Enhancement effect of silver nanoparticles on fermentative biohydrogen production using mixed bacteria
•Appropriate concentration of silver nanoparticles favors high H2 yield.•Presence of silver nanoparticles reduces the lag phase for biogas production.•Presence of silver nanoparticles increases the H2 percentage in the biogas.•Presence of silver nanoparticles reduces alcohols yield but increase acet...
Saved in:
Published in | Bioresource technology Vol. 142; pp. 240 - 245 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Kidlington
Elsevier Ltd
01.08.2013
Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | •Appropriate concentration of silver nanoparticles favors high H2 yield.•Presence of silver nanoparticles reduces the lag phase for biogas production.•Presence of silver nanoparticles increases the H2 percentage in the biogas.•Presence of silver nanoparticles reduces alcohols yield but increase acetic yield.
Silver nanoparticles were added into anaerobic batch reactors to enhance acidogenesis and fermentative hydrogen production simultaneously. The effects of silver nanoparticles concentration (0–200nmolL−1) and inorganic nitrogen concentration (0–4.125gL−1) on cell growth and hydrogen production were investigated using glucose-fed mixed bacteria dominated by Clostridium butyricum. The tests with silver nanoparticles exhibited much higher H2 yields than the blank, and the maximum hydrogen yield (2.48mol/molglucose) was obtained at the silver concentration of 20nmolL−1. Presence of silver nanoparticles reduced the yield of ethanol, but increased the yield of acetic acid. The high silver nanoparticles had higher cell biomass production rate. Further study using the alkaline pretreated culture as inoculum was carried out to verify the positive effect of silver nanoparticles on H2 production. Results demonstrated that silver nanoparticles could not only increase the hydrogen yield, but reduce the lag phase for hydrogen production simultaneously. |
---|---|
AbstractList | Silver nanoparticles were added into anaerobic batch reactors to enhance acidogenesis and fermentative hydrogen production simultaneously. The effects of silver nanoparticles concentration (0–200nmolL−1) and inorganic nitrogen concentration (0–4.125gL−1) on cell growth and hydrogen production were investigated using glucose-fed mixed bacteria dominated by Clostridium butyricum. The tests with silver nanoparticles exhibited much higher H2 yields than the blank, and the maximum hydrogen yield (2.48mol/molglucose) was obtained at the silver concentration of 20nmolL−1. Presence of silver nanoparticles reduced the yield of ethanol, but increased the yield of acetic acid. The high silver nanoparticles had higher cell biomass production rate. Further study using the alkaline pretreated culture as inoculum was carried out to verify the positive effect of silver nanoparticles on H2 production. Results demonstrated that silver nanoparticles could not only increase the hydrogen yield, but reduce the lag phase for hydrogen production simultaneously. •Appropriate concentration of silver nanoparticles favors high H2 yield.•Presence of silver nanoparticles reduces the lag phase for biogas production.•Presence of silver nanoparticles increases the H2 percentage in the biogas.•Presence of silver nanoparticles reduces alcohols yield but increase acetic yield. Silver nanoparticles were added into anaerobic batch reactors to enhance acidogenesis and fermentative hydrogen production simultaneously. The effects of silver nanoparticles concentration (0–200nmolL−1) and inorganic nitrogen concentration (0–4.125gL−1) on cell growth and hydrogen production were investigated using glucose-fed mixed bacteria dominated by Clostridium butyricum. The tests with silver nanoparticles exhibited much higher H2 yields than the blank, and the maximum hydrogen yield (2.48mol/molglucose) was obtained at the silver concentration of 20nmolL−1. Presence of silver nanoparticles reduced the yield of ethanol, but increased the yield of acetic acid. The high silver nanoparticles had higher cell biomass production rate. Further study using the alkaline pretreated culture as inoculum was carried out to verify the positive effect of silver nanoparticles on H2 production. Results demonstrated that silver nanoparticles could not only increase the hydrogen yield, but reduce the lag phase for hydrogen production simultaneously. Silver nanoparticles were added into anaerobic batch reactors to enhance acidogenesis and fermentative hydrogen production simultaneously. The effects of silver nanoparticles concentration (0-200 nmol L(-1)) and inorganic nitrogen concentration (0-4.125 g L(-1)) on cell growth and hydrogen production were investigated using glucose-fed mixed bacteria dominated by Clostridium butyricum. The tests with silver nanoparticles exhibited much higher H2 yields than the blank, and the maximum hydrogen yield (2.48 mol/mol glucose) was obtained at the silver concentration of 20 nmol L(-1). Presence of silver nanoparticles reduced the yield of ethanol, but increased the yield of acetic acid. The high silver nanoparticles had higher cell biomass production rate. Further study using the alkaline pretreated culture as inoculum was carried out to verify the positive effect of silver nanoparticles on H2 production. Results demonstrated that silver nanoparticles could not only increase the hydrogen yield, but reduce the lag phase for hydrogen production simultaneously. Silver nanoparticles were added into anaerobic batch reactors to enhance acidogenesis and fermentative hydrogen production simultaneously. The effects of silver nanoparticles concentration (0-200 nmol L(-1)) and inorganic nitrogen concentration (0-4.125 g L(-1)) on cell growth and hydrogen production were investigated using glucose-fed mixed bacteria dominated by Clostridium butyricum. The tests with silver nanoparticles exhibited much higher H2 yields than the blank, and the maximum hydrogen yield (2.48 mol/mol glucose) was obtained at the silver concentration of 20 nmol L(-1). Presence of silver nanoparticles reduced the yield of ethanol, but increased the yield of acetic acid. The high silver nanoparticles had higher cell biomass production rate. Further study using the alkaline pretreated culture as inoculum was carried out to verify the positive effect of silver nanoparticles on H2 production. Results demonstrated that silver nanoparticles could not only increase the hydrogen yield, but reduce the lag phase for hydrogen production simultaneously.Silver nanoparticles were added into anaerobic batch reactors to enhance acidogenesis and fermentative hydrogen production simultaneously. The effects of silver nanoparticles concentration (0-200 nmol L(-1)) and inorganic nitrogen concentration (0-4.125 g L(-1)) on cell growth and hydrogen production were investigated using glucose-fed mixed bacteria dominated by Clostridium butyricum. The tests with silver nanoparticles exhibited much higher H2 yields than the blank, and the maximum hydrogen yield (2.48 mol/mol glucose) was obtained at the silver concentration of 20 nmol L(-1). Presence of silver nanoparticles reduced the yield of ethanol, but increased the yield of acetic acid. The high silver nanoparticles had higher cell biomass production rate. Further study using the alkaline pretreated culture as inoculum was carried out to verify the positive effect of silver nanoparticles on H2 production. Results demonstrated that silver nanoparticles could not only increase the hydrogen yield, but reduce the lag phase for hydrogen production simultaneously. Silver nanoparticles were added into anaerobic batch reactors to enhance acidogenesis and fermentative hydrogen production simultaneously. The effects of silver nanoparticles concentration (0a200 nmol La1) and inorganic nitrogen concentration (0a4.125 g La1) on cell growth and hydrogen production were investigated using glucose-fed mixed bacteria dominated by Clostridium butyricum. The tests with silver nanoparticles exhibited much higher H2 yields than the blank, and the maximum hydrogen yield (2.48 mol/mol glucose) was obtained at the silver concentration of 20 nmol La1. Presence of silver nanoparticles reduced the yield of ethanol, but increased the yield of acetic acid. The high silver nanoparticles had higher cell biomass production rate. Further study using the alkaline pretreated culture as inoculum was carried out to verify the positive effect of silver nanoparticles on H2 production. Results demonstrated that silver nanoparticles could not only increase the hydrogen yield, but reduce the lag phase for hydrogen production simultaneously. |
Author | Zhao, Wei Du, Bin Zhao, Yanfang Wei, Qin Wei, Dong Zhang, Yongfang |
Author_xml | – sequence: 1 givenname: Wei surname: Zhao fullname: Zhao, Wei organization: School of Resources and Environmental Sciences, University of Jinan, Jinan 250022, PR China – sequence: 2 givenname: Yongfang surname: Zhang fullname: Zhang, Yongfang email: chm_zhangyf@ujn.edu.cn organization: School of Resources and Environmental Sciences, University of Jinan, Jinan 250022, PR China – sequence: 3 givenname: Bin surname: Du fullname: Du, Bin email: dubin61@gmail.com organization: School of Resources and Environmental Sciences, University of Jinan, Jinan 250022, PR China – sequence: 4 givenname: Dong surname: Wei fullname: Wei, Dong organization: School of Resources and Environmental Sciences, University of Jinan, Jinan 250022, PR China – sequence: 5 givenname: Qin surname: Wei fullname: Wei, Qin organization: Key Laboratory of Chemical Sensing & Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, PR China – sequence: 6 givenname: Yanfang surname: Zhao fullname: Zhao, Yanfang organization: Key Laboratory of Chemical Sensing & Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, PR China |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27540226$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/23743428$$D View this record in MEDLINE/PubMed |
BookMark | eNqFks1qGzEUhUVJaZy0rxBmU-hmpvobaQRdtIT0BwLdZC80mqtYZkZyJdk0bx8Z2xS68Uqb71xdzv1u0FWIARC6I7gjmIjPm270MRWw645iwjrcd5jTN2hFBslaqqS4QiusBG6HnvJrdJPzBmPMiKTv0DVlkjNOhxVyD2FtgoUFQmnAObClia7Jft5DaoIJcWtS8XaG3MTQOEgH0hS_h6ZusH6ZUnyG0GxTnHa2-Mrssg_PzeL_wtSMxhZI3rxHb52ZM3w4vbfo6fvD0_3P9vH3j1_33x5bywUvbc8clwQYm7hRgrJJKSqxM85NdDBq5EooxaWTinLO3cgJo2PPGFYO2OTYLfp0HFvX-bODXPTis4V5NgHiLmvSYywHQQm-jHIuaG0Jy8soU6rHYuCsoncndDcuMOlt8otJL_pceAU-ngCTrZldquX7_I-TPceUisp9OXI2xZwTOG39ofYYSjJ-1gTrgwd6o88e6IMHGve6elDj4r_4-YeLwa_HINQr7T0kna2HKsjkU3VDT9FfGvEKslbQrQ |
CitedBy_id | crossref_primary_10_1016_j_ijhydene_2021_03_142 crossref_primary_10_1016_j_chemosphere_2024_142514 crossref_primary_10_1016_j_energy_2024_134257 crossref_primary_10_1016_j_ijhydene_2020_01_011 crossref_primary_10_1016_j_ijhydene_2020_06_079 crossref_primary_10_1080_15567036_2022_2120931 crossref_primary_10_3390_molecules27196659 crossref_primary_10_1016_j_biortech_2021_126023 crossref_primary_10_1016_j_fuel_2021_122840 crossref_primary_10_1016_j_fuel_2022_125682 crossref_primary_10_1016_j_fuel_2022_124351 crossref_primary_10_1016_j_biortech_2022_128328 crossref_primary_10_1016_j_enconman_2024_118814 crossref_primary_10_1016_j_enzmictec_2023_110304 crossref_primary_10_1016_j_ijhydene_2019_03_131 crossref_primary_10_1016_j_ijhydene_2023_04_237 crossref_primary_10_3390_ma15217769 crossref_primary_10_3390_ijms24065865 crossref_primary_10_1007_s12034_015_0974_0 crossref_primary_10_1007_s13399_020_01180_4 crossref_primary_10_1007_s12649_023_02373_4 crossref_primary_10_1016_j_ijhydene_2015_11_110 crossref_primary_10_1007_s10562_019_02796_6 crossref_primary_10_1016_j_renene_2025_122804 crossref_primary_10_1016_j_ijhydene_2017_08_060 crossref_primary_10_1039_D1GC01239H crossref_primary_10_1002_sus2_75 crossref_primary_10_1016_j_fuel_2022_123558 crossref_primary_10_1016_j_ijhydene_2014_04_105 crossref_primary_10_1016_j_ijhydene_2021_04_100 crossref_primary_10_1016_j_enconman_2017_02_080 crossref_primary_10_1016_j_ijhydene_2017_12_108 crossref_primary_10_1016_j_biteb_2022_101295 crossref_primary_10_1080_09593330_2023_2215450 crossref_primary_10_1007_s12088_017_0678_9 crossref_primary_10_3390_catal11111308 crossref_primary_10_1016_j_fuproc_2023_107819 crossref_primary_10_1016_j_ijhydene_2021_04_204 crossref_primary_10_1177_09544089221145485 crossref_primary_10_1007_s00449_022_02738_4 crossref_primary_10_1007_s10311_017_0622_6 crossref_primary_10_1016_j_fuel_2022_127207 crossref_primary_10_1007_s42114_024_01042_x crossref_primary_10_1016_j_bcab_2023_102911 crossref_primary_10_1016_j_biortech_2020_123094 crossref_primary_10_1016_j_ijhydene_2016_04_197 crossref_primary_10_1016_j_ijhydene_2020_10_249 crossref_primary_10_1016_j_ijhydene_2021_12_139 crossref_primary_10_1021_acsestengg_3c00438 crossref_primary_10_1021_acs_iecr_0c01867 crossref_primary_10_1016_j_ijhydene_2017_05_224 crossref_primary_10_1016_j_biotechadv_2025_108563 crossref_primary_10_1016_j_biortech_2016_05_007 crossref_primary_10_1016_j_ijhydene_2018_11_199 crossref_primary_10_1016_j_ijhydene_2018_11_114 crossref_primary_10_1016_j_fuel_2021_122275 crossref_primary_10_1002_er_6076 crossref_primary_10_1016_j_biombioe_2020_105673 crossref_primary_10_1016_j_biortech_2020_124057 crossref_primary_10_1002_bbb_2455 crossref_primary_10_1016_j_fuel_2022_125318 crossref_primary_10_1016_j_ijhydene_2023_04_001 crossref_primary_10_1080_07388551_2017_1312274 crossref_primary_10_1016_j_cej_2014_05_047 crossref_primary_10_1016_j_ijhydene_2016_06_197 crossref_primary_10_1016_j_biortech_2014_04_008 crossref_primary_10_1016_j_esr_2019_01_001 crossref_primary_10_1002_bab_1964 crossref_primary_10_1016_j_biortech_2022_128084 crossref_primary_10_1021_acssuschemeng_1c02260 crossref_primary_10_1002_ceat_202000565 crossref_primary_10_1016_j_biotechadv_2019_04_006 crossref_primary_10_1016_j_seta_2024_103606 crossref_primary_10_1016_j_fuel_2022_125408 crossref_primary_10_1016_j_fuel_2020_117453 crossref_primary_10_1016_j_ijhydene_2021_11_176 crossref_primary_10_1093_femsle_fnad138 crossref_primary_10_1016_j_biortech_2024_131824 crossref_primary_10_1016_j_ijhydene_2025_02_033 crossref_primary_10_1016_j_biortech_2019_121848 crossref_primary_10_1016_j_rser_2021_110971 crossref_primary_10_1016_j_renene_2019_07_059 crossref_primary_10_1016_j_bej_2022_108694 crossref_primary_10_1016_j_scitotenv_2022_160002 crossref_primary_10_1039_D2SE01165D crossref_primary_10_1080_01430750_2016_1181566 crossref_primary_10_1016_j_biortech_2016_02_009 crossref_primary_10_1016_j_procbio_2020_01_029 crossref_primary_10_3934_environsci_2023042 crossref_primary_10_1016_j_ijhydene_2022_11_281 crossref_primary_10_1016_j_scitotenv_2020_143747 crossref_primary_10_1016_j_biombioe_2023_106707 crossref_primary_10_1016_j_fuel_2018_10_030 crossref_primary_10_1016_j_enconman_2023_117824 crossref_primary_10_1007_s40726_025_00343_z crossref_primary_10_1016_j_rser_2018_07_029 crossref_primary_10_1016_j_psep_2024_06_063 crossref_primary_10_1016_j_fuel_2025_135020 crossref_primary_10_1016_j_ijhydene_2020_03_033 crossref_primary_10_1016_j_biortech_2021_126171 crossref_primary_10_1016_j_jhazmat_2021_126129 crossref_primary_10_1016_j_ijhydene_2023_11_072 crossref_primary_10_3390_en13205300 crossref_primary_10_3390_en15207783 crossref_primary_10_1016_j_biortech_2016_08_065 crossref_primary_10_1016_j_fuel_2022_125112 crossref_primary_10_1007_s11274_018_2558_9 crossref_primary_10_1002_er_8616 crossref_primary_10_1002_jib_296 crossref_primary_10_1016_j_jece_2020_104801 crossref_primary_10_1016_j_ijhydene_2015_08_004 crossref_primary_10_3390_en14185916 |
Cites_doi | 10.1021/ac60111a017 10.1016/j.ijhydene.2009.11.129 10.1016/j.biortech.2012.01.103 10.1007/s10646-008-0217-x 10.1016/j.ijhydene.2004.05.009 10.1016/j.talanta.2007.06.014 10.1016/S0360-3199(00)00058-6 10.1007/s00253-011-3643-2 10.1007/s11051-007-9332-5 10.1021/jp022130v 10.1016/j.biortech.2011.05.089 10.1016/S0168-3659(00)00361-8 10.1016/j.ijhydene.2006.06.004 10.1016/j.biortech.2012.12.168 10.1016/S0168-1656(03)00007-5 10.1166/jnn.2009.C158 10.1021/bc015545c 10.1016/j.ijhydene.2011.07.043 10.1039/c2ra20526b 10.4155/bfs.11.6 10.1016/j.ijhydene.2011.08.076 10.1016/S0360-3199(03)00094-6 10.1016/j.ijhydene.2008.12.080 10.1016/j.biortech.2012.02.115 10.5897/IJPS11.893 10.1016/j.ijhydene.2009.08.004 10.1016/j.cca.2010.08.016 10.1002/wnan.84 |
ContentType | Journal Article |
Copyright | 2013 Elsevier Ltd 2014 INIST-CNRS Copyright © 2013 Elsevier Ltd. All rights reserved. |
Copyright_xml | – notice: 2013 Elsevier Ltd – notice: 2014 INIST-CNRS – notice: Copyright © 2013 Elsevier Ltd. All rights reserved. |
DBID | AAYXX CITATION IQODW CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 7SU 7TB 7U5 8FD C1K FR3 KR7 L7M |
DOI | 10.1016/j.biortech.2013.05.042 |
DatabaseName | CrossRef Pascal-Francis Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic Environmental Engineering Abstracts Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database Civil Engineering Abstracts Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic AGRICOLA AGRICOLA - Academic Civil Engineering Abstracts Technology Research Database Mechanical & Transportation Engineering Abstracts Environmental Engineering Abstracts Solid State and Superconductivity Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Environmental Sciences and Pollution Management |
DatabaseTitleList | AGRICOLA MEDLINE MEDLINE - Academic Civil Engineering Abstracts |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Chemistry Agriculture |
EISSN | 1873-2976 |
EndPage | 245 |
ExternalDocumentID | 23743428 27540226 10_1016_j_biortech_2013_05_042 S096085241300802X |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- --K --M .~1 0R~ 1B1 1RT 1~. 1~5 23N 4.4 457 4G. 53G 5GY 5VS 7-5 71M 8P~ 9JM 9JN AAAJQ AABNK AABVA AACTN AAEDT AAEDW AAHCO AAIAV AAIKJ AAKOC AALCJ AALRI AAOAW AAQFI AAQXK AARJD AARKO AATLK AAXUO ABFNM ABFYP ABGRD ABGSF ABJNI ABLST ABMAC ABNUV ABUDA ABXDB ABYKQ ACDAQ ACGFS ACIUM ACRLP ADBBV ADEWK ADEZE ADMUD ADQTV ADUVX AEBSH AEHWI AEKER AENEX AEQOU AFKWA AFTJW AFXIZ AGEKW AGHFR AGRDE AGUBO AGYEJ AHEUO AHHHB AHIDL AHPOS AI. AIEXJ AIKHN AITUG AJBFU AJOXV AKIFW AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BELTK BKOJK BLECG BLXMC CBWCG CJTIS CS3 DOVZS DU5 EBS EFJIC EFLBG EJD ENUVR EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HLV HMC HVGLF HZ~ IHE J1W JARJE KCYFY KOM LUGTX LW9 LY6 LY9 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 PC. Q38 R2- RIG ROL RPZ SAB SAC SDF SDG SDP SEN SES SEW SPC SPCBC SSA SSG SSI SSJ SSR SSU SSZ T5K VH1 WUQ Y6R ~02 ~G- ~KM AAHBH AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEGFY AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH IQODW CGR CUY CVF ECM EFKBS EIF NPM 7X8 7S9 L.6 7SU 7TB 7U5 8FD C1K FR3 KR7 L7M |
ID | FETCH-LOGICAL-c464t-53f471e33d4a9623d99270faffd28a9b4969947f792444fb4132b53309fe3df3 |
IEDL.DBID | .~1 |
ISSN | 0960-8524 1873-2976 |
IngestDate | Fri Jul 11 08:10:37 EDT 2025 Fri Jul 11 10:20:33 EDT 2025 Fri Jul 11 15:29:00 EDT 2025 Mon Jul 21 05:49:07 EDT 2025 Wed Apr 02 07:26:17 EDT 2025 Tue Jul 01 02:06:15 EDT 2025 Thu Apr 24 22:57:48 EDT 2025 Fri Feb 23 02:34:27 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Biohydrogen Alkaline pretreatment Silver nanoparticles Lag phase Silver Hydrogen Bacteria Basic medium Chemical pretreatment Bioenergy Fermentation |
Language | English |
License | CC BY 4.0 Copyright © 2013 Elsevier Ltd. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c464t-53f471e33d4a9623d99270faffd28a9b4969947f792444fb4132b53309fe3df3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 23743428 |
PQID | 1399506843 |
PQPubID | 23479 |
PageCount | 6 |
ParticipantIDs | proquest_miscellaneous_1500786210 proquest_miscellaneous_1446274307 proquest_miscellaneous_1399506843 pubmed_primary_23743428 pascalfrancis_primary_27540226 crossref_citationtrail_10_1016_j_biortech_2013_05_042 crossref_primary_10_1016_j_biortech_2013_05_042 elsevier_sciencedirect_doi_10_1016_j_biortech_2013_05_042 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2013-08-01 |
PublicationDateYYYYMMDD | 2013-08-01 |
PublicationDate_xml | – month: 08 year: 2013 text: 2013-08-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Kidlington |
PublicationPlace_xml | – name: Kidlington – name: England |
PublicationTitle | Bioresource technology |
PublicationTitleAlternate | Bioresour Technol |
PublicationYear | 2013 |
Publisher | Elsevier Ltd Elsevier |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier |
References | Sadjadi, Farhadyar, Zare (b0120) 2009; 9 Hallenbeck, Abo-Hashesh, Ghosh (b0055) 2012; 110 Haun, Yoon, Lee, Weissleder (b0065) 2010; 2 Bijanzadeh, Vakili, Khordad (b0020) 2012; 7 Mangayil, Santala, Karp (b0100) 2011; 36 Ghosh, Hallenbeck (b0035) 2009; 36 Zheng, Wu, Wang, Ran, Xu, Yang (b0160) 2008; 74 Sandhu, Mclntosh, Simard, Smith, Rotello (b0125) 2002; 13 Hallenbeck (b0050) 2011; 2 Riboh, Haes, McFarland, Yonzon, Van Duyne (b0115) 2003; 107 Hallenbeck (b0045) 2009; 34 Das, Verziroglu (b0025) 2001; 26 Xu, Ren, Wang, Qiu, Zhao, Feng, Liu (b0135) 2010; 35 Mao, Roy, Troung-Le, Janes, Lin, Wang, August, Leong (b0105) 2001; 70 Ahamed, Alsalhi, Siddiqui (b0005) 2010; 411 Beckers, Hiligsmann, Lambert, Heinrichs, Thonart (b0015) 2013; 133 Johnson, Zawadzka, Deobald, Crawford, Paszczynski (b0075) 2008; 10 (b0080) 2008 Dubios, Gilles, Hamilton, Rebers, Smith (b0030) 1956; 28 Liu, Zhang, Jun, Zhao, Chen, Liu, Tai, Liu, Qian (b0095) 2012; 113 Zhang, Shen (b0155) 2007; 32 Neal (b0110) 2008; 17 Han, Cui, Wei, Yang, Shen (b0060) 2011; 102 Wang, Chang, Chu, Lee, Chang, Liao (b0130) 2003; 102 APHA (b0010) 1995 Kim, Kim (b0085) 2012; 37 Zhang, Liu, Shen (b0150) 2005; 30 Levin, Pitt, Love (b0090) 2004; 29 Goud, Mohan (b0040) 2012; 2 Xu, Liu, Fan, Schaller, Jiao, Chaplen (b0140) 2012; 93 APHA (10.1016/j.biortech.2013.05.042_b0010) 1995 Zheng (10.1016/j.biortech.2013.05.042_b0160) 2008; 74 Han (10.1016/j.biortech.2013.05.042_b0060) 2011; 102 Das (10.1016/j.biortech.2013.05.042_b0025) 2001; 26 Xu (10.1016/j.biortech.2013.05.042_b0135) 2010; 35 Haun (10.1016/j.biortech.2013.05.042_b0065) 2010; 2 Levin (10.1016/j.biortech.2013.05.042_b0090) 2004; 29 Riboh (10.1016/j.biortech.2013.05.042_b0115) 2003; 107 Mao (10.1016/j.biortech.2013.05.042_b0105) 2001; 70 Ahamed (10.1016/j.biortech.2013.05.042_b0005) 2010; 411 Sandhu (10.1016/j.biortech.2013.05.042_b0125) 2002; 13 Hallenbeck (10.1016/j.biortech.2013.05.042_b0050) 2011; 2 Zhang (10.1016/j.biortech.2013.05.042_b0155) 2007; 32 Mangayil (10.1016/j.biortech.2013.05.042_b0100) 2011; 36 Goud (10.1016/j.biortech.2013.05.042_b0040) 2012; 2 Kim (10.1016/j.biortech.2013.05.042_b0085) 2012; 37 Liu (10.1016/j.biortech.2013.05.042_b0095) 2012; 113 Zhang (10.1016/j.biortech.2013.05.042_b0150) 2005; 30 Johnson (10.1016/j.biortech.2013.05.042_b0075) 2008; 10 Neal (10.1016/j.biortech.2013.05.042_b0110) 2008; 17 Dubios (10.1016/j.biortech.2013.05.042_b0030) 1956; 28 Ghosh (10.1016/j.biortech.2013.05.042_b0035) 2009; 36 Sadjadi (10.1016/j.biortech.2013.05.042_b0120) 2009; 9 Beckers (10.1016/j.biortech.2013.05.042_b0015) 2013; 133 Hallenbeck (10.1016/j.biortech.2013.05.042_b0045) 2009; 34 Hallenbeck (10.1016/j.biortech.2013.05.042_b0055) 2012; 110 (10.1016/j.biortech.2013.05.042_b0080) 2008 Xu (10.1016/j.biortech.2013.05.042_b0140) 2012; 93 Bijanzadeh (10.1016/j.biortech.2013.05.042_b0020) 2012; 7 Wang (10.1016/j.biortech.2013.05.042_b0130) 2003; 102 |
References_xml | – volume: 26 start-page: 13 year: 2001 end-page: 28 ident: b0025 article-title: Hydrogen production by biological processes: a survey of literature publication-title: Int. J. Hydrogen Energy – volume: 37 start-page: 2021 year: 2012 end-page: 2027 ident: b0085 article-title: Thermophilic fermentative hydrogen production from various carbon sources by anaerobic mixed cultures publication-title: Int. J. Hydrogen Energy – volume: 102 start-page: 7903 year: 2011 end-page: 7909 ident: b0060 article-title: Enhancement effect of hematite nanoparticles on fermentative hydrogen production publication-title: Bioresour. Technol. – volume: 34 start-page: 7379 year: 2009 end-page: 7389 ident: b0045 article-title: Fermentative hydrogen production: principles, process, and prognosis publication-title: Int. J. Hydrogen Energy – volume: 107 start-page: 1772 year: 2003 end-page: 1780 ident: b0115 article-title: A nanoscale optical biosensor: real-time immunoassay in physiological buffer enabled by improved nanoparticle adhesion publication-title: J. Phys. Chem. B – volume: 70 start-page: 399 year: 2001 end-page: 421 ident: b0105 article-title: Chitosan-DNA nanoparticles as gene carriers: synthesis, characterization and transfection efficiency publication-title: J. Controlled Release – volume: 2 start-page: 6336 year: 2012 end-page: 6353 ident: b0040 article-title: Acidic and alkaline shock pretreatment to enrich acidogenic biohydrogen producing mixed culture: long term synergetic evaluation of microbial inventory, dehydrogenase activity and bio-electro kinetics publication-title: RSC Adv. – volume: 36 start-page: 15187 year: 2011 end-page: 15194 ident: b0100 article-title: Fermentative hydrogen production from different sugars by publication-title: Int. J. Hydrogen Energy – volume: 9 start-page: 1365 year: 2009 end-page: 1368 ident: b0120 article-title: Biocatalytic activity of fungal protease on silver nanoparticle-loaded zeolite X microspheres publication-title: J. Nanosci. Nanotechnol. – volume: 110 start-page: 1 year: 2012 end-page: 9 ident: b0055 article-title: Strategies for improving biological hydrogen production publication-title: Bioresour. Technol. – volume: 133 start-page: 109 year: 2013 end-page: 117 ident: b0015 article-title: Improving effect of metal and oxide nanoparticles encapsulated in porous silica on fementative biohydrogen production by publication-title: Bioresour. Technol. – year: 1995 ident: b0010 publication-title: Standard Methods for the Examination of Waste and Wastewater – volume: 13 start-page: 3 year: 2002 end-page: 6 ident: b0125 article-title: Gold nanoparticle-mediated transfection of mammalian cells publication-title: Bioconjugate Chem. – volume: 2 start-page: 285 year: 2011 end-page: 302 ident: b0050 article-title: Microbial paths to renewable hydrogen production publication-title: Biofuels – volume: 17 start-page: 362 year: 2008 end-page: 371 ident: b0110 article-title: What can be inferred from bacterium-nanoparticle interactions about the potential consequences of environmental exposure to nanoparticles? publication-title: Ecotoxicology – volume: 93 start-page: 871 year: 2012 end-page: 880 ident: b0140 article-title: Enhanced performance and mechanism study of microbial electrolysis cells using Fe nanoparticle-decorated anodes publication-title: Appl. Microbiol. Biotechnol. – volume: 102 start-page: 83 year: 2003 end-page: 92 ident: b0130 article-title: Producing hydrogen from wastewater sludge by publication-title: J. Biotechnol. – volume: 411 start-page: 1841 year: 2010 end-page: 1848 ident: b0005 article-title: Silver nanoparticle applications and human health publication-title: Clin. Chim. Acta – volume: 28 start-page: 350 year: 1956 end-page: 356 ident: b0030 article-title: Colorimetric method for determination of sugars and selected substrates publication-title: Anal. Chem. – volume: 10 start-page: 1009 year: 2008 end-page: 1025 ident: b0075 article-title: Novel method for immobilization of enzymes to magnetic nanoparticles publication-title: J. Nanopart. Res. – volume: 30 start-page: 855 year: 2005 end-page: 860 ident: b0150 article-title: Hydrogen production in batch culture of mixed bacteria with sucrose under different iron concentrations publication-title: Int. J. Hydrogen Energy – volume: 7 start-page: 1943 year: 2012 end-page: 1948 ident: b0020 article-title: A study of the surface Plasmon absorption band for nanoparticles publication-title: Int. J. Phys. Sci. – volume: 32 start-page: 17 year: 2007 end-page: 23 ident: b0155 article-title: Enhancement effect of gold nanoparticles on biohydrogen production from artificial wastewater publication-title: Int. J. Hydrogen Energy – volume: 36 start-page: 7979 year: 2009 end-page: 7982 ident: b0035 article-title: Fermentative hydrogen yields from different sugars by batch cultures of metabolically engineered publication-title: Int. J. Hydrogen Energy – volume: 29 start-page: 173 year: 2004 end-page: 185 ident: b0090 article-title: Biohydrogen production: prospects and limitations to practical application publication-title: Int. J. Hydrogen Energy – volume: 113 start-page: 37 year: 2012 end-page: 43 ident: b0095 article-title: Effect of carbonate on anaerobic acidogenesis and fermentative hydrogen production from glucose using leachate as supplementary culture under alkaline conditions publication-title: Bioresour. Technol. – volume: 35 start-page: 13467 year: 2010 end-page: 13474 ident: b0135 article-title: Cell growth and hydrogen production on the mixture of xylose and glucose using a novel strain of publication-title: Int. J. Hydrogen Energy – volume: 74 start-page: 526 year: 2008 end-page: 532 ident: b0160 article-title: Study on the interaction between silver nanoparticles and nucleic acids in the presence of cetyltrimethylammonium bromide and its analytical application publication-title: Talanta – volume: 2 start-page: 291 year: 2010 end-page: 304 ident: b0065 article-title: Magnetic nanoparticle biosensors publication-title: WIREs Nanomed. Nanobiotechnol. – start-page: 214 year: 2008 end-page: 232 ident: b0080 publication-title: Biomolecule Catalysis: Nanoscale Science and Technology – volume: 28 start-page: 350 year: 1956 ident: 10.1016/j.biortech.2013.05.042_b0030 article-title: Colorimetric method for determination of sugars and selected substrates publication-title: Anal. Chem. doi: 10.1021/ac60111a017 – volume: 35 start-page: 13467 year: 2010 ident: 10.1016/j.biortech.2013.05.042_b0135 article-title: Cell growth and hydrogen production on the mixture of xylose and glucose using a novel strain of Clostridium sp. HR-1 isolated from cow dung compost publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2009.11.129 – volume: 110 start-page: 1 year: 2012 ident: 10.1016/j.biortech.2013.05.042_b0055 article-title: Strategies for improving biological hydrogen production publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2012.01.103 – volume: 17 start-page: 362 year: 2008 ident: 10.1016/j.biortech.2013.05.042_b0110 article-title: What can be inferred from bacterium-nanoparticle interactions about the potential consequences of environmental exposure to nanoparticles? publication-title: Ecotoxicology doi: 10.1007/s10646-008-0217-x – volume: 30 start-page: 855 year: 2005 ident: 10.1016/j.biortech.2013.05.042_b0150 article-title: Hydrogen production in batch culture of mixed bacteria with sucrose under different iron concentrations publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2004.05.009 – volume: 74 start-page: 526 year: 2008 ident: 10.1016/j.biortech.2013.05.042_b0160 article-title: Study on the interaction between silver nanoparticles and nucleic acids in the presence of cetyltrimethylammonium bromide and its analytical application publication-title: Talanta doi: 10.1016/j.talanta.2007.06.014 – volume: 26 start-page: 13 year: 2001 ident: 10.1016/j.biortech.2013.05.042_b0025 article-title: Hydrogen production by biological processes: a survey of literature publication-title: Int. J. Hydrogen Energy doi: 10.1016/S0360-3199(00)00058-6 – volume: 93 start-page: 871 year: 2012 ident: 10.1016/j.biortech.2013.05.042_b0140 article-title: Enhanced performance and mechanism study of microbial electrolysis cells using Fe nanoparticle-decorated anodes publication-title: Appl. Microbiol. Biotechnol. doi: 10.1007/s00253-011-3643-2 – volume: 10 start-page: 1009 year: 2008 ident: 10.1016/j.biortech.2013.05.042_b0075 article-title: Novel method for immobilization of enzymes to magnetic nanoparticles publication-title: J. Nanopart. Res. doi: 10.1007/s11051-007-9332-5 – volume: 107 start-page: 1772 year: 2003 ident: 10.1016/j.biortech.2013.05.042_b0115 article-title: A nanoscale optical biosensor: real-time immunoassay in physiological buffer enabled by improved nanoparticle adhesion publication-title: J. Phys. Chem. B doi: 10.1021/jp022130v – volume: 102 start-page: 7903 year: 2011 ident: 10.1016/j.biortech.2013.05.042_b0060 article-title: Enhancement effect of hematite nanoparticles on fermentative hydrogen production publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2011.05.089 – volume: 70 start-page: 399 year: 2001 ident: 10.1016/j.biortech.2013.05.042_b0105 article-title: Chitosan-DNA nanoparticles as gene carriers: synthesis, characterization and transfection efficiency publication-title: J. Controlled Release doi: 10.1016/S0168-3659(00)00361-8 – volume: 32 start-page: 17 year: 2007 ident: 10.1016/j.biortech.2013.05.042_b0155 article-title: Enhancement effect of gold nanoparticles on biohydrogen production from artificial wastewater publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2006.06.004 – volume: 133 start-page: 109 year: 2013 ident: 10.1016/j.biortech.2013.05.042_b0015 article-title: Improving effect of metal and oxide nanoparticles encapsulated in porous silica on fementative biohydrogen production by Clostridium butyricum publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2012.12.168 – volume: 102 start-page: 83 year: 2003 ident: 10.1016/j.biortech.2013.05.042_b0130 article-title: Producing hydrogen from wastewater sludge by Clostridium bifermentans publication-title: J. Biotechnol. doi: 10.1016/S0168-1656(03)00007-5 – volume: 9 start-page: 1365 year: 2009 ident: 10.1016/j.biortech.2013.05.042_b0120 article-title: Biocatalytic activity of fungal protease on silver nanoparticle-loaded zeolite X microspheres publication-title: J. Nanosci. Nanotechnol. doi: 10.1166/jnn.2009.C158 – volume: 13 start-page: 3 year: 2002 ident: 10.1016/j.biortech.2013.05.042_b0125 article-title: Gold nanoparticle-mediated transfection of mammalian cells publication-title: Bioconjugate Chem. doi: 10.1021/bc015545c – year: 1995 ident: 10.1016/j.biortech.2013.05.042_b0010 – volume: 37 start-page: 2021 year: 2012 ident: 10.1016/j.biortech.2013.05.042_b0085 article-title: Thermophilic fermentative hydrogen production from various carbon sources by anaerobic mixed cultures publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2011.07.043 – volume: 2 start-page: 6336 year: 2012 ident: 10.1016/j.biortech.2013.05.042_b0040 article-title: Acidic and alkaline shock pretreatment to enrich acidogenic biohydrogen producing mixed culture: long term synergetic evaluation of microbial inventory, dehydrogenase activity and bio-electro kinetics publication-title: RSC Adv. doi: 10.1039/c2ra20526b – volume: 2 start-page: 285 year: 2011 ident: 10.1016/j.biortech.2013.05.042_b0050 article-title: Microbial paths to renewable hydrogen production publication-title: Biofuels doi: 10.4155/bfs.11.6 – volume: 36 start-page: 15187 year: 2011 ident: 10.1016/j.biortech.2013.05.042_b0100 article-title: Fermentative hydrogen production from different sugars by Citrobacter sp. CMC-1 in batch culture publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2011.08.076 – volume: 29 start-page: 173 year: 2004 ident: 10.1016/j.biortech.2013.05.042_b0090 article-title: Biohydrogen production: prospects and limitations to practical application publication-title: Int. J. Hydrogen Energy doi: 10.1016/S0360-3199(03)00094-6 – volume: 34 start-page: 7379 year: 2009 ident: 10.1016/j.biortech.2013.05.042_b0045 article-title: Fermentative hydrogen production: principles, process, and prognosis publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2008.12.080 – volume: 113 start-page: 37 year: 2012 ident: 10.1016/j.biortech.2013.05.042_b0095 article-title: Effect of carbonate on anaerobic acidogenesis and fermentative hydrogen production from glucose using leachate as supplementary culture under alkaline conditions publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2012.02.115 – volume: 7 start-page: 1943 year: 2012 ident: 10.1016/j.biortech.2013.05.042_b0020 article-title: A study of the surface Plasmon absorption band for nanoparticles publication-title: Int. J. Phys. Sci. doi: 10.5897/IJPS11.893 – volume: 36 start-page: 7979 year: 2009 ident: 10.1016/j.biortech.2013.05.042_b0035 article-title: Fermentative hydrogen yields from different sugars by batch cultures of metabolically engineered Escherichia coli DJT135 publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2009.08.004 – start-page: 214 year: 2008 ident: 10.1016/j.biortech.2013.05.042_b0080 – volume: 411 start-page: 1841 year: 2010 ident: 10.1016/j.biortech.2013.05.042_b0005 article-title: Silver nanoparticle applications and human health publication-title: Clin. Chim. Acta doi: 10.1016/j.cca.2010.08.016 – volume: 2 start-page: 291 year: 2010 ident: 10.1016/j.biortech.2013.05.042_b0065 article-title: Magnetic nanoparticle biosensors publication-title: WIREs Nanomed. Nanobiotechnol. doi: 10.1002/wnan.84 |
SSID | ssj0003172 |
Score | 2.4475415 |
Snippet | •Appropriate concentration of silver nanoparticles favors high H2 yield.•Presence of silver nanoparticles reduces the lag phase for biogas production.•Presence... Silver nanoparticles were added into anaerobic batch reactors to enhance acidogenesis and fermentative hydrogen production simultaneously. The effects of... |
SourceID | proquest pubmed pascalfrancis crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 240 |
SubjectTerms | acetic acid Alkaline pretreatment Bacteria Bacteria - metabolism Biofuel production Biohydrogen Biological and medical sciences Biomass biomass production Biotechnology Blanks cell growth Clostridium butyricum Culture Energy ethanol Ethyl alcohol Fermentation Fundamental and applied biological sciences. Psychology Glucose - metabolism hydrogen Hydrogen - metabolism Hydrogen production Industrial applications and implications. Economical aspects inoculum Lag phase Metal Nanoparticles Methods. Procedures. Technologies Microbial engineering. Fermentation and microbial culture technology Microscopy, Electron, Transmission Nanoparticles nanosilver nitrogen content Silver Silver - chemistry Silver nanoparticles Spectrophotometry, Ultraviolet |
Title | Enhancement effect of silver nanoparticles on fermentative biohydrogen production using mixed bacteria |
URI | https://dx.doi.org/10.1016/j.biortech.2013.05.042 https://www.ncbi.nlm.nih.gov/pubmed/23743428 https://www.proquest.com/docview/1399506843 https://www.proquest.com/docview/1446274307 https://www.proquest.com/docview/1500786210 |
Volume | 142 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nb9QwELWq9gAIVVC-lpaVkbimm9hOHB9Xq1YLiF4o0t4sO_G0qUqy2t0iuPDbGdtJPw5tD1wTW5v4zXrexG9mCPmkUmMA_UjCK1snQtRFUjKAxGVgM5sbVYYirt9OivkP8WWRL7bIbMiF8bLKfu-Pe3rYrfsrk341J8ummXz35LvMw7mQTxhd-Ax2Ib2VH_69kXmgfwwnCTg48aNvZQlfHNrGK1rDoUTGQwVPwe5zUM-XZo3LBrHfxf2ENDim4xdkt2eUdBof-iXZcu0eeTY9W_VVNdweeTIb2rrhnVsVCF8ROGrPPe7-GyGN2g7aAV03XjBNW9NiTN1L52jXUsB9PCYr_XIUX-v8T73q0ATpMhaORZCpV9Kf0Z_Nb1dTG2tBm9fk9PjodDZP-tYLSSUKsUlyDui1HOe1MAoZUq0UkykYgJqVRlmhCqWEBInhmxBgEQRmvVBVgeM18Ddku-1a945QVmXMlSoTTFZClaAsQJVxkzqpbC3kiOTDcuuqL0vuu2Nc6kF_dqEHmLSHSae5RphGZHI9bxkLczw6Qw1o6jsmptF7PDp3fAf-659kEikvUtgR-TjYg0ZA_amLaV13tdaZTx5Oi1LwB8ZgUM6Qy6XygTG5p3MFhugj8jYa3M1TcJyMgeT7_3jFffKUhVYfXtx4QLY3qyv3AQnXxo7DP2pMdqafv85P_gE2qiyo |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VcigIISgUlkcxEhzTTWzn4QOHqrTa0seFRdqbZSeeNhUkq90t0As_il_IOI8-Dm0PqNfEjh1_k5lx_M0MwAcVGoNkRwKR2yKQskiCjCMGLkIb2diorEnienCYjL7JL5N4sgR_-1gYT6vsdH-r0xtt3V0Zdqs5nJbl8Kt3vrO4ORfyAaOTjlm5585-0b5t_mn3M4H8kfOd7fHWKOhKCwS5TOQiiAWSVnZCFNIo8gAKpXgaokEseGaUlSpRSqaY0vZESrQ0CLeeiKnQiQIFPfYe3JekLXzVhI0_F7QSssfNyQVNLvCzuxSVfLJhS8-gbQ5BItFkDJX8OoP4aGrmBBO29TWud4AbQ7jzBB53HizbbBfpKSy5ahUebh7NuiwebhVWtvoycnTnUsbDZ4Db1bGXM_9PkrVcElYjm5eeoM0qU9EevqPqsbpiSHajDY766Ri91vFZMatJ5Nm0TVRLQsU8c_-I_Sh_u4LZNve0eQ7ju8BjDZarunIvgfE84i5TkeRpLlWGyiLmkTChS5UtZDqAuF9unXdp0H01ju-657ud6B4m7WHSYawJpgEMz_tN20Qgt_ZQPZr6ikhrsla39l2_Av_5kDwlF5tc5gG87-VBE6D-lMdUrj6d68gHK4dJJsUNbaT0NZdIv9_QJvbuY8KjcAAvWoG7mIWgzrRxffUfr_gOVkbjg329v3u49xoe8KbMiCdWvoHlxezUvSVnb2HXm6-Lgb7jr_kf6V9mag |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Enhancement+effect+of+silver+nanoparticles+on+fermentative+biohydrogen+production+using+mixed+bacteria&rft.jtitle=Bioresource+technology&rft.au=Zhao%2C+Wei&rft.au=Zhang%2C+Yongfang&rft.au=Du%2C+Bin&rft.au=Wei%2C+Dong&rft.date=2013-08-01&rft.issn=0960-8524&rft.volume=142&rft.spage=240&rft.epage=245&rft_id=info:doi/10.1016%2Fj.biortech.2013.05.042&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0960-8524&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0960-8524&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0960-8524&client=summon |