannot be easily shared to build large datasets for model training due to privacy protection reasons. As a promising solution, federated learning, which enables collaborative training of machine learning models based on data from different sites without cross-site data sharing, has attracted considerable attention recently. In this paper, we conduct a comprehensive survey of the recent development of federated learning methods in medical image analysis. We have systematically gathered research papers on federated learning and its applications in medical image analysis published between 2017 and 2023. Our search and compilation were conducted using databases from IEEE Xplore, ACM Digital Library, Science Direct, Springer Link, Web of Science, Google Scholar, and PubMed. In this survey, we first introduce the background of federated learning for dealing with privacy protection and collaborative learning issues. We then present a comprehensive review of recent advances in federated learning methods for medical image analysis. Specifically, existing methods are categorized based on three critical aspects of a federated learning system, including client end, server end, and communication techniques. In each category, we summarize the existing federated learning methods according to specific research problems in medical image analysis and also provide insights into the motivations of different approaches. In addition, we provide a review of existing benchmark medical imaging datasets and software platforms for current federated learning research. We also conduct an experimental study to empirically evaluate typical federated learning methods for medical image analysis. This survey can help to better understand the current research status, challenges, and potential research opportunities in this promising research field.
•Summarize existing methods from a system perspective.•Introduce different methods in a “question–answer” paradigm.•Introduce software platforms and benchmark datasets.•Conduct an experimental study. Machine learning in medical imaging often faces a fundamental dilemma, namely, the small sample size problem. Many recent studies suggest using multi-domain data pooled from different acquisition sites/centers to improve statistical power. However, medical images from different sites cannot be easily shared to build large datasets for model training due to privacy protection reasons. As a promising solution, federated learning, which enables collaborative training of machine learning models based on data from different sites without cross-site data sharing, has attracted considerable attention recently. In this paper, we conduct a comprehensive survey of the recent development of federated learning methods in medical image analysis. We have systematically gathered research papers on federated learning and its applications in medical image analysis published between 2017 and 2023. Our search and compilation were conducted using databases from IEEE Xplore, ACM Digital Library, Science Direct, Springer Link, Web of Science, Google Scholar, and PubMed. In this survey, we first introduce the background of federated learning for dealing with privacy protection and collaborative learning issues. We then present a comprehensive review of recent advances in federated learning methods for medical image analysis. Specifically, existing methods are categorized based on three critical aspects of a federated learning system, including client end, server end, and communication techniques. In each category, we summarize the existing federated learning methods according to specific research problems in medical image analysis and also provide insights into the motivations of different approaches. In addition, we provide a review of existing benchmark medical imaging datasets and software platforms for current federated learning research. We also conduct an experimental study to empirically evaluate typical federated learning methods for medical image analysis. This survey can help to better understand the current research status, challenges, and potential research opportunities in this promising research field. Machine learning in medical imaging often faces a fundamental dilemma, namely, the small sample size problem. Many recent studies suggest using multi-domain data pooled from different acquisition sites/centers to improve statistical power. However, medical images from different sites cannot be easily shared to build large datasets for model training due to privacy protection reasons. As a promising solution, federated learning, which enables collaborative training of machine learning models based on data from different sites without cross-site data sharing, has attracted considerable attention recently. In this paper, we conduct a comprehensive survey of the recent development of federated learning methods in medical image analysis. We have systematically gathered research papers on federated learning and its applications in medical image analysis published between 2017 and 2023. Our search and compilation were conducted using databases from IEEE Xplore, ACM Digital Library, Science Direct, Springer Link, Web of Science, Google Scholar, and PubMed. In this survey, we first introduce the background of federated learning for dealing with privacy protection and collaborative learning issues. We then present a comprehensive review of recent advances in federated learning methods for medical image analysis. Specifically, existing methods are categorized based on three critical aspects of a federated learning system, including client end, server end, and communication techniques. In each category, we summarize the existing federated learning methods according to specific research problems in medical image analysis and also provide insights into the motivations of different approaches. In addition, we provide a review of existing benchmark medical imaging datasets and software platforms for current federated learning research. We also conduct an experimental study to empirically evaluate typical federated learning methods for medical image analysis. This survey can help to better understand the current research status, challenges, and potential research opportunities in this promising research field.Machine learning in medical imaging often faces a fundamental dilemma, namely, the small sample size problem. Many recent studies suggest using multi-domain data pooled from different acquisition sites/centers to improve statistical power. However, medical images from different sites cannot be easily shared to build large datasets for model training due to privacy protection reasons. As a promising solution, federated learning, which enables collaborative training of machine learning models based on data from different sites without cross-site data sharing, has attracted considerable attention recently. In this paper, we conduct a comprehensive survey of the recent development of federated learning methods in medical image analysis. We have systematically gathered research papers on federated learning and its applications in medical image analysis published between 2017 and 2023. Our search and compilation were conducted using databases from IEEE Xplore, ACM Digital Library, Science Direct, Springer Link, Web of Science, Google Scholar, and PubMed. In this survey, we first introduce the background of federated learning for dealing with privacy protection and collaborative learning issues. We then present a comprehensive review of recent advances in federated learning methods for medical image analysis. Specifically, existing methods are categorized based on three critical aspects of a federated learning system, including client end, server end, and communication techniques. In each category, we summarize the existing federated learning methods according to specific research problems in medical image analysis and also provide insights into the motivations of different approaches. In addition, we provide a review of existing benchmark medical imaging datasets and software platforms for current federated learning research. We also conduct an experimental study to empirically evaluate typical federated learning methods for medical image analysis. This survey can help to better understand the current research status, challenges, and potential research opportunities in this promising research field. |
ArticleNumber | 110424 |
Author | Liu, Mingxia Yap, Pew-Thian Bozoki, Andrea Guan, Hao |
AuthorAffiliation | a Department of Radiology and Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA b Department of Neurology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA |
AuthorAffiliation_xml | – name: a Department of Radiology and Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA – name: b Department of Neurology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA |
Author_xml | – sequence: 1 givenname: Hao surname: Guan fullname: Guan, Hao organization: Department of Radiology and Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA – sequence: 2 givenname: Pew-Thian surname: Yap fullname: Yap, Pew-Thian organization: Department of Radiology and Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA – sequence: 3 givenname: Andrea surname: Bozoki fullname: Bozoki, Andrea organization: Department of Neurology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA – sequence: 4 givenname: Mingxia orcidid: 0000-0002-0166-0807 surname: Liu fullname: Liu, Mingxia email: mingxia_liu@med.unc.edu organization: Department of Radiology and Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38559674$$D View this record in MEDLINE/PubMed |
BookMark | eNqFUUtLAzEQzqHio_oPRPbopTWvTXc9KCK-QPCi5zBNZmvKNqnJttB_b8qqqAc9Dcx8j-H7DsjAB4-EHDM6ZpSps_l4CZ0JszGnXI4Zo5LLAdmnVLCR4FTskYOU5pSyCZN8l-yJqixrNZH7ZHKLFiN0aIsWIXrnZ0UTYrFA6wy0hVvADAvw0G6SS-fFVZFWcY2bQ7LTQJvw6GMOycvtzfP1_ejx6e7h-upxZKSS3ahsQKGR07KpVGUrysqKczBWWC5rQFEyQxtjQUxricKWCpTgeV9jY6c1s2JILnvd5WqafzLouwitXsb8WNzoAE7_vHj3qmdhrRmtJ6ouWVY4_VCI4W2FqdMLlwy2LXgMq6RFDokJpVSdoSffzb5cPuPKgPMeYGJIKWKjjeugc2Hr7dpsqrd96Lnu-9DbPnTfRybLX-RP_X9oFz0Nc8xrh1En49CbXFBE02kb3N8C7-7IqQQ |
CitedBy_id | crossref_primary_10_61186_jsdp_21_3_23 crossref_primary_10_1016_j_compmedimag_2024_102473 crossref_primary_10_1016_j_patcog_2024_111248 crossref_primary_10_1007_s00059_024_05264_z crossref_primary_10_1002_cpe_8379 crossref_primary_10_1109_ACCESS_2025_3530297 crossref_primary_10_1515_mr_2024_0086 crossref_primary_10_1080_21642583_2024_2436664 crossref_primary_10_1109_ACCESS_2025_3538891 crossref_primary_10_1016_j_patcog_2025_111603 crossref_primary_10_1055_s_0044_1790232 crossref_primary_10_1109_TCYB_2024_3403927 crossref_primary_10_1109_ACCESS_2024_3413069 crossref_primary_10_1016_j_eswa_2024_125493 crossref_primary_10_3390_app15010378 crossref_primary_10_1007_s41870_024_02136_x crossref_primary_10_1049_2024_8821891 crossref_primary_10_3390_s25051590 crossref_primary_10_3390_covid4120140 crossref_primary_10_1016_j_jbi_2025_104802 crossref_primary_10_12677_sea_2024_134054 crossref_primary_10_1007_s10586_024_04846_0 crossref_primary_10_1007_s13246_025_01535_z crossref_primary_10_1016_j_patcog_2025_111455 crossref_primary_10_3390_diagnostics15030251 crossref_primary_10_3390_app15052693 crossref_primary_10_3390_electronics14051024 crossref_primary_10_1016_j_compbiomed_2025_109926 crossref_primary_10_1371_journal_pone_0305630 crossref_primary_10_1016_j_hjc_2024_12_002 crossref_primary_10_1016_j_patcog_2024_110824 crossref_primary_10_1038_s41598_024_76359_0 crossref_primary_10_1016_j_engappai_2024_109972 crossref_primary_10_3390_healthcare12242587 crossref_primary_10_1016_j_solener_2024_112942 crossref_primary_10_1145_3666089 crossref_primary_10_4018_IJeC_349745 crossref_primary_10_32604_cmes_2024_048932 crossref_primary_10_3390_computers13110293 crossref_primary_10_3390_make6040111 crossref_primary_10_1016_j_inffus_2025_102954 crossref_primary_10_61958_NDYE8925 crossref_primary_10_1007_s10844_025_00927_7 crossref_primary_10_1093_jamia_ocae259 crossref_primary_10_3390_cancers16122240 crossref_primary_10_3390_fi17030118 |
Cites_doi | 10.1609/aaai.v36i1.19993 10.1007/s10994-019-05855-6 10.1093/nsr/nwx106 10.1002/jmri.21049 10.1109/TMI.2014.2377694 10.1109/TMI.2022.3220757 10.1109/CVPR42600.2020.00975 10.1109/TMI.2022.3222126 10.1109/TMI.2023.3270140 10.1016/j.patcog.2017.10.009 10.1016/j.neuroimage.2023.119863 10.1109/TKDE.2021.3070203 10.1109/TPAMI.2020.2981604 10.1145/3460427 10.1016/j.ejmp.2021.04.016 10.1016/j.media.2019.03.009 10.1145/3447548.3467185 10.1109/ICCV.2017.244 10.1016/j.nic.2005.09.008 10.1109/TMI.2021.3090082 10.1016/j.media.2020.101759 10.3390/s21010167 10.1109/JSEN.2021.3076767 10.1109/TMI.2023.3263072 10.1109/JBHI.2018.2824327 10.1109/CVPR46437.2021.01607 10.1016/j.knosys.2021.106775 10.1145/3412357 10.1109/TII.2021.3138919 10.1109/CVPR.2017.369 10.1109/ACCESS.2021.3111118 10.1109/TMI.2022.3188728 10.1109/CVPR52688.2022.02020 10.1109/JBHI.2022.3185956 10.1145/3501813 10.1109/JBHI.2017.2731873 10.1038/s41746-020-00323-1 10.1038/s41598-018-37257-4 10.1109/ACCESS.2023.3260027 10.1038/s41598-022-05539-7 10.1109/JBHI.2022.3185673 10.1109/TNNLS.2022.3152527 10.1016/j.media.2021.101992 10.1145/3501296 10.1038/s41591-022-02155-w 10.2196/22269 10.1109/JBHI.2020.3040015 10.1109/TMI.2009.2028576 10.1016/j.media.2017.07.005 10.1016/j.asoc.2021.107330 10.1109/34.75512 10.1038/sdata.2018.161 10.1109/TMI.2022.3233574 10.1016/j.media.2013.12.002 10.1109/CVPR46437.2021.00245 10.1109/MSP.2020.2975749 10.1016/j.dib.2019.104863 10.1006/nimg.2001.0978 10.1109/TMI.2023.3235757 10.1038/mp.2013.78 10.1038/s41467-023-40687-y 10.1016/j.media.2022.102680 10.1016/j.media.2021.102305 10.1371/journal.pone.0224365 10.1016/j.media.2021.102298 10.1109/ACCESS.2021.3105929 10.1109/TMI.2022.3202106 10.1038/s41591-021-01506-3 10.1088/1361-6560/ac97d9 10.1038/s41598-022-07186-4 10.1016/j.media.2022.102424 10.1109/TNNLS.2013.2292894 10.1109/ACCESS.2020.3010287 10.1007/s00521-019-04051-w 10.1145/3298981 10.1561/2200000083 10.1109/TMI.2023.3239391 10.3390/data5040089 10.1109/TPAMI.2018.2858821 10.1109/TMI.2022.3225083 10.1109/RBME.2017.2651164 10.1109/TMI.2022.3233405 10.1016/j.media.2020.101765 10.1109/JIOT.2021.3056185 10.1109/TMI.2014.2303821 10.1038/s42256-021-00337-8 10.1007/s00521-020-05596-x 10.1109/TBME.2021.3117407 10.1109/TMI.2018.2837502 10.1038/ng.2764 10.1200/CCI.20.00060 10.1038/sdata.2016.3 10.1371/journal.pone.0255809 10.1109/TMI.2023.3234450 10.1109/ACCESS.2023.3238823 10.1109/CVPR46437.2021.00107 10.1109/JBHI.2022.3198440 10.1109/TMI.2022.3192483 10.1145/3570953 10.1609/aaai.v33i01.3301590 10.1109/TMI.2022.3220706 10.1016/j.media.2021.102136 10.1038/nn.4393 10.1109/JBHI.2023.3274498 10.1038/nature14539 10.1109/TMI.2021.3075856 10.1016/j.dib.2020.106221 10.1109/CVPR42600.2020.00674 10.1109/OJCS.2022.3206407 10.1016/j.neuroimage.2016.05.053 |
ContentType | Journal Article |
Copyright | 2024 Elsevier Ltd |
Copyright_xml | – notice: 2024 Elsevier Ltd |
DBID | AAYXX CITATION NPM 7X8 5PM |
DOI | 10.1016/j.patcog.2024.110424 |
DatabaseName | CrossRef PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | PubMed MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
ExternalDocumentID | PMC10976951 38559674 10_1016_j_patcog_2024_110424 S0031320324001754 |
Genre | Journal Article |
GrantInformation_xml | – fundername: NIA NIH HHS grantid: RF1 AG073297 – fundername: NIBIB NIH HHS grantid: R01 EB035160 |
GroupedDBID | --K --M -D8 -DT -~X .DC .~1 0R~ 123 1B1 1RT 1~. 1~5 29O 4.4 457 4G. 53G 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AATTM AAXKI AAXUO AAYFN ABBOA ABDPE ABEFU ABFNM ABFRF ABHFT ABJNI ABMAC ABWVN ABXDB ACBEA ACDAQ ACGFO ACGFS ACNNM ACRLP ACRPL ACZNC ADBBV ADEZE ADJOM ADMUD ADMXK ADNMO ADTZH AEBSH AECPX AEFWE AEIPS AEKER AENEX AFJKZ AFTJW AFXIZ AGCQF AGHFR AGQPQ AGUBO AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AKRWK ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU AOUOD APXCP ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC BNPGV CS3 DU5 EBS EFJIC EJD EO8 EO9 EP2 EP3 F0J F5P FD6 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HLZ HVGLF HZ~ H~9 IHE J1W JJJVA KOM KZ1 LG9 LMP LY1 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SBC SDF SDG SDP SDS SES SEW SPC SPCBC SSH SST SSV SSZ T5K TN5 UNMZH VOH WUQ XJE XPP ZMT ZY4 ~G- AAYWO AAYXX ACVFH ADCNI AEUPX AFPUW AGRNS AIGII AIIUN AKBMS AKYEP CITATION ABTAH AFKWA AJOXV AMFUW NPM PKN 7X8 5PM EFKBS |
ID | FETCH-LOGICAL-c464t-5fa6ec4b5f868d8015822acd3d249ae351c0fcda3b94e3d56a632ae39efdb91d3 |
IEDL.DBID | .~1 |
ISSN | 0031-3203 |
IngestDate | Thu Aug 21 18:32:39 EDT 2025 Fri Jul 11 14:30:39 EDT 2025 Wed Feb 19 02:04:38 EST 2025 Tue Jul 01 05:06:30 EDT 2025 Thu Apr 24 23:12:26 EDT 2025 Sat May 03 15:56:34 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Data privacy Federated learning Machine learning Medical image analysis |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c464t-5fa6ec4b5f868d8015822acd3d249ae351c0fcda3b94e3d56a632ae39efdb91d3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-0166-0807 |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/10976951 |
PMID | 38559674 |
PQID | 3031136669 |
PQPubID | 23479 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_10976951 proquest_miscellaneous_3031136669 pubmed_primary_38559674 crossref_citationtrail_10_1016_j_patcog_2024_110424 crossref_primary_10_1016_j_patcog_2024_110424 elsevier_sciencedirect_doi_10_1016_j_patcog_2024_110424 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-07-01 |
PublicationDateYYYYMMDD | 2024-07-01 |
PublicationDate_xml | – month: 07 year: 2024 text: 2024-07-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Pattern recognition |
PublicationTitleAlternate | Pattern Recognit |
PublicationYear | 2024 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Alkhunaizi, Kamzolov, Takáč, Nandakumar (b32) 2022 Q. Yang, J. Zhang, W. Hao, G.P. Spell, L. Carin, Flop: Federated learning on medical datasets using partial networks, in: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, 2021, pp. 3845–3853. K. He, H. Fan, Y. Wu, S. Xie, R. Girshick, Momentum contrast for unsupervised visual representation learning, in: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020, pp. 9729–9738. T Dinh, Tran, Nguyen (b40) 2020; 33 Li, Gu, Dvornek, Staib, Ventola, Duncan (b48) 2020; 65 Liu, Xu, Peng, Xiong (b83) 2018; 31 Ronneberger, Fischer, Brox (b37) 2015 Muckley, Riemenschneider, Radmanesh, Kim, Jeong, Ko, Jun, Shin, Hwang, Mostapha (b118) 2021; 40 Kairouz, McMahan, Avent, Bellet, Bennis, Bhagoji, Bonawitz, Charles, Cormode, Cummings (b14) 2021; 14 Dong, Kampffmeyer, Voiculescu (b127) 2022 Ke, Shen, Lu (b46) 2021 Spanhol, Oliveira, Petitjean, Heutte (b133) 2016 Sheller, Reina, Edwards, Martin, Bakas (b126) 2019 Peng, Wang, Dvornek, Zhu, Li (b81) 2023; 42 Yan, Wicaksana, Wang, Yang, Cheng (b53) 2020; 25 Zhu, Luo (b78) 2022 Liu, Li, Yuan (b154) 2022 Li, Wen, Wu, Hu, Wang, Li, Liu, He (b15) 2021 J.-Y. Zhu, T. Park, P. Isola, A.A. Efros, Unpaired image-to-image translation using cycle-consistent adversarial networks, in: Proceedings of the IEEE International Conference on Computer Vision, 2017, pp. 2223–2232. Deng, Dong, Socher, Li, Li, Fei-Fei (b6) 2009 Li, Milletarì, Xu, Rieke, Hancox, Zhu, Baust, Cheng, Ourselin, Cardoso (b90) 2019 X. Wang, Y. Peng, L. Lu, Z. Lu, M. Bagheri, R.M. Summers, Chestx-ray8: Hospital-scale chest X-ray database and benchmarks on weakly-supervised classification and localization of common thorax diseases, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017, pp. 2097–2106. Roth (b156) 2021 Cassidy, Kendrick, Brodzicki, Jaworek-Korjakowska, Yap (b114) 2022; 75 Hinton, Vinyals, Dean (b75) 2015 Chaitanya, Erdil, Karani, Konukoglu (b56) 2020; 33 Luo, Wu (b86) 2022 Miller (b106) 2016; 19 Yang, Liu, Chen, Tong (b17) 2019; 10 I. Misra, L.v.d. Maaten, Self-supervised learning of pretext-invariant representations, in: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020, pp. 6707–6717. Bernard (b111) 2018; 37 General Data Protection Regulation (b11) 2019 Zhang, Zhou, Lu, Wang, Zhu, Sun, Wang, Lo, Wang (b31) 2021; 8 A. Xu, W. Li, P. Guo, D. Yang, H.R. Roth, A. Hatamizadeh, C. Zhao, D. Xu, H. Huang, Z. Xu, Closing the generalization gap of cross-silo federated medical image segmentation, in: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2022, pp. 20866–20875. J. Irvin, et al., Chexpert: A large chest radiograph dataset with uncertainty labels and expert comparison, in: Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 33, 2019, pp. 590–597. H. Yin, A. Mallya, A. Vahdat, J.M. Alvarez, J. Kautz, P. Molchanov, See through gradients: Image batch recovery via gradinversion, in: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021, pp. 16337–16346. Wicaksana, Yan, Yang, Liu, Fan, Cheng (b39) 2022; 26 Wang, Lan, Liu, Ouyang, Qin, Lu, Chen, Zeng, Yu (b174) 2023; 35 Hosseini, Sikaroudi, Babaie, Tizhoosh (b84) 2023; 42 Adnan, Kalra, Cresswell, Taylor, Tizhoosh (b159) 2022; 12 Guan, Liu (b38) 2023; 268 Zhou, Liu, Qiao, Xiang, Loy (b173) 2023; 45 M. Malekzadeh, B. Hasircioglu, N. Mital, K. Katarya, M.E. Ozfatura, D. Gündüz, Dopamine: Differentially private federated learning on medical data, in: The Second AAAI Workshop on Privacy-Preserving Artificial Intelligence, PPAI-21, 2021, pp. 1–9. Wang, Lin, Wong (b110) 2020; 10 Chiruvella, Guddati (b28) 2021; 10 Gürler, Rekik (b120) 2023; 42 Noman, Rahaman, Pranto, Rahman (b183) 2023 Chakravarty, Kar, Sethuraman, Sheet (b43) 2021 M. Jiang, Z. Wang, Q. Dou, Harmofl: Harmonizing local and global drifts in federated learning on heterogeneous medical images, in: Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 36, 2022, pp. 1087–1095. Carbonneau, Cheplygina, Granger, Gagnon (b69) 2018; 77 Karimi, Dou, Warfield, Gholipour (b179) 2020; 65 Huang, Hu, Liu, Xue, Zhu, Song, Tan (b64) 2022 He (b77) 2023 Guan, Liu (b3) 2022; 69 Miyato, Maeda, Koyama, Ishii (b79) 2018; 41 T. Li, A.K. Sahu, M. Zaheer, M. Sanjabi, A. Talwalkar, V. Smith, Federated optimization in heterogeneous networks, in: Proceedings of Machine Learning and Systems, Vol. 2, 2020, pp. 429–450. Lyu, Yu, Ma, Chen, Sun, Zhao, Yang, Philip (b169) 2022 Di Martino (b103) 2014; 19 Qin, Yang, Gao, Hu, Shen (b178) 2022 LeCun, Bengio, Hinton (b5) 2015; 521 Zhang, Xie, Bai, Yu, Li, Gao (b19) 2021; 216 Rieke, Hancox, Li, Milletari, Roth, Albarqouni, Bakas, Galtier, Landman, Maier-Hein (b25) 2020; 3 Wagner, Fuchs, Tolkach, Mukhopadhyay (b47) 2022 Silva, Altmann, Gutman, Lorenzi (b98) 2020 Yang, Shi, Ni (b119) 2021 Chowdhury, Rahman, Khandakar, Mazhar, Kadir, Mahbub, Islam, Khan, Iqbal, Al Emadi (b109) 2020; 8 Dinsdale, Jenkinson, Namburete (b49) 2022 Rahman, Ahmed, Akhter, Hasan, Amin, Aziz, Islam, Mukta, Islam (b18) 2021; 9 Litjens, Debats, Barentsz, Karssemeijer, Huisman (b153) 2014; 33 Fumero, Alayón, Sanchez, Sigut, Gonzalez-Hernandez (b146) 2011 Hatamizadeh, Yin, Molchanov, Myronenko, Li, Dogra, Feng, Flores, Kautz, Xu (b94) 2023 Cancer Genome Atlas Research Network, Weinstein, Collisson, Mills, Shaw, Ozenberger, Ellrott, Shmulevich, Sande, Stuart (b116) 2013; 45 Li, Xu, Cao, Liu, Zhang, Chen, Dai (b34) 2022 Feki, Ammar, Kessentini, Muhammad (b128) 2021; 106 Tan, Yu, Cui, Yang (b171) 2022 Nguyen, Pham, Pathirana, Ding, Seneviratne, Lin, Dobre, Hwang (b23) 2022; 55 Frénay, Verleysen (b71) 2013; 25 Litjens, Toth, Van De Ven, Hoeks, Kerkstra, van Ginneken, Vincent, Guillard, Birbeck, Zhang (b115) 2014; 18 Zhu, Liu, Han (b89) 2019; 32 Foley, Sheller, Edwards, Pati, Riviera, Sharma, Moorthy, Wang, Martin, Mirhaji (b97) 2022; 67 Menze, Jakab, Bauer, Kalpathy-Cramer, Farahani, Kirby, Burren, Porz, Slotboom, Wiest (b104) 2014; 34 Yang, Xu, Li, Myronenko, Roth, Harmon, Xu, Turkbey, Turkbey, Wang (b72) 2021; 70 Qiu, Cheng, Gao, Xiong, Ren (b145) 2023 Yap, Pons, Marti, Ganau, Sentis, Zwiggelaar, Davison, Marti (b137) 2017; 22 Wu, Zeng, Wang, Shi, Hu (b59) 2022; 81 Budrionis, Miara, Miara, Wilk, Bellika (b96) 2021; 9 van Ravesteijn, van Wijk, Vos, Truyen, Peters, Stoker, van Vliet (b166) 2009; 29 Yan, Qu, Wei, Huang, Shen, Rubin, Xing, Zhou (b33) 2023 Chen, Yang, Zhu, Peng, Yuan (b82) 2022; 41 Sohan, Basalamah (b27) 2023; 11 Aouedi, Sacco, Piamrat, Marchetto (b26) 2023; 27 Yang, Song, King, Xu (b66) 2022 Bulten (b160) 2019; 9 McMahan, Moore, Ramage, Hampson, y Arcas (b12) 2017 Kawahara, Daneshvar, Argenziano, Hamarneh (b140) 2018; 23 Lu, Chen, Kong, Lipkova, Singh, Williamson, Chen, Mahmood (b73) 2022; 76 Song, Kim, Park, Shin, Lee (b70) 2023; 34 X. Li, K. Huang, W. Yang, S. Wang, Z. Zhang, On the Convergence of FedAvg on Non-IID Data, in: Proceedings of International Conference on Learning Representations, 2020, pp. 1–12. Tschandl, Rosendahl, Kittler (b113) 2018; 5 Zhou (b65) 2018; 5 Wicaksana, Yan, Zhang, Huang, Wu, Yang, Cheng (b134) 2023 Geiping, Bauermeister, Dröge, Moeller (b87) 2020; 33 Andreux, du Terrail, Beguier, Tramel (b50) 2020 Li, Kar, Ravikumar, Frangi, Fidler (b131) 2020 Codella (b143) 2018 NCI-ISBI 2013 Challenge: Automated Segmentation of Prostate Structures (b150) 2021 Lalande (b130) 2020; 5 Vabalas, Gowen, Poliakoff, Casson (b9) 2019; 14 Li (b155) 2021; 16 US Department of Health and Human Services (b10) 2020 Mueller, Weiner, Thal, Petersen, Jack, Jagust, Trojanowski, Toga, Beckett (b101) 2005; 15 Codella, Rotemberg, Tschandl, Celebi, Dusza, Gutman, Helba, Kalloo, Liopyris, Marchetti (b139) 2019 Raudys, Jain (b8) 1991; 13 Feng, Yan, Wang, Xu, Shao, Fu (b41) 2023; 42 Pfitzner, Steckhan, Arnrich (b24) 2021; 21 LaMontagne, Benzinger, Morris, Keefe, Hornbeck, Xiong, Grant, Hassenstab, Moulder, Vlassenko (b121) 2019 Pacheco, Lima, Salomão, Krohling, Biral, de Angelo, Alves, Esgario, Simora, Castro (b141) 2020; 32 Islam, Reza, Kaosar, Parvez (b122) 2022 Qayyum, Ahmad, Ahsan, Al-Fuqaha, Qadir (b172) 2022; 3 Zhang, Yang (b62) 2021; 34 Campello (b112) 2021; 40 Geng, Huang, Chen (b177) 2020; 43 Jiang, Yang, Cheng, Dou (b45) 2023; 42 Van Engelen, Hoos (b67) 2020; 109 Quellec, Cazuguel, Cochener, Lamard (b68) 2017; 10 Fan, Su, Gao, Hu, Zeng (b85) 2021 Qi, Yang, He, Liu, Islam, Li (b124) 2022 He, Carass, Zuo, Dewey, Prince (b175) 2021; 72 Ziller, Trask, Lopardo, Szymkow, Wagner, Bluemke, Nounahon, Passerat-Palmbach, Prakash, Rose (b95) 2021 Vellido (b186) 2020; 32 Wu, Zeng, Wang, Shi, Hu (b60) 2021 Xu, Deng, Gateno, Yan (b151) 2023 Li, Liu, Hu, Tuan, Yu (b187) 2023 Kaissis, Ziller, Passerat-Palmbach, Ryffel, Usynin, Trask, Lima, Mancuso, Jungmann, Steinborn (b93) 2021; 3 Litjens, Kooi, Bejnordi, Setio, Ciompi, Ghafoorian, Van Der Laak, Van Ginneken, Sánchez (b4) 2017; 42 Kassem, Alapatt, Mascagni, AI4SafeChole, Karargyris, Padoy (b74) 2023; 42 Huang, Huang, Li, Li (b180) 2023; 42 Antunes, André da Costa, Küderle, Yari, Eskofier (b21) 2022; 13 Chang, Yan, Zhou, Qu, He, Zhang, Baskaran, Al’Aref, Li, Zhang (b80) 2023; 14 Zhu, Chen, Yuan (b149) 2023 Wang, Jin, Stoyanov, Wang (b147) 2023 Bzdok, Eickenberg, Grisel, Thirion, Varoquaux (b164) 2015; 28 Dwork, Roth (b91) 2014; 9 Elmas, Dar, Korkmaz, Ceyani, Susam, Ozbey, Avestimehr, Cukur (b161) 2023; 42 Simpson (b157) 2019 Cheplygina, de Bruijne, Pluim (b2) 2019; 54 Smith, Chiang, Sanjabi, Talwalkar (b63) 2017; 30 Knoll, Zbontar, Sriram, Muckley, Bruno, Defazio, Parente, Geras, Katsnelson, Chandarana (b117) 2020; 2 Chen, Zhu, Yang, Yuan (b142) 2021 Dayan, Roth, Zhong, Harouni, Gentili, Abidin, Liu, Costa, Wood, Tsai (b100) 2021; 27 Divya, Shantha Selva Kumari (b163) 2021; 33 Kumar, Purohit, Bharti, Singh, Singh (b76) 2021; 18 Bdair, Navab, Albarqouni (b138) 2021 Dugas, Jorge, Cukierski (b144) 2015 Zhu, Cao, Saxena, Jiang, Ferradi (b181) 2023; 55 Satariano (b30) 2019; 21 California Consumer Privacy Act (CCPA) (b29) 2018 Wachinger (b165) 2016; 139 Barragán-Montero, J 10.1016/j.patcog.2024.110424_b44 Smith (10.1016/j.patcog.2024.110424_b63) 2017; 30 Dong (10.1016/j.patcog.2024.110424_b61) 2021 Luo (10.1016/j.patcog.2024.110424_b86) 2022 Liu (10.1016/j.patcog.2024.110424_b154) 2022 Wang (10.1016/j.patcog.2024.110424_b147) 2023 Wachinger (10.1016/j.patcog.2024.110424_b165) 2016; 139 Kassem (10.1016/j.patcog.2024.110424_b74) 2023; 42 Menze (10.1016/j.patcog.2024.110424_b104) 2014; 34 LeCun (10.1016/j.patcog.2024.110424_b5) 2015; 521 Zhang (10.1016/j.patcog.2024.110424_b136) 2022; Vol. 10 Zhang (10.1016/j.patcog.2024.110424_b19) 2021; 216 Chiruvella (10.1016/j.patcog.2024.110424_b28) 2021; 10 He (10.1016/j.patcog.2024.110424_b77) 2023 Zhu (10.1016/j.patcog.2024.110424_b181) 2023; 55 Rieke (10.1016/j.patcog.2024.110424_b25) 2020; 3 Jiang (10.1016/j.patcog.2024.110424_b45) 2023; 42 Barragán-Montero (10.1016/j.patcog.2024.110424_b1) 2021; 83 10.1016/j.patcog.2024.110424_b51 Peng (10.1016/j.patcog.2024.110424_b81) 2023; 42 Chowdhury (10.1016/j.patcog.2024.110424_b109) 2020; 8 Litjens (10.1016/j.patcog.2024.110424_b153) 2014; 33 Li (10.1016/j.patcog.2024.110424_b187) 2023 10.1016/j.patcog.2024.110424_b35 Lu (10.1016/j.patcog.2024.110424_b73) 2022; 76 Pacheco (10.1016/j.patcog.2024.110424_b141) 2020; 32 10.1016/j.patcog.2024.110424_b168 Satariano (10.1016/j.patcog.2024.110424_b30) 2019; 21 Di Martino (10.1016/j.patcog.2024.110424_b103) 2014; 19 10.1016/j.patcog.2024.110424_b167 Budrionis (10.1016/j.patcog.2024.110424_b96) 2021; 9 Roth (10.1016/j.patcog.2024.110424_b185) 2020 Yin (10.1016/j.patcog.2024.110424_b20) 2021; 54 Dwork (10.1016/j.patcog.2024.110424_b91) 2014; 9 Miyato (10.1016/j.patcog.2024.110424_b79) 2018; 41 Kairouz (10.1016/j.patcog.2024.110424_b14) 2021; 14 Divya (10.1016/j.patcog.2024.110424_b163) 2021; 33 Vellido (10.1016/j.patcog.2024.110424_b186) 2020; 32 Kawahara (10.1016/j.patcog.2024.110424_b140) 2018; 23 Lalande (10.1016/j.patcog.2024.110424_b130) 2020; 5 Cheplygina (10.1016/j.patcog.2024.110424_b2) 2019; 54 Li (10.1016/j.patcog.2024.110424_b16) 2020; 37 Ziller (10.1016/j.patcog.2024.110424_b95) 2021 Wang (10.1016/j.patcog.2024.110424_b110) 2020; 10 Pernet (10.1016/j.patcog.2024.110424_b123) 2016; 3 Tzourio-Mazoyer (10.1016/j.patcog.2024.110424_b162) 2002; 15 Li (10.1016/j.patcog.2024.110424_b131) 2020 Zhang (10.1016/j.patcog.2024.110424_b42) 2022; 26 Aouedi (10.1016/j.patcog.2024.110424_b26) 2023; 27 Agbley (10.1016/j.patcog.2024.110424_b132) 2023 Song (10.1016/j.patcog.2024.110424_b70) 2023; 34 Kumar (10.1016/j.patcog.2024.110424_b182) 2021; 21 US Department of Health and Human Services (10.1016/j.patcog.2024.110424_b10) 2020 Li (10.1016/j.patcog.2024.110424_b90) 2019 Linardos (10.1016/j.patcog.2024.110424_b129) 2022; 12 Wang (10.1016/j.patcog.2024.110424_b174) 2023; 35 Chang (10.1016/j.patcog.2024.110424_b80) 2023; 14 Ke (10.1016/j.patcog.2024.110424_b46) 2021 Li (10.1016/j.patcog.2024.110424_b48) 2020; 65 10.1016/j.patcog.2024.110424_b13 Zhou (10.1016/j.patcog.2024.110424_b65) 2018; 5 10.1016/j.patcog.2024.110424_b148 General Data Protection Regulation (10.1016/j.patcog.2024.110424_b11) 2019 Cassidy (10.1016/j.patcog.2024.110424_b114) 2022; 75 Bilic (10.1016/j.patcog.2024.110424_b152) 2023; 84 Dong (10.1016/j.patcog.2024.110424_b127) 2022 Li (10.1016/j.patcog.2024.110424_b34) 2022 Yang (10.1016/j.patcog.2024.110424_b66) 2022 Knoll (10.1016/j.patcog.2024.110424_b117) 2020; 2 Xia (10.1016/j.patcog.2024.110424_b170) 2023; 11 Litjens (10.1016/j.patcog.2024.110424_b115) 2014; 18 Zhu (10.1016/j.patcog.2024.110424_b89) 2019; 32 Islam (10.1016/j.patcog.2024.110424_b122) 2022 Guan (10.1016/j.patcog.2024.110424_b3) 2022; 69 Hinton (10.1016/j.patcog.2024.110424_b75) 2015 Van Engelen (10.1016/j.patcog.2024.110424_b67) 2020; 109 LaMontagne (10.1016/j.patcog.2024.110424_b121) 2019 10.1016/j.patcog.2024.110424_b88 Yang (10.1016/j.patcog.2024.110424_b119) 2021 Wu (10.1016/j.patcog.2024.110424_b60) 2021 Zhu (10.1016/j.patcog.2024.110424_b78) 2022 Feki (10.1016/j.patcog.2024.110424_b128) 2021; 106 Zhou (10.1016/j.patcog.2024.110424_b173) 2023; 45 Raudys (10.1016/j.patcog.2024.110424_b8) 1991; 13 Ronneberger (10.1016/j.patcog.2024.110424_b37) 2015 Roy (10.1016/j.patcog.2024.110424_b184) 2019 Campello (10.1016/j.patcog.2024.110424_b112) 2021; 40 Geiping (10.1016/j.patcog.2024.110424_b87) 2020; 33 Yan (10.1016/j.patcog.2024.110424_b53) 2020; 25 Dugas (10.1016/j.patcog.2024.110424_b144) 2015 Zhu (10.1016/j.patcog.2024.110424_b149) 2023 Chen (10.1016/j.patcog.2024.110424_b142) 2021 Wicaksana (10.1016/j.patcog.2024.110424_b39) 2022; 26 Flanders (10.1016/j.patcog.2024.110424_b105) 2020; 2 Spanhol (10.1016/j.patcog.2024.110424_b133) 2016 Hatamizadeh (10.1016/j.patcog.2024.110424_b94) 2023 Foley (10.1016/j.patcog.2024.110424_b97) 2022; 67 10.1016/j.patcog.2024.110424_b92 Bernard (10.1016/j.patcog.2024.110424_b111) 2018; 37 Adnan (10.1016/j.patcog.2024.110424_b159) 2022; 12 Kaissis (10.1016/j.patcog.2024.110424_b93) 2021; 3 McMahan (10.1016/j.patcog.2024.110424_b12) 2017 Liu (10.1016/j.patcog.2024.110424_b83) 2018; 31 Pfitzner (10.1016/j.patcog.2024.110424_b24) 2021; 21 Rajendran (10.1016/j.patcog.2024.110424_b22) 2021; 5 Liu (10.1016/j.patcog.2024.110424_b125) 2021 Lin (10.1016/j.patcog.2024.110424_b7) 2014 Qiu (10.1016/j.patcog.2024.110424_b145) 2023 Qi (10.1016/j.patcog.2024.110424_b124) 2022 Elmas (10.1016/j.patcog.2024.110424_b161) 2023; 42 Hosseini (10.1016/j.patcog.2024.110424_b84) 2023; 42 Simpson (10.1016/j.patcog.2024.110424_b157) 2019 Deng (10.1016/j.patcog.2024.110424_b6) 2009 Sohan (10.1016/j.patcog.2024.110424_b27) 2023; 11 He (10.1016/j.patcog.2024.110424_b175) 2021; 72 T Dinh (10.1016/j.patcog.2024.110424_b40) 2020; 33 Mueller (10.1016/j.patcog.2024.110424_b101) 2005; 15 Codella (10.1016/j.patcog.2024.110424_b139) 2019 Frénay (10.1016/j.patcog.2024.110424_b71) 2013; 25 Nguyen (10.1016/j.patcog.2024.110424_b23) 2022; 55 Feng (10.1016/j.patcog.2024.110424_b41) 2023; 42 Varsavsky (10.1016/j.patcog.2024.110424_b176) 2020 Xu (10.1016/j.patcog.2024.110424_b151) 2023 Li (10.1016/j.patcog.2024.110424_b155) 2021; 16 California Consumer Privacy Act (CCPA) (10.1016/j.patcog.2024.110424_b29) 2018 Yan (10.1016/j.patcog.2024.110424_b33) 2023 Yang (10.1016/j.patcog.2024.110424_b17) 2019; 10 Alkhunaizi (10.1016/j.patcog.2024.110424_b32) 2022 Sheller (10.1016/j.patcog.2024.110424_b126) 2019 Qin (10.1016/j.patcog.2024.110424_b178) 2022 Gürler (10.1016/j.patcog.2024.110424_b120) 2023; 42 Karimi (10.1016/j.patcog.2024.110424_b179) 2020; 65 Silva (10.1016/j.patcog.2024.110424_b98) 2020 Stripelis (10.1016/j.patcog.2024.110424_b36) 2021 Chakravarty (10.1016/j.patcog.2024.110424_b43) 2021 Lyu (10.1016/j.patcog.2024.110424_b169) 2022 Miller (10.1016/j.patcog.2024.110424_b106) 2016; 19 Roth (10.1016/j.patcog.2024.110424_b156) 2021 Li (10.1016/j.patcog.2024.110424_b15) 2021 Cancer Genome Atlas Research Network (10.1016/j.patcog.2024.110424_b116) 2013; 45 du Terrail (10.1016/j.patcog.2024.110424_b158) 2023; 29 Wicaksana (10.1016/j.patcog.2024.110424_b134) 2023 Codella (10.1016/j.patcog.2024.110424_b143) 2018 Jack (10.1016/j.patcog.2024.110424_b102) 2008; 27 Wagner (10.1016/j.patcog.2024.110424_b47) 2022 Huang (10.1016/j.patcog.2024.110424_b180) 2023; 42 Fumero (10.1016/j.patcog.2024.110424_b146) 2011 Bulten (10.1016/j.patcog.2024.110424_b160) 2019; 9 Qu (10.1016/j.patcog.2024.110424_b52) 2022; 78 van Ravesteijn (10.1016/j.patcog.2024.110424_b166) 2009; 29 Zhang (10.1016/j.patcog.2024.110424_b62) 2021; 34 Dinsdale (10.1016/j.patcog.2024.110424_b49) 2022 Fan (10.1016/j.patcog.2024.110424_b85) 2021 Kholod (10.1016/j.patcog.2024.110424_b99) 2020; 21 Quellec (10.1016/j.patcog.2024.110424_b68) 2017; 10 10.1016/j.patcog.2024.110424_b55 Al-Dhabyani (10.1016/j.patcog.2024.110424_b135) 2020; 28 Guan (10.1016/j.patcog.2024.110424_b38) 2023; 268 10.1016/j.patcog.2024.110424_b54 10.1016/j.patcog.2024.110424_b107 Vabalas (10.1016/j.patcog.2024.110424_b9) 2019; 14 10.1016/j.patcog.2024.110424_b57 Kumar (10.1016/j.patcog.2024.110424_b76) 2021; 18 Muckley (10.1016/j.patcog.2024.110424_b118) 2021; 40 Zhang (10.1016/j.patcog.2024.110424_b31) 2021; 8 10.1016/j.patcog.2024.110424_b58 Dayan (10.1016/j.patcog.2024.110424_b100) 2021; 27 NCI-ISBI 2013 Challenge: Automated Segmentation of Prostate Structures (10.1016/j.patcog.2024.110424_b150) 2021 Rahman (10.1016/j.patcog.2024.110424_b18) 2021; 9 Chen (10.1016/j.patcog.2024.110424_b82) 2022; 41 Antunes (10.1016/j.patcog.2024.110424_b21) 2022; 13 Noman (10.1016/j.patcog.2024.110424_b183) 2023 10.1016/j.patcog.2024.110424_b108 Carbonneau (10.1016/j.patcog.2024.110424_b69) 2018; 77 Yap (10.1016/j.patcog.2024.110424_b137) 2017; 22 Bdair (10.1016/j.patcog.2024.110424_b138) 2021 Tan (10.1016/j.patcog.2024.110424_b171) 2022 Chaitanya (10.1016/j.patcog.2024.110424_b56) 2020; 33 Yang (10.1016/j.patcog.2024.110424_b72) 2021; 70 Tschandl (10.1016/j.patcog.2024.110424_b113) 2018; 5 Litjens (10.1016/j.patcog.2024.110424_b4) 2017; 42 Qayyum (10.1016/j.patcog.2024.110424_b172) 2022; 3 Bzdok (10.1016/j.patcog.2024.110424_b164) 2015; 28 Andreux (10.1016/j.patcog.2024.110424_b50) 2020 Huang (10.1016/j.patcog.2024.110424_b64) 2022 Wu (10.1016/j.patcog.2024.110424_b59) 2022; 81 Geng (10.1016/j.patcog.2024.110424_b177) 2020; 43 |
References_xml | – volume: 3 start-page: 473 year: 2021 end-page: 484 ident: b93 article-title: End-to-end privacy preserving deep learning on multi-institutional medical imaging publication-title: Nat. Mach. Intell. – year: 2022 ident: b34 article-title: Integrated CNN and federated learning for COVID-19 detection on chest X-ray images publication-title: IEEE/ACM Trans. Comput. Biol. Bioinform. – reference: I. Misra, L.v.d. Maaten, Self-supervised learning of pretext-invariant representations, in: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020, pp. 6707–6717. – volume: 34 start-page: 5586 year: 2021 end-page: 5609 ident: b62 article-title: A survey on multi-task learning publication-title: IEEE Trans. Knowl. Data Eng. – volume: 25 start-page: 2615 year: 2020 end-page: 2628 ident: b53 article-title: Variation-aware federated learning with multi-source decentralized medical image data publication-title: IEEE J. Biomed. Health Inf. – reference: X. Wang, Y. Peng, L. Lu, Z. Lu, M. Bagheri, R.M. Summers, Chestx-ray8: Hospital-scale chest X-ray database and benchmarks on weakly-supervised classification and localization of common thorax diseases, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017, pp. 2097–2106. – reference: H. Yin, A. Mallya, A. Vahdat, J.M. Alvarez, J. Kautz, P. Molchanov, See through gradients: Image batch recovery via gradinversion, in: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021, pp. 16337–16346. – volume: 40 start-page: 3543 year: 2021 end-page: 3554 ident: b112 article-title: Multi-centre, multi-vendor and multi-disease cardiac segmentation: The M&Ms challenge publication-title: IEEE Trans. Med. Imaging – volume: 28 start-page: 1 year: 2020 end-page: 5 ident: b135 article-title: Dataset of breast ultrasound images publication-title: Data Brief – start-page: 1 year: 2023 end-page: 16 ident: b183 article-title: Blockchain for medical collaboration: A federated learning-based approach for multi-class respiratory disease classification publication-title: Healthc. Anal. – volume: 76 start-page: 1 year: 2022 end-page: 13 ident: b73 article-title: Federated learning for computational pathology on gigapixel whole slide images publication-title: Med. Image Anal. – volume: 32 year: 2019 ident: b89 article-title: Deep leakage from gradients publication-title: Adv. Neural Inf. Process. Syst. – volume: 33 start-page: 1083 year: 2014 end-page: 1092 ident: b153 article-title: Computer-aided detection of prostate cancer in MRI publication-title: IEEE Trans. Med. Imaging – volume: 19 start-page: 1523 year: 2016 end-page: 1536 ident: b106 article-title: Multimodal population brain imaging in the UK Biobank prospective epidemiological study publication-title: Nature Neurosci. – volume: 3 start-page: 1 year: 2016 end-page: 6 ident: b123 article-title: A structural and functional magnetic resonance imaging dataset of brain tumour patients publication-title: Sci. Data – year: 2023 ident: b94 article-title: Do gradient inversion attacks make federated learning unsafe? publication-title: IEEE Trans. Med. Imaging – volume: 5 start-page: 89 year: 2020 ident: b130 article-title: Emidec: a database usable for the automatic evaluation of myocardial infarction from delayed-enhancement cardiac MRI publication-title: Data – volume: 18 start-page: 5648 year: 2021 end-page: 5657 ident: b76 article-title: Medisecfed: private and secure medical image classification in the presence of malicious clients publication-title: IEEE Trans. Ind. Inform. – reference: M. Malekzadeh, B. Hasircioglu, N. Mital, K. Katarya, M.E. Ozfatura, D. Gündüz, Dopamine: Differentially private federated learning on medical data, in: The Second AAAI Workshop on Privacy-Preserving Artificial Intelligence, PPAI-21, 2021, pp. 1–9. – volume: 29 start-page: 120 year: 2009 end-page: 131 ident: b166 article-title: Computer-aided detection of polyps in CT colonography using logistic regression publication-title: IEEE Trans. Med. Imaging – start-page: 347 year: 2021 end-page: 356 ident: b142 article-title: Personalized retrogress-resilient framework for real-world medical federated learning publication-title: International Conference on Medical Image Computing and Computer-Assisted Intervention – volume: 84 start-page: 1 year: 2023 end-page: 24 ident: b152 article-title: The liver tumor segmentation benchmark (lits) publication-title: Med. Image Anal. – start-page: 67 year: 2022 end-page: 76 ident: b127 article-title: Learning underrepresented classes from decentralized partially labeled medical images publication-title: International Conference on Medical Image Computing and Computer-Assisted Intervention – volume: 22 start-page: 1218 year: 2017 end-page: 1226 ident: b137 article-title: Automated breast ultrasound lesions detection using convolutional neural networks publication-title: IEEE J. Biomed. Health Inform. – volume: 33 start-page: 8435 year: 2021 end-page: 8444 ident: b163 article-title: Genetic algorithm with logistic regression feature selection for Alzheimer’s disease classification publication-title: Neural Comput. Appl. – volume: 106 year: 2021 ident: b128 article-title: Federated learning for COVID-19 screening from Chest X-ray images publication-title: Appl. Soft Comput. – volume: 42 year: 2023 ident: b161 article-title: Federated learning of generative image priors for MRI reconstruction publication-title: IEEE Trans. Med. Imaging – volume: 9 start-page: 1 year: 2019 end-page: 10 ident: b160 article-title: Epithelium segmentation using deep learning in H&E-stained prostate specimens with immunohistochemistry as reference standard publication-title: Sci. Rep. – volume: 41 start-page: 3663 year: 2022 end-page: 3674 ident: b82 article-title: Personalized retrogress-resilient federated learning toward imbalanced medical data publication-title: IEEE Trans. Med. Imaging – volume: 14 start-page: 1 year: 2021 end-page: 210 ident: b14 article-title: Advances and open problems in federated learning publication-title: Found. Trends® Mach. Learn. – volume: 28 year: 2015 ident: b164 article-title: Semi-supervised factored logistic regression for high-dimensional neuroimaging data publication-title: Adv. Neural Inf. Process. Syst. – volume: 83 start-page: 242 year: 2021 end-page: 256 ident: b1 article-title: Artificial intelligence and machine learning for medical imaging: A technology review publication-title: Phys. Medica – volume: 54 start-page: 1 year: 2021 end-page: 36 ident: b20 article-title: A comprehensive survey of privacy-preserving federated learning: A taxonomy, review, and future directions publication-title: ACM Comput. Surv. – volume: 18 start-page: 359 year: 2014 end-page: 373 ident: b115 article-title: Evaluation of prostate segmentation algorithms for MRI: the PROMISE12 challenge publication-title: Med. Image Anal. – volume: 78 year: 2022 ident: b52 article-title: Handling data heterogeneity with generative replay in collaborative learning for medical imaging publication-title: Med. Image Anal. – start-page: 181 year: 2020 end-page: 191 ident: b185 article-title: Federated learning for breast density classification: A real-world implementation publication-title: MICCAI Workshop on Domain Adaptation and Representation Transfer, and Distributed and Collaborative Learning – volume: 5 start-page: 1 year: 2021 end-page: 11 ident: b22 article-title: Cloud-based federated learning implementation across medical centers publication-title: JCO Clin. Cancer Inform. – start-page: 428 year: 2020 end-page: 436 ident: b176 article-title: Test-time unsupervised domain adaptation publication-title: International Conference on Medical Image Computing and Computer-Assisted Intervention, Lima, Peru, October 4–8, 2020 – volume: 139 start-page: 470 year: 2016 end-page: 479 ident: b165 article-title: Domain adaptation for Alzheimer’s disease diagnostics publication-title: NeuroImage – year: 2019 ident: b184 article-title: Braintorrent: A peer-to-peer environment for decentralized federated learning – volume: 37 start-page: 50 year: 2020 end-page: 60 ident: b16 article-title: Federated learning: Challenges, methods, and future directions publication-title: IEEE Signal Process. Mag. – year: 2022 ident: b66 article-title: A survey on deep semi-supervised learning publication-title: IEEE Trans. Knowl. Data Eng. – volume: 16 start-page: 1 year: 2021 end-page: 26 ident: b155 article-title: Colonoscopy polyp detection and classification: Dataset creation and comparative evaluations publication-title: PLOS ONE – volume: 29 start-page: 135 year: 2023 end-page: 146 ident: b158 article-title: Federated learning for predicting histological response to neoadjuvant chemotherapy in triple-negative breast cancer publication-title: Nature Med. – volume: 12 start-page: 1953 year: 2022 ident: b159 article-title: Federated learning and differential privacy for medical image analysis publication-title: Sci. Rep. – year: 2023 ident: b134 article-title: FedMix: Mixed supervised federated learning for medical image segmentation publication-title: IEEE Trans. Med. Imaging – start-page: 1 year: 2022 end-page: 5 ident: b86 article-title: Fedsld: Federated learning with shared label distribution for medical image classification publication-title: 2022 IEEE 19th International Symposium on Biomedical Imaging – volume: 33 start-page: 16937 year: 2020 end-page: 16947 ident: b87 article-title: Inverting gradients-how easy is it to break privacy in federated learning? publication-title: Adv. Neural Inf. Process. Syst. – volume: 41 start-page: 1979 year: 2018 end-page: 1993 ident: b79 article-title: Virtual adversarial training: a regularization method for supervised and semi-supervised learning publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – volume: 521 start-page: 436 year: 2015 end-page: 444 ident: b5 article-title: Deep learning publication-title: Nature – volume: 25 start-page: 845 year: 2013 end-page: 869 ident: b71 article-title: Classification in the presence of label noise: A survey publication-title: IEEE Trans. Neural Netw. Learn. Syst. – reference: Q. Liu, C. Chen, J. Qin, Q. Dou, P.-A. Heng, Feddg: Federated domain generalization on medical image segmentation via episodic learning in continuous frequency space, in: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021, pp. 1013–1023. – volume: 12 start-page: 3551 year: 2022 ident: b129 article-title: Federated learning for multi-center imaging diagnostics: a simulation study in cardiovascular disease publication-title: Sci. Rep. – volume: 26 start-page: 4635 year: 2022 end-page: 4644 ident: b42 article-title: SplitAVG: A heterogeneity-aware federated deep learning method for medical imaging publication-title: IEEE J. Biomed. Health Inf. – volume: 3 start-page: 172 year: 2022 end-page: 184 ident: b172 article-title: Collaborative federated learning for healthcare: Multi-modal COVID-19 diagnosis at the edge publication-title: IEEE Open J. Comput. Soc. – volume: 42 year: 2023 ident: b84 article-title: Proportionally fair hospital collaborations in federated learning of histopathology images publication-title: IEEE Trans. Med. Imaging – year: 2021 ident: b150 – volume: 13 start-page: 252 year: 1991 end-page: 264 ident: b8 article-title: Small sample size effects in statistical pattern recognition: Recommendations for practitioners publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – reference: M. Jiang, Z. Wang, Q. Dou, Harmofl: Harmonizing local and global drifts in federated learning on heterogeneous medical images, in: Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 36, 2022, pp. 1087–1095. – volume: 268 start-page: 1 year: 2023 end-page: 12 ident: b38 article-title: DomainATM: Domain adaptation toolbox for medical data analysis publication-title: Neuroimage – volume: 77 start-page: 329 year: 2018 end-page: 353 ident: b69 article-title: Multiple instance learning: A survey of problem characteristics and applications publication-title: Pattern Recognit. – start-page: 133 year: 2019 end-page: 141 ident: b90 article-title: Privacy-preserving federated brain tumour segmentation publication-title: Machine Learning in Medical Imaging: 10th International Workshop, MLMI 2019, Held in Conjunction with MICCAI 2019, Shenzhen, China, October 13, 2019, Proceedings 10 – volume: 32 start-page: 1 year: 2020 end-page: 10 ident: b141 article-title: PAD-UFES-20: A skin lesion dataset composed of patient data and clinical images collected from smartphones publication-title: Data Brief – volume: 27 start-page: 790 year: 2023 end-page: 803 ident: b26 article-title: Handling privacy-sensitive medical data with federated learning: Challenges and future directions publication-title: IEEE J. Biomed. Health Inf. – year: 2015 ident: b144 article-title: Diabetic retinopathy detection – reference: A. Xu, W. Li, P. Guo, D. Yang, H.R. Roth, A. Hatamizadeh, C. Zhao, D. Xu, H. Huang, Z. Xu, Closing the generalization gap of cross-silo federated medical image segmentation, in: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2022, pp. 20866–20875. – year: 2023 ident: b147 article-title: FedDP: Dual personalization in federated medical image segmentation publication-title: IEEE Trans. Med. Imaging – volume: 33 start-page: 12546 year: 2020 end-page: 12558 ident: b56 article-title: Contrastive learning of global and local features for medical image segmentation with limited annotations publication-title: Adv. Neural Inf. Process. Syst. – volume: 54 start-page: 280 year: 2019 end-page: 296 ident: b2 article-title: Not-so-supervised: A survey of semi-supervised, multi-instance, and transfer learning in medical image analysis publication-title: Med. Image Anal. – reference: Q. Yang, J. Zhang, W. Hao, G.P. Spell, L. Carin, Flop: Federated learning on medical datasets using partial networks, in: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, 2021, pp. 3845–3853. – year: 2022 ident: b171 article-title: Towards personalized federated learning publication-title: IEEE Trans. Neural Netw. Learn. Syst. – year: 2022 ident: b169 article-title: Privacy and robustness in federated learning: Attacks and defenses publication-title: IEEE Trans. Neural Netw. Learn. Syst. – start-page: 336 year: 2021 end-page: 346 ident: b138 article-title: FedPerl: Semi-supervised peer learning for skin lesion classification publication-title: International Conference on Medical Image Computing and Computer-Assisted Intervention – reference: X. Li, K. Huang, W. Yang, S. Wang, Z. Zhang, On the Convergence of FedAvg on Non-IID Data, in: Proceedings of International Conference on Learning Representations, 2020, pp. 1–12. – year: 2023 ident: b151 article-title: Federated multi-organ segmentation with inconsistent labels publication-title: IEEE Trans. Med. Imaging – reference: T. Li, A.K. Sahu, M. Zaheer, M. Sanjabi, A. Talwalkar, V. Smith, Federated optimization in heterogeneous networks, in: Proceedings of Machine Learning and Systems, Vol. 2, 2020, pp. 429–450. – volume: 30 year: 2017 ident: b63 article-title: Federated multi-task learning publication-title: Adv. Neural Inf. Process. Syst. – volume: 21 start-page: 167 year: 2020 ident: b99 article-title: Open-source federated learning frameworks for IoT: A comparative review and analysis publication-title: Sensors – start-page: 168 year: 2018 end-page: 172 ident: b143 article-title: Skin lesion analysis toward melanoma detection: A challenge at the 2017 International Symposium on Biomedical Imaging (ISBI), hosted by the International Skin Imaging Collaboration (ISIC) publication-title: 2018 IEEE 15th International Symposium on Biomedical Imaging – start-page: 1 year: 2023 end-page: 5 ident: b77 article-title: Dealing with heterogeneous 3D MR knee images: A federated few-shot learning method with dual knowledge distillation publication-title: 2023 IEEE 20th International Symposium on Biomedical Imaging – start-page: 1 year: 2019 end-page: 37 ident: b121 article-title: OASIS-3: longitudinal neuroimaging, clinical, and cognitive dataset for normal aging and Alzheimer disease publication-title: MedRxiv – volume: 216 year: 2021 ident: b19 article-title: A survey on federated learning publication-title: Knowl.-Based Syst. – volume: Vol. 10 start-page: 1 year: 2022 end-page: 16 ident: b136 article-title: BUSIS: A benchmark for breast ultrasound image segmentation publication-title: Healthcare – volume: 15 start-page: 869 year: 2005 end-page: 877 ident: b101 article-title: The Alzheimer’s disease neuroimaging initiative publication-title: Neuroimaging Clin. – start-page: 673 year: 2022 end-page: 683 ident: b32 article-title: Suppressing poisoning attacks on federated learning for medical imaging publication-title: International Conference on Medical Image Computing and Computer-Assisted Intervention – start-page: 1 year: 2021 end-page: 6 ident: b85 article-title: A federated deep learning framework for 3D brain MRI images publication-title: 2021 International Joint Conference on Neural Networks – volume: 2 year: 2020 ident: b117 article-title: fastMRI: A publicly available raw k-space and DICOM dataset of knee images for accelerated MR image reconstruction using machine learning publication-title: Radiol.: Artif. Intell. – volume: 42 year: 2023 ident: b41 article-title: Specificity-preserving federated learning for MR image reconstruction publication-title: IEEE Trans. Med. Imaging – volume: 10 start-page: 1 year: 2020 end-page: 12 ident: b110 article-title: Covid-net: A tailored deep convolutional neural network design for detection of COVID-19 cases from chest X-ray images publication-title: Sci. Rep. – start-page: 191 year: 2021 end-page: 195 ident: b119 article-title: MedMNIST classification decathlon: A lightweight automl benchmark for medical image analysis publication-title: 2021 IEEE 18th International Symposium on Biomedical Imaging – volume: 15 start-page: 273 year: 2002 end-page: 289 ident: b162 article-title: Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain publication-title: NeuroImage – volume: 34 year: 2023 ident: b70 article-title: Learning from noisy labels with deep neural networks: A survey publication-title: IEEE Trans. Neural Netw. Learn. Syst. – volume: 14 start-page: 1 year: 2019 end-page: 20 ident: b9 article-title: Machine learning algorithm validation with a limited sample size publication-title: PLOS ONE – volume: 21 start-page: 16301 year: 2021 end-page: 16314 ident: b182 article-title: Blockchain-federated-learning and deep learning models for COVID-19 detection using CT imaging publication-title: IEEE Sens. J. – year: 2022 ident: b64 article-title: Federated multi-task learning for joint diagnosis of multiple mental disorders on MRI scans publication-title: IEEE Trans. Biomed. Eng. – year: 2019 ident: b139 article-title: Skin lesion analysis toward melanoma detection 2018: A challenge hosted by the international skin imaging collaboration (ISIC) – volume: 27 start-page: 1735 year: 2021 end-page: 1743 ident: b100 article-title: Federated learning for predicting clinical outcomes in patients with COVID-19 publication-title: Nature Med. – volume: 34 start-page: 1993 year: 2014 end-page: 2024 ident: b104 article-title: The multimodal brain tumor image segmentation benchmark (BRATS) publication-title: IEEE Trans. Med. Imaging – volume: 55 start-page: 1 year: 2022 end-page: 37 ident: b23 article-title: Federated learning for smart healthcare: A survey publication-title: ACM Comput. Surv. – year: 2023 ident: b132 article-title: Federated fusion of magnified histopathological images for breast tumor classification in the internet of medical things publication-title: IEEE J. Biomed. Health Inf. – year: 2023 ident: b145 article-title: Federated semi-supervised learning for medical image segmentation via pseudo-label denoising publication-title: IEEE J. Biomed. Health Inf. – start-page: 309 year: 2022 end-page: 319 ident: b154 article-title: Intervention & interaction federated abnormality detection with noisy clients publication-title: International Conference on Medical Image Computing and Computer-Assisted Intervention – volume: 33 start-page: 21394 year: 2020 end-page: 21405 ident: b40 article-title: Personalized federated learning with moreau envelopes publication-title: Adv. Neural Inf. Process. Syst. – volume: 42 year: 2023 ident: b180 article-title: A dataset auditing method for collaboratively trained machine learning models publication-title: IEEE Trans. Med. Imaging – start-page: 695 year: 2022 end-page: –704 ident: b49 article-title: FedHarmony: Unlearning scanner bias with distributed data publication-title: International Conference on Medical Image Computing and Computer-Assisted Intervention – volume: 65 start-page: 1 year: 2020 end-page: 19 ident: b179 article-title: Deep learning with noisy labels: Exploring techniques and remedies in medical image analysis publication-title: Med. Image Anal. – start-page: 129 year: 2020 end-page: 139 ident: b50 article-title: Siloed federated learning for multi-centric histopathology datasets publication-title: MICCAI Workshop on Domain Adaptation and Representation Transfer, and Distributed and Collaborative Learning (DART), Lima, Peru, October 4–8, 2020 – volume: 11 start-page: 10708 year: 2023 end-page: 10722 ident: b170 article-title: Poisoning attacks in federated learning: A survey publication-title: IEEE Access – volume: 42 year: 2023 ident: b81 article-title: Fedni: Federated graph learning with network inpainting for population-based disease prediction publication-title: IEEE Trans. Med. Imaging – start-page: 2560 year: 2016 end-page: 2567 ident: b133 article-title: Breast cancer histopathological image classification using convolutional neural networks publication-title: 2016 International Joint Conference on Neural Networks – volume: 14 start-page: 5510 year: 2023 ident: b80 article-title: Mining multi-center heterogeneous medical data with distributed synthetic learning publication-title: Nature Commun. – volume: 5 start-page: 44 year: 2018 end-page: 53 ident: b65 article-title: A brief introduction to weakly supervised learning publication-title: Natl. Sci. Rev. – volume: 70 year: 2021 ident: b72 article-title: Federated semi-supervised learning for COVID region segmentation in chest CT using multi-national data from China, Italy, Japan publication-title: Med. Image Anal. – volume: 2 start-page: 1 year: 2020 end-page: 8 ident: b105 article-title: Construction of a machine learning dataset through collaboration: the RSNA 2019 brain CT hemorrhage challenge publication-title: Radiol.: Artif. Intell. – volume: 11 start-page: 28628 year: 2023 end-page: 28644 ident: b27 article-title: A systematic review on federated learning in medical image analysis publication-title: IEEE Access – volume: 10 year: 2021 ident: b28 article-title: Ethical issues in patient data ownership publication-title: Interact. J. Med. Res. – reference: P. Guo, P. Wang, J. Zhou, S. Jiang, V.M. Patel, Multi-institutional collaborations for improving deep learning-based magnetic resonance image reconstruction using federated learning, in: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021, pp. 2423–2432. – volume: 45 start-page: 1113 year: 2013 end-page: 1120 ident: b116 article-title: The cancer genome atlas pan-cancer analysis project publication-title: Nature Genet. – volume: 8 start-page: 132665 year: 2020 end-page: 132676 ident: b109 article-title: Can AI help in screening viral and COVID-19 pneumonia? publication-title: IEEE Access – start-page: 256 year: 2022 end-page: 265 ident: b124 article-title: Contrastive re-localization and history distillation in federated CMR segmentation publication-title: International Conference on Medical Image Computing and Computer-Assisted Intervention – volume: 55 start-page: 1 year: 2023 end-page: 31 ident: b181 article-title: Blockchain-empowered federated learning: Challenges, solutions, and future directions publication-title: ACM Comput. Surv. – volume: 13 start-page: 1 year: 2022 end-page: 23 ident: b21 article-title: Federated learning for healthcare: Systematic review and architecture proposal publication-title: ACM Trans. Intell. Syst. Technol. – start-page: 1 year: 2021 end-page: 20 ident: b15 article-title: A survey on federated learning systems: Vision, hype and reality for data privacy and protection publication-title: IEEE Trans. Knowl. Data Eng. – start-page: 1 year: 2011 end-page: 6 ident: b146 article-title: RIM-ONE: An open retinal image database for optic nerve evaluation publication-title: 24th International Symposium on Computer-Based Medical Systems – volume: 3 start-page: 119 year: 2020 ident: b25 article-title: The future of digital health with federated learning publication-title: NPJ Digit. Med. – reference: J.-Y. Zhu, T. Park, P. Isola, A.A. Efros, Unpaired image-to-image translation using cycle-consistent adversarial networks, in: Proceedings of the IEEE International Conference on Computer Vision, 2017, pp. 2223–2232. – volume: 67 year: 2022 ident: b97 article-title: OpenFL: The open federated learning library publication-title: Phys. Med. Biol. – reference: J. Irvin, et al., Chexpert: A large chest radiograph dataset with uncertainty labels and expert comparison, in: Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 33, 2019, pp. 590–597. – volume: 8 start-page: 15884 year: 2021 end-page: 15891 ident: b31 article-title: Dynamic-fusion-based federated learning for COVID-19 detection publication-title: IEEE Internet Things J. – volume: 42 year: 2023 ident: b45 article-title: IOP-FL: Inside-outside personalization for federated medical image segmentation publication-title: IEEE Trans. Med. Imaging – start-page: 357 year: 2021 end-page: 366 ident: b156 article-title: Federated whole prostate segmentation in MRI with personalized neural architectures publication-title: International Conference on Medical Image Computing and Computer-Assisted Intervention – volume: 9 start-page: 124682 year: 2021 end-page: 124700 ident: b18 article-title: Challenges, applications and design aspects of federated learning: A survey publication-title: IEEE Access – start-page: 1191 year: 2021 end-page: 1195 ident: b36 article-title: Scaling neuroscience research using federated learning publication-title: 2021 IEEE 18th International Symposium on Biomedical Imaging – year: 2019 ident: b157 article-title: A large annotated medical image dataset for the development and evaluation of segmentation algorithms – volume: 42 year: 2023 ident: b74 article-title: Federated cycling (FedCy): Semi-supervised Federated Learning of surgical phases publication-title: IEEE Trans. Med. Imaging – volume: 65 start-page: 1 year: 2020 end-page: 14 ident: b48 article-title: Multi-site fMRI analysis using privacy-preserving federated learning and domain adaptation: ABIDE results publication-title: Med. Image Anal. – start-page: 111 year: 2021 end-page: 139 ident: b95 article-title: Pysyft: A library for easy federated learning publication-title: Federated Learning Systems: Towards Next-Generation AI – volume: 19 start-page: 659 year: 2014 end-page: 667 ident: b103 article-title: The autism brain imaging data exchange: towards a large-scale evaluation of the intrinsic brain architecture in autism publication-title: Mol. Psychiatry – start-page: 159 year: 2020 end-page: 168 ident: b131 article-title: Federated simulation for medical imaging publication-title: International Conference on Medical Image Computing and Computer-Assisted Intervention – volume: 26 start-page: 5596 year: 2022 end-page: 5607 ident: b39 article-title: Customized federated learning for multi-source decentralized medical image classification publication-title: IEEE J. Biomed. Health Inf. – start-page: 201 year: 2020 end-page: 210 ident: b98 article-title: Fed-biomed: A general open-source frontend framework for federated learning in healthcare publication-title: Domain Adaptation and Representation Transfer, and Distributed and Collaborative Learning: Second MICCAI Workshop, DART 2020, and First MICCAI Workshop, DCL 2020, Held in Conjunction with MICCAI 2020, Lima, Peru, October 4–8, 2020 – year: 2023 ident: b33 article-title: Label-efficient self-supervised federated learning for tackling data heterogeneity in medical imaging publication-title: IEEE Trans. Med. Imaging – volume: 75 start-page: 1 year: 2022 end-page: 15 ident: b114 article-title: Analysis of the ISIC image datasets: Usage, benchmarks and recommendations publication-title: Med. Image Anal. – start-page: 92 year: 2019 end-page: 104 ident: b126 article-title: Multi-institutional deep learning modeling without sharing patient data: A feasibility study on brain tumor segmentation publication-title: Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries: 4th International Workshop, BrainLes 2018, Held in Conjunction with MICCAI 2018, Granada, Spain, September 16, 2018 – volume: 27 start-page: 685 year: 2008 end-page: 691 ident: b102 article-title: The Alzheimer’s disease neuroimaging initiative (ADNI): MRI methods publication-title: J. Magn. Reson. Imaging – start-page: 740 year: 2014 end-page: 755 ident: b7 article-title: Microsoft COCO: Common objects in context publication-title: European Conference on Computer Vision – year: 2015 ident: b75 article-title: Distilling the knowledge in a neural network – start-page: 325 year: 2021 end-page: 335 ident: b125 article-title: Federated semi-supervised medical image classification via inter-client relation matching publication-title: International Conference on Medical Image Computing and Computer-Assisted Intervention – year: 2023 ident: b149 article-title: FedDM: Federated weakly supervised segmentation via annotation calibration and gradient de-conflicting publication-title: IEEE Trans. Med. Imaging – volume: 43 start-page: 3614 year: 2020 end-page: 3631 ident: b177 article-title: Recent advances in open set recognition: A survey publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – reference: K. He, H. Fan, Y. Wu, S. Xie, R. Girshick, Momentum contrast for unsupervised visual representation learning, in: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020, pp. 9729–9738. – volume: 10 start-page: 1 year: 2019 end-page: 19 ident: b17 article-title: Federated machine learning: Concept and applications publication-title: ACM Trans. Intell. Syst. Technol. – volume: 21 start-page: 1 year: 2021 end-page: 31 ident: b24 article-title: Federated learning in a medical context: A systematic literature review publication-title: ACM Trans. Internet Technol. (TOIT) – start-page: 728 year: 2022 end-page: 738 ident: b78 article-title: Federated medical image analysis with virtual sample synthesis publication-title: International Conference on Medical Image Computing and Computer-Assisted Intervention – volume: 69 start-page: 1173 year: 2022 end-page: 1185 ident: b3 article-title: Domain adaptation for medical image analysis: A survey publication-title: IEEE Trans. Biomed. Eng. – start-page: 378 year: 2021 end-page: 387 ident: b61 article-title: Federated contrastive learning for decentralized unlabeled medical images publication-title: International Conference on Medical Image Computing and Computer-Assisted Intervention – volume: 42 year: 2023 ident: b120 article-title: Federated brain graph evolution prediction using decentralized connectivity datasets with temporally-varying acquisitions publication-title: IEEE Trans. Med. Imaging – volume: 21 year: 2019 ident: b30 article-title: Google is fined $57 million under Europe’s data privacy law publication-title: N.Y. Times – volume: 5 start-page: 1 year: 2018 end-page: 9 ident: b113 article-title: The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions publication-title: Sci. Data – volume: 72 year: 2021 ident: b175 article-title: Autoencoder based self-supervised test-time adaptation for medical image analysis publication-title: Med. Image Anal. – start-page: 367 year: 2021 end-page: 377 ident: b60 article-title: Federated contrastive learning for volumetric medical image segmentation publication-title: International Conference on Medical Image Computing and Computer-Assisted Intervention – volume: 42 start-page: 60 year: 2017 end-page: 88 ident: b4 article-title: A survey on deep learning in medical image analysis publication-title: Med. Image Anal. – volume: 23 start-page: 538 year: 2018 end-page: 546 ident: b140 article-title: Seven-point checklist and skin lesion classification using multitask multimodal neural nets publication-title: IEEE J. Biomed. Health Inf. – year: 2020 ident: b10 article-title: HIPAA – volume: 9 start-page: 211 year: 2014 end-page: 407 ident: b91 article-title: The algorithmic foundations of differential privacy publication-title: Found. Trends® Theor. Comput. Sci. – volume: 32 start-page: 18069 year: 2020 end-page: 18083 ident: b186 article-title: The importance of interpretability and visualization in machine learning for applications in medicine and health care publication-title: Neural Comput. Appl. – volume: 35 year: 2023 ident: b174 article-title: Generalizing to unseen domains: A survey on domain generalization publication-title: IEEE Trans. Knowl. Data Eng. – start-page: 1077 year: 2021 end-page: 1081 ident: b43 article-title: Federated learning for site aware chest radiograph screening publication-title: 2021 IEEE 18th International Symposium on Biomedical Imaging – volume: 37 start-page: 2514 year: 2018 end-page: 2525 ident: b111 article-title: Deep learning techniques for automatic MRI cardiac multi-structures segmentation and diagnosis: is the problem solved? publication-title: IEEE Trans. Med. Imaging – year: 2018 ident: b29 article-title: CCPA – volume: 40 start-page: 2306 year: 2021 end-page: 2317 ident: b118 article-title: Results of the 2020 fastMRI challenge for machine learning MR image reconstruction publication-title: IEEE Trans. Med. Imaging – year: 2019 ident: b11 article-title: GDPR – reference: K. Bonawitz, H. Eichner, W. Grieskamp, D. Huba, A. Ingerman, V. Ivanov, C. Kiddon, J. Konečnỳ, S. Mazzocchi, B. McMahan, et al., Towards federated learning at scale: System design, in: Proceedings of Machine Learning and Systems, Vol. 1, 2019, pp. 374–388. – volume: 10 start-page: 213 year: 2017 end-page: 234 ident: b68 article-title: Multiple-instance learning for medical image and video analysis publication-title: IEEE Rev. Biomed. Eng. – year: 2022 ident: b178 article-title: Uncertainty-aware aggregation for federated open set domain adaptation publication-title: IEEE Trans. Neural Netw. Learn. Syst. – year: 2023 ident: b187 article-title: Towards interpretable federated learning – volume: 31 year: 2018 ident: b83 article-title: Frequency-domain dynamic pruning for convolutional neural networks publication-title: Adv. Neural Inf. Process. Syst. – start-page: 234 year: 2015 end-page: 241 ident: b37 article-title: U-net: Convolutional networks for biomedical image segmentation publication-title: 18th International Conference on Medical Image Computing and Computer-Assisted Intervention (MICCAI), Munich, Germany, October 5-9, 2015 – volume: 45 start-page: 4396 year: 2023 end-page: 4415 ident: b173 article-title: Domain generalization: A survey publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – start-page: 1273 year: 2017 end-page: 1282 ident: b12 article-title: Communication-efficient learning of deep networks from decentralized data publication-title: Artificial Intelligence and Statistics – start-page: 14 year: 2022 end-page: 23 ident: b47 article-title: Federated stain normalization for computational pathology publication-title: International Conference on Medical Image Computing and Computer-Assisted Intervention – start-page: 248 year: 2009 end-page: 255 ident: b6 article-title: Imagenet: A large-scale hierarchical image database publication-title: 2009 IEEE Conference on Computer Vision and Pattern Recognition – start-page: 953 year: 2021 end-page: 956 ident: b46 article-title: Style normalization in histology with federated learning publication-title: 2021 IEEE 18th International Symposium on Biomedical Imaging – volume: 81 year: 2022 ident: b59 article-title: Distributed contrastive learning for medical image segmentation publication-title: Med. Image Anal. – volume: 109 start-page: 373 year: 2020 end-page: 440 ident: b67 article-title: A survey on semi-supervised learning publication-title: Mach. Learn. – start-page: 1 year: 2022 end-page: 31 ident: b122 article-title: Effectiveness of federated learning and CNN ensemble architectures for identifying brain tumors using MRI images publication-title: Neural Process. Lett. – volume: 9 start-page: 116869 year: 2021 end-page: 116878 ident: b96 article-title: Benchmarking PySyft federated learning framework on MIMIC-III dataset publication-title: IEEE Access – start-page: 325 year: 2021 ident: 10.1016/j.patcog.2024.110424_b125 article-title: Federated semi-supervised medical image classification via inter-client relation matching – ident: 10.1016/j.patcog.2024.110424_b55 doi: 10.1609/aaai.v36i1.19993 – volume: 109 start-page: 373 issue: 2 year: 2020 ident: 10.1016/j.patcog.2024.110424_b67 article-title: A survey on semi-supervised learning publication-title: Mach. Learn. doi: 10.1007/s10994-019-05855-6 – volume: 5 start-page: 44 issue: 1 year: 2018 ident: 10.1016/j.patcog.2024.110424_b65 article-title: A brief introduction to weakly supervised learning publication-title: Natl. Sci. Rev. doi: 10.1093/nsr/nwx106 – volume: 27 start-page: 685 issue: 4 year: 2008 ident: 10.1016/j.patcog.2024.110424_b102 article-title: The Alzheimer’s disease neuroimaging initiative (ADNI): MRI methods publication-title: J. Magn. Reson. Imaging doi: 10.1002/jmri.21049 – volume: 34 start-page: 1993 issue: 10 year: 2014 ident: 10.1016/j.patcog.2024.110424_b104 article-title: The multimodal brain tumor image segmentation benchmark (BRATS) publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2014.2377694 – volume: 42 issue: 7 year: 2023 ident: 10.1016/j.patcog.2024.110424_b161 article-title: Federated learning of generative image priors for MRI reconstruction publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2022.3220757 – volume: 33 start-page: 12546 year: 2020 ident: 10.1016/j.patcog.2024.110424_b56 article-title: Contrastive learning of global and local features for medical image segmentation with limited annotations publication-title: Adv. Neural Inf. Process. Syst. – ident: 10.1016/j.patcog.2024.110424_b57 doi: 10.1109/CVPR42600.2020.00975 – volume: 42 issue: 7 year: 2023 ident: 10.1016/j.patcog.2024.110424_b74 article-title: Federated cycling (FedCy): Semi-supervised Federated Learning of surgical phases publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2022.3222126 – year: 2023 ident: 10.1016/j.patcog.2024.110424_b151 article-title: Federated multi-organ segmentation with inconsistent labels publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2023.3270140 – year: 2015 ident: 10.1016/j.patcog.2024.110424_b144 – start-page: 2560 year: 2016 ident: 10.1016/j.patcog.2024.110424_b133 article-title: Breast cancer histopathological image classification using convolutional neural networks – start-page: 1 year: 2023 ident: 10.1016/j.patcog.2024.110424_b77 article-title: Dealing with heterogeneous 3D MR knee images: A federated few-shot learning method with dual knowledge distillation – volume: 77 start-page: 329 year: 2018 ident: 10.1016/j.patcog.2024.110424_b69 article-title: Multiple instance learning: A survey of problem characteristics and applications publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2017.10.009 – year: 2023 ident: 10.1016/j.patcog.2024.110424_b187 – start-page: 673 year: 2022 ident: 10.1016/j.patcog.2024.110424_b32 article-title: Suppressing poisoning attacks on federated learning for medical imaging – volume: 268 start-page: 1 year: 2023 ident: 10.1016/j.patcog.2024.110424_b38 article-title: DomainATM: Domain adaptation toolbox for medical data analysis publication-title: Neuroimage doi: 10.1016/j.neuroimage.2023.119863 – volume: 34 start-page: 5586 issue: 12 year: 2021 ident: 10.1016/j.patcog.2024.110424_b62 article-title: A survey on multi-task learning publication-title: IEEE Trans. Knowl. Data Eng. doi: 10.1109/TKDE.2021.3070203 – year: 2023 ident: 10.1016/j.patcog.2024.110424_b132 article-title: Federated fusion of magnified histopathological images for breast tumor classification in the internet of medical things publication-title: IEEE J. Biomed. Health Inf. – ident: 10.1016/j.patcog.2024.110424_b168 – start-page: 695 year: 2022 ident: 10.1016/j.patcog.2024.110424_b49 article-title: FedHarmony: Unlearning scanner bias with distributed data – year: 2022 ident: 10.1016/j.patcog.2024.110424_b169 article-title: Privacy and robustness in federated learning: Attacks and defenses publication-title: IEEE Trans. Neural Netw. Learn. Syst. – volume: 43 start-page: 3614 issue: 10 year: 2020 ident: 10.1016/j.patcog.2024.110424_b177 article-title: Recent advances in open set recognition: A survey publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2020.2981604 – volume: 54 start-page: 1 issue: 6 year: 2021 ident: 10.1016/j.patcog.2024.110424_b20 article-title: A comprehensive survey of privacy-preserving federated learning: A taxonomy, review, and future directions publication-title: ACM Comput. Surv. doi: 10.1145/3460427 – volume: 83 start-page: 242 year: 2021 ident: 10.1016/j.patcog.2024.110424_b1 article-title: Artificial intelligence and machine learning for medical imaging: A technology review publication-title: Phys. Medica doi: 10.1016/j.ejmp.2021.04.016 – volume: 54 start-page: 280 year: 2019 ident: 10.1016/j.patcog.2024.110424_b2 article-title: Not-so-supervised: A survey of semi-supervised, multi-instance, and transfer learning in medical image analysis publication-title: Med. Image Anal. doi: 10.1016/j.media.2019.03.009 – volume: 21 year: 2019 ident: 10.1016/j.patcog.2024.110424_b30 article-title: Google is fined $57 million under Europe’s data privacy law publication-title: N.Y. Times – ident: 10.1016/j.patcog.2024.110424_b35 doi: 10.1145/3447548.3467185 – ident: 10.1016/j.patcog.2024.110424_b54 doi: 10.1109/ICCV.2017.244 – volume: 81 year: 2022 ident: 10.1016/j.patcog.2024.110424_b59 article-title: Distributed contrastive learning for medical image segmentation publication-title: Med. Image Anal. – start-page: 728 year: 2022 ident: 10.1016/j.patcog.2024.110424_b78 article-title: Federated medical image analysis with virtual sample synthesis – volume: 15 start-page: 869 issue: 4 year: 2005 ident: 10.1016/j.patcog.2024.110424_b101 article-title: The Alzheimer’s disease neuroimaging initiative publication-title: Neuroimaging Clin. doi: 10.1016/j.nic.2005.09.008 – volume: 40 start-page: 3543 issue: 12 year: 2021 ident: 10.1016/j.patcog.2024.110424_b112 article-title: Multi-centre, multi-vendor and multi-disease cardiac segmentation: The M&Ms challenge publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2021.3090082 – volume: 2 start-page: 1 issue: 3 year: 2020 ident: 10.1016/j.patcog.2024.110424_b105 article-title: Construction of a machine learning dataset through collaboration: the RSNA 2019 brain CT hemorrhage challenge publication-title: Radiol.: Artif. Intell. – volume: 65 start-page: 1 year: 2020 ident: 10.1016/j.patcog.2024.110424_b179 article-title: Deep learning with noisy labels: Exploring techniques and remedies in medical image analysis publication-title: Med. Image Anal. doi: 10.1016/j.media.2020.101759 – year: 2019 ident: 10.1016/j.patcog.2024.110424_b11 – volume: 21 start-page: 167 issue: 1 year: 2020 ident: 10.1016/j.patcog.2024.110424_b99 article-title: Open-source federated learning frameworks for IoT: A comparative review and analysis publication-title: Sensors doi: 10.3390/s21010167 – start-page: 1273 year: 2017 ident: 10.1016/j.patcog.2024.110424_b12 article-title: Communication-efficient learning of deep networks from decentralized data – year: 2022 ident: 10.1016/j.patcog.2024.110424_b64 article-title: Federated multi-task learning for joint diagnosis of multiple mental disorders on MRI scans publication-title: IEEE Trans. Biomed. Eng. – volume: 21 start-page: 16301 issue: 14 year: 2021 ident: 10.1016/j.patcog.2024.110424_b182 article-title: Blockchain-federated-learning and deep learning models for COVID-19 detection using CT imaging publication-title: IEEE Sens. J. doi: 10.1109/JSEN.2021.3076767 – volume: 42 issue: 7 year: 2023 ident: 10.1016/j.patcog.2024.110424_b45 article-title: IOP-FL: Inside-outside personalization for federated medical image segmentation publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2023.3263072 – volume: 32 year: 2019 ident: 10.1016/j.patcog.2024.110424_b89 article-title: Deep leakage from gradients publication-title: Adv. Neural Inf. Process. Syst. – volume: 23 start-page: 538 issue: 2 year: 2018 ident: 10.1016/j.patcog.2024.110424_b140 article-title: Seven-point checklist and skin lesion classification using multitask multimodal neural nets publication-title: IEEE J. Biomed. Health Inf. doi: 10.1109/JBHI.2018.2824327 – ident: 10.1016/j.patcog.2024.110424_b88 doi: 10.1109/CVPR46437.2021.01607 – start-page: 201 year: 2020 ident: 10.1016/j.patcog.2024.110424_b98 article-title: Fed-biomed: A general open-source frontend framework for federated learning in healthcare – start-page: 336 year: 2021 ident: 10.1016/j.patcog.2024.110424_b138 article-title: FedPerl: Semi-supervised peer learning for skin lesion classification – volume: 216 year: 2021 ident: 10.1016/j.patcog.2024.110424_b19 article-title: A survey on federated learning publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2021.106775 – volume: 21 start-page: 1 issue: 2 year: 2021 ident: 10.1016/j.patcog.2024.110424_b24 article-title: Federated learning in a medical context: A systematic literature review publication-title: ACM Trans. Internet Technol. (TOIT) doi: 10.1145/3412357 – volume: 18 start-page: 5648 issue: 8 year: 2021 ident: 10.1016/j.patcog.2024.110424_b76 article-title: Medisecfed: private and secure medical image classification in the presence of malicious clients publication-title: IEEE Trans. Ind. Inform. doi: 10.1109/TII.2021.3138919 – year: 2022 ident: 10.1016/j.patcog.2024.110424_b171 article-title: Towards personalized federated learning publication-title: IEEE Trans. Neural Netw. Learn. Syst. – start-page: 1 year: 2023 ident: 10.1016/j.patcog.2024.110424_b183 article-title: Blockchain for medical collaboration: A federated learning-based approach for multi-class respiratory disease classification publication-title: Healthc. Anal. – ident: 10.1016/j.patcog.2024.110424_b108 doi: 10.1109/CVPR.2017.369 – start-page: 347 year: 2021 ident: 10.1016/j.patcog.2024.110424_b142 article-title: Personalized retrogress-resilient framework for real-world medical federated learning – start-page: 129 year: 2020 ident: 10.1016/j.patcog.2024.110424_b50 article-title: Siloed federated learning for multi-centric histopathology datasets – volume: 9 start-page: 124682 year: 2021 ident: 10.1016/j.patcog.2024.110424_b18 article-title: Challenges, applications and design aspects of federated learning: A survey publication-title: IEEE Access doi: 10.1109/ACCESS.2021.3111118 – volume: 42 issue: 7 year: 2023 ident: 10.1016/j.patcog.2024.110424_b81 article-title: Fedni: Federated graph learning with network inpainting for population-based disease prediction publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2022.3188728 – ident: 10.1016/j.patcog.2024.110424_b44 doi: 10.1109/CVPR52688.2022.02020 – start-page: 1 year: 2022 ident: 10.1016/j.patcog.2024.110424_b86 article-title: Fedsld: Federated learning with shared label distribution for medical image classification – volume: 26 start-page: 4635 issue: 9 year: 2022 ident: 10.1016/j.patcog.2024.110424_b42 article-title: SplitAVG: A heterogeneity-aware federated deep learning method for medical imaging publication-title: IEEE J. Biomed. Health Inf. doi: 10.1109/JBHI.2022.3185956 – start-page: 953 year: 2021 ident: 10.1016/j.patcog.2024.110424_b46 article-title: Style normalization in histology with federated learning – start-page: 1 year: 2021 ident: 10.1016/j.patcog.2024.110424_b85 article-title: A federated deep learning framework for 3D brain MRI images – volume: 13 start-page: 1 issue: 4 year: 2022 ident: 10.1016/j.patcog.2024.110424_b21 article-title: Federated learning for healthcare: Systematic review and architecture proposal publication-title: ACM Trans. Intell. Syst. Technol. doi: 10.1145/3501813 – volume: 22 start-page: 1218 issue: 4 year: 2017 ident: 10.1016/j.patcog.2024.110424_b137 article-title: Automated breast ultrasound lesions detection using convolutional neural networks publication-title: IEEE J. Biomed. Health Inform. doi: 10.1109/JBHI.2017.2731873 – volume: 3 start-page: 119 issue: 1 year: 2020 ident: 10.1016/j.patcog.2024.110424_b25 article-title: The future of digital health with federated learning publication-title: NPJ Digit. Med. doi: 10.1038/s41746-020-00323-1 – volume: 9 start-page: 1 issue: 1 year: 2019 ident: 10.1016/j.patcog.2024.110424_b160 article-title: Epithelium segmentation using deep learning in H&E-stained prostate specimens with immunohistochemistry as reference standard publication-title: Sci. Rep. doi: 10.1038/s41598-018-37257-4 – volume: 35 issue: 8 year: 2023 ident: 10.1016/j.patcog.2024.110424_b174 article-title: Generalizing to unseen domains: A survey on domain generalization publication-title: IEEE Trans. Knowl. Data Eng. – volume: 11 start-page: 28628 year: 2023 ident: 10.1016/j.patcog.2024.110424_b27 article-title: A systematic review on federated learning in medical image analysis publication-title: IEEE Access doi: 10.1109/ACCESS.2023.3260027 – volume: 12 start-page: 1953 issue: 1 year: 2022 ident: 10.1016/j.patcog.2024.110424_b159 article-title: Federated learning and differential privacy for medical image analysis publication-title: Sci. Rep. doi: 10.1038/s41598-022-05539-7 – ident: 10.1016/j.patcog.2024.110424_b13 – volume: 27 start-page: 790 issue: 2 year: 2023 ident: 10.1016/j.patcog.2024.110424_b26 article-title: Handling privacy-sensitive medical data with federated learning: Challenges and future directions publication-title: IEEE J. Biomed. Health Inf. doi: 10.1109/JBHI.2022.3185673 – volume: 34 issue: 11 year: 2023 ident: 10.1016/j.patcog.2024.110424_b70 article-title: Learning from noisy labels with deep neural networks: A survey publication-title: IEEE Trans. Neural Netw. Learn. Syst. doi: 10.1109/TNNLS.2022.3152527 – year: 2022 ident: 10.1016/j.patcog.2024.110424_b66 article-title: A survey on deep semi-supervised learning publication-title: IEEE Trans. Knowl. Data Eng. – start-page: 92 year: 2019 ident: 10.1016/j.patcog.2024.110424_b126 article-title: Multi-institutional deep learning modeling without sharing patient data: A feasibility study on brain tumor segmentation – volume: 9 start-page: 211 issue: 3–4 year: 2014 ident: 10.1016/j.patcog.2024.110424_b91 article-title: The algorithmic foundations of differential privacy publication-title: Found. Trends® Theor. Comput. Sci. – start-page: 1 year: 2019 ident: 10.1016/j.patcog.2024.110424_b121 article-title: OASIS-3: longitudinal neuroimaging, clinical, and cognitive dataset for normal aging and Alzheimer disease publication-title: MedRxiv – year: 2018 ident: 10.1016/j.patcog.2024.110424_b29 – ident: 10.1016/j.patcog.2024.110424_b92 – volume: 70 year: 2021 ident: 10.1016/j.patcog.2024.110424_b72 article-title: Federated semi-supervised learning for COVID region segmentation in chest CT using multi-national data from China, Italy, Japan publication-title: Med. Image Anal. doi: 10.1016/j.media.2021.101992 – volume: 55 start-page: 1 issue: 3 year: 2022 ident: 10.1016/j.patcog.2024.110424_b23 article-title: Federated learning for smart healthcare: A survey publication-title: ACM Comput. Surv. doi: 10.1145/3501296 – volume: 29 start-page: 135 issue: 1 year: 2023 ident: 10.1016/j.patcog.2024.110424_b158 article-title: Federated learning for predicting histological response to neoadjuvant chemotherapy in triple-negative breast cancer publication-title: Nature Med. doi: 10.1038/s41591-022-02155-w – volume: 10 issue: 2 year: 2021 ident: 10.1016/j.patcog.2024.110424_b28 article-title: Ethical issues in patient data ownership publication-title: Interact. J. Med. Res. doi: 10.2196/22269 – volume: 25 start-page: 2615 issue: 7 year: 2020 ident: 10.1016/j.patcog.2024.110424_b53 article-title: Variation-aware federated learning with multi-source decentralized medical image data publication-title: IEEE J. Biomed. Health Inf. doi: 10.1109/JBHI.2020.3040015 – volume: 29 start-page: 120 issue: 1 year: 2009 ident: 10.1016/j.patcog.2024.110424_b166 article-title: Computer-aided detection of polyps in CT colonography using logistic regression publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2009.2028576 – volume: 42 start-page: 60 year: 2017 ident: 10.1016/j.patcog.2024.110424_b4 article-title: A survey on deep learning in medical image analysis publication-title: Med. Image Anal. doi: 10.1016/j.media.2017.07.005 – volume: 106 year: 2021 ident: 10.1016/j.patcog.2024.110424_b128 article-title: Federated learning for COVID-19 screening from Chest X-ray images publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2021.107330 – volume: 13 start-page: 252 issue: 3 year: 1991 ident: 10.1016/j.patcog.2024.110424_b8 article-title: Small sample size effects in statistical pattern recognition: Recommendations for practitioners publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/34.75512 – volume: 5 start-page: 1 issue: 1 year: 2018 ident: 10.1016/j.patcog.2024.110424_b113 article-title: The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions publication-title: Sci. Data doi: 10.1038/sdata.2018.161 – year: 2023 ident: 10.1016/j.patcog.2024.110424_b33 article-title: Label-efficient self-supervised federated learning for tackling data heterogeneity in medical imaging publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2022.3233574 – volume: 18 start-page: 359 issue: 2 year: 2014 ident: 10.1016/j.patcog.2024.110424_b115 article-title: Evaluation of prostate segmentation algorithms for MRI: the PROMISE12 challenge publication-title: Med. Image Anal. doi: 10.1016/j.media.2013.12.002 – ident: 10.1016/j.patcog.2024.110424_b51 doi: 10.1109/CVPR46437.2021.00245 – volume: 37 start-page: 50 issue: 3 year: 2020 ident: 10.1016/j.patcog.2024.110424_b16 article-title: Federated learning: Challenges, methods, and future directions publication-title: IEEE Signal Process. Mag. doi: 10.1109/MSP.2020.2975749 – volume: 28 start-page: 1 year: 2020 ident: 10.1016/j.patcog.2024.110424_b135 article-title: Dataset of breast ultrasound images publication-title: Data Brief doi: 10.1016/j.dib.2019.104863 – volume: 10 start-page: 1 issue: 1 year: 2020 ident: 10.1016/j.patcog.2024.110424_b110 article-title: Covid-net: A tailored deep convolutional neural network design for detection of COVID-19 cases from chest X-ray images publication-title: Sci. Rep. – volume: 15 start-page: 273 issue: 1 year: 2002 ident: 10.1016/j.patcog.2024.110424_b162 article-title: Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain publication-title: NeuroImage doi: 10.1006/nimg.2001.0978 – start-page: 740 year: 2014 ident: 10.1016/j.patcog.2024.110424_b7 article-title: Microsoft COCO: Common objects in context – year: 2023 ident: 10.1016/j.patcog.2024.110424_b149 article-title: FedDM: Federated weakly supervised segmentation via annotation calibration and gradient de-conflicting publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2023.3235757 – volume: 19 start-page: 659 issue: 6 year: 2014 ident: 10.1016/j.patcog.2024.110424_b103 article-title: The autism brain imaging data exchange: towards a large-scale evaluation of the intrinsic brain architecture in autism publication-title: Mol. Psychiatry doi: 10.1038/mp.2013.78 – volume: 14 start-page: 5510 issue: 1 year: 2023 ident: 10.1016/j.patcog.2024.110424_b80 article-title: Mining multi-center heterogeneous medical data with distributed synthetic learning publication-title: Nature Commun. doi: 10.1038/s41467-023-40687-y – start-page: 191 year: 2021 ident: 10.1016/j.patcog.2024.110424_b119 article-title: MedMNIST classification decathlon: A lightweight automl benchmark for medical image analysis – volume: 84 start-page: 1 year: 2023 ident: 10.1016/j.patcog.2024.110424_b152 article-title: The liver tumor segmentation benchmark (lits) publication-title: Med. Image Anal. doi: 10.1016/j.media.2022.102680 – start-page: 428 year: 2020 ident: 10.1016/j.patcog.2024.110424_b176 article-title: Test-time unsupervised domain adaptation – start-page: 256 year: 2022 ident: 10.1016/j.patcog.2024.110424_b124 article-title: Contrastive re-localization and history distillation in federated CMR segmentation – volume: 2 issue: 1 year: 2020 ident: 10.1016/j.patcog.2024.110424_b117 article-title: fastMRI: A publicly available raw k-space and DICOM dataset of knee images for accelerated MR image reconstruction using machine learning publication-title: Radiol.: Artif. Intell. – volume: 75 start-page: 1 year: 2022 ident: 10.1016/j.patcog.2024.110424_b114 article-title: Analysis of the ISIC image datasets: Usage, benchmarks and recommendations publication-title: Med. Image Anal. doi: 10.1016/j.media.2021.102305 – volume: 30 year: 2017 ident: 10.1016/j.patcog.2024.110424_b63 article-title: Federated multi-task learning publication-title: Adv. Neural Inf. Process. Syst. – start-page: 67 year: 2022 ident: 10.1016/j.patcog.2024.110424_b127 article-title: Learning underrepresented classes from decentralized partially labeled medical images – volume: 14 start-page: 1 issue: 11 year: 2019 ident: 10.1016/j.patcog.2024.110424_b9 article-title: Machine learning algorithm validation with a limited sample size publication-title: PLOS ONE doi: 10.1371/journal.pone.0224365 – volume: 31 year: 2018 ident: 10.1016/j.patcog.2024.110424_b83 article-title: Frequency-domain dynamic pruning for convolutional neural networks publication-title: Adv. Neural Inf. Process. Syst. – start-page: 378 year: 2021 ident: 10.1016/j.patcog.2024.110424_b61 article-title: Federated contrastive learning for decentralized unlabeled medical images – volume: 76 start-page: 1 year: 2022 ident: 10.1016/j.patcog.2024.110424_b73 article-title: Federated learning for computational pathology on gigapixel whole slide images publication-title: Med. Image Anal. doi: 10.1016/j.media.2021.102298 – year: 2022 ident: 10.1016/j.patcog.2024.110424_b178 article-title: Uncertainty-aware aggregation for federated open set domain adaptation publication-title: IEEE Trans. Neural Netw. Learn. Syst. – volume: 9 start-page: 116869 year: 2021 ident: 10.1016/j.patcog.2024.110424_b96 article-title: Benchmarking PySyft federated learning framework on MIMIC-III dataset publication-title: IEEE Access doi: 10.1109/ACCESS.2021.3105929 – volume: 42 issue: 7 year: 2023 ident: 10.1016/j.patcog.2024.110424_b41 article-title: Specificity-preserving federated learning for MR image reconstruction publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2022.3202106 – volume: 27 start-page: 1735 issue: 10 year: 2021 ident: 10.1016/j.patcog.2024.110424_b100 article-title: Federated learning for predicting clinical outcomes in patients with COVID-19 publication-title: Nature Med. doi: 10.1038/s41591-021-01506-3 – volume: 67 issue: 21 year: 2022 ident: 10.1016/j.patcog.2024.110424_b97 article-title: OpenFL: The open federated learning library publication-title: Phys. Med. Biol. doi: 10.1088/1361-6560/ac97d9 – year: 2022 ident: 10.1016/j.patcog.2024.110424_b34 article-title: Integrated CNN and federated learning for COVID-19 detection on chest X-ray images publication-title: IEEE/ACM Trans. Comput. Biol. Bioinform. – start-page: 1 year: 2022 ident: 10.1016/j.patcog.2024.110424_b122 article-title: Effectiveness of federated learning and CNN ensemble architectures for identifying brain tumors using MRI images publication-title: Neural Process. Lett. – volume: 12 start-page: 3551 issue: 1 year: 2022 ident: 10.1016/j.patcog.2024.110424_b129 article-title: Federated learning for multi-center imaging diagnostics: a simulation study in cardiovascular disease publication-title: Sci. Rep. doi: 10.1038/s41598-022-07186-4 – start-page: 14 year: 2022 ident: 10.1016/j.patcog.2024.110424_b47 article-title: Federated stain normalization for computational pathology – volume: 78 year: 2022 ident: 10.1016/j.patcog.2024.110424_b52 article-title: Handling data heterogeneity with generative replay in collaborative learning for medical imaging publication-title: Med. Image Anal. doi: 10.1016/j.media.2022.102424 – volume: 25 start-page: 845 issue: 5 year: 2013 ident: 10.1016/j.patcog.2024.110424_b71 article-title: Classification in the presence of label noise: A survey publication-title: IEEE Trans. Neural Netw. Learn. Syst. doi: 10.1109/TNNLS.2013.2292894 – year: 2015 ident: 10.1016/j.patcog.2024.110424_b75 – volume: 8 start-page: 132665 year: 2020 ident: 10.1016/j.patcog.2024.110424_b109 article-title: Can AI help in screening viral and COVID-19 pneumonia? publication-title: IEEE Access doi: 10.1109/ACCESS.2020.3010287 – volume: 32 start-page: 18069 issue: 24 year: 2020 ident: 10.1016/j.patcog.2024.110424_b186 article-title: The importance of interpretability and visualization in machine learning for applications in medicine and health care publication-title: Neural Comput. Appl. doi: 10.1007/s00521-019-04051-w – volume: 10 start-page: 1 issue: 2 year: 2019 ident: 10.1016/j.patcog.2024.110424_b17 article-title: Federated machine learning: Concept and applications publication-title: ACM Trans. Intell. Syst. Technol. doi: 10.1145/3298981 – volume: 14 start-page: 1 issue: 1–2 year: 2021 ident: 10.1016/j.patcog.2024.110424_b14 article-title: Advances and open problems in federated learning publication-title: Found. Trends® Mach. Learn. doi: 10.1561/2200000083 – start-page: 1191 year: 2021 ident: 10.1016/j.patcog.2024.110424_b36 article-title: Scaling neuroscience research using federated learning – start-page: 309 year: 2022 ident: 10.1016/j.patcog.2024.110424_b154 article-title: Intervention & interaction federated abnormality detection with noisy clients – start-page: 133 year: 2019 ident: 10.1016/j.patcog.2024.110424_b90 article-title: Privacy-preserving federated brain tumour segmentation – year: 2023 ident: 10.1016/j.patcog.2024.110424_b94 article-title: Do gradient inversion attacks make federated learning unsafe? publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2023.3239391 – year: 2021 ident: 10.1016/j.patcog.2024.110424_b150 – volume: 5 start-page: 89 issue: 4 year: 2020 ident: 10.1016/j.patcog.2024.110424_b130 article-title: Emidec: a database usable for the automatic evaluation of myocardial infarction from delayed-enhancement cardiac MRI publication-title: Data doi: 10.3390/data5040089 – start-page: 159 year: 2020 ident: 10.1016/j.patcog.2024.110424_b131 article-title: Federated simulation for medical imaging – volume: 41 start-page: 1979 issue: 8 year: 2018 ident: 10.1016/j.patcog.2024.110424_b79 article-title: Virtual adversarial training: a regularization method for supervised and semi-supervised learning publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2018.2858821 – start-page: 234 year: 2015 ident: 10.1016/j.patcog.2024.110424_b37 article-title: U-net: Convolutional networks for biomedical image segmentation – ident: 10.1016/j.patcog.2024.110424_b167 – volume: 42 issue: 7 year: 2023 ident: 10.1016/j.patcog.2024.110424_b120 article-title: Federated brain graph evolution prediction using decentralized connectivity datasets with temporally-varying acquisitions publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2022.3225083 – start-page: 1077 year: 2021 ident: 10.1016/j.patcog.2024.110424_b43 article-title: Federated learning for site aware chest radiograph screening – volume: 33 start-page: 16937 year: 2020 ident: 10.1016/j.patcog.2024.110424_b87 article-title: Inverting gradients-how easy is it to break privacy in federated learning? publication-title: Adv. Neural Inf. Process. Syst. – year: 2020 ident: 10.1016/j.patcog.2024.110424_b10 – volume: 33 start-page: 21394 year: 2020 ident: 10.1016/j.patcog.2024.110424_b40 article-title: Personalized federated learning with moreau envelopes publication-title: Adv. Neural Inf. Process. Syst. – volume: 10 start-page: 213 year: 2017 ident: 10.1016/j.patcog.2024.110424_b68 article-title: Multiple-instance learning for medical image and video analysis publication-title: IEEE Rev. Biomed. Eng. doi: 10.1109/RBME.2017.2651164 – year: 2023 ident: 10.1016/j.patcog.2024.110424_b134 article-title: FedMix: Mixed supervised federated learning for medical image segmentation publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2022.3233405 – volume: 65 start-page: 1 year: 2020 ident: 10.1016/j.patcog.2024.110424_b48 article-title: Multi-site fMRI analysis using privacy-preserving federated learning and domain adaptation: ABIDE results publication-title: Med. Image Anal. doi: 10.1016/j.media.2020.101765 – volume: 8 start-page: 15884 issue: 21 year: 2021 ident: 10.1016/j.patcog.2024.110424_b31 article-title: Dynamic-fusion-based federated learning for COVID-19 detection publication-title: IEEE Internet Things J. doi: 10.1109/JIOT.2021.3056185 – volume: 33 start-page: 1083 issue: 5 year: 2014 ident: 10.1016/j.patcog.2024.110424_b153 article-title: Computer-aided detection of prostate cancer in MRI publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2014.2303821 – volume: 3 start-page: 473 issue: 6 year: 2021 ident: 10.1016/j.patcog.2024.110424_b93 article-title: End-to-end privacy preserving deep learning on multi-institutional medical imaging publication-title: Nat. Mach. Intell. doi: 10.1038/s42256-021-00337-8 – volume: 45 start-page: 4396 issue: 4 year: 2023 ident: 10.1016/j.patcog.2024.110424_b173 article-title: Domain generalization: A survey publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – start-page: 181 year: 2020 ident: 10.1016/j.patcog.2024.110424_b185 article-title: Federated learning for breast density classification: A real-world implementation – volume: 33 start-page: 8435 issue: 14 year: 2021 ident: 10.1016/j.patcog.2024.110424_b163 article-title: Genetic algorithm with logistic regression feature selection for Alzheimer’s disease classification publication-title: Neural Comput. Appl. doi: 10.1007/s00521-020-05596-x – volume: 69 start-page: 1173 issue: 3 year: 2022 ident: 10.1016/j.patcog.2024.110424_b3 article-title: Domain adaptation for medical image analysis: A survey publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2021.3117407 – volume: 37 start-page: 2514 issue: 11 year: 2018 ident: 10.1016/j.patcog.2024.110424_b111 article-title: Deep learning techniques for automatic MRI cardiac multi-structures segmentation and diagnosis: is the problem solved? publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2018.2837502 – volume: 45 start-page: 1113 issue: 10 year: 2013 ident: 10.1016/j.patcog.2024.110424_b116 article-title: The cancer genome atlas pan-cancer analysis project publication-title: Nature Genet. doi: 10.1038/ng.2764 – volume: 5 start-page: 1 year: 2021 ident: 10.1016/j.patcog.2024.110424_b22 article-title: Cloud-based federated learning implementation across medical centers publication-title: JCO Clin. Cancer Inform. doi: 10.1200/CCI.20.00060 – volume: 3 start-page: 1 issue: 1 year: 2016 ident: 10.1016/j.patcog.2024.110424_b123 article-title: A structural and functional magnetic resonance imaging dataset of brain tumour patients publication-title: Sci. Data doi: 10.1038/sdata.2016.3 – volume: 16 start-page: 1 issue: 8 year: 2021 ident: 10.1016/j.patcog.2024.110424_b155 article-title: Colonoscopy polyp detection and classification: Dataset creation and comparative evaluations publication-title: PLOS ONE doi: 10.1371/journal.pone.0255809 – year: 2023 ident: 10.1016/j.patcog.2024.110424_b147 article-title: FedDP: Dual personalization in federated medical image segmentation publication-title: IEEE Trans. Med. Imaging – start-page: 248 year: 2009 ident: 10.1016/j.patcog.2024.110424_b6 article-title: Imagenet: A large-scale hierarchical image database – volume: 42 issue: 7 year: 2023 ident: 10.1016/j.patcog.2024.110424_b84 article-title: Proportionally fair hospital collaborations in federated learning of histopathology images publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2023.3234450 – volume: 11 start-page: 10708 year: 2023 ident: 10.1016/j.patcog.2024.110424_b170 article-title: Poisoning attacks in federated learning: A survey publication-title: IEEE Access doi: 10.1109/ACCESS.2023.3238823 – start-page: 1 year: 2021 ident: 10.1016/j.patcog.2024.110424_b15 article-title: A survey on federated learning systems: Vision, hype and reality for data privacy and protection publication-title: IEEE Trans. Knowl. Data Eng. – ident: 10.1016/j.patcog.2024.110424_b148 doi: 10.1109/CVPR46437.2021.00107 – year: 2019 ident: 10.1016/j.patcog.2024.110424_b157 – start-page: 367 year: 2021 ident: 10.1016/j.patcog.2024.110424_b60 article-title: Federated contrastive learning for volumetric medical image segmentation – volume: 26 start-page: 5596 issue: 11 year: 2022 ident: 10.1016/j.patcog.2024.110424_b39 article-title: Customized federated learning for multi-source decentralized medical image classification publication-title: IEEE J. Biomed. Health Inf. doi: 10.1109/JBHI.2022.3198440 – start-page: 111 year: 2021 ident: 10.1016/j.patcog.2024.110424_b95 article-title: Pysyft: A library for easy federated learning – volume: 41 start-page: 3663 issue: 12 year: 2022 ident: 10.1016/j.patcog.2024.110424_b82 article-title: Personalized retrogress-resilient federated learning toward imbalanced medical data publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2022.3192483 – volume: 28 year: 2015 ident: 10.1016/j.patcog.2024.110424_b164 article-title: Semi-supervised factored logistic regression for high-dimensional neuroimaging data publication-title: Adv. Neural Inf. Process. Syst. – volume: 55 start-page: 1 issue: 11 year: 2023 ident: 10.1016/j.patcog.2024.110424_b181 article-title: Blockchain-empowered federated learning: Challenges, solutions, and future directions publication-title: ACM Comput. Surv. doi: 10.1145/3570953 – ident: 10.1016/j.patcog.2024.110424_b107 doi: 10.1609/aaai.v33i01.3301590 – start-page: 168 year: 2018 ident: 10.1016/j.patcog.2024.110424_b143 article-title: Skin lesion analysis toward melanoma detection: A challenge at the 2017 International Symposium on Biomedical Imaging (ISBI), hosted by the International Skin Imaging Collaboration (ISIC) – volume: 42 issue: 7 year: 2023 ident: 10.1016/j.patcog.2024.110424_b180 article-title: A dataset auditing method for collaboratively trained machine learning models publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2022.3220706 – volume: 72 year: 2021 ident: 10.1016/j.patcog.2024.110424_b175 article-title: Autoencoder based self-supervised test-time adaptation for medical image analysis publication-title: Med. Image Anal. doi: 10.1016/j.media.2021.102136 – volume: 19 start-page: 1523 issue: 11 year: 2016 ident: 10.1016/j.patcog.2024.110424_b106 article-title: Multimodal population brain imaging in the UK Biobank prospective epidemiological study publication-title: Nature Neurosci. doi: 10.1038/nn.4393 – year: 2019 ident: 10.1016/j.patcog.2024.110424_b139 – volume: Vol. 10 start-page: 1 year: 2022 ident: 10.1016/j.patcog.2024.110424_b136 article-title: BUSIS: A benchmark for breast ultrasound image segmentation – start-page: 1 year: 2011 ident: 10.1016/j.patcog.2024.110424_b146 article-title: RIM-ONE: An open retinal image database for optic nerve evaluation – year: 2023 ident: 10.1016/j.patcog.2024.110424_b145 article-title: Federated semi-supervised learning for medical image segmentation via pseudo-label denoising publication-title: IEEE J. Biomed. Health Inf. doi: 10.1109/JBHI.2023.3274498 – start-page: 357 year: 2021 ident: 10.1016/j.patcog.2024.110424_b156 article-title: Federated whole prostate segmentation in MRI with personalized neural architectures – volume: 521 start-page: 436 issue: 7553 year: 2015 ident: 10.1016/j.patcog.2024.110424_b5 article-title: Deep learning publication-title: Nature doi: 10.1038/nature14539 – volume: 40 start-page: 2306 issue: 9 year: 2021 ident: 10.1016/j.patcog.2024.110424_b118 article-title: Results of the 2020 fastMRI challenge for machine learning MR image reconstruction publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2021.3075856 – volume: 32 start-page: 1 year: 2020 ident: 10.1016/j.patcog.2024.110424_b141 article-title: PAD-UFES-20: A skin lesion dataset composed of patient data and clinical images collected from smartphones publication-title: Data Brief doi: 10.1016/j.dib.2020.106221 – ident: 10.1016/j.patcog.2024.110424_b58 doi: 10.1109/CVPR42600.2020.00674 – volume: 3 start-page: 172 year: 2022 ident: 10.1016/j.patcog.2024.110424_b172 article-title: Collaborative federated learning for healthcare: Multi-modal COVID-19 diagnosis at the edge publication-title: IEEE Open J. Comput. Soc. doi: 10.1109/OJCS.2022.3206407 – year: 2019 ident: 10.1016/j.patcog.2024.110424_b184 – volume: 139 start-page: 470 year: 2016 ident: 10.1016/j.patcog.2024.110424_b165 article-title: Domain adaptation for Alzheimer’s disease diagnostics publication-title: NeuroImage doi: 10.1016/j.neuroimage.2016.05.053 |
SSID | ssj0017142 |
Score | 2.7041538 |
SecondaryResourceType | review_article |
Snippet | Machine learning in medical imaging often faces a fundamental dilemma, namely, the small sample size problem. Many recent studies suggest using multi-domain... |
SourceID | pubmedcentral proquest pubmed crossref elsevier |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 110424 |
SubjectTerms | Data privacy Federated learning Machine learning Medical image analysis |
Title | Federated learning for medical image analysis: A survey |
URI | https://dx.doi.org/10.1016/j.patcog.2024.110424 https://www.ncbi.nlm.nih.gov/pubmed/38559674 https://www.proquest.com/docview/3031136669 https://pubmed.ncbi.nlm.nih.gov/PMC10976951 |
Volume | 151 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LTxsxELYiuPTSFkpLykOuxNVls37sLrcoIgqtyqlI3Cy_FoLIJoIEiQu_nZnYGzUghNTjem3JmhnPfJZnviHkyJZZHqwVzHnFmQg-Z4Cqc-aVAW1nQYUCC5z_nKvRhfh1KS87ZNDWwmBaZfL90acvvXUaOU7SPJ6Nx1jji7SDGTLKgVlJ5AQVokAr__m0SvPA_t6RMZz3GM5uy-eWOV4zcHfTK7gl5gLz4UUu3gpPr-HnyyzKf8LS8DP5mPAk7cctb5FOaLbJp7ZXA01H9wsphsgaAcDS09Qo4ooCXqWT-FBDxxNwLNQkipIT2qf3i7uH8LhDLoanfwcjlpomMCeUmDNZGxWcsLIuVekh_kiAAMZ57uGiZQKXPZfVzhtuKxG4l6iTHMarUHtb9Tz_SjaaaRN2CZWqEqU1RtXciSr3tvDeulArW9Yuk75LeCsr7RKjODa2uNVt6tiNjhLWKGEdJdwlbLVqFhk13plftGrQa5ahwem_s_JHqzUNhwZfQkwTpot7DXEbe9koVXXJt6jF1V54CZcsVcDqck2_qwlIyL3-pxlfL4m58TVfAWT9_t9b3iMf8CvmA--TjfndIhwA6pnbw6VZH5LN_tnv0fkzdisDQw |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LaxsxEB5S59Be-n64TxV6FVmvHrvbmwk1TpP4lEBuQq9NHZq1SexC_31nLK2pW0qgV0kDYkaa-YRmvgH45OqijM5J7oMWXMZQckTVJQ_aorWLqGNFBc6nMz09l18v1MUeHPa1MJRWmX1_8ukbb51HDrI2D5bzOdX4Eu1gQYxyeKyUvAf7xE6lBrA_PjqezrafCdVIJtJwMeIk0FfQbdK8lujxFpf4UCwlpcTLUv4rQv2NQP9MpPwtMk0ew8MMKdk47foJ7MXuKTzq2zWwfHufQTUh4gjEloHlXhGXDCEru05_NWx-jb6F2cxS8pmN2e365kf8-RzOJ1_ODqc8903gXmq54qq1OnrpVFvrOmAIUogCrA8i4FvLRqFGvmh9sMI1MoqgyCwljjexDa4ZBfECBt2ii6-AKd3I2lmrW-FlUwZXheB8bLWrW1-oMATR68r4TCpOvS2-mz577MokDRvSsEkaHgLfSi0TqcYd66veDGbncBj0-3dIfuytZvDe0GeI7eJifWswdFM7G62bIbxMVtzuRdT4ztIVStc79t0uIE7u3Zlu_m3DzU0f-hpR6-v_3vIHuD89Oz0xJ0ez4zfwgGZSevBbGKxu1vEdgqCVe58P-S9NygX0 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Federated+learning+for+medical+image+analysis%3A+A+survey&rft.jtitle=Pattern+recognition&rft.au=Guan%2C+Hao&rft.au=Yap%2C+Pew-Thian&rft.au=Bozoki%2C+Andrea&rft.au=Liu%2C+Mingxia&rft.date=2024-07-01&rft.issn=0031-3203&rft.volume=151&rft_id=info:doi/10.1016%2Fj.patcog.2024.110424&rft_id=info%3Apmid%2F38559674&rft.externalDocID=PMC10976951 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0031-3203&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0031-3203&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0031-3203&client=summon |