Enhancement effect of silver nanoparticles on fermentative biohydrogen production using mixed bacteria

•Appropriate concentration of silver nanoparticles favors high H2 yield.•Presence of silver nanoparticles reduces the lag phase for biogas production.•Presence of silver nanoparticles increases the H2 percentage in the biogas.•Presence of silver nanoparticles reduces alcohols yield but increase acet...

Full description

Saved in:
Bibliographic Details
Published inBioresource technology Vol. 142; pp. 240 - 245
Main Authors Zhao, Wei, Zhang, Yongfang, Du, Bin, Wei, Dong, Wei, Qin, Zhao, Yanfang
Format Journal Article
LanguageEnglish
Published Kidlington Elsevier Ltd 01.08.2013
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
Abstract •Appropriate concentration of silver nanoparticles favors high H2 yield.•Presence of silver nanoparticles reduces the lag phase for biogas production.•Presence of silver nanoparticles increases the H2 percentage in the biogas.•Presence of silver nanoparticles reduces alcohols yield but increase acetic yield. Silver nanoparticles were added into anaerobic batch reactors to enhance acidogenesis and fermentative hydrogen production simultaneously. The effects of silver nanoparticles concentration (0–200nmolL−1) and inorganic nitrogen concentration (0–4.125gL−1) on cell growth and hydrogen production were investigated using glucose-fed mixed bacteria dominated by Clostridium butyricum. The tests with silver nanoparticles exhibited much higher H2 yields than the blank, and the maximum hydrogen yield (2.48mol/molglucose) was obtained at the silver concentration of 20nmolL−1. Presence of silver nanoparticles reduced the yield of ethanol, but increased the yield of acetic acid. The high silver nanoparticles had higher cell biomass production rate. Further study using the alkaline pretreated culture as inoculum was carried out to verify the positive effect of silver nanoparticles on H2 production. Results demonstrated that silver nanoparticles could not only increase the hydrogen yield, but reduce the lag phase for hydrogen production simultaneously.
AbstractList Silver nanoparticles were added into anaerobic batch reactors to enhance acidogenesis and fermentative hydrogen production simultaneously. The effects of silver nanoparticles concentration (0–200nmolL−1) and inorganic nitrogen concentration (0–4.125gL−1) on cell growth and hydrogen production were investigated using glucose-fed mixed bacteria dominated by Clostridium butyricum. The tests with silver nanoparticles exhibited much higher H2 yields than the blank, and the maximum hydrogen yield (2.48mol/molglucose) was obtained at the silver concentration of 20nmolL−1. Presence of silver nanoparticles reduced the yield of ethanol, but increased the yield of acetic acid. The high silver nanoparticles had higher cell biomass production rate. Further study using the alkaline pretreated culture as inoculum was carried out to verify the positive effect of silver nanoparticles on H2 production. Results demonstrated that silver nanoparticles could not only increase the hydrogen yield, but reduce the lag phase for hydrogen production simultaneously.
•Appropriate concentration of silver nanoparticles favors high H2 yield.•Presence of silver nanoparticles reduces the lag phase for biogas production.•Presence of silver nanoparticles increases the H2 percentage in the biogas.•Presence of silver nanoparticles reduces alcohols yield but increase acetic yield. Silver nanoparticles were added into anaerobic batch reactors to enhance acidogenesis and fermentative hydrogen production simultaneously. The effects of silver nanoparticles concentration (0–200nmolL−1) and inorganic nitrogen concentration (0–4.125gL−1) on cell growth and hydrogen production were investigated using glucose-fed mixed bacteria dominated by Clostridium butyricum. The tests with silver nanoparticles exhibited much higher H2 yields than the blank, and the maximum hydrogen yield (2.48mol/molglucose) was obtained at the silver concentration of 20nmolL−1. Presence of silver nanoparticles reduced the yield of ethanol, but increased the yield of acetic acid. The high silver nanoparticles had higher cell biomass production rate. Further study using the alkaline pretreated culture as inoculum was carried out to verify the positive effect of silver nanoparticles on H2 production. Results demonstrated that silver nanoparticles could not only increase the hydrogen yield, but reduce the lag phase for hydrogen production simultaneously.
Silver nanoparticles were added into anaerobic batch reactors to enhance acidogenesis and fermentative hydrogen production simultaneously. The effects of silver nanoparticles concentration (0-200 nmol L(-1)) and inorganic nitrogen concentration (0-4.125 g L(-1)) on cell growth and hydrogen production were investigated using glucose-fed mixed bacteria dominated by Clostridium butyricum. The tests with silver nanoparticles exhibited much higher H2 yields than the blank, and the maximum hydrogen yield (2.48 mol/mol glucose) was obtained at the silver concentration of 20 nmol L(-1). Presence of silver nanoparticles reduced the yield of ethanol, but increased the yield of acetic acid. The high silver nanoparticles had higher cell biomass production rate. Further study using the alkaline pretreated culture as inoculum was carried out to verify the positive effect of silver nanoparticles on H2 production. Results demonstrated that silver nanoparticles could not only increase the hydrogen yield, but reduce the lag phase for hydrogen production simultaneously.
Silver nanoparticles were added into anaerobic batch reactors to enhance acidogenesis and fermentative hydrogen production simultaneously. The effects of silver nanoparticles concentration (0-200 nmol L(-1)) and inorganic nitrogen concentration (0-4.125 g L(-1)) on cell growth and hydrogen production were investigated using glucose-fed mixed bacteria dominated by Clostridium butyricum. The tests with silver nanoparticles exhibited much higher H2 yields than the blank, and the maximum hydrogen yield (2.48 mol/mol glucose) was obtained at the silver concentration of 20 nmol L(-1). Presence of silver nanoparticles reduced the yield of ethanol, but increased the yield of acetic acid. The high silver nanoparticles had higher cell biomass production rate. Further study using the alkaline pretreated culture as inoculum was carried out to verify the positive effect of silver nanoparticles on H2 production. Results demonstrated that silver nanoparticles could not only increase the hydrogen yield, but reduce the lag phase for hydrogen production simultaneously.Silver nanoparticles were added into anaerobic batch reactors to enhance acidogenesis and fermentative hydrogen production simultaneously. The effects of silver nanoparticles concentration (0-200 nmol L(-1)) and inorganic nitrogen concentration (0-4.125 g L(-1)) on cell growth and hydrogen production were investigated using glucose-fed mixed bacteria dominated by Clostridium butyricum. The tests with silver nanoparticles exhibited much higher H2 yields than the blank, and the maximum hydrogen yield (2.48 mol/mol glucose) was obtained at the silver concentration of 20 nmol L(-1). Presence of silver nanoparticles reduced the yield of ethanol, but increased the yield of acetic acid. The high silver nanoparticles had higher cell biomass production rate. Further study using the alkaline pretreated culture as inoculum was carried out to verify the positive effect of silver nanoparticles on H2 production. Results demonstrated that silver nanoparticles could not only increase the hydrogen yield, but reduce the lag phase for hydrogen production simultaneously.
Silver nanoparticles were added into anaerobic batch reactors to enhance acidogenesis and fermentative hydrogen production simultaneously. The effects of silver nanoparticles concentration (0a200 nmol La1) and inorganic nitrogen concentration (0a4.125 g La1) on cell growth and hydrogen production were investigated using glucose-fed mixed bacteria dominated by Clostridium butyricum. The tests with silver nanoparticles exhibited much higher H2 yields than the blank, and the maximum hydrogen yield (2.48 mol/mol glucose) was obtained at the silver concentration of 20 nmol La1. Presence of silver nanoparticles reduced the yield of ethanol, but increased the yield of acetic acid. The high silver nanoparticles had higher cell biomass production rate. Further study using the alkaline pretreated culture as inoculum was carried out to verify the positive effect of silver nanoparticles on H2 production. Results demonstrated that silver nanoparticles could not only increase the hydrogen yield, but reduce the lag phase for hydrogen production simultaneously.
Author Zhao, Wei
Du, Bin
Zhao, Yanfang
Wei, Qin
Wei, Dong
Zhang, Yongfang
Author_xml – sequence: 1
  givenname: Wei
  surname: Zhao
  fullname: Zhao, Wei
  organization: School of Resources and Environmental Sciences, University of Jinan, Jinan 250022, PR China
– sequence: 2
  givenname: Yongfang
  surname: Zhang
  fullname: Zhang, Yongfang
  email: chm_zhangyf@ujn.edu.cn
  organization: School of Resources and Environmental Sciences, University of Jinan, Jinan 250022, PR China
– sequence: 3
  givenname: Bin
  surname: Du
  fullname: Du, Bin
  email: dubin61@gmail.com
  organization: School of Resources and Environmental Sciences, University of Jinan, Jinan 250022, PR China
– sequence: 4
  givenname: Dong
  surname: Wei
  fullname: Wei, Dong
  organization: School of Resources and Environmental Sciences, University of Jinan, Jinan 250022, PR China
– sequence: 5
  givenname: Qin
  surname: Wei
  fullname: Wei, Qin
  organization: Key Laboratory of Chemical Sensing & Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, PR China
– sequence: 6
  givenname: Yanfang
  surname: Zhao
  fullname: Zhao, Yanfang
  organization: Key Laboratory of Chemical Sensing & Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, PR China
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27540226$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/23743428$$D View this record in MEDLINE/PubMed
BookMark eNqFks1qGzEUhUVJaZy0rxBmU-hmpvobaQRdtIT0BwLdZC80mqtYZkZyJdk0bx8Z2xS68Uqb71xdzv1u0FWIARC6I7gjmIjPm270MRWw645iwjrcd5jTN2hFBslaqqS4QiusBG6HnvJrdJPzBmPMiKTv0DVlkjNOhxVyD2FtgoUFQmnAObClia7Jft5DaoIJcWtS8XaG3MTQOEgH0hS_h6ZusH6ZUnyG0GxTnHa2-Mrssg_PzeL_wtSMxhZI3rxHb52ZM3w4vbfo6fvD0_3P9vH3j1_33x5bywUvbc8clwQYm7hRgrJJKSqxM85NdDBq5EooxaWTinLO3cgJo2PPGFYO2OTYLfp0HFvX-bODXPTis4V5NgHiLmvSYywHQQm-jHIuaG0Jy8soU6rHYuCsoncndDcuMOlt8otJL_pceAU-ngCTrZldquX7_I-TPceUisp9OXI2xZwTOG39ofYYSjJ-1gTrgwd6o88e6IMHGve6elDj4r_4-YeLwa_HINQr7T0kna2HKsjkU3VDT9FfGvEKslbQrQ
CitedBy_id crossref_primary_10_1016_j_ijhydene_2021_03_142
crossref_primary_10_1016_j_chemosphere_2024_142514
crossref_primary_10_1016_j_energy_2024_134257
crossref_primary_10_1016_j_ijhydene_2020_01_011
crossref_primary_10_1016_j_ijhydene_2020_06_079
crossref_primary_10_1080_15567036_2022_2120931
crossref_primary_10_3390_molecules27196659
crossref_primary_10_1016_j_biortech_2021_126023
crossref_primary_10_1016_j_fuel_2021_122840
crossref_primary_10_1016_j_fuel_2022_125682
crossref_primary_10_1016_j_fuel_2022_124351
crossref_primary_10_1016_j_biortech_2022_128328
crossref_primary_10_1016_j_enconman_2024_118814
crossref_primary_10_1016_j_enzmictec_2023_110304
crossref_primary_10_1016_j_ijhydene_2019_03_131
crossref_primary_10_1016_j_ijhydene_2023_04_237
crossref_primary_10_3390_ma15217769
crossref_primary_10_3390_ijms24065865
crossref_primary_10_1007_s12034_015_0974_0
crossref_primary_10_1007_s13399_020_01180_4
crossref_primary_10_1007_s12649_023_02373_4
crossref_primary_10_1016_j_ijhydene_2015_11_110
crossref_primary_10_1007_s10562_019_02796_6
crossref_primary_10_1016_j_renene_2025_122804
crossref_primary_10_1016_j_ijhydene_2017_08_060
crossref_primary_10_1039_D1GC01239H
crossref_primary_10_1002_sus2_75
crossref_primary_10_1016_j_fuel_2022_123558
crossref_primary_10_1016_j_ijhydene_2014_04_105
crossref_primary_10_1016_j_ijhydene_2021_04_100
crossref_primary_10_1016_j_enconman_2017_02_080
crossref_primary_10_1016_j_ijhydene_2017_12_108
crossref_primary_10_1016_j_biteb_2022_101295
crossref_primary_10_1080_09593330_2023_2215450
crossref_primary_10_1007_s12088_017_0678_9
crossref_primary_10_3390_catal11111308
crossref_primary_10_1016_j_fuproc_2023_107819
crossref_primary_10_1016_j_ijhydene_2021_04_204
crossref_primary_10_1177_09544089221145485
crossref_primary_10_1007_s00449_022_02738_4
crossref_primary_10_1007_s10311_017_0622_6
crossref_primary_10_1016_j_fuel_2022_127207
crossref_primary_10_1007_s42114_024_01042_x
crossref_primary_10_1016_j_bcab_2023_102911
crossref_primary_10_1016_j_biortech_2020_123094
crossref_primary_10_1016_j_ijhydene_2016_04_197
crossref_primary_10_1016_j_ijhydene_2020_10_249
crossref_primary_10_1016_j_ijhydene_2021_12_139
crossref_primary_10_1021_acsestengg_3c00438
crossref_primary_10_1021_acs_iecr_0c01867
crossref_primary_10_1016_j_ijhydene_2017_05_224
crossref_primary_10_1016_j_biotechadv_2025_108563
crossref_primary_10_1016_j_biortech_2016_05_007
crossref_primary_10_1016_j_ijhydene_2018_11_199
crossref_primary_10_1016_j_ijhydene_2018_11_114
crossref_primary_10_1016_j_fuel_2021_122275
crossref_primary_10_1002_er_6076
crossref_primary_10_1016_j_biombioe_2020_105673
crossref_primary_10_1016_j_biortech_2020_124057
crossref_primary_10_1002_bbb_2455
crossref_primary_10_1016_j_fuel_2022_125318
crossref_primary_10_1016_j_ijhydene_2023_04_001
crossref_primary_10_1080_07388551_2017_1312274
crossref_primary_10_1016_j_cej_2014_05_047
crossref_primary_10_1016_j_ijhydene_2016_06_197
crossref_primary_10_1016_j_biortech_2014_04_008
crossref_primary_10_1016_j_esr_2019_01_001
crossref_primary_10_1002_bab_1964
crossref_primary_10_1016_j_biortech_2022_128084
crossref_primary_10_1021_acssuschemeng_1c02260
crossref_primary_10_1002_ceat_202000565
crossref_primary_10_1016_j_biotechadv_2019_04_006
crossref_primary_10_1016_j_seta_2024_103606
crossref_primary_10_1016_j_fuel_2022_125408
crossref_primary_10_1016_j_fuel_2020_117453
crossref_primary_10_1016_j_ijhydene_2021_11_176
crossref_primary_10_1093_femsle_fnad138
crossref_primary_10_1016_j_biortech_2024_131824
crossref_primary_10_1016_j_ijhydene_2025_02_033
crossref_primary_10_1016_j_biortech_2019_121848
crossref_primary_10_1016_j_rser_2021_110971
crossref_primary_10_1016_j_renene_2019_07_059
crossref_primary_10_1016_j_bej_2022_108694
crossref_primary_10_1016_j_scitotenv_2022_160002
crossref_primary_10_1039_D2SE01165D
crossref_primary_10_1080_01430750_2016_1181566
crossref_primary_10_1016_j_biortech_2016_02_009
crossref_primary_10_1016_j_procbio_2020_01_029
crossref_primary_10_3934_environsci_2023042
crossref_primary_10_1016_j_ijhydene_2022_11_281
crossref_primary_10_1016_j_scitotenv_2020_143747
crossref_primary_10_1016_j_biombioe_2023_106707
crossref_primary_10_1016_j_fuel_2018_10_030
crossref_primary_10_1016_j_enconman_2023_117824
crossref_primary_10_1007_s40726_025_00343_z
crossref_primary_10_1016_j_rser_2018_07_029
crossref_primary_10_1016_j_psep_2024_06_063
crossref_primary_10_1016_j_fuel_2025_135020
crossref_primary_10_1016_j_ijhydene_2020_03_033
crossref_primary_10_1016_j_biortech_2021_126171
crossref_primary_10_1016_j_jhazmat_2021_126129
crossref_primary_10_1016_j_ijhydene_2023_11_072
crossref_primary_10_3390_en13205300
crossref_primary_10_3390_en15207783
crossref_primary_10_1016_j_biortech_2016_08_065
crossref_primary_10_1016_j_fuel_2022_125112
crossref_primary_10_1007_s11274_018_2558_9
crossref_primary_10_1002_er_8616
crossref_primary_10_1002_jib_296
crossref_primary_10_1016_j_jece_2020_104801
crossref_primary_10_1016_j_ijhydene_2015_08_004
crossref_primary_10_3390_en14185916
Cites_doi 10.1021/ac60111a017
10.1016/j.ijhydene.2009.11.129
10.1016/j.biortech.2012.01.103
10.1007/s10646-008-0217-x
10.1016/j.ijhydene.2004.05.009
10.1016/j.talanta.2007.06.014
10.1016/S0360-3199(00)00058-6
10.1007/s00253-011-3643-2
10.1007/s11051-007-9332-5
10.1021/jp022130v
10.1016/j.biortech.2011.05.089
10.1016/S0168-3659(00)00361-8
10.1016/j.ijhydene.2006.06.004
10.1016/j.biortech.2012.12.168
10.1016/S0168-1656(03)00007-5
10.1166/jnn.2009.C158
10.1021/bc015545c
10.1016/j.ijhydene.2011.07.043
10.1039/c2ra20526b
10.4155/bfs.11.6
10.1016/j.ijhydene.2011.08.076
10.1016/S0360-3199(03)00094-6
10.1016/j.ijhydene.2008.12.080
10.1016/j.biortech.2012.02.115
10.5897/IJPS11.893
10.1016/j.ijhydene.2009.08.004
10.1016/j.cca.2010.08.016
10.1002/wnan.84
ContentType Journal Article
Copyright 2013 Elsevier Ltd
2014 INIST-CNRS
Copyright © 2013 Elsevier Ltd. All rights reserved.
Copyright_xml – notice: 2013 Elsevier Ltd
– notice: 2014 INIST-CNRS
– notice: Copyright © 2013 Elsevier Ltd. All rights reserved.
DBID AAYXX
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
7SU
7TB
7U5
8FD
C1K
FR3
KR7
L7M
DOI 10.1016/j.biortech.2013.05.042
DatabaseName CrossRef
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
Environmental Engineering Abstracts
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
Civil Engineering Abstracts
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Environmental Engineering Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Environmental Sciences and Pollution Management
DatabaseTitleList AGRICOLA

MEDLINE
MEDLINE - Academic
Civil Engineering Abstracts
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Chemistry
Agriculture
EISSN 1873-2976
EndPage 245
ExternalDocumentID 23743428
27540226
10_1016_j_biortech_2013_05_042
S096085241300802X
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
--K
--M
.~1
0R~
1B1
1RT
1~.
1~5
23N
4.4
457
4G.
53G
5GY
5VS
7-5
71M
8P~
9JM
9JN
AAAJQ
AABNK
AABVA
AACTN
AAEDT
AAEDW
AAHCO
AAIAV
AAIKJ
AAKOC
AALCJ
AALRI
AAOAW
AAQFI
AAQXK
AARJD
AARKO
AATLK
AAXUO
ABFNM
ABFYP
ABGRD
ABGSF
ABJNI
ABLST
ABMAC
ABNUV
ABUDA
ABXDB
ABYKQ
ACDAQ
ACGFS
ACIUM
ACRLP
ADBBV
ADEWK
ADEZE
ADMUD
ADQTV
ADUVX
AEBSH
AEHWI
AEKER
AENEX
AEQOU
AFKWA
AFTJW
AFXIZ
AGEKW
AGHFR
AGRDE
AGUBO
AGYEJ
AHEUO
AHHHB
AHIDL
AHPOS
AI.
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKIFW
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BELTK
BKOJK
BLECG
BLXMC
CBWCG
CJTIS
CS3
DOVZS
DU5
EBS
EFJIC
EFLBG
EJD
ENUVR
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HLV
HMC
HVGLF
HZ~
IHE
J1W
JARJE
KCYFY
KOM
LUGTX
LW9
LY6
LY9
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
PC.
Q38
R2-
RIG
ROL
RPZ
SAB
SAC
SDF
SDG
SDP
SEN
SES
SEW
SPC
SPCBC
SSA
SSG
SSI
SSJ
SSR
SSU
SSZ
T5K
VH1
WUQ
Y6R
~02
~G-
~KM
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEGFY
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
IQODW
CGR
CUY
CVF
ECM
EFKBS
EIF
NPM
7X8
7S9
L.6
7SU
7TB
7U5
8FD
C1K
FR3
KR7
L7M
ID FETCH-LOGICAL-c464t-53f471e33d4a9623d99270faffd28a9b4969947f792444fb4132b53309fe3df3
IEDL.DBID .~1
ISSN 0960-8524
1873-2976
IngestDate Fri Jul 11 08:10:37 EDT 2025
Fri Jul 11 10:20:33 EDT 2025
Fri Jul 11 15:29:00 EDT 2025
Mon Jul 21 05:49:07 EDT 2025
Wed Apr 02 07:26:17 EDT 2025
Tue Jul 01 02:06:15 EDT 2025
Thu Apr 24 22:57:48 EDT 2025
Fri Feb 23 02:34:27 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Biohydrogen
Alkaline pretreatment
Silver nanoparticles
Lag phase
Silver
Hydrogen
Bacteria
Basic medium
Chemical pretreatment
Bioenergy
Fermentation
Language English
License CC BY 4.0
Copyright © 2013 Elsevier Ltd. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c464t-53f471e33d4a9623d99270faffd28a9b4969947f792444fb4132b53309fe3df3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 23743428
PQID 1399506843
PQPubID 23479
PageCount 6
ParticipantIDs proquest_miscellaneous_1500786210
proquest_miscellaneous_1446274307
proquest_miscellaneous_1399506843
pubmed_primary_23743428
pascalfrancis_primary_27540226
crossref_citationtrail_10_1016_j_biortech_2013_05_042
crossref_primary_10_1016_j_biortech_2013_05_042
elsevier_sciencedirect_doi_10_1016_j_biortech_2013_05_042
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2013-08-01
PublicationDateYYYYMMDD 2013-08-01
PublicationDate_xml – month: 08
  year: 2013
  text: 2013-08-01
  day: 01
PublicationDecade 2010
PublicationPlace Kidlington
PublicationPlace_xml – name: Kidlington
– name: England
PublicationTitle Bioresource technology
PublicationTitleAlternate Bioresour Technol
PublicationYear 2013
Publisher Elsevier Ltd
Elsevier
Publisher_xml – name: Elsevier Ltd
– name: Elsevier
References Sadjadi, Farhadyar, Zare (b0120) 2009; 9
Hallenbeck, Abo-Hashesh, Ghosh (b0055) 2012; 110
Haun, Yoon, Lee, Weissleder (b0065) 2010; 2
Bijanzadeh, Vakili, Khordad (b0020) 2012; 7
Mangayil, Santala, Karp (b0100) 2011; 36
Ghosh, Hallenbeck (b0035) 2009; 36
Zheng, Wu, Wang, Ran, Xu, Yang (b0160) 2008; 74
Sandhu, Mclntosh, Simard, Smith, Rotello (b0125) 2002; 13
Hallenbeck (b0050) 2011; 2
Riboh, Haes, McFarland, Yonzon, Van Duyne (b0115) 2003; 107
Hallenbeck (b0045) 2009; 34
Das, Verziroglu (b0025) 2001; 26
Xu, Ren, Wang, Qiu, Zhao, Feng, Liu (b0135) 2010; 35
Mao, Roy, Troung-Le, Janes, Lin, Wang, August, Leong (b0105) 2001; 70
Ahamed, Alsalhi, Siddiqui (b0005) 2010; 411
Beckers, Hiligsmann, Lambert, Heinrichs, Thonart (b0015) 2013; 133
Johnson, Zawadzka, Deobald, Crawford, Paszczynski (b0075) 2008; 10
(b0080) 2008
Dubios, Gilles, Hamilton, Rebers, Smith (b0030) 1956; 28
Liu, Zhang, Jun, Zhao, Chen, Liu, Tai, Liu, Qian (b0095) 2012; 113
Zhang, Shen (b0155) 2007; 32
Neal (b0110) 2008; 17
Han, Cui, Wei, Yang, Shen (b0060) 2011; 102
Wang, Chang, Chu, Lee, Chang, Liao (b0130) 2003; 102
APHA (b0010) 1995
Kim, Kim (b0085) 2012; 37
Zhang, Liu, Shen (b0150) 2005; 30
Levin, Pitt, Love (b0090) 2004; 29
Goud, Mohan (b0040) 2012; 2
Xu, Liu, Fan, Schaller, Jiao, Chaplen (b0140) 2012; 93
APHA (10.1016/j.biortech.2013.05.042_b0010) 1995
Zheng (10.1016/j.biortech.2013.05.042_b0160) 2008; 74
Han (10.1016/j.biortech.2013.05.042_b0060) 2011; 102
Das (10.1016/j.biortech.2013.05.042_b0025) 2001; 26
Xu (10.1016/j.biortech.2013.05.042_b0135) 2010; 35
Haun (10.1016/j.biortech.2013.05.042_b0065) 2010; 2
Levin (10.1016/j.biortech.2013.05.042_b0090) 2004; 29
Riboh (10.1016/j.biortech.2013.05.042_b0115) 2003; 107
Mao (10.1016/j.biortech.2013.05.042_b0105) 2001; 70
Ahamed (10.1016/j.biortech.2013.05.042_b0005) 2010; 411
Sandhu (10.1016/j.biortech.2013.05.042_b0125) 2002; 13
Hallenbeck (10.1016/j.biortech.2013.05.042_b0050) 2011; 2
Zhang (10.1016/j.biortech.2013.05.042_b0155) 2007; 32
Mangayil (10.1016/j.biortech.2013.05.042_b0100) 2011; 36
Goud (10.1016/j.biortech.2013.05.042_b0040) 2012; 2
Kim (10.1016/j.biortech.2013.05.042_b0085) 2012; 37
Liu (10.1016/j.biortech.2013.05.042_b0095) 2012; 113
Zhang (10.1016/j.biortech.2013.05.042_b0150) 2005; 30
Johnson (10.1016/j.biortech.2013.05.042_b0075) 2008; 10
Neal (10.1016/j.biortech.2013.05.042_b0110) 2008; 17
Dubios (10.1016/j.biortech.2013.05.042_b0030) 1956; 28
Ghosh (10.1016/j.biortech.2013.05.042_b0035) 2009; 36
Sadjadi (10.1016/j.biortech.2013.05.042_b0120) 2009; 9
Beckers (10.1016/j.biortech.2013.05.042_b0015) 2013; 133
Hallenbeck (10.1016/j.biortech.2013.05.042_b0045) 2009; 34
Hallenbeck (10.1016/j.biortech.2013.05.042_b0055) 2012; 110
(10.1016/j.biortech.2013.05.042_b0080) 2008
Xu (10.1016/j.biortech.2013.05.042_b0140) 2012; 93
Bijanzadeh (10.1016/j.biortech.2013.05.042_b0020) 2012; 7
Wang (10.1016/j.biortech.2013.05.042_b0130) 2003; 102
References_xml – volume: 26
  start-page: 13
  year: 2001
  end-page: 28
  ident: b0025
  article-title: Hydrogen production by biological processes: a survey of literature
  publication-title: Int. J. Hydrogen Energy
– volume: 37
  start-page: 2021
  year: 2012
  end-page: 2027
  ident: b0085
  article-title: Thermophilic fermentative hydrogen production from various carbon sources by anaerobic mixed cultures
  publication-title: Int. J. Hydrogen Energy
– volume: 102
  start-page: 7903
  year: 2011
  end-page: 7909
  ident: b0060
  article-title: Enhancement effect of hematite nanoparticles on fermentative hydrogen production
  publication-title: Bioresour. Technol.
– volume: 34
  start-page: 7379
  year: 2009
  end-page: 7389
  ident: b0045
  article-title: Fermentative hydrogen production: principles, process, and prognosis
  publication-title: Int. J. Hydrogen Energy
– volume: 107
  start-page: 1772
  year: 2003
  end-page: 1780
  ident: b0115
  article-title: A nanoscale optical biosensor: real-time immunoassay in physiological buffer enabled by improved nanoparticle adhesion
  publication-title: J. Phys. Chem. B
– volume: 70
  start-page: 399
  year: 2001
  end-page: 421
  ident: b0105
  article-title: Chitosan-DNA nanoparticles as gene carriers: synthesis, characterization and transfection efficiency
  publication-title: J. Controlled Release
– volume: 2
  start-page: 6336
  year: 2012
  end-page: 6353
  ident: b0040
  article-title: Acidic and alkaline shock pretreatment to enrich acidogenic biohydrogen producing mixed culture: long term synergetic evaluation of microbial inventory, dehydrogenase activity and bio-electro kinetics
  publication-title: RSC Adv.
– volume: 36
  start-page: 15187
  year: 2011
  end-page: 15194
  ident: b0100
  article-title: Fermentative hydrogen production from different sugars by
  publication-title: Int. J. Hydrogen Energy
– volume: 9
  start-page: 1365
  year: 2009
  end-page: 1368
  ident: b0120
  article-title: Biocatalytic activity of fungal protease on silver nanoparticle-loaded zeolite X microspheres
  publication-title: J. Nanosci. Nanotechnol.
– volume: 110
  start-page: 1
  year: 2012
  end-page: 9
  ident: b0055
  article-title: Strategies for improving biological hydrogen production
  publication-title: Bioresour. Technol.
– volume: 133
  start-page: 109
  year: 2013
  end-page: 117
  ident: b0015
  article-title: Improving effect of metal and oxide nanoparticles encapsulated in porous silica on fementative biohydrogen production by
  publication-title: Bioresour. Technol.
– year: 1995
  ident: b0010
  publication-title: Standard Methods for the Examination of Waste and Wastewater
– volume: 13
  start-page: 3
  year: 2002
  end-page: 6
  ident: b0125
  article-title: Gold nanoparticle-mediated transfection of mammalian cells
  publication-title: Bioconjugate Chem.
– volume: 2
  start-page: 285
  year: 2011
  end-page: 302
  ident: b0050
  article-title: Microbial paths to renewable hydrogen production
  publication-title: Biofuels
– volume: 17
  start-page: 362
  year: 2008
  end-page: 371
  ident: b0110
  article-title: What can be inferred from bacterium-nanoparticle interactions about the potential consequences of environmental exposure to nanoparticles?
  publication-title: Ecotoxicology
– volume: 93
  start-page: 871
  year: 2012
  end-page: 880
  ident: b0140
  article-title: Enhanced performance and mechanism study of microbial electrolysis cells using Fe nanoparticle-decorated anodes
  publication-title: Appl. Microbiol. Biotechnol.
– volume: 102
  start-page: 83
  year: 2003
  end-page: 92
  ident: b0130
  article-title: Producing hydrogen from wastewater sludge by
  publication-title: J. Biotechnol.
– volume: 411
  start-page: 1841
  year: 2010
  end-page: 1848
  ident: b0005
  article-title: Silver nanoparticle applications and human health
  publication-title: Clin. Chim. Acta
– volume: 28
  start-page: 350
  year: 1956
  end-page: 356
  ident: b0030
  article-title: Colorimetric method for determination of sugars and selected substrates
  publication-title: Anal. Chem.
– volume: 10
  start-page: 1009
  year: 2008
  end-page: 1025
  ident: b0075
  article-title: Novel method for immobilization of enzymes to magnetic nanoparticles
  publication-title: J. Nanopart. Res.
– volume: 30
  start-page: 855
  year: 2005
  end-page: 860
  ident: b0150
  article-title: Hydrogen production in batch culture of mixed bacteria with sucrose under different iron concentrations
  publication-title: Int. J. Hydrogen Energy
– volume: 7
  start-page: 1943
  year: 2012
  end-page: 1948
  ident: b0020
  article-title: A study of the surface Plasmon absorption band for nanoparticles
  publication-title: Int. J. Phys. Sci.
– volume: 32
  start-page: 17
  year: 2007
  end-page: 23
  ident: b0155
  article-title: Enhancement effect of gold nanoparticles on biohydrogen production from artificial wastewater
  publication-title: Int. J. Hydrogen Energy
– volume: 36
  start-page: 7979
  year: 2009
  end-page: 7982
  ident: b0035
  article-title: Fermentative hydrogen yields from different sugars by batch cultures of metabolically engineered
  publication-title: Int. J. Hydrogen Energy
– volume: 29
  start-page: 173
  year: 2004
  end-page: 185
  ident: b0090
  article-title: Biohydrogen production: prospects and limitations to practical application
  publication-title: Int. J. Hydrogen Energy
– volume: 113
  start-page: 37
  year: 2012
  end-page: 43
  ident: b0095
  article-title: Effect of carbonate on anaerobic acidogenesis and fermentative hydrogen production from glucose using leachate as supplementary culture under alkaline conditions
  publication-title: Bioresour. Technol.
– volume: 35
  start-page: 13467
  year: 2010
  end-page: 13474
  ident: b0135
  article-title: Cell growth and hydrogen production on the mixture of xylose and glucose using a novel strain of
  publication-title: Int. J. Hydrogen Energy
– volume: 74
  start-page: 526
  year: 2008
  end-page: 532
  ident: b0160
  article-title: Study on the interaction between silver nanoparticles and nucleic acids in the presence of cetyltrimethylammonium bromide and its analytical application
  publication-title: Talanta
– volume: 2
  start-page: 291
  year: 2010
  end-page: 304
  ident: b0065
  article-title: Magnetic nanoparticle biosensors
  publication-title: WIREs Nanomed. Nanobiotechnol.
– start-page: 214
  year: 2008
  end-page: 232
  ident: b0080
  publication-title: Biomolecule Catalysis: Nanoscale Science and Technology
– volume: 28
  start-page: 350
  year: 1956
  ident: 10.1016/j.biortech.2013.05.042_b0030
  article-title: Colorimetric method for determination of sugars and selected substrates
  publication-title: Anal. Chem.
  doi: 10.1021/ac60111a017
– volume: 35
  start-page: 13467
  year: 2010
  ident: 10.1016/j.biortech.2013.05.042_b0135
  article-title: Cell growth and hydrogen production on the mixture of xylose and glucose using a novel strain of Clostridium sp. HR-1 isolated from cow dung compost
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2009.11.129
– volume: 110
  start-page: 1
  year: 2012
  ident: 10.1016/j.biortech.2013.05.042_b0055
  article-title: Strategies for improving biological hydrogen production
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2012.01.103
– volume: 17
  start-page: 362
  year: 2008
  ident: 10.1016/j.biortech.2013.05.042_b0110
  article-title: What can be inferred from bacterium-nanoparticle interactions about the potential consequences of environmental exposure to nanoparticles?
  publication-title: Ecotoxicology
  doi: 10.1007/s10646-008-0217-x
– volume: 30
  start-page: 855
  year: 2005
  ident: 10.1016/j.biortech.2013.05.042_b0150
  article-title: Hydrogen production in batch culture of mixed bacteria with sucrose under different iron concentrations
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2004.05.009
– volume: 74
  start-page: 526
  year: 2008
  ident: 10.1016/j.biortech.2013.05.042_b0160
  article-title: Study on the interaction between silver nanoparticles and nucleic acids in the presence of cetyltrimethylammonium bromide and its analytical application
  publication-title: Talanta
  doi: 10.1016/j.talanta.2007.06.014
– volume: 26
  start-page: 13
  year: 2001
  ident: 10.1016/j.biortech.2013.05.042_b0025
  article-title: Hydrogen production by biological processes: a survey of literature
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/S0360-3199(00)00058-6
– volume: 93
  start-page: 871
  year: 2012
  ident: 10.1016/j.biortech.2013.05.042_b0140
  article-title: Enhanced performance and mechanism study of microbial electrolysis cells using Fe nanoparticle-decorated anodes
  publication-title: Appl. Microbiol. Biotechnol.
  doi: 10.1007/s00253-011-3643-2
– volume: 10
  start-page: 1009
  year: 2008
  ident: 10.1016/j.biortech.2013.05.042_b0075
  article-title: Novel method for immobilization of enzymes to magnetic nanoparticles
  publication-title: J. Nanopart. Res.
  doi: 10.1007/s11051-007-9332-5
– volume: 107
  start-page: 1772
  year: 2003
  ident: 10.1016/j.biortech.2013.05.042_b0115
  article-title: A nanoscale optical biosensor: real-time immunoassay in physiological buffer enabled by improved nanoparticle adhesion
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp022130v
– volume: 102
  start-page: 7903
  year: 2011
  ident: 10.1016/j.biortech.2013.05.042_b0060
  article-title: Enhancement effect of hematite nanoparticles on fermentative hydrogen production
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2011.05.089
– volume: 70
  start-page: 399
  year: 2001
  ident: 10.1016/j.biortech.2013.05.042_b0105
  article-title: Chitosan-DNA nanoparticles as gene carriers: synthesis, characterization and transfection efficiency
  publication-title: J. Controlled Release
  doi: 10.1016/S0168-3659(00)00361-8
– volume: 32
  start-page: 17
  year: 2007
  ident: 10.1016/j.biortech.2013.05.042_b0155
  article-title: Enhancement effect of gold nanoparticles on biohydrogen production from artificial wastewater
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2006.06.004
– volume: 133
  start-page: 109
  year: 2013
  ident: 10.1016/j.biortech.2013.05.042_b0015
  article-title: Improving effect of metal and oxide nanoparticles encapsulated in porous silica on fementative biohydrogen production by Clostridium butyricum
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2012.12.168
– volume: 102
  start-page: 83
  year: 2003
  ident: 10.1016/j.biortech.2013.05.042_b0130
  article-title: Producing hydrogen from wastewater sludge by Clostridium bifermentans
  publication-title: J. Biotechnol.
  doi: 10.1016/S0168-1656(03)00007-5
– volume: 9
  start-page: 1365
  year: 2009
  ident: 10.1016/j.biortech.2013.05.042_b0120
  article-title: Biocatalytic activity of fungal protease on silver nanoparticle-loaded zeolite X microspheres
  publication-title: J. Nanosci. Nanotechnol.
  doi: 10.1166/jnn.2009.C158
– volume: 13
  start-page: 3
  year: 2002
  ident: 10.1016/j.biortech.2013.05.042_b0125
  article-title: Gold nanoparticle-mediated transfection of mammalian cells
  publication-title: Bioconjugate Chem.
  doi: 10.1021/bc015545c
– year: 1995
  ident: 10.1016/j.biortech.2013.05.042_b0010
– volume: 37
  start-page: 2021
  year: 2012
  ident: 10.1016/j.biortech.2013.05.042_b0085
  article-title: Thermophilic fermentative hydrogen production from various carbon sources by anaerobic mixed cultures
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2011.07.043
– volume: 2
  start-page: 6336
  year: 2012
  ident: 10.1016/j.biortech.2013.05.042_b0040
  article-title: Acidic and alkaline shock pretreatment to enrich acidogenic biohydrogen producing mixed culture: long term synergetic evaluation of microbial inventory, dehydrogenase activity and bio-electro kinetics
  publication-title: RSC Adv.
  doi: 10.1039/c2ra20526b
– volume: 2
  start-page: 285
  year: 2011
  ident: 10.1016/j.biortech.2013.05.042_b0050
  article-title: Microbial paths to renewable hydrogen production
  publication-title: Biofuels
  doi: 10.4155/bfs.11.6
– volume: 36
  start-page: 15187
  year: 2011
  ident: 10.1016/j.biortech.2013.05.042_b0100
  article-title: Fermentative hydrogen production from different sugars by Citrobacter sp. CMC-1 in batch culture
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2011.08.076
– volume: 29
  start-page: 173
  year: 2004
  ident: 10.1016/j.biortech.2013.05.042_b0090
  article-title: Biohydrogen production: prospects and limitations to practical application
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/S0360-3199(03)00094-6
– volume: 34
  start-page: 7379
  year: 2009
  ident: 10.1016/j.biortech.2013.05.042_b0045
  article-title: Fermentative hydrogen production: principles, process, and prognosis
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2008.12.080
– volume: 113
  start-page: 37
  year: 2012
  ident: 10.1016/j.biortech.2013.05.042_b0095
  article-title: Effect of carbonate on anaerobic acidogenesis and fermentative hydrogen production from glucose using leachate as supplementary culture under alkaline conditions
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2012.02.115
– volume: 7
  start-page: 1943
  year: 2012
  ident: 10.1016/j.biortech.2013.05.042_b0020
  article-title: A study of the surface Plasmon absorption band for nanoparticles
  publication-title: Int. J. Phys. Sci.
  doi: 10.5897/IJPS11.893
– volume: 36
  start-page: 7979
  year: 2009
  ident: 10.1016/j.biortech.2013.05.042_b0035
  article-title: Fermentative hydrogen yields from different sugars by batch cultures of metabolically engineered Escherichia coli DJT135
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2009.08.004
– start-page: 214
  year: 2008
  ident: 10.1016/j.biortech.2013.05.042_b0080
– volume: 411
  start-page: 1841
  year: 2010
  ident: 10.1016/j.biortech.2013.05.042_b0005
  article-title: Silver nanoparticle applications and human health
  publication-title: Clin. Chim. Acta
  doi: 10.1016/j.cca.2010.08.016
– volume: 2
  start-page: 291
  year: 2010
  ident: 10.1016/j.biortech.2013.05.042_b0065
  article-title: Magnetic nanoparticle biosensors
  publication-title: WIREs Nanomed. Nanobiotechnol.
  doi: 10.1002/wnan.84
SSID ssj0003172
Score 2.4475415
Snippet •Appropriate concentration of silver nanoparticles favors high H2 yield.•Presence of silver nanoparticles reduces the lag phase for biogas production.•Presence...
Silver nanoparticles were added into anaerobic batch reactors to enhance acidogenesis and fermentative hydrogen production simultaneously. The effects of...
SourceID proquest
pubmed
pascalfrancis
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 240
SubjectTerms acetic acid
Alkaline pretreatment
Bacteria
Bacteria - metabolism
Biofuel production
Biohydrogen
Biological and medical sciences
Biomass
biomass production
Biotechnology
Blanks
cell growth
Clostridium butyricum
Culture
Energy
ethanol
Ethyl alcohol
Fermentation
Fundamental and applied biological sciences. Psychology
Glucose - metabolism
hydrogen
Hydrogen - metabolism
Hydrogen production
Industrial applications and implications. Economical aspects
inoculum
Lag phase
Metal Nanoparticles
Methods. Procedures. Technologies
Microbial engineering. Fermentation and microbial culture technology
Microscopy, Electron, Transmission
Nanoparticles
nanosilver
nitrogen content
Silver
Silver - chemistry
Silver nanoparticles
Spectrophotometry, Ultraviolet
Title Enhancement effect of silver nanoparticles on fermentative biohydrogen production using mixed bacteria
URI https://dx.doi.org/10.1016/j.biortech.2013.05.042
https://www.ncbi.nlm.nih.gov/pubmed/23743428
https://www.proquest.com/docview/1399506843
https://www.proquest.com/docview/1446274307
https://www.proquest.com/docview/1500786210
Volume 142
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nb9QwELWq9gAIVVC-lpaVkbimm9hOHB9Xq1YLiF4o0t4sO_G0qUqy2t0iuPDbGdtJPw5tD1wTW5v4zXrexG9mCPmkUmMA_UjCK1snQtRFUjKAxGVgM5sbVYYirt9OivkP8WWRL7bIbMiF8bLKfu-Pe3rYrfsrk341J8ummXz35LvMw7mQTxhd-Ax2Ib2VH_69kXmgfwwnCTg48aNvZQlfHNrGK1rDoUTGQwVPwe5zUM-XZo3LBrHfxf2ENDim4xdkt2eUdBof-iXZcu0eeTY9W_VVNdweeTIb2rrhnVsVCF8ROGrPPe7-GyGN2g7aAV03XjBNW9NiTN1L52jXUsB9PCYr_XIUX-v8T73q0ATpMhaORZCpV9Kf0Z_Nb1dTG2tBm9fk9PjodDZP-tYLSSUKsUlyDui1HOe1MAoZUq0UkykYgJqVRlmhCqWEBInhmxBgEQRmvVBVgeM18Ddku-1a945QVmXMlSoTTFZClaAsQJVxkzqpbC3kiOTDcuuqL0vuu2Nc6kF_dqEHmLSHSae5RphGZHI9bxkLczw6Qw1o6jsmptF7PDp3fAf-659kEikvUtgR-TjYg0ZA_amLaV13tdaZTx5Oi1LwB8ZgUM6Qy6XygTG5p3MFhugj8jYa3M1TcJyMgeT7_3jFffKUhVYfXtx4QLY3qyv3AQnXxo7DP2pMdqafv85P_gE2qiyo
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VcigIISgUlkcxEhzTTWzn4QOHqrTa0seFRdqbZSeeNhUkq90t0As_il_IOI8-Dm0PqNfEjh1_k5lx_M0MwAcVGoNkRwKR2yKQskiCjCMGLkIb2diorEnienCYjL7JL5N4sgR_-1gYT6vsdH-r0xtt3V0Zdqs5nJbl8Kt3vrO4ORfyAaOTjlm5585-0b5t_mn3M4H8kfOd7fHWKOhKCwS5TOQiiAWSVnZCFNIo8gAKpXgaokEseGaUlSpRSqaY0vZESrQ0CLeeiKnQiQIFPfYe3JekLXzVhI0_F7QSssfNyQVNLvCzuxSVfLJhS8-gbQ5BItFkDJX8OoP4aGrmBBO29TWud4AbQ7jzBB53HizbbBfpKSy5ahUebh7NuiwebhVWtvoycnTnUsbDZ4Db1bGXM_9PkrVcElYjm5eeoM0qU9EevqPqsbpiSHajDY766Ri91vFZMatJ5Nm0TVRLQsU8c_-I_Sh_u4LZNve0eQ7ju8BjDZarunIvgfE84i5TkeRpLlWGyiLmkTChS5UtZDqAuF9unXdp0H01ju-657ud6B4m7WHSYawJpgEMz_tN20Qgt_ZQPZr6ikhrsla39l2_Av_5kDwlF5tc5gG87-VBE6D-lMdUrj6d68gHK4dJJsUNbaT0NZdIv9_QJvbuY8KjcAAvWoG7mIWgzrRxffUfr_gOVkbjg329v3u49xoe8KbMiCdWvoHlxezUvSVnb2HXm6-Lgb7jr_kf6V9mag
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Enhancement+effect+of+silver+nanoparticles+on+fermentative+biohydrogen+production+using+mixed+bacteria&rft.jtitle=Bioresource+technology&rft.au=Zhao%2C+Wei&rft.au=Zhang%2C+Yongfang&rft.au=Du%2C+Bin&rft.au=Wei%2C+Dong&rft.date=2013-08-01&rft.issn=0960-8524&rft.volume=142&rft.spage=240&rft.epage=245&rft_id=info:doi/10.1016%2Fj.biortech.2013.05.042&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0960-8524&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0960-8524&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0960-8524&client=summon