Checking Normality and Homoscedasticity in the General Linear Model Using Diagnostic Plots
Inference for the general linear model makes several assumptions, including independence of errors, normality, and homogeneity of variance. Departure from the latter two of these assumptions may indicate the need for data transformation or removal of outlying observations. Informal procedures such a...
Saved in:
Published in | Communications in statistics. Simulation and computation Vol. 41; no. 2; pp. 141 - 154 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Colchester
Taylor & Francis Group
01.02.2012
Taylor & Francis Taylor & Francis Ltd |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Inference for the general linear model makes several assumptions, including independence of errors, normality, and homogeneity of variance. Departure from the latter two of these assumptions may indicate the need for data transformation or removal of outlying observations. Informal procedures such as diagnostic plots of residuals are frequently used to assess the validity of these assumptions or to identify possible outliers. A simulation-based approach is proposed, which facilitates the interpretation of various diagnostic plots by adding simultaneous tolerance bounds. Several tests exist for normality or homoscedasticity in simple random samples. These tests are often applied to residuals from a linear model fit. The resulting procedures are approximate in that correlation among residuals is ignored. The simulation-based approach accounts for the correlation structure of residuals in the linear model and allows simultaneously checking for possible outliers, non normality, and heteroscedasticity, and it does not rely on formal testing.
[Supplementary materials are available for this article. Go to the publisher's online edition of
Communications in Statistics-Simulation and Computation
® for the following three supplemental resource: a word file containing figures illustrating the mode of operation for the bisectional algorithm, QQ-plots, and a residual plot for the mussels data.] |
---|---|
AbstractList | Inference for the general linear model makes several assumptions, including independence of errors, normality, and homogeneity of variance. Departure from the latter two of these assumptions may indicate the need for data transformation or removal of outlying observations. Informal procedures such as diagnostic plots of residuals are frequently used to assess the validity of these assumptions or to identify possible outliers. A simulation-based approach is proposed, which facilitates the interpretation of various diagnostic plots by adding simultaneous tolerance bounds. Several tests exist for normality or homoscedasticity in simple random samples. These tests are often applied to residuals from a linear model fit. The resulting procedures are approximate in that correlation among residuals is ignored. The simulation-based approach accounts for the correlation structure of residuals in the linear model and allows simultaneously checking for possible outliers, non normality, and heteroscedasticity, and it does not rely on formal testing. [Supplementary materials are available for this article. Go to the publisher's online edition of Communications in Statistics-Simulation and Computation® for the following three supplemental resource: a word file containing figures illustrating the mode of operation for the bisectional algorithm, QQ-plots, and a residual plot for the mussels data.] Inference for the general linear model makes several assumptions, including independence of errors, normality, and homogeneity of variance. Departure from the latter two of these assumptions may indicate the need for data transformation or removal of outlying observations. Informal procedures such as diagnostic plots of residuals are frequently used to assess the validity of these assumptions or to identify possible outliers. A simulation-based approach is proposed, which facilitates the interpretation of various diagnostic plots by adding simultaneous tolerance bounds. Several tests exist for normality or homoscedasticity in simple random samples. These tests are often applied to residuals from a linear model fit. The resulting procedures are approximate in that correlation among residuals is ignored. The simulation-based approach accounts for the correlation structure of residuals in the linear model and allows simultaneously checking for possible outliers, non normality, and heteroscedasticity, and it does not rely on formal testing. [Supplementary materials are available for this article. Go to the publisher's online edition of Communications in Statistics-Simulation and Computation ® for the following three supplemental resource: a word file containing figures illustrating the mode of operation for the bisectional algorithm, QQ-plots, and a residual plot for the mussels data.] Inference for the general linear model makes several assumptions, including independence of errors, normality, and homogeneity of variance. Departure from the latter two of these assumptions may indicate the need for data transformation or removal of outlying observations. Informal procedures such as diagnostic plots of residuals are frequently used to assess the validity of these assumptions or to identify possible outliers. A simulation-based approach is proposed, which facilitates the interpretation of various diagnostic plots by adding simultaneous tolerance bounds. Several tests exist for normality or homoscedasticity in simple random samples. These tests are often applied to residuals from a linear model fit. The resulting procedures are approximate in that correlation among residuals is ignored. The simulation-based approach accounts for the correlation structure of residuals in the linear model and allows simultaneously checking for possible outliers, non normality, and heteroscedasticity, and it does not rely on formal testing. |
Author | Piepho, H.-P. Schützenmeister, A. Jensen, U. |
Author_xml | – sequence: 1 givenname: A. surname: Schützenmeister fullname: Schützenmeister, A. organization: Bioinformatics Unit, Institute of Crop Science , University of Hohenheim – sequence: 2 givenname: U. surname: Jensen fullname: Jensen, U. organization: Institute of Applied Mathematics and Statistics , University of Hohenheim – sequence: 3 givenname: H.-P. surname: Piepho fullname: Piepho, H.-P. email: piepho@uni-hohenheim.de organization: Bioinformatics Unit, Institute of Crop Science , University of Hohenheim |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=25576917$$DView record in Pascal Francis |
BookMark | eNqFkUtrGzEUhUVIoU7af9CFIBS6GUfP0Uw3pThPcB-LZtONuB5pEqWylEgywf8-GhxvskhXBy7fORzuOUKHIQaL0CdK5pR05JTwlpKednNGKJ3LjsmWHKAZlZw1ggp6iGYT0kzMe3SU8z0hhHeim6G_izs7_HPhFv-MaQ3elS2GYPBVXMc8WAO5uGE6uoDLncWXNtgEHi9dsJDwj2isxzd5CjhzcBvixOPfPpb8Ab0bwWf78UWP0c3F-Z_FVbP8dXm9-L5sBtGK0vCR8Vb2lrNxJQzpjAAAtpJVlTIGrOCqb61URijTrihTTABRnYRuHAkb-DH6sst9SPFxY3PRa1erew_Bxk3WlNQnKSGUrOjJK_Q-blKo7SpFiJA9aVmlPr9QkAfwY4IwuKwfkltD2mompWp7qir3dccNKeac7Kjrp6C4GEoC52uknubR-3n0NI_ezVPN4pV5n_8f27edzYVxGuwpJm90ga2PaV-Uv5nwDL5fpqI |
CODEN | CSSCDB |
CitedBy_id | crossref_primary_10_1007_s11104_022_05340_5 crossref_primary_10_1080_02664763_2013_809568 crossref_primary_10_1002_ece3_70903 crossref_primary_10_1007_s41939_022_00120_1 crossref_primary_10_1371_journal_pone_0250401 crossref_primary_10_1016_j_csda_2011_11_006 crossref_primary_10_1080_03610918_2013_870196 crossref_primary_10_3389_fpls_2024_1396004 crossref_primary_10_1016_j_gecco_2020_e01183 crossref_primary_10_1080_00949655_2015_1081688 crossref_primary_10_1080_15434303_2021_1992629 crossref_primary_10_1016_j_appet_2021_105802 crossref_primary_10_1111_jac_12220 crossref_primary_10_1111_modl_12835 crossref_primary_10_3390_w10030265 crossref_primary_10_1017_S0960258520000136 crossref_primary_10_3390_ijerph18126287 crossref_primary_10_1080_01621459_2021_1895178 crossref_primary_10_1093_sleep_zsac181 crossref_primary_10_1111_jfb_14639 crossref_primary_10_1016_j_marenvres_2024_106919 crossref_primary_10_1007_s10641_022_01260_6 crossref_primary_10_1080_10942912_2023_2281886 crossref_primary_10_1108_MHSI_10_2024_0192 crossref_primary_10_1177_03795721241304475 crossref_primary_10_1371_journal_pntd_0010653 crossref_primary_10_1002_ldr_4253 crossref_primary_10_3390_analytics3020011 crossref_primary_10_1108_YC_08_2021_1374 crossref_primary_10_2147_JIR_S459238 crossref_primary_10_1016_j_gecco_2024_e02806 crossref_primary_10_3389_fnut_2024_1495824 crossref_primary_10_1080_03323315_2024_2353317 crossref_primary_10_1007_s11104_021_04897_x crossref_primary_10_1016_j_foreco_2024_122296 |
Cites_doi | 10.1007/s00122-009-1190-3 10.3758/BF03329558 10.1093/biomet/68.1.13 10.1007/978-1-4612-1160-0 10.1002/0471725234 10.1002/bimj.4710380411 10.1201/9780203910894 10.1016/0167-9473(96)00005-9 10.1002/9780470316863 10.1080/03610919508813240 10.1111/j.1439-037X.1998.tb00526.x 10.1002/bimj.4710370204 10.1080/01621459.1974.10480152 10.1111/j.2517-6161.1973.tb00979.x 10.1038/hdy.1997.139 10.1007/978-1-4899-2887-0 10.2135/cropsci1990.0011183X003000020025x 10.3758/BF03333824 10.1002/9780471722199 10.1002/9781118625590 10.1016/S0378-4290(01)00166-6 10.1111/1368-423X.11009 |
ContentType | Journal Article |
Copyright | Copyright Taylor & Francis Group, LLC 2012 2015 INIST-CNRS Copyright Taylor & Francis Ltd. Feb 2012 |
Copyright_xml | – notice: Copyright Taylor & Francis Group, LLC 2012 – notice: 2015 INIST-CNRS – notice: Copyright Taylor & Francis Ltd. Feb 2012 |
DBID | AAYXX CITATION IQODW 7SC 7TB 8FD FR3 JQ2 KR7 L7M L~C L~D |
DOI | 10.1080/03610918.2011.582560 |
DatabaseName | CrossRef Pascal-Francis Computer and Information Systems Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Civil Engineering Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Civil Engineering Abstracts Civil Engineering Abstracts |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Statistics Mathematics Computer Science |
EISSN | 1532-4141 |
EndPage | 154 |
ExternalDocumentID | 2634893001 25576917 10_1080_03610918_2011_582560 582560 |
Genre | Feature |
GroupedDBID | -~X .7F .DC .QJ 0BK 0R~ 29F 2DF 30N 4.4 5GY 5VS 8VB AAENE AAJMT AALDU AAMIU AAPUL AAQRR ABCCY ABEHJ ABFIM ABJNI ABLIJ ABPAQ ABPEM ABTAI ABXUL ABXYU ACGEJ ACGFS ACIWK ACTIO ADCVX ADGTB ADXPE AEISY AEOZL AEPSL AEYOC AFKVX AGDLA AGMYJ AIJEM AJWEG AKBVH AKOOK ALMA_UNASSIGNED_HOLDINGS ALQZU AQRUH AVBZW AWYRJ BLEHA CCCUG CE4 COF CS3 DGEBU DKSSO EBS EJD E~A E~B GTTXZ H13 HF~ HZ~ H~P IPNFZ J.P K1G KYCEM M4Z NA5 NY~ O9- P2P QWB RIG RNANH ROSJB RTWRZ S-T SNACF TBQAZ TDBHL TEJ TFL TFT TFW TN5 TTHFI TUROJ TWF UPT UT5 UU3 WH7 ZGOLN ZL0 ~S~ 07G 1TA AAGDL AAHIA AAIKQ AAKBW AAYXX ACAGQ ACGEE ADYSH AEUMN AFRVT AGCQS AGLEN AGROQ AHMOU AI. AIYEW ALCKM AMEWO AMPGV AMVHM AMXXU BCCOT BPLKW C06 CAG CITATION CRFIH DMQIW DWIFK H~9 IVXBP LJTGL NHB NUSFT QCRFL TAQ TFMCV TOXWX UB9 UU8 V3K V4Q VH1 XOL IQODW TASJS 7SC 7TB 8FD FR3 JQ2 KR7 L7M L~C L~D |
ID | FETCH-LOGICAL-c464t-3f23659e32fb4d08d4aaa2b5d4a77ddae43796e57d47d6b12724a0785a8ff02c3 |
ISSN | 0361-0918 |
IngestDate | Thu Jul 10 19:55:59 EDT 2025 Wed Aug 13 06:22:36 EDT 2025 Mon Jul 21 09:16:11 EDT 2025 Sun Jul 06 05:04:07 EDT 2025 Thu Apr 24 23:02:47 EDT 2025 Wed Dec 25 09:06:03 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | Correlation Generalized linear model Statistical distribution Error estimation Data transformation Gaussian distribution Non parametric estimation Multivariate analysis Stochastic method Constant residual variance Linear model Variance Tolerance interval Outlier Statistical test Monte Carlo Multiplicity Model checking Approximation theory 62F25 Monte Carlo method Discriminant analysis Covariance analysis Independence Probability Tolerance Statistical association Statistical estimation Algorithm Variance analysis Heteroscedasticity Confidence interval Statistical method Statistical regression Diagnostic techniques Residual plot Numerical analysis Non normality Simulation Simultaneous tolerance band Correlation analysis Tolerance region Normality test Numerical simulation Computing method |
Language | English |
License | CC BY 4.0 |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c464t-3f23659e32fb4d08d4aaa2b5d4a77ddae43796e57d47d6b12724a0785a8ff02c3 |
Notes | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-2 content type line 23 |
PQID | 1000459062 |
PQPubID | 186203 |
PageCount | 14 |
ParticipantIDs | crossref_citationtrail_10_1080_03610918_2011_582560 proquest_miscellaneous_1010874475 pascalfrancis_primary_25576917 proquest_journals_1000459062 crossref_primary_10_1080_03610918_2011_582560 informaworld_taylorfrancis_310_1080_03610918_2011_582560 |
PublicationCentury | 2000 |
PublicationDate | 2012-02-01 |
PublicationDateYYYYMMDD | 2012-02-01 |
PublicationDate_xml | – month: 02 year: 2012 text: 2012-02-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Colchester |
PublicationPlace_xml | – name: Colchester – name: Philadelphia |
PublicationTitle | Communications in statistics. Simulation and computation |
PublicationYear | 2012 |
Publisher | Taylor & Francis Group Taylor & Francis Taylor & Francis Ltd |
Publisher_xml | – name: Taylor & Francis Group – name: Taylor & Francis – name: Taylor & Francis Ltd |
References | CIT0012 Atkinson A. C. (CIT0002) 1985 CIT0014 Meeker W. O. (CIT0018) 1998 Levene H. (CIT0016) 1960 CIT0015 CIT0017 Cook R. D. (CIT0008) 1982 CIT0019 Press W. H. (CIT0024) 1989 CIT0021 Draper N. R. (CIT0013) 1998 CIT0020 CIT0001 CIT0023 CIT0022 Seber G. A. F. (CIT0026) 1977 Bradley J. V. (CIT0005) 1980; 16 Bradley J. V. (CIT0006) 1984; 22 Cox D. R. (CIT0010) 1974 Csorgo M. (CIT0011) 1973; 35 CIT0003 CIT0025 CIT0027 CIT0004 CIT0007 CIT0028 CIT0009 |
References_xml | – ident: CIT0025 doi: 10.1007/s00122-009-1190-3 – volume: 16 start-page: 333 year: 1980 ident: CIT0005 publication-title: Bulletin of the Psychonomic Society doi: 10.3758/BF03329558 – ident: CIT0001 doi: 10.1093/biomet/68.1.13 – ident: CIT0003 doi: 10.1007/978-1-4612-1160-0 – ident: CIT0017 doi: 10.1002/0471725234 – ident: CIT0021 doi: 10.1002/bimj.4710380411 – ident: CIT0028 doi: 10.1201/9780203910894 – volume-title: Plots, Transformations and Regression year: 1985 ident: CIT0002 – ident: CIT0022 doi: 10.1016/0167-9473(96)00005-9 – ident: CIT0009 doi: 10.1002/9780470316863 – ident: CIT0020 doi: 10.1080/03610919508813240 – ident: CIT0023 doi: 10.1111/j.1439-037X.1998.tb00526.x – ident: CIT0019 doi: 10.1002/bimj.4710370204 – ident: CIT0004 doi: 10.1080/01621459.1974.10480152 – volume-title: Linear Regression Analysis year: 1977 ident: CIT0026 – volume-title: Numerical Recipes in PASCAL year: 1989 ident: CIT0024 – volume: 35 start-page: 507 year: 1973 ident: CIT0011 publication-title: Journal of the Royal Statistical Society B doi: 10.1111/j.2517-6161.1973.tb00979.x – volume-title: Statistical Methods for Reliability Data year: 1998 ident: CIT0018 – ident: CIT0012 doi: 10.1038/hdy.1997.139 – volume-title: Theoretical Statistics year: 1974 ident: CIT0010 doi: 10.1007/978-1-4899-2887-0 – ident: CIT0015 doi: 10.2135/cropsci1990.0011183X003000020025x – volume-title: Residuals and Influence in Regression year: 1982 ident: CIT0008 – volume: 22 start-page: 250 year: 1984 ident: CIT0006 publication-title: Bulletin of the Psychonomic Society doi: 10.3758/BF03333824 – ident: CIT0027 doi: 10.1002/9780471722199 – volume-title: Applied Regression Analysis year: 1998 ident: CIT0013 doi: 10.1002/9781118625590 – start-page: 278 volume-title: Contributions to Probability and Statistics year: 1960 ident: CIT0016 – ident: CIT0007 doi: 10.1016/S0378-4290(01)00166-6 – ident: CIT0014 doi: 10.1111/1368-423X.11009 |
SSID | ssj0003848 |
Score | 2.1158028 |
Snippet | Inference for the general linear model makes several assumptions, including independence of errors, normality, and homogeneity of variance. Departure from the... |
SourceID | proquest pascalfrancis crossref informaworld |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 141 |
SubjectTerms | 62-09 62J5 Approximation Computer simulation Constant residual variance Correlation Diagnostic systems Distribution theory Exact sciences and technology Homogeneity Linear inference, regression Mathematics Model checking Monte Carlo Multiplicity Multivariate analysis Normality Numerical analysis Numerical analysis. Scientific computation Numerical methods in probability and statistics Probability and statistics Residual plot Sciences and techniques of general use Simulation Simultaneous tolerance band Statistics Tolerance interval Tolerance region Tolerances Transformations |
Title | Checking Normality and Homoscedasticity in the General Linear Model Using Diagnostic Plots |
URI | https://www.tandfonline.com/doi/abs/10.1080/03610918.2011.582560 https://www.proquest.com/docview/1000459062 https://www.proquest.com/docview/1010874475 |
Volume | 41 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9NAEF2FcikHPgKogVItErfKke2115sjCkZppYRISaSqF8ter0WlxqlIcuFn8IuZ2V1vnKaiwCWJ_LWR3_PsjHfmDSGfJEvEABx1j4XS9yJWll4R5hCqJAmXValEUGGh8HjCR4vo8iq-6nR-tbKWtpuiL38-WFfyP6jCNsAVq2T_AVl3UdgAvwFf-ASE4fOvMB5-VxJfdePqy9I41PgefLRartZSlTlqMONGm8toJaYxDtfyPdgE59zkDHwxGXeo3jq9XRl1Jydg0K4h0emzWIVkBJ7757Obpe0A1pTI3W33l_dnwxEuxw-G8-t0Mk4vZnOTfeG4c5lOZqlON1g4S32RTkff9LzY96btVxOY47GX5jE_6BLSMm6MBx74KqJtiY0EVsM4WxZpDGtg95k5OjDC0wfm3-ZLMtSQD4QRaI0FenW76a5Z4r83C7rcRIixEg5B7BPyNITQA7tiMH_iZncmdEc29_-bckzUa39g3D13Z08MF7Nw8zU8iJW5NwfOgPZw5i_Jcxua0M-GZ69IR9Vd8qJp-0HtLNAlz8ZO6nfdJcczR4bX5LphJHWMpMAKep-R9KamcA1qGUkNI6lmJNWMpDtGUs3IN2TxNZ0PR57t3uHJiEcbj1Uh4_FAsbAqotIXZZTneVjE8J0kZZkrVMLkKk7KKCl5EYRJGOXgsMa5qCo_lOwtOapXtTohFPaCn82CWEqUrIsE4wUTvuIq5AmL_R5hzU3OpJW2xw4rt1nQKOBaaDKEJjPQ9Ijnzroz0i6PHC_a-GUbTW-LXsb-fOrZHtZuvIZsPXLagJ9ZA7NGOXEIuFBIvEc-ut1g_nFNL6_VaovHwKAJqna-e2yM9-R495CekqPNj636AB71pjjTFP8N-FXC3g |
linkProvider | Taylor & Francis |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5BOdAeKCxUbCnFSFxTsnZie4-oUC3QXXFoJcQlcmxHoC5JRbIXfn1nYidiQYAEp0jx-DUZj2ec8TcAL6xQeo6GeiK4TZNMOJeU3KCropS0lfN6VtFF4eVKLi6zdx_zIZqwjWGV5ENXASii19W0uOkwegiJe4lal_AsdUDgzDVt27fhTj6XipIYiHQ1KmOh-wRaVCOhKsPtud-0srU7bWGXUtCkaZFvVUh48Yvu7jeks30oh6mEOJSrk01XntjvP6E8_tdc78O9aK6yV0G-HsAtX09gf0gFwaJmmMDecoR_bSewSyZsQIB-CJ9OP3tLB_JsRdMks5_hcNii-dq01jtDdPTyS82wDRaBsBl6ybgKGSVrW7M-soG9DnGBSM8-rJuufQSXZ28uThdJzOiQ2ExmXSIqLmQ-94JXZeZS7TJjDC9zfCrlnPGEjih9rlymnCxnXPHMoBGTG11VKbfiAHbqpvaPgWEp2l5illtLMGaZFrIUOvXSc6lEnk5BDF-ysBHunLJurIvZgIoaOVsQZ4vA2SkkY63rAPfxF3r9o5AUXX_MEkWkEH-uerwlUGN_6OQpiV70FI4GCSuiYmkJYhqNcAKXnsLzsRhVAv3nMbVvNkSDnSpCcjz89-E9g7uLi-V5cf529f4J7GIJD8HqR7DTfdv4p2iLdeVxv9puANZuI38 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ1Lb9QwEIBHUCRUDi0sIJaWYiSuKVk7sd1j1Xa1PLrqgUoVl8jxQ0UsSUWyF349M3ESdUGABKdIsZ3Ezng8k4y_AXhthdJHaKgngts0yYRzSckNuipKSRuc17NAG4XPl3Jxmb27yq9u7eKnsEryoUMERXS6mib3jQtDRNwbVLqEs9QRwJlrWrXvwj1J7HDaxJEuR10sdJc_i1ok1GTYPPebq2wsThvoUoqZNA0OW4j5Ln5R3d16NN8FM_QkhqF8OVy35aH9_hPk8X-6-hB2emOVHUfpegR3fDWB3SERBOv1wgQenI_w12YC22TARv7zY_h0cu0tfY5nS-olGf0Mn4Yt6q91Y70zVI9Ofq4YXoP1GGyGPjLOQUap2lasi2tgpzEqEOuzi1XdNk_gcn728WSR9PkcEpvJrE1E4ELmR17wUGYu1S4zxvAyx6NSzhlPbETpc-Uy5WQ544pnBk2Y3OgQUm7FU9iq6so_A4alaHmJWW4tQcwyLWQpdOql51KJPJ2CGF5kYXvYOeXcWBWzgYnaj2xBI1vEkZ1CMra6ibCPv9TXt2WkaLuPLL2EFOLPTQ825Gm8H7p4SqIPPYX9QcCKXq00BJhGE5zQ0lN4NRajQqC_PKby9Zrq4E0VcRyf__vjvYT7F6fz4sPb5fs92MYCHiPV92Gr_bb2L9AQa8uDbq79ABPMIiM |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Checking+Normality+and+Homoscedasticity+in+the+General+Linear+Model+Using+Diagnostic+Plots&rft.jtitle=Communications+in+statistics.+Simulation+and+computation&rft.au=SCH%C3%9CTZENMEISTER%2C+A&rft.au=JENSEN%2C+U&rft.au=PIEPHO%2C+H.-P&rft.date=2012-02-01&rft.pub=Taylor+%26+Francis&rft.issn=0361-0918&rft.volume=41&rft.issue=1-2&rft.spage=141&rft.epage=154&rft_id=info:doi/10.1080%2F03610918.2011.582560&rft.externalDBID=n%2Fa&rft.externalDocID=25576917 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0361-0918&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0361-0918&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0361-0918&client=summon |