In vitro fermentation of Gracilaria lemaneiformis sulfated polysaccharides and its agaro-oligosaccharides by human fecal inocula and its impact on microbiota
•Sulfated polysaccharide (GLP) and agaro-oligosaccharide (GLO) from G. lemaneiformis were fermented in vitro by human fecal.•GLP and GLO altered intestinal microbes and promoted short chain fatty acids production.•The molecular weight and intrinsic viscosity of GLP were decreased after gut microbiot...
Saved in:
Published in | Carbohydrate polymers Vol. 234; p. 115894 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
England
Elsevier Ltd
15.04.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | •Sulfated polysaccharide (GLP) and agaro-oligosaccharide (GLO) from G. lemaneiformis were fermented in vitro by human fecal.•GLP and GLO altered intestinal microbes and promoted short chain fatty acids production.•The molecular weight and intrinsic viscosity of GLP were decreased after gut microbiota fermentation.•GLP and GLO are potentially useful as sources of prebiotics in functional foods.
The fermentation behaviour of sulfated polysaccharides (GLP) and their agaro-oligosaccharides (GLO) derived from Gracilaria lemaneiformis were examined. During in vitro fermentation, GLP and GLO increased the concentrations of short chain fatty acids (SCFAs) and modulated the composition and diversity of gut microorganisms compared with control groups. GLP increased the abundance of Bacteroidetes and decreased the abundance of Firmicutes, while GLO increased the abundance of Firmicutes and Actinobacteria. Moreover, the abundances of potential pathogenic bacteria were reduced. Molecular weight and intrinsic viscosity of GLP decreased significantly from 2.15 × 105 to 1.22 × 105 Da, 374.45–113.91 mL/g, respectively. Furthermore, GLP was degraded into smaller degree of polymerization of oligosaccharides, with no significant change observed in GLO. Overall, this study revealed GLP and GLO could be beneficial for gastrointestinal tract by producing SCFAs and modulating intestinal microbes, indicating GLP and GLO are potentially sources of prebiotics in functional foods. |
---|---|
AbstractList | •Sulfated polysaccharide (GLP) and agaro-oligosaccharide (GLO) from G. lemaneiformis were fermented in vitro by human fecal.•GLP and GLO altered intestinal microbes and promoted short chain fatty acids production.•The molecular weight and intrinsic viscosity of GLP were decreased after gut microbiota fermentation.•GLP and GLO are potentially useful as sources of prebiotics in functional foods.
The fermentation behaviour of sulfated polysaccharides (GLP) and their agaro-oligosaccharides (GLO) derived from Gracilaria lemaneiformis were examined. During in vitro fermentation, GLP and GLO increased the concentrations of short chain fatty acids (SCFAs) and modulated the composition and diversity of gut microorganisms compared with control groups. GLP increased the abundance of Bacteroidetes and decreased the abundance of Firmicutes, while GLO increased the abundance of Firmicutes and Actinobacteria. Moreover, the abundances of potential pathogenic bacteria were reduced. Molecular weight and intrinsic viscosity of GLP decreased significantly from 2.15 × 105 to 1.22 × 105 Da, 374.45–113.91 mL/g, respectively. Furthermore, GLP was degraded into smaller degree of polymerization of oligosaccharides, with no significant change observed in GLO. Overall, this study revealed GLP and GLO could be beneficial for gastrointestinal tract by producing SCFAs and modulating intestinal microbes, indicating GLP and GLO are potentially sources of prebiotics in functional foods. The fermentation behaviour of sulfated polysaccharides (GLP) and their agaro-oligosaccharides (GLO) derived from Gracilaria lemaneiformis were examined. During in vitro fermentation, GLP and GLO increased the concentrations of short chain fatty acids (SCFAs) and modulated the composition and diversity of gut microorganisms compared with control groups. GLP increased the abundance of Bacteroidetes and decreased the abundance of Firmicutes, while GLO increased the abundance of Firmicutes and Actinobacteria. Moreover, the abundances of potential pathogenic bacteria were reduced. Molecular weight and intrinsic viscosity of GLP decreased significantly from 2.15 × 10⁵ to 1.22 × 10⁵ Da, 374.45–113.91 mL/g, respectively. Furthermore, GLP was degraded into smaller degree of polymerization of oligosaccharides, with no significant change observed in GLO. Overall, this study revealed GLP and GLO could be beneficial for gastrointestinal tract by producing SCFAs and modulating intestinal microbes, indicating GLP and GLO are potentially sources of prebiotics in functional foods. The fermentation behaviour of sulfated polysaccharides (GLP) and their agaro-oligosaccharides (GLO) derived from Gracilaria lemaneiformis were examined. During in vitro fermentation, GLP and GLO increased the concentrations of short chain fatty acids (SCFAs) and modulated the composition and diversity of gut microorganisms compared with control groups. GLP increased the abundance of Bacteroidetes and decreased the abundance of Firmicutes, while GLO increased the abundance of Firmicutes and Actinobacteria. Moreover, the abundances of potential pathogenic bacteria were reduced. Molecular weight and intrinsic viscosity of GLP decreased significantly from 2.15 × 10 to 1.22 × 10 Da, 374.45-113.91 mL/g, respectively. Furthermore, GLP was degraded into smaller degree of polymerization of oligosaccharides, with no significant change observed in GLO. Overall, this study revealed GLP and GLO could be beneficial for gastrointestinal tract by producing SCFAs and modulating intestinal microbes, indicating GLP and GLO are potentially sources of prebiotics in functional foods. The fermentation behaviour of sulfated polysaccharides (GLP) and their agaro-oligosaccharides (GLO) derived from Gracilaria lemaneiformis were examined. During in vitro fermentation, GLP and GLO increased the concentrations of short chain fatty acids (SCFAs) and modulated the composition and diversity of gut microorganisms compared with control groups. GLP increased the abundance of Bacteroidetes and decreased the abundance of Firmicutes, while GLO increased the abundance of Firmicutes and Actinobacteria. Moreover, the abundances of potential pathogenic bacteria were reduced. Molecular weight and intrinsic viscosity of GLP decreased significantly from 2.15 × 105 to 1.22 × 105 Da, 374.45-113.91 mL/g, respectively. Furthermore, GLP was degraded into smaller degree of polymerization of oligosaccharides, with no significant change observed in GLO. Overall, this study revealed GLP and GLO could be beneficial for gastrointestinal tract by producing SCFAs and modulating intestinal microbes, indicating GLP and GLO are potentially sources of prebiotics in functional foods.The fermentation behaviour of sulfated polysaccharides (GLP) and their agaro-oligosaccharides (GLO) derived from Gracilaria lemaneiformis were examined. During in vitro fermentation, GLP and GLO increased the concentrations of short chain fatty acids (SCFAs) and modulated the composition and diversity of gut microorganisms compared with control groups. GLP increased the abundance of Bacteroidetes and decreased the abundance of Firmicutes, while GLO increased the abundance of Firmicutes and Actinobacteria. Moreover, the abundances of potential pathogenic bacteria were reduced. Molecular weight and intrinsic viscosity of GLP decreased significantly from 2.15 × 105 to 1.22 × 105 Da, 374.45-113.91 mL/g, respectively. Furthermore, GLP was degraded into smaller degree of polymerization of oligosaccharides, with no significant change observed in GLO. Overall, this study revealed GLP and GLO could be beneficial for gastrointestinal tract by producing SCFAs and modulating intestinal microbes, indicating GLP and GLO are potentially sources of prebiotics in functional foods. |
ArticleNumber | 115894 |
Author | Zhang, Xiao Huang, Zong-Xun Bai, Zi-Hao Aweya, Jude Juventus Cheong, Kit-Leong He, Xiao-Tong Chen, Xian-Qiang Liu, Yang Kang, Zhuo-Ying Li, Kun-Huan |
Author_xml | – sequence: 1 givenname: Xiao surname: Zhang fullname: Zhang, Xiao organization: Guangdong Provincial Key Laboratory of Marine Biotechnology, STU-UNIVPM Joint Algal Research Center, Department of Biology, College of Science, Shantou University, Shantou 515063, Guangdong, China – sequence: 2 givenname: Jude Juventus surname: Aweya fullname: Aweya, Jude Juventus organization: Guangdong Provincial Key Laboratory of Marine Biotechnology, STU-UNIVPM Joint Algal Research Center, Department of Biology, College of Science, Shantou University, Shantou 515063, Guangdong, China – sequence: 3 givenname: Zong-Xun surname: Huang fullname: Huang, Zong-Xun organization: Guangdong Provincial Key Laboratory of Marine Biotechnology, STU-UNIVPM Joint Algal Research Center, Department of Biology, College of Science, Shantou University, Shantou 515063, Guangdong, China – sequence: 4 givenname: Zhuo-Ying surname: Kang fullname: Kang, Zhuo-Ying organization: Guangdong Provincial Key Laboratory of Marine Biotechnology, STU-UNIVPM Joint Algal Research Center, Department of Biology, College of Science, Shantou University, Shantou 515063, Guangdong, China – sequence: 5 givenname: Zi-Hao surname: Bai fullname: Bai, Zi-Hao organization: Guangdong Provincial Key Laboratory of Marine Biotechnology, STU-UNIVPM Joint Algal Research Center, Department of Biology, College of Science, Shantou University, Shantou 515063, Guangdong, China – sequence: 6 givenname: Kun-Huan surname: Li fullname: Li, Kun-Huan organization: Guangdong Provincial Key Laboratory of Marine Biotechnology, STU-UNIVPM Joint Algal Research Center, Department of Biology, College of Science, Shantou University, Shantou 515063, Guangdong, China – sequence: 7 givenname: Xiao-Tong surname: He fullname: He, Xiao-Tong organization: Guangdong Provincial Key Laboratory of Marine Biotechnology, STU-UNIVPM Joint Algal Research Center, Department of Biology, College of Science, Shantou University, Shantou 515063, Guangdong, China – sequence: 8 givenname: Yang surname: Liu fullname: Liu, Yang organization: Guangdong Provincial Key Laboratory of Marine Biotechnology, STU-UNIVPM Joint Algal Research Center, Department of Biology, College of Science, Shantou University, Shantou 515063, Guangdong, China – sequence: 9 givenname: Xian-Qiang surname: Chen fullname: Chen, Xian-Qiang organization: Institute of Marine Drugs, Guangxi University of Chinese Medicine, Nanning 530200, Guangxi, China – sequence: 10 givenname: Kit-Leong orcidid: 0000-0001-8380-0123 surname: Cheong fullname: Cheong, Kit-Leong email: klcheong@stu.edu.cn organization: Guangdong Provincial Key Laboratory of Marine Biotechnology, STU-UNIVPM Joint Algal Research Center, Department of Biology, College of Science, Shantou University, Shantou 515063, Guangdong, China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32070514$$D View this record in MEDLINE/PubMed |
BookMark | eNqFUctu1DAUtVARnRY-AeQlmwx24jiJWCBUQVupEhtYWzf2deuREw-2U2k-hn_FVaYIdTPeXMk-D597LsjZHGYk5D1nW864_LTbaojjPvhtzepyx9t-EK_IhvfdUPFGiDOyYVyIqpe8OycXKe1YOZKzN-S8qVnHWi425M_tTB9djoFajBPOGbILMw2WXkfQzkN0QD1OMKOzIU4u0bR4CxkNLeaHBFo_FJDBRGE21OUy7yGGKnh3H_5_Hg_0YSlCxUmDp24OevHwj-WmPehMi_nkdAyjCxnektcWfMJ3x3lJfn3_9vPqprr7cX179fWu0kKKXLWWG9Zg28t6tMw2PdY9bxq0kqGouQADRupx0GPfNFzYoTVjZ1vATnLEVjaX5OOqu4_h94IpqxJUo_cldliSqoVgchBS1qehTfkG46WBAv1whC7jhEbto5sgHtTz9gvg8wooeVOKaJV2awE5gvOKM_XUtdqpY9fqqWu1dl3Y7Qv2s8Ep3peVh2Wjjw6jStrhrNG4iDorE9wJhb-Bw8l- |
CitedBy_id | crossref_primary_10_1016_j_foodhyd_2023_108818 crossref_primary_10_1039_D1FO01201K crossref_primary_10_1016_j_ijbiomac_2022_09_217 crossref_primary_10_1016_j_fbio_2024_105596 crossref_primary_10_1016_j_ijbiomac_2024_136052 crossref_primary_10_1016_j_jep_2021_114024 crossref_primary_10_3390_foods13132148 crossref_primary_10_1007_s00284_023_03518_3 crossref_primary_10_1016_j_carbpol_2020_116310 crossref_primary_10_3390_microorganisms11112686 crossref_primary_10_1016_j_carbpol_2021_118696 crossref_primary_10_1016_j_foodres_2023_112498 crossref_primary_10_1016_j_ijbiomac_2024_139316 crossref_primary_10_2141_jpsa_2023018 crossref_primary_10_1016_j_jff_2021_104596 crossref_primary_10_1111_1750_3841_17326 crossref_primary_10_1016_j_ijbiomac_2023_125561 crossref_primary_10_1039_D4FO01409J crossref_primary_10_3390_app13031517 crossref_primary_10_1016_j_ijbiomac_2024_138101 crossref_primary_10_48130_fia_0024_0018 crossref_primary_10_1016_j_ijbiomac_2024_130060 crossref_primary_10_1016_j_ijbiomac_2024_131391 crossref_primary_10_1016_j_indcrop_2023_116318 crossref_primary_10_1039_D2FO01951E crossref_primary_10_1016_j_foodchem_2021_131608 crossref_primary_10_3389_fmicb_2021_634204 crossref_primary_10_1186_s13020_022_00631_6 crossref_primary_10_1111_1750_3841_17678 crossref_primary_10_1016_j_ijbiomac_2024_129994 crossref_primary_10_1016_j_foodhyd_2020_106577 crossref_primary_10_1016_j_fbio_2025_105970 crossref_primary_10_1007_s13205_020_02175_8 crossref_primary_10_1080_10408398_2020_1845605 crossref_primary_10_3390_foods12010194 crossref_primary_10_3389_fnut_2022_945804 crossref_primary_10_3390_ani15020153 crossref_primary_10_1016_j_ijbiomac_2020_11_130 crossref_primary_10_1021_acs_jafc_2c03091 crossref_primary_10_1016_j_fbio_2024_103629 crossref_primary_10_1016_j_jff_2022_105069 crossref_primary_10_1002_jsfa_12997 crossref_primary_10_1016_j_foodres_2021_110646 crossref_primary_10_1016_j_scitotenv_2023_169057 crossref_primary_10_1016_j_foodchem_2024_140914 crossref_primary_10_1016_j_biopha_2023_115320 crossref_primary_10_3390_md20110725 crossref_primary_10_1016_j_ijbiomac_2023_126317 crossref_primary_10_1099_mic_0_001510 crossref_primary_10_3390_foods10081884 crossref_primary_10_1016_j_foodres_2021_110408 crossref_primary_10_1016_j_ijbiomac_2024_138683 crossref_primary_10_1016_j_lwt_2020_109635 crossref_primary_10_1177_1934578X221124751 crossref_primary_10_1016_j_fochx_2022_100288 crossref_primary_10_3390_nu15081965 crossref_primary_10_1016_j_ijbiomac_2023_124420 crossref_primary_10_1111_ijfs_14759 crossref_primary_10_3390_biology11101458 crossref_primary_10_1007_s13205_020_02379_y crossref_primary_10_1016_j_ijbiomac_2024_136487 crossref_primary_10_1016_j_foodchem_2021_131636 crossref_primary_10_1039_D2FO01776H crossref_primary_10_1016_j_foodres_2022_111005 crossref_primary_10_1016_j_ijbiomac_2021_03_190 crossref_primary_10_1016_j_bcdf_2021_100299 crossref_primary_10_1016_j_ijbiomac_2023_125241 crossref_primary_10_1021_acs_jafc_5c02175 crossref_primary_10_1016_j_fbio_2023_103127 crossref_primary_10_1016_j_lwt_2024_116869 crossref_primary_10_1016_j_fbio_2024_104874 crossref_primary_10_1016_j_fbio_2024_105168 crossref_primary_10_1016_j_foodchem_2025_142937 crossref_primary_10_1016_j_carbpol_2024_123209 crossref_primary_10_1016_j_foodchem_2023_135441 crossref_primary_10_3390_fermentation8060253 crossref_primary_10_1021_acs_jafc_3c05666 crossref_primary_10_1016_j_foodhyd_2024_110492 crossref_primary_10_1016_j_ijbiomac_2022_03_126 crossref_primary_10_1016_j_fochx_2023_100644 crossref_primary_10_1039_D4FO02873B crossref_primary_10_3390_foods11223550 crossref_primary_10_3390_polym14091704 crossref_primary_10_1016_j_ijbiomac_2024_131579 crossref_primary_10_1016_j_cej_2025_159730 crossref_primary_10_1039_D3FO01085F crossref_primary_10_1016_j_foodres_2024_115301 crossref_primary_10_1016_j_foodres_2024_114339 crossref_primary_10_3390_fermentation9080722 crossref_primary_10_3390_pr9111953 crossref_primary_10_3390_foods11213501 crossref_primary_10_1016_j_fochx_2021_100197 crossref_primary_10_3390_foods12091909 crossref_primary_10_1021_acs_jafc_4c11795 crossref_primary_10_1016_j_foodchem_2023_137409 crossref_primary_10_1016_j_carbpol_2025_123525 crossref_primary_10_1080_10408398_2021_1916736 crossref_primary_10_1021_acs_jafc_2c01784 crossref_primary_10_1016_j_fshw_2021_07_012 crossref_primary_10_1016_j_carbpol_2022_119971 crossref_primary_10_1016_j_ijbiomac_2020_02_305 crossref_primary_10_1016_j_foodhyd_2023_109505 crossref_primary_10_5219_1900 crossref_primary_10_1016_j_ijbiomac_2023_124188 crossref_primary_10_1016_j_foodres_2020_109888 crossref_primary_10_3390_foods12030665 crossref_primary_10_3390_md20010013 crossref_primary_10_1016_j_foohum_2024_100436 crossref_primary_10_1016_j_fsi_2023_108933 crossref_primary_10_1016_j_foodhyd_2025_111156 crossref_primary_10_1155_2024_8859312 crossref_primary_10_3390_foods13203267 crossref_primary_10_1016_j_foodhyd_2024_109911 crossref_primary_10_1016_j_ijbiomac_2023_124854 crossref_primary_10_1016_j_jff_2022_105204 crossref_primary_10_1080_10408398_2023_2193651 crossref_primary_10_1016_j_foodchem_2022_133561 crossref_primary_10_1039_D1FO00218J crossref_primary_10_1016_j_jep_2020_113045 crossref_primary_10_1039_D2FO04085A crossref_primary_10_1016_j_ijbiomac_2024_135595 crossref_primary_10_3390_foods13172782 crossref_primary_10_1080_10408398_2021_1939263 crossref_primary_10_1039_D4FO02352H crossref_primary_10_1016_j_biotechadv_2023_108195 crossref_primary_10_1016_j_ijbiomac_2022_09_055 crossref_primary_10_7759_cureus_33636 crossref_primary_10_1016_j_foodres_2022_112022 crossref_primary_10_3892_ol_2020_11761 crossref_primary_10_1111_ijfs_15308 crossref_primary_10_1016_j_foodhyd_2022_107986 crossref_primary_10_1016_j_lwt_2021_111224 crossref_primary_10_1016_j_foodhyd_2021_107462 crossref_primary_10_1039_D3FO05540J crossref_primary_10_1016_j_jff_2020_104333 crossref_primary_10_1016_j_fochx_2022_100314 crossref_primary_10_1016_j_foodhyd_2022_108045 crossref_primary_10_1016_j_foodres_2022_112157 crossref_primary_10_1080_10408398_2022_2043823 crossref_primary_10_1016_j_foodres_2022_111185 crossref_primary_10_1016_j_fochx_2021_100153 crossref_primary_10_3390_foods12010128 crossref_primary_10_1016_j_crfs_2024_100760 crossref_primary_10_1016_j_ijbiomac_2022_04_029 crossref_primary_10_1111_jfbc_13564 crossref_primary_10_1016_j_ijbiomac_2020_06_174 crossref_primary_10_1016_j_ijbiomac_2025_139552 crossref_primary_10_1016_j_foodchem_2021_131303 crossref_primary_10_1016_j_ijbiomac_2025_141506 crossref_primary_10_1021_acs_jafc_4c02803 crossref_primary_10_1016_j_ijbiomac_2022_05_172 crossref_primary_10_1016_j_foodhyd_2023_108693 crossref_primary_10_1016_j_ijbiomac_2022_10_094 crossref_primary_10_1016_j_jff_2023_105754 crossref_primary_10_1016_j_fshw_2022_07_062 crossref_primary_10_1016_j_ijbiomac_2021_08_052 crossref_primary_10_1021_acs_jafc_2c02107 crossref_primary_10_1016_j_foodhyd_2022_108060 crossref_primary_10_3390_ph16060860 crossref_primary_10_1016_j_ijbiomac_2025_141711 crossref_primary_10_3390_pr10101922 crossref_primary_10_1016_j_fochx_2022_100533 crossref_primary_10_1016_j_ijbiomac_2023_127141 crossref_primary_10_1021_acs_jafc_2c08564 crossref_primary_10_1016_j_foodres_2023_113382 crossref_primary_10_1016_j_foodhyd_2021_106704 crossref_primary_10_1016_j_foodhyd_2022_107897 crossref_primary_10_1016_j_foodchem_2023_135849 crossref_primary_10_1186_s13065_020_00727_w crossref_primary_10_3389_fmicb_2022_1064055 crossref_primary_10_1016_j_ijbiomac_2024_130098 crossref_primary_10_3390_md21050265 crossref_primary_10_1016_j_ijbiomac_2020_12_024 crossref_primary_10_1016_j_foodhyd_2023_109204 crossref_primary_10_1016_j_oor_2024_100410 crossref_primary_10_1016_j_lwt_2024_116346 crossref_primary_10_1016_j_fct_2021_112157 crossref_primary_10_1016_j_jff_2023_105934 crossref_primary_10_1016_j_ijbiomac_2020_02_168 crossref_primary_10_3389_fmars_2024_1523246 crossref_primary_10_1002_jsfa_13479 crossref_primary_10_1016_j_jece_2024_112036 crossref_primary_10_26599_FSHW_2022_9250133 crossref_primary_10_1016_j_jff_2021_104374 crossref_primary_10_1007_s13205_022_03388_9 crossref_primary_10_1016_j_ijbiomac_2024_134685 crossref_primary_10_1016_j_ultsonch_2021_105901 crossref_primary_10_1007_s00253_021_11553_y crossref_primary_10_1016_j_procbio_2023_04_004 crossref_primary_10_1016_j_carbpol_2022_120447 crossref_primary_10_1016_j_carbpol_2021_118076 crossref_primary_10_1016_j_tifs_2022_02_004 crossref_primary_10_1039_D1FO03042F crossref_primary_10_3390_md21080430 crossref_primary_10_1016_j_colsurfb_2022_112857 crossref_primary_10_1016_j_algal_2023_103074 crossref_primary_10_1016_j_ijbiomac_2025_140619 crossref_primary_10_1039_D0FO02399J crossref_primary_10_3389_ffunb_2021_796010 crossref_primary_10_3389_fmars_2024_1360425 crossref_primary_10_1016_j_jff_2024_106549 crossref_primary_10_1016_j_ijbiomac_2021_05_077 crossref_primary_10_1016_j_carbpol_2022_119457 crossref_primary_10_1016_j_fshw_2022_07_038 crossref_primary_10_1021_acs_jafc_1c07810 crossref_primary_10_1016_j_procbio_2021_11_008 crossref_primary_10_1111_ijfs_14956 |
Cites_doi | 10.1016/j.foodchem.2017.07.036 10.1016/j.foodchem.2012.01.027 10.1039/C4FO01185F 10.1038/nrmicro3552 10.2217/fmb.11.142 10.1136/gut.2010.215665 10.1038/ncomms4611 10.1038/nrmicro3050 10.1016/j.jff.2019.103652 10.1016/j.foodchem.2011.12.084 10.1016/j.foodchem.2016.10.075 10.1016/j.foodhyd.2016.10.018 10.1016/j.foodchem.2015.09.048 10.1016/j.ijbiomac.2019.09.073 10.1111/jpy.12406 10.1016/j.ijbiomac.2017.01.006 10.1016/j.ijbiomac.2018.11.244 10.1016/j.cell.2013.12.016 10.1016/j.ijbiomac.2019.10.040 10.1038/nature08937 10.3390/md15120388 10.1007/s10811-014-0304-8 10.1016/j.procbio.2018.08.011 10.1016/j.cofs.2017.02.009 10.3390/molecules23102451 10.1016/j.carbpol.2019.115069 10.1016/j.jff.2017.03.062 10.1016/j.tifs.2019.03.005 10.1152/physrev.2001.81.3.1031 10.1016/j.foodchem.2019.03.050 10.1016/j.aquaculture.2005.08.029 10.1016/j.chroma.2015.04.054 10.1080/10408398.2014.939263 10.1016/j.ijbiomac.2019.01.042 10.1016/j.tim.2014.03.001 10.1080/10408398.2016.1245650 10.1016/j.carbpol.2007.06.026 10.1016/j.bcdf.2015.09.007 10.1371/journal.pone.0127252 10.1016/j.carbpol.2016.04.020 10.1111/ijfs.13553 10.1038/nature21725 10.1016/j.ijbiomac.2019.08.186 10.1038/ni.2608 10.1016/j.jmb.2014.07.028 10.1016/j.anaerobe.2011.08.003 10.1186/gb-2011-12-6-r60 10.1016/j.tibtech.2015.06.011 10.1016/j.carbpol.2016.07.077 10.1016/j.carbpol.2017.12.048 10.1038/bjc.2012.409 10.1007/s00253-013-5405-9 10.3390/molecules23061354 10.1016/j.jff.2018.04.041 10.1111/nure.12091 |
ContentType | Journal Article |
Copyright | 2020 Elsevier Ltd Copyright © 2020 Elsevier Ltd. All rights reserved. |
Copyright_xml | – notice: 2020 Elsevier Ltd – notice: Copyright © 2020 Elsevier Ltd. All rights reserved. |
DBID | AAYXX CITATION NPM 7X8 7S9 L.6 |
DOI | 10.1016/j.carbpol.2020.115894 |
DatabaseName | CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA PubMed MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1879-1344 |
ExternalDocumentID | 32070514 10_1016_j_carbpol_2020_115894 S0144861720300680 |
Genre | Journal Article |
GroupedDBID | --K --M .~1 0R~ 1B1 1RT 1~. 1~5 29B 4.4 457 4G. 5GY 5VS 6J9 7-5 71M 8P~ 9JM 9JN AABNK AABVA AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARLI AATLK AAXUO ABFNM ABFRF ABGRD ABGSF ABJNI ABMAC ABUDA ABYKQ ACDAQ ACGFO ACGFS ACIUM ACRLP ADBBV ADECG ADEZE ADQTV ADUVX AEBSH AEFWE AEHWI AEKER AENEX AEQOU AFKWA AFTJW AFXIZ AFZHZ AGHFR AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AJOXV AJSZI ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLXMC CBWCG CS3 DOVZS DU5 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 F5P FDB FIRID FLBIZ FNPLU FYGXN G-Q GBLVA IHE J1W KOM LW9 M24 M2Y M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RNS ROL RPZ SAB SDF SDG SDP SES SPC SPCBC SSA SSK SSU SSZ T5K Y6R ~G- ~KM 53G AAHBH AALCJ AAQXK AATTM AAXKI AAYWO AAYXX ABWVN ABXDB ACNNM ACRPL ACVFH ADCNI ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRDE AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION EJD FEDTE FGOYB G-2 HLV HMS HVGLF HZ~ R2- RIG SCB SEW SMS SOC SSH WUQ XPP NPM 7X8 EFKBS 7S9 L.6 |
ID | FETCH-LOGICAL-c464t-5f1d03e5862bf0f38e28133ef60e4214adad6cb9cb83314f95db7f5ae761ee563 |
IEDL.DBID | .~1 |
ISSN | 0144-8617 1879-1344 |
IngestDate | Fri Jul 11 11:17:26 EDT 2025 Mon Jul 21 11:34:58 EDT 2025 Wed Feb 19 02:31:53 EST 2025 Tue Jul 01 01:24:37 EDT 2025 Thu Apr 24 23:11:18 EDT 2025 Fri Feb 23 02:49:02 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Gut microbiota Agaro-oligosaccharide In vitro fermentation Sulfated polysaccharide Gracilaria lemaneiformis |
Language | English |
License | Copyright © 2020 Elsevier Ltd. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c464t-5f1d03e5862bf0f38e28133ef60e4214adad6cb9cb83314f95db7f5ae761ee563 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0001-8380-0123 |
PMID | 32070514 |
PQID | 2358601134 |
PQPubID | 23479 |
ParticipantIDs | proquest_miscellaneous_2440694662 proquest_miscellaneous_2358601134 pubmed_primary_32070514 crossref_citationtrail_10_1016_j_carbpol_2020_115894 crossref_primary_10_1016_j_carbpol_2020_115894 elsevier_sciencedirect_doi_10_1016_j_carbpol_2020_115894 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-04-15 |
PublicationDateYYYYMMDD | 2020-04-15 |
PublicationDate_xml | – month: 04 year: 2020 text: 2020-04-15 day: 15 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Carbohydrate polymers |
PublicationTitleAlternate | Carbohydr Polym |
PublicationYear | 2020 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Hu, Lin, Zheng, Cheung (bib0105) 2018; 58 Wang, Zhang, Wu, Sun, Xu (bib0240) 2019; 124 Miao, Ma, Jiang, Cui, Wu, Zhang (bib0150) 2015; 6 Wang, Wichienchot, He, Fu, Huang, Zhang (bib0235) 2019; 88 Yuan, Lin, Fu, Nie, Liu, Su (bib0280) 2019; 127 Brown, Allsopp, Magee, Gill, Nitecki, Strain (bib0015) 2014; 72 Frost, Sleeth, Sahuri-Arisoylu, Lizarbe, Cerdan, Brody (bib0075) 2014; 5 Fu, Cao, Ren, Zhang, Huang, Li (bib0080) 2018; 183 Xie, Wang, Wang, Fu, Huang, Yuan (bib0250) 2019; 223 Klindworth, Pruesse, Schweer, Peplies, Quast, Horn (bib0125) 2012; 41 Xu, Su, Xie, Li, Yang, Lin (bib0270) 2018; 240 Ren, Zheng, You, Wen, Li, Fu (bib0195) 2017; 33 Hehemann, Correc, Barbeyron, Helbert, Czjzek, Michel (bib0100) 2010; 464 Chen, Liu, Ge, Xu, Chen, Li (bib0025) 2019; 141 Xu, Huang, Cheong (bib0260) 2017; 15 Kamada, Chen, Inohara, Núñez (bib0110) 2013; 14 Kaoutari, Armougom, Gordon, Raoult, Henrissat (bib0115) 2013; 11 Shin, Whon, Bae (bib0210) 2015; 33 Lovegrove, Edwards, De Noni, Patel, El, Grassby (bib0140) 2017; 57 Leódido, Costa, Araújo, Costa, Sousa, Souza (bib0130) 2017; 97 Du, Bi, Mao, Sui (bib0065) 2016; 52 Khan, Qiu, Xu, Liu, Cheong (bib0120) 2020 De Vadder, Kovatcheva-Datchary, Goncalves, Vinera, Zitoun, Duchampt (bib0045) 2014; 156 Rebours, Marinho-Soriano, Zertuche-González, Hayashi, Vásquez, Kradolfer (bib0190) 2014; 26 Liao, Yang, Chen, Yu, Zhang, Ju (bib0135) 2015; 6 Segata, Izard, Waldron, Gevers, Miropolsky, Garrett (bib0200) 2011; 12 Di Gioia, Aloisio, Mazzola, Biavati (bib0050) 2014; 98 Donaldson, Lee, Mazmanian (bib0060) 2015; 14 Ding, Nie, Hu, Zong, Li, Xie (bib0055) 2017; 63 Walker, Duncan, Louis, Flint (bib0230) 2014; 22 Guergoletto, Costabile, Flores, Garcia, Gibson (bib0085) 2016; 196 Cheong, Wu, Deng, Leong, Zhao, Zhang (bib0035) 2016; 153 Sun, Duan, Liu, Luo, Ma, Song (bib0220) 2018; 46 Plongbunjong, Graidist, Knudsen, Wichienchot (bib0180) 2017; 52 Morris, Morris (bib0160) 2012; 133 Bindels, Porporato, Dewulf, Verrax, Neyrinck, Martin (bib0010) 2012; 107 Shi, Yan, Cheong, Liu (bib0205) 2018; 73 Cheong, Qiu, Du, Liu, Khan (bib0030) 2018; 23 Maciel, Chaves, Souza, Teixeira, Freitas, Feitosa (bib0145) 2008; 71 Yang, Fei, Song, Hu, Wang, Chung (bib0275) 2006; 254 Fåk, Jakobsdottir, Kulcinskaja, Marungruang, Matziouridou, Nilsson (bib0070) 2015; 10 Carnachan, Bootten, Mishra, Monro, Sims (bib0020) 2012; 133 Xu, Kan, Hu, Liu, Du, Pang (bib0265) 2018; 23 Topping, Clifton (bib0225) 2001; 81 Han, Pang, Wen, You, Huang, Kulikouskaya (bib0095) 2020; 64 Murphy, Cotter, Healy, Marques, O’Sullivan, Fouhy (bib0170) 2010; 59 Cheong, Wu, Zhao, Li (bib0040) 2015; 1400 Hamaker, Tuncil (bib0090) 2014; 426 Xu, Aweya, Li, Deng, Chen, Tang (bib0255) 2019; 289 Mueller, Čavarkapa, Unger, Viernstein, Praznik (bib0165) 2017; 221 Angelakis, Armougom, Million, Raoult (bib0005) 2012; 7 Ndeh, Rogowski, Cartmell, Luis, Baslé, Gray (bib0175) 2017; 544 Moreno, Corzo, Montilla, Villamiel, Olano (bib0155) 2017; 13 Ramnani, Chitarrari, Tuohy, Grant, Hotchkiss, Philp (bib0185) 2012; 18 Wang, Zhang, Zhou, Sun, Chen, Xu (bib0245) 2019; 140 Shoaib, Shehzad, Omar, Rakha, Raza, Sharif (bib0215) 2016; 147 Chen (10.1016/j.carbpol.2020.115894_bib0025) 2019; 141 Guergoletto (10.1016/j.carbpol.2020.115894_bib0085) 2016; 196 Wang (10.1016/j.carbpol.2020.115894_bib0240) 2019; 124 Hehemann (10.1016/j.carbpol.2020.115894_bib0100) 2010; 464 Maciel (10.1016/j.carbpol.2020.115894_bib0145) 2008; 71 Ren (10.1016/j.carbpol.2020.115894_bib0195) 2017; 33 Walker (10.1016/j.carbpol.2020.115894_bib0230) 2014; 22 Kamada (10.1016/j.carbpol.2020.115894_bib0110) 2013; 14 Murphy (10.1016/j.carbpol.2020.115894_bib0170) 2010; 59 Donaldson (10.1016/j.carbpol.2020.115894_bib0060) 2015; 14 Han (10.1016/j.carbpol.2020.115894_bib0095) 2020; 64 Shin (10.1016/j.carbpol.2020.115894_bib0210) 2015; 33 Khan (10.1016/j.carbpol.2020.115894_bib0120) 2020 Bindels (10.1016/j.carbpol.2020.115894_bib0010) 2012; 107 Xu (10.1016/j.carbpol.2020.115894_bib0270) 2018; 240 Klindworth (10.1016/j.carbpol.2020.115894_bib0125) 2012; 41 Leódido (10.1016/j.carbpol.2020.115894_bib0130) 2017; 97 Xie (10.1016/j.carbpol.2020.115894_bib0250) 2019; 223 Cheong (10.1016/j.carbpol.2020.115894_bib0030) 2018; 23 De Vadder (10.1016/j.carbpol.2020.115894_bib0045) 2014; 156 Moreno (10.1016/j.carbpol.2020.115894_bib0155) 2017; 13 Segata (10.1016/j.carbpol.2020.115894_bib0200) 2011; 12 Ding (10.1016/j.carbpol.2020.115894_bib0055) 2017; 63 Yang (10.1016/j.carbpol.2020.115894_bib0275) 2006; 254 Wang (10.1016/j.carbpol.2020.115894_bib0235) 2019; 88 Sun (10.1016/j.carbpol.2020.115894_bib0220) 2018; 46 Hamaker (10.1016/j.carbpol.2020.115894_bib0090) 2014; 426 Plongbunjong (10.1016/j.carbpol.2020.115894_bib0180) 2017; 52 Brown (10.1016/j.carbpol.2020.115894_bib0015) 2014; 72 Carnachan (10.1016/j.carbpol.2020.115894_bib0020) 2012; 133 Lovegrove (10.1016/j.carbpol.2020.115894_bib0140) 2017; 57 Xu (10.1016/j.carbpol.2020.115894_bib0265) 2018; 23 Di Gioia (10.1016/j.carbpol.2020.115894_bib0050) 2014; 98 Xu (10.1016/j.carbpol.2020.115894_bib0255) 2019; 289 Topping (10.1016/j.carbpol.2020.115894_bib0225) 2001; 81 Kaoutari (10.1016/j.carbpol.2020.115894_bib0115) 2013; 11 Ramnani (10.1016/j.carbpol.2020.115894_bib0185) 2012; 18 Cheong (10.1016/j.carbpol.2020.115894_bib0040) 2015; 1400 Angelakis (10.1016/j.carbpol.2020.115894_bib0005) 2012; 7 Morris (10.1016/j.carbpol.2020.115894_bib0160) 2012; 133 Shi (10.1016/j.carbpol.2020.115894_bib0205) 2018; 73 Mueller (10.1016/j.carbpol.2020.115894_bib0165) 2017; 221 Xu (10.1016/j.carbpol.2020.115894_bib0260) 2017; 15 Miao (10.1016/j.carbpol.2020.115894_bib0150) 2015; 6 Liao (10.1016/j.carbpol.2020.115894_bib0135) 2015; 6 Frost (10.1016/j.carbpol.2020.115894_bib0075) 2014; 5 Fu (10.1016/j.carbpol.2020.115894_bib0080) 2018; 183 Rebours (10.1016/j.carbpol.2020.115894_bib0190) 2014; 26 Yuan (10.1016/j.carbpol.2020.115894_bib0280) 2019; 127 Wang (10.1016/j.carbpol.2020.115894_bib0245) 2019; 140 Shoaib (10.1016/j.carbpol.2020.115894_bib0215) 2016; 147 Cheong (10.1016/j.carbpol.2020.115894_bib0035) 2016; 153 Fåk (10.1016/j.carbpol.2020.115894_bib0070) 2015; 10 Du (10.1016/j.carbpol.2020.115894_bib0065) 2016; 52 Hu (10.1016/j.carbpol.2020.115894_bib0105) 2018; 58 Ndeh (10.1016/j.carbpol.2020.115894_bib0175) 2017; 544 |
References_xml | – volume: 133 start-page: 132 year: 2012 end-page: 139 ident: bib0020 article-title: Effects of simulated digestion publication-title: Food Chemistry – volume: 133 start-page: 237 year: 2012 end-page: 248 ident: bib0160 article-title: The effect of inulin and fructo-oligosaccharide supplementation on the textural, rheological and sensory properties of bread and their role in weight management: A review publication-title: Food Chemistry – volume: 223 year: 2019 ident: bib0250 article-title: fecal fermentation of propionylated high-amylose maize starch and its impact on gut microbiota publication-title: Carbohydrate Polymers – volume: 41 year: 2012 ident: bib0125 article-title: Evaluation of general 16S ribosomal RNA gene PCR primers for classical and next-generation sequencing-based diversity studies publication-title: Nucleic Acids Research – volume: 71 start-page: 559 year: 2008 end-page: 565 ident: bib0145 article-title: Structural characterization of cold extracted fraction of soluble sulfated polysaccharide from red seaweed publication-title: Carbohydrate Polymers – volume: 140 start-page: 600 year: 2019 end-page: 604 ident: bib0245 article-title: The anti-aging effects of publication-title: International Journal of Biological Macromolecules – volume: 23 start-page: 1354 year: 2018 ident: bib0265 article-title: Quantification of neoagaro-oligosaccharide production through enzymatic hydrolysis and its anti-oxidant activities publication-title: Molecules – volume: 98 start-page: 563 year: 2014 end-page: 577 ident: bib0050 article-title: Bifidobacteria: their impact on gut microbiota composition and their applications as probiotics in infants publication-title: Applied Microbiology and Biotechnology – volume: 11 start-page: 497 year: 2013 ident: bib0115 article-title: The abundance and variety of carbohydrate-active enzymes in the human gut microbiota publication-title: Nature Reviews Microbiology – volume: 15 start-page: 388 year: 2017 ident: bib0260 article-title: Recent advances in marine algae polysaccharides: Isolation, structure, and activities publication-title: Marine Drugs – volume: 221 start-page: 508 year: 2017 end-page: 514 ident: bib0165 article-title: Prebiotic potential of neutral oligo- and polysaccharides from seed mucilage of publication-title: Food Chemistry – volume: 59 start-page: 1635 year: 2010 end-page: 1642 ident: bib0170 article-title: Composition and energy harvesting capacity of the gut microbiota: Relationship to diet, obesity and time in mouse models publication-title: Gut – volume: 1400 start-page: 98 year: 2015 end-page: 106 ident: bib0040 article-title: A rapid and accurate method for the quantitative estimation of natural polysaccharides and their fractions using high performance size exclusion chromatography coupled with multi-angle laser light scattering and refractive index detector publication-title: Journal of Chromatography A – volume: 58 start-page: 1243 year: 2018 end-page: 1249 ident: bib0105 article-title: Short-chain fatty acids in control of energy metabolism publication-title: Critical Reviews in Food Science and Nutrition – year: 2020 ident: bib0120 article-title: Physicochemical characterization and antioxidant activity of sulphated polysaccharides derived from publication-title: International Journal of Biological Macromolecules – volume: 88 start-page: 1 year: 2019 end-page: 9 ident: bib0235 article-title: colonic fermentation of dietary fibers: Fermentation rate, short-chain fatty acid production and changes in microbiota publication-title: Trends in Food Science & Technology – volume: 196 start-page: 251 year: 2016 end-page: 258 ident: bib0085 article-title: fermentation of juçara pulp ( publication-title: Food Chemistry – volume: 156 start-page: 84 year: 2014 end-page: 96 ident: bib0045 article-title: Microbiota-generated metabolites promote metabolic benefits via gut-brain neural circuits publication-title: Cell – volume: 127 start-page: 178 year: 2019 end-page: 186 ident: bib0280 article-title: Effects of extraction methods on the physicochemical characteristics and biological activities of polysaccharides from okra ( publication-title: International Journal of Biological Macromolecules – volume: 183 start-page: 230 year: 2018 end-page: 239 ident: bib0080 article-title: Structural characterization and publication-title: Carbohydrate Polymers – volume: 64 year: 2020 ident: bib0095 article-title: digestibility and prebiotic activities of a sulfated polysaccharide from publication-title: Journal of Functional Foods – volume: 18 start-page: 1 year: 2012 end-page: 6 ident: bib0185 article-title: fermentation and prebiotic potential of novel low molecular weight polysaccharides derived from agar and alginate seaweeds publication-title: Anaerobe – volume: 22 start-page: 267 year: 2014 end-page: 274 ident: bib0230 article-title: Phylogeny, culturing, and metagenomics of the human gut microbiota publication-title: Trends in Microbiology – volume: 107 start-page: 1337 year: 2012 end-page: 1344 ident: bib0010 article-title: Gut microbiota-derived propionate reduces cancer cell proliferation in the liver publication-title: British Journal of Cancer – volume: 13 start-page: 50 year: 2017 end-page: 55 ident: bib0155 article-title: Current state and latest advances in the concept, production and functionality of prebiotic oligosaccharides publication-title: Current Opinion in Food Science – volume: 141 start-page: 1065 year: 2019 end-page: 1071 ident: bib0025 article-title: Simulated digestion and fermentation publication-title: International Journal of Biological Macromolecules – volume: 57 start-page: 237 year: 2017 end-page: 253 ident: bib0140 article-title: Role of polysaccharides in food, digestion, and health publication-title: Critical Reviews in Food Science and Nutrition – volume: 14 start-page: 20 year: 2015 ident: bib0060 article-title: Gut biogeography of the bacterial microbiota publication-title: Nature Reviews Microbiology – volume: 52 start-page: 2647 year: 2017 end-page: 2653 ident: bib0180 article-title: Starch-based carbohydrates display the bifidogenic and butyrogenic properties in pH-controlled faecal fermentation publication-title: International Journal of Food Science and Technology – volume: 52 start-page: 441 year: 2016 end-page: 450 ident: bib0065 article-title: The complete chloroplast genome of publication-title: Journal of Phycology – volume: 97 start-page: 34 year: 2017 end-page: 45 ident: bib0130 article-title: Anti-diarrhoeal therapeutic potential and safety assessment of sulphated polysaccharide fraction from publication-title: International Journal of Biological Macromolecules – volume: 72 start-page: 205 year: 2014 end-page: 216 ident: bib0015 article-title: Seaweed and human health publication-title: Nutrition Reviews – volume: 12 start-page: R60 year: 2011 ident: bib0200 article-title: Metagenomic biomarker discovery and explanation publication-title: Genome Biology – volume: 426 start-page: 3838 year: 2014 end-page: 3850 ident: bib0090 article-title: A perspective on the complexity of dietary fiber structures and their potential effect on the gut microbiota publication-title: Journal of Molecular Biology – volume: 33 start-page: 496 year: 2015 end-page: 503 ident: bib0210 article-title: Proteobacteria: Microbial signature of dysbiosis in gut microbiota publication-title: Trends in Biotechnology – volume: 7 start-page: 91 year: 2012 end-page: 109 ident: bib0005 article-title: The relationship between gut microbiota and weight gain in humans publication-title: Future Microbiology – volume: 63 start-page: 646 year: 2017 end-page: 655 ident: bib0055 article-title: and publication-title: Food Hydrocolloids – volume: 73 start-page: 197 year: 2018 end-page: 203 ident: bib0205 article-title: Extraction, purification, and characterization of polysaccharides from marine algae publication-title: Process Biochemistry – volume: 10 year: 2015 ident: bib0070 article-title: The physico-chemical properties of dietary fibre determine metabolic responses, short-chain fatty acid profiles and gut microbiota composition in rats fed low- and high-fat diets publication-title: PloS One – volume: 14 start-page: 685 year: 2013 end-page: 690 ident: bib0110 article-title: Control of pathogens and pathobionts by the gut microbiota publication-title: Nature Immunology – volume: 26 start-page: 1939 year: 2014 end-page: 1951 ident: bib0190 article-title: Seaweeds: An opportunity for wealth and sustainable livelihood for coastal communities publication-title: Journal of Applied Phycology – volume: 5 start-page: 3611 year: 2014 ident: bib0075 article-title: The short-chain fatty acid acetate reduces appetite via a central homeostatic mechanism publication-title: Nature Communications – volume: 6 start-page: 2542 year: 2015 end-page: 2549 ident: bib0135 article-title: The hypoglycemic effect of a polysaccharide (GLP) from publication-title: Food and Function – volume: 289 start-page: 177 year: 2019 end-page: 186 ident: bib0255 article-title: Microbial catabolism of publication-title: Food Chemistry – volume: 33 start-page: 286 year: 2017 end-page: 296 ident: bib0195 article-title: Structural characterization and macrophage immunomodulatory activity of a polysaccharide isolated from publication-title: Journal of Functional Foods – volume: 153 start-page: 47 year: 2016 end-page: 54 ident: bib0035 article-title: Qualitation and quantification of specific polysaccharides from publication-title: Carbohydrate Polymers – volume: 464 start-page: 908 year: 2010 end-page: 912 ident: bib0100 article-title: Transfer of carbohydrate-active enzymes from marine bacteria to Japanese gut microbiota publication-title: Nature – volume: 240 start-page: 330 year: 2018 end-page: 337 ident: bib0270 article-title: Preparation of bioactive neoagaroligosaccharides through hydrolysis of publication-title: Food Chemistry – volume: 254 start-page: 248 year: 2006 end-page: 255 ident: bib0275 article-title: Growth of publication-title: Aquaculture – volume: 81 start-page: 1031 year: 2001 end-page: 1064 ident: bib0225 article-title: Short-chain fatty acids and human colonic function: Roles of resistant starch and nonstarch polysaccharides publication-title: Physiological Reviews – volume: 46 start-page: 48 year: 2018 end-page: 56 ident: bib0220 article-title: The beneficial effects of publication-title: Journal of Functional Foods – volume: 23 year: 2018 ident: bib0030 article-title: Oligosaccharides derived from red seaweed: Production, properties, and potential health and cosmetic applications publication-title: Molecules – volume: 544 start-page: 65 year: 2017 ident: bib0175 article-title: Complex pectin metabolism by gut bacteria reveals novel catalytic functions publication-title: Nature – volume: 124 start-page: 568 year: 2019 end-page: 572 ident: bib0240 article-title: Synthesized sulfated and acetylated derivatives of polysaccharide extracted from publication-title: International Journal of Biological Macromolecules – volume: 6 start-page: 109 year: 2015 end-page: 116 ident: bib0150 article-title: Structural elucidation and publication-title: Bioactive Carbohydrates and Dietary Fibre – volume: 147 start-page: 444 year: 2016 end-page: 454 ident: bib0215 article-title: Inulin: Properties, health benefits and food applications publication-title: Carbohydrate Polymers – volume: 240 start-page: 330 year: 2018 ident: 10.1016/j.carbpol.2020.115894_bib0270 article-title: Preparation of bioactive neoagaroligosaccharides through hydrolysis of Gracilaria lemaneiformis agar: A comparative study publication-title: Food Chemistry doi: 10.1016/j.foodchem.2017.07.036 – volume: 133 start-page: 237 year: 2012 ident: 10.1016/j.carbpol.2020.115894_bib0160 article-title: The effect of inulin and fructo-oligosaccharide supplementation on the textural, rheological and sensory properties of bread and their role in weight management: A review publication-title: Food Chemistry doi: 10.1016/j.foodchem.2012.01.027 – volume: 6 start-page: 2542 year: 2015 ident: 10.1016/j.carbpol.2020.115894_bib0135 article-title: The hypoglycemic effect of a polysaccharide (GLP) from Gracilaria lemaneiformis and its degradation products in diabetic mice publication-title: Food and Function doi: 10.1039/C4FO01185F – volume: 14 start-page: 20 year: 2015 ident: 10.1016/j.carbpol.2020.115894_bib0060 article-title: Gut biogeography of the bacterial microbiota publication-title: Nature Reviews Microbiology doi: 10.1038/nrmicro3552 – volume: 7 start-page: 91 year: 2012 ident: 10.1016/j.carbpol.2020.115894_bib0005 article-title: The relationship between gut microbiota and weight gain in humans publication-title: Future Microbiology doi: 10.2217/fmb.11.142 – volume: 59 start-page: 1635 year: 2010 ident: 10.1016/j.carbpol.2020.115894_bib0170 article-title: Composition and energy harvesting capacity of the gut microbiota: Relationship to diet, obesity and time in mouse models publication-title: Gut doi: 10.1136/gut.2010.215665 – volume: 5 start-page: 3611 year: 2014 ident: 10.1016/j.carbpol.2020.115894_bib0075 article-title: The short-chain fatty acid acetate reduces appetite via a central homeostatic mechanism publication-title: Nature Communications doi: 10.1038/ncomms4611 – volume: 11 start-page: 497 year: 2013 ident: 10.1016/j.carbpol.2020.115894_bib0115 article-title: The abundance and variety of carbohydrate-active enzymes in the human gut microbiota publication-title: Nature Reviews Microbiology doi: 10.1038/nrmicro3050 – volume: 64 year: 2020 ident: 10.1016/j.carbpol.2020.115894_bib0095 article-title: In vitro digestibility and prebiotic activities of a sulfated polysaccharide from Gracilaria Lemaneiformis publication-title: Journal of Functional Foods doi: 10.1016/j.jff.2019.103652 – volume: 133 start-page: 132 year: 2012 ident: 10.1016/j.carbpol.2020.115894_bib0020 article-title: Effects of simulated digestion in vitro on cell wall polysaccharides from kiwifruit (Actinidia spp.) publication-title: Food Chemistry doi: 10.1016/j.foodchem.2011.12.084 – volume: 221 start-page: 508 year: 2017 ident: 10.1016/j.carbpol.2020.115894_bib0165 article-title: Prebiotic potential of neutral oligo- and polysaccharides from seed mucilage of Hyptis suaveolens publication-title: Food Chemistry doi: 10.1016/j.foodchem.2016.10.075 – volume: 63 start-page: 646 year: 2017 ident: 10.1016/j.carbpol.2020.115894_bib0055 article-title: In vitro and in vivo gastrointestinal digestion and fermentation of the polysaccharide from Ganoderma atrum publication-title: Food Hydrocolloids doi: 10.1016/j.foodhyd.2016.10.018 – volume: 196 start-page: 251 year: 2016 ident: 10.1016/j.carbpol.2020.115894_bib0085 article-title: In vitro fermentation of juçara pulp (Euterpe edulis) by human colonic microbiota publication-title: Food Chemistry doi: 10.1016/j.foodchem.2015.09.048 – volume: 141 start-page: 1065 year: 2019 ident: 10.1016/j.carbpol.2020.115894_bib0025 article-title: Simulated digestion and fermentation in vitro by human gut microbiota of polysaccharides from Helicteres angustifolia L publication-title: International Journal of Biological Macromolecules doi: 10.1016/j.ijbiomac.2019.09.073 – volume: 52 start-page: 441 year: 2016 ident: 10.1016/j.carbpol.2020.115894_bib0065 article-title: The complete chloroplast genome of Gracilariopsis lemaneiformis (Rhodophyta) gives new insight into the evolution of family Gracilariaceae publication-title: Journal of Phycology doi: 10.1111/jpy.12406 – volume: 97 start-page: 34 year: 2017 ident: 10.1016/j.carbpol.2020.115894_bib0130 article-title: Anti-diarrhoeal therapeutic potential and safety assessment of sulphated polysaccharide fraction from Gracilaria intermedia seaweed in mice publication-title: International Journal of Biological Macromolecules doi: 10.1016/j.ijbiomac.2017.01.006 – volume: 124 start-page: 568 year: 2019 ident: 10.1016/j.carbpol.2020.115894_bib0240 article-title: Synthesized sulfated and acetylated derivatives of polysaccharide extracted from Gracilariopsis lemaneiformis and their potential antioxidant and immunological activity publication-title: International Journal of Biological Macromolecules doi: 10.1016/j.ijbiomac.2018.11.244 – volume: 156 start-page: 84 year: 2014 ident: 10.1016/j.carbpol.2020.115894_bib0045 article-title: Microbiota-generated metabolites promote metabolic benefits via gut-brain neural circuits publication-title: Cell doi: 10.1016/j.cell.2013.12.016 – year: 2020 ident: 10.1016/j.carbpol.2020.115894_bib0120 article-title: Physicochemical characterization and antioxidant activity of sulphated polysaccharides derived from Porphyra haitanensis publication-title: International Journal of Biological Macromolecules doi: 10.1016/j.ijbiomac.2019.10.040 – volume: 464 start-page: 908 year: 2010 ident: 10.1016/j.carbpol.2020.115894_bib0100 article-title: Transfer of carbohydrate-active enzymes from marine bacteria to Japanese gut microbiota publication-title: Nature doi: 10.1038/nature08937 – volume: 15 start-page: 388 year: 2017 ident: 10.1016/j.carbpol.2020.115894_bib0260 article-title: Recent advances in marine algae polysaccharides: Isolation, structure, and activities publication-title: Marine Drugs doi: 10.3390/md15120388 – volume: 26 start-page: 1939 year: 2014 ident: 10.1016/j.carbpol.2020.115894_bib0190 article-title: Seaweeds: An opportunity for wealth and sustainable livelihood for coastal communities publication-title: Journal of Applied Phycology doi: 10.1007/s10811-014-0304-8 – volume: 73 start-page: 197 year: 2018 ident: 10.1016/j.carbpol.2020.115894_bib0205 article-title: Extraction, purification, and characterization of polysaccharides from marine algae Gracilaria lemaneiformis with anti-tumor activity publication-title: Process Biochemistry doi: 10.1016/j.procbio.2018.08.011 – volume: 13 start-page: 50 year: 2017 ident: 10.1016/j.carbpol.2020.115894_bib0155 article-title: Current state and latest advances in the concept, production and functionality of prebiotic oligosaccharides publication-title: Current Opinion in Food Science doi: 10.1016/j.cofs.2017.02.009 – volume: 23 year: 2018 ident: 10.1016/j.carbpol.2020.115894_bib0030 article-title: Oligosaccharides derived from red seaweed: Production, properties, and potential health and cosmetic applications publication-title: Molecules doi: 10.3390/molecules23102451 – volume: 223 year: 2019 ident: 10.1016/j.carbpol.2020.115894_bib0250 article-title: In vitro fecal fermentation of propionylated high-amylose maize starch and its impact on gut microbiota publication-title: Carbohydrate Polymers doi: 10.1016/j.carbpol.2019.115069 – volume: 41 year: 2012 ident: 10.1016/j.carbpol.2020.115894_bib0125 article-title: Evaluation of general 16S ribosomal RNA gene PCR primers for classical and next-generation sequencing-based diversity studies publication-title: Nucleic Acids Research – volume: 33 start-page: 286 year: 2017 ident: 10.1016/j.carbpol.2020.115894_bib0195 article-title: Structural characterization and macrophage immunomodulatory activity of a polysaccharide isolated from Gracilaria lemaneiformis publication-title: Journal of Functional Foods doi: 10.1016/j.jff.2017.03.062 – volume: 88 start-page: 1 year: 2019 ident: 10.1016/j.carbpol.2020.115894_bib0235 article-title: In vitro colonic fermentation of dietary fibers: Fermentation rate, short-chain fatty acid production and changes in microbiota publication-title: Trends in Food Science & Technology doi: 10.1016/j.tifs.2019.03.005 – volume: 81 start-page: 1031 year: 2001 ident: 10.1016/j.carbpol.2020.115894_bib0225 article-title: Short-chain fatty acids and human colonic function: Roles of resistant starch and nonstarch polysaccharides publication-title: Physiological Reviews doi: 10.1152/physrev.2001.81.3.1031 – volume: 289 start-page: 177 year: 2019 ident: 10.1016/j.carbpol.2020.115894_bib0255 article-title: Microbial catabolism of Porphyra haitanensis polysaccharides by human gut microbiota publication-title: Food Chemistry doi: 10.1016/j.foodchem.2019.03.050 – volume: 254 start-page: 248 year: 2006 ident: 10.1016/j.carbpol.2020.115894_bib0275 article-title: Growth of Gracilaria lemaneiformis under different cultivation conditions and its effects on nutrient removal in Chinese coastal waters publication-title: Aquaculture doi: 10.1016/j.aquaculture.2005.08.029 – volume: 1400 start-page: 98 year: 2015 ident: 10.1016/j.carbpol.2020.115894_bib0040 article-title: A rapid and accurate method for the quantitative estimation of natural polysaccharides and their fractions using high performance size exclusion chromatography coupled with multi-angle laser light scattering and refractive index detector publication-title: Journal of Chromatography A doi: 10.1016/j.chroma.2015.04.054 – volume: 57 start-page: 237 year: 2017 ident: 10.1016/j.carbpol.2020.115894_bib0140 article-title: Role of polysaccharides in food, digestion, and health publication-title: Critical Reviews in Food Science and Nutrition doi: 10.1080/10408398.2014.939263 – volume: 127 start-page: 178 year: 2019 ident: 10.1016/j.carbpol.2020.115894_bib0280 article-title: Effects of extraction methods on the physicochemical characteristics and biological activities of polysaccharides from okra (Abelmoschus esculentus) publication-title: International Journal of Biological Macromolecules doi: 10.1016/j.ijbiomac.2019.01.042 – volume: 22 start-page: 267 year: 2014 ident: 10.1016/j.carbpol.2020.115894_bib0230 article-title: Phylogeny, culturing, and metagenomics of the human gut microbiota publication-title: Trends in Microbiology doi: 10.1016/j.tim.2014.03.001 – volume: 58 start-page: 1243 year: 2018 ident: 10.1016/j.carbpol.2020.115894_bib0105 article-title: Short-chain fatty acids in control of energy metabolism publication-title: Critical Reviews in Food Science and Nutrition doi: 10.1080/10408398.2016.1245650 – volume: 71 start-page: 559 year: 2008 ident: 10.1016/j.carbpol.2020.115894_bib0145 article-title: Structural characterization of cold extracted fraction of soluble sulfated polysaccharide from red seaweed Gracilaria birdiae publication-title: Carbohydrate Polymers doi: 10.1016/j.carbpol.2007.06.026 – volume: 6 start-page: 109 year: 2015 ident: 10.1016/j.carbpol.2020.115894_bib0150 article-title: Structural elucidation and in vitro fermentation of extracellular α-d-glucan from Lactobacillus reuteri SK24.003 publication-title: Bioactive Carbohydrates and Dietary Fibre doi: 10.1016/j.bcdf.2015.09.007 – volume: 10 year: 2015 ident: 10.1016/j.carbpol.2020.115894_bib0070 article-title: The physico-chemical properties of dietary fibre determine metabolic responses, short-chain fatty acid profiles and gut microbiota composition in rats fed low- and high-fat diets publication-title: PloS One doi: 10.1371/journal.pone.0127252 – volume: 147 start-page: 444 year: 2016 ident: 10.1016/j.carbpol.2020.115894_bib0215 article-title: Inulin: Properties, health benefits and food applications publication-title: Carbohydrate Polymers doi: 10.1016/j.carbpol.2016.04.020 – volume: 52 start-page: 2647 year: 2017 ident: 10.1016/j.carbpol.2020.115894_bib0180 article-title: Starch-based carbohydrates display the bifidogenic and butyrogenic properties in pH-controlled faecal fermentation publication-title: International Journal of Food Science and Technology doi: 10.1111/ijfs.13553 – volume: 544 start-page: 65 year: 2017 ident: 10.1016/j.carbpol.2020.115894_bib0175 article-title: Complex pectin metabolism by gut bacteria reveals novel catalytic functions publication-title: Nature doi: 10.1038/nature21725 – volume: 140 start-page: 600 year: 2019 ident: 10.1016/j.carbpol.2020.115894_bib0245 article-title: The anti-aging effects of Gracilaria lemaneiformis polysaccharide in Caenorhabditis elegans publication-title: International Journal of Biological Macromolecules doi: 10.1016/j.ijbiomac.2019.08.186 – volume: 14 start-page: 685 year: 2013 ident: 10.1016/j.carbpol.2020.115894_bib0110 article-title: Control of pathogens and pathobionts by the gut microbiota publication-title: Nature Immunology doi: 10.1038/ni.2608 – volume: 426 start-page: 3838 year: 2014 ident: 10.1016/j.carbpol.2020.115894_bib0090 article-title: A perspective on the complexity of dietary fiber structures and their potential effect on the gut microbiota publication-title: Journal of Molecular Biology doi: 10.1016/j.jmb.2014.07.028 – volume: 18 start-page: 1 year: 2012 ident: 10.1016/j.carbpol.2020.115894_bib0185 article-title: In vitro fermentation and prebiotic potential of novel low molecular weight polysaccharides derived from agar and alginate seaweeds publication-title: Anaerobe doi: 10.1016/j.anaerobe.2011.08.003 – volume: 12 start-page: R60 year: 2011 ident: 10.1016/j.carbpol.2020.115894_bib0200 article-title: Metagenomic biomarker discovery and explanation publication-title: Genome Biology doi: 10.1186/gb-2011-12-6-r60 – volume: 33 start-page: 496 year: 2015 ident: 10.1016/j.carbpol.2020.115894_bib0210 article-title: Proteobacteria: Microbial signature of dysbiosis in gut microbiota publication-title: Trends in Biotechnology doi: 10.1016/j.tibtech.2015.06.011 – volume: 153 start-page: 47 year: 2016 ident: 10.1016/j.carbpol.2020.115894_bib0035 article-title: Qualitation and quantification of specific polysaccharides from Panax species using GC–MS, saccharide mapping and HPSEC-RID-MALLS publication-title: Carbohydrate Polymers doi: 10.1016/j.carbpol.2016.07.077 – volume: 183 start-page: 230 year: 2018 ident: 10.1016/j.carbpol.2020.115894_bib0080 article-title: Structural characterization and in vitro fermentation of a novel polysaccharide from Sargassum thunbergii and its impact on gut microbiota publication-title: Carbohydrate Polymers doi: 10.1016/j.carbpol.2017.12.048 – volume: 107 start-page: 1337 year: 2012 ident: 10.1016/j.carbpol.2020.115894_bib0010 article-title: Gut microbiota-derived propionate reduces cancer cell proliferation in the liver publication-title: British Journal of Cancer doi: 10.1038/bjc.2012.409 – volume: 98 start-page: 563 year: 2014 ident: 10.1016/j.carbpol.2020.115894_bib0050 article-title: Bifidobacteria: their impact on gut microbiota composition and their applications as probiotics in infants publication-title: Applied Microbiology and Biotechnology doi: 10.1007/s00253-013-5405-9 – volume: 23 start-page: 1354 year: 2018 ident: 10.1016/j.carbpol.2020.115894_bib0265 article-title: Quantification of neoagaro-oligosaccharide production through enzymatic hydrolysis and its anti-oxidant activities publication-title: Molecules doi: 10.3390/molecules23061354 – volume: 46 start-page: 48 year: 2018 ident: 10.1016/j.carbpol.2020.115894_bib0220 article-title: The beneficial effects of Gracilaria lemaneiformis polysaccharides on obesity and the gut microbiota in high fat diet-fed mice publication-title: Journal of Functional Foods doi: 10.1016/j.jff.2018.04.041 – volume: 72 start-page: 205 year: 2014 ident: 10.1016/j.carbpol.2020.115894_bib0015 article-title: Seaweed and human health publication-title: Nutrition Reviews doi: 10.1111/nure.12091 |
SSID | ssj0000610 |
Score | 2.6612086 |
Snippet | •Sulfated polysaccharide (GLP) and agaro-oligosaccharide (GLO) from G. lemaneiformis were fermented in vitro by human fecal.•GLP and GLO altered intestinal... The fermentation behaviour of sulfated polysaccharides (GLP) and their agaro-oligosaccharides (GLO) derived from Gracilaria lemaneiformis were examined. During... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 115894 |
SubjectTerms | Actinobacteria Agaro-oligosaccharide Bacteroidetes fermentation Firmicutes functional foods gastrointestinal system Gracilaria Gracilaria lemaneiformis Gut microbiota humans In vitro fermentation inoculum intestinal microorganisms molecular weight oligosaccharides polymerization polysaccharides prebiotics short chain fatty acids Sulfated polysaccharide virulent strains viscosity |
Title | In vitro fermentation of Gracilaria lemaneiformis sulfated polysaccharides and its agaro-oligosaccharides by human fecal inocula and its impact on microbiota |
URI | https://dx.doi.org/10.1016/j.carbpol.2020.115894 https://www.ncbi.nlm.nih.gov/pubmed/32070514 https://www.proquest.com/docview/2358601134 https://www.proquest.com/docview/2440694662 |
Volume | 234 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9swDBaK7rBdhr2XPQoN2NVNZEuycyyCdemG9bQCvRmSRRUqUjtwnAG97J_0v5aU7aw7dAV2MmyLECFSFAnxIxn77CCL5SUT7QuHAUrhE2tFGsvd4T6faYh1Zn-c6uWZ_HauzvfYYsTCUFrlYPt7mx6t9fBlOqzmdB3ClNKSZEEHMOopdZAgBLvMScsPf4s71jhWJKDBCY3-g-KZXmII2Np1QzcQKRkPVczlfefTff5nPIeOn7GngwPJj3oen7M9qF-wx4uxb9tLdnNS81-haxvu0eoO0KKaN55_bU0VMJINhq_gytRAqCwk45vtyqPP6Thyeb0xFUGxgoMNN7XjocPnhWmbpFmFi-bub3vNY48_nAlFzUPdUFbrjqpHYHKc_Cr09Z4684qdHX_5uVgmQxOGpJJadonyws0yUBj5WD_zWQFpgXEteD0DmQppnHG6svPKFlkmpJ8rZ3OvDORaACidvWb7dVPDW8Yr5QxA7tIYxuViTu0BC7QgBgQIZSdMjktfVkOFcmqUsSrHVLTLcpBYSRIre4lN2OGObN2X6HiIoBjlWv6layUeIw-Rfhr1oET50OUKSqvZbkqCHGNwK7J_jZERZ6x1OmFveiXacZylaHzRe333_8y9Z0_oje66hPrA9rt2Cx_RZersQdwTB-zR0cn35ektnZEYuQ |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9wgEEZpekgvVd_ZPqnUq7OLDaz3WK2abtokp0TKDYGBiGhjVl5vpVz6T_pfO4PtbXpII_VkyTACMcM3M2IehHyyrkjlJTPpSwsOSukzY1ieyt3BPZ9Il-rMnpzKxTn_diEudsh8yIXBsMoe-ztMT2jd_xn3pzlehTDGsCReogIGOcUOEg_IQw7XF9sYHPxkt-A4lSTA2RlO_5PGM74CH7Axq4hPEDmihyhn_C4FdZcBmhTR4RPyuLcg6eduk0_Jjqufkb350LjtOfl1VNMfoW0i9QC7fW5RTaOnXxtdBXBlg6ZLd61rh2lZQEbXm6UHo9NS2OXNWleYixWsW1NdWxpa-F7qJmZxGS7j7WFzQ1OTP1gJeE1DHTGsdUvVpWBSWPw6dAWfWv2CnB9-OZsvsr4LQ1ZxydtMeGYnhRPg-hg_8UXp8hIcW-flxPGccW21lZWZVaYsCsb9TFgz9UK7qWTOCVm8JLt1rN0-oZWw2rmpzZMfN2Uz7A9YAoRoxxwTZkT4cPSq6kuUY6eMpRpi0a5UzzGFHFMdx0bkYEu26mp03EdQDnxVfwmbAj1yH-nHQQ4U8AdfV4BbcbNWmHMM3i0r_jWHp0RjKfMRedUJ0XbHRQ7oC-br6__f3Aeytzg7OVbHR6ff35BHOIIPX0y8Jbtts3HvwH5qzft0P34D11gaRw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=In+vitro+fermentation+of+Gracilaria+lemaneiformis+sulfated+polysaccharides+and+its+agaro-oligosaccharides+by+human+fecal+inocula+and+its+impact+on+microbiota&rft.jtitle=Carbohydrate+polymers&rft.au=Zhang%2C+Xiao&rft.au=Aweya%2C+Jude+Juventus&rft.au=Huang%2C+Zong-Xun&rft.au=Kang%2C+Zhuo-Ying&rft.date=2020-04-15&rft.issn=0144-8617&rft.volume=234+p.115894-&rft_id=info:doi/10.1016%2Fj.carbpol.2020.115894&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0144-8617&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0144-8617&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0144-8617&client=summon |