spatialHeatmap: visualizing spatial bulk and single-cell assays in anatomical images
Visualizing spatial assay data in anatomical images is vital for understanding biological processes in cell, tissue, and organ organizations. Technologies requiring this functionality include traditional one-at-a-time assays, and bulk and single-cell omics experiments, including RNA-seq and proteomi...
Saved in:
Published in | NAR genomics and bioinformatics Vol. 6; no. 1; p. lqae006 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
England
Oxford University Press
01.03.2024
|
Subjects | |
Online Access | Get full text |
ISSN | 2631-9268 2631-9268 |
DOI | 10.1093/nargab/lqae006 |
Cover
Loading…
Abstract | Visualizing spatial assay data in anatomical images is vital for understanding biological processes in cell, tissue, and organ organizations. Technologies requiring this functionality include traditional one-at-a-time assays, and bulk and single-cell omics experiments, including RNA-seq and proteomics. The spatialHeatmap software provides a series of powerful new methods for these needs, and allows users to work with adequately formatted anatomical images from public collections or custom images. It colors the spatial features (e.g. tissues) annotated in the images according to the measured or predicted abundance levels of biomolecules (e.g. mRNAs) using a color key. This core functionality of the package is called a spatial heatmap plot. Single-cell data can be co-visualized in composite plots that combine spatial heatmaps with embedding plots of high-dimensional data. The resulting spatial context information is essential for gaining insights into the tissue-level organization of single-cell data, or vice versa. Additional core functionalities include the automated identification of biomolecules with spatially selective abundance patterns and clusters of biomolecules sharing similar abundance profiles. To appeal to both non-expert and computational users, spatialHeatmap provides a graphical and a command-line interface, respectively. It is distributed as a free, open-source Bioconductor package (https://bioconductor.org/packages/spatialHeatmap) that users can install on personal computers, shared servers, or cloud systems.
Graphical Abstract
Graphical Abstract |
---|---|
AbstractList | Visualizing spatial assay data in anatomical images is vital for understanding biological processes in cell, tissue, and organ organizations. Technologies requiring this functionality include traditional one-at-a-time assays, and bulk and single-cell omics experiments, including RNA-seq and proteomics. The spatialHeatmap software provides a series of powerful new methods for these needs, and allows users to work with adequately formatted anatomical images from public collections or custom images. It colors the spatial features (e.g. tissues) annotated in the images according to the measured or predicted abundance levels of biomolecules (e.g. mRNAs) using a color key. This core functionality of the package is called a spatial heatmap plot. Single-cell data can be co-visualized in composite plots that combine spatial heatmaps with embedding plots of high-dimensional data. The resulting spatial context information is essential for gaining insights into the tissue-level organization of single-cell data, or vice versa. Additional core functionalities include the automated identification of biomolecules with spatially selective abundance patterns and clusters of biomolecules sharing similar abundance profiles. To appeal to both non-expert and computational users, spatialHeatmap provides a graphical and a command-line interface, respectively. It is distributed as a free, open-source Bioconductor package (https://bioconductor.org/packages/spatialHeatmap) that users can install on personal computers, shared servers, or cloud systems.Visualizing spatial assay data in anatomical images is vital for understanding biological processes in cell, tissue, and organ organizations. Technologies requiring this functionality include traditional one-at-a-time assays, and bulk and single-cell omics experiments, including RNA-seq and proteomics. The spatialHeatmap software provides a series of powerful new methods for these needs, and allows users to work with adequately formatted anatomical images from public collections or custom images. It colors the spatial features (e.g. tissues) annotated in the images according to the measured or predicted abundance levels of biomolecules (e.g. mRNAs) using a color key. This core functionality of the package is called a spatial heatmap plot. Single-cell data can be co-visualized in composite plots that combine spatial heatmaps with embedding plots of high-dimensional data. The resulting spatial context information is essential for gaining insights into the tissue-level organization of single-cell data, or vice versa. Additional core functionalities include the automated identification of biomolecules with spatially selective abundance patterns and clusters of biomolecules sharing similar abundance profiles. To appeal to both non-expert and computational users, spatialHeatmap provides a graphical and a command-line interface, respectively. It is distributed as a free, open-source Bioconductor package (https://bioconductor.org/packages/spatialHeatmap) that users can install on personal computers, shared servers, or cloud systems. Visualizing spatial assay data in anatomical images is vital for understanding biological processes in cell, tissue, and organ organizations. Technologies requiring this functionality include traditional one-at-a-time assays, and bulk and single-cell omics experiments, including RNA-seq and proteomics. The spatialHeatmap software provides a series of powerful new methods for these needs, and allows users to work with adequately formatted anatomical images from public collections or custom images. It colors the spatial features (e.g. tissues) annotated in the images according to the measured or predicted abundance levels of biomolecules (e.g. mRNAs) using a color key. This core functionality of the package is called a spatial heatmap plot. Single-cell data can be co-visualized in composite plots that combine spatial heatmaps with embedding plots of high-dimensional data. The resulting spatial context information is essential for gaining insights into the tissue-level organization of single-cell data, or vice versa. Additional core functionalities include the automated identification of biomolecules with spatially selective abundance patterns and clusters of biomolecules sharing similar abundance profiles. To appeal to both non-expert and computational users, spatialHeatmap provides a graphical and a command-line interface, respectively. It is distributed as a free, open-source Bioconductor package (https://bioconductor.org/packages/spatialHeatmap) that users can install on personal computers, shared servers, or cloud systems. Visualizing spatial assay data in anatomical images is vital for understanding biological processes in cell, tissue, and organ organizations. Technologies requiring this functionality include traditional one-at-a-time assays, and bulk and single-cell omics experiments, including RNA-seq and proteomics. The software provides a series of powerful new methods for these needs, and allows users to work with adequately formatted anatomical images from public collections or custom images. It colors the spatial features (e.g. tissues) annotated in the images according to the measured or predicted abundance levels of biomolecules (e.g. mRNAs) using a color key. This core functionality of the package is called a spatial heatmap plot. Single-cell data can be co-visualized in composite plots that combine spatial heatmaps with embedding plots of high-dimensional data. The resulting spatial context information is essential for gaining insights into the tissue-level organization of single-cell data, or vice versa. Additional core functionalities include the automated identification of biomolecules with spatially selective abundance patterns and clusters of biomolecules sharing similar abundance profiles. To appeal to both non-expert and computational users, provides a graphical and a command-line interface, respectively. It is distributed as a free, open-source Bioconductor package (https://bioconductor.org/packages/spatialHeatmap) that users can install on personal computers, shared servers, or cloud systems. Visualizing spatial assay data in anatomical images is vital for understanding biological processes in cell, tissue, and organ organizations. Technologies requiring this functionality include traditional one-at-a-time assays, and bulk and single-cell omics experiments, including RNA-seq and proteomics. The spatialHeatmap software provides a series of powerful new methods for these needs, and allows users to work with adequately formatted anatomical images from public collections or custom images. It colors the spatial features (e.g. tissues) annotated in the images according to the measured or predicted abundance levels of biomolecules (e.g. mRNAs) using a color key. This core functionality of the package is called a spatial heatmap plot. Single-cell data can be co-visualized in composite plots that combine spatial heatmaps with embedding plots of high-dimensional data. The resulting spatial context information is essential for gaining insights into the tissue-level organization of single-cell data, or vice versa. Additional core functionalities include the automated identification of biomolecules with spatially selective abundance patterns and clusters of biomolecules sharing similar abundance profiles. To appeal to both non-expert and computational users, spatialHeatmap provides a graphical and a command-line interface, respectively. It is distributed as a free, open-source Bioconductor package (https://bioconductor.org/packages/spatialHeatmap) that users can install on personal computers, shared servers, or cloud systems. Graphical Abstract Graphical Abstract |
Author | Zhang, Le Zhang, Jianhai Gongol, Brendan Hayes, Jordan Borowsky, Alexander T Bailey-Serres, Julia Girke, Thomas |
Author_xml | – sequence: 1 givenname: Jianhai surname: Zhang fullname: Zhang, Jianhai – sequence: 2 givenname: Le surname: Zhang fullname: Zhang, Le – sequence: 3 givenname: Brendan surname: Gongol fullname: Gongol, Brendan – sequence: 4 givenname: Jordan surname: Hayes fullname: Hayes, Jordan – sequence: 5 givenname: Alexander T surname: Borowsky fullname: Borowsky, Alexander T – sequence: 6 givenname: Julia orcidid: 0000-0002-8568-7125 surname: Bailey-Serres fullname: Bailey-Serres, Julia – sequence: 7 givenname: Thomas orcidid: 0000-0003-0710-3777 surname: Girke fullname: Girke, Thomas email: thomas.girke@ucr.edu |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38312938$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkc9LwzAUx4MoTueuHqXgRQ_d8qNpE28i6oSBl3kur006MtO0Nq2gf70ZmyIDMZcX8j7fl_fe9xQdusZphM4JnhIs2cxBt4JiZt9AY5weoBOaMhJLmorDX_cRmni_xhhTnvAEk2M0YoIRKpk4QUvfQm_AzjX0NbQ30bvxA1jzadwq2uWiYrCvETgV-fBqdVxqayPwHj58ZFzIQN_UpgykqWGl_Rk6qsB6PdnFMXp5uF_ezePF8-PT3e0iLpM06WOepFxUnGjJMy0yUQArMqwAY46VpoooWmVKlhkvq7QUlFdEMRxQFQ6AYGN0ta3bds3boH2f18ZvmgOnm8HnVFKacJaQDXq5h66boXOhu5yRDEssZCYDdbGjhqLWKm-7MFD3kX_vKwDTLVB2jfedrn4QgvONJ_nWk3znSRAke4LS9GGrjes7MPZv2fVW1gztf198AaevoX4 |
CitedBy_id | crossref_primary_10_1038_s42003_024_06354_8 crossref_primary_10_3390_ijms26052074 |
Cites_doi | 10.1016/j.cell.2019.05.031 10.3389/fnins.2021.636259 10.1093/bioinformatics/btu707 10.1186/1471-2105-14-89 10.1177/107385840100700208 10.1158/0008-5472.CAN-17-0344 10.1186/s13059-014-0550-8 10.1093/bioinformatics/btp616 10.1093/plcell/koaa055 10.32614/RJ-2014-004 10.1038/nmeth.3337 10.1093/bioinformatics/btab503 10.1016/j.devcel.2022.04.013 10.1038/s41467-022-34271-z 10.1007/s00418-009-0613-1 10.1037/h0071325 10.21105/joss.00861 10.1093/nar/gkx1158 10.1105/tpc.17.00073 10.1007/978-1-4939-3578-9_5 10.1126/science.aaw1219 10.1093/bioinformatics/btx337 10.1371/journal.pone.0000718 10.1186/1471-2105-9-559 10.7554/eLife.26476 10.1126/science.1228186 10.1038/nbt.3192 10.1016/j.cell.2021.04.048 10.18637/jss.v046.i11 10.1093/bioinformatics/btx364 10.1093/bioinformatics/btm563 10.1038/nn.4065 10.1093/bioinformatics/btv428 10.1038/s41593-021-00896-4 10.1038/s41580-018-0094-y 10.1093/bioinformatics/btt090 10.1038/s41587-019-0114-2 10.1016/j.cell.2021.05.010 10.1073/pnas.0906131106 10.1111/j.1600-0404.2008.01128.x 10.1038/s41467-023-38437-1 10.12688/f1000research.14966.1 10.1038/nmeth.3252 10.1186/s12864-019-6053-y 10.1016/j.cmet.2016.08.020 10.1126/sciadv.abb3446 10.1016/j.bbalip.2015.03.003 10.1038/s41467-018-08023-x 10.1002/mc.23014 10.1038/nprot.2014.191 10.1038/mp.2015.107 10.1007/s00018-019-03428-3 10.1371/journal.pgen.1002142 10.1073/pnas.1402665111 10.1201/9780429447273 10.12688/f1000research.16409.1 10.1038/s41592-019-0654-x 10.1038/gim.2016.54 10.1007/978-3-319-24277-4 10.1158/0008-5472.CAN-22-0717 10.1093/database/bay003 10.1002/hep.30508 10.1093/nar/gkv007 10.1126/sciadv.abh2169 10.1111/j.1365-313X.2012.05055.x 10.1089/omi.2011.0118 10.1038/s41586-021-03634-9 10.1126/science.abq4964 10.1093/bioinformatics/btw777 10.1038/nbt.4096 10.1038/s41467-019-09990-5 10.1126/science.add3067 10.1016/j.neuron.2017.05.008 |
ContentType | Journal Article |
Copyright | The Author(s) 2024. Published by Oxford University Press on behalf of NAR Genomics and Bioinformatics. 2024 The Author(s) 2024. Published by Oxford University Press on behalf of NAR Genomics and Bioinformatics. The Author(s) 2024. Published by Oxford University Press on behalf of NAR Genomics and Bioinformatics. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2024. Published by Oxford University Press on behalf of NAR Genomics and Bioinformatics. 2024 – notice: The Author(s) 2024. Published by Oxford University Press on behalf of NAR Genomics and Bioinformatics. – notice: The Author(s) 2024. Published by Oxford University Press on behalf of NAR Genomics and Bioinformatics. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | TOX AAYXX CITATION NPM 8FE 8FH ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO GNUQQ HCIFZ LK8 M7P PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS 7X8 |
DOI | 10.1093/nargab/lqae006 |
DatabaseName | Oxford Journals Open Access Collection CrossRef PubMed ProQuest SciTech Collection ProQuest Natural Science Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central ProQuest Natural Science Collection ProQuest One Community College ProQuest Central Korea ProQuest Central Student SciTech Premium Collection Biological Sciences Biological Science Database ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Biological Science Collection ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection Biological Science Database ProQuest SciTech Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Academic UKI Edition Natural Science Collection ProQuest Central Korea Biological Science Collection ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic CrossRef PubMed Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: TOX name: Oxford Journals Open Access Collection url: https://academic.oup.com/journals/ sourceTypes: Publisher – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2631-9268 |
ExternalDocumentID | 38312938 10_1093_nargab_lqae006 10.1093/nargab/lqae006 |
Genre | Journal Article |
GroupedDBID | 0R~ 53G AAFWJ AAPXW AAVAP ABEJV ABGNP ABPTD ABXVV AFPKN AFULF ALMA_UNASSIGNED_HOLDINGS AMNDL EBS EMOBN GROUPED_DOAJ IAO IGS IHR INH ITC KSI M~E ROX RPM TOX AAYXX AFKRA BBNVY BENPR BHPHI CCPQU CITATION HCIFZ M7P PHGZM PHGZT PIMPY NPM 8FE 8FH ABUWG AZQEC DWQXO GNUQQ LK8 PKEHL PQEST PQGLB PQQKQ PQUKI PRINS 7X8 |
ID | FETCH-LOGICAL-c464t-54658f51e957e878ba3b70da0050de2d1d2f7d9c75cf6c825f1d307e8ddddaa83 |
IEDL.DBID | BENPR |
ISSN | 2631-9268 |
IngestDate | Fri Jul 11 15:12:31 EDT 2025 Fri Jul 25 11:30:40 EDT 2025 Thu Apr 03 06:57:13 EDT 2025 Tue Jul 01 02:50:16 EDT 2025 Thu Apr 24 23:11:06 EDT 2025 Thu Jan 30 13:18:23 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited. https://creativecommons.org/licenses/by/4.0 The Author(s) 2024. Published by Oxford University Press on behalf of NAR Genomics and Bioinformatics. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c464t-54658f51e957e878ba3b70da0050de2d1d2f7d9c75cf6c825f1d307e8ddddaa83 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-8568-7125 0000-0003-0710-3777 |
OpenAccessLink | https://www.proquest.com/docview/3170908979?pq-origsite=%requestingapplication% |
PMID | 38312938 |
PQID | 3170908979 |
PQPubID | 7097362 |
ParticipantIDs | proquest_miscellaneous_2922453418 proquest_journals_3170908979 pubmed_primary_38312938 crossref_primary_10_1093_nargab_lqae006 crossref_citationtrail_10_1093_nargab_lqae006 oup_primary_10_1093_nargab_lqae006 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-03-01 |
PublicationDateYYYYMMDD | 2024-03-01 |
PublicationDate_xml | – month: 03 year: 2024 text: 2024-03-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: Oxford |
PublicationTitle | NAR genomics and bioinformatics |
PublicationTitleAlternate | NAR Genom Bioinform |
PublicationYear | 2024 |
Publisher | Oxford University Press |
Publisher_xml | – name: Oxford University Press |
References | Papatheodorou (2024052805575099500_B12) 2018; 46 Merkin (2024052805575099500_B47) 2012; 338 Racle (2024052805575099500_B54) 2017; 6 Xiao (2024052805575099500_B62) 2019; 58 Seo (2024052805575099500_B69) 2020; 77 Lun (2024052805575099500_B14) 2016; 5 Fadista (2024052805575099500_B57) 2014; 111 Rue-Albrecht (2024052805575099500_B23) 2018; 7 McCarthy (2024052805575099500_B17) 2017; 33 Gong (2024052805575099500_B55) 2013; 29 Reynoso (2024052805575099500_B60) 2022; 57 Stepulak (2024052805575099500_B61) 2009; 132 Conway (2024052805575099500_B37) 2017; 33 Langfelder (2024052805575099500_B38) 2008; 9 Feng (2024052805575099500_B24) 2019; 20 Muschelli (2024052805575099500_B9) 2014; 6 Love (2024052805575099500_B36) 2014; 15 Speir (2024052805575099500_B25) 2021; 37 Newman (2024052805575099500_B53) 2015; 12 Palasca (2024052805575099500_B11) 2018; 2018 Zaitsev (2024052805575099500_B28) 2019; 10 Attilio (2024052805575099500_B46) 2021; 15 Patel (2024052805575099500_B7) 2012; 71 Karlsson (2024052805575099500_B2) 2021; 7 Ritchie (2024052805575099500_B35) 2015; 43 Wickham (2024052805575099500_B32) 2016 Galili (2024052805575099500_B48) 2015; 31 Yu (2024052805575099500_B41) 2012; 16 Ortiz (2024052805575099500_B51) 2020; 6 Lundberg (2024052805575099500_B3) 2019; 20 Amezquita (2024052805575099500_B30) 2020; 17 Clough (2024052805575099500_B31) 2016; 1418 Robinson (2024052805575099500_B34) 2010; 26 Zhong (2024052805575099500_B26) 2013; 14 Huber (2024052805575099500_B29) 2015; 12 Cho (2024052805575099500_B70) 2021; 184 Maag (2024052805575099500_B8) 2018; 7 Lee (2024052805575099500_B73) 2015; 10 Liao (2024052805575099500_B77) 2022; 13 Gardeux (2024052805575099500_B22) 2017; 33 Bressan (2024052805575099500_B5) 2023; 381 Jenkins (2024052805575099500_B67) 2015; 21 Conroy (2024052805575099500_B4) 2023; 14 Prudencio (2024052805575099500_B43) 2015; 18 Bezrutczyk (2024052805575099500_B45) 2021; 33 Langfelder (2024052805575099500_B39) 2012; 46 Segerstolpe (2024052805575099500_B58) 2016; 24 Rodriques (2024052805575099500_B71) 2019; 363 Winter (2024052805575099500_B6) 2007; 2 Lekschas (2024052805575099500_B10) 2015; 31 Wang (2024052805575099500_B56) 2019; 10 Langfelder (2024052805575099500_B40) 2008; 24 Shah (2024052805575099500_B72) 2017; 94 Sievert (2024052805575099500_B33) 2020 Rao (2024052805575099500_B1) 2021; 596 Mateo (2024052805575099500_B63) 2009; 120 Butler (2024052805575099500_B19) 2018; 36 Ramos (2024052805575099500_B76) 2017; 77 Thorgersen (2024052805575099500_B50) 2019; 70 van der Maaten (2024052805575099500_B16) 2008; 9 Hotelling (2024052805575099500_B13) 1933; 24 International Parkinson’s Disease Genomics Consortium (IPDGC), Wellcome Trust Case Control Consortium 2 (WTCCC2) (2024052805575099500_B65) 2011; 7 Lowther (2024052805575099500_B68) 2017; 19 Mustroph (2024052805575099500_B44) 2009; 106 Meisler (2024052805575099500_B66) 2001; 7 Hao (2024052805575099500_B21) 2021; 184 Newman (2024052805575099500_B27) 2019; 37 Nan (2024052805575099500_B64) 2022; 82 Satija (2024052805575099500_B18) 2015; 33 Vacher (2024052805575099500_B52) 2021; 24 McInnes (2024052805575099500_B15) 2018; 3 Lundberg (2024052805575099500_B74) 2019; 20 Csardi (2024052805575099500_B42) 2006; Complex Systems Zeng (2024052805575099500_B59) 2023; 380 Knebel (2024052805575099500_B49) 2015; 1851 Waese (2024052805575099500_B75) 2017; 29 Stuart (2024052805575099500_B20) 2019; 177 |
References_xml | – volume: 177 start-page: 1888 year: 2019 ident: 2024052805575099500_B20 article-title: Comprehensive integration of single-cell data publication-title: Cell doi: 10.1016/j.cell.2019.05.031 – volume: 15 start-page: 636259 year: 2021 ident: 2024052805575099500_B46 article-title: Transcriptomic analysis of mouse brain after traumatic brain injury reveals that the angiotensin receptor blocker candesartan acts through novel pathways publication-title: Front. Neurosci. doi: 10.3389/fnins.2021.636259 – volume: 31 start-page: 794 year: 2015 ident: 2024052805575099500_B10 article-title: Semantic Body Browser: graphical exploration of an organism and spatially resolved expression data visualization publication-title: Bioinformatics doi: 10.1093/bioinformatics/btu707 – volume: 14 start-page: 89 year: 2013 ident: 2024052805575099500_B26 article-title: Digital sorting of complex tissues for cell type-specific gene expression profiles publication-title: BMC Bioinformatics doi: 10.1186/1471-2105-14-89 – volume: 7 start-page: 136 year: 2001 ident: 2024052805575099500_B66 article-title: Sodium channels and neurological disease: insights from scn8a mutations in the mouse publication-title: Neuroscientist doi: 10.1177/107385840100700208 – volume: 77 start-page: e39 year: 2017 ident: 2024052805575099500_B76 article-title: Software for the integration of multiomics experiments in bioconductor publication-title: Cancer Res. doi: 10.1158/0008-5472.CAN-17-0344 – volume: 15 start-page: 550 year: 2014 ident: 2024052805575099500_B36 article-title: Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2 publication-title: Genome Biol. doi: 10.1186/s13059-014-0550-8 – volume: 26 start-page: 139 year: 2010 ident: 2024052805575099500_B34 article-title: edgeR: a Bioconductor package for differential expression analysis of digital gene expression data publication-title: Bioinformatics doi: 10.1093/bioinformatics/btp616 – volume: 33 start-page: 531 year: 2021 ident: 2024052805575099500_B45 article-title: Evidence for phloem loading via the abaxial bundle sheath cells in maize leaves publication-title: Plant Cell doi: 10.1093/plcell/koaa055 – volume: 6 start-page: 41 year: 2014 ident: 2024052805575099500_B9 article-title: brainR: interactive 3 and 4D images of high resolution neuroimage data publication-title: R J. doi: 10.32614/RJ-2014-004 – volume: 12 start-page: 453 year: 2015 ident: 2024052805575099500_B53 article-title: Robust enumeration of cell subsets from tissue expression profiles publication-title: Nat. Methods doi: 10.1038/nmeth.3337 – volume: 37 start-page: 4578 year: 2021 ident: 2024052805575099500_B25 article-title: UCSC Cell Browser: visualize your single-cell data publication-title: Bioinformatics doi: 10.1093/bioinformatics/btab503 – volume: 57 start-page: 1177 year: 2022 ident: 2024052805575099500_B60 article-title: Gene regulatory networks shape developmental plasticity of root cell types under water extremes in rice publication-title: Dev. Cell doi: 10.1016/j.devcel.2022.04.013 – volume: 13 start-page: 6498 year: 2022 ident: 2024052805575099500_B77 article-title: De novo analysis of bulk RNA-seq data at spatially resolved single-cell resolution publication-title: Nat. Commun. doi: 10.1038/s41467-022-34271-z – volume: 132 start-page: 435 year: 2009 ident: 2024052805575099500_B61 article-title: Expression of glutamate receptor subunits in human cancers publication-title: Histochem. Cell Biol. doi: 10.1007/s00418-009-0613-1 – volume: 24 start-page: 417 year: 1933 ident: 2024052805575099500_B13 article-title: Analysis of a complex of statistical variables into principal components publication-title: J. Educ. Psychol. doi: 10.1037/h0071325 – volume: 3 start-page: 861 year: 2018 ident: 2024052805575099500_B15 article-title: UMAP: uniform manifold approximation and projection publication-title: J. Open Source Softw. doi: 10.21105/joss.00861 – volume: 46 start-page: D246 year: 2018 ident: 2024052805575099500_B12 article-title: Expression Atlas: gene and protein expression across multiple studies and organisms publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkx1158 – volume: 29 start-page: 1806 year: 2017 ident: 2024052805575099500_B75 article-title: ePlant: visualizing and exploring multiple levels of data for hypothesis generation in plant biology publication-title: Plant Cell doi: 10.1105/tpc.17.00073 – volume: 1418 start-page: 93 year: 2016 ident: 2024052805575099500_B31 article-title: The gene expression omnibus database publication-title: Methods Mol. Biol. doi: 10.1007/978-1-4939-3578-9_5 – volume: 363 start-page: 1463 year: 2019 ident: 2024052805575099500_B71 article-title: Slide-seq: a scalable technology for measuring genome-wide expression at high spatial resolution publication-title: Science doi: 10.1126/science.aaw1219 – volume: 33 start-page: 3123 year: 2017 ident: 2024052805575099500_B22 article-title: ASAP: a web-based platform for the analysis and interactive visualization of single-cell RNA-seq data publication-title: Bioinformatics doi: 10.1093/bioinformatics/btx337 – volume: 9 start-page: 2579 year: 2008 ident: 2024052805575099500_B16 article-title: Visualizing data using t-SNE publication-title: J. Mach. Learn. Res. – volume: 2 start-page: e718 year: 2007 ident: 2024052805575099500_B6 article-title: An “Electronic Fluorescent Pictograph” browser for exploring and analyzing large-scale biological data sets publication-title: PLoS One doi: 10.1371/journal.pone.0000718 – volume: 9 start-page: 559 year: 2008 ident: 2024052805575099500_B38 article-title: WGCNA: an R package for weighted correlation network analysis publication-title: BMC Bioinformatics doi: 10.1186/1471-2105-9-559 – volume: 6 start-page: e26476 year: 2017 ident: 2024052805575099500_B54 article-title: Simultaneous enumeration of cancer and immune cell types from bulk tumor gene expression data publication-title: Elife doi: 10.7554/eLife.26476 – volume: 338 start-page: 1593 year: 2012 ident: 2024052805575099500_B47 article-title: Evolutionary dynamics of gene and isoform regulation in Mammalian tissues publication-title: Science doi: 10.1126/science.1228186 – volume: 33 start-page: 495 year: 2015 ident: 2024052805575099500_B18 article-title: Spatial reconstruction of single-cell gene expression data publication-title: Nat. Biotechnol. doi: 10.1038/nbt.3192 – volume: 184 start-page: 3573 year: 2021 ident: 2024052805575099500_B21 article-title: Integrated analysis of multimodal single-cell data publication-title: Cell doi: 10.1016/j.cell.2021.04.048 – volume: 46 start-page: 1 year: 2012 ident: 2024052805575099500_B39 article-title: Fast R functions for robust correlations and hierarchical clustering publication-title: J. Stat. Softw. doi: 10.18637/jss.v046.i11 – volume: 33 start-page: 2938 year: 2017 ident: 2024052805575099500_B37 article-title: UpSetR: an R package for the visualization of intersecting sets and their properties publication-title: Bioinformatics doi: 10.1093/bioinformatics/btx364 – volume: 24 start-page: 719 year: 2008 ident: 2024052805575099500_B40 article-title: Defining clusters from a hierarchical cluster tree: the Dynamic Tree Cut package for R publication-title: Bioinformatics doi: 10.1093/bioinformatics/btm563 – volume: Complex Systems start-page: 1695 year: 2006 ident: 2024052805575099500_B42 article-title: The igraph software package for complex network research publication-title: InterJournal – volume: 18 start-page: 1175 year: 2015 ident: 2024052805575099500_B43 article-title: Distinct brain transcriptome profiles in C9orf72-associated and sporadic ALS publication-title: Nat. Neurosci. doi: 10.1038/nn.4065 – volume: 31 start-page: 3718 year: 2015 ident: 2024052805575099500_B48 article-title: dendextend: an R package for visualizing, adjusting and comparing trees of hierarchical clustering publication-title: Bioinformatics doi: 10.1093/bioinformatics/btv428 – volume: 24 start-page: 1392 year: 2021 ident: 2024052805575099500_B52 article-title: Placental endocrine function shapes cerebellar development and social behavior publication-title: Nat. Neurosci. doi: 10.1038/s41593-021-00896-4 – volume: 20 start-page: 285 year: 2019 ident: 2024052805575099500_B74 article-title: Spatial proteomics: a powerful discovery tool for cell biology publication-title: Nat. Rev. Mol. Cell Biol. doi: 10.1038/s41580-018-0094-y – volume: 29 start-page: 1083 year: 2013 ident: 2024052805575099500_B55 article-title: DeconRNASeq: a statistical framework for deconvolution of heterogeneous tissue samples based on mRNA-Seq data publication-title: Bioinformatics doi: 10.1093/bioinformatics/btt090 – volume: 37 start-page: 773 year: 2019 ident: 2024052805575099500_B27 article-title: Determining cell type abundance and expression from bulk tissues with digital cytometry publication-title: Nat. Biotechnol. doi: 10.1038/s41587-019-0114-2 – volume: 184 start-page: 3559 year: 2021 ident: 2024052805575099500_B70 article-title: Microscopic examination of spatial transcriptome using Seq-Scope publication-title: Cell doi: 10.1016/j.cell.2021.05.010 – volume: 106 start-page: 18843 year: 2009 ident: 2024052805575099500_B44 article-title: Profiling translatomes of discrete cell populations resolves altered cellular priorities during hypoxia in Arabidopsis publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.0906131106 – volume: 120 start-page: 130 year: 2009 ident: 2024052805575099500_B63 article-title: Epistasis between tau phosphorylation regulating genes (CDK5R1 and GSK-3beta) and Alzheimer’s disease risk publication-title: Acta Neurol. Scand. doi: 10.1111/j.1600-0404.2008.01128.x – volume: 14 start-page: 2759 year: 2023 ident: 2024052805575099500_B4 article-title: Spatial metabolomics reveals glycogen as an actionable target for pulmonary fibrosis publication-title: Nat. Commun. doi: 10.1038/s41467-023-38437-1 – volume: 7 start-page: 741 year: 2018 ident: 2024052805575099500_B23 article-title: iSEE: Interactive SummarizedExperiment Explorer publication-title: F1000Res. doi: 10.12688/f1000research.14966.1 – volume: 12 start-page: 115 year: 2015 ident: 2024052805575099500_B29 article-title: Orchestrating high-throughput genomic analysis with Bioconductor publication-title: Nat. Methods doi: 10.1038/nmeth.3252 – volume: 20 start-page: 676 year: 2019 ident: 2024052805575099500_B24 article-title: Single Cell Explorer, collaboration-driven tools to leverage large-scale single cell RNA-seq data publication-title: BMC Genomics doi: 10.1186/s12864-019-6053-y – volume: 24 start-page: 593 year: 2016 ident: 2024052805575099500_B58 article-title: Single-Cell transcriptome profiling of human pancreatic islets in health and Type 2 diabetes publication-title: Cell Metab. doi: 10.1016/j.cmet.2016.08.020 – volume: 20 start-page: 285 year: 2019 ident: 2024052805575099500_B3 article-title: Spatial proteomics: a powerful discovery tool for cell biology publication-title: Nat. Rev. Mol. Cell Biol. doi: 10.1038/s41580-018-0094-y – volume: 5 start-page: 2122 year: 2016 ident: 2024052805575099500_B14 article-title: A step-by-step workflow for low-level analysis of single-cell RNA-seq data with Bioconductor publication-title: F1000Res. – volume: 6 start-page: eabb3446 year: 2020 ident: 2024052805575099500_B51 article-title: Molecular atlas of the adult mouse brain publication-title: Sci. Adv. doi: 10.1126/sciadv.abb3446 – volume: 1851 start-page: 965 year: 2015 ident: 2024052805575099500_B49 article-title: Peroxisomes compensate hepatic lipid overflow in mice with fatty liver publication-title: Biochim. Biophys. Acta doi: 10.1016/j.bbalip.2015.03.003 – volume: 10 start-page: 380 year: 2019 ident: 2024052805575099500_B56 article-title: Bulk tissue cell type deconvolution with multi-subject single-cell expression reference publication-title: Nat. Commun. doi: 10.1038/s41467-018-08023-x – volume: 58 start-page: 1314 year: 2019 ident: 2024052805575099500_B62 article-title: Glutamate Ionotropic Receptor Kainate Type Subunit 3 (GRIK3) promotes epithelial-mesenchymal transition in breast cancer cells by regulating SPDEF/CDH1 signaling publication-title: Mol. Carcinog. doi: 10.1002/mc.23014 – volume: 10 start-page: 442 year: 2015 ident: 2024052805575099500_B73 article-title: Fluorescent in situ sequencing (FISSEQ) of RNA for gene expression profiling in intact cells and tissues publication-title: Nat. Protoc. doi: 10.1038/nprot.2014.191 – volume: 21 start-page: 701 year: 2015 ident: 2024052805575099500_B67 article-title: Neurexin 1 (NRXN1) splice isoform expression during human neocortical development and aging publication-title: Mol. Psychiatry doi: 10.1038/mp.2015.107 – volume: 77 start-page: 2659 year: 2020 ident: 2024052805575099500_B69 article-title: Molecular crosstalk between cancer and neurodegenerative diseases publication-title: Cell. Mol. Life Sci. doi: 10.1007/s00018-019-03428-3 – volume: 7 start-page: e1002142 year: 2011 ident: 2024052805575099500_B65 article-title: A two-stage meta-analysis identifies several new loci for Parkinson’s disease publication-title: PLoS Genet. doi: 10.1371/journal.pgen.1002142 – volume: 111 start-page: 13924 year: 2014 ident: 2024052805575099500_B57 article-title: Global genomic and transcriptomic analysis of human pancreatic islets reveals novel genes influencing glucose metabolism publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.1402665111 – volume-title: Interactive Web-based Data Visualization with R, plotly, and shiny year: 2020 ident: 2024052805575099500_B33 doi: 10.1201/9780429447273 – volume: 7 start-page: 1576 year: 2018 ident: 2024052805575099500_B8 article-title: gganatogram: An R package for modular visualisation of anatograms and tissues based on ggplot2 publication-title: F1000Res. doi: 10.12688/f1000research.16409.1 – volume: 17 start-page: 137 year: 2020 ident: 2024052805575099500_B30 article-title: Orchestrating single-cell analysis with Bioconductor publication-title: Nat. Methods doi: 10.1038/s41592-019-0654-x – volume: 19 start-page: 53 year: 2017 ident: 2024052805575099500_B68 article-title: Molecular characterization of NRXN1 deletions from 19,263 clinical microarray cases identifies exons important for neurodevelopmental disease expression publication-title: Genet. Med. doi: 10.1038/gim.2016.54 – volume-title: ggplot2: Elegant Graphics for Data Analysis year: 2016 ident: 2024052805575099500_B32 doi: 10.1007/978-3-319-24277-4 – volume: 82 start-page: 2887 year: 2022 ident: 2024052805575099500_B64 article-title: DLGAP1-AS2–Mediated phosphatidic acid synthesis activates YAP signaling and confers chemoresistance in squamous cell carcinoma publication-title: Cancer Res. doi: 10.1158/0008-5472.CAN-22-0717 – volume: 2018 start-page: bay028 year: 2018 ident: 2024052805575099500_B11 article-title: TISSUES 2.0: an integrative web resource on mammalian tissue expression publication-title: Database doi: 10.1093/database/bay003 – volume: 70 start-page: 725 year: 2019 ident: 2024052805575099500_B50 article-title: The role of complement in liver injury, regeneration, and transplantation publication-title: Hepatology doi: 10.1002/hep.30508 – volume: 43 start-page: e47 year: 2015 ident: 2024052805575099500_B35 article-title: limma powers differential expression analyses for RNA-sequencing and microarray studies publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkv007 – volume: 7 start-page: eabh2169 year: 2021 ident: 2024052805575099500_B2 article-title: A single–cell type transcriptomics map of human tissues publication-title: Sci. Adv. doi: 10.1126/sciadv.abh2169 – volume: 71 start-page: 1038 year: 2012 ident: 2024052805575099500_B7 article-title: BAR expressolog identification: expression profile similarity ranking of homologous genes in plant species publication-title: Plant J. doi: 10.1111/j.1365-313X.2012.05055.x – volume: 16 start-page: 284 year: 2012 ident: 2024052805575099500_B41 article-title: clusterProfiler: an R package for comparing biological themes among gene clusters publication-title: OMICS: A J. Integr. Biol. doi: 10.1089/omi.2011.0118 – volume: 596 start-page: 211 year: 2021 ident: 2024052805575099500_B1 article-title: Exploring tissue architecture using spatial transcriptomics publication-title: Nature doi: 10.1038/s41586-021-03634-9 – volume: 381 start-page: eabq4964 year: 2023 ident: 2024052805575099500_B5 article-title: The dawn of spatial omics publication-title: Science doi: 10.1126/science.abq4964 – volume: 33 start-page: 1179 year: 2017 ident: 2024052805575099500_B17 article-title: Scater: pre-processing, quality control, normalisation and visualisation of single-cell RNA-seq data in R publication-title: Bioinformatics doi: 10.1093/bioinformatics/btw777 – volume: 36 start-page: 411 year: 2018 ident: 2024052805575099500_B19 article-title: Integrating single-cell transcriptomic data across different conditions, technologies, and species publication-title: Nat. Biotechnol. doi: 10.1038/nbt.4096 – volume: 10 start-page: 2209 year: 2019 ident: 2024052805575099500_B28 article-title: Complete deconvolution of cellular mixtures based on linearity of transcriptional signatures publication-title: Nat. Commun. doi: 10.1038/s41467-019-09990-5 – volume: 380 start-page: eadd3067 year: 2023 ident: 2024052805575099500_B59 article-title: Spatially resolved single-cell translatomics at molecular resolution publication-title: Science doi: 10.1126/science.add3067 – volume: 94 start-page: 752 year: 2017 ident: 2024052805575099500_B72 article-title: seqFISH accurately detects transcripts in single cells and reveals robust spatial organization in the hippocampus publication-title: Neuron doi: 10.1016/j.neuron.2017.05.008 |
SSID | ssj0002545401 |
Score | 2.2628353 |
Snippet | Visualizing spatial assay data in anatomical images is vital for understanding biological processes in cell, tissue, and organ organizations. Technologies... |
SourceID | proquest pubmed crossref oup |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | lqae006 |
SubjectTerms | Automation Bioinformatics Biology Computers Ecosystem biology Embedding Gene expression Genomics Metadata Plant sciences Proteomics Software utilities Spatial data Visualization |
Title | spatialHeatmap: visualizing spatial bulk and single-cell assays in anatomical images |
URI | https://www.ncbi.nlm.nih.gov/pubmed/38312938 https://www.proquest.com/docview/3170908979 https://www.proquest.com/docview/2922453418 |
Volume | 6 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3fS8MwEA66Ifgi_nY6RxTBp7K2a5vUF1FRhuAUmbC3kiYpDGu32U2Yf713bVYVUfvQl4QW7nJ333dJ7gg5kT4wNO0mwE1CaXm-AJuLA24xW9uO9rTiDC8K3_WC7pN3O_AHJuGWm2OVC59YOGo1kpgjb0Ocs3GPioXn44mFXaNwd9W00FgmdXDBHMhX_fK69_BYZVmA_gAkcapqjZ12hv1j43Y6EdrGNkdfotG3G24_gGYRcG7WyZpBivSiVO0GWdLZJlkpe0fOt0g_x7PQIu3iQXExPqNvwxwvSL5DLKJmjMaz9JmKTFHMCKTawjQ9Bbgs5jkdZjAClLuoF0CHL-BY8m3ydHPdv-papkWCJb3Am1rYypwnvqNDn2nOeCw6MbOVwLIuSrvKUW7CVCiZL5NAAhtMHAVWrbmCRwje2SG1bJTpPUJDmUjAJsJXQkOQUhz8j8MTJgKmXFBog1gLUUXS1A_HNhZpVO5jd6JStJERbYOcVvPHZeWMX2ceg-T_ndRcKCYyZpZHn4uiQY6qYTAQFKfI9GiWR24IKMWHYM0bZLdUaPUroOeId_j-3x8_IKsuYJny6FmT1KavM30IWGQat8yCaxVcvlUki-Ddvx98AL-L5fU |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1ZSxxBEC50JeiLaM5Vo21IyNOwc3ePEEK8WK8lhBV8G3u6e2BxnF2dXcPmR_kbrdo5khA0T85rNz1QXcdXXRfARxWgh2bcFH2TSFl-IFHmklBY3Da2Y3yjBadC4bNe2D33jy-Cizm4r2thKK2y1okzRa2Hit7IO2jnbIpR8ejr6MaiqVEUXa1HaJRscWKmP9FlK74c7eP9fnLdw4P-XteqpgpYyg_9sUXTv0UaOCYKuBFcJNJLuK0ldULRxtWOdlOuI8UDlYYKHajU0SgIRmj8pBQenjsPC76HrkwLFnYPet9_NK866G4hBHKa7pBeJ6d5tUknu5HGprFKf1i_vyrq_gG2MwN3uALLFTJl30pWWoU5k7-EF-Wsyukr6BeUey2zLiWmy9EOuxsUVJD5C20fq9ZYMsmumMw1oxeIzFgUFmAIz-W0YIMcV9DFn_UnYINrVGTFazh_FuK9gVY-zM07YJFKFWIhGWhp0ChqgfrOESmXIdcuMlAbrJpUsar6ldPYjCwu4-ZeXJI2rkjbhs_N_lHZqePRnR-Q8v_dtFFfTFyJdRH_ZsI2bDfLKJBETpmb4aSI3QhRUYDgQLThbXmhza884RG-EmtPH74Fi93-2Wl8etQ7WYclF3FUmfa2Aa3x7cS8Rxw0TjYr5mNw-dz8_gDWdSDG |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=spatialHeatmap%3A+visualizing+spatial+bulk+and+single-cell+assays+in+anatomical+images&rft.jtitle=NAR+genomics+and+bioinformatics&rft.au=Zhang%2C+Jianhai&rft.au=Zhang%2C+Le&rft.au=Gongol%2C+Brendan&rft.au=Hayes%2C+Jordan&rft.date=2024-03-01&rft.issn=2631-9268&rft.eissn=2631-9268&rft.volume=6&rft.issue=1&rft.spage=lqae006&rft_id=info:doi/10.1093%2Fnargab%2Flqae006&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2631-9268&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2631-9268&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2631-9268&client=summon |