spatialHeatmap: visualizing spatial bulk and single-cell assays in anatomical images

Visualizing spatial assay data in anatomical images is vital for understanding biological processes in cell, tissue, and organ organizations. Technologies requiring this functionality include traditional one-at-a-time assays, and bulk and single-cell omics experiments, including RNA-seq and proteomi...

Full description

Saved in:
Bibliographic Details
Published inNAR genomics and bioinformatics Vol. 6; no. 1; p. lqae006
Main Authors Zhang, Jianhai, Zhang, Le, Gongol, Brendan, Hayes, Jordan, Borowsky, Alexander T, Bailey-Serres, Julia, Girke, Thomas
Format Journal Article
LanguageEnglish
Published England Oxford University Press 01.03.2024
Subjects
Online AccessGet full text
ISSN2631-9268
2631-9268
DOI10.1093/nargab/lqae006

Cover

Loading…
Abstract Visualizing spatial assay data in anatomical images is vital for understanding biological processes in cell, tissue, and organ organizations. Technologies requiring this functionality include traditional one-at-a-time assays, and bulk and single-cell omics experiments, including RNA-seq and proteomics. The spatialHeatmap software provides a series of powerful new methods for these needs, and allows users to work with adequately formatted anatomical images from public collections or custom images. It colors the spatial features (e.g. tissues) annotated in the images according to the measured or predicted abundance levels of biomolecules (e.g. mRNAs) using a color key. This core functionality of the package is called a spatial heatmap plot. Single-cell data can be co-visualized in composite plots that combine spatial heatmaps with embedding plots of high-dimensional data. The resulting spatial context information is essential for gaining insights into the tissue-level organization of single-cell data, or vice versa. Additional core functionalities include the automated identification of biomolecules with spatially selective abundance patterns and clusters of biomolecules sharing similar abundance profiles. To appeal to both non-expert and computational users, spatialHeatmap provides a graphical and a command-line interface, respectively. It is distributed as a free, open-source Bioconductor package (https://bioconductor.org/packages/spatialHeatmap) that users can install on personal computers, shared servers, or cloud systems. Graphical Abstract Graphical Abstract
AbstractList Visualizing spatial assay data in anatomical images is vital for understanding biological processes in cell, tissue, and organ organizations. Technologies requiring this functionality include traditional one-at-a-time assays, and bulk and single-cell omics experiments, including RNA-seq and proteomics. The spatialHeatmap software provides a series of powerful new methods for these needs, and allows users to work with adequately formatted anatomical images from public collections or custom images. It colors the spatial features (e.g. tissues) annotated in the images according to the measured or predicted abundance levels of biomolecules (e.g. mRNAs) using a color key. This core functionality of the package is called a spatial heatmap plot. Single-cell data can be co-visualized in composite plots that combine spatial heatmaps with embedding plots of high-dimensional data. The resulting spatial context information is essential for gaining insights into the tissue-level organization of single-cell data, or vice versa. Additional core functionalities include the automated identification of biomolecules with spatially selective abundance patterns and clusters of biomolecules sharing similar abundance profiles. To appeal to both non-expert and computational users, spatialHeatmap provides a graphical and a command-line interface, respectively. It is distributed as a free, open-source Bioconductor package (https://bioconductor.org/packages/spatialHeatmap) that users can install on personal computers, shared servers, or cloud systems.Visualizing spatial assay data in anatomical images is vital for understanding biological processes in cell, tissue, and organ organizations. Technologies requiring this functionality include traditional one-at-a-time assays, and bulk and single-cell omics experiments, including RNA-seq and proteomics. The spatialHeatmap software provides a series of powerful new methods for these needs, and allows users to work with adequately formatted anatomical images from public collections or custom images. It colors the spatial features (e.g. tissues) annotated in the images according to the measured or predicted abundance levels of biomolecules (e.g. mRNAs) using a color key. This core functionality of the package is called a spatial heatmap plot. Single-cell data can be co-visualized in composite plots that combine spatial heatmaps with embedding plots of high-dimensional data. The resulting spatial context information is essential for gaining insights into the tissue-level organization of single-cell data, or vice versa. Additional core functionalities include the automated identification of biomolecules with spatially selective abundance patterns and clusters of biomolecules sharing similar abundance profiles. To appeal to both non-expert and computational users, spatialHeatmap provides a graphical and a command-line interface, respectively. It is distributed as a free, open-source Bioconductor package (https://bioconductor.org/packages/spatialHeatmap) that users can install on personal computers, shared servers, or cloud systems.
Visualizing spatial assay data in anatomical images is vital for understanding biological processes in cell, tissue, and organ organizations. Technologies requiring this functionality include traditional one-at-a-time assays, and bulk and single-cell omics experiments, including RNA-seq and proteomics. The spatialHeatmap software provides a series of powerful new methods for these needs, and allows users to work with adequately formatted anatomical images from public collections or custom images. It colors the spatial features (e.g. tissues) annotated in the images according to the measured or predicted abundance levels of biomolecules (e.g. mRNAs) using a color key. This core functionality of the package is called a spatial heatmap plot. Single-cell data can be co-visualized in composite plots that combine spatial heatmaps with embedding plots of high-dimensional data. The resulting spatial context information is essential for gaining insights into the tissue-level organization of single-cell data, or vice versa. Additional core functionalities include the automated identification of biomolecules with spatially selective abundance patterns and clusters of biomolecules sharing similar abundance profiles. To appeal to both non-expert and computational users, spatialHeatmap provides a graphical and a command-line interface, respectively. It is distributed as a free, open-source Bioconductor package (https://bioconductor.org/packages/spatialHeatmap) that users can install on personal computers, shared servers, or cloud systems.
Visualizing spatial assay data in anatomical images is vital for understanding biological processes in cell, tissue, and organ organizations. Technologies requiring this functionality include traditional one-at-a-time assays, and bulk and single-cell omics experiments, including RNA-seq and proteomics. The software provides a series of powerful new methods for these needs, and allows users to work with adequately formatted anatomical images from public collections or custom images. It colors the spatial features (e.g. tissues) annotated in the images according to the measured or predicted abundance levels of biomolecules (e.g. mRNAs) using a color key. This core functionality of the package is called a spatial heatmap plot. Single-cell data can be co-visualized in composite plots that combine spatial heatmaps with embedding plots of high-dimensional data. The resulting spatial context information is essential for gaining insights into the tissue-level organization of single-cell data, or vice versa. Additional core functionalities include the automated identification of biomolecules with spatially selective abundance patterns and clusters of biomolecules sharing similar abundance profiles. To appeal to both non-expert and computational users, provides a graphical and a command-line interface, respectively. It is distributed as a free, open-source Bioconductor package (https://bioconductor.org/packages/spatialHeatmap) that users can install on personal computers, shared servers, or cloud systems.
Visualizing spatial assay data in anatomical images is vital for understanding biological processes in cell, tissue, and organ organizations. Technologies requiring this functionality include traditional one-at-a-time assays, and bulk and single-cell omics experiments, including RNA-seq and proteomics. The spatialHeatmap software provides a series of powerful new methods for these needs, and allows users to work with adequately formatted anatomical images from public collections or custom images. It colors the spatial features (e.g. tissues) annotated in the images according to the measured or predicted abundance levels of biomolecules (e.g. mRNAs) using a color key. This core functionality of the package is called a spatial heatmap plot. Single-cell data can be co-visualized in composite plots that combine spatial heatmaps with embedding plots of high-dimensional data. The resulting spatial context information is essential for gaining insights into the tissue-level organization of single-cell data, or vice versa. Additional core functionalities include the automated identification of biomolecules with spatially selective abundance patterns and clusters of biomolecules sharing similar abundance profiles. To appeal to both non-expert and computational users, spatialHeatmap provides a graphical and a command-line interface, respectively. It is distributed as a free, open-source Bioconductor package (https://bioconductor.org/packages/spatialHeatmap) that users can install on personal computers, shared servers, or cloud systems. Graphical Abstract Graphical Abstract
Author Zhang, Le
Zhang, Jianhai
Gongol, Brendan
Hayes, Jordan
Borowsky, Alexander T
Bailey-Serres, Julia
Girke, Thomas
Author_xml – sequence: 1
  givenname: Jianhai
  surname: Zhang
  fullname: Zhang, Jianhai
– sequence: 2
  givenname: Le
  surname: Zhang
  fullname: Zhang, Le
– sequence: 3
  givenname: Brendan
  surname: Gongol
  fullname: Gongol, Brendan
– sequence: 4
  givenname: Jordan
  surname: Hayes
  fullname: Hayes, Jordan
– sequence: 5
  givenname: Alexander T
  surname: Borowsky
  fullname: Borowsky, Alexander T
– sequence: 6
  givenname: Julia
  orcidid: 0000-0002-8568-7125
  surname: Bailey-Serres
  fullname: Bailey-Serres, Julia
– sequence: 7
  givenname: Thomas
  orcidid: 0000-0003-0710-3777
  surname: Girke
  fullname: Girke, Thomas
  email: thomas.girke@ucr.edu
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38312938$$D View this record in MEDLINE/PubMed
BookMark eNqFkc9LwzAUx4MoTueuHqXgRQ_d8qNpE28i6oSBl3kur006MtO0Nq2gf70ZmyIDMZcX8j7fl_fe9xQdusZphM4JnhIs2cxBt4JiZt9AY5weoBOaMhJLmorDX_cRmni_xhhTnvAEk2M0YoIRKpk4QUvfQm_AzjX0NbQ30bvxA1jzadwq2uWiYrCvETgV-fBqdVxqayPwHj58ZFzIQN_UpgykqWGl_Rk6qsB6PdnFMXp5uF_ezePF8-PT3e0iLpM06WOepFxUnGjJMy0yUQArMqwAY46VpoooWmVKlhkvq7QUlFdEMRxQFQ6AYGN0ta3bds3boH2f18ZvmgOnm8HnVFKacJaQDXq5h66boXOhu5yRDEssZCYDdbGjhqLWKm-7MFD3kX_vKwDTLVB2jfedrn4QgvONJ_nWk3znSRAke4LS9GGrjes7MPZv2fVW1gztf198AaevoX4
CitedBy_id crossref_primary_10_1038_s42003_024_06354_8
crossref_primary_10_3390_ijms26052074
Cites_doi 10.1016/j.cell.2019.05.031
10.3389/fnins.2021.636259
10.1093/bioinformatics/btu707
10.1186/1471-2105-14-89
10.1177/107385840100700208
10.1158/0008-5472.CAN-17-0344
10.1186/s13059-014-0550-8
10.1093/bioinformatics/btp616
10.1093/plcell/koaa055
10.32614/RJ-2014-004
10.1038/nmeth.3337
10.1093/bioinformatics/btab503
10.1016/j.devcel.2022.04.013
10.1038/s41467-022-34271-z
10.1007/s00418-009-0613-1
10.1037/h0071325
10.21105/joss.00861
10.1093/nar/gkx1158
10.1105/tpc.17.00073
10.1007/978-1-4939-3578-9_5
10.1126/science.aaw1219
10.1093/bioinformatics/btx337
10.1371/journal.pone.0000718
10.1186/1471-2105-9-559
10.7554/eLife.26476
10.1126/science.1228186
10.1038/nbt.3192
10.1016/j.cell.2021.04.048
10.18637/jss.v046.i11
10.1093/bioinformatics/btx364
10.1093/bioinformatics/btm563
10.1038/nn.4065
10.1093/bioinformatics/btv428
10.1038/s41593-021-00896-4
10.1038/s41580-018-0094-y
10.1093/bioinformatics/btt090
10.1038/s41587-019-0114-2
10.1016/j.cell.2021.05.010
10.1073/pnas.0906131106
10.1111/j.1600-0404.2008.01128.x
10.1038/s41467-023-38437-1
10.12688/f1000research.14966.1
10.1038/nmeth.3252
10.1186/s12864-019-6053-y
10.1016/j.cmet.2016.08.020
10.1126/sciadv.abb3446
10.1016/j.bbalip.2015.03.003
10.1038/s41467-018-08023-x
10.1002/mc.23014
10.1038/nprot.2014.191
10.1038/mp.2015.107
10.1007/s00018-019-03428-3
10.1371/journal.pgen.1002142
10.1073/pnas.1402665111
10.1201/9780429447273
10.12688/f1000research.16409.1
10.1038/s41592-019-0654-x
10.1038/gim.2016.54
10.1007/978-3-319-24277-4
10.1158/0008-5472.CAN-22-0717
10.1093/database/bay003
10.1002/hep.30508
10.1093/nar/gkv007
10.1126/sciadv.abh2169
10.1111/j.1365-313X.2012.05055.x
10.1089/omi.2011.0118
10.1038/s41586-021-03634-9
10.1126/science.abq4964
10.1093/bioinformatics/btw777
10.1038/nbt.4096
10.1038/s41467-019-09990-5
10.1126/science.add3067
10.1016/j.neuron.2017.05.008
ContentType Journal Article
Copyright The Author(s) 2024. Published by Oxford University Press on behalf of NAR Genomics and Bioinformatics. 2024
The Author(s) 2024. Published by Oxford University Press on behalf of NAR Genomics and Bioinformatics.
The Author(s) 2024. Published by Oxford University Press on behalf of NAR Genomics and Bioinformatics. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2024. Published by Oxford University Press on behalf of NAR Genomics and Bioinformatics. 2024
– notice: The Author(s) 2024. Published by Oxford University Press on behalf of NAR Genomics and Bioinformatics.
– notice: The Author(s) 2024. Published by Oxford University Press on behalf of NAR Genomics and Bioinformatics. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID TOX
AAYXX
CITATION
NPM
8FE
8FH
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
GNUQQ
HCIFZ
LK8
M7P
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7X8
DOI 10.1093/nargab/lqae006
DatabaseName Oxford Journals Open Access Collection
CrossRef
PubMed
ProQuest SciTech Collection
ProQuest Natural Science Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
ProQuest Natural Science Collection
ProQuest One Community College
ProQuest Central Korea
ProQuest Central Student
SciTech Premium Collection
Biological Sciences
Biological Science Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Biological Science Collection
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
Biological Science Database
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
Natural Science Collection
ProQuest Central Korea
Biological Science Collection
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
CrossRef
PubMed
Publicly Available Content Database

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: TOX
  name: Oxford Journals Open Access Collection
  url: https://academic.oup.com/journals/
  sourceTypes: Publisher
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2631-9268
ExternalDocumentID 38312938
10_1093_nargab_lqae006
10.1093/nargab/lqae006
Genre Journal Article
GroupedDBID 0R~
53G
AAFWJ
AAPXW
AAVAP
ABEJV
ABGNP
ABPTD
ABXVV
AFPKN
AFULF
ALMA_UNASSIGNED_HOLDINGS
AMNDL
EBS
EMOBN
GROUPED_DOAJ
IAO
IGS
IHR
INH
ITC
KSI
M~E
ROX
RPM
TOX
AAYXX
AFKRA
BBNVY
BENPR
BHPHI
CCPQU
CITATION
HCIFZ
M7P
PHGZM
PHGZT
PIMPY
NPM
8FE
8FH
ABUWG
AZQEC
DWQXO
GNUQQ
LK8
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7X8
ID FETCH-LOGICAL-c464t-54658f51e957e878ba3b70da0050de2d1d2f7d9c75cf6c825f1d307e8ddddaa83
IEDL.DBID BENPR
ISSN 2631-9268
IngestDate Fri Jul 11 15:12:31 EDT 2025
Fri Jul 25 11:30:40 EDT 2025
Thu Apr 03 06:57:13 EDT 2025
Tue Jul 01 02:50:16 EDT 2025
Thu Apr 24 23:11:06 EDT 2025
Thu Jan 30 13:18:23 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.
https://creativecommons.org/licenses/by/4.0
The Author(s) 2024. Published by Oxford University Press on behalf of NAR Genomics and Bioinformatics.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c464t-54658f51e957e878ba3b70da0050de2d1d2f7d9c75cf6c825f1d307e8ddddaa83
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-8568-7125
0000-0003-0710-3777
OpenAccessLink https://www.proquest.com/docview/3170908979?pq-origsite=%requestingapplication%
PMID 38312938
PQID 3170908979
PQPubID 7097362
ParticipantIDs proquest_miscellaneous_2922453418
proquest_journals_3170908979
pubmed_primary_38312938
crossref_primary_10_1093_nargab_lqae006
crossref_citationtrail_10_1093_nargab_lqae006
oup_primary_10_1093_nargab_lqae006
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-03-01
PublicationDateYYYYMMDD 2024-03-01
PublicationDate_xml – month: 03
  year: 2024
  text: 2024-03-01
  day: 01
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
– name: Oxford
PublicationTitle NAR genomics and bioinformatics
PublicationTitleAlternate NAR Genom Bioinform
PublicationYear 2024
Publisher Oxford University Press
Publisher_xml – name: Oxford University Press
References Papatheodorou (2024052805575099500_B12) 2018; 46
Merkin (2024052805575099500_B47) 2012; 338
Racle (2024052805575099500_B54) 2017; 6
Xiao (2024052805575099500_B62) 2019; 58
Seo (2024052805575099500_B69) 2020; 77
Lun (2024052805575099500_B14) 2016; 5
Fadista (2024052805575099500_B57) 2014; 111
Rue-Albrecht (2024052805575099500_B23) 2018; 7
McCarthy (2024052805575099500_B17) 2017; 33
Gong (2024052805575099500_B55) 2013; 29
Reynoso (2024052805575099500_B60) 2022; 57
Stepulak (2024052805575099500_B61) 2009; 132
Conway (2024052805575099500_B37) 2017; 33
Langfelder (2024052805575099500_B38) 2008; 9
Feng (2024052805575099500_B24) 2019; 20
Muschelli (2024052805575099500_B9) 2014; 6
Love (2024052805575099500_B36) 2014; 15
Speir (2024052805575099500_B25) 2021; 37
Newman (2024052805575099500_B53) 2015; 12
Palasca (2024052805575099500_B11) 2018; 2018
Zaitsev (2024052805575099500_B28) 2019; 10
Attilio (2024052805575099500_B46) 2021; 15
Patel (2024052805575099500_B7) 2012; 71
Karlsson (2024052805575099500_B2) 2021; 7
Ritchie (2024052805575099500_B35) 2015; 43
Wickham (2024052805575099500_B32) 2016
Galili (2024052805575099500_B48) 2015; 31
Yu (2024052805575099500_B41) 2012; 16
Ortiz (2024052805575099500_B51) 2020; 6
Lundberg (2024052805575099500_B3) 2019; 20
Amezquita (2024052805575099500_B30) 2020; 17
Clough (2024052805575099500_B31) 2016; 1418
Robinson (2024052805575099500_B34) 2010; 26
Zhong (2024052805575099500_B26) 2013; 14
Huber (2024052805575099500_B29) 2015; 12
Cho (2024052805575099500_B70) 2021; 184
Maag (2024052805575099500_B8) 2018; 7
Lee (2024052805575099500_B73) 2015; 10
Liao (2024052805575099500_B77) 2022; 13
Gardeux (2024052805575099500_B22) 2017; 33
Bressan (2024052805575099500_B5) 2023; 381
Jenkins (2024052805575099500_B67) 2015; 21
Conroy (2024052805575099500_B4) 2023; 14
Prudencio (2024052805575099500_B43) 2015; 18
Bezrutczyk (2024052805575099500_B45) 2021; 33
Langfelder (2024052805575099500_B39) 2012; 46
Segerstolpe (2024052805575099500_B58) 2016; 24
Rodriques (2024052805575099500_B71) 2019; 363
Winter (2024052805575099500_B6) 2007; 2
Lekschas (2024052805575099500_B10) 2015; 31
Wang (2024052805575099500_B56) 2019; 10
Langfelder (2024052805575099500_B40) 2008; 24
Shah (2024052805575099500_B72) 2017; 94
Sievert (2024052805575099500_B33) 2020
Rao (2024052805575099500_B1) 2021; 596
Mateo (2024052805575099500_B63) 2009; 120
Butler (2024052805575099500_B19) 2018; 36
Ramos (2024052805575099500_B76) 2017; 77
Thorgersen (2024052805575099500_B50) 2019; 70
van der Maaten (2024052805575099500_B16) 2008; 9
Hotelling (2024052805575099500_B13) 1933; 24
International Parkinson’s Disease Genomics Consortium (IPDGC), Wellcome Trust Case Control Consortium 2 (WTCCC2) (2024052805575099500_B65) 2011; 7
Lowther (2024052805575099500_B68) 2017; 19
Mustroph (2024052805575099500_B44) 2009; 106
Meisler (2024052805575099500_B66) 2001; 7
Hao (2024052805575099500_B21) 2021; 184
Newman (2024052805575099500_B27) 2019; 37
Nan (2024052805575099500_B64) 2022; 82
Satija (2024052805575099500_B18) 2015; 33
Vacher (2024052805575099500_B52) 2021; 24
McInnes (2024052805575099500_B15) 2018; 3
Lundberg (2024052805575099500_B74) 2019; 20
Csardi (2024052805575099500_B42) 2006; Complex Systems
Zeng (2024052805575099500_B59) 2023; 380
Knebel (2024052805575099500_B49) 2015; 1851
Waese (2024052805575099500_B75) 2017; 29
Stuart (2024052805575099500_B20) 2019; 177
References_xml – volume: 177
  start-page: 1888
  year: 2019
  ident: 2024052805575099500_B20
  article-title: Comprehensive integration of single-cell data
  publication-title: Cell
  doi: 10.1016/j.cell.2019.05.031
– volume: 15
  start-page: 636259
  year: 2021
  ident: 2024052805575099500_B46
  article-title: Transcriptomic analysis of mouse brain after traumatic brain injury reveals that the angiotensin receptor blocker candesartan acts through novel pathways
  publication-title: Front. Neurosci.
  doi: 10.3389/fnins.2021.636259
– volume: 31
  start-page: 794
  year: 2015
  ident: 2024052805575099500_B10
  article-title: Semantic Body Browser: graphical exploration of an organism and spatially resolved expression data visualization
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btu707
– volume: 14
  start-page: 89
  year: 2013
  ident: 2024052805575099500_B26
  article-title: Digital sorting of complex tissues for cell type-specific gene expression profiles
  publication-title: BMC Bioinformatics
  doi: 10.1186/1471-2105-14-89
– volume: 7
  start-page: 136
  year: 2001
  ident: 2024052805575099500_B66
  article-title: Sodium channels and neurological disease: insights from scn8a mutations in the mouse
  publication-title: Neuroscientist
  doi: 10.1177/107385840100700208
– volume: 77
  start-page: e39
  year: 2017
  ident: 2024052805575099500_B76
  article-title: Software for the integration of multiomics experiments in bioconductor
  publication-title: Cancer Res.
  doi: 10.1158/0008-5472.CAN-17-0344
– volume: 15
  start-page: 550
  year: 2014
  ident: 2024052805575099500_B36
  article-title: Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2
  publication-title: Genome Biol.
  doi: 10.1186/s13059-014-0550-8
– volume: 26
  start-page: 139
  year: 2010
  ident: 2024052805575099500_B34
  article-title: edgeR: a Bioconductor package for differential expression analysis of digital gene expression data
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btp616
– volume: 33
  start-page: 531
  year: 2021
  ident: 2024052805575099500_B45
  article-title: Evidence for phloem loading via the abaxial bundle sheath cells in maize leaves
  publication-title: Plant Cell
  doi: 10.1093/plcell/koaa055
– volume: 6
  start-page: 41
  year: 2014
  ident: 2024052805575099500_B9
  article-title: brainR: interactive 3 and 4D images of high resolution neuroimage data
  publication-title: R J.
  doi: 10.32614/RJ-2014-004
– volume: 12
  start-page: 453
  year: 2015
  ident: 2024052805575099500_B53
  article-title: Robust enumeration of cell subsets from tissue expression profiles
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.3337
– volume: 37
  start-page: 4578
  year: 2021
  ident: 2024052805575099500_B25
  article-title: UCSC Cell Browser: visualize your single-cell data
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btab503
– volume: 57
  start-page: 1177
  year: 2022
  ident: 2024052805575099500_B60
  article-title: Gene regulatory networks shape developmental plasticity of root cell types under water extremes in rice
  publication-title: Dev. Cell
  doi: 10.1016/j.devcel.2022.04.013
– volume: 13
  start-page: 6498
  year: 2022
  ident: 2024052805575099500_B77
  article-title: De novo analysis of bulk RNA-seq data at spatially resolved single-cell resolution
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-022-34271-z
– volume: 132
  start-page: 435
  year: 2009
  ident: 2024052805575099500_B61
  article-title: Expression of glutamate receptor subunits in human cancers
  publication-title: Histochem. Cell Biol.
  doi: 10.1007/s00418-009-0613-1
– volume: 24
  start-page: 417
  year: 1933
  ident: 2024052805575099500_B13
  article-title: Analysis of a complex of statistical variables into principal components
  publication-title: J. Educ. Psychol.
  doi: 10.1037/h0071325
– volume: 3
  start-page: 861
  year: 2018
  ident: 2024052805575099500_B15
  article-title: UMAP: uniform manifold approximation and projection
  publication-title: J. Open Source Softw.
  doi: 10.21105/joss.00861
– volume: 46
  start-page: D246
  year: 2018
  ident: 2024052805575099500_B12
  article-title: Expression Atlas: gene and protein expression across multiple studies and organisms
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkx1158
– volume: 29
  start-page: 1806
  year: 2017
  ident: 2024052805575099500_B75
  article-title: ePlant: visualizing and exploring multiple levels of data for hypothesis generation in plant biology
  publication-title: Plant Cell
  doi: 10.1105/tpc.17.00073
– volume: 1418
  start-page: 93
  year: 2016
  ident: 2024052805575099500_B31
  article-title: The gene expression omnibus database
  publication-title: Methods Mol. Biol.
  doi: 10.1007/978-1-4939-3578-9_5
– volume: 363
  start-page: 1463
  year: 2019
  ident: 2024052805575099500_B71
  article-title: Slide-seq: a scalable technology for measuring genome-wide expression at high spatial resolution
  publication-title: Science
  doi: 10.1126/science.aaw1219
– volume: 33
  start-page: 3123
  year: 2017
  ident: 2024052805575099500_B22
  article-title: ASAP: a web-based platform for the analysis and interactive visualization of single-cell RNA-seq data
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btx337
– volume: 9
  start-page: 2579
  year: 2008
  ident: 2024052805575099500_B16
  article-title: Visualizing data using t-SNE
  publication-title: J. Mach. Learn. Res.
– volume: 2
  start-page: e718
  year: 2007
  ident: 2024052805575099500_B6
  article-title: An “Electronic Fluorescent Pictograph” browser for exploring and analyzing large-scale biological data sets
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0000718
– volume: 9
  start-page: 559
  year: 2008
  ident: 2024052805575099500_B38
  article-title: WGCNA: an R package for weighted correlation network analysis
  publication-title: BMC Bioinformatics
  doi: 10.1186/1471-2105-9-559
– volume: 6
  start-page: e26476
  year: 2017
  ident: 2024052805575099500_B54
  article-title: Simultaneous enumeration of cancer and immune cell types from bulk tumor gene expression data
  publication-title: Elife
  doi: 10.7554/eLife.26476
– volume: 338
  start-page: 1593
  year: 2012
  ident: 2024052805575099500_B47
  article-title: Evolutionary dynamics of gene and isoform regulation in Mammalian tissues
  publication-title: Science
  doi: 10.1126/science.1228186
– volume: 33
  start-page: 495
  year: 2015
  ident: 2024052805575099500_B18
  article-title: Spatial reconstruction of single-cell gene expression data
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt.3192
– volume: 184
  start-page: 3573
  year: 2021
  ident: 2024052805575099500_B21
  article-title: Integrated analysis of multimodal single-cell data
  publication-title: Cell
  doi: 10.1016/j.cell.2021.04.048
– volume: 46
  start-page: 1
  year: 2012
  ident: 2024052805575099500_B39
  article-title: Fast R functions for robust correlations and hierarchical clustering
  publication-title: J. Stat. Softw.
  doi: 10.18637/jss.v046.i11
– volume: 33
  start-page: 2938
  year: 2017
  ident: 2024052805575099500_B37
  article-title: UpSetR: an R package for the visualization of intersecting sets and their properties
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btx364
– volume: 24
  start-page: 719
  year: 2008
  ident: 2024052805575099500_B40
  article-title: Defining clusters from a hierarchical cluster tree: the Dynamic Tree Cut package for R
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btm563
– volume: Complex Systems
  start-page: 1695
  year: 2006
  ident: 2024052805575099500_B42
  article-title: The igraph software package for complex network research
  publication-title: InterJournal
– volume: 18
  start-page: 1175
  year: 2015
  ident: 2024052805575099500_B43
  article-title: Distinct brain transcriptome profiles in C9orf72-associated and sporadic ALS
  publication-title: Nat. Neurosci.
  doi: 10.1038/nn.4065
– volume: 31
  start-page: 3718
  year: 2015
  ident: 2024052805575099500_B48
  article-title: dendextend: an R package for visualizing, adjusting and comparing trees of hierarchical clustering
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btv428
– volume: 24
  start-page: 1392
  year: 2021
  ident: 2024052805575099500_B52
  article-title: Placental endocrine function shapes cerebellar development and social behavior
  publication-title: Nat. Neurosci.
  doi: 10.1038/s41593-021-00896-4
– volume: 20
  start-page: 285
  year: 2019
  ident: 2024052805575099500_B74
  article-title: Spatial proteomics: a powerful discovery tool for cell biology
  publication-title: Nat. Rev. Mol. Cell Biol.
  doi: 10.1038/s41580-018-0094-y
– volume: 29
  start-page: 1083
  year: 2013
  ident: 2024052805575099500_B55
  article-title: DeconRNASeq: a statistical framework for deconvolution of heterogeneous tissue samples based on mRNA-Seq data
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btt090
– volume: 37
  start-page: 773
  year: 2019
  ident: 2024052805575099500_B27
  article-title: Determining cell type abundance and expression from bulk tissues with digital cytometry
  publication-title: Nat. Biotechnol.
  doi: 10.1038/s41587-019-0114-2
– volume: 184
  start-page: 3559
  year: 2021
  ident: 2024052805575099500_B70
  article-title: Microscopic examination of spatial transcriptome using Seq-Scope
  publication-title: Cell
  doi: 10.1016/j.cell.2021.05.010
– volume: 106
  start-page: 18843
  year: 2009
  ident: 2024052805575099500_B44
  article-title: Profiling translatomes of discrete cell populations resolves altered cellular priorities during hypoxia in Arabidopsis
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.0906131106
– volume: 120
  start-page: 130
  year: 2009
  ident: 2024052805575099500_B63
  article-title: Epistasis between tau phosphorylation regulating genes (CDK5R1 and GSK-3beta) and Alzheimer’s disease risk
  publication-title: Acta Neurol. Scand.
  doi: 10.1111/j.1600-0404.2008.01128.x
– volume: 14
  start-page: 2759
  year: 2023
  ident: 2024052805575099500_B4
  article-title: Spatial metabolomics reveals glycogen as an actionable target for pulmonary fibrosis
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-023-38437-1
– volume: 7
  start-page: 741
  year: 2018
  ident: 2024052805575099500_B23
  article-title: iSEE: Interactive SummarizedExperiment Explorer
  publication-title: F1000Res.
  doi: 10.12688/f1000research.14966.1
– volume: 12
  start-page: 115
  year: 2015
  ident: 2024052805575099500_B29
  article-title: Orchestrating high-throughput genomic analysis with Bioconductor
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.3252
– volume: 20
  start-page: 676
  year: 2019
  ident: 2024052805575099500_B24
  article-title: Single Cell Explorer, collaboration-driven tools to leverage large-scale single cell RNA-seq data
  publication-title: BMC Genomics
  doi: 10.1186/s12864-019-6053-y
– volume: 24
  start-page: 593
  year: 2016
  ident: 2024052805575099500_B58
  article-title: Single-Cell transcriptome profiling of human pancreatic islets in health and Type 2 diabetes
  publication-title: Cell Metab.
  doi: 10.1016/j.cmet.2016.08.020
– volume: 20
  start-page: 285
  year: 2019
  ident: 2024052805575099500_B3
  article-title: Spatial proteomics: a powerful discovery tool for cell biology
  publication-title: Nat. Rev. Mol. Cell Biol.
  doi: 10.1038/s41580-018-0094-y
– volume: 5
  start-page: 2122
  year: 2016
  ident: 2024052805575099500_B14
  article-title: A step-by-step workflow for low-level analysis of single-cell RNA-seq data with Bioconductor
  publication-title: F1000Res.
– volume: 6
  start-page: eabb3446
  year: 2020
  ident: 2024052805575099500_B51
  article-title: Molecular atlas of the adult mouse brain
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.abb3446
– volume: 1851
  start-page: 965
  year: 2015
  ident: 2024052805575099500_B49
  article-title: Peroxisomes compensate hepatic lipid overflow in mice with fatty liver
  publication-title: Biochim. Biophys. Acta
  doi: 10.1016/j.bbalip.2015.03.003
– volume: 10
  start-page: 380
  year: 2019
  ident: 2024052805575099500_B56
  article-title: Bulk tissue cell type deconvolution with multi-subject single-cell expression reference
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-08023-x
– volume: 58
  start-page: 1314
  year: 2019
  ident: 2024052805575099500_B62
  article-title: Glutamate Ionotropic Receptor Kainate Type Subunit 3 (GRIK3) promotes epithelial-mesenchymal transition in breast cancer cells by regulating SPDEF/CDH1 signaling
  publication-title: Mol. Carcinog.
  doi: 10.1002/mc.23014
– volume: 10
  start-page: 442
  year: 2015
  ident: 2024052805575099500_B73
  article-title: Fluorescent in situ sequencing (FISSEQ) of RNA for gene expression profiling in intact cells and tissues
  publication-title: Nat. Protoc.
  doi: 10.1038/nprot.2014.191
– volume: 21
  start-page: 701
  year: 2015
  ident: 2024052805575099500_B67
  article-title: Neurexin 1 (NRXN1) splice isoform expression during human neocortical development and aging
  publication-title: Mol. Psychiatry
  doi: 10.1038/mp.2015.107
– volume: 77
  start-page: 2659
  year: 2020
  ident: 2024052805575099500_B69
  article-title: Molecular crosstalk between cancer and neurodegenerative diseases
  publication-title: Cell. Mol. Life Sci.
  doi: 10.1007/s00018-019-03428-3
– volume: 7
  start-page: e1002142
  year: 2011
  ident: 2024052805575099500_B65
  article-title: A two-stage meta-analysis identifies several new loci for Parkinson’s disease
  publication-title: PLoS Genet.
  doi: 10.1371/journal.pgen.1002142
– volume: 111
  start-page: 13924
  year: 2014
  ident: 2024052805575099500_B57
  article-title: Global genomic and transcriptomic analysis of human pancreatic islets reveals novel genes influencing glucose metabolism
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.1402665111
– volume-title: Interactive Web-based Data Visualization with R, plotly, and shiny
  year: 2020
  ident: 2024052805575099500_B33
  doi: 10.1201/9780429447273
– volume: 7
  start-page: 1576
  year: 2018
  ident: 2024052805575099500_B8
  article-title: gganatogram: An R package for modular visualisation of anatograms and tissues based on ggplot2
  publication-title: F1000Res.
  doi: 10.12688/f1000research.16409.1
– volume: 17
  start-page: 137
  year: 2020
  ident: 2024052805575099500_B30
  article-title: Orchestrating single-cell analysis with Bioconductor
  publication-title: Nat. Methods
  doi: 10.1038/s41592-019-0654-x
– volume: 19
  start-page: 53
  year: 2017
  ident: 2024052805575099500_B68
  article-title: Molecular characterization of NRXN1 deletions from 19,263 clinical microarray cases identifies exons important for neurodevelopmental disease expression
  publication-title: Genet. Med.
  doi: 10.1038/gim.2016.54
– volume-title: ggplot2: Elegant Graphics for Data Analysis
  year: 2016
  ident: 2024052805575099500_B32
  doi: 10.1007/978-3-319-24277-4
– volume: 82
  start-page: 2887
  year: 2022
  ident: 2024052805575099500_B64
  article-title: DLGAP1-AS2–Mediated phosphatidic acid synthesis activates YAP signaling and confers chemoresistance in squamous cell carcinoma
  publication-title: Cancer Res.
  doi: 10.1158/0008-5472.CAN-22-0717
– volume: 2018
  start-page: bay028
  year: 2018
  ident: 2024052805575099500_B11
  article-title: TISSUES 2.0: an integrative web resource on mammalian tissue expression
  publication-title: Database
  doi: 10.1093/database/bay003
– volume: 70
  start-page: 725
  year: 2019
  ident: 2024052805575099500_B50
  article-title: The role of complement in liver injury, regeneration, and transplantation
  publication-title: Hepatology
  doi: 10.1002/hep.30508
– volume: 43
  start-page: e47
  year: 2015
  ident: 2024052805575099500_B35
  article-title: limma powers differential expression analyses for RNA-sequencing and microarray studies
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkv007
– volume: 7
  start-page: eabh2169
  year: 2021
  ident: 2024052805575099500_B2
  article-title: A single–cell type transcriptomics map of human tissues
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.abh2169
– volume: 71
  start-page: 1038
  year: 2012
  ident: 2024052805575099500_B7
  article-title: BAR expressolog identification: expression profile similarity ranking of homologous genes in plant species
  publication-title: Plant J.
  doi: 10.1111/j.1365-313X.2012.05055.x
– volume: 16
  start-page: 284
  year: 2012
  ident: 2024052805575099500_B41
  article-title: clusterProfiler: an R package for comparing biological themes among gene clusters
  publication-title: OMICS: A J. Integr. Biol.
  doi: 10.1089/omi.2011.0118
– volume: 596
  start-page: 211
  year: 2021
  ident: 2024052805575099500_B1
  article-title: Exploring tissue architecture using spatial transcriptomics
  publication-title: Nature
  doi: 10.1038/s41586-021-03634-9
– volume: 381
  start-page: eabq4964
  year: 2023
  ident: 2024052805575099500_B5
  article-title: The dawn of spatial omics
  publication-title: Science
  doi: 10.1126/science.abq4964
– volume: 33
  start-page: 1179
  year: 2017
  ident: 2024052805575099500_B17
  article-title: Scater: pre-processing, quality control, normalisation and visualisation of single-cell RNA-seq data in R
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btw777
– volume: 36
  start-page: 411
  year: 2018
  ident: 2024052805575099500_B19
  article-title: Integrating single-cell transcriptomic data across different conditions, technologies, and species
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt.4096
– volume: 10
  start-page: 2209
  year: 2019
  ident: 2024052805575099500_B28
  article-title: Complete deconvolution of cellular mixtures based on linearity of transcriptional signatures
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-09990-5
– volume: 380
  start-page: eadd3067
  year: 2023
  ident: 2024052805575099500_B59
  article-title: Spatially resolved single-cell translatomics at molecular resolution
  publication-title: Science
  doi: 10.1126/science.add3067
– volume: 94
  start-page: 752
  year: 2017
  ident: 2024052805575099500_B72
  article-title: seqFISH accurately detects transcripts in single cells and reveals robust spatial organization in the hippocampus
  publication-title: Neuron
  doi: 10.1016/j.neuron.2017.05.008
SSID ssj0002545401
Score 2.2628353
Snippet Visualizing spatial assay data in anatomical images is vital for understanding biological processes in cell, tissue, and organ organizations. Technologies...
SourceID proquest
pubmed
crossref
oup
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage lqae006
SubjectTerms Automation
Bioinformatics
Biology
Computers
Ecosystem biology
Embedding
Gene expression
Genomics
Metadata
Plant sciences
Proteomics
Software utilities
Spatial data
Visualization
Title spatialHeatmap: visualizing spatial bulk and single-cell assays in anatomical images
URI https://www.ncbi.nlm.nih.gov/pubmed/38312938
https://www.proquest.com/docview/3170908979
https://www.proquest.com/docview/2922453418
Volume 6
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3fS8MwEA66Ifgi_nY6RxTBp7K2a5vUF1FRhuAUmbC3kiYpDGu32U2Yf713bVYVUfvQl4QW7nJ333dJ7gg5kT4wNO0mwE1CaXm-AJuLA24xW9uO9rTiDC8K3_WC7pN3O_AHJuGWm2OVC59YOGo1kpgjb0Ocs3GPioXn44mFXaNwd9W00FgmdXDBHMhX_fK69_BYZVmA_gAkcapqjZ12hv1j43Y6EdrGNkdfotG3G24_gGYRcG7WyZpBivSiVO0GWdLZJlkpe0fOt0g_x7PQIu3iQXExPqNvwxwvSL5DLKJmjMaz9JmKTFHMCKTawjQ9Bbgs5jkdZjAClLuoF0CHL-BY8m3ydHPdv-papkWCJb3Am1rYypwnvqNDn2nOeCw6MbOVwLIuSrvKUW7CVCiZL5NAAhtMHAVWrbmCRwje2SG1bJTpPUJDmUjAJsJXQkOQUhz8j8MTJgKmXFBog1gLUUXS1A_HNhZpVO5jd6JStJERbYOcVvPHZeWMX2ceg-T_ndRcKCYyZpZHn4uiQY6qYTAQFKfI9GiWR24IKMWHYM0bZLdUaPUroOeId_j-3x8_IKsuYJny6FmT1KavM30IWGQat8yCaxVcvlUki-Ddvx98AL-L5fU
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1ZSxxBEC50JeiLaM5Vo21IyNOwc3ePEEK8WK8lhBV8G3u6e2BxnF2dXcPmR_kbrdo5khA0T85rNz1QXcdXXRfARxWgh2bcFH2TSFl-IFHmklBY3Da2Y3yjBadC4bNe2D33jy-Cizm4r2thKK2y1okzRa2Hit7IO2jnbIpR8ejr6MaiqVEUXa1HaJRscWKmP9FlK74c7eP9fnLdw4P-XteqpgpYyg_9sUXTv0UaOCYKuBFcJNJLuK0ldULRxtWOdlOuI8UDlYYKHajU0SgIRmj8pBQenjsPC76HrkwLFnYPet9_NK866G4hBHKa7pBeJ6d5tUknu5HGprFKf1i_vyrq_gG2MwN3uALLFTJl30pWWoU5k7-EF-Wsyukr6BeUey2zLiWmy9EOuxsUVJD5C20fq9ZYMsmumMw1oxeIzFgUFmAIz-W0YIMcV9DFn_UnYINrVGTFazh_FuK9gVY-zM07YJFKFWIhGWhp0ChqgfrOESmXIdcuMlAbrJpUsar6ldPYjCwu4-ZeXJI2rkjbhs_N_lHZqePRnR-Q8v_dtFFfTFyJdRH_ZsI2bDfLKJBETpmb4aSI3QhRUYDgQLThbXmhza884RG-EmtPH74Fi93-2Wl8etQ7WYclF3FUmfa2Aa3x7cS8Rxw0TjYr5mNw-dz8_gDWdSDG
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=spatialHeatmap%3A+visualizing+spatial+bulk+and+single-cell+assays+in+anatomical+images&rft.jtitle=NAR+genomics+and+bioinformatics&rft.au=Zhang%2C+Jianhai&rft.au=Zhang%2C+Le&rft.au=Gongol%2C+Brendan&rft.au=Hayes%2C+Jordan&rft.date=2024-03-01&rft.issn=2631-9268&rft.eissn=2631-9268&rft.volume=6&rft.issue=1&rft.spage=lqae006&rft_id=info:doi/10.1093%2Fnargab%2Flqae006&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2631-9268&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2631-9268&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2631-9268&client=summon