Guidelines for the use and interpretation of adsorption isotherm models: A review

[Display omitted] •Adsorption data modelling is an essential way of predicting adsorption mechanisms.•It discusses the guidelines of using mono/multi-parametric isotherm models.•It establishes criteria for choosing the optimum isotherm model.•Ten multi-parameter isotherm models and their application...

Full description

Saved in:
Bibliographic Details
Published inJournal of hazardous materials Vol. 393; p. 122383
Main Authors Al-Ghouti, Mohammad A., Da'ana, Dana A.
Format Journal Article
LanguageEnglish
Published Netherlands Elsevier B.V 05.07.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract [Display omitted] •Adsorption data modelling is an essential way of predicting adsorption mechanisms.•It discusses the guidelines of using mono/multi-parametric isotherm models.•It establishes criteria for choosing the optimum isotherm model.•Ten multi-parameter isotherm models and their applications were reviewed.•Linear and nonlinear regression equations were used to determine best-fit model. Adsorption process is considered as one of the most used separation and purification processes, in which adsorption occurs by the formation of the physical or chemical bonds between a porous solid medium and a mixture of liquid or gas multi-component fluid. By taking into consideration the equilibrium data and the adsorption properties of both the adsorbent and the adsorbate, adsorption isotherm models can describe the interaction mechanisms between the adsorbent and the adsorbate at constant temperature. Therefore, understanding modelling of the equilibrium data is a very essential way of predicting the adsorption mechanisms of various adsorption systems. Furthermore, adsorption isotherms in batch experiments can be used for the determination of the solid-water distribution coefficient (Kid). This review paper discusses the guidelines of using mono/multi-parametric isotherm models with different applications. The aim of this paper is to establish criteria for choosing the optimum isotherm model through a critical review of different adsorption models and the use of various mathematically error functions such as linear regression analysis, nonlinear regression analysis, and error functions for adsorption data optimization. In this paper, 15 mono-parametric adsorption isotherm models having one, two, three, four and five parameters were investigated. In addition, 10 multi-parameter isotherm models were reviewed as well as addressing their applications.
AbstractList Adsorption process is considered as one of the most used separation and purification processes, in which adsorption occurs by the formation of the physical or chemical bonds between a porous solid medium and a mixture of liquid or gas multi-component fluid. By taking into consideration the equilibrium data and the adsorption properties of both the adsorbent and the adsorbate, adsorption isotherm models can describe the interaction mechanisms between the adsorbent and the adsorbate at constant temperature. Therefore, understanding modelling of the equilibrium data is a very essential way of predicting the adsorption mechanisms of various adsorption systems. Furthermore, adsorption isotherms in batch experiments can be used for the determination of the solid-water distribution coefficient (K ). This review paper discusses the guidelines of using mono/multi-parametric isotherm models with different applications. The aim of this paper is to establish criteria for choosing the optimum isotherm model through a critical review of different adsorption models and the use of various mathematically error functions such as linear regression analysis, nonlinear regression analysis, and error functions for adsorption data optimization. In this paper, 15 mono-parametric adsorption isotherm models having one, two, three, four and five parameters were investigated. In addition, 10 multi-parameter isotherm models were reviewed as well as addressing their applications.
Adsorption process is considered as one of the most used separation and purification processes, in which adsorption occurs by the formation of the physical or chemical bonds between a porous solid medium and a mixture of liquid or gas multi-component fluid. By taking into consideration the equilibrium data and the adsorption properties of both the adsorbent and the adsorbate, adsorption isotherm models can describe the interaction mechanisms between the adsorbent and the adsorbate at constant temperature. Therefore, understanding modelling of the equilibrium data is a very essential way of predicting the adsorption mechanisms of various adsorption systems. Furthermore, adsorption isotherms in batch experiments can be used for the determination of the solid-water distribution coefficient (Kᵢd). This review paper discusses the guidelines of using mono/multi-parametric isotherm models with different applications. The aim of this paper is to establish criteria for choosing the optimum isotherm model through a critical review of different adsorption models and the use of various mathematically error functions such as linear regression analysis, nonlinear regression analysis, and error functions for adsorption data optimization. In this paper, 15 mono-parametric adsorption isotherm models having one, two, three, four and five parameters were investigated. In addition, 10 multi-parameter isotherm models were reviewed as well as addressing their applications.
Adsorption process is considered as one of the most used separation and purification processes, in which adsorption occurs by the formation of the physical or chemical bonds between a porous solid medium and a mixture of liquid or gas multi-component fluid. By taking into consideration the equilibrium data and the adsorption properties of both the adsorbent and the adsorbate, adsorption isotherm models can describe the interaction mechanisms between the adsorbent and the adsorbate at constant temperature. Therefore, understanding modelling of the equilibrium data is a very essential way of predicting the adsorption mechanisms of various adsorption systems. Furthermore, adsorption isotherms in batch experiments can be used for the determination of the solid-water distribution coefficient (Kid). This review paper discusses the guidelines of using mono/multi-parametric isotherm models with different applications. The aim of this paper is to establish criteria for choosing the optimum isotherm model through a critical review of different adsorption models and the use of various mathematically error functions such as linear regression analysis, nonlinear regression analysis, and error functions for adsorption data optimization. In this paper, 15 mono-parametric adsorption isotherm models having one, two, three, four and five parameters were investigated. In addition, 10 multi-parameter isotherm models were reviewed as well as addressing their applications.Adsorption process is considered as one of the most used separation and purification processes, in which adsorption occurs by the formation of the physical or chemical bonds between a porous solid medium and a mixture of liquid or gas multi-component fluid. By taking into consideration the equilibrium data and the adsorption properties of both the adsorbent and the adsorbate, adsorption isotherm models can describe the interaction mechanisms between the adsorbent and the adsorbate at constant temperature. Therefore, understanding modelling of the equilibrium data is a very essential way of predicting the adsorption mechanisms of various adsorption systems. Furthermore, adsorption isotherms in batch experiments can be used for the determination of the solid-water distribution coefficient (Kid). This review paper discusses the guidelines of using mono/multi-parametric isotherm models with different applications. The aim of this paper is to establish criteria for choosing the optimum isotherm model through a critical review of different adsorption models and the use of various mathematically error functions such as linear regression analysis, nonlinear regression analysis, and error functions for adsorption data optimization. In this paper, 15 mono-parametric adsorption isotherm models having one, two, three, four and five parameters were investigated. In addition, 10 multi-parameter isotherm models were reviewed as well as addressing their applications.
[Display omitted] •Adsorption data modelling is an essential way of predicting adsorption mechanisms.•It discusses the guidelines of using mono/multi-parametric isotherm models.•It establishes criteria for choosing the optimum isotherm model.•Ten multi-parameter isotherm models and their applications were reviewed.•Linear and nonlinear regression equations were used to determine best-fit model. Adsorption process is considered as one of the most used separation and purification processes, in which adsorption occurs by the formation of the physical or chemical bonds between a porous solid medium and a mixture of liquid or gas multi-component fluid. By taking into consideration the equilibrium data and the adsorption properties of both the adsorbent and the adsorbate, adsorption isotherm models can describe the interaction mechanisms between the adsorbent and the adsorbate at constant temperature. Therefore, understanding modelling of the equilibrium data is a very essential way of predicting the adsorption mechanisms of various adsorption systems. Furthermore, adsorption isotherms in batch experiments can be used for the determination of the solid-water distribution coefficient (Kid). This review paper discusses the guidelines of using mono/multi-parametric isotherm models with different applications. The aim of this paper is to establish criteria for choosing the optimum isotherm model through a critical review of different adsorption models and the use of various mathematically error functions such as linear regression analysis, nonlinear regression analysis, and error functions for adsorption data optimization. In this paper, 15 mono-parametric adsorption isotherm models having one, two, three, four and five parameters were investigated. In addition, 10 multi-parameter isotherm models were reviewed as well as addressing their applications.
ArticleNumber 122383
Author Al-Ghouti, Mohammad A.
Da'ana, Dana A.
Author_xml – sequence: 1
  givenname: Mohammad A.
  surname: Al-Ghouti
  fullname: Al-Ghouti, Mohammad A.
  email: mohammad.alghouti@qu.edu.qa
– sequence: 2
  givenname: Dana A.
  surname: Da'ana
  fullname: Da'ana, Dana A.
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32369889$$D View this record in MEDLINE/PubMed
BookMark eNqFkcGKFDEQhoOsuLOrj6Dk6KXHJJV0J3qQZdFVWBBBzyGTVLMZujtjklb06e2xRw9e5lSk-L6C_P8VuZjShIQ852zLGW9f7bf7B_drdHUrmFh2QoCGR2TDdQcNALQXZMOAyQa0kZfkqpQ9Y4x3Sj4hlyCgNVqbDfl8N8eAQ5yw0D5lWh-QzgWpmwKNU8V8yFhdjWmiqaculJQPf16xpIXNIx3T4pfX9IZm_B7xx1PyuHdDwWeneU2-vn_35fZDc__p7uPtzX3jZStrA-iCdL3xQkklUffeSc99cDLsUOpWqD4ExxXsHBrTBQN9p_0ONDKh9PLBa_JyvXvI6duMpdoxFo_D4CZMc7FCAtdgVGfOo2CMUNAytaAvTui8GzHYQ46jyz_t38QWQK2Az6mUjP0_hDN7bMbu7akZe2zGrs0s3pv_PB_XYGt2cThrv13tJepjytkWH3HyGGJGX21I8cyF34WurVU
CitedBy_id crossref_primary_10_1016_j_jece_2024_112571
crossref_primary_10_1007_s11356_022_18721_1
crossref_primary_10_1007_s11814_023_1413_3
crossref_primary_10_1002_cphc_202300821
crossref_primary_10_1016_j_mineng_2021_107337
crossref_primary_10_1016_j_eti_2024_103611
crossref_primary_10_1016_j_seppur_2025_132019
crossref_primary_10_1007_s13399_024_06386_4
crossref_primary_10_1007_s43621_025_00835_4
crossref_primary_10_1007_s13399_022_03652_1
crossref_primary_10_1016_j_cej_2024_154700
crossref_primary_10_1007_s11356_021_13422_7
crossref_primary_10_1016_j_matchemphys_2025_130684
crossref_primary_10_1016_j_scitotenv_2022_159207
crossref_primary_10_1016_j_seppur_2021_120147
crossref_primary_10_1080_17518253_2024_2357215
crossref_primary_10_1016_j_chroma_2021_462685
crossref_primary_10_1021_acs_inorgchem_3c01810
crossref_primary_10_1155_2022_4071162
crossref_primary_10_1016_j_colsurfa_2021_126554
crossref_primary_10_1016_j_cej_2023_141577
crossref_primary_10_1016_j_jddst_2023_104262
crossref_primary_10_1016_j_cej_2023_143757
crossref_primary_10_1016_j_scitotenv_2021_149129
crossref_primary_10_1016_j_ijbiomac_2024_136286
crossref_primary_10_1016_j_jenvman_2023_117384
crossref_primary_10_3390_molecules27051723
crossref_primary_10_1016_j_jallcom_2024_175859
crossref_primary_10_1007_s43153_024_00449_9
crossref_primary_10_1016_j_eti_2021_101828
crossref_primary_10_1016_j_molliq_2020_114980
crossref_primary_10_1016_j_molstruc_2024_139175
crossref_primary_10_1016_j_eti_2021_101853
crossref_primary_10_1016_j_ijbiomac_2021_06_188
crossref_primary_10_1016_j_inoche_2023_111785
crossref_primary_10_1016_j_apsusc_2021_151792
crossref_primary_10_1016_j_cej_2025_159417
crossref_primary_10_1021_acs_langmuir_1c01236
crossref_primary_10_1016_j_seppur_2022_122610
crossref_primary_10_3390_ijerph18094489
crossref_primary_10_1016_j_eti_2024_103607
crossref_primary_10_1016_j_jece_2024_113438
crossref_primary_10_17776_csj_1457268
crossref_primary_10_1016_j_biteb_2021_100689
crossref_primary_10_1016_j_molliq_2023_123086
crossref_primary_10_1080_01496395_2025_2463601
crossref_primary_10_1016_j_seppur_2025_132466
crossref_primary_10_1016_j_clce_2022_100069
crossref_primary_10_1007_s13399_023_04701_z
crossref_primary_10_1061_JOEEDU_EEENG_7074
crossref_primary_10_1016_j_jnoncrysol_2021_121058
crossref_primary_10_1016_j_jpcs_2022_110964
crossref_primary_10_1016_j_molliq_2020_114967
crossref_primary_10_1016_j_envpol_2024_124838
crossref_primary_10_1016_j_jtice_2023_105095
crossref_primary_10_1016_j_wmb_2024_07_010
crossref_primary_10_1007_s13762_021_03489_7
crossref_primary_10_1016_j_jhazmat_2022_129174
crossref_primary_10_1007_s42250_022_00367_8
crossref_primary_10_54392_irjmt2244
crossref_primary_10_1002_app_55340
crossref_primary_10_1016_j_envres_2024_118279
crossref_primary_10_1021_acsomega_3c06702
crossref_primary_10_1039_D2RA01810A
crossref_primary_10_3390_ma14247697
crossref_primary_10_1016_j_micromeso_2022_112383
crossref_primary_10_1080_01496395_2022_2036761
crossref_primary_10_1016_j_jwpe_2023_104359
crossref_primary_10_1016_j_talanta_2024_126942
crossref_primary_10_1016_j_matpr_2022_03_033
crossref_primary_10_1016_j_matlet_2022_132501
crossref_primary_10_1016_j_jwpe_2025_107181
crossref_primary_10_3390_ma17040928
crossref_primary_10_1016_j_cej_2022_136755
crossref_primary_10_1016_j_jenvman_2021_114115
crossref_primary_10_1016_j_poly_2022_116253
crossref_primary_10_1002_app_55346
crossref_primary_10_2174_2452271606666221206105936
crossref_primary_10_1016_j_chemosphere_2024_142049
crossref_primary_10_1016_j_chemosphere_2021_131766
crossref_primary_10_1016_j_ijbiomac_2022_08_062
crossref_primary_10_1016_j_clce_2022_100048
crossref_primary_10_1016_j_mineng_2022_107663
crossref_primary_10_1016_j_chemosphere_2023_139808
crossref_primary_10_1007_s10450_022_00367_7
crossref_primary_10_1016_j_molliq_2022_120970
crossref_primary_10_1016_j_colsurfa_2025_136675
crossref_primary_10_1007_s10967_021_07806_9
crossref_primary_10_1007_s10973_023_12347_2
crossref_primary_10_1016_j_cej_2022_137615
crossref_primary_10_1021_acs_energyfuels_2c04008
crossref_primary_10_5004_dwt_2023_29282
crossref_primary_10_1002_slct_202402762
crossref_primary_10_1007_s13399_022_02952_w
crossref_primary_10_1016_j_scitotenv_2024_176357
crossref_primary_10_1016_j_envres_2024_119144
crossref_primary_10_1016_j_matchemphys_2022_126523
crossref_primary_10_1007_s11356_023_30529_1
crossref_primary_10_1016_j_molliq_2024_125991
crossref_primary_10_1016_j_seppur_2023_126072
crossref_primary_10_1016_j_reactfunctpolym_2022_105290
crossref_primary_10_1007_s13201_022_01827_9
crossref_primary_10_1016_j_jenvman_2021_112397
crossref_primary_10_1007_s10311_022_01519_5
crossref_primary_10_1007_s13399_022_03212_7
crossref_primary_10_1007_s42250_021_00228_w
crossref_primary_10_2174_1385272826666220209122508
crossref_primary_10_1021_acsami_2c14744
crossref_primary_10_1016_j_chemosphere_2023_138990
crossref_primary_10_1016_j_seppur_2022_121339
crossref_primary_10_1016_j_cej_2022_139809
crossref_primary_10_1007_s13399_022_03099_4
crossref_primary_10_1016_j_chemosphere_2024_143398
crossref_primary_10_1016_j_jece_2024_113871
crossref_primary_10_1002_rem_21677
crossref_primary_10_1063_5_0184321
crossref_primary_10_1016_j_jciso_2022_100066
crossref_primary_10_1039_D3EN00849E
crossref_primary_10_1021_acsomega_2c08221
crossref_primary_10_1021_acs_iecr_4c04434
crossref_primary_10_1016_j_envres_2024_119136
crossref_primary_10_1016_j_mtcomm_2022_104327
crossref_primary_10_1016_j_jwpe_2022_103178
crossref_primary_10_1002_slct_202305164
crossref_primary_10_3390_molecules28237786
crossref_primary_10_1088_2051_672X_ac431f
crossref_primary_10_1080_01932691_2021_1956322
crossref_primary_10_1016_j_chroma_2023_464119
crossref_primary_10_1080_10889868_2024_2338490
crossref_primary_10_1016_j_chroma_2023_464599
crossref_primary_10_1016_j_biteb_2024_101987
crossref_primary_10_1021_acsaenm_3c00060
crossref_primary_10_1016_j_talanta_2021_122149
crossref_primary_10_1016_j_jwpe_2020_101283
crossref_primary_10_3390_w16162237
crossref_primary_10_1016_j_molliq_2023_121299
crossref_primary_10_1007_s11814_024_00370_4
crossref_primary_10_1016_j_chemosphere_2022_135545
crossref_primary_10_1016_j_heliyon_2024_e31336
crossref_primary_10_1021_acs_langmuir_4c00702
crossref_primary_10_3390_agronomy13092440
crossref_primary_10_1016_j_watres_2020_116622
crossref_primary_10_1016_j_mtcomm_2024_110302
crossref_primary_10_5004_dwt_2021_26922
crossref_primary_10_1016_j_seppur_2022_120824
crossref_primary_10_1016_j_jece_2021_106216
crossref_primary_10_5004_dwt_2021_26926
crossref_primary_10_1007_s13369_022_06786_6
crossref_primary_10_1016_j_jece_2024_112162
crossref_primary_10_1016_j_jwpe_2023_104383
crossref_primary_10_1007_s13762_023_05288_8
crossref_primary_10_3390_ma17051168
crossref_primary_10_1016_j_seppur_2022_123085
crossref_primary_10_1007_s10661_022_10877_0
crossref_primary_10_1039_D3RA06855B
crossref_primary_10_1016_j_jddst_2023_105190
crossref_primary_10_1016_j_jwpe_2023_104386
crossref_primary_10_1002_ceat_202200032
crossref_primary_10_1016_j_cdc_2020_100563
crossref_primary_10_1039_D4NJ04894F
crossref_primary_10_1016_j_seppur_2024_129860
crossref_primary_10_1016_j_jcou_2024_102811
crossref_primary_10_1007_s11814_021_0801_9
crossref_primary_10_1016_j_biteb_2023_101685
crossref_primary_10_1016_j_biortech_2024_131879
crossref_primary_10_1021_acsomega_3c10304
crossref_primary_10_1007_s10751_024_02208_1
crossref_primary_10_1016_j_matpr_2020_11_046
crossref_primary_10_1016_j_microc_2020_105163
crossref_primary_10_3390_w13111514
crossref_primary_10_1002_jssc_70024
crossref_primary_10_3390_coatings13091558
crossref_primary_10_1016_j_gsd_2022_100793
crossref_primary_10_3390_ma15248818
crossref_primary_10_1016_j_jhazmat_2022_129561
crossref_primary_10_3390_molecules28207030
crossref_primary_10_1016_j_hazadv_2025_100647
crossref_primary_10_1016_j_colsurfa_2022_129984
crossref_primary_10_1016_j_jes_2023_05_013
crossref_primary_10_1016_j_jtice_2023_105006
crossref_primary_10_1016_j_jece_2024_114367
crossref_primary_10_1007_s10811_020_02242_w
crossref_primary_10_1007_s11144_024_02708_9
crossref_primary_10_2166_wst_2022_153
crossref_primary_10_1016_j_jece_2024_114364
crossref_primary_10_3390_su132111760
crossref_primary_10_1016_j_jece_2022_107472
crossref_primary_10_1088_2053_1591_abc71f
crossref_primary_10_1016_j_jwpe_2023_104365
crossref_primary_10_1016_j_jece_2021_106244
crossref_primary_10_1007_s11356_024_33578_2
crossref_primary_10_1080_03067319_2020_1862814
crossref_primary_10_1016_j_jwpe_2021_102419
crossref_primary_10_1016_j_jece_2021_106242
crossref_primary_10_1016_j_chphi_2024_100756
crossref_primary_10_1016_j_jhazmat_2023_130853
crossref_primary_10_1016_j_molliq_2021_116124
crossref_primary_10_1007_s13762_022_04605_x
crossref_primary_10_36306_konjes_1379888
crossref_primary_10_3390_recycling9030038
crossref_primary_10_1016_j_ijbiomac_2023_125753
crossref_primary_10_1016_j_chemosphere_2021_130844
crossref_primary_10_1038_s41598_024_56070_w
crossref_primary_10_1002_vjch_202300283
crossref_primary_10_1016_j_jwpe_2024_105564
crossref_primary_10_1007_s11356_023_30164_w
crossref_primary_10_3390_w17010129
crossref_primary_10_1016_j_jcou_2022_102203
crossref_primary_10_1016_j_jclepro_2024_142414
crossref_primary_10_1016_j_hazadv_2024_100404
crossref_primary_10_1016_j_jece_2024_112124
crossref_primary_10_1038_s41598_022_12233_1
crossref_primary_10_1016_j_enmm_2021_100452
crossref_primary_10_1007_s10967_022_08529_1
crossref_primary_10_1007_s12161_023_02452_1
crossref_primary_10_3390_pr11010053
crossref_primary_10_1007_s11270_024_06912_0
crossref_primary_10_1016_j_seppur_2023_124275
crossref_primary_10_1016_j_seppur_2024_127646
crossref_primary_10_1016_j_diamond_2024_110803
crossref_primary_10_1007_s10450_024_00583_3
crossref_primary_10_1016_j_jssc_2022_123830
crossref_primary_10_1039_D2NA00099G
crossref_primary_10_1016_j_cdc_2023_101042
crossref_primary_10_1016_j_mtchem_2022_101277
crossref_primary_10_1016_j_dib_2024_111113
crossref_primary_10_1007_s10853_023_08734_7
crossref_primary_10_1016_j_jece_2024_114337
crossref_primary_10_2166_wpt_2024_039
crossref_primary_10_1016_j_jtice_2021_08_013
crossref_primary_10_3390_su16229854
crossref_primary_10_1039_D2NJ01669A
crossref_primary_10_1080_01932691_2024_2312828
crossref_primary_10_1016_j_heliyon_2024_e31351
crossref_primary_10_1007_s00894_024_06118_5
crossref_primary_10_1007_s11356_024_34581_3
crossref_primary_10_1007_s11356_024_33663_6
crossref_primary_10_1016_j_jhazmat_2023_130803
crossref_primary_10_1021_acs_energyfuels_3c05156
crossref_primary_10_1155_2023_4964194
crossref_primary_10_1016_j_ijbiomac_2023_128810
crossref_primary_10_1016_j_matchemphys_2022_126591
crossref_primary_10_1002_app_54443
crossref_primary_10_1021_acsanm_3c04193
crossref_primary_10_1016_j_mineng_2023_108314
crossref_primary_10_1021_acs_jpcc_4c08754
crossref_primary_10_1002_slct_202400519
crossref_primary_10_1016_j_scitotenv_2023_164008
crossref_primary_10_1016_j_jtice_2021_08_022
crossref_primary_10_1007_s11270_022_05528_6
crossref_primary_10_1016_j_jhazmat_2024_134239
crossref_primary_10_1016_j_carbon_2022_09_013
crossref_primary_10_1016_j_scitotenv_2022_156564
crossref_primary_10_1007_s11270_024_07260_9
crossref_primary_10_3390_polysaccharides4030019
crossref_primary_10_1016_j_jre_2024_06_012
crossref_primary_10_1007_s40831_024_00855_w
crossref_primary_10_3390_app14177577
crossref_primary_10_3390_ijerph192316283
crossref_primary_10_1007_s11356_024_33969_5
crossref_primary_10_1016_j_nanoso_2023_101031
crossref_primary_10_1002_slct_202304796
crossref_primary_10_1016_j_pce_2025_103898
crossref_primary_10_1021_acs_langmuir_4c02851
crossref_primary_10_2166_wpt_2022_058
crossref_primary_10_1016_j_jece_2021_105402
crossref_primary_10_1016_j_jece_2024_115283
crossref_primary_10_1007_s42250_021_00268_2
crossref_primary_10_1016_j_jes_2022_08_026
crossref_primary_10_1016_j_powtec_2023_118387
crossref_primary_10_3390_jox14030070
crossref_primary_10_3390_su16187876
crossref_primary_10_1007_s13738_021_02410_w
crossref_primary_10_1080_15226514_2022_2025759
crossref_primary_10_3390_molecules28186436
crossref_primary_10_1021_acsomega_2c05978
crossref_primary_10_1007_s00604_021_04893_z
crossref_primary_10_1016_j_enmm_2024_100956
crossref_primary_10_1007_s13399_022_02573_3
crossref_primary_10_1016_j_psep_2022_11_038
crossref_primary_10_1016_j_cjche_2023_03_016
crossref_primary_10_48084_etasr_9094
crossref_primary_10_1016_j_seppur_2024_129342
crossref_primary_10_1155_2020_8813420
crossref_primary_10_1515_ract_2023_0165
crossref_primary_10_1016_j_aca_2021_338981
crossref_primary_10_1088_1757_899X_1195_1_012031
crossref_primary_10_1016_j_heliyon_2024_e37497
crossref_primary_10_1021_acsaem_2c03180
crossref_primary_10_1016_j_jtice_2024_105833
crossref_primary_10_1016_j_scitotenv_2024_171545
crossref_primary_10_1039_D3EW00199G
crossref_primary_10_1080_03067319_2024_2419380
crossref_primary_10_32604_jrm_2023_028885
crossref_primary_10_1016_j_seppur_2021_118601
crossref_primary_10_1080_01490451_2022_2089781
crossref_primary_10_1016_j_jece_2023_111866
crossref_primary_10_1016_j_jhazmat_2023_133153
crossref_primary_10_1002_slct_202303442
crossref_primary_10_3390_cryst13040664
crossref_primary_10_1155_2021_9998924
crossref_primary_10_1016_j_arabjc_2022_104059
crossref_primary_10_1016_j_jwpe_2022_102666
crossref_primary_10_1016_j_ceramint_2024_12_320
crossref_primary_10_1016_j_chemosphere_2024_142801
crossref_primary_10_1007_s11356_024_34964_6
crossref_primary_10_1016_j_micromeso_2024_113405
crossref_primary_10_1016_j_carbpol_2020_117423
crossref_primary_10_1016_j_indcrop_2024_119697
crossref_primary_10_1080_03067319_2021_1910245
crossref_primary_10_1007_s10450_025_00613_8
crossref_primary_10_1021_acs_iecr_2c00330
crossref_primary_10_1016_j_jcis_2023_03_001
crossref_primary_10_1016_j_jhazmat_2023_133160
crossref_primary_10_1016_j_ijbiomac_2024_134997
crossref_primary_10_1016_j_talanta_2025_127667
crossref_primary_10_1016_j_envpol_2024_124049
crossref_primary_10_1016_j_jhazmat_2024_133467
crossref_primary_10_1016_j_jece_2023_109559
crossref_primary_10_1016_j_rineng_2024_102081
crossref_primary_10_1016_j_cej_2024_156894
crossref_primary_10_1016_j_jhazmat_2024_134311
crossref_primary_10_1016_j_seppur_2024_128477
crossref_primary_10_1016_j_carbon_2025_120202
crossref_primary_10_1016_j_seppur_2023_125500
crossref_primary_10_1016_j_micromeso_2021_111654
crossref_primary_10_1063_5_0051245
crossref_primary_10_3390_w15162869
crossref_primary_10_1021_acs_iecr_1c03280
crossref_primary_10_1016_j_chemosphere_2024_141982
crossref_primary_10_1007_s13399_022_02577_z
crossref_primary_10_1039_D1GC00841B
crossref_primary_10_5004_dwt_2022_29085
crossref_primary_10_1016_j_cherd_2023_07_015
crossref_primary_10_1016_j_jwpe_2024_106373
crossref_primary_10_1016_j_arabjc_2022_104480
crossref_primary_10_1016_j_arabjc_2023_104750
crossref_primary_10_1016_j_cscee_2025_101101
crossref_primary_10_1039_D0TA07028A
crossref_primary_10_1016_j_hazl_2021_100019
crossref_primary_10_1080_01496395_2025_2455966
crossref_primary_10_3390_ijms231710142
crossref_primary_10_1088_1755_1315_885_1_012060
crossref_primary_10_1016_j_surfin_2024_105511
crossref_primary_10_1007_s13399_024_05282_1
crossref_primary_10_1016_j_chemosphere_2022_134662
crossref_primary_10_1016_j_jwpe_2023_103801
crossref_primary_10_1016_j_cemconcomp_2024_105781
crossref_primary_10_1016_j_nxsust_2024_100054
crossref_primary_10_1016_j_nxsust_2024_100052
crossref_primary_10_1016_j_jece_2021_106306
crossref_primary_10_1002_pen_26922
crossref_primary_10_1007_s13399_025_06713_3
crossref_primary_10_3390_su16187888
crossref_primary_10_1002_jctb_6510
crossref_primary_10_1016_j_biortech_2022_128144
crossref_primary_10_3390_chemengineering7060114
crossref_primary_10_1016_j_seppur_2021_118645
crossref_primary_10_1016_j_enmm_2024_100965
crossref_primary_10_1016_j_jece_2023_111820
crossref_primary_10_1016_j_jwpe_2021_102354
crossref_primary_10_1016_j_scp_2024_101565
crossref_primary_10_1016_j_cej_2024_155531
crossref_primary_10_1016_j_jece_2023_109504
crossref_primary_10_1016_j_colsurfa_2020_125449
crossref_primary_10_1007_s10661_023_12153_1
crossref_primary_10_1016_j_seppur_2024_127112
crossref_primary_10_1039_D4NA00836G
crossref_primary_10_1155_2021_5556940
crossref_primary_10_1016_j_micromeso_2022_111982
crossref_primary_10_1007_s13399_021_01722_4
crossref_primary_10_3390_molecules26051426
crossref_primary_10_3390_pr12010238
crossref_primary_10_58692_jotcsb_1580910
crossref_primary_10_1016_j_corsci_2020_109011
crossref_primary_10_1039_D3RA05315F
crossref_primary_10_1016_j_jenvman_2024_123008
crossref_primary_10_1029_2022WR033149
crossref_primary_10_1007_s13399_022_03038_3
crossref_primary_10_5004_dwt_2023_29748
crossref_primary_10_1016_j_psep_2024_01_042
crossref_primary_10_1016_j_clet_2023_100675
crossref_primary_10_1016_j_psep_2022_02_034
crossref_primary_10_1039_D4CS00574K
crossref_primary_10_3390_polym12102353
crossref_primary_10_1007_s13762_020_02961_0
crossref_primary_10_1016_j_clce_2022_100011
crossref_primary_10_3390_su14137585
crossref_primary_10_1016_j_envres_2022_113224
crossref_primary_10_3103_S1063455X24050011
crossref_primary_10_5182_jaie_33_8
crossref_primary_10_1080_09593330_2023_2198732
crossref_primary_10_1038_s41467_024_48090_x
crossref_primary_10_1134_S1070427224100045
crossref_primary_10_1016_j_jhazmat_2021_125385
crossref_primary_10_58224_2619_0575_2024_7_2_13_25
crossref_primary_10_3390_min13121530
crossref_primary_10_3390_molecules27041405
crossref_primary_10_1016_j_biombioe_2024_107279
crossref_primary_10_1002_slct_202102877
crossref_primary_10_1016_j_jece_2024_113934
crossref_primary_10_1021_acsagscitech_4c00576
crossref_primary_10_1021_acs_jced_0c00927
crossref_primary_10_1021_acsestwater_4c00399
crossref_primary_10_1016_j_ceja_2024_100608
crossref_primary_10_1016_j_colsurfa_2024_134991
crossref_primary_10_1016_j_ijoes_2024_100691
crossref_primary_10_5004_dwt_2021_27323
crossref_primary_10_1016_j_dwt_2024_100913
crossref_primary_10_1016_j_heliyon_2024_e37445
crossref_primary_10_1007_s11694_025_03170_4
crossref_primary_10_1016_j_seppur_2021_119099
crossref_primary_10_1002_smtd_202400049
crossref_primary_10_1016_j_ijbiomac_2023_128326
crossref_primary_10_1007_s13399_022_03608_5
crossref_primary_10_1007_s11356_021_13959_7
crossref_primary_10_1016_j_scp_2023_101205
crossref_primary_10_1007_s00107_024_02148_1
crossref_primary_10_1016_j_matchemphys_2022_125752
crossref_primary_10_1016_j_molliq_2024_125035
crossref_primary_10_1021_acsomega_3c02283
crossref_primary_10_1016_j_jclepro_2021_129422
crossref_primary_10_1016_j_jece_2020_104691
crossref_primary_10_1007_s11270_021_05118_y
crossref_primary_10_1080_15226514_2024_2428434
crossref_primary_10_1007_s42250_023_00796_z
crossref_primary_10_3390_app131810511
crossref_primary_10_3390_toxics11040369
crossref_primary_10_1016_j_envc_2021_100373
crossref_primary_10_1021_acs_langmuir_2c02014
crossref_primary_10_1063_5_0219452
crossref_primary_10_1080_09593330_2021_2011427
crossref_primary_10_1016_j_colsurfa_2022_130170
crossref_primary_10_1016_j_jece_2024_113953
crossref_primary_10_1021_acsanm_3c02014
crossref_primary_10_1016_j_emcon_2024_100303
crossref_primary_10_1016_j_surfin_2020_100722
crossref_primary_10_1016_j_reactfunctpolym_2022_105389
crossref_primary_10_1016_j_wasman_2020_10_021
crossref_primary_10_1016_j_jclepro_2022_135157
crossref_primary_10_1016_j_cej_2023_145074
crossref_primary_10_1016_j_jclepro_2023_137237
crossref_primary_10_1016_j_cej_2021_132801
crossref_primary_10_1016_j_colsurfa_2024_135823
crossref_primary_10_3390_foods9091278
crossref_primary_10_1016_j_jclepro_2023_137233
crossref_primary_10_1021_acs_jpcb_1c08148
crossref_primary_10_1016_j_cej_2021_130645
crossref_primary_10_1016_j_dwt_2024_100965
crossref_primary_10_1038_s41545_024_00340_7
crossref_primary_10_3390_polym13111691
crossref_primary_10_1039_D3EW00464C
crossref_primary_10_1002_ep_14329
crossref_primary_10_1007_s11356_020_10777_1
crossref_primary_10_1016_j_cartre_2025_100476
crossref_primary_10_1016_j_jece_2023_110115
crossref_primary_10_15243_jdmlm_2024_113_5551
crossref_primary_10_3390_molecules28073016
crossref_primary_10_1080_09593330_2021_2020339
crossref_primary_10_1016_j_envres_2022_114514
crossref_primary_10_1007_s11356_024_33240_x
crossref_primary_10_1016_j_chemosphere_2023_138457
crossref_primary_10_1007_s11356_024_33262_5
crossref_primary_10_1007_s13762_023_04806_y
crossref_primary_10_1007_s11837_025_07205_5
crossref_primary_10_1016_j_jaap_2021_105206
crossref_primary_10_3390_ma14102528
crossref_primary_10_1021_acsapm_1c01901
crossref_primary_10_4236_ajac_2021_125010
crossref_primary_10_1007_s10450_024_00512_4
crossref_primary_10_1016_j_jwpe_2023_103897
crossref_primary_10_1016_j_jhazmat_2025_137220
crossref_primary_10_1021_acs_macromol_1c02413
crossref_primary_10_3390_ma18061306
crossref_primary_10_3390_ma14051312
crossref_primary_10_1016_j_conbuildmat_2023_133763
crossref_primary_10_3390_molecules29020300
crossref_primary_10_3390_w16111499
crossref_primary_10_1016_j_ijbiomac_2025_141962
crossref_primary_10_1016_j_ijbiomac_2023_127034
crossref_primary_10_1016_j_cscee_2024_100782
crossref_primary_10_1016_j_envres_2024_119548
crossref_primary_10_1016_j_indcrop_2024_119254
crossref_primary_10_1016_j_jhazmat_2021_126657
crossref_primary_10_1016_j_mtcomm_2024_111174
crossref_primary_10_1016_j_envres_2025_120819
crossref_primary_10_1016_j_heliyon_2024_e33097
crossref_primary_10_1016_j_micromeso_2024_113450
crossref_primary_10_1016_S1872_2067_23_64536_X
crossref_primary_10_1038_s41598_023_32413_x
crossref_primary_10_1016_j_scitotenv_2022_159261
crossref_primary_10_1021_acs_langmuir_4c03368
crossref_primary_10_1016_j_seppur_2024_129379
crossref_primary_10_1080_09593330_2024_2447960
crossref_primary_10_1007_s13201_022_01800_6
crossref_primary_10_1016_j_cej_2021_132853
crossref_primary_10_3390_ma17174172
crossref_primary_10_1016_j_cej_2023_147215
crossref_primary_10_1016_j_cej_2023_146367
crossref_primary_10_1002_slct_202403106
crossref_primary_10_1016_j_watres_2024_122433
crossref_primary_10_1016_j_jsamd_2024_100807
crossref_primary_10_1021_acsomega_2c04269
crossref_primary_10_1007_s42823_022_00340_y
crossref_primary_10_1007_s10904_023_02612_0
crossref_primary_10_1007_s10811_023_03070_4
crossref_primary_10_51847_jIOvZK4SgJ
crossref_primary_10_1016_j_memsci_2024_123155
crossref_primary_10_1016_j_cej_2023_147690
crossref_primary_10_1016_j_foodchem_2024_139291
crossref_primary_10_1016_j_scitotenv_2024_171986
crossref_primary_10_1080_01496395_2024_2319146
crossref_primary_10_3390_magnetochemistry9040092
crossref_primary_10_1002_bte2_20240032
crossref_primary_10_1186_s12896_024_00913_x
crossref_primary_10_1016_j_seppur_2022_120785
crossref_primary_10_1007_s13762_022_04646_2
crossref_primary_10_1016_j_aca_2021_339293
crossref_primary_10_1111_php_14043
crossref_primary_10_15407_hftp15_04_561
crossref_primary_10_1016_j_jwpe_2025_107265
crossref_primary_10_1016_j_envres_2024_119289
crossref_primary_10_1016_j_ijbiomac_2024_137021
crossref_primary_10_3390_gels11030205
crossref_primary_10_1016_j_chemosphere_2022_137448
crossref_primary_10_1016_j_jwpe_2020_101795
crossref_primary_10_1016_j_envres_2020_110594
crossref_primary_10_1007_s13762_022_04548_3
crossref_primary_10_1021_acsearthspacechem_3c00291
crossref_primary_10_1038_s41598_024_59982_9
crossref_primary_10_1016_j_chemosphere_2021_131863
crossref_primary_10_1016_j_jconhyd_2024_104486
crossref_primary_10_1007_s42250_024_01118_7
crossref_primary_10_3390_w14162454
crossref_primary_10_1016_j_carpta_2021_100141
crossref_primary_10_3390_molecules29133099
crossref_primary_10_1016_j_jwpe_2025_107259
crossref_primary_10_1021_acsomega_2c07471
crossref_primary_10_3390_molecules29010148
crossref_primary_10_1039_D1EN01015H
crossref_primary_10_1080_15567036_2024_2418441
crossref_primary_10_1016_j_bej_2022_108379
crossref_primary_10_1016_j_envres_2021_110883
crossref_primary_10_1007_s11356_021_17422_5
crossref_primary_10_1016_j_cscee_2024_100746
crossref_primary_10_1080_03067319_2024_2368265
crossref_primary_10_1007_s11783_023_1707_z
crossref_primary_10_1016_j_jscs_2023_101748
crossref_primary_10_1016_j_clay_2022_106711
crossref_primary_10_1016_j_clay_2023_107088
crossref_primary_10_1007_s11356_024_32700_8
crossref_primary_10_1016_j_talanta_2023_125284
crossref_primary_10_3390_toxins15020104
crossref_primary_10_1016_j_cscee_2023_100471
crossref_primary_10_1016_j_envres_2023_115871
crossref_primary_10_1016_j_chemosphere_2020_128379
crossref_primary_10_1002_jctb_7258
crossref_primary_10_1016_j_hybadv_2024_100272
crossref_primary_10_1515_hf_2022_0117
crossref_primary_10_15243_jdmlm_2024_114_6427
crossref_primary_10_1007_s10924_021_02068_8
crossref_primary_10_3390_ma16155243
crossref_primary_10_1016_j_fuel_2022_127213
crossref_primary_10_1021_acs_langmuir_3c02778
crossref_primary_10_1007_s11356_023_25710_5
crossref_primary_10_1002_ghg_2274
crossref_primary_10_2166_wst_2021_070
crossref_primary_10_1016_j_cscee_2024_100764
crossref_primary_10_1016_j_diamond_2024_110944
crossref_primary_10_2478_pjct_2024_0019
crossref_primary_10_1007_s11270_024_07400_1
crossref_primary_10_3390_su13168994
crossref_primary_10_1007_s11356_024_34729_1
crossref_primary_10_1016_j_colsurfa_2023_132883
crossref_primary_10_1016_j_jece_2024_112650
crossref_primary_10_1016_j_foodchem_2023_135676
crossref_primary_10_1016_j_pmatsci_2025_101460
crossref_primary_10_1016_j_ccr_2021_214376
crossref_primary_10_1016_j_jssc_2022_123579
crossref_primary_10_1002_aenm_202201494
crossref_primary_10_1007_s11666_025_01948_y
crossref_primary_10_1007_s41742_023_00535_9
crossref_primary_10_1016_j_jhazmat_2020_122907
crossref_primary_10_1016_j_est_2024_110453
crossref_primary_10_1016_j_jscs_2023_101723
crossref_primary_10_1016_j_jece_2022_107989
crossref_primary_10_1016_j_biortech_2024_130698
crossref_primary_10_3390_catal12101169
crossref_primary_10_1007_s10967_021_08131_x
crossref_primary_10_1007_s11356_023_26423_5
crossref_primary_10_1016_j_molliq_2024_125865
crossref_primary_10_1016_j_jenvman_2024_121609
crossref_primary_10_1039_D2RA02031A
crossref_primary_10_1016_j_molstruc_2024_139256
crossref_primary_10_1021_acs_iecr_1c01788
crossref_primary_10_1016_j_surfin_2024_105191
crossref_primary_10_1016_j_ijbiomac_2024_137448
crossref_primary_10_1021_acsami_4c10154
crossref_primary_10_1155_2022_5787690
crossref_primary_10_1007_s10668_023_03311_z
crossref_primary_10_1007_s10924_023_03089_1
crossref_primary_10_1080_09593330_2023_2295827
crossref_primary_10_1007_s11356_021_18484_1
crossref_primary_10_1016_j_diamond_2023_110681
crossref_primary_10_1016_j_jphotochem_2024_115689
crossref_primary_10_3390_nano12061023
crossref_primary_10_1016_j_enmm_2024_101014
crossref_primary_10_1016_j_talanta_2021_122449
crossref_primary_10_1002_kin_21774
crossref_primary_10_1016_j_carbpol_2021_118355
crossref_primary_10_5004_dwt_2022_28416
crossref_primary_10_1039_D4TA05062B
crossref_primary_10_3390_en13174513
crossref_primary_10_1016_j_jhazmat_2023_131858
crossref_primary_10_1021_acs_iecr_2c02274
crossref_primary_10_1016_j_seppur_2022_122532
crossref_primary_10_1016_j_inoche_2024_113092
crossref_primary_10_1088_1361_6528_ac3c7a
crossref_primary_10_3390_polym15051157
crossref_primary_10_1016_j_enmm_2021_100517
crossref_primary_10_1002_tqem_22310
crossref_primary_10_1016_j_susmat_2025_e01279
crossref_primary_10_1016_j_clay_2022_106745
crossref_primary_10_5004_dwt_2022_28421
crossref_primary_10_1016_j_micromeso_2022_112288
crossref_primary_10_1016_j_snb_2021_131196
crossref_primary_10_1007_s11164_023_05161_w
crossref_primary_10_3390_w15203560
crossref_primary_10_1007_s13399_023_05248_9
crossref_primary_10_1016_j_ijbiomac_2021_04_079
crossref_primary_10_1016_j_wmb_2024_01_009
crossref_primary_10_1007_s13399_024_05567_5
crossref_primary_10_1038_s41598_024_69769_7
crossref_primary_10_1080_01932691_2023_2281519
crossref_primary_10_1016_j_jece_2022_107147
crossref_primary_10_2166_wrd_2024_142
crossref_primary_10_21923_jesd_1560542
crossref_primary_10_1007_s11356_024_33106_2
crossref_primary_10_1016_j_ica_2022_121226
crossref_primary_10_1002_cnma_202400582
crossref_primary_10_1016_j_wasman_2020_09_011
crossref_primary_10_2166_wst_2022_239
crossref_primary_10_1016_j_jclepro_2023_136612
crossref_primary_10_4491_KSEE_2023_45_1_1
crossref_primary_10_2166_wst_2022_250
crossref_primary_10_1016_j_scitotenv_2021_148550
crossref_primary_10_1515_ijfe_2023_0273
crossref_primary_10_1080_02286203_2024_2389012
crossref_primary_10_1016_j_molstruc_2024_139219
crossref_primary_10_1016_j_surfin_2022_102325
crossref_primary_10_1016_j_crgsc_2022_100325
crossref_primary_10_1016_j_wen_2024_01_003
crossref_primary_10_1021_acs_langmuir_3c01813
crossref_primary_10_1021_acsomega_3c06178
crossref_primary_10_1002_slct_202401509
crossref_primary_10_1038_s41598_022_15814_2
crossref_primary_10_1002_tcr_202400188
crossref_primary_10_1016_j_ijbiomac_2024_136555
crossref_primary_10_4028_p_8hb3rR
crossref_primary_10_1002_bbb_2554
crossref_primary_10_1021_prechem_4c00036
crossref_primary_10_1007_s43832_024_00180_z
crossref_primary_10_1021_acssuschemeng_3c04672
crossref_primary_10_3390_toxics11120950
crossref_primary_10_3799_dqkx_2021_108
crossref_primary_10_1016_j_jwpe_2021_102515
crossref_primary_10_1016_j_biortech_2023_129380
crossref_primary_10_1021_acs_jpcc_1c09732
crossref_primary_10_1039_D4RA04942J
crossref_primary_10_1016_j_indcrop_2023_117122
crossref_primary_10_1016_j_snb_2024_136401
crossref_primary_10_1016_j_biteb_2022_101045
crossref_primary_10_1002_chem_202003643
crossref_primary_10_1016_j_envres_2023_116314
crossref_primary_10_1016_j_watres_2023_120825
crossref_primary_10_3390_nano11040952
crossref_primary_10_1016_j_jwpe_2024_104777
crossref_primary_10_1016_j_mseb_2022_116191
crossref_primary_10_1016_j_saa_2022_122099
crossref_primary_10_1016_j_est_2024_112610
crossref_primary_10_1016_j_jtice_2024_105675
crossref_primary_10_1016_j_cej_2024_154882
crossref_primary_10_1016_j_petrol_2022_110897
crossref_primary_10_1016_j_jece_2021_106353
crossref_primary_10_1002_app_54997
crossref_primary_10_3390_w15213728
crossref_primary_10_1016_j_ijbiomac_2023_124277
crossref_primary_10_1016_j_jhazmat_2022_129680
crossref_primary_10_1007_s13399_022_03304_4
crossref_primary_10_1016_j_jece_2024_113156
crossref_primary_10_1016_j_hazadv_2024_100504
crossref_primary_10_3390_polym16182555
crossref_primary_10_1016_j_biteb_2022_101039
crossref_primary_10_1080_10826068_2021_2007488
crossref_primary_10_1007_s40843_021_1933_4
crossref_primary_10_1016_j_cej_2023_144309
crossref_primary_10_3390_ma14247500
crossref_primary_10_3390_su152215727
crossref_primary_10_1016_j_scp_2022_100621
crossref_primary_10_3390_w16202932
crossref_primary_10_1016_j_jcis_2023_01_010
crossref_primary_10_1016_j_cej_2024_157906
crossref_primary_10_3390_app12157607
crossref_primary_10_3390_membranes13050488
crossref_primary_10_1016_j_chemosphere_2021_131813
crossref_primary_10_1016_j_foodchem_2021_131592
crossref_primary_10_1016_j_molliq_2024_124928
crossref_primary_10_1038_s41598_024_69399_z
crossref_primary_10_1007_s11356_023_30296_z
crossref_primary_10_1007_s13762_022_03928_z
crossref_primary_10_1002_batt_202400101
crossref_primary_10_3390_molecules29010173
crossref_primary_10_1039_D3DT02696E
crossref_primary_10_1080_03067319_2024_2382945
crossref_primary_10_21597_jist_1163166
crossref_primary_10_1021_acsomega_1c04743
crossref_primary_10_1016_j_seppur_2023_124144
crossref_primary_10_1016_j_chemosphere_2024_142548
crossref_primary_10_1016_j_snb_2024_136451
crossref_primary_10_1039_D4CP02609H
crossref_primary_10_1016_j_scitotenv_2022_156418
crossref_primary_10_1016_j_envres_2023_116783
crossref_primary_10_1016_j_envpol_2023_123190
crossref_primary_10_1039_D3SU00365E
crossref_primary_10_1039_D4NR02857K
crossref_primary_10_1186_s42834_022_00150_x
crossref_primary_10_1007_s10967_023_09114_w
crossref_primary_10_1016_j_seppur_2023_125481
crossref_primary_10_1016_j_inoche_2021_108950
crossref_primary_10_3390_met15010056
crossref_primary_10_14710_jil_21_4_933_945
crossref_primary_10_1016_j_molliq_2021_117312
crossref_primary_10_1007_s11356_021_14180_2
crossref_primary_10_1016_j_apcatb_2022_122217
crossref_primary_10_1016_j_eti_2020_101092
crossref_primary_10_1016_j_ceramint_2022_12_072
crossref_primary_10_1016_j_colsurfa_2022_130635
crossref_primary_10_1088_1755_1315_749_1_012013
crossref_primary_10_1002_smll_202207348
crossref_primary_10_1016_j_watres_2022_119115
crossref_primary_10_1021_acsomega_2c07087
crossref_primary_10_1007_s10854_024_12643_z
crossref_primary_10_1016_j_jenvman_2025_124108
crossref_primary_10_1515_polyeng_2023_0056
crossref_primary_10_3390_molecules30010092
crossref_primary_10_1016_j_foodchem_2024_138762
crossref_primary_10_3390_bios12121133
crossref_primary_10_1016_j_cherd_2021_05_023
crossref_primary_10_3390_molecules30050982
crossref_primary_10_1016_j_ijbiomac_2024_133481
crossref_primary_10_1007_s11270_023_06311_x
crossref_primary_10_1016_j_colsurfa_2024_135338
crossref_primary_10_5004_dwt_2022_28013
crossref_primary_10_5004_dwt_2022_28497
crossref_primary_10_1016_j_colsurfa_2021_128051
crossref_primary_10_1016_j_seppur_2024_128846
crossref_primary_10_1155_2021_5597299
crossref_primary_10_5004_dwt_2023_29344
crossref_primary_10_1016_j_supflu_2023_105940
crossref_primary_10_2166_wrd_2024_118
crossref_primary_10_1007_s12221_023_00401_7
crossref_primary_10_1007_s44211_022_00183_7
crossref_primary_10_1016_j_enmm_2021_100598
crossref_primary_10_3390_su16177599
crossref_primary_10_1016_j_surfin_2022_101897
crossref_primary_10_1080_09593330_2020_1861107
crossref_primary_10_1016_j_psep_2024_09_077
crossref_primary_10_3390_pr11010191
crossref_primary_10_1016_j_eng_2024_11_015
crossref_primary_10_1007_s11356_022_25065_3
crossref_primary_10_1039_D2EW00986B
crossref_primary_10_1016_j_cej_2021_132166
crossref_primary_10_1016_j_inoche_2024_112608
crossref_primary_10_1016_j_cej_2021_134346
crossref_primary_10_1007_s13762_022_04285_7
crossref_primary_10_1007_s10098_024_03026_3
crossref_primary_10_2166_wpt_2023_139
crossref_primary_10_1080_15226514_2021_1984385
crossref_primary_10_1007_s10450_024_00451_0
crossref_primary_10_1016_j_ijbiomac_2023_127850
crossref_primary_10_1016_j_eti_2022_102525
crossref_primary_10_1177_02636174241280029
crossref_primary_10_1007_s44371_024_00018_6
crossref_primary_10_1016_j_jclepro_2021_127502
crossref_primary_10_1016_j_ijbiomac_2024_131394
crossref_primary_10_1021_acs_energyfuels_0c03238
crossref_primary_10_1016_j_chemosphere_2024_142909
crossref_primary_10_1016_j_colsurfa_2020_125504
crossref_primary_10_1016_j_ecoenv_2022_113646
crossref_primary_10_3390_polym15234600
crossref_primary_10_1021_acs_chemmater_4c03074
crossref_primary_10_1007_s13762_024_05761_y
crossref_primary_10_1039_D0RA10910J
crossref_primary_10_1007_s00289_023_04864_9
crossref_primary_10_1016_j_jenvrad_2023_107350
crossref_primary_10_1016_j_ijhydene_2024_10_070
crossref_primary_10_1016_j_jhazmat_2022_129755
crossref_primary_10_1021_acs_inorgchem_3c04640
crossref_primary_10_3390_w12092624
crossref_primary_10_1016_j_clce_2025_100146
crossref_primary_10_3390_en14092682
crossref_primary_10_1007_s11664_024_11646_0
crossref_primary_10_1155_2024_6346033
crossref_primary_10_1016_j_jddst_2023_104703
crossref_primary_10_1016_j_scitotenv_2023_165710
crossref_primary_10_1016_j_chemosphere_2022_136922
crossref_primary_10_1016_j_surfin_2021_101696
crossref_primary_10_1016_j_cdc_2020_100607
crossref_primary_10_1021_acs_est_0c07936
crossref_primary_10_1016_j_rser_2024_115093
crossref_primary_10_1039_D2NJ05646A
crossref_primary_10_1016_j_ijbiomac_2022_10_001
crossref_primary_10_1016_j_molstruc_2022_133723
crossref_primary_10_3390_app13169147
crossref_primary_10_3390_ma15134445
crossref_primary_10_1016_j_scitotenv_2023_163517
crossref_primary_10_21597_jist_1275258
crossref_primary_10_3390_toxins16110479
crossref_primary_10_1016_j_jece_2023_110647
crossref_primary_10_1016_j_colsurfa_2024_133594
crossref_primary_10_1016_j_reactfunctpolym_2024_106028
crossref_primary_10_1016_j_scitotenv_2023_164854
crossref_primary_10_1088_2053_1591_ac9cb7
crossref_primary_10_1016_j_tsep_2021_101058
crossref_primary_10_1080_09593330_2023_2215451
crossref_primary_10_1016_j_seppur_2023_125857
crossref_primary_10_1007_s13399_024_06303_9
crossref_primary_10_3390_polym14173613
crossref_primary_10_1016_j_heliyon_2023_e20665
crossref_primary_10_3389_fchem_2025_1524683
crossref_primary_10_1016_j_dwt_2024_100898
crossref_primary_10_1007_s10163_023_01867_6
crossref_primary_10_1016_j_dwt_2024_100896
crossref_primary_10_1016_j_ijbiomac_2024_134877
crossref_primary_10_1016_j_jece_2023_110664
crossref_primary_10_3390_recycling6020041
crossref_primary_10_1007_s11356_024_33585_3
crossref_primary_10_1016_j_eti_2021_102258
crossref_primary_10_1080_03067319_2025_2458144
crossref_primary_10_1007_s11270_024_07070_z
crossref_primary_10_1016_j_micromeso_2022_111834
crossref_primary_10_12714_egejfas_39_4_05
crossref_primary_10_3390_pr12010148
crossref_primary_10_1016_j_molliq_2024_124919
crossref_primary_10_1007_s11356_023_26912_7
crossref_primary_10_1016_j_seppur_2023_125867
crossref_primary_10_3390_su14063640
crossref_primary_10_1016_j_jwpe_2024_106015
crossref_primary_10_1016_j_ijbiomac_2023_126447
crossref_primary_10_1007_s13201_022_01854_6
crossref_primary_10_1016_j_biombioe_2024_107103
crossref_primary_10_1016_j_envres_2024_118711
crossref_primary_10_1016_j_carpta_2024_100637
crossref_primary_10_3390_nano10112213
crossref_primary_10_1039_D4NJ03271C
crossref_primary_10_1016_j_jwpe_2021_102447
crossref_primary_10_1002_slct_202200262
crossref_primary_10_1016_j_matpr_2021_12_224
crossref_primary_10_1016_j_molliq_2024_124097
crossref_primary_10_5004_dwt_2021_27257
crossref_primary_10_1016_j_seppur_2024_127018
crossref_primary_10_1016_j_cej_2022_140452
crossref_primary_10_1016_j_ijbiomac_2025_140581
crossref_primary_10_1007_s13399_023_04839_w
crossref_primary_10_1016_j_desal_2024_117963
crossref_primary_10_1080_10601325_2022_2041030
crossref_primary_10_1016_j_carbpol_2020_116634
crossref_primary_10_1038_s41598_022_15292_6
crossref_primary_10_1016_j_jcou_2020_101297
crossref_primary_10_1021_acsomega_3c08317
crossref_primary_10_1016_j_surfin_2022_101947
crossref_primary_10_1016_j_ecoenv_2020_111710
crossref_primary_10_1016_j_jwpe_2021_102435
crossref_primary_10_1021_acsanm_1c03863
crossref_primary_10_3390_molecules29040898
crossref_primary_10_1016_j_jece_2021_105575
crossref_primary_10_1155_2022_4129833
crossref_primary_10_1088_1755_1315_1467_1_012007
crossref_primary_10_1016_j_procbio_2023_01_013
crossref_primary_10_1177_00405175221139321
crossref_primary_10_2166_wst_2022_205
crossref_primary_10_1016_j_chemosphere_2023_138165
crossref_primary_10_1016_j_molliq_2020_115235
crossref_primary_10_1016_j_jobe_2023_107143
crossref_primary_10_1007_s13399_023_04389_1
crossref_primary_10_1016_j_chemosphere_2023_139042
crossref_primary_10_3390_nano14231925
crossref_primary_10_1016_j_jhazmat_2020_124672
crossref_primary_10_1016_j_ces_2025_121440
crossref_primary_10_1016_j_wasman_2023_03_019
crossref_primary_10_1016_j_jhazmat_2020_124678
crossref_primary_10_1016_j_scitotenv_2022_153471
crossref_primary_10_3390_nano12030318
crossref_primary_10_1016_j_ces_2025_121439
crossref_primary_10_1021_acssensors_1c00787
crossref_primary_10_1016_j_jpcs_2023_111408
crossref_primary_10_3390_polym15071666
crossref_primary_10_1016_j_mtcomm_2023_107589
crossref_primary_10_1016_j_reactfunctpolym_2024_106069
crossref_primary_10_1007_s13762_024_05992_z
crossref_primary_10_1016_j_biortech_2021_124818
crossref_primary_10_3390_pr12102257
crossref_primary_10_1016_j_seppur_2023_125898
crossref_primary_10_1080_00405000_2024_2352677
crossref_primary_10_1007_s11356_024_35612_9
crossref_primary_10_1016_j_watres_2025_123308
crossref_primary_10_15251_DJNB_2023_182_567
crossref_primary_10_1016_j_jwpe_2024_106489
crossref_primary_10_1016_j_scitotenv_2024_174501
crossref_primary_10_3390_min12070846
crossref_primary_10_1016_j_chroma_2024_465066
crossref_primary_10_1088_1755_1315_1297_1_012093
crossref_primary_10_1016_j_enmm_2023_100795
crossref_primary_10_1016_j_envpol_2023_121871
crossref_primary_10_1016_j_bej_2023_109136
crossref_primary_10_1016_j_jwpe_2024_106481
crossref_primary_10_1016_j_marpolbul_2025_117832
crossref_primary_10_1016_j_indcrop_2022_114971
crossref_primary_10_3103_S1068375523030146
crossref_primary_10_1007_s11270_023_06511_5
crossref_primary_10_1007_s13201_022_01832_y
crossref_primary_10_1016_j_jallcom_2022_164508
crossref_primary_10_1016_j_wse_2024_01_005
crossref_primary_10_1016_j_micromeso_2021_111572
crossref_primary_10_2166_wst_2022_227
crossref_primary_10_1016_j_jngse_2021_104289
crossref_primary_10_1007_s11696_025_03893_0
crossref_primary_10_3390_ma15165567
crossref_primary_10_1016_j_molstruc_2023_136218
crossref_primary_10_1039_D3TB00138E
crossref_primary_10_1016_j_micromeso_2024_113395
crossref_primary_10_1016_j_jece_2025_116133
crossref_primary_10_1007_s10653_023_01540_9
crossref_primary_10_1016_j_gsd_2023_101034
crossref_primary_10_1016_j_ijpharm_2024_124507
crossref_primary_10_3390_ijms23137112
crossref_primary_10_3390_separations10080438
crossref_primary_10_1016_j_jece_2020_104310
crossref_primary_10_1016_j_jwpe_2020_101716
crossref_primary_10_3390_ijerph18084247
crossref_primary_10_1007_s11270_023_06759_x
crossref_primary_10_1016_j_dwt_2024_100801
crossref_primary_10_1016_j_ijbiomac_2020_09_046
crossref_primary_10_12688_f1000research_132880_1
crossref_primary_10_3762_bjnano_16_9
crossref_primary_10_1002_adma_202401623
crossref_primary_10_12688_f1000research_132880_2
crossref_primary_10_1016_j_molliq_2020_115203
crossref_primary_10_3390_min14020133
crossref_primary_10_1007_s13399_023_04896_1
crossref_primary_10_1016_j_colsurfa_2023_131064
crossref_primary_10_1016_j_compchemeng_2021_107474
crossref_primary_10_1016_j_seppur_2021_118913
crossref_primary_10_1016_j_seppur_2025_131434
crossref_primary_10_1021_acs_iecr_3c01358
crossref_primary_10_1021_acs_cgd_4c00586
crossref_primary_10_1016_j_isci_2022_104138
crossref_primary_10_1007_s10904_024_03571_w
crossref_primary_10_1016_j_ceramint_2024_12_270
crossref_primary_10_1007_s13369_021_05416_x
crossref_primary_10_1016_j_envres_2021_112543
crossref_primary_10_1007_s00289_023_05065_0
crossref_primary_10_1016_j_colsurfa_2024_134878
crossref_primary_10_1016_j_jclepro_2022_135010
crossref_primary_10_1016_j_chroma_2024_464631
crossref_primary_10_1002_slct_202403256
crossref_primary_10_1016_j_ijbiomac_2024_130446
crossref_primary_10_1016_j_molliq_2024_124069
crossref_primary_10_2478_pjct_2024_0034
crossref_primary_10_1016_j_cjche_2024_06_016
crossref_primary_10_1016_j_gsd_2024_101327
crossref_primary_10_1016_j_rechem_2024_101339
crossref_primary_10_1016_j_molstruc_2023_136234
crossref_primary_10_3390_su15032488
crossref_primary_10_1016_j_mseb_2023_116820
crossref_primary_10_1021_acsomega_4c04324
crossref_primary_10_1016_j_cjche_2024_06_006
crossref_primary_10_1016_j_rineng_2023_101409
crossref_primary_10_1016_j_jece_2023_109273
crossref_primary_10_1002_elsa_202100164
crossref_primary_10_1007_s11356_023_31317_7
crossref_primary_10_1016_j_jtice_2022_104654
crossref_primary_10_5004_dwt_2023_29829
crossref_primary_10_1007_s11356_023_26591_4
crossref_primary_10_17159_sajs_2023_13352
crossref_primary_10_1016_j_seppur_2024_131122
crossref_primary_10_1007_s11144_024_02757_0
crossref_primary_10_1007_s10311_021_01201_2
crossref_primary_10_1016_j_ijbiomac_2020_09_078
crossref_primary_10_1016_j_jhazmat_2021_125470
crossref_primary_10_1016_j_jclepro_2021_128485
crossref_primary_10_1007_s12046_023_02080_9
crossref_primary_10_1016_j_cej_2022_138539
crossref_primary_10_1021_acs_jpclett_4c00281
crossref_primary_10_1016_j_seppur_2024_130267
crossref_primary_10_3390_gels10030200
crossref_primary_10_5802_crchim_181
crossref_primary_10_1007_s42250_023_00851_9
crossref_primary_10_1016_j_indcrop_2024_119114
crossref_primary_10_5004_dwt_2022_28953
crossref_primary_10_1016_j_ijbiomac_2023_128234
crossref_primary_10_1016_j_jclepro_2023_136253
crossref_primary_10_1007_s11270_024_07200_7
crossref_primary_10_1002_jctb_7794
crossref_primary_10_3390_magnetochemistry9090211
crossref_primary_10_22144_ctujos_2024_310
crossref_primary_10_1007_s13399_021_01827_w
crossref_primary_10_3390_nano12223942
crossref_primary_10_1088_1755_1315_1349_1_012014
crossref_primary_10_1016_j_colsurfa_2020_125135
crossref_primary_10_1155_2023_7182712
crossref_primary_10_1016_j_envres_2022_114629
crossref_primary_10_1021_acs_jpcc_2c03504
crossref_primary_10_1007_s11947_024_03608_5
crossref_primary_10_1016_j_seppur_2023_123639
crossref_primary_10_1007_s11356_020_10647_w
crossref_primary_10_1016_j_chemosphere_2025_144153
crossref_primary_10_1016_j_envres_2021_112595
crossref_primary_10_1016_j_seppur_2024_129261
crossref_primary_10_1080_03067319_2024_2431585
crossref_primary_10_3390_toxics11030232
crossref_primary_10_1016_j_ijbiomac_2021_08_156
crossref_primary_10_1016_j_ijbiomac_2024_137037
crossref_primary_10_3390_polym17040502
crossref_primary_10_3390_molecules27238483
crossref_primary_10_1021_acs_iecr_2c00037
crossref_primary_10_1016_j_envc_2024_100961
crossref_primary_10_1007_s13204_023_02890_7
crossref_primary_10_3390_ma16134884
crossref_primary_10_1016_j_jece_2022_108087
crossref_primary_10_1016_j_heliyon_2020_e04975
crossref_primary_10_1016_j_jwpe_2023_103996
crossref_primary_10_1007_s43153_021_00191_6
crossref_primary_10_1016_j_seppur_2025_131852
crossref_primary_10_1063_5_0137651
crossref_primary_10_1038_s41598_021_97826_y
crossref_primary_10_1016_j_ijbiomac_2023_126083
crossref_primary_10_1186_s40643_021_00387_1
crossref_primary_10_1007_s13762_024_06157_8
crossref_primary_10_1007_s41742_022_00500_y
crossref_primary_10_1007_s10311_023_01603_4
crossref_primary_10_1016_j_jhazmat_2021_127722
crossref_primary_10_1021_acsami_1c04064
crossref_primary_10_1016_j_cdc_2024_101140
crossref_primary_10_1016_j_sciaf_2022_e01296
crossref_primary_10_1016_j_arabjc_2021_103468
crossref_primary_10_1016_j_envres_2023_115521
crossref_primary_10_1016_j_heliyon_2024_e25729
crossref_primary_10_1016_j_molliq_2024_126628
crossref_primary_10_1016_j_scitotenv_2024_174390
crossref_primary_10_2166_wpt_2024_217
crossref_primary_10_1007_s13399_024_06277_8
crossref_primary_10_1021_acs_langmuir_4c04479
crossref_primary_10_1680_jenge_22_00046
crossref_primary_10_1021_acs_chemrev_1c00915
crossref_primary_10_1016_j_est_2024_114972
crossref_primary_10_1016_j_jhazmat_2023_131552
crossref_primary_10_3390_molecules28020649
crossref_primary_10_1021_acsomega_1c04661
crossref_primary_10_1016_j_seppur_2024_126529
crossref_primary_10_1016_j_heliyon_2023_e13465
crossref_primary_10_1016_j_jclepro_2023_138752
crossref_primary_10_3390_cryst14050450
crossref_primary_10_1007_s10854_022_08207_8
crossref_primary_10_1002_jctb_7598
crossref_primary_10_3390_nano14060522
crossref_primary_10_2166_wpt_2025_033
crossref_primary_10_1016_j_arabjc_2021_103477
crossref_primary_10_3390_polym15081948
crossref_primary_10_1080_01496395_2021_1982979
crossref_primary_10_1007_s10876_023_02416_9
crossref_primary_10_3389_fceng_2022_1000064
crossref_primary_10_3390_gels8110757
crossref_primary_10_3390_w16141954
crossref_primary_10_1016_j_scitotenv_2021_152529
crossref_primary_10_1016_j_jhazmat_2023_131568
crossref_primary_10_1016_j_chemosphere_2021_129638
crossref_primary_10_1007_s13762_022_04188_7
crossref_primary_10_1007_s40843_023_2725_y
crossref_primary_10_1016_j_scitotenv_2023_168651
crossref_primary_10_1007_s11356_024_33197_x
crossref_primary_10_1016_j_molliq_2022_119790
crossref_primary_10_1016_j_enceco_2020_10_002
crossref_primary_10_1007_s00289_022_04183_5
crossref_primary_10_1016_j_chemosphere_2021_130629
crossref_primary_10_1016_j_mtsust_2023_100509
crossref_primary_10_1016_j_micromeso_2023_112837
crossref_primary_10_1016_j_molliq_2021_118137
crossref_primary_10_1016_j_ijhydene_2022_02_194
crossref_primary_10_1016_j_polymer_2024_127866
crossref_primary_10_1016_j_watres_2020_116472
crossref_primary_10_3390_ma16083166
crossref_primary_10_1007_s11356_024_32845_6
crossref_primary_10_1002_admi_202101201
crossref_primary_10_1016_j_jhazmat_2023_132875
crossref_primary_10_1016_j_jece_2021_106088
crossref_primary_10_1016_j_molliq_2022_120758
crossref_primary_10_1016_j_mex_2021_101464
crossref_primary_10_2166_wst_2020_392
crossref_primary_10_1007_s40710_023_00631_0
crossref_primary_10_1016_j_scitotenv_2023_166464
crossref_primary_10_1038_s41598_021_91484_w
crossref_primary_10_3389_fenvs_2020_00056
crossref_primary_10_1007_s11356_021_18485_0
crossref_primary_10_1007_s10311_023_01647_6
crossref_primary_10_1080_15422119_2021_1951757
crossref_primary_10_1039_D3RA08225C
crossref_primary_10_1080_10601325_2024_2386057
crossref_primary_10_1021_acsomega_3c02588
crossref_primary_10_1007_s13204_021_01954_w
crossref_primary_10_1016_j_fuel_2022_127300
crossref_primary_10_1016_j_jenvman_2022_115968
crossref_primary_10_1021_acsaem_2c03758
crossref_primary_10_3103_S0361521921030101
crossref_primary_10_1016_j_cej_2025_161951
crossref_primary_10_1016_j_cherd_2023_02_033
crossref_primary_10_3390_separations11060170
crossref_primary_10_1038_s41598_024_72187_4
crossref_primary_10_1007_s11270_024_07676_3
crossref_primary_10_1016_j_heliyon_2023_e14356
crossref_primary_10_1016_j_micromeso_2022_112137
crossref_primary_10_1016_j_cis_2025_103440
crossref_primary_10_1007_s11356_022_20830_w
crossref_primary_10_3390_cryst11010002
crossref_primary_10_3390_ma14123243
crossref_primary_10_1016_j_jwpe_2024_104888
crossref_primary_10_1016_j_ijbiomac_2024_135148
crossref_primary_10_3390_polym14050968
crossref_primary_10_1016_j_ijhydene_2024_07_192
crossref_primary_10_1016_j_biortech_2021_126239
crossref_primary_10_1016_j_jwpe_2023_104100
crossref_primary_10_1016_j_chemosphere_2023_138722
crossref_primary_10_1038_s41598_022_18202_y
crossref_primary_10_1016_j_mtcomm_2024_108269
crossref_primary_10_1016_j_colsurfa_2024_133900
crossref_primary_10_1016_j_heliyon_2023_e15698
crossref_primary_10_1016_j_cis_2025_103441
crossref_primary_10_1007_s13762_022_04741_4
crossref_primary_10_1016_j_resenv_2023_100142
crossref_primary_10_1016_j_rineng_2024_101756
crossref_primary_10_3390_min14060579
crossref_primary_10_1016_j_micromeso_2025_113493
crossref_primary_10_1007_s11356_023_29075_7
crossref_primary_10_1016_j_chemosphere_2020_129396
crossref_primary_10_1016_j_scp_2022_100794
crossref_primary_10_1007_s13738_022_02675_9
crossref_primary_10_1016_j_sajb_2023_02_023
crossref_primary_10_1080_01496395_2024_2343850
crossref_primary_10_1007_s11694_024_03034_3
crossref_primary_10_25130_tjes_31_1_16
crossref_primary_10_1007_s10967_023_08786_8
crossref_primary_10_1007_s10876_023_02523_7
crossref_primary_10_1016_j_resconrec_2020_105335
crossref_primary_10_1016_j_jece_2022_108939
crossref_primary_10_1016_j_applthermaleng_2024_122390
crossref_primary_10_3390_technologies12070104
crossref_primary_10_3390_c10010008
crossref_primary_10_1016_j_molliq_2025_126919
crossref_primary_10_1016_j_cej_2021_130954
crossref_primary_10_1016_j_matchemphys_2022_126752
crossref_primary_10_5004_dwt_2022_28780
crossref_primary_10_1016_j_enmm_2021_100635
crossref_primary_10_1016_j_carbon_2025_120091
crossref_primary_10_1016_j_jhazmat_2021_126804
crossref_primary_10_1016_j_enmm_2021_100638
crossref_primary_10_1016_j_matpr_2023_05_121
crossref_primary_10_1039_D4SC00174E
crossref_primary_10_1016_j_jwpe_2024_105705
crossref_primary_10_1016_j_jece_2020_104885
crossref_primary_10_2166_wpt_2023_011
crossref_primary_10_3389_fenvs_2022_996953
crossref_primary_10_1007_s43153_021_00166_7
crossref_primary_10_1186_s42834_024_00226_w
crossref_primary_10_1002_jctb_7189
crossref_primary_10_1016_j_foodchem_2024_142727
crossref_primary_10_1016_j_jcis_2021_01_021
crossref_primary_10_1016_j_matchemphys_2023_127552
crossref_primary_10_1016_j_scitotenv_2024_175641
crossref_primary_10_1016_j_chemosphere_2024_143965
crossref_primary_10_1007_s41207_024_00464_9
crossref_primary_10_1186_s40643_023_00672_1
crossref_primary_10_1016_j_cej_2021_131375
crossref_primary_10_1016_j_ijbiomac_2024_136451
crossref_primary_10_3390_inorganics10110210
crossref_primary_10_1016_j_jwpe_2024_105763
crossref_primary_10_1016_j_still_2023_105958
crossref_primary_10_1016_j_matchemphys_2020_123919
crossref_primary_10_1007_s10668_022_02274_x
crossref_primary_10_1007_s10924_021_02232_0
crossref_primary_10_1016_j_jcis_2024_07_181
crossref_primary_10_1016_j_jece_2025_115730
crossref_primary_10_1080_01932691_2024_2340680
crossref_primary_10_1515_pac_2024_0102
crossref_primary_10_1016_j_crgsc_2021_100188
crossref_primary_10_1016_j_jclepro_2022_135819
crossref_primary_10_1021_acsomega_4c10884
crossref_primary_10_1016_j_jclepro_2022_134969
crossref_primary_10_1016_j_cej_2021_132227
crossref_primary_10_1016_j_seppur_2024_129625
crossref_primary_10_1016_j_est_2022_105876
crossref_primary_10_1080_01496395_2023_2189049
crossref_primary_10_1016_j_heliyon_2024_e38189
crossref_primary_10_1016_j_enmm_2023_100800
crossref_primary_10_1016_j_hydromet_2024_106409
crossref_primary_10_5564_bicct_v11i11_3287
crossref_primary_10_1063_5_0174323
crossref_primary_10_1016_j_envres_2025_121140
crossref_primary_10_1051_e3sconf_202235501005
crossref_primary_10_1016_j_scitotenv_2023_165545
crossref_primary_10_1007_s13369_022_07248_9
crossref_primary_10_1016_j_molstruc_2024_140348
crossref_primary_10_3390_w15213849
crossref_primary_10_1016_j_colsurfa_2023_132706
crossref_primary_10_1016_j_surfin_2024_105280
crossref_primary_10_29105_qh11_03_297
crossref_primary_10_3390_app11199223
crossref_primary_10_3390_app15031634
crossref_primary_10_1038_s41545_024_00413_7
crossref_primary_10_1016_j_colsurfa_2020_124709
crossref_primary_10_1080_10643389_2023_2221157
crossref_primary_10_1177_11786302211053176
crossref_primary_10_3390_polym16060837
crossref_primary_10_1016_j_fuel_2022_126401
crossref_primary_10_3390_polym16233315
crossref_primary_10_1016_j_scitotenv_2022_159870
crossref_primary_10_1016_j_jfutfo_2023_05_001
crossref_primary_10_1038_s41598_022_07134_2
crossref_primary_10_1016_j_jhazmat_2022_128488
crossref_primary_10_1007_s10967_021_08014_1
crossref_primary_10_1021_acsomega_3c01616
crossref_primary_10_1016_j_colsurfa_2022_130736
crossref_primary_10_1007_s11270_024_07009_4
crossref_primary_10_1007_s11581_025_06069_8
crossref_primary_10_1016_j_jece_2024_114551
crossref_primary_10_1002_tqem_21987
crossref_primary_10_3390_recycling8050074
crossref_primary_10_1016_j_rechem_2025_102179
crossref_primary_10_1016_j_ijbiomac_2024_133380
crossref_primary_10_1016_j_jece_2021_106010
crossref_primary_10_1016_j_arabjc_2024_105688
crossref_primary_10_1016_j_reactfunctpolym_2024_106122
crossref_primary_10_1016_j_ijbiomac_2025_142126
crossref_primary_10_1038_s41598_021_87106_0
crossref_primary_10_1016_j_colsurfa_2023_131836
crossref_primary_10_1016_j_colsurfa_2022_129763
crossref_primary_10_1016_j_jwpe_2023_104186
crossref_primary_10_1109_JSEN_2021_3093107
crossref_primary_10_1080_15567036_2024_2417035
crossref_primary_10_3390_ijms25094771
crossref_primary_10_1007_s42247_023_00460_9
crossref_primary_10_2166_ws_2025_021
crossref_primary_10_3390_ma15228177
crossref_primary_10_1016_j_arabjc_2023_105333
crossref_primary_10_1002_slct_202202975
crossref_primary_10_3390_cells14030225
crossref_primary_10_1016_j_jenvman_2025_124463
crossref_primary_10_1016_j_cscee_2021_100121
crossref_primary_10_1016_j_chemosphere_2022_135350
crossref_primary_10_1039_D3NJ05351B
crossref_primary_10_1016_j_cscee_2021_100120
crossref_primary_10_1016_j_matpr_2023_07_108
crossref_primary_10_1016_j_biortech_2024_130745
crossref_primary_10_1016_j_ijbiomac_2023_126864
crossref_primary_10_1016_j_colsurfa_2022_130760
crossref_primary_10_1016_j_cej_2025_159696
crossref_primary_10_1016_j_ijbiomac_2024_133358
crossref_primary_10_1016_j_jiec_2025_02_012
crossref_primary_10_1021_acsami_3c18717
crossref_primary_10_1007_s10570_021_03695_z
crossref_primary_10_1016_j_jwpe_2022_102909
crossref_primary_10_1007_s40201_021_00740_8
crossref_primary_10_1016_j_enmm_2025_101063
crossref_primary_10_1007_s11664_024_11216_4
crossref_primary_10_1016_j_foodres_2022_112077
crossref_primary_10_1007_s11356_020_11470_z
crossref_primary_10_1007_s10967_023_08889_2
crossref_primary_10_1016_j_ecoenv_2023_115593
crossref_primary_10_1016_j_jwpe_2024_106648
crossref_primary_10_1002_admi_202100703
crossref_primary_10_3390_cryst14020187
crossref_primary_10_1016_j_ecoenv_2020_111577
crossref_primary_10_3390_polysaccharides3030033
crossref_primary_10_1016_j_colsurfa_2024_135224
crossref_primary_10_1021_acsomega_3c02986
crossref_primary_10_3390_app15052509
crossref_primary_10_1016_j_jwpe_2022_102916
crossref_primary_10_1016_j_seppur_2024_128712
crossref_primary_10_1016_j_dwt_2024_100762
crossref_primary_10_3390_molecules26082392
crossref_primary_10_1016_j_envres_2024_120711
crossref_primary_10_1016_j_heliyon_2024_e39450
crossref_primary_10_3390_nano12203575
crossref_primary_10_1016_j_matchemphys_2023_128487
crossref_primary_10_1007_s00374_022_01692_3
crossref_primary_10_1016_j_mtcomm_2022_103601
crossref_primary_10_1016_j_jece_2022_108194
crossref_primary_10_1016_j_seppur_2021_118867
crossref_primary_10_1016_j_chemosphere_2021_131062
crossref_primary_10_1016_j_molliq_2025_127321
crossref_primary_10_1007_s11814_022_1189_x
crossref_primary_10_1016_j_jmgm_2021_108100
crossref_primary_10_1016_j_jwpe_2022_102889
crossref_primary_10_1166_sam_2022_4233
crossref_primary_10_1016_j_envres_2022_114716
crossref_primary_10_1016_j_seppur_2023_123536
crossref_primary_10_1016_j_cherd_2023_06_020
crossref_primary_10_1007_s10311_021_01279_8
crossref_primary_10_1016_j_matpr_2023_02_399
crossref_primary_10_1016_j_jclepro_2024_142736
crossref_primary_10_1007_s13201_022_01690_8
crossref_primary_10_1016_j_chemosphere_2022_133526
crossref_primary_10_1016_j_psep_2022_03_010
crossref_primary_10_1021_acsomega_3c04271
crossref_primary_10_1007_s13762_022_04246_0
crossref_primary_10_1016_j_scp_2021_100546
crossref_primary_10_1007_s10311_021_01355_z
crossref_primary_10_1007_s10311_023_01566_6
crossref_primary_10_1016_j_colsurfa_2024_135687
crossref_primary_10_1016_j_dwt_2024_100758
crossref_primary_10_1016_j_ijbiomac_2025_141362
crossref_primary_10_1016_j_jece_2021_106502
crossref_primary_10_1016_j_ccr_2021_213809
crossref_primary_10_1016_j_mseb_2024_117923
crossref_primary_10_1016_j_scitotenv_2024_173962
crossref_primary_10_1007_s11356_022_23575_8
crossref_primary_10_1016_j_dwt_2024_100782
crossref_primary_10_1007_s13201_025_02360_1
crossref_primary_10_3390_polym16223135
crossref_primary_10_1021_acsestwater_4c00558
crossref_primary_10_1016_j_seppur_2025_131702
crossref_primary_10_3390_su16177835
crossref_primary_10_1016_j_optmat_2024_115410
crossref_primary_10_1016_j_jenvman_2022_116314
crossref_primary_10_1016_j_seppur_2023_125732
crossref_primary_10_1016_j_dwt_2024_100775
crossref_primary_10_1016_j_fuel_2023_128166
crossref_primary_10_1016_j_envres_2024_118883
crossref_primary_10_3390_molecules27238574
crossref_primary_10_3390_ma16072837
crossref_primary_10_1016_j_colsurfa_2024_133488
crossref_primary_10_3390_nano14090766
crossref_primary_10_1038_s41598_021_97397_y
crossref_primary_10_1007_s10973_023_12461_1
crossref_primary_10_1039_D2NA00691J
crossref_primary_10_1016_j_seppur_2023_125744
crossref_primary_10_1080_03067319_2024_2365773
crossref_primary_10_3390_physchem4040030
crossref_primary_10_1016_j_cej_2023_145225
crossref_primary_10_1016_j_cherd_2022_12_041
crossref_primary_10_1016_j_ccst_2025_100386
crossref_primary_10_1016_j_ccst_2025_100382
crossref_primary_10_1016_j_solidstatesciences_2024_107760
crossref_primary_10_1007_s13762_021_03492_y
crossref_primary_10_1016_j_jhazmat_2024_134987
crossref_primary_10_3390_ijerph19052703
crossref_primary_10_1016_j_jece_2021_106538
crossref_primary_10_1038_s41598_023_50754_5
crossref_primary_10_3390_molecules27248776
crossref_primary_10_1016_j_chemosphere_2024_141738
crossref_primary_10_4028_p_734lko
crossref_primary_10_51865_JPGT_2023_02_21
crossref_primary_10_1016_j_cej_2023_142195
crossref_primary_10_1007_s10661_021_09733_4
crossref_primary_10_1016_j_chemosphere_2024_141751
crossref_primary_10_1016_j_ijheatmasstransfer_2025_126906
crossref_primary_10_1007_s13399_024_05908_4
crossref_primary_10_1016_j_chemosphere_2024_143930
crossref_primary_10_1016_j_clay_2020_105825
crossref_primary_10_1016_j_colsurfa_2022_130355
crossref_primary_10_1180_clm_2022_41
crossref_primary_10_3390_gels11010079
crossref_primary_10_5004_dwt_2023_29967
crossref_primary_10_1016_j_watres_2020_116095
crossref_primary_10_3390_w16050698
crossref_primary_10_1007_s13399_022_03592_w
crossref_primary_10_1155_2022_5062752
crossref_primary_10_3390_toxics12050350
crossref_primary_10_1016_j_arabjc_2022_104222
crossref_primary_10_1016_j_dib_2023_109159
crossref_primary_10_3390_toxics12050356
crossref_primary_10_1016_j_mineng_2024_108915
crossref_primary_10_2166_wst_2022_324
crossref_primary_10_1016_j_colsurfa_2022_129374
crossref_primary_10_3390_ijms22158175
crossref_primary_10_1007_s10570_024_05835_7
crossref_primary_10_1016_j_jenvman_2022_117210
crossref_primary_10_1016_j_envres_2024_119704
crossref_primary_10_1021_acs_energyfuels_2c00684
crossref_primary_10_3390_pr12092044
crossref_primary_10_3390_c9010017
crossref_primary_10_1002_smll_202400724
crossref_primary_10_3390_ma15196809
crossref_primary_10_1016_j_applthermaleng_2022_119065
crossref_primary_10_1039_D3SE00220A
crossref_primary_10_1016_j_cej_2020_127815
crossref_primary_10_1016_j_inoche_2023_111184
crossref_primary_10_1016_j_jece_2021_106552
crossref_primary_10_1007_s42535_023_00724_z
crossref_primary_10_1021_acs_langmuir_4c03516
crossref_primary_10_1016_j_cej_2024_158804
crossref_primary_10_1002_ceat_202200326
crossref_primary_10_1016_j_eti_2023_103086
crossref_primary_10_1007_s10311_022_01401_4
crossref_primary_10_1007_s10163_021_01216_5
crossref_primary_10_1016_j_reactfunctpolym_2023_105812
crossref_primary_10_1016_j_molliq_2022_121124
crossref_primary_10_1016_j_seppur_2021_118411
crossref_primary_10_1016_j_dwt_2024_100336
crossref_primary_10_1007_s11356_022_22140_7
crossref_primary_10_1016_j_jmrt_2021_09_128
crossref_primary_10_1039_D0RA09296G
crossref_primary_10_1007_s11356_024_35492_z
crossref_primary_10_1016_j_jcis_2023_10_112
crossref_primary_10_1039_D4RA00364K
crossref_primary_10_1016_j_jenvman_2025_124400
crossref_primary_10_1039_D2NJ04768C
crossref_primary_10_1186_s43088_022_00253_9
crossref_primary_10_1088_2053_1591_abcc5d
crossref_primary_10_1016_j_emcon_2023_100261
crossref_primary_10_1016_j_colsurfa_2023_132286
crossref_primary_10_1016_j_microc_2021_107087
crossref_primary_10_52832_jesh_v4i4_448
crossref_primary_10_1016_j_dwt_2025_101053
crossref_primary_10_1016_j_enceco_2024_07_006
crossref_primary_10_1016_j_sampre_2022_100049
crossref_primary_10_1016_j_scitotenv_2020_142048
crossref_primary_10_1016_j_chemosphere_2023_140968
crossref_primary_10_1016_j_envres_2021_112655
crossref_primary_10_1080_15422119_2024_2397954
crossref_primary_10_1007_s13369_024_09305_x
crossref_primary_10_1155_2022_9378712
crossref_primary_10_5004_dwt_2022_28872
crossref_primary_10_1016_j_chemosphere_2023_139980
crossref_primary_10_1016_j_chroma_2023_464465
crossref_primary_10_1039_D4CC04101A
crossref_primary_10_1016_j_wri_2021_100144
crossref_primary_10_1016_j_inoche_2024_113273
crossref_primary_10_3390_ma17174350
crossref_primary_10_1080_15226514_2021_2025039
crossref_primary_10_1016_j_envres_2024_120301
crossref_primary_10_1155_2022_9884474
crossref_primary_10_1016_j_scitotenv_2023_162962
crossref_primary_10_3390_w14172652
crossref_primary_10_1016_j_biortech_2021_124922
crossref_primary_10_1007_s10934_024_01700_x
crossref_primary_10_1016_j_foodchem_2023_138085
crossref_primary_10_1016_j_ijbiomac_2021_05_214
crossref_primary_10_3390_nano13020279
crossref_primary_10_1016_j_jiec_2023_12_042
crossref_primary_10_3390_polym13101620
crossref_primary_10_1007_s11356_020_11256_3
crossref_primary_10_1016_j_micromeso_2025_113570
crossref_primary_10_1016_j_seppur_2023_124808
crossref_primary_10_3103_S1063455X22060091
crossref_primary_10_1016_j_fbp_2023_11_002
crossref_primary_10_1017_cmn_2024_23
crossref_primary_10_1515_zna_2023_0180
crossref_primary_10_3390_molecules27051477
crossref_primary_10_1007_s11356_023_29217_x
crossref_primary_10_1016_j_carbpol_2022_120528
crossref_primary_10_1016_j_jenvman_2022_114532
crossref_primary_10_1016_j_ceja_2023_100551
crossref_primary_10_1016_j_gsd_2024_101209
crossref_primary_10_1021_acs_iecr_2c00196
crossref_primary_10_1039_D0RA08188D
crossref_primary_10_1016_j_jscs_2023_101690
crossref_primary_10_1016_j_chemosphere_2021_132759
crossref_primary_10_1016_j_ijhydene_2022_05_301
crossref_primary_10_1016_j_cej_2023_141710
crossref_primary_10_1016_j_cej_2024_157101
crossref_primary_10_5004_dwt_2023_29947
crossref_primary_10_1016_j_scitotenv_2020_144229
crossref_primary_10_1007_s10904_024_03474_w
crossref_primary_10_1016_j_cej_2023_141717
crossref_primary_10_1002_tqem_22353
crossref_primary_10_1016_j_arabjc_2021_103061
crossref_primary_10_1016_j_dwt_2025_101091
crossref_primary_10_1016_j_compgeo_2024_106574
crossref_primary_10_1016_j_scitotenv_2024_171709
crossref_primary_10_5006_4346
crossref_primary_10_1021_acs_langmuir_3c02496
crossref_primary_10_1016_j_heliyon_2023_e16449
crossref_primary_10_11001_jksww_2020_34_3_201
crossref_primary_10_1002_jctb_7659
crossref_primary_10_1016_j_seppur_2023_124812
crossref_primary_10_1088_2632_959X_abc4d4
crossref_primary_10_1016_j_micromeso_2024_113230
crossref_primary_10_1016_j_dwt_2025_101099
crossref_primary_10_24857_rgsa_v18n11_248
crossref_primary_10_1007_s10450_024_00523_1
crossref_primary_10_1016_j_kjs_2024_100292
crossref_primary_10_1016_j_chemosphere_2025_144292
crossref_primary_10_1016_j_marpolbul_2024_117488
crossref_primary_10_1016_j_cej_2022_140973
crossref_primary_10_1016_j_molliq_2022_119207
crossref_primary_10_3390_coatings14121524
crossref_primary_10_1007_s11270_024_07650_z
crossref_primary_10_1016_j_jclepro_2023_139642
crossref_primary_10_1007_s11356_024_34235_4
crossref_primary_10_3390_app12062922
crossref_primary_10_1016_j_cherd_2024_12_034
crossref_primary_10_1016_j_molliq_2024_124374
crossref_primary_10_1039_D3TB01327H
crossref_primary_10_14710_jksa_26_2_50_56
crossref_primary_10_1007_s10661_024_13391_7
crossref_primary_10_1016_j_arabjc_2021_103031
crossref_primary_10_1007_s10450_024_00501_7
crossref_primary_10_1016_j_indcrop_2023_116913
crossref_primary_10_1016_j_molliq_2021_115815
crossref_primary_10_1155_2023_5683415
crossref_primary_10_1016_j_dwt_2024_100719
crossref_primary_10_1016_j_ecoenv_2024_117254
crossref_primary_10_1016_j_seppur_2023_123500
crossref_primary_10_1002_jctb_7680
crossref_primary_10_1080_1536383X_2025_2468376
crossref_primary_10_1080_10889868_2024_2432400
crossref_primary_10_1016_j_rineng_2022_100340
crossref_primary_10_1016_j_mseb_2025_118213
crossref_primary_10_1016_j_aca_2022_339517
crossref_primary_10_1016_j_ces_2024_120552
crossref_primary_10_1039_D2EN00543C
crossref_primary_10_1016_j_electacta_2024_145446
crossref_primary_10_1080_15226514_2022_2052792
crossref_primary_10_13005_ojc_390320
crossref_primary_10_1016_j_jclepro_2024_143184
crossref_primary_10_1007_s10854_024_12264_6
crossref_primary_10_1007_s11274_022_03235_2
crossref_primary_10_1016_j_jwpe_2024_106193
crossref_primary_10_1142_S1793292023300062
crossref_primary_10_1016_j_micromeso_2025_113527
crossref_primary_10_1016_j_scitotenv_2023_168291
crossref_primary_10_1080_01496395_2023_2167662
crossref_primary_10_1007_s11356_022_22412_2
crossref_primary_10_1007_s41742_021_00381_7
crossref_primary_10_1007_s13369_022_07502_0
crossref_primary_10_3390_ijerph192417103
crossref_primary_10_1016_j_scp_2023_101413
crossref_primary_10_1515_chem_2022_0304
crossref_primary_10_3390_nano14131098
crossref_primary_10_3390_pr10091815
crossref_primary_10_1016_j_mineng_2025_109211
crossref_primary_10_1016_j_rsurfi_2023_100170
crossref_primary_10_1016_j_seppur_2024_129122
crossref_primary_10_1016_j_focha_2023_100334
crossref_primary_10_1016_j_jece_2024_115091
crossref_primary_10_3390_ma15238433
crossref_primary_10_1016_j_mtphys_2023_100965
crossref_primary_10_1016_j_scitotenv_2021_151554
crossref_primary_10_1149_1945_7111_ad6212
crossref_primary_10_3390_app13031861
crossref_primary_10_1039_D2RA02494B
crossref_primary_10_3390_ijms23126617
crossref_primary_10_1016_j_jchromb_2024_124435
crossref_primary_10_1016_j_envpol_2023_121138
crossref_primary_10_3390_fractalfract8060356
crossref_primary_10_1016_j_seppur_2024_126403
crossref_primary_10_3390_ijerph191811401
crossref_primary_10_1007_s11356_024_33317_7
crossref_primary_10_1007_s12355_021_01051_w
crossref_primary_10_1016_j_jenvman_2022_114958
crossref_primary_10_1016_j_jece_2020_104938
crossref_primary_10_5004_dwt_2023_30197
crossref_primary_10_18596_jotcsa_1244774
crossref_primary_10_1007_s10934_023_01543_y
crossref_primary_10_1016_j_chemosphere_2023_137949
crossref_primary_10_1016_j_eti_2023_103206
crossref_primary_10_1021_acsami_2c10050
crossref_primary_10_1007_s10653_024_02205_x
crossref_primary_10_1016_j_seppur_2023_125285
crossref_primary_10_3390_polysaccharides2020027
crossref_primary_10_1016_j_jwpe_2024_104956
crossref_primary_10_3390_polym16060784
crossref_primary_10_3390_su15086831
crossref_primary_10_1016_j_carbpol_2023_121090
crossref_primary_10_1080_10934529_2021_1977059
crossref_primary_10_1051_e3sconf_202452703012
crossref_primary_10_1016_j_matlet_2024_136728
crossref_primary_10_3390_w13223263
crossref_primary_10_1007_s41127_024_00078_6
crossref_primary_10_1016_j_jwpe_2024_104923
crossref_primary_10_3390_colloids8020026
crossref_primary_10_1016_j_scitotenv_2023_167685
crossref_primary_10_1016_j_cej_2020_127574
crossref_primary_10_1016_j_ces_2024_119803
crossref_primary_10_1016_j_chroma_2023_464046
crossref_primary_10_3390_min15030226
crossref_primary_10_1016_j_scitotenv_2023_169851
crossref_primary_10_1007_s13762_024_05495_x
crossref_primary_10_1016_j_cscee_2024_100997
crossref_primary_10_1039_D2CY01543A
crossref_primary_10_1016_j_colsurfa_2023_132650
crossref_primary_10_1016_j_foodchem_2023_136750
crossref_primary_10_1016_j_crgsc_2021_100201
crossref_primary_10_1007_s11270_021_05223_y
crossref_primary_10_1088_2053_1591_acf756
crossref_primary_10_1016_j_jece_2022_107750
crossref_primary_10_1016_j_seppur_2023_126159
crossref_primary_10_1007_s11270_024_06931_x
crossref_primary_10_1016_j_matchemphys_2025_130359
crossref_primary_10_1080_03067319_2024_2426003
crossref_primary_10_1515_ract_2022_0091
crossref_primary_10_1016_j_colsurfa_2024_133803
crossref_primary_10_1016_j_microc_2025_113292
crossref_primary_10_1016_j_jhazmat_2021_127802
crossref_primary_10_1016_j_jddst_2023_105046
crossref_primary_10_1016_j_diamond_2023_110421
crossref_primary_10_1016_j_seppur_2025_132570
crossref_primary_10_1007_s10854_024_12232_0
crossref_primary_10_1021_acsomega_4c04053
crossref_primary_10_1016_j_ces_2023_119581
crossref_primary_10_1016_j_talanta_2024_126822
crossref_primary_10_1016_j_jenvman_2024_120529
crossref_primary_10_1016_j_ces_2024_120843
crossref_primary_10_1021_acsami_4c11234
crossref_primary_10_1080_1539445X_2022_2049307
crossref_primary_10_3390_w16172522
crossref_primary_10_1016_j_jece_2020_104994
crossref_primary_10_3390_physchem3010004
crossref_primary_10_1016_j_cej_2020_126265
crossref_primary_10_1039_D3EN00835E
crossref_primary_10_1016_j_cjche_2024_09_014
crossref_primary_10_1016_j_scitotenv_2021_147022
crossref_primary_10_1155_2022_8960379
crossref_primary_10_1088_2053_1591_acb31b
crossref_primary_10_5004_dwt_2023_30156
crossref_primary_10_3390_molecules28093955
crossref_primary_10_1016_j_jece_2024_113738
crossref_primary_10_1002_rem_21770
crossref_primary_10_2298_JSC230303084Z
crossref_primary_10_1016_j_ces_2023_119573
crossref_primary_10_1016_j_jece_2020_104980
crossref_primary_10_1016_j_jece_2021_107078
crossref_primary_10_1016_j_nanoso_2025_101462
crossref_primary_10_1016_j_colsurfa_2025_136318
crossref_primary_10_1016_j_psep_2025_106959
crossref_primary_10_1039_D1AY01402A
crossref_primary_10_1002_rem_21789
crossref_primary_10_1016_j_eti_2024_103914
crossref_primary_10_1016_j_fuel_2024_133448
crossref_primary_10_3390_nano12213831
crossref_primary_10_1016_j_jhazmat_2021_126938
crossref_primary_10_1021_acs_energyfuels_4c01156
crossref_primary_10_1007_s13762_022_03979_2
crossref_primary_10_3390_nano12010039
crossref_primary_10_1007_s10967_024_09627_y
crossref_primary_10_1016_j_chemosphere_2022_136379
crossref_primary_10_5004_dwt_2023_29191
crossref_primary_10_1016_j_colsurfb_2023_113700
crossref_primary_10_1016_j_chemosphere_2022_137221
crossref_primary_10_1039_D4GC04971C
crossref_primary_10_3390_catal12091057
crossref_primary_10_1515_rams_2024_0009
crossref_primary_10_1016_j_dwt_2025_101048
crossref_primary_10_1016_j_ccr_2024_216329
crossref_primary_10_1016_j_jwpe_2023_104688
crossref_primary_10_1016_j_wri_2024_100261
crossref_primary_10_1007_s13762_022_03922_5
crossref_primary_10_1016_j_ijhydene_2024_06_295
crossref_primary_10_1016_j_psep_2023_11_079
crossref_primary_10_3390_antiox13010001
crossref_primary_10_18596_jotcsa_1366346
crossref_primary_10_1039_D3RA07476E
crossref_primary_10_3390_ma15103540
crossref_primary_10_1021_acsami_2c04676
crossref_primary_10_1007_s11270_021_05361_3
crossref_primary_10_1016_j_polymer_2025_128270
crossref_primary_10_3390_polym14102104
crossref_primary_10_1089_ees_2021_0189
crossref_primary_10_1038_s41598_024_66125_7
crossref_primary_10_1016_j_seppur_2024_129513
crossref_primary_10_1016_j_seppur_2024_130980
crossref_primary_10_1016_j_watres_2025_123431
crossref_primary_10_1016_j_fuel_2025_135085
crossref_primary_10_1016_j_jphotochem_2023_114652
crossref_primary_10_1016_j_scitotenv_2023_164590
crossref_primary_10_3390_ma17020311
crossref_primary_10_1016_j_envres_2023_116102
crossref_primary_10_1016_j_jece_2024_112042
crossref_primary_10_1016_j_jece_2024_114224
crossref_primary_10_1016_j_scenv_2024_100150
crossref_primary_10_1007_s13762_021_03873_3
crossref_primary_10_20517_cs_2023_79
crossref_primary_10_2166_wst_2023_280
crossref_primary_10_1016_j_abst_2024_11_001
crossref_primary_10_1016_j_jcis_2024_12_181
crossref_primary_10_1016_j_seppur_2024_126477
crossref_primary_10_1016_j_powtec_2023_118790
crossref_primary_10_1007_s10450_023_00432_9
crossref_primary_10_1002_cben_202200050
crossref_primary_10_1016_j_inoche_2024_113714
crossref_primary_10_1016_j_chemosphere_2024_143621
crossref_primary_10_4491_eer_2024_062
crossref_primary_10_1016_j_colsurfa_2022_128528
crossref_primary_10_1016_j_matchemphys_2024_129919
crossref_primary_10_3390_app11041746
crossref_primary_10_1007_s13399_021_01699_0
crossref_primary_10_1016_j_jece_2024_115106
crossref_primary_10_3390_cleantechnol6010017
crossref_primary_10_1016_j_carbpol_2023_121454
crossref_primary_10_1016_j_heliyon_2025_e42885
crossref_primary_10_1021_acsomega_1c01894
crossref_primary_10_1039_D4RA00343H
crossref_primary_10_1016_j_jwpe_2021_102304
crossref_primary_10_1016_j_jece_2023_109822
crossref_primary_10_1016_j_jcou_2025_103035
crossref_primary_10_1016_j_etap_2023_104105
crossref_primary_10_1134_S1070427222080171
crossref_primary_10_1038_s41598_021_95090_8
crossref_primary_10_1016_j_seppur_2022_121818
crossref_primary_10_1016_j_seppur_2023_125213
crossref_primary_10_1016_j_jece_2021_105269
crossref_primary_10_1016_j_jiec_2023_07_035
crossref_primary_10_1016_j_cej_2025_160363
crossref_primary_10_14258_jcprm_20220311299
crossref_primary_10_1007_s13399_021_02022_7
crossref_primary_10_1016_j_dwt_2024_100256
crossref_primary_10_1016_j_seppur_2020_118030
crossref_primary_10_5004_dwt_2023_30131
crossref_primary_10_3390_app142310851
crossref_primary_10_1016_j_jtice_2020_07_008
crossref_primary_10_1016_j_envadv_2022_100282
crossref_primary_10_1016_j_jhazmat_2024_134150
crossref_primary_10_1016_j_jece_2023_110821
crossref_primary_10_1016_j_jtice_2024_105422
crossref_primary_10_1016_j_jece_2022_108205
crossref_primary_10_1007_s11270_023_06740_8
crossref_primary_10_1016_j_seppur_2024_129964
crossref_primary_10_1016_j_jece_2022_107353
crossref_primary_10_1007_s13399_024_06163_3
crossref_primary_10_1080_01496395_2025_2451912
crossref_primary_10_5004_dwt_2023_29140
crossref_primary_10_1016_j_seppur_2024_127308
crossref_primary_10_3390_su16177341
crossref_primary_10_1016_j_micromeso_2021_111294
crossref_primary_10_3390_membranes14060128
crossref_primary_10_1016_j_chemosphere_2024_142313
crossref_primary_10_1016_j_cherd_2021_12_043
crossref_primary_10_1016_j_jece_2024_112013
crossref_primary_10_1080_15226514_2021_1944978
crossref_primary_10_1016_j_envadv_2022_100274
crossref_primary_10_3390_pr10050886
crossref_primary_10_1039_D0RA09193F
crossref_primary_10_1016_j_chemosphere_2024_143638
crossref_primary_10_1063_5_0070692
crossref_primary_10_3390_su16124890
crossref_primary_10_1007_s11356_024_35194_6
crossref_primary_10_1016_j_molliq_2021_115368
crossref_primary_10_3390_cleantechnol5030047
crossref_primary_10_1007_s10967_024_09475_w
crossref_primary_10_1016_j_inoche_2023_111207
crossref_primary_10_1155_2022_1024554
crossref_primary_10_1007_s11356_024_33477_6
crossref_primary_10_1016_j_jwpe_2024_106786
crossref_primary_10_4236_gep_2023_1112003
crossref_primary_10_32604_jrm_2022_022031
crossref_primary_10_3390_molecules26175419
crossref_primary_10_1007_s10653_024_02001_7
crossref_primary_10_1002_bbb_2352
crossref_primary_10_1007_s13762_024_05616_6
crossref_primary_10_1021_acs_iecr_3c02096
crossref_primary_10_3390_toxics12100713
crossref_primary_10_1007_s11696_023_03132_4
crossref_primary_10_1016_j_jwpe_2024_106754
crossref_primary_10_1016_j_mtsust_2024_100740
crossref_primary_10_31883_pjfns_136051
crossref_primary_10_1088_1402_4896_ad6811
crossref_primary_10_1007_s13762_024_06205_3
crossref_primary_10_1007_s11356_022_23491_x
crossref_primary_10_5004_dwt_2021_27075
crossref_primary_10_1061__ASCE_EE_1943_7870_0001950
crossref_primary_10_1002_clen_202300083
crossref_primary_10_1016_j_jcis_2023_02_018
crossref_primary_10_1016_j_cej_2021_134113
crossref_primary_10_1016_j_jece_2022_107325
crossref_primary_10_3390_ma16072802
crossref_primary_10_1088_1748_0221_19_08_C08001
crossref_primary_10_1007_s43832_023_00054_w
crossref_primary_10_3390_polym14194236
crossref_primary_10_1007_s42823_023_00477_4
crossref_primary_10_1016_j_rineng_2024_102311
crossref_primary_10_1007_s10967_024_09959_9
crossref_primary_10_1016_j_jclepro_2021_126985
crossref_primary_10_1016_j_envres_2022_114041
crossref_primary_10_1007_s13202_021_01241_y
crossref_primary_10_1016_j_seppur_2024_129921
crossref_primary_10_1021_acsami_1c03242
crossref_primary_10_1016_j_jece_2022_107319
crossref_primary_10_1016_j_jclepro_2024_141777
crossref_primary_10_3389_frsus_2022_926438
crossref_primary_10_1016_j_fuel_2024_133900
crossref_primary_10_1016_j_chemosphere_2022_135817
crossref_primary_10_1016_j_jece_2023_111762
crossref_primary_10_3390_app11115127
crossref_primary_10_1016_j_chemosphere_2021_132030
crossref_primary_10_1155_2022_5935712
crossref_primary_10_1007_s13762_022_04541_w
crossref_primary_10_1016_j_ijbiomac_2024_136844
crossref_primary_10_1016_j_scp_2021_100418
crossref_primary_10_1016_j_apsusc_2022_153555
crossref_primary_10_1371_journal_pone_0297024
crossref_primary_10_1016_j_cej_2023_144052
crossref_primary_10_3390_molecules28010039
crossref_primary_10_1016_j_cep_2024_109685
crossref_primary_10_1039_D2EN00934J
crossref_primary_10_20517_wecn_2023_74
crossref_primary_10_1007_s11356_023_31692_1
crossref_primary_10_1007_s40974_021_00217_2
crossref_primary_10_1002_clen_202300179
crossref_primary_10_1021_acsearthspacechem_2c00098
crossref_primary_10_1016_j_watres_2024_121483
crossref_primary_10_1080_01932691_2024_2378193
crossref_primary_10_1016_j_heliyon_2024_e30530
crossref_primary_10_1080_01932691_2024_2414276
crossref_primary_10_1021_acs_est_3c10825
crossref_primary_10_1016_j_ijbiomac_2023_127994
crossref_primary_10_1016_j_jenvman_2025_124708
crossref_primary_10_1016_j_heliyon_2024_e37134
crossref_primary_10_1007_s10924_025_03504_9
crossref_primary_10_1016_j_diamond_2024_111137
crossref_primary_10_1016_j_envpol_2024_124150
crossref_primary_10_1016_j_heliyon_2024_e36288
crossref_primary_10_1016_j_dwt_2024_100668
crossref_primary_10_1039_D4TA05268D
crossref_primary_10_1039_D4SU00196F
crossref_primary_10_1016_j_jwpe_2021_102272
crossref_primary_10_3390_w12123561
crossref_primary_10_1007_s10904_021_01986_3
crossref_primary_10_1007_s11368_023_03645_1
crossref_primary_10_1016_j_micromeso_2021_111309
crossref_primary_10_3390_chemengineering9020033
crossref_primary_10_1016_j_jclepro_2022_133482
crossref_primary_10_1088_1755_1315_1135_1_012010
crossref_primary_10_1039_D2RA01521H
crossref_primary_10_1016_j_jcis_2021_07_154
crossref_primary_10_1038_s41598_025_89129_3
crossref_primary_10_1186_s12302_023_00725_4
crossref_primary_10_1016_j_jpba_2024_116579
crossref_primary_10_1088_2053_1591_abd5da
crossref_primary_10_1007_s11356_024_32675_6
crossref_primary_10_1039_D2RA08333G
crossref_primary_10_1016_j_ocsci_2024_07_001
crossref_primary_10_1061_JHTRBP_HZENG_1296
crossref_primary_10_1016_j_rechem_2024_101506
crossref_primary_10_1016_j_cej_2024_158951
crossref_primary_10_1021_acsomega_0c03274
crossref_primary_10_1038_s41598_024_65360_2
crossref_primary_10_1007_s10450_021_00322_y
crossref_primary_10_54021_seesv5n2_799
crossref_primary_10_1016_j_seppur_2024_127266
crossref_primary_10_1007_s42773_024_00338_x
crossref_primary_10_3390_gels10090546
crossref_primary_10_1016_j_ijbiomac_2023_124542
crossref_primary_10_1016_j_seppur_2023_124776
crossref_primary_10_1038_s41598_023_27507_5
crossref_primary_10_1016_j_ijoes_2024_100713
crossref_primary_10_1016_j_seppur_2023_125639
crossref_primary_10_3389_frwa_2020_612742
crossref_primary_10_1002_cben_202200011
crossref_primary_10_1002_wer_10714
crossref_primary_10_1186_s13065_025_01393_6
crossref_primary_10_1016_j_hydromet_2022_105937
crossref_primary_10_1021_acsestwater_5c00030
crossref_primary_10_1016_j_heliyon_2021_e05993
crossref_primary_10_2166_wst_2023_247
crossref_primary_10_1016_j_seppur_2024_130425
crossref_primary_10_1021_acs_langmuir_2c03443
crossref_primary_10_1007_s13399_024_06207_8
crossref_primary_10_1016_j_cej_2022_140218
crossref_primary_10_1039_D3TA00020F
crossref_primary_10_1002_app_54819
crossref_primary_10_1007_s11356_021_16943_3
crossref_primary_10_15407_scine17_06_083
crossref_primary_10_1016_j_jclepro_2022_134351
crossref_primary_10_1016_j_geoen_2023_212243
crossref_primary_10_1016_j_seppur_2023_125632
crossref_primary_10_1016_j_jaap_2025_107006
crossref_primary_10_1016_j_aca_2024_342308
crossref_primary_10_1016_j_seppur_2023_124305
crossref_primary_10_1016_j_seppur_2023_124306
crossref_primary_10_1021_acs_energyfuels_3c05211
crossref_primary_10_1186_s13065_023_01048_4
crossref_primary_10_1021_acs_langmuir_1c01716
crossref_primary_10_1016_j_envres_2023_116024
crossref_primary_10_1016_j_diamond_2024_111188
crossref_primary_10_1016_j_jhazmat_2020_123579
crossref_primary_10_1016_j_chemosphere_2022_135869
crossref_primary_10_3390_app11062657
crossref_primary_10_1007_s13399_023_04356_w
crossref_primary_10_1016_j_ijbiomac_2024_131584
crossref_primary_10_1016_j_scitotenv_2021_146608
crossref_primary_10_1016_j_molliq_2024_125191
crossref_primary_10_1016_j_jhazmat_2024_135940
crossref_primary_10_1016_j_gee_2024_11_008
crossref_primary_10_3390_gels9060468
crossref_primary_10_1016_j_jclepro_2022_135210
crossref_primary_10_3390_ma14040741
crossref_primary_10_1016_j_jtice_2024_105519
crossref_primary_10_3390_polym14235219
crossref_primary_10_1016_j_heliyon_2023_e19460
crossref_primary_10_1016_j_seppur_2020_118005
crossref_primary_10_1021_acsanm_3c04921
crossref_primary_10_3390_nano14131123
crossref_primary_10_1016_j_jcis_2024_12_136
crossref_primary_10_3390_ma14133738
crossref_primary_10_1039_D3DT03210H
crossref_primary_10_1016_j_jece_2021_106674
crossref_primary_10_1016_j_seppur_2024_130882
crossref_primary_10_1007_s13738_022_02735_0
crossref_primary_10_1007_s10450_024_00466_7
crossref_primary_10_1016_j_molliq_2021_115748
crossref_primary_10_1007_s11356_024_35151_3
crossref_primary_10_1016_j_jics_2025_101576
crossref_primary_10_1557_s43578_024_01433_2
crossref_primary_10_1016_j_powtec_2023_118681
crossref_primary_10_1080_22297928_2021_1952895
crossref_primary_10_1016_j_dwt_2024_100212
crossref_primary_10_1016_j_matchemphys_2023_128313
crossref_primary_10_2166_aqua_2024_335
crossref_primary_10_1016_j_dwt_2024_100695
crossref_primary_10_1016_j_mtsust_2020_100054
crossref_primary_10_1007_s42823_021_00262_1
crossref_primary_10_1016_j_jenvman_2022_117104
crossref_primary_10_1016_j_dwt_2025_100996
crossref_primary_10_1016_j_sajce_2023_01_007
crossref_primary_10_1016_j_jece_2022_107394
crossref_primary_10_1039_D3EW00120B
crossref_primary_10_1016_j_cjche_2022_02_021
crossref_primary_10_1016_j_mtchem_2020_100415
crossref_primary_10_1016_j_molliq_2020_114126
crossref_primary_10_1016_j_ecoenv_2021_112207
crossref_primary_10_1016_j_colsurfa_2024_134653
crossref_primary_10_1016_j_jece_2023_109872
crossref_primary_10_1016_j_jallcom_2025_179413
crossref_primary_10_1016_j_rechem_2023_101281
crossref_primary_10_1007_s42250_023_00782_5
crossref_primary_10_3390_pr11113115
crossref_primary_10_1007_s11356_022_20345_4
crossref_primary_10_1016_j_jtice_2021_104162
crossref_primary_10_3390_w13213081
crossref_primary_10_1016_j_envpol_2023_121663
crossref_primary_10_1021_acs_langmuir_4c02579
crossref_primary_10_1016_j_cej_2022_137883
crossref_primary_10_1016_j_matchemphys_2022_126749
crossref_primary_10_1007_s11696_020_01376_y
crossref_primary_10_2478_eces_2020_0015
crossref_primary_10_1111_gwmr_12485
crossref_primary_10_1016_j_jiec_2020_09_023
crossref_primary_10_1007_s13399_020_01193_z
crossref_primary_10_17721_fujcV11I2P8_18
crossref_primary_10_1016_j_envpol_2021_116995
crossref_primary_10_1007_s42247_024_00726_w
crossref_primary_10_3390_pr9112068
crossref_primary_10_3390_app12168032
crossref_primary_10_1016_j_jhazmat_2021_127432
crossref_primary_10_1016_j_porgcoat_2025_109099
crossref_primary_10_1039_D3RA07344K
crossref_primary_10_1007_s11356_023_27907_0
crossref_primary_10_1016_j_jclepro_2021_129994
crossref_primary_10_1016_j_jhazmat_2022_129917
crossref_primary_10_1016_j_seppur_2023_126096
crossref_primary_10_3390_ma16124434
crossref_primary_10_1016_j_cej_2025_159729
crossref_primary_10_1016_j_molliq_2024_126001
crossref_primary_10_1021_acs_langmuir_3c02597
crossref_primary_10_3390_molecules29194643
crossref_primary_10_1134_S0012501625600044
crossref_primary_10_1016_j_seppur_2022_122225
crossref_primary_10_1021_acsaem_4c01465
crossref_primary_10_1016_j_jenvman_2024_123978
crossref_primary_10_11001_jksww_2023_37_6_375
crossref_primary_10_1007_s13399_024_05419_2
crossref_primary_10_3390_su13137230
crossref_primary_10_1021_acs_iecr_2c03799
crossref_primary_10_1016_j_envpol_2023_121200
crossref_primary_10_1007_s11356_024_34345_z
crossref_primary_10_1016_j_cej_2024_155053
crossref_primary_10_1016_j_chemosphere_2024_144032
crossref_primary_10_1016_j_ijbiomac_2025_139787
crossref_primary_10_3390_pr11072146
crossref_primary_10_1016_j_jece_2024_112514
crossref_primary_10_1016_j_seppur_2024_129059
crossref_primary_10_1016_j_ces_2023_119127
crossref_primary_10_3390_ma15217429
crossref_primary_10_3390_w13101382
crossref_primary_10_1016_j_jece_2024_113839
crossref_primary_10_1016_j_jhazmat_2024_133750
crossref_primary_10_1021_acs_langmuir_3c01298
crossref_primary_10_3390_pr11123385
crossref_primary_10_1016_j_arabjc_2024_106038
crossref_primary_10_1016_j_microc_2023_108644
crossref_primary_10_1016_j_scitotenv_2024_170723
crossref_primary_10_3390_polym16213055
crossref_primary_10_1007_s13399_024_05900_y
crossref_primary_10_1021_acsomega_5c00179
crossref_primary_10_1016_j_cement_2024_100118
crossref_primary_10_1007_s13399_021_02083_8
crossref_primary_10_1016_j_cej_2022_138761
crossref_primary_10_1007_s42250_025_01217_z
crossref_primary_10_1016_j_eti_2023_103145
crossref_primary_10_1016_j_jclepro_2021_129536
crossref_primary_10_3390_polym14030567
crossref_primary_10_1016_j_ceramint_2022_09_040
crossref_primary_10_1002_chem_202102762
crossref_primary_10_1016_j_seppur_2024_129045
crossref_primary_10_1007_s10971_021_05708_6
crossref_primary_10_1016_j_foodchem_2024_141281
crossref_primary_10_1021_acsomega_3c05418
crossref_primary_10_1111_ijac_14930
crossref_primary_10_1007_s41101_023_00206_y
crossref_primary_10_1002_aic_17950
crossref_primary_10_1088_1755_1315_920_1_012029
crossref_primary_10_3390_polym16213048
crossref_primary_10_26599_PBM_2023_9260002
crossref_primary_10_3390_w14132047
crossref_primary_10_33003_fjs_2025_0901_2852
crossref_primary_10_1007_s42773_024_00351_0
crossref_primary_10_1016_j_indcrop_2024_120347
crossref_primary_10_1016_j_jwpe_2025_107464
crossref_primary_10_1016_j_jcis_2024_01_182
crossref_primary_10_3390_jcs8100414
crossref_primary_10_4491_KSEE_2021_43_1_32
crossref_primary_10_1016_j_chemosphere_2023_140649
crossref_primary_10_1016_j_jwpe_2024_104906
crossref_primary_10_1016_j_mtcomm_2022_105265
crossref_primary_10_1016_j_gsd_2021_100653
crossref_primary_10_1080_01932691_2023_2271061
crossref_primary_10_1016_j_chemosphere_2023_139665
crossref_primary_10_1016_j_dwt_2024_100606
crossref_primary_10_1016_j_rio_2024_100673
crossref_primary_10_1021_acs_langmuir_3c02165
crossref_primary_10_1016_j_apenergy_2023_122508
crossref_primary_10_1016_j_cep_2022_109016
crossref_primary_10_1016_j_jsamd_2024_100725
crossref_primary_10_1016_j_chemosphere_2023_138332
crossref_primary_10_1016_j_gsd_2024_101120
crossref_primary_10_1016_j_cej_2022_139631
crossref_primary_10_1016_j_cplett_2025_142062
crossref_primary_10_1016_j_seppur_2025_131633
crossref_primary_10_1039_D4RA00172A
crossref_primary_10_1016_j_eti_2023_103132
crossref_primary_10_1016_j_cej_2023_147591
crossref_primary_10_3390_w16152086
crossref_primary_10_1007_s10570_022_04801_5
crossref_primary_10_1016_j_diamond_2024_111576
crossref_primary_10_1016_j_scitotenv_2021_149296
crossref_primary_10_1007_s11164_023_05212_2
crossref_primary_10_1016_j_colsurfa_2021_126544
crossref_primary_10_1021_acsanm_3c00168
crossref_primary_10_3390_bios13010044
crossref_primary_10_1039_D4GC05217J
crossref_primary_10_1016_j_molliq_2022_120544
crossref_primary_10_3390_ijms22115535
crossref_primary_10_1016_j_envpol_2023_121241
crossref_primary_10_3390_pr11123344
crossref_primary_10_1080_01496395_2021_1956540
crossref_primary_10_3390_app13148481
crossref_primary_10_1016_j_cej_2020_127091
crossref_primary_10_1016_j_colsuc_2023_100019
crossref_primary_10_54021_seesv5n2_765
crossref_primary_10_1016_j_cherd_2024_06_036
crossref_primary_10_1016_j_foodchem_2024_141255
crossref_primary_10_3390_agronomy14092072
crossref_primary_10_1016_j_jiec_2024_11_007
crossref_primary_10_1016_j_envres_2024_118562
crossref_primary_10_1155_je_8884546
crossref_primary_10_1088_1757_899X_1115_1_012076
crossref_primary_10_1016_j_surfin_2020_100639
crossref_primary_10_1016_j_molliq_2020_114523
crossref_primary_10_1007_s13399_025_06540_6
crossref_primary_10_1016_j_scitotenv_2022_160382
crossref_primary_10_3389_fbioe_2022_819407
crossref_primary_10_1016_j_cej_2020_127081
crossref_primary_10_1021_acsami_1c17080
crossref_primary_10_1007_s13762_024_06111_8
Cites_doi 10.1021/acs.langmuir.9b00154
10.1006/jcis.1994.1107
10.1016/j.jhazmat.2007.06.122
10.1006/jcis.1994.1270
10.1371/journal.pone.0050434
10.1016/j.renene.2018.01.045
10.1016/j.cej.2006.06.002
10.1016/j.jhazmat.2007.10.094
10.14233/ajchem.2013.14786
10.1016/j.molliq.2019.01.005
10.9790/2402-1104021830
10.1016/j.jhazmat.2006.12.034
10.1016/j.jhazmat.2007.06.056
10.1023/A:1021304828010
10.1021/ja071174k
10.1080/23312009.2017.1351653
10.1080/19443994.2013.862869
10.1002/aic.690200204
10.1016/j.cej.2008.05.003
10.1155/2013/897159
10.1039/f19777300456
10.1016/j.jhazmat.2006.06.008
10.1080/01496390600725687
10.1016/j.cej.2013.04.011
10.1016/B978-1-895198-64-5.50006-4
10.1016/j.biortech.2006.06.015
10.1016/j.jenvman.2017.05.087
10.1006/jcis.1997.5041
10.1080/09593331708616356
10.1021/es102576e
10.1016/j.watres.2007.07.012
10.3390/info6010014
10.3390/app7060609
10.1016/j.icheatmasstransfer.2019.104402
10.2516/ogst/2012067
10.1080/09276440.2016.1137715
10.1016/j.cej.2008.05.021
10.1063/1.1347984
10.1016/j.dyepig.2005.12.006
10.1016/S0045-6535(99)00497-X
10.1021/cr60204a006
10.1021/j100842a045
10.1021/es0017615
10.1016/j.ces.2005.03.063
10.1016/j.chemosphere.2020.125862
10.1016/j.cej.2007.05.043
10.1016/j.cej.2019.122112
10.1016/j.micromeso.2019.109569
10.1016/j.jhazmat.2007.03.055
10.2136/sssaj1977.03615995004100060012x
10.1016/j.cej.2019.123191
10.1016/j.jhazmat.2008.01.052
10.1515/pac-2014-1117
10.1016/j.applthermaleng.2017.09.106
10.1016/j.fluid.2016.10.003
10.1016/j.cej.2016.09.091
10.1016/j.micromeso.2018.06.026
10.1016/j.molliq.2016.10.061
10.1007/s13762-014-0685-x
10.1155/2017/3039817
10.1006/jcis.1998.5639
10.1016/j.cej.2009.09.013
10.1007/s11814-015-0053-7
10.1016/j.cej.2012.12.077
10.1021/es052208w
10.1016/j.biortech.2007.11.018
10.1016/j.chemphys.2018.06.022
10.1016/j.cherd.2015.07.018
10.1016/j.apsusc.2016.02.004
10.1016/j.dyepig.2005.07.020
10.1016/B978-0-12-396972-9.00004-5
10.1016/j.minpro.2016.01.017
10.1016/j.jhazmat.2007.06.079
10.1021/es0264448
10.1007/BF01650130
10.1021/ja02268a002
10.1021/la100449z
10.1016/j.eti.2020.100614
10.1155/2011/714808
10.1016/j.cej.2016.09.029
10.1021/es00007a013
10.1016/j.applthermaleng.2018.07.131
10.2298/TSCI151202048Y
10.1016/S0021-9797(03)00139-5
10.1016/j.jcis.2004.08.078
10.1142/9781860943829_0001
10.1016/j.chemosphere.2017.07.051
10.1021/ja02242a004
10.1016/j.seppur.2018.07.077
10.1016/S0032-9592(03)00152-3
10.1016/j.jhazmat.2007.01.023
10.1007/s10450-016-9841-6
10.1021/la800725s
10.1016/j.seppur.2019.115719
10.1021/acs.jced.9b00233
10.1016/0021-9797(74)90252-5
10.1016/j.jcis.2003.09.004
10.1007/s40095-014-0131-3
10.1016/j.watres.2017.04.014
10.1016/j.chemosphere.2018.06.179
10.1016/j.jhazmat.2005.09.018
10.1016/0021-9797(81)90050-3
10.1016/j.colsurfa.2007.06.048
10.1016/j.jhazmat.2005.10.016
10.1016/j.jhazmat.2007.07.072
10.1007/BF00849309
10.1007/BF00849310
10.1016/j.eti.2019.100488
10.1016/j.watres.2004.07.015
10.1016/j.jenvman.2003.09.005
10.1080/01496395.2016.1212889
10.3390/polym11030410
10.1016/j.micromeso.2019.109844
10.1007/BF00705000
10.3923/ijct.2018.1.22
10.1007/BF00798768
10.1039/c0cp00902d
ContentType Journal Article
Copyright 2020 Elsevier B.V.
Copyright © 2020 Elsevier B.V. All rights reserved.
Copyright_xml – notice: 2020 Elsevier B.V.
– notice: Copyright © 2020 Elsevier B.V. All rights reserved.
DBID AAYXX
CITATION
NPM
7X8
7S9
L.6
DOI 10.1016/j.jhazmat.2020.122383
DatabaseName CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList PubMed
AGRICOLA
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Law
EISSN 1873-3336
ExternalDocumentID 32369889
10_1016_j_jhazmat_2020_122383
S030438942030371X
Genre Journal Article
Review
GroupedDBID ---
--K
--M
-~X
..I
.DC
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
53G
5GY
5VS
7-5
71M
8P~
9JM
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABFNM
ABFRF
ABFYP
ABJNI
ABLST
ABMAC
ABNUV
ABYKQ
ACDAQ
ACGFO
ACGFS
ACRLP
ADBBV
ADEWK
ADEZE
AEBSH
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHEUO
AHHHB
AHPOS
AIEXJ
AIKHN
AITUG
AJOXV
AKIFW
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLECG
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
ENUVR
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
KCYFY
KOM
LX7
LY9
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SSG
SSJ
SSZ
T5K
XPP
ZMT
~02
~G-
.HR
29K
AAHBH
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ABXDB
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
ADXHL
AEGFY
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AI.
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BBWZM
BNPGV
CITATION
D-I
EJD
FEDTE
FGOYB
G-2
HLY
HMC
HVGLF
HZ~
NDZJH
R2-
RIG
SCE
SEN
SEW
SSH
T9H
TAE
VH1
WUQ
NPM
7X8
7S9
EFKBS
L.6
ID FETCH-LOGICAL-c464t-3ead4af9c25454e8fca4c1cda4dbe48625fdda153bae997d93f78cb38e0258333
IEDL.DBID .~1
ISSN 0304-3894
1873-3336
IngestDate Tue Aug 05 10:03:24 EDT 2025
Thu Jul 10 23:35:06 EDT 2025
Wed Feb 19 02:30:17 EST 2025
Thu Apr 24 23:06:07 EDT 2025
Tue Jul 01 00:49:27 EDT 2025
Fri Feb 23 02:50:10 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords ATS
Ce
NAV
HNH
KLF
K D-R
MLF
qSH
KHE
aK
Cs-BET
nMJ
PFB
aR
aS
aT
qe
MB
LBL
OMSR
Ciex
nH
MG
Foc
qm
Asurf
Adsorption isotherm interpretation
qs
σsurf rxn
MO
AC
CAC
bK
qm-BET
MMJ
Ciw, neut
RODP
bT
αFS
FA
ANL
FE
qMLF
Cirxn
C
K1, K2
σ
E
PHC
K
NZ
bo
σsurf ex
AR 18
νm
CBET
Q
SD
R
T
X
KD
KFS
KF
Adsorption isotherm models
Adsorption mechanisms
KH
qmFS
βS
KL
OP
b
g
KR
KS
Ciw, ion
Cimin
CR
βFS
SCB
Cioc
Linear and nonlinear isotherm models
Language English
License Copyright © 2020 Elsevier B.V. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c464t-3ead4af9c25454e8fca4c1cda4dbe48625fdda153bae997d93f78cb38e0258333
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
PMID 32369889
PQID 2399253605
PQPubID 23479
ParticipantIDs proquest_miscellaneous_2431839579
proquest_miscellaneous_2399253605
pubmed_primary_32369889
crossref_primary_10_1016_j_jhazmat_2020_122383
crossref_citationtrail_10_1016_j_jhazmat_2020_122383
elsevier_sciencedirect_doi_10_1016_j_jhazmat_2020_122383
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-07-05
PublicationDateYYYYMMDD 2020-07-05
PublicationDate_xml – month: 07
  year: 2020
  text: 2020-07-05
  day: 05
PublicationDecade 2020
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
PublicationTitle Journal of hazardous materials
PublicationTitleAlternate J Hazard Mater
PublicationYear 2020
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Giles, Smith, Huitson (bib0200) 1974; 47
Bae, Yazaydın, Snurr (bib0080) 2010; 26
Ullah, Bustam, Assiri, Al-Sehemi, Sagir, Abdul Kareem (bib0630) 2019; 288
Hamdaoui, Naffrechoux (bib0220) 2007; 147
Pirngruber, Carlier, Leinekugel-le-Cocq (bib0455) 2013; 69
Al-Asheh, Banat, Al-Omari, Duvnjak (bib0015) 2000; 41
Awad, Shaikh, Jalab, Gulied, Nasser, Benamor, Adham (bib0055) 2019; 228
Ghodbane, Nouri, Hamdaoui, Chiha (bib0190) 2008; 152
Ternes, Herrmann, Bonerz, Knacker, Siegrist, Joss (bib0595) 2004; 38
Schwarzenbach, Gschwend, Imboden (bib0535) 2003
Langmuir (bib0355) 1916; 38
Yan, Fan, Wang, Shen (bib0695) 2017; 21
Kumar, Monteiro de Castro, Martinez-Escandell, Molina-Sabio, Rodriguez-Reinoso (bib0345) 2011; 13
Martín-Lara, Blázquez, Calero, Almendros, Ronda (bib0400) 2016; 148
Gürses, Karaca, Doğar, Bayrak, Açıkyıldız, Yalçın (bib0215) 2004; 269
Han, Zhang, Han, Wang, Zhao, Tang (bib0225) 2009; 145
Samarghandi, Hadi, Moayedi, Barjasteh Askari (bib0520) 2009; 6
Vijayaraghavan, Rangabhashiyam, Ashokkumar, Arockiaraj (bib0655) 2016; 51
Von Gemmingen (bib0660) 2005; 60
Keller, Staudt (bib0300) 2005
Padilla-Ortega, Leyva-Ramos, Flores-Cano (bib0440) 2013; 225
Swenson, Stadie (bib0590) 2019; 35
Wong, Szeto, Cheung, McKay (bib0680) 2004; 39
Gholitabar, Tahermansouri (bib0195) 2017; 22
Sultan, Miyazaki, Koyama (bib0585) 2018; 121
Koopal, van Riemsdijk, de Wit, Benedetti (bib0325) 1994; 166
Adamson, Gast (bib0005) 1997
Jarnoiec, Marczewski (bib0285) 1984; 15
Kumar, Sivanesan (bib0335) 2007; 72
El-Khaiary (bib0165) 2008; 158
Weber, Chakravorti (bib0675) 1974; 20
Ibrahim, Al-Meshragi (bib0265) 2019
Ayawei, Ebelegi, Wankasi (bib0060) 2017; 2017
Liu, Ostadhassan, Cai (bib0375) 2019
Yang, Zhu, Xing (bib0700) 2006; 40
Wynnyk, Hojjati, Marriott (bib0690) 2019; 64
Jaroniec, Marczewski (bib0290) 1984; 115
Parker, Garth (bib0445) 1995; 1
Tóth (bib0610) 1981; 79
Vijayaraghavan (bib0650) 2015; 1
Monroy-Figueroa, Mendoza-Castillo, Bonilla-Petriciolet, Pérez-Cruz (bib0410) 2014; 12
Azahar, Mitra, Yabushita, Harata, Saha, Thu (bib0070) 2018; 143
Carter, Kilduff, Weber (bib0105) 1995; 29
Dai, Sun, Wang, Lu, Liu, Li (bib0125) 2018; 211
Kong, Adidharma (bib0320) 2019; 375
Allen, Mckay, Porter (bib0040) 2004; 280
Carballa, Fink, Omil, Lema, Ternes (bib0100) 2008; 42
Jagadamma, Mayes, Phillips (bib0280) 2012; 7
Tóth (bib0615) 1994; 163
Demirbas, Kobya, Konukman (bib0140) 2008; 154
Srivastava, Mall, Mishra (bib0580) 2008; 312
Liu, Wang (bib0370) 2013; 2013
Saadi, Saadi, Fazaeli, Fard (bib0515) 2015; 32
Vadi, Mansoorabad, Mohammadi, Rostami (bib0640) 2013; 25
Lowell, Shields, Thomas, Thommes (bib0380) 2004
Soetaredjo, Kurniawan, Ki, Ismadji (bib0570) 2013; 219
Uddin (bib0625) 2017; 308
Vijayarachavan, Padmesh, Palanivelu, Velan (bib0645) 2006; 133
Chen (bib0115) 2015; 6
Mane, Mall, Srivastava (bib0390) 2007; 73
Hutson, Yang (bib0260) 1997; 3
Ringot, Lerzy, Chaplain, Bonhoure, Auclair, Larondelle (bib0490) 2007; 98
Al-Ghouti, Razavi (bib0020) 2020; 17
Ofomaja, Ho (bib0435) 2008; 99
Do (bib0145) 1998; 2
Horsfall, Spiff (bib0250) 2005; 52
Ullah, Bustam, Assiri, Al-Sehemi, Gonfa, Mukhtar (bib0635) 2020; 294
Mason (bib0405) 1983; 390
Ross, Olivier (bib0500) 1964; 146
Thommes, Katsumi, Neimark, Olivier, Rodriguez-Reinoso, Rouqueol, Sing (bib0605) 2015; 87
Dubinin (bib0155) 1960; 60
Podder, Majumder (bib0460) 2016; 23
Aharoni, Ungarish (bib0010) 1977; 73
Ayoob, Gupta (bib0065) 2008; 152
Foo, Hameed (bib0180) 2010; 156
Ho, Porter, McKay (bib0240) 2002; 141
Jin, Huang, Li, Shan (bib0295) 2017; 185
Reynel-Avila, Mendoza-Castillo, Olumide, Bonilla-Petriciolet (bib0485) 2016; 224
Khan, Ataullah, Al-Haddad (bib0310) 1997; 194
Khan, Al-Waheab, Al-Haddad (bib0315) 2010; 17
Khalfaoui, Knani, Hachicha, Lamine (bib0305) 2003; 263
Golet, Xifra, Siegrist, Alder, Giger (bib0205) 2003; 37
Nitzsche, Gröngröft, Kraume (bib0425) 2019; 209
Hauchhum, Mahanta (bib0235) 2014; 5
Almalike (bib0045) 2017; 4
Qi, Zhu, Fu, Hu, Huang (bib0475) 2017; 200
Flores (bib0175) 2014
Hobson (bib0245) 1969; 73
Kumar (bib0330) 2006; 136
Pérez-Marín, Zapata, Ortuño, Aguilar, Sáez, Lloréns (bib0450) 2007; 139
Srivastava, Mall, Mishra (bib0575) 2006; 41
Wynnyk, Hojjati, Pirzadeh, Marriott (bib0685) 2017; 23
Azizian, Eris, Wilson (bib0075) 2018; 513
Donohue, Aranovich (bib0150) 1998; 205
Hu, Zhang (bib0255) 2019; 277
Kumar, Porkodi, Rocha (bib0340) 2008; 151
Çelebi, Üzüm, Shahwan, Erten (bib0110) 2007; 148
Kundu, Gupta (bib0350) 2006; 122
Shanavas, Salahuddin Kunju, Varghese, Panicker (bib0555) 2011; 27
Senichev, Tereshatov (bib0540) 2014; 1
Ramadoss, Subramaniam (bib0480) 2018; 10
Mukhtar, Saqib, Safdar, Hameed, Rafiq, Mellon (bib0415) 2020; 110
Savran, Selçuk, Kubilay, Kul (bib0525) 2017; 11
Shahbeig, Hallajisani, Bagheri, Ghorbanian, Poorkarimi (bib0550) 2013; 9
Singh, Kaushal (bib0565) 2017; 1
Saadi, Saadi, Fazaeli (bib0510) 2013; 53
Dang, Zhang, Nie, Wang, Tang, Wu (bib0130) 2020; 383
Harter, Baker (bib0230) 1977; 41
Nouri, Ghodbane, Hamdaoui, Chiha (bib0430) 2007; 149
Al-Ghouti, Khraisheh, Allen, Ahmad (bib0030) 2003; 69
Langmuir (bib0360) 1918; 40
Theivarasu, Mylsamy (bib0600) 2011; 8
Rong, Liu, Pang, Yang, Wang, Zhou (bib0495) 2017; 7
Dada, Adekola, Odebunmi (bib0120) 2017; 3
Shafeeyan, Daud, Shamiri, Aghamohammadi (bib0545) 2015; 104
Boulinguiez, Le Cloirec, Wolbert (bib0090) 2008; 24
Rudzinski, Everett (bib0505) 1992
Schwarzenbach, Gschwend, Imboden (bib0530) 2003
Prasad, Srivastava (bib0470) 2009; 146
Everett (bib0170) 1967; vol. 2
Zhang (bib0710) 2017; 129
Israel, Eduok (bib0275) 2004; 4
Poerschman, Kopinke (bib0465) 2001; 35
Wang, Li, Xing, Sun, Zhang, Hao (bib0670) 2020; 247
Geszke-Moritz, Moritz (bib0185) 2016; 368
Mahmoud, Salleh, Karim (bib0385) 2012; 1
Al-Ghouti, Al Disi, Al-Kaabi, Khraisheh (bib0035) 2017; 308
Delle Site (bib0135) 2001; 30
Bronner, Goss (bib0095) 2011; 45
Günay, Arslankaya, Tosun (bib0210) 2007; 146
Zeldowitsch (bib0705) 1934
El Nemr, El-Sikaily, Khaled (bib0160) 2010; 36
Al-Ghouti, Sweleh (bib0025) 2019; 16
Lataye, Mishra, Mall (bib0365) 2008; 138
Sims, Harmer, Quinton (bib0560) 2019; 11
Inglezakis, Poulopoulos, Kazemian (bib0270) 2018; 272
Tran, You, Hosseini-Bandegharaei, Chao (bib0620) 2017; 120
Marczewksi, Jaroniec (bib0395) 1983; 14
Astakhov, Dubinin (bib0050) 1971; 20
Bering, Gordeeva, Dubinin, Efimova, Serpinskii (bib0085) 1971; 20
Walton, Snurr (bib0665) 2007; 129
Nebaghe, El Boundati, Ziat, Naji, Rghioui, Saidi (bib0420) 2016; 430
El-Khaiary (10.1016/j.jhazmat.2020.122383_bib0165) 2008; 158
Shahbeig (10.1016/j.jhazmat.2020.122383_bib0550) 2013; 9
Golet (10.1016/j.jhazmat.2020.122383_bib0205) 2003; 37
Nouri (10.1016/j.jhazmat.2020.122383_bib0430) 2007; 149
Al-Ghouti (10.1016/j.jhazmat.2020.122383_bib0020) 2020; 17
Liu (10.1016/j.jhazmat.2020.122383_bib0370) 2013; 2013
Günay (10.1016/j.jhazmat.2020.122383_bib0210) 2007; 146
Prasad (10.1016/j.jhazmat.2020.122383_bib0470) 2009; 146
Ternes (10.1016/j.jhazmat.2020.122383_bib0595) 2004; 38
Zeldowitsch (10.1016/j.jhazmat.2020.122383_bib0705) 1934
Lataye (10.1016/j.jhazmat.2020.122383_bib0365) 2008; 138
Everett (10.1016/j.jhazmat.2020.122383_bib0170) 1967; vol. 2
Mukhtar (10.1016/j.jhazmat.2020.122383_bib0415) 2020; 110
Vijayaraghavan (10.1016/j.jhazmat.2020.122383_bib0650) 2015; 1
Ramadoss (10.1016/j.jhazmat.2020.122383_bib0480) 2018; 10
Wong (10.1016/j.jhazmat.2020.122383_bib0680) 2004; 39
Weber (10.1016/j.jhazmat.2020.122383_bib0675) 1974; 20
Hauchhum (10.1016/j.jhazmat.2020.122383_bib0235) 2014; 5
Yan (10.1016/j.jhazmat.2020.122383_bib0695) 2017; 21
Gürses (10.1016/j.jhazmat.2020.122383_bib0215) 2004; 269
Ofomaja (10.1016/j.jhazmat.2020.122383_bib0435) 2008; 99
Jagadamma (10.1016/j.jhazmat.2020.122383_bib0280) 2012; 7
Adamson (10.1016/j.jhazmat.2020.122383_bib0005) 1997
Awad (10.1016/j.jhazmat.2020.122383_bib0055) 2019; 228
Nitzsche (10.1016/j.jhazmat.2020.122383_bib0425) 2019; 209
Shafeeyan (10.1016/j.jhazmat.2020.122383_bib0545) 2015; 104
Kumar (10.1016/j.jhazmat.2020.122383_bib0345) 2011; 13
Rong (10.1016/j.jhazmat.2020.122383_bib0495) 2017; 7
Poerschman (10.1016/j.jhazmat.2020.122383_bib0465) 2001; 35
Azahar (10.1016/j.jhazmat.2020.122383_bib0070) 2018; 143
Boulinguiez (10.1016/j.jhazmat.2020.122383_bib0090) 2008; 24
Donohue (10.1016/j.jhazmat.2020.122383_bib0150) 1998; 205
Hutson (10.1016/j.jhazmat.2020.122383_bib0260) 1997; 3
Bae (10.1016/j.jhazmat.2020.122383_bib0080) 2010; 26
Khan (10.1016/j.jhazmat.2020.122383_bib0315) 2010; 17
Schwarzenbach (10.1016/j.jhazmat.2020.122383_bib0530) 2003
Ullah (10.1016/j.jhazmat.2020.122383_bib0635) 2020; 294
Hobson (10.1016/j.jhazmat.2020.122383_bib0245) 1969; 73
Khan (10.1016/j.jhazmat.2020.122383_bib0310) 1997; 194
Kumar (10.1016/j.jhazmat.2020.122383_bib0335) 2007; 72
Saadi (10.1016/j.jhazmat.2020.122383_bib0510) 2013; 53
Ullah (10.1016/j.jhazmat.2020.122383_bib0630) 2019; 288
Parker (10.1016/j.jhazmat.2020.122383_bib0445) 1995; 1
Yang (10.1016/j.jhazmat.2020.122383_bib0700) 2006; 40
Soetaredjo (10.1016/j.jhazmat.2020.122383_bib0570) 2013; 219
Vadi (10.1016/j.jhazmat.2020.122383_bib0640) 2013; 25
Azizian (10.1016/j.jhazmat.2020.122383_bib0075) 2018; 513
Jaroniec (10.1016/j.jhazmat.2020.122383_bib0290) 1984; 115
Ayoob (10.1016/j.jhazmat.2020.122383_bib0065) 2008; 152
Langmuir (10.1016/j.jhazmat.2020.122383_bib0360) 1918; 40
Çelebi (10.1016/j.jhazmat.2020.122383_bib0110) 2007; 148
Martín-Lara (10.1016/j.jhazmat.2020.122383_bib0400) 2016; 148
Demirbas (10.1016/j.jhazmat.2020.122383_bib0140) 2008; 154
Mason (10.1016/j.jhazmat.2020.122383_bib0405) 1983; 390
Walton (10.1016/j.jhazmat.2020.122383_bib0665) 2007; 129
Saadi (10.1016/j.jhazmat.2020.122383_bib0515) 2015; 32
Zhang (10.1016/j.jhazmat.2020.122383_bib0710) 2017; 129
Marczewksi (10.1016/j.jhazmat.2020.122383_bib0395) 1983; 14
Reynel-Avila (10.1016/j.jhazmat.2020.122383_bib0485) 2016; 224
Pirngruber (10.1016/j.jhazmat.2020.122383_bib0455) 2013; 69
Tran (10.1016/j.jhazmat.2020.122383_bib0620) 2017; 120
Inglezakis (10.1016/j.jhazmat.2020.122383_bib0270) 2018; 272
Thommes (10.1016/j.jhazmat.2020.122383_bib0605) 2015; 87
Wynnyk (10.1016/j.jhazmat.2020.122383_bib0685) 2017; 23
Langmuir (10.1016/j.jhazmat.2020.122383_bib0355) 1916; 38
Schwarzenbach (10.1016/j.jhazmat.2020.122383_bib0535) 2003
Chen (10.1016/j.jhazmat.2020.122383_bib0115) 2015; 6
Samarghandi (10.1016/j.jhazmat.2020.122383_bib0520) 2009; 6
Senichev (10.1016/j.jhazmat.2020.122383_bib0540) 2014; 1
Carballa (10.1016/j.jhazmat.2020.122383_bib0100) 2008; 42
Al-Asheh (10.1016/j.jhazmat.2020.122383_bib0015) 2000; 41
Astakhov (10.1016/j.jhazmat.2020.122383_bib0050) 1971; 20
Kong (10.1016/j.jhazmat.2020.122383_bib0320) 2019; 375
Padilla-Ortega (10.1016/j.jhazmat.2020.122383_bib0440) 2013; 225
Ibrahim (10.1016/j.jhazmat.2020.122383_bib0265) 2019
Bronner (10.1016/j.jhazmat.2020.122383_bib0095) 2011; 45
Almalike (10.1016/j.jhazmat.2020.122383_bib0045) 2017; 4
Al-Ghouti (10.1016/j.jhazmat.2020.122383_bib0025) 2019; 16
Jarnoiec (10.1016/j.jhazmat.2020.122383_bib0285) 1984; 15
Vijayarachavan (10.1016/j.jhazmat.2020.122383_bib0645) 2006; 133
Mane (10.1016/j.jhazmat.2020.122383_bib0390) 2007; 73
Horsfall (10.1016/j.jhazmat.2020.122383_bib0250) 2005; 52
Carter (10.1016/j.jhazmat.2020.122383_bib0105) 1995; 29
Allen (10.1016/j.jhazmat.2020.122383_bib0040) 2004; 280
Dubinin (10.1016/j.jhazmat.2020.122383_bib0155) 1960; 60
Pérez-Marín (10.1016/j.jhazmat.2020.122383_bib0450) 2007; 139
Al-Ghouti (10.1016/j.jhazmat.2020.122383_bib0035) 2017; 308
Keller (10.1016/j.jhazmat.2020.122383_bib0300) 2005
Bering (10.1016/j.jhazmat.2020.122383_bib0085) 1971; 20
Foo (10.1016/j.jhazmat.2020.122383_bib0180) 2010; 156
Han (10.1016/j.jhazmat.2020.122383_bib0225) 2009; 145
Ross (10.1016/j.jhazmat.2020.122383_bib0500) 1964; 146
Rudzinski (10.1016/j.jhazmat.2020.122383_bib0505) 1992
Theivarasu (10.1016/j.jhazmat.2020.122383_bib0600) 2011; 8
Kundu (10.1016/j.jhazmat.2020.122383_bib0350) 2006; 122
Qi (10.1016/j.jhazmat.2020.122383_bib0475) 2017; 200
Delle Site (10.1016/j.jhazmat.2020.122383_bib0135) 2001; 30
Dada (10.1016/j.jhazmat.2020.122383_bib0120) 2017; 3
Giles (10.1016/j.jhazmat.2020.122383_bib0200) 1974; 47
Koopal (10.1016/j.jhazmat.2020.122383_bib0325) 1994; 166
Ringot (10.1016/j.jhazmat.2020.122383_bib0490) 2007; 98
Liu (10.1016/j.jhazmat.2020.122383_bib0375) 2019
Podder (10.1016/j.jhazmat.2020.122383_bib0460) 2016; 23
Ayawei (10.1016/j.jhazmat.2020.122383_bib0060) 2017; 2017
Harter (10.1016/j.jhazmat.2020.122383_bib0230) 1977; 41
Kumar (10.1016/j.jhazmat.2020.122383_bib0330) 2006; 136
Srivastava (10.1016/j.jhazmat.2020.122383_bib0575) 2006; 41
Ho (10.1016/j.jhazmat.2020.122383_bib0240) 2002; 141
Hamdaoui (10.1016/j.jhazmat.2020.122383_bib0220) 2007; 147
Al-Ghouti (10.1016/j.jhazmat.2020.122383_bib0030) 2003; 69
Mahmoud (10.1016/j.jhazmat.2020.122383_bib0385) 2012; 1
Dang (10.1016/j.jhazmat.2020.122383_bib0130) 2020; 383
Ghodbane (10.1016/j.jhazmat.2020.122383_bib0190) 2008; 152
Lowell (10.1016/j.jhazmat.2020.122383_bib0380) 2004
Nebaghe (10.1016/j.jhazmat.2020.122383_bib0420) 2016; 430
Wynnyk (10.1016/j.jhazmat.2020.122383_bib0690) 2019; 64
Uddin (10.1016/j.jhazmat.2020.122383_bib0625) 2017; 308
Hu (10.1016/j.jhazmat.2020.122383_bib0255) 2019; 277
El Nemr (10.1016/j.jhazmat.2020.122383_bib0160) 2010; 36
Flores (10.1016/j.jhazmat.2020.122383_bib0175) 2014
Von Gemmingen (10.1016/j.jhazmat.2020.122383_bib0660) 2005; 60
Sultan (10.1016/j.jhazmat.2020.122383_bib0585) 2018; 121
Khalfaoui (10.1016/j.jhazmat.2020.122383_bib0305) 2003; 263
Monroy-Figueroa (10.1016/j.jhazmat.2020.122383_bib0410) 2014; 12
Shanavas (10.1016/j.jhazmat.2020.122383_bib0555) 2011; 27
Singh (10.1016/j.jhazmat.2020.122383_bib0565) 2017; 1
Wang (10.1016/j.jhazmat.2020.122383_bib0670) 2020; 247
Kumar (10.1016/j.jhazmat.2020.122383_bib0340) 2008; 151
Vijayaraghavan (10.1016/j.jhazmat.2020.122383_bib0655) 2016; 51
Aharoni (10.1016/j.jhazmat.2020.122383_bib0010) 1977; 73
Savran (10.1016/j.jhazmat.2020.122383_bib0525) 2017; 11
Tóth (10.1016/j.jhazmat.2020.122383_bib0610) 1981; 79
Sims (10.1016/j.jhazmat.2020.122383_bib0560) 2019; 11
Israel (10.1016/j.jhazmat.2020.122383_bib0275) 2004; 4
Swenson (10.1016/j.jhazmat.2020.122383_bib0590) 2019; 35
Do (10.1016/j.jhazmat.2020.122383_bib0145) 1998; 2
Gholitabar (10.1016/j.jhazmat.2020.122383_bib0195) 2017; 22
Srivastava (10.1016/j.jhazmat.2020.122383_bib0580) 2008; 312
Tóth (10.1016/j.jhazmat.2020.122383_bib0615) 1994; 163
Dai (10.1016/j.jhazmat.2020.122383_bib0125) 2018; 211
Geszke-Moritz (10.1016/j.jhazmat.2020.122383_bib0185) 2016; 368
Jin (10.1016/j.jhazmat.2020.122383_bib0295) 2017; 185
References_xml – volume: 308
  start-page: 463
  year: 2017
  end-page: 475
  ident: bib0035
  article-title: Mechanistic insights into the remediation of bromide ions from desalinated water using roasted date pits
  publication-title: Chem. Eng. J.
– volume: 16
  year: 2019
  ident: bib0025
  article-title: Optimizing textile dye removal by activated carbon prepared from olive stones
  publication-title: Environ. Technol. Innov.
– volume: 51
  start-page: 2725
  year: 2016
  end-page: 2733
  ident: bib0655
  article-title: Mono- and multi-component biosorption of lead(II), cadmium(II), copper(II) and nickel(II) ions onto coco-peat biomass
  publication-title: Sep. Sci. Technol.
– volume: 205
  start-page: 121
  year: 1998
  end-page: 130
  ident: bib0150
  article-title: Adsorption hysteresis in porous solids
  publication-title: J. Colloid Interface Sci.
– volume: 14
  year: 1983
  ident: bib0395
  article-title: ChemInform Abstract: a new isotherm equation for single-solute adsorption from dilute solutions on energetically heterogeneous solids
  publication-title: Chem. Inf.
– volume: 25
  start-page: 5467
  year: 2013
  end-page: 5469
  ident: bib0640
  article-title: Investigation of Langmuir, Freundlich and temkin adsorption isotherm of tramadol by multi-wall carbon nanotube
  publication-title: Asian J. Chem.
– volume: 73
  start-page: 269
  year: 2007
  end-page: 278
  ident: bib0390
  article-title: Use of bagasse fly ash as an adsorbent for the removal of brilliant green dye from aqueous solution
  publication-title: Dye. Pigment.
– volume: 35
  start-page: 1142
  year: 2001
  end-page: 1148
  ident: bib0465
  article-title: Sorption of Very Hydrophobic Organic Compounds (VHOCs) on Dissolved Humic Organic Matter (DOM). 2. Measurement of Sorption and Application of a Flory−Huggins Concept to Interpret the Data
  publication-title: Environ. Sci. Technol.
– volume: 154
  start-page: 787
  year: 2008
  end-page: 794
  ident: bib0140
  article-title: Error analysis of equilibrium studies for the almond shell activated carbon adsorption of Cr(VI) from aqueous solutions
  publication-title: J. Hazard. Mater.
– volume: 1
  start-page: 170
  year: 2012
  end-page: 199
  ident: bib0385
  article-title: Langmuir model application on solid-liquid adsorption using agricultural wastes: environmental application review
  publication-title: J. Purity Util. React. Environ.
– volume: 1
  start-page: 117
  year: 2014
  end-page: 149
  ident: bib0540
  article-title: Simple solvent characteristics
  publication-title: Handbk. Solvents
– volume: 60
  start-page: 235
  year: 1960
  end-page: 241
  ident: bib0155
  article-title: The potential theory of adsorption of gases and vapors for adsorbents with energetically nonuniform surfaces
  publication-title: Chem. Rev.
– volume: 145
  start-page: 496
  year: 2009
  end-page: 504
  ident: bib0225
  article-title: Study of equilibrium, kinetic and thermodynamic parameters about methylene blue adsorption onto natural zeolite
  publication-title: Chem. Eng. J.
– volume: 39
  start-page: 695
  year: 2004
  end-page: 704
  ident: bib0680
  article-title: Adsorption of acid dyes on chitosan—equilibrium isotherm analyses
  publication-title: Process. Biochem.
– volume: 17
  year: 2020
  ident: bib0020
  article-title: Water reuse: brackish water desalination using Prosopis juliflora
  publication-title: Environ. Technol. Innov.
– volume: 12
  start-page: 2867
  year: 2014
  end-page: 2880
  ident: bib0410
  article-title: Chemical modification of Byrsonima crassifolia with citric acid for the competitive sorption of heavy metals from water
  publication-title: Int. J. Environ. Sci. Technol.
– start-page: 167
  year: 2014
  end-page: 233
  ident: bib0175
  article-title: Coalification, gasification, and gas storage
  publication-title: Coal Coalbed Gas
– volume: 27
  start-page: 245
  year: 2011
  end-page: 252
  ident: bib0555
  article-title: Comparison of Langmuir and Harkins-Jura adsorption isotherms for the determination of surface area of solids
  publication-title: Orient. J. Chem.
– volume: 158
  start-page: 73
  year: 2008
  end-page: 87
  ident: bib0165
  article-title: Least-squares regression of adsorption equilibrium data: comparing the options
  publication-title: J. Hazard. Mater.
– volume: 52
  start-page: 174
  year: 2005
  end-page: 181
  ident: bib0250
  article-title: Equilibrium sorption study of Al3+, Co2+ and Ag2+ in aqueous solutions by fluted pumpkin (Telfairia occidentalis HOOK) waste biomass
  publication-title: Acta Chim. Slov.
– volume: 1
  start-page: 10
  year: 2015
  end-page: 17
  ident: bib0650
  article-title: Biosorption of lanthanide (praseodymium) using Ulva lactuca: mechanistic study and application of two, three, four and five parameter isotherm models
  publication-title: J. Environ. Biotechnol.
– volume: 133
  start-page: 304
  year: 2006
  end-page: 308
  ident: bib0645
  article-title: Biosorption of nickel(II) ions onto Sargassum wightii: application of two-parameter and three-parameter isotherm models
  publication-title: J. Hazard. Mater.
– volume: 36
  start-page: 403
  year: 2010
  end-page: 425
  ident: bib0160
  article-title: Modeling of adsorption isotherms of Methylene Blue onto rice husk activated carbon
  publication-title: Egypt. J. Aquat. Res.
– volume: 26
  start-page: 5475
  year: 2010
  end-page: 5483
  ident: bib0080
  article-title: Evaluation of the BET method for determining surface areas of MOFs and zeolites that contain ultra-micropores
  publication-title: Langmuir
– volume: 7
  year: 2012
  ident: bib0280
  article-title: Selective sorption of dissolved organic carbon compounds by temperate soils
  publication-title: PLoS One
– volume: 32
  start-page: 787
  year: 2015
  end-page: 799
  ident: bib0515
  article-title: Monolayer and multilayer adsorption isotherm models for sorption from aqueous media
  publication-title: Korean J. Chem. Eng.
– volume: 35
  start-page: 5409
  year: 2019
  end-page: 5426
  ident: bib0590
  article-title: Langmuir’s theory of adsorption: a centennial review
  publication-title: Langmuir
– volume: 64
  start-page: 3156
  year: 2019
  end-page: 3163
  ident: bib0690
  article-title: Sour gas and water adsorption on common high-pressure desiccant materials: zeolite 3A, zeolite 4A, and silica gel
  publication-title: J. Chem. Eng. Data
– volume: 5
  start-page: 349
  year: 2014
  end-page: 356
  ident: bib0235
  article-title: Carbon dioxide adsorption on zeolites and activated carbon by pressure swing adsorption in a fixed bed
  publication-title: Int. J. Energy Environ. Eng.
– volume: 129
  start-page: 8552
  year: 2007
  end-page: 8556
  ident: bib0665
  article-title: Applicability of the BET method for determining surface areas of microporous metal−Organic frameworks
  publication-title: J. Am. Chem. Soc.
– volume: 247
  year: 2020
  ident: bib0670
  article-title: Gaseous adsorption of hexamethyldisiloxane on carbons: isotherms, isosteric heats and kinetics
  publication-title: Chemosphere
– volume: 2013
  start-page: 1
  year: 2013
  end-page: 6
  ident: bib0370
  article-title: Novel silica-based hybrid adsorbents: lead(II) adsorption isotherms
  publication-title: Sci. World J.
– volume: 121
  start-page: 441
  year: 2018
  end-page: 450
  ident: bib0585
  article-title: Optimization of adsorption isotherm types for desiccant air-conditioning applications
  publication-title: Renew. Energy
– volume: 41
  start-page: 1077
  year: 1977
  ident: bib0230
  article-title: Applications and misapplications of the langmuir equation to soil adsorption Phenomena1
  publication-title: Soil Sci. Soc. Am. J.
– volume: 156
  start-page: 2
  year: 2010
  end-page: 10
  ident: bib0180
  article-title: Insights into the modeling of adsorption isotherm systems
  publication-title: Chem. Eng. J.
– volume: 37
  start-page: 3243
  year: 2003
  end-page: 3249
  ident: bib0205
  article-title: Environmental exposure assessment of fluoroquinolone antibacterial agents from sewage to soil
  publication-title: Environ. Sci. Technol.
– volume: 122
  start-page: 93
  year: 2006
  end-page: 106
  ident: bib0350
  article-title: Arsenic adsorption onto iron oxide-coated cement (IOCC): regression analysis of equilibrium data with several isotherm models and their optimization
  publication-title: Chem. Eng. J.
– volume: 11
  start-page: 410
  year: 2019
  ident: bib0560
  article-title: The role of physisorption and chemisorption in the oscillatory adsorption of organosilanes on aluminium oxide
  publication-title: Polymers
– volume: 38
  start-page: 2221
  year: 1916
  end-page: 2295
  ident: bib0355
  article-title: The Constitution and fundamental properties of solids and liquids. Part I. Solids
  publication-title: J. Am. Chem. Soc.
– volume: 390
  start-page: 47
  year: 1983
  end-page: 72
  ident: bib0405
  article-title: A model of adsorption-desorption hysteresis in which hysteresis is primarily developed by the interconnections in a network of pores
  publication-title: Proc. R. Soc. A Math. Phys. Eng. Sci.
– start-page: 275
  year: 2003
  end-page: 321
  ident: bib0535
  article-title: sorption III: sorption processes involving inorganic surfaces
  publication-title: Environmental Organic Chemistry
– volume: 4
  start-page: 9
  year: 2017
  end-page: 20
  ident: bib0045
  article-title: Equations adsorption isotherms for biuret on soils, paper and cortex plant application of the Freundlich, Langmuir, Temkin, Elovich, flory-huggins, Halsey, and harkins-jura
  publication-title: Int. J. Adv. Res. Chem. Sci.
– start-page: 275
  year: 2003
  end-page: 321
  ident: bib0530
  article-title: Sorption I: General introduction and sorption processes involving organic matter
  publication-title: Environmental Organic Chemistry
– volume: vol. 2
  year: 1967
  ident: bib0170
  publication-title: In the Solid-Gas Interface
– volume: 219
  start-page: 137
  year: 2013
  end-page: 148
  ident: bib0570
  article-title: Incorporation of selectivity factor in modeling binary component adsorption isotherms for heavy metals-biomass system
  publication-title: Chem. Eng. J.
– volume: 312
  start-page: 172
  year: 2008
  end-page: 184
  ident: bib0580
  article-title: Removal of cadmium(II) and zinc(II) metal ions from binary aqueous solution by rice husk ash
  publication-title: Colloids Surf. A Physicochem. Eng. Asp.
– volume: 42
  start-page: 287
  year: 2008
  end-page: 295
  ident: bib0100
  article-title: Determination of the solid–water distribution coefficient (Kd) for pharmaceuticals, estrogens and musk fragrances in digested sludge
  publication-title: Water Res.
– volume: 40
  start-page: 1361
  year: 1918
  end-page: 1403
  ident: bib0360
  article-title: The adsorption of gases on plane surfaces of glass, Mica and platinum
  publication-title: J. Am. Chem. Soc.
– volume: 147
  start-page: 401
  year: 2007
  end-page: 411
  ident: bib0220
  article-title: Modeling of adsorption isotherms of phenol and chlorophenols onto granular activated carbonPart II. Models with more than two parameters
  publication-title: J. Hazard. Mater.
– volume: 141
  start-page: 1
  year: 2002
  end-page: 33
  ident: bib0240
  publication-title: Water Air Soil Pollut.
– volume: 15
  year: 1984
  ident: bib0285
  article-title: ChemInform Abstract: physical adsorption of gases on energetically heterogeneous solids. II. Theoretical extension of A generalized Langmuir equation and its applications for analyzing adsorption data
  publication-title: Chem. Inf.
– volume: 146
  year: 1964
  ident: bib0500
  article-title: On physical adsorption
  publication-title: Science
– volume: 277
  start-page: 646
  year: 2019
  end-page: 648
  ident: bib0255
  article-title: Application of Dubinin–radushkevich isotherm model at the solid/solution interface: a theoretical analysis
  publication-title: J. Mol. Liq.
– volume: 166
  start-page: 51
  year: 1994
  end-page: 60
  ident: bib0325
  article-title: Analytical isotherm equations for multicomponent adsorption to heterogeneous surfaces
  publication-title: J. Colloid Interface Sci.
– volume: 148
  start-page: 72
  year: 2016
  end-page: 82
  ident: bib0400
  article-title: Binary biosorption of copper and lead onto pine-cone shell in batch reactors and in fixed bed columns
  publication-title: Int. J. Miner. Process.
– volume: 1
  start-page: 113
  year: 1995
  end-page: 132
  ident: bib0445
  article-title: Optimum isotherm equation and thermodynamic interpretation for aqueous 1,1,2-trichloroethene adsorption isotherms on three adsorbents
  publication-title: Adsorption
– volume: 151
  start-page: 794
  year: 2008
  end-page: 804
  ident: bib0340
  article-title: Isotherms and thermodynamics by linear and non-linear regression analysis for the sorption of methylene blue onto activated carbon: comparison of various error functions
  publication-title: J. Hazard. Mater.
– volume: 225
  start-page: 535
  year: 2013
  end-page: 546
  ident: bib0440
  article-title: Binary adsorption of heavy metals from aqueous solution onto natural clays
  publication-title: Chem. Eng. J.
– volume: 2
  start-page: 1
  year: 1998
  end-page: 916
  ident: bib0145
  article-title: Adsorption analysis: equilibria and kinetics
  publication-title: Ser. Chem. Eng.
– volume: 60
  start-page: 5198
  year: 2005
  end-page: 5205
  ident: bib0660
  article-title: The Fermi–Dirac concept for isotherms of adsorbents with heterogeneous surfaces
  publication-title: Chem. Eng. Sci.
– volume: 30
  start-page: 187
  year: 2001
  end-page: 439
  ident: bib0135
  article-title: Factors Affecting Sorption of Organic Compounds in Natural Sorbent/Water Systems and Sorption Coefficients for Selected Pollutants. A Review
  publication-title: J. Phys. Chem. Ref. Data
– volume: 194
  start-page: 154
  year: 1997
  end-page: 165
  ident: bib0310
  article-title: Equilibrium adsorption studies of some aromatic pollutants from dilute aqueous solutions on activated carbon at different temperatures
  publication-title: J. Colloid Interface Sci.
– volume: 20
  start-page: 17
  year: 1971
  end-page: 22
  ident: bib0085
  article-title: Development of concepts of the volume filling of micropores in the adsorption of gases and vapors by microporous adsorbents
  publication-title: Bull. Acad. Sci. USSR Div. Chem. Sci.
– volume: 69
  start-page: 989
  year: 2013
  end-page: 1003
  ident: bib0455
  article-title: Post-combustion CO2Capture by vacuum swing adsorption using zeolites – a feasibility study
  publication-title: Oil Gas Sci. Technol.
– volume: 269
  start-page: 310
  year: 2004
  end-page: 314
  ident: bib0215
  article-title: Determination of adsorptive properties of clay/water system: methylene blue sorption
  publication-title: J. Colloid Interface Sci.
– volume: 136
  start-page: 197
  year: 2006
  end-page: 202
  ident: bib0330
  article-title: Comparative analysis of linear and non-linear method of estimating the sorption isotherm parameters for malachite green onto activated carbon
  publication-title: J. Hazard. Mater.
– volume: 9
  start-page: 243
  year: 2013
  end-page: 254
  ident: bib0550
  article-title: A new adsorption isotherm model of aqueous solutions on granular activated carbon
  publication-title: World J. Modell. Simul.
– volume: 6
  start-page: 14
  year: 2015
  end-page: 22
  ident: bib0115
  article-title: Modeling of experimental adsorption isotherm data
  publication-title: Information
– volume: 6
  start-page: 285
  year: 2009
  end-page: 294
  ident: bib0520
  article-title: Two-parameter isotherms of methyl orange sorption by pinecone derived activated carbon
  publication-title: J. Environ. Health Sci. Eng.
– volume: 280
  start-page: 322
  year: 2004
  end-page: 333
  ident: bib0040
  article-title: Adsorption isotherm models for basic dye adsorption by peat in single and binary component systems
  publication-title: J. Colloid Interface Sci.
– volume: 99
  start-page: 5411
  year: 2008
  end-page: 5417
  ident: bib0435
  article-title: Effect of temperatures and pH on methyl violet biosorption by Mansonia wood sawdust
  publication-title: Bioresour. Technol.
– volume: 308
  start-page: 438
  year: 2017
  end-page: 462
  ident: bib0625
  article-title: A review on the adsorption of heavy metals by clay minerals, with special focus on the past decade
  publication-title: Chem. Eng. J.
– volume: 143
  start-page: 688
  year: 2018
  end-page: 700
  ident: bib0070
  article-title: Improved model for the isosteric heat of adsorption and impacts on the performance of heat pump cycles
  publication-title: Appl. Therm. Eng.
– volume: 110
  year: 2020
  ident: bib0415
  article-title: Experimental and comparative theoretical study of thermal conductivity of MWCNTs-kapok seed oil-based nanofluid
  publication-title: Int. Commun. Heat Mass Transf.
– volume: 513
  start-page: 99
  year: 2018
  end-page: 104
  ident: bib0075
  article-title: Re-evaluation of the century-old Langmuir isotherm for modeling adsorption phenomena in solution
  publication-title: Chem. Phys.
– volume: 23
  start-page: 149
  year: 2017
  end-page: 162
  ident: bib0685
  article-title: High-pressure sour gas adsorption on zeolite 4A
  publication-title: Adsorption
– volume: 383
  year: 2020
  ident: bib0130
  article-title: Isotherms, thermodynamics and kinetics of methane-shale adsorption pair under supercritical condition: implications for understanding the nature of shale gas adsorption process
  publication-title: Chem. Eng. J.
– volume: 8
  start-page: S363
  year: 2011
  end-page: S371
  ident: bib0600
  article-title: Removal of malachite green from aqueous solution by activated carbon developed from cocoa (Theobroma Cacao) shell - a kinetic and equilibrium studies
  publication-title: E-J. Chem.
– volume: 120
  start-page: 88
  year: 2017
  end-page: 116
  ident: bib0620
  article-title: Mistakes and inconsistencies regarding adsorption of contaminants from aqueous solutions: a critical review
  publication-title: Water Res.
– volume: 288
  year: 2019
  ident: bib0630
  article-title: Synthesis, and characterization of metal-organic frameworks -177 for static and dynamic adsorption behavior of CO2 and CH4
  publication-title: Microporous Mesoporous Mater.
– volume: 21
  year: 2017
  ident: bib0695
  article-title: An adsorption isotherm model for adsorption performance of silver-loaded activated carbon
  publication-title: Therm. Sci.
– volume: 163
  start-page: 299
  year: 1994
  end-page: 302
  ident: bib0615
  article-title: Thermodynamical correctness of Gas/Solid adsorption isotherm equations
  publication-title: J. Colloid Interface Sci.
– volume: 152
  start-page: 976
  year: 2008
  end-page: 985
  ident: bib0065
  article-title: Insights into isotherm making in the sorptive removal of fluoride from drinking water
  publication-title: J. Hazard. Mater.
– volume: 41
  start-page: 659
  year: 2000
  end-page: 665
  ident: bib0015
  article-title: Predictions of binary sorption isotherms for the sorption of heavy metals by pine bark using single isotherm data
  publication-title: Chemosphere
– volume: 53
  start-page: 2193
  year: 2013
  end-page: 2203
  ident: bib0510
  article-title: Determination of axial dispersion and overall mass transfer coefficients for Ni (II) adsorption on nanostructured γ-alumina in a fixed bed column: experimental and modeling studies
  publication-title: Desalin. Water Treat.
– volume: 45
  start-page: 1307
  year: 2011
  end-page: 1312
  ident: bib0095
  article-title: Sorption of organic chemicals to soil organic matter: influence of soil variability and pH dependence
  publication-title: Environ. Sci. Technol.
– volume: 211
  start-page: 235
  year: 2018
  end-page: 253
  ident: bib0125
  article-title: Utilizations of agricultural waste as adsorbent for the removal of contaminants: a review
  publication-title: Chemosphere
– volume: 40
  start-page: 1855
  year: 2006
  end-page: 1861
  ident: bib0700
  article-title: Adsorption of polycyclic aromatic hydrocarbons by carbon nanomaterials
  publication-title: Environ. Sci. Technol.
– volume: 209
  start-page: 491
  year: 2019
  end-page: 502
  ident: bib0425
  article-title: Separation of lignin from beech wood hydrolysate using polymeric resins and zeolites – determination and application of adsorption isotherms
  publication-title: Sep. Purif. Technol.
– volume: 87
  start-page: 9
  year: 2015
  end-page: 10
  ident: bib0605
  article-title: Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report)
  publication-title: Pure Appl. Chem.
– volume: 4
  start-page: 809
  year: 2004
  end-page: 819
  ident: bib0275
  article-title: Biosorption of zinc from aqueous solution using coconut (Cocos nucifera L) coir dust
  publication-title: Arch. Appl. Sci. Res.
– start-page: 3
  year: 2019
  end-page: 20
  ident: bib0375
  article-title: Characterizing Pore Size Distributions of Shale. Petrophysical Characterization And Fluids Transport In Unconventional Reservoirs
– volume: 20
  start-page: 13
  year: 1971
  end-page: 16
  ident: bib0050
  article-title: Development of the concept of volume filling of micropores in the adsorption of gases and vapors by microporous adsorbents
  publication-title: Bull. Acad. Sci. USSR Div. Chem. Sci.
– volume: 47
  start-page: 755
  year: 1974
  end-page: 765
  ident: bib0200
  article-title: A general treatment and classification of the solute adsorption isotherm. I. Theoretical
  publication-title: J. Colloid Interface Sci.
– volume: 375
  start-page: 112
  year: 2019
  end-page: 122
  ident: bib0320
  article-title: A new adsorption model based on generalized van der Waals partition function for the description of all types of adsorption isotherms
  publication-title: Chem. Eng. J.
– start-page: 1
  year: 1992
  end-page: 624
  ident: bib0505
  article-title: Adsorption of Gases on Heterogeneuos Sufaces
– volume: 129
  start-page: 564
  year: 2017
  end-page: 572
  ident: bib0710
  article-title: Air adsorption on the gas-liquid interface in vapor condensation across horizontal tube
  publication-title: Appl. Therm. Eng.
– volume: 104
  start-page: 42
  year: 2015
  end-page: 52
  ident: bib0545
  article-title: Adsorption equilibrium of carbon dioxide on ammonia-modified activated carbon
  publication-title: Chem. Eng. Res. Des.
– volume: 73
  start-page: 456
  year: 1977
  ident: bib0010
  article-title: Kinetics of activated chemisorption. Part 2.—theoretical models
  publication-title: J. Chem. Soc. Faraday Trans. 1: Phys. Chem. Condensed Phases
– volume: 10
  start-page: 1
  year: 2018
  end-page: 22
  ident: bib0480
  article-title: Adsorption of chromium using blue green algae-modeling and application of various isotherms
  publication-title: Int. J. Chem. Technol.
– volume: 224
  start-page: 1041
  year: 2016
  end-page: 1054
  ident: bib0485
  article-title: A survey of multi-component sorption models for the competitive removal of heavy metal ions using bush mango and flamboyant biomasses
  publication-title: J. Mol. Liq.
– start-page: 961
  year: 1934
  end-page: 973
  ident: bib0705
  article-title: Adsorption site energy distribution
  publication-title: Acta Physico-Chimica
– volume: 3
  start-page: 189
  year: 1997
  end-page: 195
  ident: bib0260
  article-title: Theoretical basis for the Dubinin-Radushkevitch (D-R) adsorption isotherm equation
  publication-title: Adsorption
– volume: 185
  start-page: 518
  year: 2017
  end-page: 528
  ident: bib0295
  article-title: Quantification of the limitation of Langmuir model used in adsorption research on sediments via site energy heterogeneity
  publication-title: Chemosphere
– volume: 7
  start-page: 609
  year: 2017
  ident: bib0495
  article-title: Kinetics study of gas pollutant adsorption and thermal desorption on silica gel
  publication-title: Appl. Sci.
– volume: 38
  start-page: 4075
  year: 2004
  end-page: 4084
  ident: bib0595
  article-title: A rapid method to measure the solid–water distribution coefficient (Kd) for pharmaceuticals and musk fragrances in sewage sludge
  publication-title: Water Res.
– volume: 73
  start-page: 2720
  year: 1969
  end-page: 2727
  ident: bib0245
  article-title: Physical adsorption isotherms extending from ultrahigh vacuum to vapor pressure
  publication-title: J. Phys. Chem.
– volume: 149
  start-page: 115
  year: 2007
  end-page: 125
  ident: bib0430
  article-title: Batch sorption dynamics and equilibrium for the removal of cadmium ions from aqueous phase using wheat bran
  publication-title: J. Hazard. Mater.
– volume: 20
  start-page: 228
  year: 1974
  end-page: 238
  ident: bib0675
  article-title: Pore and solid diffusion models for fixed-bed adsorbers
  publication-title: AIChE J.
– volume: 200
  start-page: 304
  year: 2017
  end-page: 311
  ident: bib0475
  article-title: Sorption of Cu by humic acid from the decomposition of rice straw in the absence and presence of clay minerals
  publication-title: J. Environ. Manage.
– volume: 79
  start-page: 85
  year: 1981
  end-page: 95
  ident: bib0610
  article-title: A uniform interpretation of gas/solid adsorption
  publication-title: J. Colloid Interface Sci.
– volume: 294
  year: 2020
  ident: bib0635
  article-title: Synthesis and characterization of mesoporous MOF UMCM-1 for CO2/CH4 adsorption; an experimental, isotherm modeling and thermodynamic study
  publication-title: Microporous Mesoporous Mater.
– start-page: 1
  year: 2005
  end-page: 402
  ident: bib0300
  article-title: Adsorption isotherms
  publication-title: Gas Adsorption Equilibria: Experimental Methods and Adsorptive Isotherms
– volume: 263
  start-page: 350
  year: 2003
  end-page: 356
  ident: bib0305
  article-title: New theoretical expressions for the five adsorption type isotherms classified by BET based on statistical physics treatment
  publication-title: J. Colloid Interface Sci.
– volume: 148
  start-page: 761
  year: 2007
  end-page: 767
  ident: bib0110
  article-title: A radiotracer study of the adsorption behavior of aqueous Ba2+ ions on nanoparticles of zero-valent iron
  publication-title: J. Hazard. Mater.
– volume: 138
  start-page: 35
  year: 2008
  end-page: 46
  ident: bib0365
  article-title: Adsorption of 2-picoline onto bagasse fly ash from aqueous solution
  publication-title: Chem.Eng. J.
– volume: 69
  start-page: 229
  year: 2003
  end-page: 238
  ident: bib0030
  article-title: The removal of dyes from textile wastewater: a study of the physical characteristics and adsorption mechanisms of diatomaceous earth
  publication-title: J. Environ. Manage.
– volume: 146
  start-page: 362
  year: 2007
  end-page: 371
  ident: bib0210
  article-title: Lead removal from aqueous solution by natural and pretreated clinoptilolite: adsorption equilibrium and kinetics
  publication-title: J. Hazard. Mater.
– volume: 228
  year: 2019
  ident: bib0055
  article-title: Adsorption of organic pollutants by natural and modified clays: a comprehensive review
  publication-title: Sep. Purif. Technol.
– start-page: 5
  year: 2004
  end-page: 10
  ident: bib0380
  article-title: Gas Adsorption. Characterization of Porous Solids and Powders: Surface Area, Pore Size And Density
– volume: 23
  start-page: 327
  year: 2016
  end-page: 372
  ident: bib0460
  article-title: Studies on the removal of As(III) and As(V) through their adsorption onto granular activated carbon/MnFe2O4 composite: isotherm studies and error analysis
  publication-title: Compos. Interfaces
– volume: 3
  year: 2017
  ident: bib0120
  article-title: Kinetics, mechanism, isotherm and thermodynamic studies of liquid phase adsorption of Pb2+ onto wood activated carbon supported zerovalent iron (WAC-ZVI) nanocomposite
  publication-title: Cogent Chem.
– volume: 272
  start-page: 166
  year: 2018
  end-page: 176
  ident: bib0270
  article-title: Insights into the S-shaped sorption isotherms and their dimensionless forms
  publication-title: Microporous Mesoporous Mater.
– volume: 17
  start-page: 13
  year: 2010
  end-page: 23
  ident: bib0315
  article-title: A generalized equation for adsorption isotherms for multi-component organic pollutants in dilute aqueous solution
  publication-title: Environ. Technol.
– volume: 2017
  start-page: 1
  year: 2017
  end-page: 11
  ident: bib0060
  article-title: Modelling and interpretation of adsorption isotherms
  publication-title: J. Chem.
– volume: 24
  start-page: 6420
  year: 2008
  end-page: 6424
  ident: bib0090
  article-title: Revisiting the determination of langmuir parameters-application to tetrahydrothiophene adsorption onto activated carbon
  publication-title: Langmuir
– volume: 146
  start-page: 90
  year: 2009
  end-page: 97
  ident: bib0470
  article-title: Sorption of distillery spent wash onto fly ash: kinetics and mass transfer studies
  publication-title: Chem. Eng. J.
– volume: 368
  start-page: 348
  year: 2016
  end-page: 359
  ident: bib0185
  article-title: APTES-modified mesoporous silicas as the carriers for poorly water-soluble drug. Modeling of diflunisal adsorption and release
  publication-title: Appl. Surf. Sci.
– volume: 139
  start-page: 122
  year: 2007
  end-page: 131
  ident: bib0450
  article-title: Removal of cadmium from aqueous solutions by adsorption onto orange waste
  publication-title: J. Hazard. Mater.
– volume: 41
  start-page: 2685
  year: 2006
  end-page: 2710
  ident: bib0575
  article-title: Modelling individual and competitive adsorption of cadmium(II) and zinc(II) metal ions from aqueous solution onto bagasse fly ash
  publication-title: Sep. Sci. Technol.
– volume: 72
  start-page: 130
  year: 2007
  end-page: 133
  ident: bib0335
  article-title: Sorption isotherm for safranin onto rice husk: comparison of linear and non-linear methods
  publication-title: Dye. Pigment.
– volume: 22
  start-page: 14
  year: 2017
  end-page: 24
  ident: bib0195
  article-title: Kinetic and multi-parameter isotherm studies of picric acid removal from aqueous solutions by carboxylated multi-walled carbon nanotubes in the presence and absence of ultrasound
  publication-title: Carbon Lett.
– volume: 152
  start-page: 148
  year: 2008
  end-page: 158
  ident: bib0190
  article-title: Kinetic and equilibrium study for the sorption of cadmium(II) ions from aqueous phase by eucalyptus bark
  publication-title: J. Hazard. Mater.
– volume: 430
  start-page: 188
  year: 2016
  end-page: 194
  ident: bib0420
  article-title: Comparison of linear and non-linear method for determination of optimum equilibrium isotherm for adsorption of copper(II) onto treated Martil sand
  publication-title: Fluid Phase Equilib.
– year: 2019
  ident: bib0265
  article-title: Experimental Study of Adsorption on Activated Carbon for CO2 Capture
– volume: 11
  start-page: 18
  year: 2017
  end-page: 30
  ident: bib0525
  article-title: Adsorption Isotherm Models for Dye Removal by Paliurus spinachristi Mill. Frutis and Seeds in a Single Component System
  publication-title: IOSR J. Environ. Sci. Toxicol. Food Technol.
– volume: 115
  start-page: 997
  year: 1984
  end-page: 1012
  ident: bib0290
  article-title: Physical adsorption of gases on energetically heterogeneous solids I. GeneralizedLangmuir equation and its energy distribution
  publication-title: Monatshefte für Chemie – Chem. Monthly
– volume: 1
  year: 2017
  ident: bib0565
  article-title: Adsorption phenomenon and its application in removal of lead from waste water: a review
  publication-title: Int. J. Hydrol.
– volume: 29
  start-page: 1773
  year: 1995
  end-page: 1780
  ident: bib0105
  article-title: Site energy distribution analysis of preloaded adsorbents
  publication-title: Environ. Sci. Technol.
– start-page: 1
  year: 1997
  end-page: 808
  ident: bib0005
  article-title: Physical Chemistry of Surfaces
– volume: 13
  start-page: 5753
  year: 2011
  ident: bib0345
  article-title: A site energy distribution function from Toth isotherm for adsorption of gases on heterogeneous surfaces
  publication-title: Phys. Chem. Chem. Phys.
– volume: 98
  start-page: 1812
  year: 2007
  end-page: 1821
  ident: bib0490
  article-title: In vitro biosorption of ochratoxin A on the yeast industry by-products: comparison of isotherm models
  publication-title: Bioresour. Technol.
– volume: 35
  start-page: 5409
  issue: 16
  year: 2019
  ident: 10.1016/j.jhazmat.2020.122383_bib0590
  article-title: Langmuir’s theory of adsorption: a centennial review
  publication-title: Langmuir
  doi: 10.1021/acs.langmuir.9b00154
– volume: 163
  start-page: 299
  issue: 2
  year: 1994
  ident: 10.1016/j.jhazmat.2020.122383_bib0615
  article-title: Thermodynamical correctness of Gas/Solid adsorption isotherm equations
  publication-title: J. Colloid Interface Sci.
  doi: 10.1006/jcis.1994.1107
– volume: 148
  start-page: 761
  issue: 3
  year: 2007
  ident: 10.1016/j.jhazmat.2020.122383_bib0110
  article-title: A radiotracer study of the adsorption behavior of aqueous Ba2+ ions on nanoparticles of zero-valent iron
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2007.06.122
– volume: 166
  start-page: 51
  issue: 1
  year: 1994
  ident: 10.1016/j.jhazmat.2020.122383_bib0325
  article-title: Analytical isotherm equations for multicomponent adsorption to heterogeneous surfaces
  publication-title: J. Colloid Interface Sci.
  doi: 10.1006/jcis.1994.1270
– volume: 6
  start-page: 285
  issue: 4
  year: 2009
  ident: 10.1016/j.jhazmat.2020.122383_bib0520
  article-title: Two-parameter isotherms of methyl orange sorption by pinecone derived activated carbon
  publication-title: J. Environ. Health Sci. Eng.
– volume: 7
  issue: 11
  year: 2012
  ident: 10.1016/j.jhazmat.2020.122383_bib0280
  article-title: Selective sorption of dissolved organic carbon compounds by temperate soils
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0050434
– volume: 121
  start-page: 441
  year: 2018
  ident: 10.1016/j.jhazmat.2020.122383_bib0585
  article-title: Optimization of adsorption isotherm types for desiccant air-conditioning applications
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2018.01.045
– volume: 122
  start-page: 93
  issue: 1-2
  year: 2006
  ident: 10.1016/j.jhazmat.2020.122383_bib0350
  article-title: Arsenic adsorption onto iron oxide-coated cement (IOCC): regression analysis of equilibrium data with several isotherm models and their optimization
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2006.06.002
– volume: 154
  start-page: 787
  issue: 1-3
  year: 2008
  ident: 10.1016/j.jhazmat.2020.122383_bib0140
  article-title: Error analysis of equilibrium studies for the almond shell activated carbon adsorption of Cr(VI) from aqueous solutions
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2007.10.094
– volume: 25
  start-page: 5467
  issue: 10
  year: 2013
  ident: 10.1016/j.jhazmat.2020.122383_bib0640
  article-title: Investigation of Langmuir, Freundlich and temkin adsorption isotherm of tramadol by multi-wall carbon nanotube
  publication-title: Asian J. Chem.
  doi: 10.14233/ajchem.2013.14786
– volume: 277
  start-page: 646
  year: 2019
  ident: 10.1016/j.jhazmat.2020.122383_bib0255
  article-title: Application of Dubinin–radushkevich isotherm model at the solid/solution interface: a theoretical analysis
  publication-title: J. Mol. Liq.
  doi: 10.1016/j.molliq.2019.01.005
– volume: 11
  start-page: 18
  issue: 04
  year: 2017
  ident: 10.1016/j.jhazmat.2020.122383_bib0525
  article-title: Adsorption Isotherm Models for Dye Removal by Paliurus spinachristi Mill. Frutis and Seeds in a Single Component System
  publication-title: IOSR J. Environ. Sci. Toxicol. Food Technol.
  doi: 10.9790/2402-1104021830
– volume: 146
  start-page: 362
  issue: 1-2
  year: 2007
  ident: 10.1016/j.jhazmat.2020.122383_bib0210
  article-title: Lead removal from aqueous solution by natural and pretreated clinoptilolite: adsorption equilibrium and kinetics
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2006.12.034
– volume: 151
  start-page: 794
  issue: 2-3
  year: 2008
  ident: 10.1016/j.jhazmat.2020.122383_bib0340
  article-title: Isotherms and thermodynamics by linear and non-linear regression analysis for the sorption of methylene blue onto activated carbon: comparison of various error functions
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2007.06.056
– start-page: 1
  year: 1992
  ident: 10.1016/j.jhazmat.2020.122383_bib0505
– volume: 141
  start-page: 1
  issue: 1/4
  year: 2002
  ident: 10.1016/j.jhazmat.2020.122383_bib0240
  publication-title: Water Air Soil Pollut.
  doi: 10.1023/A:1021304828010
– volume: 129
  start-page: 8552
  issue: 27
  year: 2007
  ident: 10.1016/j.jhazmat.2020.122383_bib0665
  article-title: Applicability of the BET method for determining surface areas of microporous metal−Organic frameworks
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja071174k
– volume: 3
  issue: 1
  year: 2017
  ident: 10.1016/j.jhazmat.2020.122383_bib0120
  article-title: Kinetics, mechanism, isotherm and thermodynamic studies of liquid phase adsorption of Pb2+ onto wood activated carbon supported zerovalent iron (WAC-ZVI) nanocomposite
  publication-title: Cogent Chem.
  doi: 10.1080/23312009.2017.1351653
– volume: 53
  start-page: 2193
  issue: 8
  year: 2013
  ident: 10.1016/j.jhazmat.2020.122383_bib0510
  article-title: Determination of axial dispersion and overall mass transfer coefficients for Ni (II) adsorption on nanostructured γ-alumina in a fixed bed column: experimental and modeling studies
  publication-title: Desalin. Water Treat.
  doi: 10.1080/19443994.2013.862869
– volume: 20
  start-page: 228
  issue: 2
  year: 1974
  ident: 10.1016/j.jhazmat.2020.122383_bib0675
  article-title: Pore and solid diffusion models for fixed-bed adsorbers
  publication-title: AIChE J.
  doi: 10.1002/aic.690200204
– volume: 9
  start-page: 243
  issue: 4
  year: 2013
  ident: 10.1016/j.jhazmat.2020.122383_bib0550
  article-title: A new adsorption isotherm model of aqueous solutions on granular activated carbon
  publication-title: World J. Modell. Simul.
– volume: 52
  start-page: 174
  year: 2005
  ident: 10.1016/j.jhazmat.2020.122383_bib0250
  article-title: Equilibrium sorption study of Al3+, Co2+ and Ag2+ in aqueous solutions by fluted pumpkin (Telfairia occidentalis HOOK) waste biomass
  publication-title: Acta Chim. Slov.
– volume: 145
  start-page: 496
  issue: 3
  year: 2009
  ident: 10.1016/j.jhazmat.2020.122383_bib0225
  article-title: Study of equilibrium, kinetic and thermodynamic parameters about methylene blue adsorption onto natural zeolite
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2008.05.003
– volume: 2013
  start-page: 1
  year: 2013
  ident: 10.1016/j.jhazmat.2020.122383_bib0370
  article-title: Novel silica-based hybrid adsorbents: lead(II) adsorption isotherms
  publication-title: Sci. World J.
  doi: 10.1155/2013/897159
– volume: 73
  start-page: 456
  issue: 0
  year: 1977
  ident: 10.1016/j.jhazmat.2020.122383_bib0010
  article-title: Kinetics of activated chemisorption. Part 2.—theoretical models
  publication-title: J. Chem. Soc. Faraday Trans. 1: Phys. Chem. Condensed Phases
  doi: 10.1039/f19777300456
– volume: 139
  start-page: 122
  issue: 1
  year: 2007
  ident: 10.1016/j.jhazmat.2020.122383_bib0450
  article-title: Removal of cadmium from aqueous solutions by adsorption onto orange waste
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2006.06.008
– volume: 41
  start-page: 2685
  issue: 12
  year: 2006
  ident: 10.1016/j.jhazmat.2020.122383_bib0575
  article-title: Modelling individual and competitive adsorption of cadmium(II) and zinc(II) metal ions from aqueous solution onto bagasse fly ash
  publication-title: Sep. Sci. Technol.
  doi: 10.1080/01496390600725687
– volume: 225
  start-page: 535
  year: 2013
  ident: 10.1016/j.jhazmat.2020.122383_bib0440
  article-title: Binary adsorption of heavy metals from aqueous solution onto natural clays
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2013.04.011
– volume: 1
  start-page: 117
  year: 2014
  ident: 10.1016/j.jhazmat.2020.122383_bib0540
  article-title: Simple solvent characteristics
  publication-title: Handbk. Solvents
  doi: 10.1016/B978-1-895198-64-5.50006-4
– volume: 146
  issue: 3650
  year: 1964
  ident: 10.1016/j.jhazmat.2020.122383_bib0500
  article-title: On physical adsorption
  publication-title: Science
– volume: 98
  start-page: 1812
  issue: 9
  year: 2007
  ident: 10.1016/j.jhazmat.2020.122383_bib0490
  article-title: In vitro biosorption of ochratoxin A on the yeast industry by-products: comparison of isotherm models
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2006.06.015
– volume: 22
  start-page: 14
  year: 2017
  ident: 10.1016/j.jhazmat.2020.122383_bib0195
  article-title: Kinetic and multi-parameter isotherm studies of picric acid removal from aqueous solutions by carboxylated multi-walled carbon nanotubes in the presence and absence of ultrasound
  publication-title: Carbon Lett.
– volume: 1
  start-page: 170
  issue: 4
  year: 2012
  ident: 10.1016/j.jhazmat.2020.122383_bib0385
  article-title: Langmuir model application on solid-liquid adsorption using agricultural wastes: environmental application review
  publication-title: J. Purity Util. React. Environ.
– volume: 200
  start-page: 304
  year: 2017
  ident: 10.1016/j.jhazmat.2020.122383_bib0475
  article-title: Sorption of Cu by humic acid from the decomposition of rice straw in the absence and presence of clay minerals
  publication-title: J. Environ. Manage.
  doi: 10.1016/j.jenvman.2017.05.087
– volume: 194
  start-page: 154
  issue: 1
  year: 1997
  ident: 10.1016/j.jhazmat.2020.122383_bib0310
  article-title: Equilibrium adsorption studies of some aromatic pollutants from dilute aqueous solutions on activated carbon at different temperatures
  publication-title: J. Colloid Interface Sci.
  doi: 10.1006/jcis.1997.5041
– volume: 17
  start-page: 13
  issue: 1
  year: 2010
  ident: 10.1016/j.jhazmat.2020.122383_bib0315
  article-title: A generalized equation for adsorption isotherms for multi-component organic pollutants in dilute aqueous solution
  publication-title: Environ. Technol.
  doi: 10.1080/09593331708616356
– volume: 45
  start-page: 1307
  issue: 4
  year: 2011
  ident: 10.1016/j.jhazmat.2020.122383_bib0095
  article-title: Sorption of organic chemicals to soil organic matter: influence of soil variability and pH dependence
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es102576e
– volume: 42
  start-page: 287
  issue: 1-2
  year: 2008
  ident: 10.1016/j.jhazmat.2020.122383_bib0100
  article-title: Determination of the solid–water distribution coefficient (Kd) for pharmaceuticals, estrogens and musk fragrances in digested sludge
  publication-title: Water Res.
  doi: 10.1016/j.watres.2007.07.012
– volume: 6
  start-page: 14
  issue: 1
  year: 2015
  ident: 10.1016/j.jhazmat.2020.122383_bib0115
  article-title: Modeling of experimental adsorption isotherm data
  publication-title: Information
  doi: 10.3390/info6010014
– volume: vol. 2
  year: 1967
  ident: 10.1016/j.jhazmat.2020.122383_bib0170
– volume: 15
  issue: 47
  year: 1984
  ident: 10.1016/j.jhazmat.2020.122383_bib0285
  article-title: ChemInform Abstract: physical adsorption of gases on energetically heterogeneous solids. II. Theoretical extension of A generalized Langmuir equation and its applications for analyzing adsorption data
  publication-title: Chem. Inf.
– volume: 7
  start-page: 609
  issue: 6
  year: 2017
  ident: 10.1016/j.jhazmat.2020.122383_bib0495
  article-title: Kinetics study of gas pollutant adsorption and thermal desorption on silica gel
  publication-title: Appl. Sci.
  doi: 10.3390/app7060609
– volume: 110
  year: 2020
  ident: 10.1016/j.jhazmat.2020.122383_bib0415
  article-title: Experimental and comparative theoretical study of thermal conductivity of MWCNTs-kapok seed oil-based nanofluid
  publication-title: Int. Commun. Heat Mass Transf.
  doi: 10.1016/j.icheatmasstransfer.2019.104402
– start-page: 1
  year: 2005
  ident: 10.1016/j.jhazmat.2020.122383_bib0300
  article-title: Adsorption isotherms
– volume: 69
  start-page: 989
  issue: 6
  year: 2013
  ident: 10.1016/j.jhazmat.2020.122383_bib0455
  article-title: Post-combustion CO2Capture by vacuum swing adsorption using zeolites – a feasibility study
  publication-title: Oil Gas Sci. Technol.
  doi: 10.2516/ogst/2012067
– volume: 23
  start-page: 327
  issue: 4
  year: 2016
  ident: 10.1016/j.jhazmat.2020.122383_bib0460
  article-title: Studies on the removal of As(III) and As(V) through their adsorption onto granular activated carbon/MnFe2O4 composite: isotherm studies and error analysis
  publication-title: Compos. Interfaces
  doi: 10.1080/09276440.2016.1137715
– volume: 146
  start-page: 90
  issue: 1
  year: 2009
  ident: 10.1016/j.jhazmat.2020.122383_bib0470
  article-title: Sorption of distillery spent wash onto fly ash: kinetics and mass transfer studies
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2008.05.021
– volume: 30
  start-page: 187
  issue: 1
  year: 2001
  ident: 10.1016/j.jhazmat.2020.122383_bib0135
  article-title: Factors Affecting Sorption of Organic Compounds in Natural Sorbent/Water Systems and Sorption Coefficients for Selected Pollutants. A Review
  publication-title: J. Phys. Chem. Ref. Data
  doi: 10.1063/1.1347984
– year: 2019
  ident: 10.1016/j.jhazmat.2020.122383_bib0265
– volume: 73
  start-page: 269
  issue: 3
  year: 2007
  ident: 10.1016/j.jhazmat.2020.122383_bib0390
  article-title: Use of bagasse fly ash as an adsorbent for the removal of brilliant green dye from aqueous solution
  publication-title: Dye. Pigment.
  doi: 10.1016/j.dyepig.2005.12.006
– volume: 41
  start-page: 659
  issue: 5
  year: 2000
  ident: 10.1016/j.jhazmat.2020.122383_bib0015
  article-title: Predictions of binary sorption isotherms for the sorption of heavy metals by pine bark using single isotherm data
  publication-title: Chemosphere
  doi: 10.1016/S0045-6535(99)00497-X
– volume: 60
  start-page: 235
  issue: 2
  year: 1960
  ident: 10.1016/j.jhazmat.2020.122383_bib0155
  article-title: The potential theory of adsorption of gases and vapors for adsorbents with energetically nonuniform surfaces
  publication-title: Chem. Rev.
  doi: 10.1021/cr60204a006
– volume: 73
  start-page: 2720
  issue: 8
  year: 1969
  ident: 10.1016/j.jhazmat.2020.122383_bib0245
  article-title: Physical adsorption isotherms extending from ultrahigh vacuum to vapor pressure
  publication-title: J. Phys. Chem.
  doi: 10.1021/j100842a045
– volume: 35
  start-page: 1142
  issue: 6
  year: 2001
  ident: 10.1016/j.jhazmat.2020.122383_bib0465
  article-title: Sorption of Very Hydrophobic Organic Compounds (VHOCs) on Dissolved Humic Organic Matter (DOM). 2. Measurement of Sorption and Application of a Flory−Huggins Concept to Interpret the Data
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es0017615
– volume: 60
  start-page: 5198
  issue: 19
  year: 2005
  ident: 10.1016/j.jhazmat.2020.122383_bib0660
  article-title: The Fermi–Dirac concept for isotherms of adsorbents with heterogeneous surfaces
  publication-title: Chem. Eng. Sci.
  doi: 10.1016/j.ces.2005.03.063
– volume: 247
  year: 2020
  ident: 10.1016/j.jhazmat.2020.122383_bib0670
  article-title: Gaseous adsorption of hexamethyldisiloxane on carbons: isotherms, isosteric heats and kinetics
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2020.125862
– volume: 138
  start-page: 35
  issue: 1–3
  year: 2008
  ident: 10.1016/j.jhazmat.2020.122383_bib0365
  article-title: Adsorption of 2-picoline onto bagasse fly ash from aqueous solution
  publication-title: Chem.Eng. J.
  doi: 10.1016/j.cej.2007.05.043
– volume: 27
  start-page: 245
  issue: 1
  year: 2011
  ident: 10.1016/j.jhazmat.2020.122383_bib0555
  article-title: Comparison of Langmuir and Harkins-Jura adsorption isotherms for the determination of surface area of solids
  publication-title: Orient. J. Chem.
– volume: 36
  start-page: 403
  issue: 3
  year: 2010
  ident: 10.1016/j.jhazmat.2020.122383_bib0160
  article-title: Modeling of adsorption isotherms of Methylene Blue onto rice husk activated carbon
  publication-title: Egypt. J. Aquat. Res.
– start-page: 961
  year: 1934
  ident: 10.1016/j.jhazmat.2020.122383_bib0705
  article-title: Adsorption site energy distribution
  publication-title: Acta Physico-Chimica
– volume: 375
  start-page: 112
  year: 2019
  ident: 10.1016/j.jhazmat.2020.122383_bib0320
  article-title: A new adsorption model based on generalized van der Waals partition function for the description of all types of adsorption isotherms
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2019.122112
– volume: 288
  year: 2019
  ident: 10.1016/j.jhazmat.2020.122383_bib0630
  article-title: Synthesis, and characterization of metal-organic frameworks -177 for static and dynamic adsorption behavior of CO2 and CH4
  publication-title: Microporous Mesoporous Mater.
  doi: 10.1016/j.micromeso.2019.109569
– volume: 149
  start-page: 115
  issue: 1
  year: 2007
  ident: 10.1016/j.jhazmat.2020.122383_bib0430
  article-title: Batch sorption dynamics and equilibrium for the removal of cadmium ions from aqueous phase using wheat bran
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2007.03.055
– volume: 41
  start-page: 1077
  issue: 6
  year: 1977
  ident: 10.1016/j.jhazmat.2020.122383_bib0230
  article-title: Applications and misapplications of the langmuir equation to soil adsorption Phenomena1
  publication-title: Soil Sci. Soc. Am. J.
  doi: 10.2136/sssaj1977.03615995004100060012x
– volume: 1
  issue: 2
  year: 2017
  ident: 10.1016/j.jhazmat.2020.122383_bib0565
  article-title: Adsorption phenomenon and its application in removal of lead from waste water: a review
  publication-title: Int. J. Hydrol.
– volume: 383
  year: 2020
  ident: 10.1016/j.jhazmat.2020.122383_bib0130
  article-title: Isotherms, thermodynamics and kinetics of methane-shale adsorption pair under supercritical condition: implications for understanding the nature of shale gas adsorption process
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2019.123191
– volume: 4
  start-page: 809
  issue: 2
  year: 2004
  ident: 10.1016/j.jhazmat.2020.122383_bib0275
  article-title: Biosorption of zinc from aqueous solution using coconut (Cocos nucifera L) coir dust
  publication-title: Arch. Appl. Sci. Res.
– volume: 158
  start-page: 73
  issue: 1
  year: 2008
  ident: 10.1016/j.jhazmat.2020.122383_bib0165
  article-title: Least-squares regression of adsorption equilibrium data: comparing the options
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2008.01.052
– volume: 87
  start-page: 9
  year: 2015
  ident: 10.1016/j.jhazmat.2020.122383_bib0605
  article-title: Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report)
  publication-title: Pure Appl. Chem.
  doi: 10.1515/pac-2014-1117
– volume: 129
  start-page: 564
  year: 2017
  ident: 10.1016/j.jhazmat.2020.122383_bib0710
  article-title: Air adsorption on the gas-liquid interface in vapor condensation across horizontal tube
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2017.09.106
– volume: 430
  start-page: 188
  year: 2016
  ident: 10.1016/j.jhazmat.2020.122383_bib0420
  article-title: Comparison of linear and non-linear method for determination of optimum equilibrium isotherm for adsorption of copper(II) onto treated Martil sand
  publication-title: Fluid Phase Equilib.
  doi: 10.1016/j.fluid.2016.10.003
– volume: 308
  start-page: 463
  year: 2017
  ident: 10.1016/j.jhazmat.2020.122383_bib0035
  article-title: Mechanistic insights into the remediation of bromide ions from desalinated water using roasted date pits
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2016.09.091
– volume: 272
  start-page: 166
  year: 2018
  ident: 10.1016/j.jhazmat.2020.122383_bib0270
  article-title: Insights into the S-shaped sorption isotherms and their dimensionless forms
  publication-title: Microporous Mesoporous Mater.
  doi: 10.1016/j.micromeso.2018.06.026
– volume: 224
  start-page: 1041
  year: 2016
  ident: 10.1016/j.jhazmat.2020.122383_bib0485
  article-title: A survey of multi-component sorption models for the competitive removal of heavy metal ions using bush mango and flamboyant biomasses
  publication-title: J. Mol. Liq.
  doi: 10.1016/j.molliq.2016.10.061
– volume: 12
  start-page: 2867
  issue: 9
  year: 2014
  ident: 10.1016/j.jhazmat.2020.122383_bib0410
  article-title: Chemical modification of Byrsonima crassifolia with citric acid for the competitive sorption of heavy metals from water
  publication-title: Int. J. Environ. Sci. Technol.
  doi: 10.1007/s13762-014-0685-x
– volume: 2017
  start-page: 1
  year: 2017
  ident: 10.1016/j.jhazmat.2020.122383_bib0060
  article-title: Modelling and interpretation of adsorption isotherms
  publication-title: J. Chem.
  doi: 10.1155/2017/3039817
– volume: 205
  start-page: 121
  year: 1998
  ident: 10.1016/j.jhazmat.2020.122383_bib0150
  article-title: Adsorption hysteresis in porous solids
  publication-title: J. Colloid Interface Sci.
  doi: 10.1006/jcis.1998.5639
– start-page: 275
  year: 2003
  ident: 10.1016/j.jhazmat.2020.122383_bib0530
  article-title: Sorption I: General introduction and sorption processes involving organic matter
– volume: 156
  start-page: 2
  issue: 1
  year: 2010
  ident: 10.1016/j.jhazmat.2020.122383_bib0180
  article-title: Insights into the modeling of adsorption isotherm systems
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2009.09.013
– volume: 32
  start-page: 787
  issue: 5
  year: 2015
  ident: 10.1016/j.jhazmat.2020.122383_bib0515
  article-title: Monolayer and multilayer adsorption isotherm models for sorption from aqueous media
  publication-title: Korean J. Chem. Eng.
  doi: 10.1007/s11814-015-0053-7
– volume: 219
  start-page: 137
  year: 2013
  ident: 10.1016/j.jhazmat.2020.122383_bib0570
  article-title: Incorporation of selectivity factor in modeling binary component adsorption isotherms for heavy metals-biomass system
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2012.12.077
– volume: 40
  start-page: 1855
  issue: 6
  year: 2006
  ident: 10.1016/j.jhazmat.2020.122383_bib0700
  article-title: Adsorption of polycyclic aromatic hydrocarbons by carbon nanomaterials
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es052208w
– volume: 99
  start-page: 5411
  issue: 13
  year: 2008
  ident: 10.1016/j.jhazmat.2020.122383_bib0435
  article-title: Effect of temperatures and pH on methyl violet biosorption by Mansonia wood sawdust
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2007.11.018
– volume: 513
  start-page: 99
  year: 2018
  ident: 10.1016/j.jhazmat.2020.122383_bib0075
  article-title: Re-evaluation of the century-old Langmuir isotherm for modeling adsorption phenomena in solution
  publication-title: Chem. Phys.
  doi: 10.1016/j.chemphys.2018.06.022
– volume: 104
  start-page: 42
  year: 2015
  ident: 10.1016/j.jhazmat.2020.122383_bib0545
  article-title: Adsorption equilibrium of carbon dioxide on ammonia-modified activated carbon
  publication-title: Chem. Eng. Res. Des.
  doi: 10.1016/j.cherd.2015.07.018
– volume: 368
  start-page: 348
  year: 2016
  ident: 10.1016/j.jhazmat.2020.122383_bib0185
  article-title: APTES-modified mesoporous silicas as the carriers for poorly water-soluble drug. Modeling of diflunisal adsorption and release
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2016.02.004
– volume: 72
  start-page: 130
  issue: 1
  year: 2007
  ident: 10.1016/j.jhazmat.2020.122383_bib0335
  article-title: Sorption isotherm for safranin onto rice husk: comparison of linear and non-linear methods
  publication-title: Dye. Pigment.
  doi: 10.1016/j.dyepig.2005.07.020
– start-page: 167
  year: 2014
  ident: 10.1016/j.jhazmat.2020.122383_bib0175
  article-title: Coalification, gasification, and gas storage
  publication-title: Coal Coalbed Gas
  doi: 10.1016/B978-0-12-396972-9.00004-5
– start-page: 3
  year: 2019
  ident: 10.1016/j.jhazmat.2020.122383_bib0375
– start-page: 5
  year: 2004
  ident: 10.1016/j.jhazmat.2020.122383_bib0380
– volume: 148
  start-page: 72
  year: 2016
  ident: 10.1016/j.jhazmat.2020.122383_bib0400
  article-title: Binary biosorption of copper and lead onto pine-cone shell in batch reactors and in fixed bed columns
  publication-title: Int. J. Miner. Process.
  doi: 10.1016/j.minpro.2016.01.017
– volume: 14
  issue: 45
  year: 1983
  ident: 10.1016/j.jhazmat.2020.122383_bib0395
  article-title: ChemInform Abstract: a new isotherm equation for single-solute adsorption from dilute solutions on energetically heterogeneous solids
  publication-title: Chem. Inf.
– volume: 152
  start-page: 148
  issue: 1
  year: 2008
  ident: 10.1016/j.jhazmat.2020.122383_bib0190
  article-title: Kinetic and equilibrium study for the sorption of cadmium(II) ions from aqueous phase by eucalyptus bark
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2007.06.079
– volume: 37
  start-page: 3243
  issue: 15
  year: 2003
  ident: 10.1016/j.jhazmat.2020.122383_bib0205
  article-title: Environmental exposure assessment of fluoroquinolone antibacterial agents from sewage to soil
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es0264448
– volume: 3
  start-page: 189
  issue: 3
  year: 1997
  ident: 10.1016/j.jhazmat.2020.122383_bib0260
  article-title: Theoretical basis for the Dubinin-Radushkevitch (D-R) adsorption isotherm equation
  publication-title: Adsorption
  doi: 10.1007/BF01650130
– volume: 38
  start-page: 2221
  issue: 11
  year: 1916
  ident: 10.1016/j.jhazmat.2020.122383_bib0355
  article-title: The Constitution and fundamental properties of solids and liquids. Part I. Solids
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja02268a002
– volume: 26
  start-page: 5475
  issue: 8
  year: 2010
  ident: 10.1016/j.jhazmat.2020.122383_bib0080
  article-title: Evaluation of the BET method for determining surface areas of MOFs and zeolites that contain ultra-micropores
  publication-title: Langmuir
  doi: 10.1021/la100449z
– volume: 17
  year: 2020
  ident: 10.1016/j.jhazmat.2020.122383_bib0020
  article-title: Water reuse: brackish water desalination using Prosopis juliflora
  publication-title: Environ. Technol. Innov.
  doi: 10.1016/j.eti.2020.100614
– volume: 4
  start-page: 9
  issue: 5
  year: 2017
  ident: 10.1016/j.jhazmat.2020.122383_bib0045
  article-title: Equations adsorption isotherms for biuret on soils, paper and cortex plant application of the Freundlich, Langmuir, Temkin, Elovich, flory-huggins, Halsey, and harkins-jura
  publication-title: Int. J. Adv. Res. Chem. Sci.
– volume: 8
  start-page: S363
  issue: s1
  year: 2011
  ident: 10.1016/j.jhazmat.2020.122383_bib0600
  article-title: Removal of malachite green from aqueous solution by activated carbon developed from cocoa (Theobroma Cacao) shell - a kinetic and equilibrium studies
  publication-title: E-J. Chem.
  doi: 10.1155/2011/714808
– volume: 308
  start-page: 438
  year: 2017
  ident: 10.1016/j.jhazmat.2020.122383_bib0625
  article-title: A review on the adsorption of heavy metals by clay minerals, with special focus on the past decade
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2016.09.029
– volume: 29
  start-page: 1773
  issue: 7
  year: 1995
  ident: 10.1016/j.jhazmat.2020.122383_bib0105
  article-title: Site energy distribution analysis of preloaded adsorbents
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es00007a013
– volume: 390
  start-page: 47
  issue: 1798
  year: 1983
  ident: 10.1016/j.jhazmat.2020.122383_bib0405
  article-title: A model of adsorption-desorption hysteresis in which hysteresis is primarily developed by the interconnections in a network of pores
  publication-title: Proc. R. Soc. A Math. Phys. Eng. Sci.
– volume: 143
  start-page: 688
  year: 2018
  ident: 10.1016/j.jhazmat.2020.122383_bib0070
  article-title: Improved model for the isosteric heat of adsorption and impacts on the performance of heat pump cycles
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2018.07.131
– volume: 21
  year: 2017
  ident: 10.1016/j.jhazmat.2020.122383_bib0695
  article-title: An adsorption isotherm model for adsorption performance of silver-loaded activated carbon
  publication-title: Therm. Sci.
  doi: 10.2298/TSCI151202048Y
– volume: 263
  start-page: 350
  issue: 2
  year: 2003
  ident: 10.1016/j.jhazmat.2020.122383_bib0305
  article-title: New theoretical expressions for the five adsorption type isotherms classified by BET based on statistical physics treatment
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/S0021-9797(03)00139-5
– volume: 280
  start-page: 322
  issue: 2
  year: 2004
  ident: 10.1016/j.jhazmat.2020.122383_bib0040
  article-title: Adsorption isotherm models for basic dye adsorption by peat in single and binary component systems
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/j.jcis.2004.08.078
– volume: 2
  start-page: 1
  year: 1998
  ident: 10.1016/j.jhazmat.2020.122383_bib0145
  article-title: Adsorption analysis: equilibria and kinetics
  publication-title: Ser. Chem. Eng.
  doi: 10.1142/9781860943829_0001
– volume: 185
  start-page: 518
  year: 2017
  ident: 10.1016/j.jhazmat.2020.122383_bib0295
  article-title: Quantification of the limitation of Langmuir model used in adsorption research on sediments via site energy heterogeneity
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2017.07.051
– volume: 40
  start-page: 1361
  issue: 9
  year: 1918
  ident: 10.1016/j.jhazmat.2020.122383_bib0360
  article-title: The adsorption of gases on plane surfaces of glass, Mica and platinum
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja02242a004
– volume: 209
  start-page: 491
  year: 2019
  ident: 10.1016/j.jhazmat.2020.122383_bib0425
  article-title: Separation of lignin from beech wood hydrolysate using polymeric resins and zeolites – determination and application of adsorption isotherms
  publication-title: Sep. Purif. Technol.
  doi: 10.1016/j.seppur.2018.07.077
– volume: 39
  start-page: 695
  issue: 6
  year: 2004
  ident: 10.1016/j.jhazmat.2020.122383_bib0680
  article-title: Adsorption of acid dyes on chitosan—equilibrium isotherm analyses
  publication-title: Process. Biochem.
  doi: 10.1016/S0032-9592(03)00152-3
– volume: 147
  start-page: 401
  issue: 1-2
  year: 2007
  ident: 10.1016/j.jhazmat.2020.122383_bib0220
  article-title: Modeling of adsorption isotherms of phenol and chlorophenols onto granular activated carbonPart II. Models with more than two parameters
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2007.01.023
– volume: 23
  start-page: 149
  issue: 1
  year: 2017
  ident: 10.1016/j.jhazmat.2020.122383_bib0685
  article-title: High-pressure sour gas adsorption on zeolite 4A
  publication-title: Adsorption
  doi: 10.1007/s10450-016-9841-6
– volume: 24
  start-page: 6420
  issue: 13
  year: 2008
  ident: 10.1016/j.jhazmat.2020.122383_bib0090
  article-title: Revisiting the determination of langmuir parameters-application to tetrahydrothiophene adsorption onto activated carbon
  publication-title: Langmuir
  doi: 10.1021/la800725s
– volume: 228
  year: 2019
  ident: 10.1016/j.jhazmat.2020.122383_bib0055
  article-title: Adsorption of organic pollutants by natural and modified clays: a comprehensive review
  publication-title: Sep. Purif. Technol.
  doi: 10.1016/j.seppur.2019.115719
– volume: 64
  start-page: 3156
  issue: 7
  year: 2019
  ident: 10.1016/j.jhazmat.2020.122383_bib0690
  article-title: Sour gas and water adsorption on common high-pressure desiccant materials: zeolite 3A, zeolite 4A, and silica gel
  publication-title: J. Chem. Eng. Data
  doi: 10.1021/acs.jced.9b00233
– volume: 47
  start-page: 755
  issue: 3
  year: 1974
  ident: 10.1016/j.jhazmat.2020.122383_bib0200
  article-title: A general treatment and classification of the solute adsorption isotherm. I. Theoretical
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/0021-9797(74)90252-5
– volume: 269
  start-page: 310
  issue: 2
  year: 2004
  ident: 10.1016/j.jhazmat.2020.122383_bib0215
  article-title: Determination of adsorptive properties of clay/water system: methylene blue sorption
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/j.jcis.2003.09.004
– volume: 5
  start-page: 349
  issue: 4
  year: 2014
  ident: 10.1016/j.jhazmat.2020.122383_bib0235
  article-title: Carbon dioxide adsorption on zeolites and activated carbon by pressure swing adsorption in a fixed bed
  publication-title: Int. J. Energy Environ. Eng.
  doi: 10.1007/s40095-014-0131-3
– volume: 120
  start-page: 88
  year: 2017
  ident: 10.1016/j.jhazmat.2020.122383_bib0620
  article-title: Mistakes and inconsistencies regarding adsorption of contaminants from aqueous solutions: a critical review
  publication-title: Water Res.
  doi: 10.1016/j.watres.2017.04.014
– volume: 211
  start-page: 235
  year: 2018
  ident: 10.1016/j.jhazmat.2020.122383_bib0125
  article-title: Utilizations of agricultural waste as adsorbent for the removal of contaminants: a review
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2018.06.179
– volume: 136
  start-page: 197
  issue: 2
  year: 2006
  ident: 10.1016/j.jhazmat.2020.122383_bib0330
  article-title: Comparative analysis of linear and non-linear method of estimating the sorption isotherm parameters for malachite green onto activated carbon
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2005.09.018
– volume: 79
  start-page: 85
  issue: 1
  year: 1981
  ident: 10.1016/j.jhazmat.2020.122383_bib0610
  article-title: A uniform interpretation of gas/solid adsorption
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/0021-9797(81)90050-3
– volume: 312
  start-page: 172
  issue: 2-3
  year: 2008
  ident: 10.1016/j.jhazmat.2020.122383_bib0580
  article-title: Removal of cadmium(II) and zinc(II) metal ions from binary aqueous solution by rice husk ash
  publication-title: Colloids Surf. A Physicochem. Eng. Asp.
  doi: 10.1016/j.colsurfa.2007.06.048
– volume: 133
  start-page: 304
  issue: 1-3
  year: 2006
  ident: 10.1016/j.jhazmat.2020.122383_bib0645
  article-title: Biosorption of nickel(II) ions onto Sargassum wightii: application of two-parameter and three-parameter isotherm models
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2005.10.016
– start-page: 1
  year: 1997
  ident: 10.1016/j.jhazmat.2020.122383_bib0005
– volume: 152
  start-page: 976
  issue: 3
  year: 2008
  ident: 10.1016/j.jhazmat.2020.122383_bib0065
  article-title: Insights into isotherm making in the sorptive removal of fluoride from drinking water
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2007.07.072
– start-page: 275
  year: 2003
  ident: 10.1016/j.jhazmat.2020.122383_bib0535
  article-title: sorption III: sorption processes involving inorganic surfaces
– volume: 20
  start-page: 13
  issue: 1
  year: 1971
  ident: 10.1016/j.jhazmat.2020.122383_bib0050
  article-title: Development of the concept of volume filling of micropores in the adsorption of gases and vapors by microporous adsorbents
  publication-title: Bull. Acad. Sci. USSR Div. Chem. Sci.
  doi: 10.1007/BF00849309
– volume: 20
  start-page: 17
  issue: 1
  year: 1971
  ident: 10.1016/j.jhazmat.2020.122383_bib0085
  article-title: Development of concepts of the volume filling of micropores in the adsorption of gases and vapors by microporous adsorbents
  publication-title: Bull. Acad. Sci. USSR Div. Chem. Sci.
  doi: 10.1007/BF00849310
– volume: 16
  year: 2019
  ident: 10.1016/j.jhazmat.2020.122383_bib0025
  article-title: Optimizing textile dye removal by activated carbon prepared from olive stones
  publication-title: Environ. Technol. Innov.
  doi: 10.1016/j.eti.2019.100488
– volume: 38
  start-page: 4075
  issue: 19
  year: 2004
  ident: 10.1016/j.jhazmat.2020.122383_bib0595
  article-title: A rapid method to measure the solid–water distribution coefficient (Kd) for pharmaceuticals and musk fragrances in sewage sludge
  publication-title: Water Res.
  doi: 10.1016/j.watres.2004.07.015
– volume: 69
  start-page: 229
  issue: 3
  year: 2003
  ident: 10.1016/j.jhazmat.2020.122383_bib0030
  article-title: The removal of dyes from textile wastewater: a study of the physical characteristics and adsorption mechanisms of diatomaceous earth
  publication-title: J. Environ. Manage.
  doi: 10.1016/j.jenvman.2003.09.005
– volume: 51
  start-page: 2725
  issue: 17
  year: 2016
  ident: 10.1016/j.jhazmat.2020.122383_bib0655
  article-title: Mono- and multi-component biosorption of lead(II), cadmium(II), copper(II) and nickel(II) ions onto coco-peat biomass
  publication-title: Sep. Sci. Technol.
  doi: 10.1080/01496395.2016.1212889
– volume: 11
  start-page: 410
  issue: 3
  year: 2019
  ident: 10.1016/j.jhazmat.2020.122383_bib0560
  article-title: The role of physisorption and chemisorption in the oscillatory adsorption of organosilanes on aluminium oxide
  publication-title: Polymers
  doi: 10.3390/polym11030410
– volume: 294
  year: 2020
  ident: 10.1016/j.jhazmat.2020.122383_bib0635
  article-title: Synthesis and characterization of mesoporous MOF UMCM-1 for CO2/CH4 adsorption; an experimental, isotherm modeling and thermodynamic study
  publication-title: Microporous Mesoporous Mater.
  doi: 10.1016/j.micromeso.2019.109844
– volume: 1
  start-page: 113
  issue: 2
  year: 1995
  ident: 10.1016/j.jhazmat.2020.122383_bib0445
  article-title: Optimum isotherm equation and thermodynamic interpretation for aqueous 1,1,2-trichloroethene adsorption isotherms on three adsorbents
  publication-title: Adsorption
  doi: 10.1007/BF00705000
– volume: 10
  start-page: 1
  issue: 1
  year: 2018
  ident: 10.1016/j.jhazmat.2020.122383_bib0480
  article-title: Adsorption of chromium using blue green algae-modeling and application of various isotherms
  publication-title: Int. J. Chem. Technol.
  doi: 10.3923/ijct.2018.1.22
– volume: 115
  start-page: 997
  issue: 8-9
  year: 1984
  ident: 10.1016/j.jhazmat.2020.122383_bib0290
  article-title: Physical adsorption of gases on energetically heterogeneous solids I. GeneralizedLangmuir equation and its energy distribution
  publication-title: Monatshefte für Chemie – Chem. Monthly
  doi: 10.1007/BF00798768
– volume: 13
  start-page: 5753
  issue: 13
  year: 2011
  ident: 10.1016/j.jhazmat.2020.122383_bib0345
  article-title: A site energy distribution function from Toth isotherm for adsorption of gases on heterogeneous surfaces
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/c0cp00902d
– volume: 1
  start-page: 10
  issue: 1
  year: 2015
  ident: 10.1016/j.jhazmat.2020.122383_bib0650
  article-title: Biosorption of lanthanide (praseodymium) using Ulva lactuca: mechanistic study and application of two, three, four and five parameter isotherm models
  publication-title: J. Environ. Biotechnol.
SSID ssj0001754
Score 2.7363126
SecondaryResourceType review_article
Snippet [Display omitted] •Adsorption data modelling is an essential way of predicting adsorption mechanisms.•It discusses the guidelines of using...
Adsorption process is considered as one of the most used separation and purification processes, in which adsorption occurs by the formation of the physical or...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 122383
SubjectTerms adsorbents
adsorption
Adsorption isotherm interpretation
Adsorption isotherm models
Adsorption mechanisms
chemical bonding
guidelines
Linear and nonlinear isotherm models
prediction
purification methods
regression analysis
sorption isotherms
temperature
Title Guidelines for the use and interpretation of adsorption isotherm models: A review
URI https://dx.doi.org/10.1016/j.jhazmat.2020.122383
https://www.ncbi.nlm.nih.gov/pubmed/32369889
https://www.proquest.com/docview/2399253605
https://www.proquest.com/docview/2431839579
Volume 393
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LTxsxEB6lcKGHClKg4SVX6nXzWM--uEUICI8iVS1SbpbX9opE7QaxiZB66G9nZh_QHCASN-_KXlnj2ZlvNPONAb6Rh7B-aCxbv76HGNDI-dIbWNQ-IQ4bGSY4f78JR7d4OQ7GLThpuDBcVlnb_sqml9a6ftOrpdm7n0x6PzmpR-4WfRrIaDBmBjtGrOXdfy9lHuQeqxZSnAGg2S8snt60O73TfwkYUpjoc58Fcl_yNf_0Gv4s_dDZJnyqAaQYVnvcgpbL2_Dxv7aCbfhwrR8_w4_zBbew4rJ2QchUENITi8IJnVsxWSo1FLNMaFvMHkrzISZFycr6I8pbcopjMRQVwWUbbs9Of52MvPoCBc9giHNPkpqgzhJDUWCALs6MRjMwVqNNHVIsE2TWarJ5qXZJEtlEZlFsUhk7QkKxlHIH1vJZ7r6AiJNIa9uXmOk-ogzTjL5nnHYmSE0mTQewEZsydXdxvuTit2rKyKaqlrZiaatK2h3oPi-7r9prrFoQN2eilvREkQtYtfRrc4aK_iFOjOjczRaFYn6vH0iK7N6Yg2z9OKnZgd1KAZ53LH0ZJnGc7L1_c_uwwU9lIXBwAGvzh4U7JLgzT49KfT6C9eHF1ejmCflX_5g
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VcgAOCEppl6crwTH7sCcvJA4VULbtthJqK-3NOLaj7gqyq2ZXFRz4U_xBZvJo6aFUQuotSuLIGtvffJN5AbwhDeFkZB2jXz9ADOnKSxUMHBpJjMPFlhOcDw6j4QnujcPxCvxuc2E4rLLB_hrTK7Ru7vQaafbmk0nviJ16pG5R0oWKB-MmsnLf_zgnu618v_uRFvmtlDufjj8Mg6a1QGAxwkWgSIBo8tSSfRSiT3Jr0A6sM-gyj8Tyw9w5Q2iQGZ-msUtVHic2U4knjpAo_gtKuH8XCS64bUL312VcCenjumYVuxxoepdpQ71pd3pqfhITJbtUcmEH0pfqOoV4HeGtFN_OI3jYMFaxXQvlMaz4Yg0e_FXHcA3ujMz5E_jyeck1sziOXhAVFkQtxbL0whROTK7ENopZLowrZ2cVXolJWaWBfRdVW57yndgWdUbNOpzcilifwmoxK_wmiCSNjXF9hbnpI6ooy-l71htvw8zmynYAW7Fp25Qz564a33QbtzbVjbQ1S1vX0u5A92LYvK7ncdOApF0TfWVjatI5Nw3datdQ06FlT4wp_GxZak4olqEiU_If7yDDLXtRO7BRb4CLGSupojRJ0mf_P7nXcG94fDDSo93D_edwn59UUcjhC1hdnC39S-Jai-xVtbcFfL3tw_QHiEc9BQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Guidelines+for+the+use+and+interpretation+of+adsorption+isotherm+models%3A+A+review&rft.jtitle=Journal+of+hazardous+materials&rft.au=Al-Ghouti%2C+Mohammad+A&rft.au=Da%27ana%2C+Dana+A&rft.date=2020-07-05&rft.issn=0304-3894&rft.volume=393+p.122383-&rft_id=info:doi/10.1016%2Fj.jhazmat.2020.122383&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0304-3894&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0304-3894&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0304-3894&client=summon