Checking Normality and Homoscedasticity in the General Linear Model Using Diagnostic Plots

Inference for the general linear model makes several assumptions, including independence of errors, normality, and homogeneity of variance. Departure from the latter two of these assumptions may indicate the need for data transformation or removal of outlying observations. Informal procedures such a...

Full description

Saved in:
Bibliographic Details
Published inCommunications in statistics. Simulation and computation Vol. 41; no. 2; pp. 141 - 154
Main Authors Schützenmeister, A., Jensen, U., Piepho, H.-P.
Format Journal Article
LanguageEnglish
Published Colchester Taylor & Francis Group 01.02.2012
Taylor & Francis
Taylor & Francis Ltd
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Inference for the general linear model makes several assumptions, including independence of errors, normality, and homogeneity of variance. Departure from the latter two of these assumptions may indicate the need for data transformation or removal of outlying observations. Informal procedures such as diagnostic plots of residuals are frequently used to assess the validity of these assumptions or to identify possible outliers. A simulation-based approach is proposed, which facilitates the interpretation of various diagnostic plots by adding simultaneous tolerance bounds. Several tests exist for normality or homoscedasticity in simple random samples. These tests are often applied to residuals from a linear model fit. The resulting procedures are approximate in that correlation among residuals is ignored. The simulation-based approach accounts for the correlation structure of residuals in the linear model and allows simultaneously checking for possible outliers, non normality, and heteroscedasticity, and it does not rely on formal testing. [Supplementary materials are available for this article. Go to the publisher's online edition of Communications in Statistics-Simulation and Computation ® for the following three supplemental resource: a word file containing figures illustrating the mode of operation for the bisectional algorithm, QQ-plots, and a residual plot for the mussels data.]
AbstractList Inference for the general linear model makes several assumptions, including independence of errors, normality, and homogeneity of variance. Departure from the latter two of these assumptions may indicate the need for data transformation or removal of outlying observations. Informal procedures such as diagnostic plots of residuals are frequently used to assess the validity of these assumptions or to identify possible outliers. A simulation-based approach is proposed, which facilitates the interpretation of various diagnostic plots by adding simultaneous tolerance bounds. Several tests exist for normality or homoscedasticity in simple random samples. These tests are often applied to residuals from a linear model fit. The resulting procedures are approximate in that correlation among residuals is ignored. The simulation-based approach accounts for the correlation structure of residuals in the linear model and allows simultaneously checking for possible outliers, non normality, and heteroscedasticity, and it does not rely on formal testing. [Supplementary materials are available for this article. Go to the publisher's online edition of Communications in Statistics-Simulation and Computation® for the following three supplemental resource: a word file containing figures illustrating the mode of operation for the bisectional algorithm, QQ-plots, and a residual plot for the mussels data.]
Inference for the general linear model makes several assumptions, including independence of errors, normality, and homogeneity of variance. Departure from the latter two of these assumptions may indicate the need for data transformation or removal of outlying observations. Informal procedures such as diagnostic plots of residuals are frequently used to assess the validity of these assumptions or to identify possible outliers. A simulation-based approach is proposed, which facilitates the interpretation of various diagnostic plots by adding simultaneous tolerance bounds. Several tests exist for normality or homoscedasticity in simple random samples. These tests are often applied to residuals from a linear model fit. The resulting procedures are approximate in that correlation among residuals is ignored. The simulation-based approach accounts for the correlation structure of residuals in the linear model and allows simultaneously checking for possible outliers, non normality, and heteroscedasticity, and it does not rely on formal testing. [Supplementary materials are available for this article. Go to the publisher's online edition of Communications in Statistics-Simulation and Computation ® for the following three supplemental resource: a word file containing figures illustrating the mode of operation for the bisectional algorithm, QQ-plots, and a residual plot for the mussels data.]
Inference for the general linear model makes several assumptions, including independence of errors, normality, and homogeneity of variance. Departure from the latter two of these assumptions may indicate the need for data transformation or removal of outlying observations. Informal procedures such as diagnostic plots of residuals are frequently used to assess the validity of these assumptions or to identify possible outliers. A simulation-based approach is proposed, which facilitates the interpretation of various diagnostic plots by adding simultaneous tolerance bounds. Several tests exist for normality or homoscedasticity in simple random samples. These tests are often applied to residuals from a linear model fit. The resulting procedures are approximate in that correlation among residuals is ignored. The simulation-based approach accounts for the correlation structure of residuals in the linear model and allows simultaneously checking for possible outliers, non normality, and heteroscedasticity, and it does not rely on formal testing.
Author Piepho, H.-P.
Schützenmeister, A.
Jensen, U.
Author_xml – sequence: 1
  givenname: A.
  surname: Schützenmeister
  fullname: Schützenmeister, A.
  organization: Bioinformatics Unit, Institute of Crop Science , University of Hohenheim
– sequence: 2
  givenname: U.
  surname: Jensen
  fullname: Jensen, U.
  organization: Institute of Applied Mathematics and Statistics , University of Hohenheim
– sequence: 3
  givenname: H.-P.
  surname: Piepho
  fullname: Piepho, H.-P.
  email: piepho@uni-hohenheim.de
  organization: Bioinformatics Unit, Institute of Crop Science , University of Hohenheim
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=25576917$$DView record in Pascal Francis
BookMark eNqFkUtrGzEUhUVIoU7af9CFIBS6GUfP0Uw3pThPcB-LZtONuB5pEqWylEgywf8-GhxvskhXBy7fORzuOUKHIQaL0CdK5pR05JTwlpKednNGKJ3LjsmWHKAZlZw1ggp6iGYT0kzMe3SU8z0hhHeim6G_izs7_HPhFv-MaQ3elS2GYPBVXMc8WAO5uGE6uoDLncWXNtgEHi9dsJDwj2isxzd5CjhzcBvixOPfPpb8Ab0bwWf78UWP0c3F-Z_FVbP8dXm9-L5sBtGK0vCR8Vb2lrNxJQzpjAAAtpJVlTIGrOCqb61URijTrihTTABRnYRuHAkb-DH6sst9SPFxY3PRa1erew_Bxk3WlNQnKSGUrOjJK_Q-blKo7SpFiJA9aVmlPr9QkAfwY4IwuKwfkltD2mompWp7qir3dccNKeac7Kjrp6C4GEoC52uknubR-3n0NI_ezVPN4pV5n_8f27edzYVxGuwpJm90ga2PaV-Uv5nwDL5fpqI
CODEN CSSCDB
CitedBy_id crossref_primary_10_1007_s11104_022_05340_5
crossref_primary_10_1080_02664763_2013_809568
crossref_primary_10_1002_ece3_70903
crossref_primary_10_1007_s41939_022_00120_1
crossref_primary_10_1371_journal_pone_0250401
crossref_primary_10_1016_j_csda_2011_11_006
crossref_primary_10_1080_03610918_2013_870196
crossref_primary_10_3389_fpls_2024_1396004
crossref_primary_10_1016_j_gecco_2020_e01183
crossref_primary_10_1080_00949655_2015_1081688
crossref_primary_10_1080_15434303_2021_1992629
crossref_primary_10_1016_j_appet_2021_105802
crossref_primary_10_1111_jac_12220
crossref_primary_10_1111_modl_12835
crossref_primary_10_3390_w10030265
crossref_primary_10_1017_S0960258520000136
crossref_primary_10_3390_ijerph18126287
crossref_primary_10_1080_01621459_2021_1895178
crossref_primary_10_1093_sleep_zsac181
crossref_primary_10_1111_jfb_14639
crossref_primary_10_1016_j_marenvres_2024_106919
crossref_primary_10_1007_s10641_022_01260_6
crossref_primary_10_1080_10942912_2023_2281886
crossref_primary_10_1108_MHSI_10_2024_0192
crossref_primary_10_1177_03795721241304475
crossref_primary_10_1371_journal_pntd_0010653
crossref_primary_10_1002_ldr_4253
crossref_primary_10_3390_analytics3020011
crossref_primary_10_1108_YC_08_2021_1374
crossref_primary_10_2147_JIR_S459238
crossref_primary_10_1016_j_gecco_2024_e02806
crossref_primary_10_3389_fnut_2024_1495824
crossref_primary_10_1080_03323315_2024_2353317
crossref_primary_10_1007_s11104_021_04897_x
crossref_primary_10_1016_j_foreco_2024_122296
Cites_doi 10.1007/s00122-009-1190-3
10.3758/BF03329558
10.1093/biomet/68.1.13
10.1007/978-1-4612-1160-0
10.1002/0471725234
10.1002/bimj.4710380411
10.1201/9780203910894
10.1016/0167-9473(96)00005-9
10.1002/9780470316863
10.1080/03610919508813240
10.1111/j.1439-037X.1998.tb00526.x
10.1002/bimj.4710370204
10.1080/01621459.1974.10480152
10.1111/j.2517-6161.1973.tb00979.x
10.1038/hdy.1997.139
10.1007/978-1-4899-2887-0
10.2135/cropsci1990.0011183X003000020025x
10.3758/BF03333824
10.1002/9780471722199
10.1002/9781118625590
10.1016/S0378-4290(01)00166-6
10.1111/1368-423X.11009
ContentType Journal Article
Copyright Copyright Taylor & Francis Group, LLC 2012
2015 INIST-CNRS
Copyright Taylor & Francis Ltd. Feb 2012
Copyright_xml – notice: Copyright Taylor & Francis Group, LLC 2012
– notice: 2015 INIST-CNRS
– notice: Copyright Taylor & Francis Ltd. Feb 2012
DBID AAYXX
CITATION
IQODW
7SC
7TB
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
DOI 10.1080/03610918.2011.582560
DatabaseName CrossRef
Pascal-Francis
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Civil Engineering Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Civil Engineering Abstracts

Civil Engineering Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Statistics
Mathematics
Computer Science
EISSN 1532-4141
EndPage 154
ExternalDocumentID 2634893001
25576917
10_1080_03610918_2011_582560
582560
Genre Feature
GroupedDBID -~X
.7F
.DC
.QJ
0BK
0R~
29F
2DF
30N
4.4
5GY
5VS
8VB
AAENE
AAJMT
AALDU
AAMIU
AAPUL
AAQRR
ABCCY
ABEHJ
ABFIM
ABJNI
ABLIJ
ABPAQ
ABPEM
ABTAI
ABXUL
ABXYU
ACGEJ
ACGFS
ACIWK
ACTIO
ADCVX
ADGTB
ADXPE
AEISY
AEOZL
AEPSL
AEYOC
AFKVX
AGDLA
AGMYJ
AIJEM
AJWEG
AKBVH
AKOOK
ALMA_UNASSIGNED_HOLDINGS
ALQZU
AQRUH
AVBZW
AWYRJ
BLEHA
CCCUG
CE4
COF
CS3
DGEBU
DKSSO
EBS
EJD
E~A
E~B
GTTXZ
H13
HF~
HZ~
H~P
IPNFZ
J.P
K1G
KYCEM
M4Z
NA5
NY~
O9-
P2P
QWB
RIG
RNANH
ROSJB
RTWRZ
S-T
SNACF
TBQAZ
TDBHL
TEJ
TFL
TFT
TFW
TN5
TTHFI
TUROJ
TWF
UPT
UT5
UU3
WH7
ZGOLN
ZL0
~S~
07G
1TA
AAGDL
AAHIA
AAIKQ
AAKBW
AAYXX
ACAGQ
ACGEE
ADYSH
AEUMN
AFRVT
AGCQS
AGLEN
AGROQ
AHMOU
AI.
AIYEW
ALCKM
AMEWO
AMPGV
AMVHM
AMXXU
BCCOT
BPLKW
C06
CAG
CITATION
CRFIH
DMQIW
DWIFK
H~9
IVXBP
LJTGL
NHB
NUSFT
QCRFL
TAQ
TFMCV
TOXWX
UB9
UU8
V3K
V4Q
VH1
XOL
IQODW
TASJS
7SC
7TB
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
ID FETCH-LOGICAL-c464t-3f23659e32fb4d08d4aaa2b5d4a77ddae43796e57d47d6b12724a0785a8ff02c3
ISSN 0361-0918
IngestDate Thu Jul 10 19:55:59 EDT 2025
Wed Aug 13 06:22:36 EDT 2025
Mon Jul 21 09:16:11 EDT 2025
Sun Jul 06 05:04:07 EDT 2025
Thu Apr 24 23:02:47 EDT 2025
Wed Dec 25 09:06:03 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Correlation
Generalized linear model
Statistical distribution
Error estimation
Data transformation
Gaussian distribution
Non parametric estimation
Multivariate analysis
Stochastic method
Constant residual variance
Linear model
Variance
Tolerance interval
Outlier
Statistical test
Monte Carlo
Multiplicity
Model checking
Approximation theory
62F25
Monte Carlo method
Discriminant analysis
Covariance analysis
Independence
Probability
Tolerance
Statistical association
Statistical estimation
Algorithm
Variance analysis
Heteroscedasticity
Confidence interval
Statistical method
Statistical regression
Diagnostic techniques
Residual plot
Numerical analysis
Non normality
Simulation
Simultaneous tolerance band
Correlation analysis
Tolerance region
Normality test
Numerical simulation
Computing method
Language English
License CC BY 4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c464t-3f23659e32fb4d08d4aaa2b5d4a77ddae43796e57d47d6b12724a0785a8ff02c3
Notes SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-2
content type line 23
PQID 1000459062
PQPubID 186203
PageCount 14
ParticipantIDs crossref_citationtrail_10_1080_03610918_2011_582560
proquest_miscellaneous_1010874475
pascalfrancis_primary_25576917
proquest_journals_1000459062
crossref_primary_10_1080_03610918_2011_582560
informaworld_taylorfrancis_310_1080_03610918_2011_582560
PublicationCentury 2000
PublicationDate 2012-02-01
PublicationDateYYYYMMDD 2012-02-01
PublicationDate_xml – month: 02
  year: 2012
  text: 2012-02-01
  day: 01
PublicationDecade 2010
PublicationPlace Colchester
PublicationPlace_xml – name: Colchester
– name: Philadelphia
PublicationTitle Communications in statistics. Simulation and computation
PublicationYear 2012
Publisher Taylor & Francis Group
Taylor & Francis
Taylor & Francis Ltd
Publisher_xml – name: Taylor & Francis Group
– name: Taylor & Francis
– name: Taylor & Francis Ltd
References CIT0012
Atkinson A. C. (CIT0002) 1985
CIT0014
Meeker W. O. (CIT0018) 1998
Levene H. (CIT0016) 1960
CIT0015
CIT0017
Cook R. D. (CIT0008) 1982
CIT0019
Press W. H. (CIT0024) 1989
CIT0021
Draper N. R. (CIT0013) 1998
CIT0020
CIT0001
CIT0023
CIT0022
Seber G. A. F. (CIT0026) 1977
Bradley J. V. (CIT0005) 1980; 16
Bradley J. V. (CIT0006) 1984; 22
Cox D. R. (CIT0010) 1974
Csorgo M. (CIT0011) 1973; 35
CIT0003
CIT0025
CIT0027
CIT0004
CIT0007
CIT0028
CIT0009
References_xml – ident: CIT0025
  doi: 10.1007/s00122-009-1190-3
– volume: 16
  start-page: 333
  year: 1980
  ident: CIT0005
  publication-title: Bulletin of the Psychonomic Society
  doi: 10.3758/BF03329558
– ident: CIT0001
  doi: 10.1093/biomet/68.1.13
– ident: CIT0003
  doi: 10.1007/978-1-4612-1160-0
– ident: CIT0017
  doi: 10.1002/0471725234
– ident: CIT0021
  doi: 10.1002/bimj.4710380411
– ident: CIT0028
  doi: 10.1201/9780203910894
– volume-title: Plots, Transformations and Regression
  year: 1985
  ident: CIT0002
– ident: CIT0022
  doi: 10.1016/0167-9473(96)00005-9
– ident: CIT0009
  doi: 10.1002/9780470316863
– ident: CIT0020
  doi: 10.1080/03610919508813240
– ident: CIT0023
  doi: 10.1111/j.1439-037X.1998.tb00526.x
– ident: CIT0019
  doi: 10.1002/bimj.4710370204
– ident: CIT0004
  doi: 10.1080/01621459.1974.10480152
– volume-title: Linear Regression Analysis
  year: 1977
  ident: CIT0026
– volume-title: Numerical Recipes in PASCAL
  year: 1989
  ident: CIT0024
– volume: 35
  start-page: 507
  year: 1973
  ident: CIT0011
  publication-title: Journal of the Royal Statistical Society B
  doi: 10.1111/j.2517-6161.1973.tb00979.x
– volume-title: Statistical Methods for Reliability Data
  year: 1998
  ident: CIT0018
– ident: CIT0012
  doi: 10.1038/hdy.1997.139
– volume-title: Theoretical Statistics
  year: 1974
  ident: CIT0010
  doi: 10.1007/978-1-4899-2887-0
– ident: CIT0015
  doi: 10.2135/cropsci1990.0011183X003000020025x
– volume-title: Residuals and Influence in Regression
  year: 1982
  ident: CIT0008
– volume: 22
  start-page: 250
  year: 1984
  ident: CIT0006
  publication-title: Bulletin of the Psychonomic Society
  doi: 10.3758/BF03333824
– ident: CIT0027
  doi: 10.1002/9780471722199
– volume-title: Applied Regression Analysis
  year: 1998
  ident: CIT0013
  doi: 10.1002/9781118625590
– start-page: 278
  volume-title: Contributions to Probability and Statistics
  year: 1960
  ident: CIT0016
– ident: CIT0007
  doi: 10.1016/S0378-4290(01)00166-6
– ident: CIT0014
  doi: 10.1111/1368-423X.11009
SSID ssj0003848
Score 2.1158028
Snippet Inference for the general linear model makes several assumptions, including independence of errors, normality, and homogeneity of variance. Departure from the...
SourceID proquest
pascalfrancis
crossref
informaworld
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 141
SubjectTerms 62-09
62J5
Approximation
Computer simulation
Constant residual variance
Correlation
Diagnostic systems
Distribution theory
Exact sciences and technology
Homogeneity
Linear inference, regression
Mathematics
Model checking
Monte Carlo
Multiplicity
Multivariate analysis
Normality
Numerical analysis
Numerical analysis. Scientific computation
Numerical methods in probability and statistics
Probability and statistics
Residual plot
Sciences and techniques of general use
Simulation
Simultaneous tolerance band
Statistics
Tolerance interval
Tolerance region
Tolerances
Transformations
Title Checking Normality and Homoscedasticity in the General Linear Model Using Diagnostic Plots
URI https://www.tandfonline.com/doi/abs/10.1080/03610918.2011.582560
https://www.proquest.com/docview/1000459062
https://www.proquest.com/docview/1010874475
Volume 41
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9NAEF2FcikHPgKogVItErfKke2115sjCkZppYRISaSqF8ter0WlxqlIcuFn8IuZ2V1vnKaiwCWJ_LWR3_PsjHfmDSGfJEvEABx1j4XS9yJWll4R5hCqJAmXValEUGGh8HjCR4vo8iq-6nR-tbKWtpuiL38-WFfyP6jCNsAVq2T_AVl3UdgAvwFf-ASE4fOvMB5-VxJfdePqy9I41PgefLRartZSlTlqMONGm8toJaYxDtfyPdgE59zkDHwxGXeo3jq9XRl1Jydg0K4h0emzWIVkBJ7757Obpe0A1pTI3W33l_dnwxEuxw-G8-t0Mk4vZnOTfeG4c5lOZqlON1g4S32RTkff9LzY96btVxOY47GX5jE_6BLSMm6MBx74KqJtiY0EVsM4WxZpDGtg95k5OjDC0wfm3-ZLMtSQD4QRaI0FenW76a5Z4r83C7rcRIixEg5B7BPyNITQA7tiMH_iZncmdEc29_-bckzUa39g3D13Z08MF7Nw8zU8iJW5NwfOgPZw5i_Jcxua0M-GZ69IR9Vd8qJp-0HtLNAlz8ZO6nfdJcczR4bX5LphJHWMpMAKep-R9KamcA1qGUkNI6lmJNWMpDtGUs3IN2TxNZ0PR57t3uHJiEcbj1Uh4_FAsbAqotIXZZTneVjE8J0kZZkrVMLkKk7KKCl5EYRJGOXgsMa5qCo_lOwtOapXtTohFPaCn82CWEqUrIsE4wUTvuIq5AmL_R5hzU3OpJW2xw4rt1nQKOBaaDKEJjPQ9Ijnzroz0i6PHC_a-GUbTW-LXsb-fOrZHtZuvIZsPXLagJ9ZA7NGOXEIuFBIvEc-ut1g_nFNL6_VaovHwKAJqna-e2yM9-R495CekqPNj636AB71pjjTFP8N-FXC3g
linkProvider Taylor & Francis
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5BOdAeKCxUbCnFSFxTsnZie4-oUC3QXXFoJcQlcmxHoC5JRbIXfn1nYidiQYAEp0jx-DUZj2ec8TcAL6xQeo6GeiK4TZNMOJeU3KCropS0lfN6VtFF4eVKLi6zdx_zIZqwjWGV5ENXASii19W0uOkwegiJe4lal_AsdUDgzDVt27fhTj6XipIYiHQ1KmOh-wRaVCOhKsPtud-0srU7bWGXUtCkaZFvVUh48Yvu7jeks30oh6mEOJSrk01XntjvP6E8_tdc78O9aK6yV0G-HsAtX09gf0gFwaJmmMDecoR_bSewSyZsQIB-CJ9OP3tLB_JsRdMks5_hcNii-dq01jtDdPTyS82wDRaBsBl6ybgKGSVrW7M-soG9DnGBSM8-rJuufQSXZ28uThdJzOiQ2ExmXSIqLmQ-94JXZeZS7TJjDC9zfCrlnPGEjih9rlymnCxnXPHMoBGTG11VKbfiAHbqpvaPgWEp2l5illtLMGaZFrIUOvXSc6lEnk5BDF-ysBHunLJurIvZgIoaOVsQZ4vA2SkkY63rAPfxF3r9o5AUXX_MEkWkEH-uerwlUGN_6OQpiV70FI4GCSuiYmkJYhqNcAKXnsLzsRhVAv3nMbVvNkSDnSpCcjz89-E9g7uLi-V5cf529f4J7GIJD8HqR7DTfdv4p2iLdeVxv9puANZuI38
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ1Lb9QwEIBHUCRUDi0sIJaWYiSuKVk7sd1j1Xa1PLrqgUoVl8jxQ0UsSUWyF349M3ESdUGABKdIsZ3Ezng8k4y_AXhthdJHaKgngts0yYRzSckNuipKSRuc17NAG4XPl3Jxmb27yq9u7eKnsEryoUMERXS6mib3jQtDRNwbVLqEs9QRwJlrWrXvwj1J7HDaxJEuR10sdJc_i1ok1GTYPPebq2wsThvoUoqZNA0OW4j5Ln5R3d16NN8FM_QkhqF8OVy35aH9_hPk8X-6-hB2emOVHUfpegR3fDWB3SERBOv1wgQenI_w12YC22TARv7zY_h0cu0tfY5nS-olGf0Mn4Yt6q91Y70zVI9Ofq4YXoP1GGyGPjLOQUap2lasi2tgpzEqEOuzi1XdNk_gcn728WSR9PkcEpvJrE1E4ELmR17wUGYu1S4zxvAyx6NSzhlPbETpc-Uy5WQ544pnBk2Y3OgQUm7FU9iq6so_A4alaHmJWW4tQcwyLWQpdOql51KJPJ2CGF5kYXvYOeXcWBWzgYnaj2xBI1vEkZ1CMra6ibCPv9TXt2WkaLuPLL2EFOLPTQ825Gm8H7p4SqIPPYX9QcCKXq00BJhGE5zQ0lN4NRajQqC_PKby9Zrq4E0VcRyf__vjvYT7F6fz4sPb5fs92MYCHiPV92Gr_bb2L9AQa8uDbq79ABPMIiM
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Checking+Normality+and+Homoscedasticity+in+the+General+Linear+Model+Using+Diagnostic+Plots&rft.jtitle=Communications+in+statistics.+Simulation+and+computation&rft.au=SCH%C3%9CTZENMEISTER%2C+A&rft.au=JENSEN%2C+U&rft.au=PIEPHO%2C+H.-P&rft.date=2012-02-01&rft.pub=Taylor+%26+Francis&rft.issn=0361-0918&rft.volume=41&rft.issue=1-2&rft.spage=141&rft.epage=154&rft_id=info:doi/10.1080%2F03610918.2011.582560&rft.externalDBID=n%2Fa&rft.externalDocID=25576917
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0361-0918&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0361-0918&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0361-0918&client=summon