Guidelines for the use and interpretation of adsorption isotherm models: A review
[Display omitted] •Adsorption data modelling is an essential way of predicting adsorption mechanisms.•It discusses the guidelines of using mono/multi-parametric isotherm models.•It establishes criteria for choosing the optimum isotherm model.•Ten multi-parameter isotherm models and their application...
Saved in:
Published in | Journal of hazardous materials Vol. 393; p. 122383 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Netherlands
Elsevier B.V
05.07.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | [Display omitted]
•Adsorption data modelling is an essential way of predicting adsorption mechanisms.•It discusses the guidelines of using mono/multi-parametric isotherm models.•It establishes criteria for choosing the optimum isotherm model.•Ten multi-parameter isotherm models and their applications were reviewed.•Linear and nonlinear regression equations were used to determine best-fit model.
Adsorption process is considered as one of the most used separation and purification processes, in which adsorption occurs by the formation of the physical or chemical bonds between a porous solid medium and a mixture of liquid or gas multi-component fluid. By taking into consideration the equilibrium data and the adsorption properties of both the adsorbent and the adsorbate, adsorption isotherm models can describe the interaction mechanisms between the adsorbent and the adsorbate at constant temperature. Therefore, understanding modelling of the equilibrium data is a very essential way of predicting the adsorption mechanisms of various adsorption systems. Furthermore, adsorption isotherms in batch experiments can be used for the determination of the solid-water distribution coefficient (Kid). This review paper discusses the guidelines of using mono/multi-parametric isotherm models with different applications. The aim of this paper is to establish criteria for choosing the optimum isotherm model through a critical review of different adsorption models and the use of various mathematically error functions such as linear regression analysis, nonlinear regression analysis, and error functions for adsorption data optimization. In this paper, 15 mono-parametric adsorption isotherm models having one, two, three, four and five parameters were investigated. In addition, 10 multi-parameter isotherm models were reviewed as well as addressing their applications. |
---|---|
AbstractList | Adsorption process is considered as one of the most used separation and purification processes, in which adsorption occurs by the formation of the physical or chemical bonds between a porous solid medium and a mixture of liquid or gas multi-component fluid. By taking into consideration the equilibrium data and the adsorption properties of both the adsorbent and the adsorbate, adsorption isotherm models can describe the interaction mechanisms between the adsorbent and the adsorbate at constant temperature. Therefore, understanding modelling of the equilibrium data is a very essential way of predicting the adsorption mechanisms of various adsorption systems. Furthermore, adsorption isotherms in batch experiments can be used for the determination of the solid-water distribution coefficient (K
). This review paper discusses the guidelines of using mono/multi-parametric isotherm models with different applications. The aim of this paper is to establish criteria for choosing the optimum isotherm model through a critical review of different adsorption models and the use of various mathematically error functions such as linear regression analysis, nonlinear regression analysis, and error functions for adsorption data optimization. In this paper, 15 mono-parametric adsorption isotherm models having one, two, three, four and five parameters were investigated. In addition, 10 multi-parameter isotherm models were reviewed as well as addressing their applications. Adsorption process is considered as one of the most used separation and purification processes, in which adsorption occurs by the formation of the physical or chemical bonds between a porous solid medium and a mixture of liquid or gas multi-component fluid. By taking into consideration the equilibrium data and the adsorption properties of both the adsorbent and the adsorbate, adsorption isotherm models can describe the interaction mechanisms between the adsorbent and the adsorbate at constant temperature. Therefore, understanding modelling of the equilibrium data is a very essential way of predicting the adsorption mechanisms of various adsorption systems. Furthermore, adsorption isotherms in batch experiments can be used for the determination of the solid-water distribution coefficient (Kᵢd). This review paper discusses the guidelines of using mono/multi-parametric isotherm models with different applications. The aim of this paper is to establish criteria for choosing the optimum isotherm model through a critical review of different adsorption models and the use of various mathematically error functions such as linear regression analysis, nonlinear regression analysis, and error functions for adsorption data optimization. In this paper, 15 mono-parametric adsorption isotherm models having one, two, three, four and five parameters were investigated. In addition, 10 multi-parameter isotherm models were reviewed as well as addressing their applications. Adsorption process is considered as one of the most used separation and purification processes, in which adsorption occurs by the formation of the physical or chemical bonds between a porous solid medium and a mixture of liquid or gas multi-component fluid. By taking into consideration the equilibrium data and the adsorption properties of both the adsorbent and the adsorbate, adsorption isotherm models can describe the interaction mechanisms between the adsorbent and the adsorbate at constant temperature. Therefore, understanding modelling of the equilibrium data is a very essential way of predicting the adsorption mechanisms of various adsorption systems. Furthermore, adsorption isotherms in batch experiments can be used for the determination of the solid-water distribution coefficient (Kid). This review paper discusses the guidelines of using mono/multi-parametric isotherm models with different applications. The aim of this paper is to establish criteria for choosing the optimum isotherm model through a critical review of different adsorption models and the use of various mathematically error functions such as linear regression analysis, nonlinear regression analysis, and error functions for adsorption data optimization. In this paper, 15 mono-parametric adsorption isotherm models having one, two, three, four and five parameters were investigated. In addition, 10 multi-parameter isotherm models were reviewed as well as addressing their applications.Adsorption process is considered as one of the most used separation and purification processes, in which adsorption occurs by the formation of the physical or chemical bonds between a porous solid medium and a mixture of liquid or gas multi-component fluid. By taking into consideration the equilibrium data and the adsorption properties of both the adsorbent and the adsorbate, adsorption isotherm models can describe the interaction mechanisms between the adsorbent and the adsorbate at constant temperature. Therefore, understanding modelling of the equilibrium data is a very essential way of predicting the adsorption mechanisms of various adsorption systems. Furthermore, adsorption isotherms in batch experiments can be used for the determination of the solid-water distribution coefficient (Kid). This review paper discusses the guidelines of using mono/multi-parametric isotherm models with different applications. The aim of this paper is to establish criteria for choosing the optimum isotherm model through a critical review of different adsorption models and the use of various mathematically error functions such as linear regression analysis, nonlinear regression analysis, and error functions for adsorption data optimization. In this paper, 15 mono-parametric adsorption isotherm models having one, two, three, four and five parameters were investigated. In addition, 10 multi-parameter isotherm models were reviewed as well as addressing their applications. [Display omitted] •Adsorption data modelling is an essential way of predicting adsorption mechanisms.•It discusses the guidelines of using mono/multi-parametric isotherm models.•It establishes criteria for choosing the optimum isotherm model.•Ten multi-parameter isotherm models and their applications were reviewed.•Linear and nonlinear regression equations were used to determine best-fit model. Adsorption process is considered as one of the most used separation and purification processes, in which adsorption occurs by the formation of the physical or chemical bonds between a porous solid medium and a mixture of liquid or gas multi-component fluid. By taking into consideration the equilibrium data and the adsorption properties of both the adsorbent and the adsorbate, adsorption isotherm models can describe the interaction mechanisms between the adsorbent and the adsorbate at constant temperature. Therefore, understanding modelling of the equilibrium data is a very essential way of predicting the adsorption mechanisms of various adsorption systems. Furthermore, adsorption isotherms in batch experiments can be used for the determination of the solid-water distribution coefficient (Kid). This review paper discusses the guidelines of using mono/multi-parametric isotherm models with different applications. The aim of this paper is to establish criteria for choosing the optimum isotherm model through a critical review of different adsorption models and the use of various mathematically error functions such as linear regression analysis, nonlinear regression analysis, and error functions for adsorption data optimization. In this paper, 15 mono-parametric adsorption isotherm models having one, two, three, four and five parameters were investigated. In addition, 10 multi-parameter isotherm models were reviewed as well as addressing their applications. |
ArticleNumber | 122383 |
Author | Al-Ghouti, Mohammad A. Da'ana, Dana A. |
Author_xml | – sequence: 1 givenname: Mohammad A. surname: Al-Ghouti fullname: Al-Ghouti, Mohammad A. email: mohammad.alghouti@qu.edu.qa – sequence: 2 givenname: Dana A. surname: Da'ana fullname: Da'ana, Dana A. |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32369889$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkcGKFDEQhoOsuLOrj6Dk6KXHJJV0J3qQZdFVWBBBzyGTVLMZujtjklb06e2xRw9e5lSk-L6C_P8VuZjShIQ852zLGW9f7bf7B_drdHUrmFh2QoCGR2TDdQcNALQXZMOAyQa0kZfkqpQ9Y4x3Sj4hlyCgNVqbDfl8N8eAQ5yw0D5lWh-QzgWpmwKNU8V8yFhdjWmiqaculJQPf16xpIXNIx3T4pfX9IZm_B7xx1PyuHdDwWeneU2-vn_35fZDc__p7uPtzX3jZStrA-iCdL3xQkklUffeSc99cDLsUOpWqD4ExxXsHBrTBQN9p_0ONDKh9PLBa_JyvXvI6duMpdoxFo_D4CZMc7FCAtdgVGfOo2CMUNAytaAvTui8GzHYQ46jyz_t38QWQK2Az6mUjP0_hDN7bMbu7akZe2zGrs0s3pv_PB_XYGt2cThrv13tJepjytkWH3HyGGJGX21I8cyF34WurVU |
CitedBy_id | crossref_primary_10_1016_j_jece_2024_112571 crossref_primary_10_1007_s11356_022_18721_1 crossref_primary_10_1007_s11814_023_1413_3 crossref_primary_10_1002_cphc_202300821 crossref_primary_10_1016_j_mineng_2021_107337 crossref_primary_10_1016_j_eti_2024_103611 crossref_primary_10_1016_j_seppur_2025_132019 crossref_primary_10_1007_s13399_024_06386_4 crossref_primary_10_1007_s43621_025_00835_4 crossref_primary_10_1007_s13399_022_03652_1 crossref_primary_10_1016_j_cej_2024_154700 crossref_primary_10_1007_s11356_021_13422_7 crossref_primary_10_1016_j_matchemphys_2025_130684 crossref_primary_10_1016_j_scitotenv_2022_159207 crossref_primary_10_1016_j_seppur_2021_120147 crossref_primary_10_1080_17518253_2024_2357215 crossref_primary_10_1016_j_chroma_2021_462685 crossref_primary_10_1021_acs_inorgchem_3c01810 crossref_primary_10_1155_2022_4071162 crossref_primary_10_1016_j_colsurfa_2021_126554 crossref_primary_10_1016_j_cej_2023_141577 crossref_primary_10_1016_j_jddst_2023_104262 crossref_primary_10_1016_j_cej_2023_143757 crossref_primary_10_1016_j_scitotenv_2021_149129 crossref_primary_10_1016_j_ijbiomac_2024_136286 crossref_primary_10_1016_j_jenvman_2023_117384 crossref_primary_10_3390_molecules27051723 crossref_primary_10_1016_j_jallcom_2024_175859 crossref_primary_10_1007_s43153_024_00449_9 crossref_primary_10_1016_j_eti_2021_101828 crossref_primary_10_1016_j_molliq_2020_114980 crossref_primary_10_1016_j_molstruc_2024_139175 crossref_primary_10_1016_j_eti_2021_101853 crossref_primary_10_1016_j_ijbiomac_2021_06_188 crossref_primary_10_1016_j_inoche_2023_111785 crossref_primary_10_1016_j_apsusc_2021_151792 crossref_primary_10_1016_j_cej_2025_159417 crossref_primary_10_1021_acs_langmuir_1c01236 crossref_primary_10_1016_j_seppur_2022_122610 crossref_primary_10_3390_ijerph18094489 crossref_primary_10_1016_j_eti_2024_103607 crossref_primary_10_1016_j_jece_2024_113438 crossref_primary_10_17776_csj_1457268 crossref_primary_10_1016_j_biteb_2021_100689 crossref_primary_10_1016_j_molliq_2023_123086 crossref_primary_10_1080_01496395_2025_2463601 crossref_primary_10_1016_j_seppur_2025_132466 crossref_primary_10_1016_j_clce_2022_100069 crossref_primary_10_1007_s13399_023_04701_z crossref_primary_10_1061_JOEEDU_EEENG_7074 crossref_primary_10_1016_j_jnoncrysol_2021_121058 crossref_primary_10_1016_j_jpcs_2022_110964 crossref_primary_10_1016_j_molliq_2020_114967 crossref_primary_10_1016_j_envpol_2024_124838 crossref_primary_10_1016_j_jtice_2023_105095 crossref_primary_10_1016_j_wmb_2024_07_010 crossref_primary_10_1007_s13762_021_03489_7 crossref_primary_10_1016_j_jhazmat_2022_129174 crossref_primary_10_1007_s42250_022_00367_8 crossref_primary_10_54392_irjmt2244 crossref_primary_10_1002_app_55340 crossref_primary_10_1016_j_envres_2024_118279 crossref_primary_10_1021_acsomega_3c06702 crossref_primary_10_1039_D2RA01810A crossref_primary_10_3390_ma14247697 crossref_primary_10_1016_j_micromeso_2022_112383 crossref_primary_10_1080_01496395_2022_2036761 crossref_primary_10_1016_j_jwpe_2023_104359 crossref_primary_10_1016_j_talanta_2024_126942 crossref_primary_10_1016_j_matpr_2022_03_033 crossref_primary_10_1016_j_matlet_2022_132501 crossref_primary_10_1016_j_jwpe_2025_107181 crossref_primary_10_3390_ma17040928 crossref_primary_10_1016_j_cej_2022_136755 crossref_primary_10_1016_j_jenvman_2021_114115 crossref_primary_10_1016_j_poly_2022_116253 crossref_primary_10_1002_app_55346 crossref_primary_10_2174_2452271606666221206105936 crossref_primary_10_1016_j_chemosphere_2024_142049 crossref_primary_10_1016_j_chemosphere_2021_131766 crossref_primary_10_1016_j_ijbiomac_2022_08_062 crossref_primary_10_1016_j_clce_2022_100048 crossref_primary_10_1016_j_mineng_2022_107663 crossref_primary_10_1016_j_chemosphere_2023_139808 crossref_primary_10_1007_s10450_022_00367_7 crossref_primary_10_1016_j_molliq_2022_120970 crossref_primary_10_1016_j_colsurfa_2025_136675 crossref_primary_10_1007_s10967_021_07806_9 crossref_primary_10_1007_s10973_023_12347_2 crossref_primary_10_1016_j_cej_2022_137615 crossref_primary_10_1021_acs_energyfuels_2c04008 crossref_primary_10_5004_dwt_2023_29282 crossref_primary_10_1002_slct_202402762 crossref_primary_10_1007_s13399_022_02952_w crossref_primary_10_1016_j_scitotenv_2024_176357 crossref_primary_10_1016_j_envres_2024_119144 crossref_primary_10_1016_j_matchemphys_2022_126523 crossref_primary_10_1007_s11356_023_30529_1 crossref_primary_10_1016_j_molliq_2024_125991 crossref_primary_10_1016_j_seppur_2023_126072 crossref_primary_10_1016_j_reactfunctpolym_2022_105290 crossref_primary_10_1007_s13201_022_01827_9 crossref_primary_10_1016_j_jenvman_2021_112397 crossref_primary_10_1007_s10311_022_01519_5 crossref_primary_10_1007_s13399_022_03212_7 crossref_primary_10_1007_s42250_021_00228_w crossref_primary_10_2174_1385272826666220209122508 crossref_primary_10_1021_acsami_2c14744 crossref_primary_10_1016_j_chemosphere_2023_138990 crossref_primary_10_1016_j_seppur_2022_121339 crossref_primary_10_1016_j_cej_2022_139809 crossref_primary_10_1007_s13399_022_03099_4 crossref_primary_10_1016_j_chemosphere_2024_143398 crossref_primary_10_1016_j_jece_2024_113871 crossref_primary_10_1002_rem_21677 crossref_primary_10_1063_5_0184321 crossref_primary_10_1016_j_jciso_2022_100066 crossref_primary_10_1039_D3EN00849E crossref_primary_10_1021_acsomega_2c08221 crossref_primary_10_1021_acs_iecr_4c04434 crossref_primary_10_1016_j_envres_2024_119136 crossref_primary_10_1016_j_mtcomm_2022_104327 crossref_primary_10_1016_j_jwpe_2022_103178 crossref_primary_10_1002_slct_202305164 crossref_primary_10_3390_molecules28237786 crossref_primary_10_1088_2051_672X_ac431f crossref_primary_10_1080_01932691_2021_1956322 crossref_primary_10_1016_j_chroma_2023_464119 crossref_primary_10_1080_10889868_2024_2338490 crossref_primary_10_1016_j_chroma_2023_464599 crossref_primary_10_1016_j_biteb_2024_101987 crossref_primary_10_1021_acsaenm_3c00060 crossref_primary_10_1016_j_talanta_2021_122149 crossref_primary_10_1016_j_jwpe_2020_101283 crossref_primary_10_3390_w16162237 crossref_primary_10_1016_j_molliq_2023_121299 crossref_primary_10_1007_s11814_024_00370_4 crossref_primary_10_1016_j_chemosphere_2022_135545 crossref_primary_10_1016_j_heliyon_2024_e31336 crossref_primary_10_1021_acs_langmuir_4c00702 crossref_primary_10_3390_agronomy13092440 crossref_primary_10_1016_j_watres_2020_116622 crossref_primary_10_1016_j_mtcomm_2024_110302 crossref_primary_10_5004_dwt_2021_26922 crossref_primary_10_1016_j_seppur_2022_120824 crossref_primary_10_1016_j_jece_2021_106216 crossref_primary_10_5004_dwt_2021_26926 crossref_primary_10_1007_s13369_022_06786_6 crossref_primary_10_1016_j_jece_2024_112162 crossref_primary_10_1016_j_jwpe_2023_104383 crossref_primary_10_1007_s13762_023_05288_8 crossref_primary_10_3390_ma17051168 crossref_primary_10_1016_j_seppur_2022_123085 crossref_primary_10_1007_s10661_022_10877_0 crossref_primary_10_1039_D3RA06855B crossref_primary_10_1016_j_jddst_2023_105190 crossref_primary_10_1016_j_jwpe_2023_104386 crossref_primary_10_1002_ceat_202200032 crossref_primary_10_1016_j_cdc_2020_100563 crossref_primary_10_1039_D4NJ04894F crossref_primary_10_1016_j_seppur_2024_129860 crossref_primary_10_1016_j_jcou_2024_102811 crossref_primary_10_1007_s11814_021_0801_9 crossref_primary_10_1016_j_biteb_2023_101685 crossref_primary_10_1016_j_biortech_2024_131879 crossref_primary_10_1021_acsomega_3c10304 crossref_primary_10_1007_s10751_024_02208_1 crossref_primary_10_1016_j_matpr_2020_11_046 crossref_primary_10_1016_j_microc_2020_105163 crossref_primary_10_3390_w13111514 crossref_primary_10_1002_jssc_70024 crossref_primary_10_3390_coatings13091558 crossref_primary_10_1016_j_gsd_2022_100793 crossref_primary_10_3390_ma15248818 crossref_primary_10_1016_j_jhazmat_2022_129561 crossref_primary_10_3390_molecules28207030 crossref_primary_10_1016_j_hazadv_2025_100647 crossref_primary_10_1016_j_colsurfa_2022_129984 crossref_primary_10_1016_j_jes_2023_05_013 crossref_primary_10_1016_j_jtice_2023_105006 crossref_primary_10_1016_j_jece_2024_114367 crossref_primary_10_1007_s10811_020_02242_w crossref_primary_10_1007_s11144_024_02708_9 crossref_primary_10_2166_wst_2022_153 crossref_primary_10_1016_j_jece_2024_114364 crossref_primary_10_3390_su132111760 crossref_primary_10_1016_j_jece_2022_107472 crossref_primary_10_1088_2053_1591_abc71f crossref_primary_10_1016_j_jwpe_2023_104365 crossref_primary_10_1016_j_jece_2021_106244 crossref_primary_10_1007_s11356_024_33578_2 crossref_primary_10_1080_03067319_2020_1862814 crossref_primary_10_1016_j_jwpe_2021_102419 crossref_primary_10_1016_j_jece_2021_106242 crossref_primary_10_1016_j_chphi_2024_100756 crossref_primary_10_1016_j_jhazmat_2023_130853 crossref_primary_10_1016_j_molliq_2021_116124 crossref_primary_10_1007_s13762_022_04605_x crossref_primary_10_36306_konjes_1379888 crossref_primary_10_3390_recycling9030038 crossref_primary_10_1016_j_ijbiomac_2023_125753 crossref_primary_10_1016_j_chemosphere_2021_130844 crossref_primary_10_1038_s41598_024_56070_w crossref_primary_10_1002_vjch_202300283 crossref_primary_10_1016_j_jwpe_2024_105564 crossref_primary_10_1007_s11356_023_30164_w crossref_primary_10_3390_w17010129 crossref_primary_10_1016_j_jcou_2022_102203 crossref_primary_10_1016_j_jclepro_2024_142414 crossref_primary_10_1016_j_hazadv_2024_100404 crossref_primary_10_1016_j_jece_2024_112124 crossref_primary_10_1038_s41598_022_12233_1 crossref_primary_10_1016_j_enmm_2021_100452 crossref_primary_10_1007_s10967_022_08529_1 crossref_primary_10_1007_s12161_023_02452_1 crossref_primary_10_3390_pr11010053 crossref_primary_10_1007_s11270_024_06912_0 crossref_primary_10_1016_j_seppur_2023_124275 crossref_primary_10_1016_j_seppur_2024_127646 crossref_primary_10_1016_j_diamond_2024_110803 crossref_primary_10_1007_s10450_024_00583_3 crossref_primary_10_1016_j_jssc_2022_123830 crossref_primary_10_1039_D2NA00099G crossref_primary_10_1016_j_cdc_2023_101042 crossref_primary_10_1016_j_mtchem_2022_101277 crossref_primary_10_1016_j_dib_2024_111113 crossref_primary_10_1007_s10853_023_08734_7 crossref_primary_10_1016_j_jece_2024_114337 crossref_primary_10_2166_wpt_2024_039 crossref_primary_10_1016_j_jtice_2021_08_013 crossref_primary_10_3390_su16229854 crossref_primary_10_1039_D2NJ01669A crossref_primary_10_1080_01932691_2024_2312828 crossref_primary_10_1016_j_heliyon_2024_e31351 crossref_primary_10_1007_s00894_024_06118_5 crossref_primary_10_1007_s11356_024_34581_3 crossref_primary_10_1007_s11356_024_33663_6 crossref_primary_10_1016_j_jhazmat_2023_130803 crossref_primary_10_1021_acs_energyfuels_3c05156 crossref_primary_10_1155_2023_4964194 crossref_primary_10_1016_j_ijbiomac_2023_128810 crossref_primary_10_1016_j_matchemphys_2022_126591 crossref_primary_10_1002_app_54443 crossref_primary_10_1021_acsanm_3c04193 crossref_primary_10_1016_j_mineng_2023_108314 crossref_primary_10_1021_acs_jpcc_4c08754 crossref_primary_10_1002_slct_202400519 crossref_primary_10_1016_j_scitotenv_2023_164008 crossref_primary_10_1016_j_jtice_2021_08_022 crossref_primary_10_1007_s11270_022_05528_6 crossref_primary_10_1016_j_jhazmat_2024_134239 crossref_primary_10_1016_j_carbon_2022_09_013 crossref_primary_10_1016_j_scitotenv_2022_156564 crossref_primary_10_1007_s11270_024_07260_9 crossref_primary_10_3390_polysaccharides4030019 crossref_primary_10_1016_j_jre_2024_06_012 crossref_primary_10_1007_s40831_024_00855_w crossref_primary_10_3390_app14177577 crossref_primary_10_3390_ijerph192316283 crossref_primary_10_1007_s11356_024_33969_5 crossref_primary_10_1016_j_nanoso_2023_101031 crossref_primary_10_1002_slct_202304796 crossref_primary_10_1016_j_pce_2025_103898 crossref_primary_10_1021_acs_langmuir_4c02851 crossref_primary_10_2166_wpt_2022_058 crossref_primary_10_1016_j_jece_2021_105402 crossref_primary_10_1016_j_jece_2024_115283 crossref_primary_10_1007_s42250_021_00268_2 crossref_primary_10_1016_j_jes_2022_08_026 crossref_primary_10_1016_j_powtec_2023_118387 crossref_primary_10_3390_jox14030070 crossref_primary_10_3390_su16187876 crossref_primary_10_1007_s13738_021_02410_w crossref_primary_10_1080_15226514_2022_2025759 crossref_primary_10_3390_molecules28186436 crossref_primary_10_1021_acsomega_2c05978 crossref_primary_10_1007_s00604_021_04893_z crossref_primary_10_1016_j_enmm_2024_100956 crossref_primary_10_1007_s13399_022_02573_3 crossref_primary_10_1016_j_psep_2022_11_038 crossref_primary_10_1016_j_cjche_2023_03_016 crossref_primary_10_48084_etasr_9094 crossref_primary_10_1016_j_seppur_2024_129342 crossref_primary_10_1155_2020_8813420 crossref_primary_10_1515_ract_2023_0165 crossref_primary_10_1016_j_aca_2021_338981 crossref_primary_10_1088_1757_899X_1195_1_012031 crossref_primary_10_1016_j_heliyon_2024_e37497 crossref_primary_10_1021_acsaem_2c03180 crossref_primary_10_1016_j_jtice_2024_105833 crossref_primary_10_1016_j_scitotenv_2024_171545 crossref_primary_10_1039_D3EW00199G crossref_primary_10_1080_03067319_2024_2419380 crossref_primary_10_32604_jrm_2023_028885 crossref_primary_10_1016_j_seppur_2021_118601 crossref_primary_10_1080_01490451_2022_2089781 crossref_primary_10_1016_j_jece_2023_111866 crossref_primary_10_1016_j_jhazmat_2023_133153 crossref_primary_10_1002_slct_202303442 crossref_primary_10_3390_cryst13040664 crossref_primary_10_1155_2021_9998924 crossref_primary_10_1016_j_arabjc_2022_104059 crossref_primary_10_1016_j_jwpe_2022_102666 crossref_primary_10_1016_j_ceramint_2024_12_320 crossref_primary_10_1016_j_chemosphere_2024_142801 crossref_primary_10_1007_s11356_024_34964_6 crossref_primary_10_1016_j_micromeso_2024_113405 crossref_primary_10_1016_j_carbpol_2020_117423 crossref_primary_10_1016_j_indcrop_2024_119697 crossref_primary_10_1080_03067319_2021_1910245 crossref_primary_10_1007_s10450_025_00613_8 crossref_primary_10_1021_acs_iecr_2c00330 crossref_primary_10_1016_j_jcis_2023_03_001 crossref_primary_10_1016_j_jhazmat_2023_133160 crossref_primary_10_1016_j_ijbiomac_2024_134997 crossref_primary_10_1016_j_talanta_2025_127667 crossref_primary_10_1016_j_envpol_2024_124049 crossref_primary_10_1016_j_jhazmat_2024_133467 crossref_primary_10_1016_j_jece_2023_109559 crossref_primary_10_1016_j_rineng_2024_102081 crossref_primary_10_1016_j_cej_2024_156894 crossref_primary_10_1016_j_jhazmat_2024_134311 crossref_primary_10_1016_j_seppur_2024_128477 crossref_primary_10_1016_j_carbon_2025_120202 crossref_primary_10_1016_j_seppur_2023_125500 crossref_primary_10_1016_j_micromeso_2021_111654 crossref_primary_10_1063_5_0051245 crossref_primary_10_3390_w15162869 crossref_primary_10_1021_acs_iecr_1c03280 crossref_primary_10_1016_j_chemosphere_2024_141982 crossref_primary_10_1007_s13399_022_02577_z crossref_primary_10_1039_D1GC00841B crossref_primary_10_5004_dwt_2022_29085 crossref_primary_10_1016_j_cherd_2023_07_015 crossref_primary_10_1016_j_jwpe_2024_106373 crossref_primary_10_1016_j_arabjc_2022_104480 crossref_primary_10_1016_j_arabjc_2023_104750 crossref_primary_10_1016_j_cscee_2025_101101 crossref_primary_10_1039_D0TA07028A crossref_primary_10_1016_j_hazl_2021_100019 crossref_primary_10_1080_01496395_2025_2455966 crossref_primary_10_3390_ijms231710142 crossref_primary_10_1088_1755_1315_885_1_012060 crossref_primary_10_1016_j_surfin_2024_105511 crossref_primary_10_1007_s13399_024_05282_1 crossref_primary_10_1016_j_chemosphere_2022_134662 crossref_primary_10_1016_j_jwpe_2023_103801 crossref_primary_10_1016_j_cemconcomp_2024_105781 crossref_primary_10_1016_j_nxsust_2024_100054 crossref_primary_10_1016_j_nxsust_2024_100052 crossref_primary_10_1016_j_jece_2021_106306 crossref_primary_10_1002_pen_26922 crossref_primary_10_1007_s13399_025_06713_3 crossref_primary_10_3390_su16187888 crossref_primary_10_1002_jctb_6510 crossref_primary_10_1016_j_biortech_2022_128144 crossref_primary_10_3390_chemengineering7060114 crossref_primary_10_1016_j_seppur_2021_118645 crossref_primary_10_1016_j_enmm_2024_100965 crossref_primary_10_1016_j_jece_2023_111820 crossref_primary_10_1016_j_jwpe_2021_102354 crossref_primary_10_1016_j_scp_2024_101565 crossref_primary_10_1016_j_cej_2024_155531 crossref_primary_10_1016_j_jece_2023_109504 crossref_primary_10_1016_j_colsurfa_2020_125449 crossref_primary_10_1007_s10661_023_12153_1 crossref_primary_10_1016_j_seppur_2024_127112 crossref_primary_10_1039_D4NA00836G crossref_primary_10_1155_2021_5556940 crossref_primary_10_1016_j_micromeso_2022_111982 crossref_primary_10_1007_s13399_021_01722_4 crossref_primary_10_3390_molecules26051426 crossref_primary_10_3390_pr12010238 crossref_primary_10_58692_jotcsb_1580910 crossref_primary_10_1016_j_corsci_2020_109011 crossref_primary_10_1039_D3RA05315F crossref_primary_10_1016_j_jenvman_2024_123008 crossref_primary_10_1029_2022WR033149 crossref_primary_10_1007_s13399_022_03038_3 crossref_primary_10_5004_dwt_2023_29748 crossref_primary_10_1016_j_psep_2024_01_042 crossref_primary_10_1016_j_clet_2023_100675 crossref_primary_10_1016_j_psep_2022_02_034 crossref_primary_10_1039_D4CS00574K crossref_primary_10_3390_polym12102353 crossref_primary_10_1007_s13762_020_02961_0 crossref_primary_10_1016_j_clce_2022_100011 crossref_primary_10_3390_su14137585 crossref_primary_10_1016_j_envres_2022_113224 crossref_primary_10_3103_S1063455X24050011 crossref_primary_10_5182_jaie_33_8 crossref_primary_10_1080_09593330_2023_2198732 crossref_primary_10_1038_s41467_024_48090_x crossref_primary_10_1134_S1070427224100045 crossref_primary_10_1016_j_jhazmat_2021_125385 crossref_primary_10_58224_2619_0575_2024_7_2_13_25 crossref_primary_10_3390_min13121530 crossref_primary_10_3390_molecules27041405 crossref_primary_10_1016_j_biombioe_2024_107279 crossref_primary_10_1002_slct_202102877 crossref_primary_10_1016_j_jece_2024_113934 crossref_primary_10_1021_acsagscitech_4c00576 crossref_primary_10_1021_acs_jced_0c00927 crossref_primary_10_1021_acsestwater_4c00399 crossref_primary_10_1016_j_ceja_2024_100608 crossref_primary_10_1016_j_colsurfa_2024_134991 crossref_primary_10_1016_j_ijoes_2024_100691 crossref_primary_10_5004_dwt_2021_27323 crossref_primary_10_1016_j_dwt_2024_100913 crossref_primary_10_1016_j_heliyon_2024_e37445 crossref_primary_10_1007_s11694_025_03170_4 crossref_primary_10_1016_j_seppur_2021_119099 crossref_primary_10_1002_smtd_202400049 crossref_primary_10_1016_j_ijbiomac_2023_128326 crossref_primary_10_1007_s13399_022_03608_5 crossref_primary_10_1007_s11356_021_13959_7 crossref_primary_10_1016_j_scp_2023_101205 crossref_primary_10_1007_s00107_024_02148_1 crossref_primary_10_1016_j_matchemphys_2022_125752 crossref_primary_10_1016_j_molliq_2024_125035 crossref_primary_10_1021_acsomega_3c02283 crossref_primary_10_1016_j_jclepro_2021_129422 crossref_primary_10_1016_j_jece_2020_104691 crossref_primary_10_1007_s11270_021_05118_y crossref_primary_10_1080_15226514_2024_2428434 crossref_primary_10_1007_s42250_023_00796_z crossref_primary_10_3390_app131810511 crossref_primary_10_3390_toxics11040369 crossref_primary_10_1016_j_envc_2021_100373 crossref_primary_10_1021_acs_langmuir_2c02014 crossref_primary_10_1063_5_0219452 crossref_primary_10_1080_09593330_2021_2011427 crossref_primary_10_1016_j_colsurfa_2022_130170 crossref_primary_10_1016_j_jece_2024_113953 crossref_primary_10_1021_acsanm_3c02014 crossref_primary_10_1016_j_emcon_2024_100303 crossref_primary_10_1016_j_surfin_2020_100722 crossref_primary_10_1016_j_reactfunctpolym_2022_105389 crossref_primary_10_1016_j_wasman_2020_10_021 crossref_primary_10_1016_j_jclepro_2022_135157 crossref_primary_10_1016_j_cej_2023_145074 crossref_primary_10_1016_j_jclepro_2023_137237 crossref_primary_10_1016_j_cej_2021_132801 crossref_primary_10_1016_j_colsurfa_2024_135823 crossref_primary_10_3390_foods9091278 crossref_primary_10_1016_j_jclepro_2023_137233 crossref_primary_10_1021_acs_jpcb_1c08148 crossref_primary_10_1016_j_cej_2021_130645 crossref_primary_10_1016_j_dwt_2024_100965 crossref_primary_10_1038_s41545_024_00340_7 crossref_primary_10_3390_polym13111691 crossref_primary_10_1039_D3EW00464C crossref_primary_10_1002_ep_14329 crossref_primary_10_1007_s11356_020_10777_1 crossref_primary_10_1016_j_cartre_2025_100476 crossref_primary_10_1016_j_jece_2023_110115 crossref_primary_10_15243_jdmlm_2024_113_5551 crossref_primary_10_3390_molecules28073016 crossref_primary_10_1080_09593330_2021_2020339 crossref_primary_10_1016_j_envres_2022_114514 crossref_primary_10_1007_s11356_024_33240_x crossref_primary_10_1016_j_chemosphere_2023_138457 crossref_primary_10_1007_s11356_024_33262_5 crossref_primary_10_1007_s13762_023_04806_y crossref_primary_10_1007_s11837_025_07205_5 crossref_primary_10_1016_j_jaap_2021_105206 crossref_primary_10_3390_ma14102528 crossref_primary_10_1021_acsapm_1c01901 crossref_primary_10_4236_ajac_2021_125010 crossref_primary_10_1007_s10450_024_00512_4 crossref_primary_10_1016_j_jwpe_2023_103897 crossref_primary_10_1016_j_jhazmat_2025_137220 crossref_primary_10_1021_acs_macromol_1c02413 crossref_primary_10_3390_ma18061306 crossref_primary_10_3390_ma14051312 crossref_primary_10_1016_j_conbuildmat_2023_133763 crossref_primary_10_3390_molecules29020300 crossref_primary_10_3390_w16111499 crossref_primary_10_1016_j_ijbiomac_2025_141962 crossref_primary_10_1016_j_ijbiomac_2023_127034 crossref_primary_10_1016_j_cscee_2024_100782 crossref_primary_10_1016_j_envres_2024_119548 crossref_primary_10_1016_j_indcrop_2024_119254 crossref_primary_10_1016_j_jhazmat_2021_126657 crossref_primary_10_1016_j_mtcomm_2024_111174 crossref_primary_10_1016_j_envres_2025_120819 crossref_primary_10_1016_j_heliyon_2024_e33097 crossref_primary_10_1016_j_micromeso_2024_113450 crossref_primary_10_1016_S1872_2067_23_64536_X crossref_primary_10_1038_s41598_023_32413_x crossref_primary_10_1016_j_scitotenv_2022_159261 crossref_primary_10_1021_acs_langmuir_4c03368 crossref_primary_10_1016_j_seppur_2024_129379 crossref_primary_10_1080_09593330_2024_2447960 crossref_primary_10_1007_s13201_022_01800_6 crossref_primary_10_1016_j_cej_2021_132853 crossref_primary_10_3390_ma17174172 crossref_primary_10_1016_j_cej_2023_147215 crossref_primary_10_1016_j_cej_2023_146367 crossref_primary_10_1002_slct_202403106 crossref_primary_10_1016_j_watres_2024_122433 crossref_primary_10_1016_j_jsamd_2024_100807 crossref_primary_10_1021_acsomega_2c04269 crossref_primary_10_1007_s42823_022_00340_y crossref_primary_10_1007_s10904_023_02612_0 crossref_primary_10_1007_s10811_023_03070_4 crossref_primary_10_51847_jIOvZK4SgJ crossref_primary_10_1016_j_memsci_2024_123155 crossref_primary_10_1016_j_cej_2023_147690 crossref_primary_10_1016_j_foodchem_2024_139291 crossref_primary_10_1016_j_scitotenv_2024_171986 crossref_primary_10_1080_01496395_2024_2319146 crossref_primary_10_3390_magnetochemistry9040092 crossref_primary_10_1002_bte2_20240032 crossref_primary_10_1186_s12896_024_00913_x crossref_primary_10_1016_j_seppur_2022_120785 crossref_primary_10_1007_s13762_022_04646_2 crossref_primary_10_1016_j_aca_2021_339293 crossref_primary_10_1111_php_14043 crossref_primary_10_15407_hftp15_04_561 crossref_primary_10_1016_j_jwpe_2025_107265 crossref_primary_10_1016_j_envres_2024_119289 crossref_primary_10_1016_j_ijbiomac_2024_137021 crossref_primary_10_3390_gels11030205 crossref_primary_10_1016_j_chemosphere_2022_137448 crossref_primary_10_1016_j_jwpe_2020_101795 crossref_primary_10_1016_j_envres_2020_110594 crossref_primary_10_1007_s13762_022_04548_3 crossref_primary_10_1021_acsearthspacechem_3c00291 crossref_primary_10_1038_s41598_024_59982_9 crossref_primary_10_1016_j_chemosphere_2021_131863 crossref_primary_10_1016_j_jconhyd_2024_104486 crossref_primary_10_1007_s42250_024_01118_7 crossref_primary_10_3390_w14162454 crossref_primary_10_1016_j_carpta_2021_100141 crossref_primary_10_3390_molecules29133099 crossref_primary_10_1016_j_jwpe_2025_107259 crossref_primary_10_1021_acsomega_2c07471 crossref_primary_10_3390_molecules29010148 crossref_primary_10_1039_D1EN01015H crossref_primary_10_1080_15567036_2024_2418441 crossref_primary_10_1016_j_bej_2022_108379 crossref_primary_10_1016_j_envres_2021_110883 crossref_primary_10_1007_s11356_021_17422_5 crossref_primary_10_1016_j_cscee_2024_100746 crossref_primary_10_1080_03067319_2024_2368265 crossref_primary_10_1007_s11783_023_1707_z crossref_primary_10_1016_j_jscs_2023_101748 crossref_primary_10_1016_j_clay_2022_106711 crossref_primary_10_1016_j_clay_2023_107088 crossref_primary_10_1007_s11356_024_32700_8 crossref_primary_10_1016_j_talanta_2023_125284 crossref_primary_10_3390_toxins15020104 crossref_primary_10_1016_j_cscee_2023_100471 crossref_primary_10_1016_j_envres_2023_115871 crossref_primary_10_1016_j_chemosphere_2020_128379 crossref_primary_10_1002_jctb_7258 crossref_primary_10_1016_j_hybadv_2024_100272 crossref_primary_10_1515_hf_2022_0117 crossref_primary_10_15243_jdmlm_2024_114_6427 crossref_primary_10_1007_s10924_021_02068_8 crossref_primary_10_3390_ma16155243 crossref_primary_10_1016_j_fuel_2022_127213 crossref_primary_10_1021_acs_langmuir_3c02778 crossref_primary_10_1007_s11356_023_25710_5 crossref_primary_10_1002_ghg_2274 crossref_primary_10_2166_wst_2021_070 crossref_primary_10_1016_j_cscee_2024_100764 crossref_primary_10_1016_j_diamond_2024_110944 crossref_primary_10_2478_pjct_2024_0019 crossref_primary_10_1007_s11270_024_07400_1 crossref_primary_10_3390_su13168994 crossref_primary_10_1007_s11356_024_34729_1 crossref_primary_10_1016_j_colsurfa_2023_132883 crossref_primary_10_1016_j_jece_2024_112650 crossref_primary_10_1016_j_foodchem_2023_135676 crossref_primary_10_1016_j_pmatsci_2025_101460 crossref_primary_10_1016_j_ccr_2021_214376 crossref_primary_10_1016_j_jssc_2022_123579 crossref_primary_10_1002_aenm_202201494 crossref_primary_10_1007_s11666_025_01948_y crossref_primary_10_1007_s41742_023_00535_9 crossref_primary_10_1016_j_jhazmat_2020_122907 crossref_primary_10_1016_j_est_2024_110453 crossref_primary_10_1016_j_jscs_2023_101723 crossref_primary_10_1016_j_jece_2022_107989 crossref_primary_10_1016_j_biortech_2024_130698 crossref_primary_10_3390_catal12101169 crossref_primary_10_1007_s10967_021_08131_x crossref_primary_10_1007_s11356_023_26423_5 crossref_primary_10_1016_j_molliq_2024_125865 crossref_primary_10_1016_j_jenvman_2024_121609 crossref_primary_10_1039_D2RA02031A crossref_primary_10_1016_j_molstruc_2024_139256 crossref_primary_10_1021_acs_iecr_1c01788 crossref_primary_10_1016_j_surfin_2024_105191 crossref_primary_10_1016_j_ijbiomac_2024_137448 crossref_primary_10_1021_acsami_4c10154 crossref_primary_10_1155_2022_5787690 crossref_primary_10_1007_s10668_023_03311_z crossref_primary_10_1007_s10924_023_03089_1 crossref_primary_10_1080_09593330_2023_2295827 crossref_primary_10_1007_s11356_021_18484_1 crossref_primary_10_1016_j_diamond_2023_110681 crossref_primary_10_1016_j_jphotochem_2024_115689 crossref_primary_10_3390_nano12061023 crossref_primary_10_1016_j_enmm_2024_101014 crossref_primary_10_1016_j_talanta_2021_122449 crossref_primary_10_1002_kin_21774 crossref_primary_10_1016_j_carbpol_2021_118355 crossref_primary_10_5004_dwt_2022_28416 crossref_primary_10_1039_D4TA05062B crossref_primary_10_3390_en13174513 crossref_primary_10_1016_j_jhazmat_2023_131858 crossref_primary_10_1021_acs_iecr_2c02274 crossref_primary_10_1016_j_seppur_2022_122532 crossref_primary_10_1016_j_inoche_2024_113092 crossref_primary_10_1088_1361_6528_ac3c7a crossref_primary_10_3390_polym15051157 crossref_primary_10_1016_j_enmm_2021_100517 crossref_primary_10_1002_tqem_22310 crossref_primary_10_1016_j_susmat_2025_e01279 crossref_primary_10_1016_j_clay_2022_106745 crossref_primary_10_5004_dwt_2022_28421 crossref_primary_10_1016_j_micromeso_2022_112288 crossref_primary_10_1016_j_snb_2021_131196 crossref_primary_10_1007_s11164_023_05161_w crossref_primary_10_3390_w15203560 crossref_primary_10_1007_s13399_023_05248_9 crossref_primary_10_1016_j_ijbiomac_2021_04_079 crossref_primary_10_1016_j_wmb_2024_01_009 crossref_primary_10_1007_s13399_024_05567_5 crossref_primary_10_1038_s41598_024_69769_7 crossref_primary_10_1080_01932691_2023_2281519 crossref_primary_10_1016_j_jece_2022_107147 crossref_primary_10_2166_wrd_2024_142 crossref_primary_10_21923_jesd_1560542 crossref_primary_10_1007_s11356_024_33106_2 crossref_primary_10_1016_j_ica_2022_121226 crossref_primary_10_1002_cnma_202400582 crossref_primary_10_1016_j_wasman_2020_09_011 crossref_primary_10_2166_wst_2022_239 crossref_primary_10_1016_j_jclepro_2023_136612 crossref_primary_10_4491_KSEE_2023_45_1_1 crossref_primary_10_2166_wst_2022_250 crossref_primary_10_1016_j_scitotenv_2021_148550 crossref_primary_10_1515_ijfe_2023_0273 crossref_primary_10_1080_02286203_2024_2389012 crossref_primary_10_1016_j_molstruc_2024_139219 crossref_primary_10_1016_j_surfin_2022_102325 crossref_primary_10_1016_j_crgsc_2022_100325 crossref_primary_10_1016_j_wen_2024_01_003 crossref_primary_10_1021_acs_langmuir_3c01813 crossref_primary_10_1021_acsomega_3c06178 crossref_primary_10_1002_slct_202401509 crossref_primary_10_1038_s41598_022_15814_2 crossref_primary_10_1002_tcr_202400188 crossref_primary_10_1016_j_ijbiomac_2024_136555 crossref_primary_10_4028_p_8hb3rR crossref_primary_10_1002_bbb_2554 crossref_primary_10_1021_prechem_4c00036 crossref_primary_10_1007_s43832_024_00180_z crossref_primary_10_1021_acssuschemeng_3c04672 crossref_primary_10_3390_toxics11120950 crossref_primary_10_3799_dqkx_2021_108 crossref_primary_10_1016_j_jwpe_2021_102515 crossref_primary_10_1016_j_biortech_2023_129380 crossref_primary_10_1021_acs_jpcc_1c09732 crossref_primary_10_1039_D4RA04942J crossref_primary_10_1016_j_indcrop_2023_117122 crossref_primary_10_1016_j_snb_2024_136401 crossref_primary_10_1016_j_biteb_2022_101045 crossref_primary_10_1002_chem_202003643 crossref_primary_10_1016_j_envres_2023_116314 crossref_primary_10_1016_j_watres_2023_120825 crossref_primary_10_3390_nano11040952 crossref_primary_10_1016_j_jwpe_2024_104777 crossref_primary_10_1016_j_mseb_2022_116191 crossref_primary_10_1016_j_saa_2022_122099 crossref_primary_10_1016_j_est_2024_112610 crossref_primary_10_1016_j_jtice_2024_105675 crossref_primary_10_1016_j_cej_2024_154882 crossref_primary_10_1016_j_petrol_2022_110897 crossref_primary_10_1016_j_jece_2021_106353 crossref_primary_10_1002_app_54997 crossref_primary_10_3390_w15213728 crossref_primary_10_1016_j_ijbiomac_2023_124277 crossref_primary_10_1016_j_jhazmat_2022_129680 crossref_primary_10_1007_s13399_022_03304_4 crossref_primary_10_1016_j_jece_2024_113156 crossref_primary_10_1016_j_hazadv_2024_100504 crossref_primary_10_3390_polym16182555 crossref_primary_10_1016_j_biteb_2022_101039 crossref_primary_10_1080_10826068_2021_2007488 crossref_primary_10_1007_s40843_021_1933_4 crossref_primary_10_1016_j_cej_2023_144309 crossref_primary_10_3390_ma14247500 crossref_primary_10_3390_su152215727 crossref_primary_10_1016_j_scp_2022_100621 crossref_primary_10_3390_w16202932 crossref_primary_10_1016_j_jcis_2023_01_010 crossref_primary_10_1016_j_cej_2024_157906 crossref_primary_10_3390_app12157607 crossref_primary_10_3390_membranes13050488 crossref_primary_10_1016_j_chemosphere_2021_131813 crossref_primary_10_1016_j_foodchem_2021_131592 crossref_primary_10_1016_j_molliq_2024_124928 crossref_primary_10_1038_s41598_024_69399_z crossref_primary_10_1007_s11356_023_30296_z crossref_primary_10_1007_s13762_022_03928_z crossref_primary_10_1002_batt_202400101 crossref_primary_10_3390_molecules29010173 crossref_primary_10_1039_D3DT02696E crossref_primary_10_1080_03067319_2024_2382945 crossref_primary_10_21597_jist_1163166 crossref_primary_10_1021_acsomega_1c04743 crossref_primary_10_1016_j_seppur_2023_124144 crossref_primary_10_1016_j_chemosphere_2024_142548 crossref_primary_10_1016_j_snb_2024_136451 crossref_primary_10_1039_D4CP02609H crossref_primary_10_1016_j_scitotenv_2022_156418 crossref_primary_10_1016_j_envres_2023_116783 crossref_primary_10_1016_j_envpol_2023_123190 crossref_primary_10_1039_D3SU00365E crossref_primary_10_1039_D4NR02857K crossref_primary_10_1186_s42834_022_00150_x crossref_primary_10_1007_s10967_023_09114_w crossref_primary_10_1016_j_seppur_2023_125481 crossref_primary_10_1016_j_inoche_2021_108950 crossref_primary_10_3390_met15010056 crossref_primary_10_14710_jil_21_4_933_945 crossref_primary_10_1016_j_molliq_2021_117312 crossref_primary_10_1007_s11356_021_14180_2 crossref_primary_10_1016_j_apcatb_2022_122217 crossref_primary_10_1016_j_eti_2020_101092 crossref_primary_10_1016_j_ceramint_2022_12_072 crossref_primary_10_1016_j_colsurfa_2022_130635 crossref_primary_10_1088_1755_1315_749_1_012013 crossref_primary_10_1002_smll_202207348 crossref_primary_10_1016_j_watres_2022_119115 crossref_primary_10_1021_acsomega_2c07087 crossref_primary_10_1007_s10854_024_12643_z crossref_primary_10_1016_j_jenvman_2025_124108 crossref_primary_10_1515_polyeng_2023_0056 crossref_primary_10_3390_molecules30010092 crossref_primary_10_1016_j_foodchem_2024_138762 crossref_primary_10_3390_bios12121133 crossref_primary_10_1016_j_cherd_2021_05_023 crossref_primary_10_3390_molecules30050982 crossref_primary_10_1016_j_ijbiomac_2024_133481 crossref_primary_10_1007_s11270_023_06311_x crossref_primary_10_1016_j_colsurfa_2024_135338 crossref_primary_10_5004_dwt_2022_28013 crossref_primary_10_5004_dwt_2022_28497 crossref_primary_10_1016_j_colsurfa_2021_128051 crossref_primary_10_1016_j_seppur_2024_128846 crossref_primary_10_1155_2021_5597299 crossref_primary_10_5004_dwt_2023_29344 crossref_primary_10_1016_j_supflu_2023_105940 crossref_primary_10_2166_wrd_2024_118 crossref_primary_10_1007_s12221_023_00401_7 crossref_primary_10_1007_s44211_022_00183_7 crossref_primary_10_1016_j_enmm_2021_100598 crossref_primary_10_3390_su16177599 crossref_primary_10_1016_j_surfin_2022_101897 crossref_primary_10_1080_09593330_2020_1861107 crossref_primary_10_1016_j_psep_2024_09_077 crossref_primary_10_3390_pr11010191 crossref_primary_10_1016_j_eng_2024_11_015 crossref_primary_10_1007_s11356_022_25065_3 crossref_primary_10_1039_D2EW00986B crossref_primary_10_1016_j_cej_2021_132166 crossref_primary_10_1016_j_inoche_2024_112608 crossref_primary_10_1016_j_cej_2021_134346 crossref_primary_10_1007_s13762_022_04285_7 crossref_primary_10_1007_s10098_024_03026_3 crossref_primary_10_2166_wpt_2023_139 crossref_primary_10_1080_15226514_2021_1984385 crossref_primary_10_1007_s10450_024_00451_0 crossref_primary_10_1016_j_ijbiomac_2023_127850 crossref_primary_10_1016_j_eti_2022_102525 crossref_primary_10_1177_02636174241280029 crossref_primary_10_1007_s44371_024_00018_6 crossref_primary_10_1016_j_jclepro_2021_127502 crossref_primary_10_1016_j_ijbiomac_2024_131394 crossref_primary_10_1021_acs_energyfuels_0c03238 crossref_primary_10_1016_j_chemosphere_2024_142909 crossref_primary_10_1016_j_colsurfa_2020_125504 crossref_primary_10_1016_j_ecoenv_2022_113646 crossref_primary_10_3390_polym15234600 crossref_primary_10_1021_acs_chemmater_4c03074 crossref_primary_10_1007_s13762_024_05761_y crossref_primary_10_1039_D0RA10910J crossref_primary_10_1007_s00289_023_04864_9 crossref_primary_10_1016_j_jenvrad_2023_107350 crossref_primary_10_1016_j_ijhydene_2024_10_070 crossref_primary_10_1016_j_jhazmat_2022_129755 crossref_primary_10_1021_acs_inorgchem_3c04640 crossref_primary_10_3390_w12092624 crossref_primary_10_1016_j_clce_2025_100146 crossref_primary_10_3390_en14092682 crossref_primary_10_1007_s11664_024_11646_0 crossref_primary_10_1155_2024_6346033 crossref_primary_10_1016_j_jddst_2023_104703 crossref_primary_10_1016_j_scitotenv_2023_165710 crossref_primary_10_1016_j_chemosphere_2022_136922 crossref_primary_10_1016_j_surfin_2021_101696 crossref_primary_10_1016_j_cdc_2020_100607 crossref_primary_10_1021_acs_est_0c07936 crossref_primary_10_1016_j_rser_2024_115093 crossref_primary_10_1039_D2NJ05646A crossref_primary_10_1016_j_ijbiomac_2022_10_001 crossref_primary_10_1016_j_molstruc_2022_133723 crossref_primary_10_3390_app13169147 crossref_primary_10_3390_ma15134445 crossref_primary_10_1016_j_scitotenv_2023_163517 crossref_primary_10_21597_jist_1275258 crossref_primary_10_3390_toxins16110479 crossref_primary_10_1016_j_jece_2023_110647 crossref_primary_10_1016_j_colsurfa_2024_133594 crossref_primary_10_1016_j_reactfunctpolym_2024_106028 crossref_primary_10_1016_j_scitotenv_2023_164854 crossref_primary_10_1088_2053_1591_ac9cb7 crossref_primary_10_1016_j_tsep_2021_101058 crossref_primary_10_1080_09593330_2023_2215451 crossref_primary_10_1016_j_seppur_2023_125857 crossref_primary_10_1007_s13399_024_06303_9 crossref_primary_10_3390_polym14173613 crossref_primary_10_1016_j_heliyon_2023_e20665 crossref_primary_10_3389_fchem_2025_1524683 crossref_primary_10_1016_j_dwt_2024_100898 crossref_primary_10_1007_s10163_023_01867_6 crossref_primary_10_1016_j_dwt_2024_100896 crossref_primary_10_1016_j_ijbiomac_2024_134877 crossref_primary_10_1016_j_jece_2023_110664 crossref_primary_10_3390_recycling6020041 crossref_primary_10_1007_s11356_024_33585_3 crossref_primary_10_1016_j_eti_2021_102258 crossref_primary_10_1080_03067319_2025_2458144 crossref_primary_10_1007_s11270_024_07070_z crossref_primary_10_1016_j_micromeso_2022_111834 crossref_primary_10_12714_egejfas_39_4_05 crossref_primary_10_3390_pr12010148 crossref_primary_10_1016_j_molliq_2024_124919 crossref_primary_10_1007_s11356_023_26912_7 crossref_primary_10_1016_j_seppur_2023_125867 crossref_primary_10_3390_su14063640 crossref_primary_10_1016_j_jwpe_2024_106015 crossref_primary_10_1016_j_ijbiomac_2023_126447 crossref_primary_10_1007_s13201_022_01854_6 crossref_primary_10_1016_j_biombioe_2024_107103 crossref_primary_10_1016_j_envres_2024_118711 crossref_primary_10_1016_j_carpta_2024_100637 crossref_primary_10_3390_nano10112213 crossref_primary_10_1039_D4NJ03271C crossref_primary_10_1016_j_jwpe_2021_102447 crossref_primary_10_1002_slct_202200262 crossref_primary_10_1016_j_matpr_2021_12_224 crossref_primary_10_1016_j_molliq_2024_124097 crossref_primary_10_5004_dwt_2021_27257 crossref_primary_10_1016_j_seppur_2024_127018 crossref_primary_10_1016_j_cej_2022_140452 crossref_primary_10_1016_j_ijbiomac_2025_140581 crossref_primary_10_1007_s13399_023_04839_w crossref_primary_10_1016_j_desal_2024_117963 crossref_primary_10_1080_10601325_2022_2041030 crossref_primary_10_1016_j_carbpol_2020_116634 crossref_primary_10_1038_s41598_022_15292_6 crossref_primary_10_1016_j_jcou_2020_101297 crossref_primary_10_1021_acsomega_3c08317 crossref_primary_10_1016_j_surfin_2022_101947 crossref_primary_10_1016_j_ecoenv_2020_111710 crossref_primary_10_1016_j_jwpe_2021_102435 crossref_primary_10_1021_acsanm_1c03863 crossref_primary_10_3390_molecules29040898 crossref_primary_10_1016_j_jece_2021_105575 crossref_primary_10_1155_2022_4129833 crossref_primary_10_1088_1755_1315_1467_1_012007 crossref_primary_10_1016_j_procbio_2023_01_013 crossref_primary_10_1177_00405175221139321 crossref_primary_10_2166_wst_2022_205 crossref_primary_10_1016_j_chemosphere_2023_138165 crossref_primary_10_1016_j_molliq_2020_115235 crossref_primary_10_1016_j_jobe_2023_107143 crossref_primary_10_1007_s13399_023_04389_1 crossref_primary_10_1016_j_chemosphere_2023_139042 crossref_primary_10_3390_nano14231925 crossref_primary_10_1016_j_jhazmat_2020_124672 crossref_primary_10_1016_j_ces_2025_121440 crossref_primary_10_1016_j_wasman_2023_03_019 crossref_primary_10_1016_j_jhazmat_2020_124678 crossref_primary_10_1016_j_scitotenv_2022_153471 crossref_primary_10_3390_nano12030318 crossref_primary_10_1016_j_ces_2025_121439 crossref_primary_10_1021_acssensors_1c00787 crossref_primary_10_1016_j_jpcs_2023_111408 crossref_primary_10_3390_polym15071666 crossref_primary_10_1016_j_mtcomm_2023_107589 crossref_primary_10_1016_j_reactfunctpolym_2024_106069 crossref_primary_10_1007_s13762_024_05992_z crossref_primary_10_1016_j_biortech_2021_124818 crossref_primary_10_3390_pr12102257 crossref_primary_10_1016_j_seppur_2023_125898 crossref_primary_10_1080_00405000_2024_2352677 crossref_primary_10_1007_s11356_024_35612_9 crossref_primary_10_1016_j_watres_2025_123308 crossref_primary_10_15251_DJNB_2023_182_567 crossref_primary_10_1016_j_jwpe_2024_106489 crossref_primary_10_1016_j_scitotenv_2024_174501 crossref_primary_10_3390_min12070846 crossref_primary_10_1016_j_chroma_2024_465066 crossref_primary_10_1088_1755_1315_1297_1_012093 crossref_primary_10_1016_j_enmm_2023_100795 crossref_primary_10_1016_j_envpol_2023_121871 crossref_primary_10_1016_j_bej_2023_109136 crossref_primary_10_1016_j_jwpe_2024_106481 crossref_primary_10_1016_j_marpolbul_2025_117832 crossref_primary_10_1016_j_indcrop_2022_114971 crossref_primary_10_3103_S1068375523030146 crossref_primary_10_1007_s11270_023_06511_5 crossref_primary_10_1007_s13201_022_01832_y crossref_primary_10_1016_j_jallcom_2022_164508 crossref_primary_10_1016_j_wse_2024_01_005 crossref_primary_10_1016_j_micromeso_2021_111572 crossref_primary_10_2166_wst_2022_227 crossref_primary_10_1016_j_jngse_2021_104289 crossref_primary_10_1007_s11696_025_03893_0 crossref_primary_10_3390_ma15165567 crossref_primary_10_1016_j_molstruc_2023_136218 crossref_primary_10_1039_D3TB00138E crossref_primary_10_1016_j_micromeso_2024_113395 crossref_primary_10_1016_j_jece_2025_116133 crossref_primary_10_1007_s10653_023_01540_9 crossref_primary_10_1016_j_gsd_2023_101034 crossref_primary_10_1016_j_ijpharm_2024_124507 crossref_primary_10_3390_ijms23137112 crossref_primary_10_3390_separations10080438 crossref_primary_10_1016_j_jece_2020_104310 crossref_primary_10_1016_j_jwpe_2020_101716 crossref_primary_10_3390_ijerph18084247 crossref_primary_10_1007_s11270_023_06759_x crossref_primary_10_1016_j_dwt_2024_100801 crossref_primary_10_1016_j_ijbiomac_2020_09_046 crossref_primary_10_12688_f1000research_132880_1 crossref_primary_10_3762_bjnano_16_9 crossref_primary_10_1002_adma_202401623 crossref_primary_10_12688_f1000research_132880_2 crossref_primary_10_1016_j_molliq_2020_115203 crossref_primary_10_3390_min14020133 crossref_primary_10_1007_s13399_023_04896_1 crossref_primary_10_1016_j_colsurfa_2023_131064 crossref_primary_10_1016_j_compchemeng_2021_107474 crossref_primary_10_1016_j_seppur_2021_118913 crossref_primary_10_1016_j_seppur_2025_131434 crossref_primary_10_1021_acs_iecr_3c01358 crossref_primary_10_1021_acs_cgd_4c00586 crossref_primary_10_1016_j_isci_2022_104138 crossref_primary_10_1007_s10904_024_03571_w crossref_primary_10_1016_j_ceramint_2024_12_270 crossref_primary_10_1007_s13369_021_05416_x crossref_primary_10_1016_j_envres_2021_112543 crossref_primary_10_1007_s00289_023_05065_0 crossref_primary_10_1016_j_colsurfa_2024_134878 crossref_primary_10_1016_j_jclepro_2022_135010 crossref_primary_10_1016_j_chroma_2024_464631 crossref_primary_10_1002_slct_202403256 crossref_primary_10_1016_j_ijbiomac_2024_130446 crossref_primary_10_1016_j_molliq_2024_124069 crossref_primary_10_2478_pjct_2024_0034 crossref_primary_10_1016_j_cjche_2024_06_016 crossref_primary_10_1016_j_gsd_2024_101327 crossref_primary_10_1016_j_rechem_2024_101339 crossref_primary_10_1016_j_molstruc_2023_136234 crossref_primary_10_3390_su15032488 crossref_primary_10_1016_j_mseb_2023_116820 crossref_primary_10_1021_acsomega_4c04324 crossref_primary_10_1016_j_cjche_2024_06_006 crossref_primary_10_1016_j_rineng_2023_101409 crossref_primary_10_1016_j_jece_2023_109273 crossref_primary_10_1002_elsa_202100164 crossref_primary_10_1007_s11356_023_31317_7 crossref_primary_10_1016_j_jtice_2022_104654 crossref_primary_10_5004_dwt_2023_29829 crossref_primary_10_1007_s11356_023_26591_4 crossref_primary_10_17159_sajs_2023_13352 crossref_primary_10_1016_j_seppur_2024_131122 crossref_primary_10_1007_s11144_024_02757_0 crossref_primary_10_1007_s10311_021_01201_2 crossref_primary_10_1016_j_ijbiomac_2020_09_078 crossref_primary_10_1016_j_jhazmat_2021_125470 crossref_primary_10_1016_j_jclepro_2021_128485 crossref_primary_10_1007_s12046_023_02080_9 crossref_primary_10_1016_j_cej_2022_138539 crossref_primary_10_1021_acs_jpclett_4c00281 crossref_primary_10_1016_j_seppur_2024_130267 crossref_primary_10_3390_gels10030200 crossref_primary_10_5802_crchim_181 crossref_primary_10_1007_s42250_023_00851_9 crossref_primary_10_1016_j_indcrop_2024_119114 crossref_primary_10_5004_dwt_2022_28953 crossref_primary_10_1016_j_ijbiomac_2023_128234 crossref_primary_10_1016_j_jclepro_2023_136253 crossref_primary_10_1007_s11270_024_07200_7 crossref_primary_10_1002_jctb_7794 crossref_primary_10_3390_magnetochemistry9090211 crossref_primary_10_22144_ctujos_2024_310 crossref_primary_10_1007_s13399_021_01827_w crossref_primary_10_3390_nano12223942 crossref_primary_10_1088_1755_1315_1349_1_012014 crossref_primary_10_1016_j_colsurfa_2020_125135 crossref_primary_10_1155_2023_7182712 crossref_primary_10_1016_j_envres_2022_114629 crossref_primary_10_1021_acs_jpcc_2c03504 crossref_primary_10_1007_s11947_024_03608_5 crossref_primary_10_1016_j_seppur_2023_123639 crossref_primary_10_1007_s11356_020_10647_w crossref_primary_10_1016_j_chemosphere_2025_144153 crossref_primary_10_1016_j_envres_2021_112595 crossref_primary_10_1016_j_seppur_2024_129261 crossref_primary_10_1080_03067319_2024_2431585 crossref_primary_10_3390_toxics11030232 crossref_primary_10_1016_j_ijbiomac_2021_08_156 crossref_primary_10_1016_j_ijbiomac_2024_137037 crossref_primary_10_3390_polym17040502 crossref_primary_10_3390_molecules27238483 crossref_primary_10_1021_acs_iecr_2c00037 crossref_primary_10_1016_j_envc_2024_100961 crossref_primary_10_1007_s13204_023_02890_7 crossref_primary_10_3390_ma16134884 crossref_primary_10_1016_j_jece_2022_108087 crossref_primary_10_1016_j_heliyon_2020_e04975 crossref_primary_10_1016_j_jwpe_2023_103996 crossref_primary_10_1007_s43153_021_00191_6 crossref_primary_10_1016_j_seppur_2025_131852 crossref_primary_10_1063_5_0137651 crossref_primary_10_1038_s41598_021_97826_y crossref_primary_10_1016_j_ijbiomac_2023_126083 crossref_primary_10_1186_s40643_021_00387_1 crossref_primary_10_1007_s13762_024_06157_8 crossref_primary_10_1007_s41742_022_00500_y crossref_primary_10_1007_s10311_023_01603_4 crossref_primary_10_1016_j_jhazmat_2021_127722 crossref_primary_10_1021_acsami_1c04064 crossref_primary_10_1016_j_cdc_2024_101140 crossref_primary_10_1016_j_sciaf_2022_e01296 crossref_primary_10_1016_j_arabjc_2021_103468 crossref_primary_10_1016_j_envres_2023_115521 crossref_primary_10_1016_j_heliyon_2024_e25729 crossref_primary_10_1016_j_molliq_2024_126628 crossref_primary_10_1016_j_scitotenv_2024_174390 crossref_primary_10_2166_wpt_2024_217 crossref_primary_10_1007_s13399_024_06277_8 crossref_primary_10_1021_acs_langmuir_4c04479 crossref_primary_10_1680_jenge_22_00046 crossref_primary_10_1021_acs_chemrev_1c00915 crossref_primary_10_1016_j_est_2024_114972 crossref_primary_10_1016_j_jhazmat_2023_131552 crossref_primary_10_3390_molecules28020649 crossref_primary_10_1021_acsomega_1c04661 crossref_primary_10_1016_j_seppur_2024_126529 crossref_primary_10_1016_j_heliyon_2023_e13465 crossref_primary_10_1016_j_jclepro_2023_138752 crossref_primary_10_3390_cryst14050450 crossref_primary_10_1007_s10854_022_08207_8 crossref_primary_10_1002_jctb_7598 crossref_primary_10_3390_nano14060522 crossref_primary_10_2166_wpt_2025_033 crossref_primary_10_1016_j_arabjc_2021_103477 crossref_primary_10_3390_polym15081948 crossref_primary_10_1080_01496395_2021_1982979 crossref_primary_10_1007_s10876_023_02416_9 crossref_primary_10_3389_fceng_2022_1000064 crossref_primary_10_3390_gels8110757 crossref_primary_10_3390_w16141954 crossref_primary_10_1016_j_scitotenv_2021_152529 crossref_primary_10_1016_j_jhazmat_2023_131568 crossref_primary_10_1016_j_chemosphere_2021_129638 crossref_primary_10_1007_s13762_022_04188_7 crossref_primary_10_1007_s40843_023_2725_y crossref_primary_10_1016_j_scitotenv_2023_168651 crossref_primary_10_1007_s11356_024_33197_x crossref_primary_10_1016_j_molliq_2022_119790 crossref_primary_10_1016_j_enceco_2020_10_002 crossref_primary_10_1007_s00289_022_04183_5 crossref_primary_10_1016_j_chemosphere_2021_130629 crossref_primary_10_1016_j_mtsust_2023_100509 crossref_primary_10_1016_j_micromeso_2023_112837 crossref_primary_10_1016_j_molliq_2021_118137 crossref_primary_10_1016_j_ijhydene_2022_02_194 crossref_primary_10_1016_j_polymer_2024_127866 crossref_primary_10_1016_j_watres_2020_116472 crossref_primary_10_3390_ma16083166 crossref_primary_10_1007_s11356_024_32845_6 crossref_primary_10_1002_admi_202101201 crossref_primary_10_1016_j_jhazmat_2023_132875 crossref_primary_10_1016_j_jece_2021_106088 crossref_primary_10_1016_j_molliq_2022_120758 crossref_primary_10_1016_j_mex_2021_101464 crossref_primary_10_2166_wst_2020_392 crossref_primary_10_1007_s40710_023_00631_0 crossref_primary_10_1016_j_scitotenv_2023_166464 crossref_primary_10_1038_s41598_021_91484_w crossref_primary_10_3389_fenvs_2020_00056 crossref_primary_10_1007_s11356_021_18485_0 crossref_primary_10_1007_s10311_023_01647_6 crossref_primary_10_1080_15422119_2021_1951757 crossref_primary_10_1039_D3RA08225C crossref_primary_10_1080_10601325_2024_2386057 crossref_primary_10_1021_acsomega_3c02588 crossref_primary_10_1007_s13204_021_01954_w crossref_primary_10_1016_j_fuel_2022_127300 crossref_primary_10_1016_j_jenvman_2022_115968 crossref_primary_10_1021_acsaem_2c03758 crossref_primary_10_3103_S0361521921030101 crossref_primary_10_1016_j_cej_2025_161951 crossref_primary_10_1016_j_cherd_2023_02_033 crossref_primary_10_3390_separations11060170 crossref_primary_10_1038_s41598_024_72187_4 crossref_primary_10_1007_s11270_024_07676_3 crossref_primary_10_1016_j_heliyon_2023_e14356 crossref_primary_10_1016_j_micromeso_2022_112137 crossref_primary_10_1016_j_cis_2025_103440 crossref_primary_10_1007_s11356_022_20830_w crossref_primary_10_3390_cryst11010002 crossref_primary_10_3390_ma14123243 crossref_primary_10_1016_j_jwpe_2024_104888 crossref_primary_10_1016_j_ijbiomac_2024_135148 crossref_primary_10_3390_polym14050968 crossref_primary_10_1016_j_ijhydene_2024_07_192 crossref_primary_10_1016_j_biortech_2021_126239 crossref_primary_10_1016_j_jwpe_2023_104100 crossref_primary_10_1016_j_chemosphere_2023_138722 crossref_primary_10_1038_s41598_022_18202_y crossref_primary_10_1016_j_mtcomm_2024_108269 crossref_primary_10_1016_j_colsurfa_2024_133900 crossref_primary_10_1016_j_heliyon_2023_e15698 crossref_primary_10_1016_j_cis_2025_103441 crossref_primary_10_1007_s13762_022_04741_4 crossref_primary_10_1016_j_resenv_2023_100142 crossref_primary_10_1016_j_rineng_2024_101756 crossref_primary_10_3390_min14060579 crossref_primary_10_1016_j_micromeso_2025_113493 crossref_primary_10_1007_s11356_023_29075_7 crossref_primary_10_1016_j_chemosphere_2020_129396 crossref_primary_10_1016_j_scp_2022_100794 crossref_primary_10_1007_s13738_022_02675_9 crossref_primary_10_1016_j_sajb_2023_02_023 crossref_primary_10_1080_01496395_2024_2343850 crossref_primary_10_1007_s11694_024_03034_3 crossref_primary_10_25130_tjes_31_1_16 crossref_primary_10_1007_s10967_023_08786_8 crossref_primary_10_1007_s10876_023_02523_7 crossref_primary_10_1016_j_resconrec_2020_105335 crossref_primary_10_1016_j_jece_2022_108939 crossref_primary_10_1016_j_applthermaleng_2024_122390 crossref_primary_10_3390_technologies12070104 crossref_primary_10_3390_c10010008 crossref_primary_10_1016_j_molliq_2025_126919 crossref_primary_10_1016_j_cej_2021_130954 crossref_primary_10_1016_j_matchemphys_2022_126752 crossref_primary_10_5004_dwt_2022_28780 crossref_primary_10_1016_j_enmm_2021_100635 crossref_primary_10_1016_j_carbon_2025_120091 crossref_primary_10_1016_j_jhazmat_2021_126804 crossref_primary_10_1016_j_enmm_2021_100638 crossref_primary_10_1016_j_matpr_2023_05_121 crossref_primary_10_1039_D4SC00174E crossref_primary_10_1016_j_jwpe_2024_105705 crossref_primary_10_1016_j_jece_2020_104885 crossref_primary_10_2166_wpt_2023_011 crossref_primary_10_3389_fenvs_2022_996953 crossref_primary_10_1007_s43153_021_00166_7 crossref_primary_10_1186_s42834_024_00226_w crossref_primary_10_1002_jctb_7189 crossref_primary_10_1016_j_foodchem_2024_142727 crossref_primary_10_1016_j_jcis_2021_01_021 crossref_primary_10_1016_j_matchemphys_2023_127552 crossref_primary_10_1016_j_scitotenv_2024_175641 crossref_primary_10_1016_j_chemosphere_2024_143965 crossref_primary_10_1007_s41207_024_00464_9 crossref_primary_10_1186_s40643_023_00672_1 crossref_primary_10_1016_j_cej_2021_131375 crossref_primary_10_1016_j_ijbiomac_2024_136451 crossref_primary_10_3390_inorganics10110210 crossref_primary_10_1016_j_jwpe_2024_105763 crossref_primary_10_1016_j_still_2023_105958 crossref_primary_10_1016_j_matchemphys_2020_123919 crossref_primary_10_1007_s10668_022_02274_x crossref_primary_10_1007_s10924_021_02232_0 crossref_primary_10_1016_j_jcis_2024_07_181 crossref_primary_10_1016_j_jece_2025_115730 crossref_primary_10_1080_01932691_2024_2340680 crossref_primary_10_1515_pac_2024_0102 crossref_primary_10_1016_j_crgsc_2021_100188 crossref_primary_10_1016_j_jclepro_2022_135819 crossref_primary_10_1021_acsomega_4c10884 crossref_primary_10_1016_j_jclepro_2022_134969 crossref_primary_10_1016_j_cej_2021_132227 crossref_primary_10_1016_j_seppur_2024_129625 crossref_primary_10_1016_j_est_2022_105876 crossref_primary_10_1080_01496395_2023_2189049 crossref_primary_10_1016_j_heliyon_2024_e38189 crossref_primary_10_1016_j_enmm_2023_100800 crossref_primary_10_1016_j_hydromet_2024_106409 crossref_primary_10_5564_bicct_v11i11_3287 crossref_primary_10_1063_5_0174323 crossref_primary_10_1016_j_envres_2025_121140 crossref_primary_10_1051_e3sconf_202235501005 crossref_primary_10_1016_j_scitotenv_2023_165545 crossref_primary_10_1007_s13369_022_07248_9 crossref_primary_10_1016_j_molstruc_2024_140348 crossref_primary_10_3390_w15213849 crossref_primary_10_1016_j_colsurfa_2023_132706 crossref_primary_10_1016_j_surfin_2024_105280 crossref_primary_10_29105_qh11_03_297 crossref_primary_10_3390_app11199223 crossref_primary_10_3390_app15031634 crossref_primary_10_1038_s41545_024_00413_7 crossref_primary_10_1016_j_colsurfa_2020_124709 crossref_primary_10_1080_10643389_2023_2221157 crossref_primary_10_1177_11786302211053176 crossref_primary_10_3390_polym16060837 crossref_primary_10_1016_j_fuel_2022_126401 crossref_primary_10_3390_polym16233315 crossref_primary_10_1016_j_scitotenv_2022_159870 crossref_primary_10_1016_j_jfutfo_2023_05_001 crossref_primary_10_1038_s41598_022_07134_2 crossref_primary_10_1016_j_jhazmat_2022_128488 crossref_primary_10_1007_s10967_021_08014_1 crossref_primary_10_1021_acsomega_3c01616 crossref_primary_10_1016_j_colsurfa_2022_130736 crossref_primary_10_1007_s11270_024_07009_4 crossref_primary_10_1007_s11581_025_06069_8 crossref_primary_10_1016_j_jece_2024_114551 crossref_primary_10_1002_tqem_21987 crossref_primary_10_3390_recycling8050074 crossref_primary_10_1016_j_rechem_2025_102179 crossref_primary_10_1016_j_ijbiomac_2024_133380 crossref_primary_10_1016_j_jece_2021_106010 crossref_primary_10_1016_j_arabjc_2024_105688 crossref_primary_10_1016_j_reactfunctpolym_2024_106122 crossref_primary_10_1016_j_ijbiomac_2025_142126 crossref_primary_10_1038_s41598_021_87106_0 crossref_primary_10_1016_j_colsurfa_2023_131836 crossref_primary_10_1016_j_colsurfa_2022_129763 crossref_primary_10_1016_j_jwpe_2023_104186 crossref_primary_10_1109_JSEN_2021_3093107 crossref_primary_10_1080_15567036_2024_2417035 crossref_primary_10_3390_ijms25094771 crossref_primary_10_1007_s42247_023_00460_9 crossref_primary_10_2166_ws_2025_021 crossref_primary_10_3390_ma15228177 crossref_primary_10_1016_j_arabjc_2023_105333 crossref_primary_10_1002_slct_202202975 crossref_primary_10_3390_cells14030225 crossref_primary_10_1016_j_jenvman_2025_124463 crossref_primary_10_1016_j_cscee_2021_100121 crossref_primary_10_1016_j_chemosphere_2022_135350 crossref_primary_10_1039_D3NJ05351B crossref_primary_10_1016_j_cscee_2021_100120 crossref_primary_10_1016_j_matpr_2023_07_108 crossref_primary_10_1016_j_biortech_2024_130745 crossref_primary_10_1016_j_ijbiomac_2023_126864 crossref_primary_10_1016_j_colsurfa_2022_130760 crossref_primary_10_1016_j_cej_2025_159696 crossref_primary_10_1016_j_ijbiomac_2024_133358 crossref_primary_10_1016_j_jiec_2025_02_012 crossref_primary_10_1021_acsami_3c18717 crossref_primary_10_1007_s10570_021_03695_z crossref_primary_10_1016_j_jwpe_2022_102909 crossref_primary_10_1007_s40201_021_00740_8 crossref_primary_10_1016_j_enmm_2025_101063 crossref_primary_10_1007_s11664_024_11216_4 crossref_primary_10_1016_j_foodres_2022_112077 crossref_primary_10_1007_s11356_020_11470_z crossref_primary_10_1007_s10967_023_08889_2 crossref_primary_10_1016_j_ecoenv_2023_115593 crossref_primary_10_1016_j_jwpe_2024_106648 crossref_primary_10_1002_admi_202100703 crossref_primary_10_3390_cryst14020187 crossref_primary_10_1016_j_ecoenv_2020_111577 crossref_primary_10_3390_polysaccharides3030033 crossref_primary_10_1016_j_colsurfa_2024_135224 crossref_primary_10_1021_acsomega_3c02986 crossref_primary_10_3390_app15052509 crossref_primary_10_1016_j_jwpe_2022_102916 crossref_primary_10_1016_j_seppur_2024_128712 crossref_primary_10_1016_j_dwt_2024_100762 crossref_primary_10_3390_molecules26082392 crossref_primary_10_1016_j_envres_2024_120711 crossref_primary_10_1016_j_heliyon_2024_e39450 crossref_primary_10_3390_nano12203575 crossref_primary_10_1016_j_matchemphys_2023_128487 crossref_primary_10_1007_s00374_022_01692_3 crossref_primary_10_1016_j_mtcomm_2022_103601 crossref_primary_10_1016_j_jece_2022_108194 crossref_primary_10_1016_j_seppur_2021_118867 crossref_primary_10_1016_j_chemosphere_2021_131062 crossref_primary_10_1016_j_molliq_2025_127321 crossref_primary_10_1007_s11814_022_1189_x crossref_primary_10_1016_j_jmgm_2021_108100 crossref_primary_10_1016_j_jwpe_2022_102889 crossref_primary_10_1166_sam_2022_4233 crossref_primary_10_1016_j_envres_2022_114716 crossref_primary_10_1016_j_seppur_2023_123536 crossref_primary_10_1016_j_cherd_2023_06_020 crossref_primary_10_1007_s10311_021_01279_8 crossref_primary_10_1016_j_matpr_2023_02_399 crossref_primary_10_1016_j_jclepro_2024_142736 crossref_primary_10_1007_s13201_022_01690_8 crossref_primary_10_1016_j_chemosphere_2022_133526 crossref_primary_10_1016_j_psep_2022_03_010 crossref_primary_10_1021_acsomega_3c04271 crossref_primary_10_1007_s13762_022_04246_0 crossref_primary_10_1016_j_scp_2021_100546 crossref_primary_10_1007_s10311_021_01355_z crossref_primary_10_1007_s10311_023_01566_6 crossref_primary_10_1016_j_colsurfa_2024_135687 crossref_primary_10_1016_j_dwt_2024_100758 crossref_primary_10_1016_j_ijbiomac_2025_141362 crossref_primary_10_1016_j_jece_2021_106502 crossref_primary_10_1016_j_ccr_2021_213809 crossref_primary_10_1016_j_mseb_2024_117923 crossref_primary_10_1016_j_scitotenv_2024_173962 crossref_primary_10_1007_s11356_022_23575_8 crossref_primary_10_1016_j_dwt_2024_100782 crossref_primary_10_1007_s13201_025_02360_1 crossref_primary_10_3390_polym16223135 crossref_primary_10_1021_acsestwater_4c00558 crossref_primary_10_1016_j_seppur_2025_131702 crossref_primary_10_3390_su16177835 crossref_primary_10_1016_j_optmat_2024_115410 crossref_primary_10_1016_j_jenvman_2022_116314 crossref_primary_10_1016_j_seppur_2023_125732 crossref_primary_10_1016_j_dwt_2024_100775 crossref_primary_10_1016_j_fuel_2023_128166 crossref_primary_10_1016_j_envres_2024_118883 crossref_primary_10_3390_molecules27238574 crossref_primary_10_3390_ma16072837 crossref_primary_10_1016_j_colsurfa_2024_133488 crossref_primary_10_3390_nano14090766 crossref_primary_10_1038_s41598_021_97397_y crossref_primary_10_1007_s10973_023_12461_1 crossref_primary_10_1039_D2NA00691J crossref_primary_10_1016_j_seppur_2023_125744 crossref_primary_10_1080_03067319_2024_2365773 crossref_primary_10_3390_physchem4040030 crossref_primary_10_1016_j_cej_2023_145225 crossref_primary_10_1016_j_cherd_2022_12_041 crossref_primary_10_1016_j_ccst_2025_100386 crossref_primary_10_1016_j_ccst_2025_100382 crossref_primary_10_1016_j_solidstatesciences_2024_107760 crossref_primary_10_1007_s13762_021_03492_y crossref_primary_10_1016_j_jhazmat_2024_134987 crossref_primary_10_3390_ijerph19052703 crossref_primary_10_1016_j_jece_2021_106538 crossref_primary_10_1038_s41598_023_50754_5 crossref_primary_10_3390_molecules27248776 crossref_primary_10_1016_j_chemosphere_2024_141738 crossref_primary_10_4028_p_734lko crossref_primary_10_51865_JPGT_2023_02_21 crossref_primary_10_1016_j_cej_2023_142195 crossref_primary_10_1007_s10661_021_09733_4 crossref_primary_10_1016_j_chemosphere_2024_141751 crossref_primary_10_1016_j_ijheatmasstransfer_2025_126906 crossref_primary_10_1007_s13399_024_05908_4 crossref_primary_10_1016_j_chemosphere_2024_143930 crossref_primary_10_1016_j_clay_2020_105825 crossref_primary_10_1016_j_colsurfa_2022_130355 crossref_primary_10_1180_clm_2022_41 crossref_primary_10_3390_gels11010079 crossref_primary_10_5004_dwt_2023_29967 crossref_primary_10_1016_j_watres_2020_116095 crossref_primary_10_3390_w16050698 crossref_primary_10_1007_s13399_022_03592_w crossref_primary_10_1155_2022_5062752 crossref_primary_10_3390_toxics12050350 crossref_primary_10_1016_j_arabjc_2022_104222 crossref_primary_10_1016_j_dib_2023_109159 crossref_primary_10_3390_toxics12050356 crossref_primary_10_1016_j_mineng_2024_108915 crossref_primary_10_2166_wst_2022_324 crossref_primary_10_1016_j_colsurfa_2022_129374 crossref_primary_10_3390_ijms22158175 crossref_primary_10_1007_s10570_024_05835_7 crossref_primary_10_1016_j_jenvman_2022_117210 crossref_primary_10_1016_j_envres_2024_119704 crossref_primary_10_1021_acs_energyfuels_2c00684 crossref_primary_10_3390_pr12092044 crossref_primary_10_3390_c9010017 crossref_primary_10_1002_smll_202400724 crossref_primary_10_3390_ma15196809 crossref_primary_10_1016_j_applthermaleng_2022_119065 crossref_primary_10_1039_D3SE00220A crossref_primary_10_1016_j_cej_2020_127815 crossref_primary_10_1016_j_inoche_2023_111184 crossref_primary_10_1016_j_jece_2021_106552 crossref_primary_10_1007_s42535_023_00724_z crossref_primary_10_1021_acs_langmuir_4c03516 crossref_primary_10_1016_j_cej_2024_158804 crossref_primary_10_1002_ceat_202200326 crossref_primary_10_1016_j_eti_2023_103086 crossref_primary_10_1007_s10311_022_01401_4 crossref_primary_10_1007_s10163_021_01216_5 crossref_primary_10_1016_j_reactfunctpolym_2023_105812 crossref_primary_10_1016_j_molliq_2022_121124 crossref_primary_10_1016_j_seppur_2021_118411 crossref_primary_10_1016_j_dwt_2024_100336 crossref_primary_10_1007_s11356_022_22140_7 crossref_primary_10_1016_j_jmrt_2021_09_128 crossref_primary_10_1039_D0RA09296G crossref_primary_10_1007_s11356_024_35492_z crossref_primary_10_1016_j_jcis_2023_10_112 crossref_primary_10_1039_D4RA00364K crossref_primary_10_1016_j_jenvman_2025_124400 crossref_primary_10_1039_D2NJ04768C crossref_primary_10_1186_s43088_022_00253_9 crossref_primary_10_1088_2053_1591_abcc5d crossref_primary_10_1016_j_emcon_2023_100261 crossref_primary_10_1016_j_colsurfa_2023_132286 crossref_primary_10_1016_j_microc_2021_107087 crossref_primary_10_52832_jesh_v4i4_448 crossref_primary_10_1016_j_dwt_2025_101053 crossref_primary_10_1016_j_enceco_2024_07_006 crossref_primary_10_1016_j_sampre_2022_100049 crossref_primary_10_1016_j_scitotenv_2020_142048 crossref_primary_10_1016_j_chemosphere_2023_140968 crossref_primary_10_1016_j_envres_2021_112655 crossref_primary_10_1080_15422119_2024_2397954 crossref_primary_10_1007_s13369_024_09305_x crossref_primary_10_1155_2022_9378712 crossref_primary_10_5004_dwt_2022_28872 crossref_primary_10_1016_j_chemosphere_2023_139980 crossref_primary_10_1016_j_chroma_2023_464465 crossref_primary_10_1039_D4CC04101A crossref_primary_10_1016_j_wri_2021_100144 crossref_primary_10_1016_j_inoche_2024_113273 crossref_primary_10_3390_ma17174350 crossref_primary_10_1080_15226514_2021_2025039 crossref_primary_10_1016_j_envres_2024_120301 crossref_primary_10_1155_2022_9884474 crossref_primary_10_1016_j_scitotenv_2023_162962 crossref_primary_10_3390_w14172652 crossref_primary_10_1016_j_biortech_2021_124922 crossref_primary_10_1007_s10934_024_01700_x crossref_primary_10_1016_j_foodchem_2023_138085 crossref_primary_10_1016_j_ijbiomac_2021_05_214 crossref_primary_10_3390_nano13020279 crossref_primary_10_1016_j_jiec_2023_12_042 crossref_primary_10_3390_polym13101620 crossref_primary_10_1007_s11356_020_11256_3 crossref_primary_10_1016_j_micromeso_2025_113570 crossref_primary_10_1016_j_seppur_2023_124808 crossref_primary_10_3103_S1063455X22060091 crossref_primary_10_1016_j_fbp_2023_11_002 crossref_primary_10_1017_cmn_2024_23 crossref_primary_10_1515_zna_2023_0180 crossref_primary_10_3390_molecules27051477 crossref_primary_10_1007_s11356_023_29217_x crossref_primary_10_1016_j_carbpol_2022_120528 crossref_primary_10_1016_j_jenvman_2022_114532 crossref_primary_10_1016_j_ceja_2023_100551 crossref_primary_10_1016_j_gsd_2024_101209 crossref_primary_10_1021_acs_iecr_2c00196 crossref_primary_10_1039_D0RA08188D crossref_primary_10_1016_j_jscs_2023_101690 crossref_primary_10_1016_j_chemosphere_2021_132759 crossref_primary_10_1016_j_ijhydene_2022_05_301 crossref_primary_10_1016_j_cej_2023_141710 crossref_primary_10_1016_j_cej_2024_157101 crossref_primary_10_5004_dwt_2023_29947 crossref_primary_10_1016_j_scitotenv_2020_144229 crossref_primary_10_1007_s10904_024_03474_w crossref_primary_10_1016_j_cej_2023_141717 crossref_primary_10_1002_tqem_22353 crossref_primary_10_1016_j_arabjc_2021_103061 crossref_primary_10_1016_j_dwt_2025_101091 crossref_primary_10_1016_j_compgeo_2024_106574 crossref_primary_10_1016_j_scitotenv_2024_171709 crossref_primary_10_5006_4346 crossref_primary_10_1021_acs_langmuir_3c02496 crossref_primary_10_1016_j_heliyon_2023_e16449 crossref_primary_10_11001_jksww_2020_34_3_201 crossref_primary_10_1002_jctb_7659 crossref_primary_10_1016_j_seppur_2023_124812 crossref_primary_10_1088_2632_959X_abc4d4 crossref_primary_10_1016_j_micromeso_2024_113230 crossref_primary_10_1016_j_dwt_2025_101099 crossref_primary_10_24857_rgsa_v18n11_248 crossref_primary_10_1007_s10450_024_00523_1 crossref_primary_10_1016_j_kjs_2024_100292 crossref_primary_10_1016_j_chemosphere_2025_144292 crossref_primary_10_1016_j_marpolbul_2024_117488 crossref_primary_10_1016_j_cej_2022_140973 crossref_primary_10_1016_j_molliq_2022_119207 crossref_primary_10_3390_coatings14121524 crossref_primary_10_1007_s11270_024_07650_z crossref_primary_10_1016_j_jclepro_2023_139642 crossref_primary_10_1007_s11356_024_34235_4 crossref_primary_10_3390_app12062922 crossref_primary_10_1016_j_cherd_2024_12_034 crossref_primary_10_1016_j_molliq_2024_124374 crossref_primary_10_1039_D3TB01327H crossref_primary_10_14710_jksa_26_2_50_56 crossref_primary_10_1007_s10661_024_13391_7 crossref_primary_10_1016_j_arabjc_2021_103031 crossref_primary_10_1007_s10450_024_00501_7 crossref_primary_10_1016_j_indcrop_2023_116913 crossref_primary_10_1016_j_molliq_2021_115815 crossref_primary_10_1155_2023_5683415 crossref_primary_10_1016_j_dwt_2024_100719 crossref_primary_10_1016_j_ecoenv_2024_117254 crossref_primary_10_1016_j_seppur_2023_123500 crossref_primary_10_1002_jctb_7680 crossref_primary_10_1080_1536383X_2025_2468376 crossref_primary_10_1080_10889868_2024_2432400 crossref_primary_10_1016_j_rineng_2022_100340 crossref_primary_10_1016_j_mseb_2025_118213 crossref_primary_10_1016_j_aca_2022_339517 crossref_primary_10_1016_j_ces_2024_120552 crossref_primary_10_1039_D2EN00543C crossref_primary_10_1016_j_electacta_2024_145446 crossref_primary_10_1080_15226514_2022_2052792 crossref_primary_10_13005_ojc_390320 crossref_primary_10_1016_j_jclepro_2024_143184 crossref_primary_10_1007_s10854_024_12264_6 crossref_primary_10_1007_s11274_022_03235_2 crossref_primary_10_1016_j_jwpe_2024_106193 crossref_primary_10_1142_S1793292023300062 crossref_primary_10_1016_j_micromeso_2025_113527 crossref_primary_10_1016_j_scitotenv_2023_168291 crossref_primary_10_1080_01496395_2023_2167662 crossref_primary_10_1007_s11356_022_22412_2 crossref_primary_10_1007_s41742_021_00381_7 crossref_primary_10_1007_s13369_022_07502_0 crossref_primary_10_3390_ijerph192417103 crossref_primary_10_1016_j_scp_2023_101413 crossref_primary_10_1515_chem_2022_0304 crossref_primary_10_3390_nano14131098 crossref_primary_10_3390_pr10091815 crossref_primary_10_1016_j_mineng_2025_109211 crossref_primary_10_1016_j_rsurfi_2023_100170 crossref_primary_10_1016_j_seppur_2024_129122 crossref_primary_10_1016_j_focha_2023_100334 crossref_primary_10_1016_j_jece_2024_115091 crossref_primary_10_3390_ma15238433 crossref_primary_10_1016_j_mtphys_2023_100965 crossref_primary_10_1016_j_scitotenv_2021_151554 crossref_primary_10_1149_1945_7111_ad6212 crossref_primary_10_3390_app13031861 crossref_primary_10_1039_D2RA02494B crossref_primary_10_3390_ijms23126617 crossref_primary_10_1016_j_jchromb_2024_124435 crossref_primary_10_1016_j_envpol_2023_121138 crossref_primary_10_3390_fractalfract8060356 crossref_primary_10_1016_j_seppur_2024_126403 crossref_primary_10_3390_ijerph191811401 crossref_primary_10_1007_s11356_024_33317_7 crossref_primary_10_1007_s12355_021_01051_w crossref_primary_10_1016_j_jenvman_2022_114958 crossref_primary_10_1016_j_jece_2020_104938 crossref_primary_10_5004_dwt_2023_30197 crossref_primary_10_18596_jotcsa_1244774 crossref_primary_10_1007_s10934_023_01543_y crossref_primary_10_1016_j_chemosphere_2023_137949 crossref_primary_10_1016_j_eti_2023_103206 crossref_primary_10_1021_acsami_2c10050 crossref_primary_10_1007_s10653_024_02205_x crossref_primary_10_1016_j_seppur_2023_125285 crossref_primary_10_3390_polysaccharides2020027 crossref_primary_10_1016_j_jwpe_2024_104956 crossref_primary_10_3390_polym16060784 crossref_primary_10_3390_su15086831 crossref_primary_10_1016_j_carbpol_2023_121090 crossref_primary_10_1080_10934529_2021_1977059 crossref_primary_10_1051_e3sconf_202452703012 crossref_primary_10_1016_j_matlet_2024_136728 crossref_primary_10_3390_w13223263 crossref_primary_10_1007_s41127_024_00078_6 crossref_primary_10_1016_j_jwpe_2024_104923 crossref_primary_10_3390_colloids8020026 crossref_primary_10_1016_j_scitotenv_2023_167685 crossref_primary_10_1016_j_cej_2020_127574 crossref_primary_10_1016_j_ces_2024_119803 crossref_primary_10_1016_j_chroma_2023_464046 crossref_primary_10_3390_min15030226 crossref_primary_10_1016_j_scitotenv_2023_169851 crossref_primary_10_1007_s13762_024_05495_x crossref_primary_10_1016_j_cscee_2024_100997 crossref_primary_10_1039_D2CY01543A crossref_primary_10_1016_j_colsurfa_2023_132650 crossref_primary_10_1016_j_foodchem_2023_136750 crossref_primary_10_1016_j_crgsc_2021_100201 crossref_primary_10_1007_s11270_021_05223_y crossref_primary_10_1088_2053_1591_acf756 crossref_primary_10_1016_j_jece_2022_107750 crossref_primary_10_1016_j_seppur_2023_126159 crossref_primary_10_1007_s11270_024_06931_x crossref_primary_10_1016_j_matchemphys_2025_130359 crossref_primary_10_1080_03067319_2024_2426003 crossref_primary_10_1515_ract_2022_0091 crossref_primary_10_1016_j_colsurfa_2024_133803 crossref_primary_10_1016_j_microc_2025_113292 crossref_primary_10_1016_j_jhazmat_2021_127802 crossref_primary_10_1016_j_jddst_2023_105046 crossref_primary_10_1016_j_diamond_2023_110421 crossref_primary_10_1016_j_seppur_2025_132570 crossref_primary_10_1007_s10854_024_12232_0 crossref_primary_10_1021_acsomega_4c04053 crossref_primary_10_1016_j_ces_2023_119581 crossref_primary_10_1016_j_talanta_2024_126822 crossref_primary_10_1016_j_jenvman_2024_120529 crossref_primary_10_1016_j_ces_2024_120843 crossref_primary_10_1021_acsami_4c11234 crossref_primary_10_1080_1539445X_2022_2049307 crossref_primary_10_3390_w16172522 crossref_primary_10_1016_j_jece_2020_104994 crossref_primary_10_3390_physchem3010004 crossref_primary_10_1016_j_cej_2020_126265 crossref_primary_10_1039_D3EN00835E crossref_primary_10_1016_j_cjche_2024_09_014 crossref_primary_10_1016_j_scitotenv_2021_147022 crossref_primary_10_1155_2022_8960379 crossref_primary_10_1088_2053_1591_acb31b crossref_primary_10_5004_dwt_2023_30156 crossref_primary_10_3390_molecules28093955 crossref_primary_10_1016_j_jece_2024_113738 crossref_primary_10_1002_rem_21770 crossref_primary_10_2298_JSC230303084Z crossref_primary_10_1016_j_ces_2023_119573 crossref_primary_10_1016_j_jece_2020_104980 crossref_primary_10_1016_j_jece_2021_107078 crossref_primary_10_1016_j_nanoso_2025_101462 crossref_primary_10_1016_j_colsurfa_2025_136318 crossref_primary_10_1016_j_psep_2025_106959 crossref_primary_10_1039_D1AY01402A crossref_primary_10_1002_rem_21789 crossref_primary_10_1016_j_eti_2024_103914 crossref_primary_10_1016_j_fuel_2024_133448 crossref_primary_10_3390_nano12213831 crossref_primary_10_1016_j_jhazmat_2021_126938 crossref_primary_10_1021_acs_energyfuels_4c01156 crossref_primary_10_1007_s13762_022_03979_2 crossref_primary_10_3390_nano12010039 crossref_primary_10_1007_s10967_024_09627_y crossref_primary_10_1016_j_chemosphere_2022_136379 crossref_primary_10_5004_dwt_2023_29191 crossref_primary_10_1016_j_colsurfb_2023_113700 crossref_primary_10_1016_j_chemosphere_2022_137221 crossref_primary_10_1039_D4GC04971C crossref_primary_10_3390_catal12091057 crossref_primary_10_1515_rams_2024_0009 crossref_primary_10_1016_j_dwt_2025_101048 crossref_primary_10_1016_j_ccr_2024_216329 crossref_primary_10_1016_j_jwpe_2023_104688 crossref_primary_10_1016_j_wri_2024_100261 crossref_primary_10_1007_s13762_022_03922_5 crossref_primary_10_1016_j_ijhydene_2024_06_295 crossref_primary_10_1016_j_psep_2023_11_079 crossref_primary_10_3390_antiox13010001 crossref_primary_10_18596_jotcsa_1366346 crossref_primary_10_1039_D3RA07476E crossref_primary_10_3390_ma15103540 crossref_primary_10_1021_acsami_2c04676 crossref_primary_10_1007_s11270_021_05361_3 crossref_primary_10_1016_j_polymer_2025_128270 crossref_primary_10_3390_polym14102104 crossref_primary_10_1089_ees_2021_0189 crossref_primary_10_1038_s41598_024_66125_7 crossref_primary_10_1016_j_seppur_2024_129513 crossref_primary_10_1016_j_seppur_2024_130980 crossref_primary_10_1016_j_watres_2025_123431 crossref_primary_10_1016_j_fuel_2025_135085 crossref_primary_10_1016_j_jphotochem_2023_114652 crossref_primary_10_1016_j_scitotenv_2023_164590 crossref_primary_10_3390_ma17020311 crossref_primary_10_1016_j_envres_2023_116102 crossref_primary_10_1016_j_jece_2024_112042 crossref_primary_10_1016_j_jece_2024_114224 crossref_primary_10_1016_j_scenv_2024_100150 crossref_primary_10_1007_s13762_021_03873_3 crossref_primary_10_20517_cs_2023_79 crossref_primary_10_2166_wst_2023_280 crossref_primary_10_1016_j_abst_2024_11_001 crossref_primary_10_1016_j_jcis_2024_12_181 crossref_primary_10_1016_j_seppur_2024_126477 crossref_primary_10_1016_j_powtec_2023_118790 crossref_primary_10_1007_s10450_023_00432_9 crossref_primary_10_1002_cben_202200050 crossref_primary_10_1016_j_inoche_2024_113714 crossref_primary_10_1016_j_chemosphere_2024_143621 crossref_primary_10_4491_eer_2024_062 crossref_primary_10_1016_j_colsurfa_2022_128528 crossref_primary_10_1016_j_matchemphys_2024_129919 crossref_primary_10_3390_app11041746 crossref_primary_10_1007_s13399_021_01699_0 crossref_primary_10_1016_j_jece_2024_115106 crossref_primary_10_3390_cleantechnol6010017 crossref_primary_10_1016_j_carbpol_2023_121454 crossref_primary_10_1016_j_heliyon_2025_e42885 crossref_primary_10_1021_acsomega_1c01894 crossref_primary_10_1039_D4RA00343H crossref_primary_10_1016_j_jwpe_2021_102304 crossref_primary_10_1016_j_jece_2023_109822 crossref_primary_10_1016_j_jcou_2025_103035 crossref_primary_10_1016_j_etap_2023_104105 crossref_primary_10_1134_S1070427222080171 crossref_primary_10_1038_s41598_021_95090_8 crossref_primary_10_1016_j_seppur_2022_121818 crossref_primary_10_1016_j_seppur_2023_125213 crossref_primary_10_1016_j_jece_2021_105269 crossref_primary_10_1016_j_jiec_2023_07_035 crossref_primary_10_1016_j_cej_2025_160363 crossref_primary_10_14258_jcprm_20220311299 crossref_primary_10_1007_s13399_021_02022_7 crossref_primary_10_1016_j_dwt_2024_100256 crossref_primary_10_1016_j_seppur_2020_118030 crossref_primary_10_5004_dwt_2023_30131 crossref_primary_10_3390_app142310851 crossref_primary_10_1016_j_jtice_2020_07_008 crossref_primary_10_1016_j_envadv_2022_100282 crossref_primary_10_1016_j_jhazmat_2024_134150 crossref_primary_10_1016_j_jece_2023_110821 crossref_primary_10_1016_j_jtice_2024_105422 crossref_primary_10_1016_j_jece_2022_108205 crossref_primary_10_1007_s11270_023_06740_8 crossref_primary_10_1016_j_seppur_2024_129964 crossref_primary_10_1016_j_jece_2022_107353 crossref_primary_10_1007_s13399_024_06163_3 crossref_primary_10_1080_01496395_2025_2451912 crossref_primary_10_5004_dwt_2023_29140 crossref_primary_10_1016_j_seppur_2024_127308 crossref_primary_10_3390_su16177341 crossref_primary_10_1016_j_micromeso_2021_111294 crossref_primary_10_3390_membranes14060128 crossref_primary_10_1016_j_chemosphere_2024_142313 crossref_primary_10_1016_j_cherd_2021_12_043 crossref_primary_10_1016_j_jece_2024_112013 crossref_primary_10_1080_15226514_2021_1944978 crossref_primary_10_1016_j_envadv_2022_100274 crossref_primary_10_3390_pr10050886 crossref_primary_10_1039_D0RA09193F crossref_primary_10_1016_j_chemosphere_2024_143638 crossref_primary_10_1063_5_0070692 crossref_primary_10_3390_su16124890 crossref_primary_10_1007_s11356_024_35194_6 crossref_primary_10_1016_j_molliq_2021_115368 crossref_primary_10_3390_cleantechnol5030047 crossref_primary_10_1007_s10967_024_09475_w crossref_primary_10_1016_j_inoche_2023_111207 crossref_primary_10_1155_2022_1024554 crossref_primary_10_1007_s11356_024_33477_6 crossref_primary_10_1016_j_jwpe_2024_106786 crossref_primary_10_4236_gep_2023_1112003 crossref_primary_10_32604_jrm_2022_022031 crossref_primary_10_3390_molecules26175419 crossref_primary_10_1007_s10653_024_02001_7 crossref_primary_10_1002_bbb_2352 crossref_primary_10_1007_s13762_024_05616_6 crossref_primary_10_1021_acs_iecr_3c02096 crossref_primary_10_3390_toxics12100713 crossref_primary_10_1007_s11696_023_03132_4 crossref_primary_10_1016_j_jwpe_2024_106754 crossref_primary_10_1016_j_mtsust_2024_100740 crossref_primary_10_31883_pjfns_136051 crossref_primary_10_1088_1402_4896_ad6811 crossref_primary_10_1007_s13762_024_06205_3 crossref_primary_10_1007_s11356_022_23491_x crossref_primary_10_5004_dwt_2021_27075 crossref_primary_10_1061__ASCE_EE_1943_7870_0001950 crossref_primary_10_1002_clen_202300083 crossref_primary_10_1016_j_jcis_2023_02_018 crossref_primary_10_1016_j_cej_2021_134113 crossref_primary_10_1016_j_jece_2022_107325 crossref_primary_10_3390_ma16072802 crossref_primary_10_1088_1748_0221_19_08_C08001 crossref_primary_10_1007_s43832_023_00054_w crossref_primary_10_3390_polym14194236 crossref_primary_10_1007_s42823_023_00477_4 crossref_primary_10_1016_j_rineng_2024_102311 crossref_primary_10_1007_s10967_024_09959_9 crossref_primary_10_1016_j_jclepro_2021_126985 crossref_primary_10_1016_j_envres_2022_114041 crossref_primary_10_1007_s13202_021_01241_y crossref_primary_10_1016_j_seppur_2024_129921 crossref_primary_10_1021_acsami_1c03242 crossref_primary_10_1016_j_jece_2022_107319 crossref_primary_10_1016_j_jclepro_2024_141777 crossref_primary_10_3389_frsus_2022_926438 crossref_primary_10_1016_j_fuel_2024_133900 crossref_primary_10_1016_j_chemosphere_2022_135817 crossref_primary_10_1016_j_jece_2023_111762 crossref_primary_10_3390_app11115127 crossref_primary_10_1016_j_chemosphere_2021_132030 crossref_primary_10_1155_2022_5935712 crossref_primary_10_1007_s13762_022_04541_w crossref_primary_10_1016_j_ijbiomac_2024_136844 crossref_primary_10_1016_j_scp_2021_100418 crossref_primary_10_1016_j_apsusc_2022_153555 crossref_primary_10_1371_journal_pone_0297024 crossref_primary_10_1016_j_cej_2023_144052 crossref_primary_10_3390_molecules28010039 crossref_primary_10_1016_j_cep_2024_109685 crossref_primary_10_1039_D2EN00934J crossref_primary_10_20517_wecn_2023_74 crossref_primary_10_1007_s11356_023_31692_1 crossref_primary_10_1007_s40974_021_00217_2 crossref_primary_10_1002_clen_202300179 crossref_primary_10_1021_acsearthspacechem_2c00098 crossref_primary_10_1016_j_watres_2024_121483 crossref_primary_10_1080_01932691_2024_2378193 crossref_primary_10_1016_j_heliyon_2024_e30530 crossref_primary_10_1080_01932691_2024_2414276 crossref_primary_10_1021_acs_est_3c10825 crossref_primary_10_1016_j_ijbiomac_2023_127994 crossref_primary_10_1016_j_jenvman_2025_124708 crossref_primary_10_1016_j_heliyon_2024_e37134 crossref_primary_10_1007_s10924_025_03504_9 crossref_primary_10_1016_j_diamond_2024_111137 crossref_primary_10_1016_j_envpol_2024_124150 crossref_primary_10_1016_j_heliyon_2024_e36288 crossref_primary_10_1016_j_dwt_2024_100668 crossref_primary_10_1039_D4TA05268D crossref_primary_10_1039_D4SU00196F crossref_primary_10_1016_j_jwpe_2021_102272 crossref_primary_10_3390_w12123561 crossref_primary_10_1007_s10904_021_01986_3 crossref_primary_10_1007_s11368_023_03645_1 crossref_primary_10_1016_j_micromeso_2021_111309 crossref_primary_10_3390_chemengineering9020033 crossref_primary_10_1016_j_jclepro_2022_133482 crossref_primary_10_1088_1755_1315_1135_1_012010 crossref_primary_10_1039_D2RA01521H crossref_primary_10_1016_j_jcis_2021_07_154 crossref_primary_10_1038_s41598_025_89129_3 crossref_primary_10_1186_s12302_023_00725_4 crossref_primary_10_1016_j_jpba_2024_116579 crossref_primary_10_1088_2053_1591_abd5da crossref_primary_10_1007_s11356_024_32675_6 crossref_primary_10_1039_D2RA08333G crossref_primary_10_1016_j_ocsci_2024_07_001 crossref_primary_10_1061_JHTRBP_HZENG_1296 crossref_primary_10_1016_j_rechem_2024_101506 crossref_primary_10_1016_j_cej_2024_158951 crossref_primary_10_1021_acsomega_0c03274 crossref_primary_10_1038_s41598_024_65360_2 crossref_primary_10_1007_s10450_021_00322_y crossref_primary_10_54021_seesv5n2_799 crossref_primary_10_1016_j_seppur_2024_127266 crossref_primary_10_1007_s42773_024_00338_x crossref_primary_10_3390_gels10090546 crossref_primary_10_1016_j_ijbiomac_2023_124542 crossref_primary_10_1016_j_seppur_2023_124776 crossref_primary_10_1038_s41598_023_27507_5 crossref_primary_10_1016_j_ijoes_2024_100713 crossref_primary_10_1016_j_seppur_2023_125639 crossref_primary_10_3389_frwa_2020_612742 crossref_primary_10_1002_cben_202200011 crossref_primary_10_1002_wer_10714 crossref_primary_10_1186_s13065_025_01393_6 crossref_primary_10_1016_j_hydromet_2022_105937 crossref_primary_10_1021_acsestwater_5c00030 crossref_primary_10_1016_j_heliyon_2021_e05993 crossref_primary_10_2166_wst_2023_247 crossref_primary_10_1016_j_seppur_2024_130425 crossref_primary_10_1021_acs_langmuir_2c03443 crossref_primary_10_1007_s13399_024_06207_8 crossref_primary_10_1016_j_cej_2022_140218 crossref_primary_10_1039_D3TA00020F crossref_primary_10_1002_app_54819 crossref_primary_10_1007_s11356_021_16943_3 crossref_primary_10_15407_scine17_06_083 crossref_primary_10_1016_j_jclepro_2022_134351 crossref_primary_10_1016_j_geoen_2023_212243 crossref_primary_10_1016_j_seppur_2023_125632 crossref_primary_10_1016_j_jaap_2025_107006 crossref_primary_10_1016_j_aca_2024_342308 crossref_primary_10_1016_j_seppur_2023_124305 crossref_primary_10_1016_j_seppur_2023_124306 crossref_primary_10_1021_acs_energyfuels_3c05211 crossref_primary_10_1186_s13065_023_01048_4 crossref_primary_10_1021_acs_langmuir_1c01716 crossref_primary_10_1016_j_envres_2023_116024 crossref_primary_10_1016_j_diamond_2024_111188 crossref_primary_10_1016_j_jhazmat_2020_123579 crossref_primary_10_1016_j_chemosphere_2022_135869 crossref_primary_10_3390_app11062657 crossref_primary_10_1007_s13399_023_04356_w crossref_primary_10_1016_j_ijbiomac_2024_131584 crossref_primary_10_1016_j_scitotenv_2021_146608 crossref_primary_10_1016_j_molliq_2024_125191 crossref_primary_10_1016_j_jhazmat_2024_135940 crossref_primary_10_1016_j_gee_2024_11_008 crossref_primary_10_3390_gels9060468 crossref_primary_10_1016_j_jclepro_2022_135210 crossref_primary_10_3390_ma14040741 crossref_primary_10_1016_j_jtice_2024_105519 crossref_primary_10_3390_polym14235219 crossref_primary_10_1016_j_heliyon_2023_e19460 crossref_primary_10_1016_j_seppur_2020_118005 crossref_primary_10_1021_acsanm_3c04921 crossref_primary_10_3390_nano14131123 crossref_primary_10_1016_j_jcis_2024_12_136 crossref_primary_10_3390_ma14133738 crossref_primary_10_1039_D3DT03210H crossref_primary_10_1016_j_jece_2021_106674 crossref_primary_10_1016_j_seppur_2024_130882 crossref_primary_10_1007_s13738_022_02735_0 crossref_primary_10_1007_s10450_024_00466_7 crossref_primary_10_1016_j_molliq_2021_115748 crossref_primary_10_1007_s11356_024_35151_3 crossref_primary_10_1016_j_jics_2025_101576 crossref_primary_10_1557_s43578_024_01433_2 crossref_primary_10_1016_j_powtec_2023_118681 crossref_primary_10_1080_22297928_2021_1952895 crossref_primary_10_1016_j_dwt_2024_100212 crossref_primary_10_1016_j_matchemphys_2023_128313 crossref_primary_10_2166_aqua_2024_335 crossref_primary_10_1016_j_dwt_2024_100695 crossref_primary_10_1016_j_mtsust_2020_100054 crossref_primary_10_1007_s42823_021_00262_1 crossref_primary_10_1016_j_jenvman_2022_117104 crossref_primary_10_1016_j_dwt_2025_100996 crossref_primary_10_1016_j_sajce_2023_01_007 crossref_primary_10_1016_j_jece_2022_107394 crossref_primary_10_1039_D3EW00120B crossref_primary_10_1016_j_cjche_2022_02_021 crossref_primary_10_1016_j_mtchem_2020_100415 crossref_primary_10_1016_j_molliq_2020_114126 crossref_primary_10_1016_j_ecoenv_2021_112207 crossref_primary_10_1016_j_colsurfa_2024_134653 crossref_primary_10_1016_j_jece_2023_109872 crossref_primary_10_1016_j_jallcom_2025_179413 crossref_primary_10_1016_j_rechem_2023_101281 crossref_primary_10_1007_s42250_023_00782_5 crossref_primary_10_3390_pr11113115 crossref_primary_10_1007_s11356_022_20345_4 crossref_primary_10_1016_j_jtice_2021_104162 crossref_primary_10_3390_w13213081 crossref_primary_10_1016_j_envpol_2023_121663 crossref_primary_10_1021_acs_langmuir_4c02579 crossref_primary_10_1016_j_cej_2022_137883 crossref_primary_10_1016_j_matchemphys_2022_126749 crossref_primary_10_1007_s11696_020_01376_y crossref_primary_10_2478_eces_2020_0015 crossref_primary_10_1111_gwmr_12485 crossref_primary_10_1016_j_jiec_2020_09_023 crossref_primary_10_1007_s13399_020_01193_z crossref_primary_10_17721_fujcV11I2P8_18 crossref_primary_10_1016_j_envpol_2021_116995 crossref_primary_10_1007_s42247_024_00726_w crossref_primary_10_3390_pr9112068 crossref_primary_10_3390_app12168032 crossref_primary_10_1016_j_jhazmat_2021_127432 crossref_primary_10_1016_j_porgcoat_2025_109099 crossref_primary_10_1039_D3RA07344K crossref_primary_10_1007_s11356_023_27907_0 crossref_primary_10_1016_j_jclepro_2021_129994 crossref_primary_10_1016_j_jhazmat_2022_129917 crossref_primary_10_1016_j_seppur_2023_126096 crossref_primary_10_3390_ma16124434 crossref_primary_10_1016_j_cej_2025_159729 crossref_primary_10_1016_j_molliq_2024_126001 crossref_primary_10_1021_acs_langmuir_3c02597 crossref_primary_10_3390_molecules29194643 crossref_primary_10_1134_S0012501625600044 crossref_primary_10_1016_j_seppur_2022_122225 crossref_primary_10_1021_acsaem_4c01465 crossref_primary_10_1016_j_jenvman_2024_123978 crossref_primary_10_11001_jksww_2023_37_6_375 crossref_primary_10_1007_s13399_024_05419_2 crossref_primary_10_3390_su13137230 crossref_primary_10_1021_acs_iecr_2c03799 crossref_primary_10_1016_j_envpol_2023_121200 crossref_primary_10_1007_s11356_024_34345_z crossref_primary_10_1016_j_cej_2024_155053 crossref_primary_10_1016_j_chemosphere_2024_144032 crossref_primary_10_1016_j_ijbiomac_2025_139787 crossref_primary_10_3390_pr11072146 crossref_primary_10_1016_j_jece_2024_112514 crossref_primary_10_1016_j_seppur_2024_129059 crossref_primary_10_1016_j_ces_2023_119127 crossref_primary_10_3390_ma15217429 crossref_primary_10_3390_w13101382 crossref_primary_10_1016_j_jece_2024_113839 crossref_primary_10_1016_j_jhazmat_2024_133750 crossref_primary_10_1021_acs_langmuir_3c01298 crossref_primary_10_3390_pr11123385 crossref_primary_10_1016_j_arabjc_2024_106038 crossref_primary_10_1016_j_microc_2023_108644 crossref_primary_10_1016_j_scitotenv_2024_170723 crossref_primary_10_3390_polym16213055 crossref_primary_10_1007_s13399_024_05900_y crossref_primary_10_1021_acsomega_5c00179 crossref_primary_10_1016_j_cement_2024_100118 crossref_primary_10_1007_s13399_021_02083_8 crossref_primary_10_1016_j_cej_2022_138761 crossref_primary_10_1007_s42250_025_01217_z crossref_primary_10_1016_j_eti_2023_103145 crossref_primary_10_1016_j_jclepro_2021_129536 crossref_primary_10_3390_polym14030567 crossref_primary_10_1016_j_ceramint_2022_09_040 crossref_primary_10_1002_chem_202102762 crossref_primary_10_1016_j_seppur_2024_129045 crossref_primary_10_1007_s10971_021_05708_6 crossref_primary_10_1016_j_foodchem_2024_141281 crossref_primary_10_1021_acsomega_3c05418 crossref_primary_10_1111_ijac_14930 crossref_primary_10_1007_s41101_023_00206_y crossref_primary_10_1002_aic_17950 crossref_primary_10_1088_1755_1315_920_1_012029 crossref_primary_10_3390_polym16213048 crossref_primary_10_26599_PBM_2023_9260002 crossref_primary_10_3390_w14132047 crossref_primary_10_33003_fjs_2025_0901_2852 crossref_primary_10_1007_s42773_024_00351_0 crossref_primary_10_1016_j_indcrop_2024_120347 crossref_primary_10_1016_j_jwpe_2025_107464 crossref_primary_10_1016_j_jcis_2024_01_182 crossref_primary_10_3390_jcs8100414 crossref_primary_10_4491_KSEE_2021_43_1_32 crossref_primary_10_1016_j_chemosphere_2023_140649 crossref_primary_10_1016_j_jwpe_2024_104906 crossref_primary_10_1016_j_mtcomm_2022_105265 crossref_primary_10_1016_j_gsd_2021_100653 crossref_primary_10_1080_01932691_2023_2271061 crossref_primary_10_1016_j_chemosphere_2023_139665 crossref_primary_10_1016_j_dwt_2024_100606 crossref_primary_10_1016_j_rio_2024_100673 crossref_primary_10_1021_acs_langmuir_3c02165 crossref_primary_10_1016_j_apenergy_2023_122508 crossref_primary_10_1016_j_cep_2022_109016 crossref_primary_10_1016_j_jsamd_2024_100725 crossref_primary_10_1016_j_chemosphere_2023_138332 crossref_primary_10_1016_j_gsd_2024_101120 crossref_primary_10_1016_j_cej_2022_139631 crossref_primary_10_1016_j_cplett_2025_142062 crossref_primary_10_1016_j_seppur_2025_131633 crossref_primary_10_1039_D4RA00172A crossref_primary_10_1016_j_eti_2023_103132 crossref_primary_10_1016_j_cej_2023_147591 crossref_primary_10_3390_w16152086 crossref_primary_10_1007_s10570_022_04801_5 crossref_primary_10_1016_j_diamond_2024_111576 crossref_primary_10_1016_j_scitotenv_2021_149296 crossref_primary_10_1007_s11164_023_05212_2 crossref_primary_10_1016_j_colsurfa_2021_126544 crossref_primary_10_1021_acsanm_3c00168 crossref_primary_10_3390_bios13010044 crossref_primary_10_1039_D4GC05217J crossref_primary_10_1016_j_molliq_2022_120544 crossref_primary_10_3390_ijms22115535 crossref_primary_10_1016_j_envpol_2023_121241 crossref_primary_10_3390_pr11123344 crossref_primary_10_1080_01496395_2021_1956540 crossref_primary_10_3390_app13148481 crossref_primary_10_1016_j_cej_2020_127091 crossref_primary_10_1016_j_colsuc_2023_100019 crossref_primary_10_54021_seesv5n2_765 crossref_primary_10_1016_j_cherd_2024_06_036 crossref_primary_10_1016_j_foodchem_2024_141255 crossref_primary_10_3390_agronomy14092072 crossref_primary_10_1016_j_jiec_2024_11_007 crossref_primary_10_1016_j_envres_2024_118562 crossref_primary_10_1155_je_8884546 crossref_primary_10_1088_1757_899X_1115_1_012076 crossref_primary_10_1016_j_surfin_2020_100639 crossref_primary_10_1016_j_molliq_2020_114523 crossref_primary_10_1007_s13399_025_06540_6 crossref_primary_10_1016_j_scitotenv_2022_160382 crossref_primary_10_3389_fbioe_2022_819407 crossref_primary_10_1016_j_cej_2020_127081 crossref_primary_10_1021_acsami_1c17080 crossref_primary_10_1007_s13762_024_06111_8 |
Cites_doi | 10.1021/acs.langmuir.9b00154 10.1006/jcis.1994.1107 10.1016/j.jhazmat.2007.06.122 10.1006/jcis.1994.1270 10.1371/journal.pone.0050434 10.1016/j.renene.2018.01.045 10.1016/j.cej.2006.06.002 10.1016/j.jhazmat.2007.10.094 10.14233/ajchem.2013.14786 10.1016/j.molliq.2019.01.005 10.9790/2402-1104021830 10.1016/j.jhazmat.2006.12.034 10.1016/j.jhazmat.2007.06.056 10.1023/A:1021304828010 10.1021/ja071174k 10.1080/23312009.2017.1351653 10.1080/19443994.2013.862869 10.1002/aic.690200204 10.1016/j.cej.2008.05.003 10.1155/2013/897159 10.1039/f19777300456 10.1016/j.jhazmat.2006.06.008 10.1080/01496390600725687 10.1016/j.cej.2013.04.011 10.1016/B978-1-895198-64-5.50006-4 10.1016/j.biortech.2006.06.015 10.1016/j.jenvman.2017.05.087 10.1006/jcis.1997.5041 10.1080/09593331708616356 10.1021/es102576e 10.1016/j.watres.2007.07.012 10.3390/info6010014 10.3390/app7060609 10.1016/j.icheatmasstransfer.2019.104402 10.2516/ogst/2012067 10.1080/09276440.2016.1137715 10.1016/j.cej.2008.05.021 10.1063/1.1347984 10.1016/j.dyepig.2005.12.006 10.1016/S0045-6535(99)00497-X 10.1021/cr60204a006 10.1021/j100842a045 10.1021/es0017615 10.1016/j.ces.2005.03.063 10.1016/j.chemosphere.2020.125862 10.1016/j.cej.2007.05.043 10.1016/j.cej.2019.122112 10.1016/j.micromeso.2019.109569 10.1016/j.jhazmat.2007.03.055 10.2136/sssaj1977.03615995004100060012x 10.1016/j.cej.2019.123191 10.1016/j.jhazmat.2008.01.052 10.1515/pac-2014-1117 10.1016/j.applthermaleng.2017.09.106 10.1016/j.fluid.2016.10.003 10.1016/j.cej.2016.09.091 10.1016/j.micromeso.2018.06.026 10.1016/j.molliq.2016.10.061 10.1007/s13762-014-0685-x 10.1155/2017/3039817 10.1006/jcis.1998.5639 10.1016/j.cej.2009.09.013 10.1007/s11814-015-0053-7 10.1016/j.cej.2012.12.077 10.1021/es052208w 10.1016/j.biortech.2007.11.018 10.1016/j.chemphys.2018.06.022 10.1016/j.cherd.2015.07.018 10.1016/j.apsusc.2016.02.004 10.1016/j.dyepig.2005.07.020 10.1016/B978-0-12-396972-9.00004-5 10.1016/j.minpro.2016.01.017 10.1016/j.jhazmat.2007.06.079 10.1021/es0264448 10.1007/BF01650130 10.1021/ja02268a002 10.1021/la100449z 10.1016/j.eti.2020.100614 10.1155/2011/714808 10.1016/j.cej.2016.09.029 10.1021/es00007a013 10.1016/j.applthermaleng.2018.07.131 10.2298/TSCI151202048Y 10.1016/S0021-9797(03)00139-5 10.1016/j.jcis.2004.08.078 10.1142/9781860943829_0001 10.1016/j.chemosphere.2017.07.051 10.1021/ja02242a004 10.1016/j.seppur.2018.07.077 10.1016/S0032-9592(03)00152-3 10.1016/j.jhazmat.2007.01.023 10.1007/s10450-016-9841-6 10.1021/la800725s 10.1016/j.seppur.2019.115719 10.1021/acs.jced.9b00233 10.1016/0021-9797(74)90252-5 10.1016/j.jcis.2003.09.004 10.1007/s40095-014-0131-3 10.1016/j.watres.2017.04.014 10.1016/j.chemosphere.2018.06.179 10.1016/j.jhazmat.2005.09.018 10.1016/0021-9797(81)90050-3 10.1016/j.colsurfa.2007.06.048 10.1016/j.jhazmat.2005.10.016 10.1016/j.jhazmat.2007.07.072 10.1007/BF00849309 10.1007/BF00849310 10.1016/j.eti.2019.100488 10.1016/j.watres.2004.07.015 10.1016/j.jenvman.2003.09.005 10.1080/01496395.2016.1212889 10.3390/polym11030410 10.1016/j.micromeso.2019.109844 10.1007/BF00705000 10.3923/ijct.2018.1.22 10.1007/BF00798768 10.1039/c0cp00902d |
ContentType | Journal Article |
Copyright | 2020 Elsevier B.V. Copyright © 2020 Elsevier B.V. All rights reserved. |
Copyright_xml | – notice: 2020 Elsevier B.V. – notice: Copyright © 2020 Elsevier B.V. All rights reserved. |
DBID | AAYXX CITATION NPM 7X8 7S9 L.6 |
DOI | 10.1016/j.jhazmat.2020.122383 |
DatabaseName | CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | PubMed AGRICOLA MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Law |
EISSN | 1873-3336 |
ExternalDocumentID | 32369889 10_1016_j_jhazmat_2020_122383 S030438942030371X |
Genre | Journal Article Review |
GroupedDBID | --- --K --M -~X ..I .DC .~1 0R~ 1B1 1RT 1~. 1~5 4.4 457 4G. 53G 5GY 5VS 7-5 71M 8P~ 9JM 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABFNM ABFRF ABFYP ABJNI ABLST ABMAC ABNUV ABYKQ ACDAQ ACGFO ACGFS ACRLP ADBBV ADEWK ADEZE AEBSH AEFWE AEKER AENEX AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHEUO AHHHB AHPOS AIEXJ AIKHN AITUG AJOXV AKIFW AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLECG BLXMC CS3 DU5 EBS EFJIC EFLBG ENUVR EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W KCYFY KOM LX7 LY9 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 ROL RPZ SDF SDG SDP SES SPC SPCBC SSG SSJ SSZ T5K XPP ZMT ~02 ~G- .HR 29K AAHBH AAQXK AATTM AAXKI AAYWO AAYXX ABWVN ABXDB ACRPL ACVFH ADCNI ADMUD ADNMO ADXHL AEGFY AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AI. AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BBWZM BNPGV CITATION D-I EJD FEDTE FGOYB G-2 HLY HMC HVGLF HZ~ NDZJH R2- RIG SCE SEN SEW SSH T9H TAE VH1 WUQ NPM 7X8 7S9 EFKBS L.6 |
ID | FETCH-LOGICAL-c464t-3ead4af9c25454e8fca4c1cda4dbe48625fdda153bae997d93f78cb38e0258333 |
IEDL.DBID | .~1 |
ISSN | 0304-3894 1873-3336 |
IngestDate | Tue Aug 05 10:03:24 EDT 2025 Thu Jul 10 23:35:06 EDT 2025 Wed Feb 19 02:30:17 EST 2025 Thu Apr 24 23:06:07 EDT 2025 Tue Jul 01 00:49:27 EDT 2025 Fri Feb 23 02:50:10 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | ATS Ce NAV HNH KLF K D-R MLF qSH KHE aK Cs-BET nMJ PFB aR aS aT qe MB LBL OMSR Ciex nH MG Foc qm Asurf Adsorption isotherm interpretation qs σsurf rxn MO AC CAC bK qm-BET MMJ Ciw, neut RODP bT αFS FA ANL FE qMLF Cirxn C K1, K2 σ E PHC K NZ bo σsurf ex AR 18 νm CBET Q SD R T X KD KFS KF Adsorption isotherm models Adsorption mechanisms KH qmFS βS KL OP b g KR KS Ciw, ion Cimin CR βFS SCB Cioc Linear and nonlinear isotherm models |
Language | English |
License | Copyright © 2020 Elsevier B.V. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c464t-3ead4af9c25454e8fca4c1cda4dbe48625fdda153bae997d93f78cb38e0258333 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 |
PMID | 32369889 |
PQID | 2399253605 |
PQPubID | 23479 |
ParticipantIDs | proquest_miscellaneous_2431839579 proquest_miscellaneous_2399253605 pubmed_primary_32369889 crossref_primary_10_1016_j_jhazmat_2020_122383 crossref_citationtrail_10_1016_j_jhazmat_2020_122383 elsevier_sciencedirect_doi_10_1016_j_jhazmat_2020_122383 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-07-05 |
PublicationDateYYYYMMDD | 2020-07-05 |
PublicationDate_xml | – month: 07 year: 2020 text: 2020-07-05 day: 05 |
PublicationDecade | 2020 |
PublicationPlace | Netherlands |
PublicationPlace_xml | – name: Netherlands |
PublicationTitle | Journal of hazardous materials |
PublicationTitleAlternate | J Hazard Mater |
PublicationYear | 2020 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Giles, Smith, Huitson (bib0200) 1974; 47 Bae, Yazaydın, Snurr (bib0080) 2010; 26 Ullah, Bustam, Assiri, Al-Sehemi, Sagir, Abdul Kareem (bib0630) 2019; 288 Hamdaoui, Naffrechoux (bib0220) 2007; 147 Pirngruber, Carlier, Leinekugel-le-Cocq (bib0455) 2013; 69 Al-Asheh, Banat, Al-Omari, Duvnjak (bib0015) 2000; 41 Awad, Shaikh, Jalab, Gulied, Nasser, Benamor, Adham (bib0055) 2019; 228 Ghodbane, Nouri, Hamdaoui, Chiha (bib0190) 2008; 152 Ternes, Herrmann, Bonerz, Knacker, Siegrist, Joss (bib0595) 2004; 38 Schwarzenbach, Gschwend, Imboden (bib0535) 2003 Langmuir (bib0355) 1916; 38 Yan, Fan, Wang, Shen (bib0695) 2017; 21 Kumar, Monteiro de Castro, Martinez-Escandell, Molina-Sabio, Rodriguez-Reinoso (bib0345) 2011; 13 Martín-Lara, Blázquez, Calero, Almendros, Ronda (bib0400) 2016; 148 Gürses, Karaca, Doğar, Bayrak, Açıkyıldız, Yalçın (bib0215) 2004; 269 Han, Zhang, Han, Wang, Zhao, Tang (bib0225) 2009; 145 Samarghandi, Hadi, Moayedi, Barjasteh Askari (bib0520) 2009; 6 Vijayaraghavan, Rangabhashiyam, Ashokkumar, Arockiaraj (bib0655) 2016; 51 Von Gemmingen (bib0660) 2005; 60 Keller, Staudt (bib0300) 2005 Padilla-Ortega, Leyva-Ramos, Flores-Cano (bib0440) 2013; 225 Swenson, Stadie (bib0590) 2019; 35 Wong, Szeto, Cheung, McKay (bib0680) 2004; 39 Gholitabar, Tahermansouri (bib0195) 2017; 22 Sultan, Miyazaki, Koyama (bib0585) 2018; 121 Koopal, van Riemsdijk, de Wit, Benedetti (bib0325) 1994; 166 Adamson, Gast (bib0005) 1997 Jarnoiec, Marczewski (bib0285) 1984; 15 Kumar, Sivanesan (bib0335) 2007; 72 El-Khaiary (bib0165) 2008; 158 Weber, Chakravorti (bib0675) 1974; 20 Ibrahim, Al-Meshragi (bib0265) 2019 Ayawei, Ebelegi, Wankasi (bib0060) 2017; 2017 Liu, Ostadhassan, Cai (bib0375) 2019 Yang, Zhu, Xing (bib0700) 2006; 40 Wynnyk, Hojjati, Marriott (bib0690) 2019; 64 Jaroniec, Marczewski (bib0290) 1984; 115 Parker, Garth (bib0445) 1995; 1 Tóth (bib0610) 1981; 79 Vijayaraghavan (bib0650) 2015; 1 Monroy-Figueroa, Mendoza-Castillo, Bonilla-Petriciolet, Pérez-Cruz (bib0410) 2014; 12 Azahar, Mitra, Yabushita, Harata, Saha, Thu (bib0070) 2018; 143 Carter, Kilduff, Weber (bib0105) 1995; 29 Dai, Sun, Wang, Lu, Liu, Li (bib0125) 2018; 211 Kong, Adidharma (bib0320) 2019; 375 Allen, Mckay, Porter (bib0040) 2004; 280 Carballa, Fink, Omil, Lema, Ternes (bib0100) 2008; 42 Jagadamma, Mayes, Phillips (bib0280) 2012; 7 Tóth (bib0615) 1994; 163 Demirbas, Kobya, Konukman (bib0140) 2008; 154 Srivastava, Mall, Mishra (bib0580) 2008; 312 Liu, Wang (bib0370) 2013; 2013 Saadi, Saadi, Fazaeli, Fard (bib0515) 2015; 32 Vadi, Mansoorabad, Mohammadi, Rostami (bib0640) 2013; 25 Lowell, Shields, Thomas, Thommes (bib0380) 2004 Soetaredjo, Kurniawan, Ki, Ismadji (bib0570) 2013; 219 Uddin (bib0625) 2017; 308 Vijayarachavan, Padmesh, Palanivelu, Velan (bib0645) 2006; 133 Chen (bib0115) 2015; 6 Mane, Mall, Srivastava (bib0390) 2007; 73 Hutson, Yang (bib0260) 1997; 3 Ringot, Lerzy, Chaplain, Bonhoure, Auclair, Larondelle (bib0490) 2007; 98 Al-Ghouti, Razavi (bib0020) 2020; 17 Ofomaja, Ho (bib0435) 2008; 99 Do (bib0145) 1998; 2 Horsfall, Spiff (bib0250) 2005; 52 Ullah, Bustam, Assiri, Al-Sehemi, Gonfa, Mukhtar (bib0635) 2020; 294 Mason (bib0405) 1983; 390 Ross, Olivier (bib0500) 1964; 146 Thommes, Katsumi, Neimark, Olivier, Rodriguez-Reinoso, Rouqueol, Sing (bib0605) 2015; 87 Dubinin (bib0155) 1960; 60 Podder, Majumder (bib0460) 2016; 23 Aharoni, Ungarish (bib0010) 1977; 73 Ayoob, Gupta (bib0065) 2008; 152 Foo, Hameed (bib0180) 2010; 156 Ho, Porter, McKay (bib0240) 2002; 141 Jin, Huang, Li, Shan (bib0295) 2017; 185 Reynel-Avila, Mendoza-Castillo, Olumide, Bonilla-Petriciolet (bib0485) 2016; 224 Khan, Ataullah, Al-Haddad (bib0310) 1997; 194 Khan, Al-Waheab, Al-Haddad (bib0315) 2010; 17 Khalfaoui, Knani, Hachicha, Lamine (bib0305) 2003; 263 Golet, Xifra, Siegrist, Alder, Giger (bib0205) 2003; 37 Nitzsche, Gröngröft, Kraume (bib0425) 2019; 209 Hauchhum, Mahanta (bib0235) 2014; 5 Almalike (bib0045) 2017; 4 Qi, Zhu, Fu, Hu, Huang (bib0475) 2017; 200 Flores (bib0175) 2014 Hobson (bib0245) 1969; 73 Kumar (bib0330) 2006; 136 Pérez-Marín, Zapata, Ortuño, Aguilar, Sáez, Lloréns (bib0450) 2007; 139 Srivastava, Mall, Mishra (bib0575) 2006; 41 Wynnyk, Hojjati, Pirzadeh, Marriott (bib0685) 2017; 23 Azizian, Eris, Wilson (bib0075) 2018; 513 Donohue, Aranovich (bib0150) 1998; 205 Hu, Zhang (bib0255) 2019; 277 Kumar, Porkodi, Rocha (bib0340) 2008; 151 Çelebi, Üzüm, Shahwan, Erten (bib0110) 2007; 148 Kundu, Gupta (bib0350) 2006; 122 Shanavas, Salahuddin Kunju, Varghese, Panicker (bib0555) 2011; 27 Senichev, Tereshatov (bib0540) 2014; 1 Ramadoss, Subramaniam (bib0480) 2018; 10 Mukhtar, Saqib, Safdar, Hameed, Rafiq, Mellon (bib0415) 2020; 110 Savran, Selçuk, Kubilay, Kul (bib0525) 2017; 11 Shahbeig, Hallajisani, Bagheri, Ghorbanian, Poorkarimi (bib0550) 2013; 9 Singh, Kaushal (bib0565) 2017; 1 Saadi, Saadi, Fazaeli (bib0510) 2013; 53 Dang, Zhang, Nie, Wang, Tang, Wu (bib0130) 2020; 383 Harter, Baker (bib0230) 1977; 41 Nouri, Ghodbane, Hamdaoui, Chiha (bib0430) 2007; 149 Al-Ghouti, Khraisheh, Allen, Ahmad (bib0030) 2003; 69 Langmuir (bib0360) 1918; 40 Theivarasu, Mylsamy (bib0600) 2011; 8 Rong, Liu, Pang, Yang, Wang, Zhou (bib0495) 2017; 7 Dada, Adekola, Odebunmi (bib0120) 2017; 3 Shafeeyan, Daud, Shamiri, Aghamohammadi (bib0545) 2015; 104 Boulinguiez, Le Cloirec, Wolbert (bib0090) 2008; 24 Rudzinski, Everett (bib0505) 1992 Schwarzenbach, Gschwend, Imboden (bib0530) 2003 Prasad, Srivastava (bib0470) 2009; 146 Everett (bib0170) 1967; vol. 2 Zhang (bib0710) 2017; 129 Israel, Eduok (bib0275) 2004; 4 Poerschman, Kopinke (bib0465) 2001; 35 Wang, Li, Xing, Sun, Zhang, Hao (bib0670) 2020; 247 Geszke-Moritz, Moritz (bib0185) 2016; 368 Mahmoud, Salleh, Karim (bib0385) 2012; 1 Al-Ghouti, Al Disi, Al-Kaabi, Khraisheh (bib0035) 2017; 308 Delle Site (bib0135) 2001; 30 Bronner, Goss (bib0095) 2011; 45 Günay, Arslankaya, Tosun (bib0210) 2007; 146 Zeldowitsch (bib0705) 1934 El Nemr, El-Sikaily, Khaled (bib0160) 2010; 36 Al-Ghouti, Sweleh (bib0025) 2019; 16 Lataye, Mishra, Mall (bib0365) 2008; 138 Sims, Harmer, Quinton (bib0560) 2019; 11 Inglezakis, Poulopoulos, Kazemian (bib0270) 2018; 272 Tran, You, Hosseini-Bandegharaei, Chao (bib0620) 2017; 120 Marczewksi, Jaroniec (bib0395) 1983; 14 Astakhov, Dubinin (bib0050) 1971; 20 Bering, Gordeeva, Dubinin, Efimova, Serpinskii (bib0085) 1971; 20 Walton, Snurr (bib0665) 2007; 129 Nebaghe, El Boundati, Ziat, Naji, Rghioui, Saidi (bib0420) 2016; 430 El-Khaiary (10.1016/j.jhazmat.2020.122383_bib0165) 2008; 158 Shahbeig (10.1016/j.jhazmat.2020.122383_bib0550) 2013; 9 Golet (10.1016/j.jhazmat.2020.122383_bib0205) 2003; 37 Nouri (10.1016/j.jhazmat.2020.122383_bib0430) 2007; 149 Al-Ghouti (10.1016/j.jhazmat.2020.122383_bib0020) 2020; 17 Liu (10.1016/j.jhazmat.2020.122383_bib0370) 2013; 2013 Günay (10.1016/j.jhazmat.2020.122383_bib0210) 2007; 146 Prasad (10.1016/j.jhazmat.2020.122383_bib0470) 2009; 146 Ternes (10.1016/j.jhazmat.2020.122383_bib0595) 2004; 38 Zeldowitsch (10.1016/j.jhazmat.2020.122383_bib0705) 1934 Lataye (10.1016/j.jhazmat.2020.122383_bib0365) 2008; 138 Everett (10.1016/j.jhazmat.2020.122383_bib0170) 1967; vol. 2 Mukhtar (10.1016/j.jhazmat.2020.122383_bib0415) 2020; 110 Vijayaraghavan (10.1016/j.jhazmat.2020.122383_bib0650) 2015; 1 Ramadoss (10.1016/j.jhazmat.2020.122383_bib0480) 2018; 10 Wong (10.1016/j.jhazmat.2020.122383_bib0680) 2004; 39 Weber (10.1016/j.jhazmat.2020.122383_bib0675) 1974; 20 Hauchhum (10.1016/j.jhazmat.2020.122383_bib0235) 2014; 5 Yan (10.1016/j.jhazmat.2020.122383_bib0695) 2017; 21 Gürses (10.1016/j.jhazmat.2020.122383_bib0215) 2004; 269 Ofomaja (10.1016/j.jhazmat.2020.122383_bib0435) 2008; 99 Jagadamma (10.1016/j.jhazmat.2020.122383_bib0280) 2012; 7 Adamson (10.1016/j.jhazmat.2020.122383_bib0005) 1997 Awad (10.1016/j.jhazmat.2020.122383_bib0055) 2019; 228 Nitzsche (10.1016/j.jhazmat.2020.122383_bib0425) 2019; 209 Shafeeyan (10.1016/j.jhazmat.2020.122383_bib0545) 2015; 104 Kumar (10.1016/j.jhazmat.2020.122383_bib0345) 2011; 13 Rong (10.1016/j.jhazmat.2020.122383_bib0495) 2017; 7 Poerschman (10.1016/j.jhazmat.2020.122383_bib0465) 2001; 35 Azahar (10.1016/j.jhazmat.2020.122383_bib0070) 2018; 143 Boulinguiez (10.1016/j.jhazmat.2020.122383_bib0090) 2008; 24 Donohue (10.1016/j.jhazmat.2020.122383_bib0150) 1998; 205 Hutson (10.1016/j.jhazmat.2020.122383_bib0260) 1997; 3 Bae (10.1016/j.jhazmat.2020.122383_bib0080) 2010; 26 Khan (10.1016/j.jhazmat.2020.122383_bib0315) 2010; 17 Schwarzenbach (10.1016/j.jhazmat.2020.122383_bib0530) 2003 Ullah (10.1016/j.jhazmat.2020.122383_bib0635) 2020; 294 Hobson (10.1016/j.jhazmat.2020.122383_bib0245) 1969; 73 Khan (10.1016/j.jhazmat.2020.122383_bib0310) 1997; 194 Kumar (10.1016/j.jhazmat.2020.122383_bib0335) 2007; 72 Saadi (10.1016/j.jhazmat.2020.122383_bib0510) 2013; 53 Ullah (10.1016/j.jhazmat.2020.122383_bib0630) 2019; 288 Parker (10.1016/j.jhazmat.2020.122383_bib0445) 1995; 1 Yang (10.1016/j.jhazmat.2020.122383_bib0700) 2006; 40 Soetaredjo (10.1016/j.jhazmat.2020.122383_bib0570) 2013; 219 Vadi (10.1016/j.jhazmat.2020.122383_bib0640) 2013; 25 Azizian (10.1016/j.jhazmat.2020.122383_bib0075) 2018; 513 Jaroniec (10.1016/j.jhazmat.2020.122383_bib0290) 1984; 115 Ayoob (10.1016/j.jhazmat.2020.122383_bib0065) 2008; 152 Langmuir (10.1016/j.jhazmat.2020.122383_bib0360) 1918; 40 Çelebi (10.1016/j.jhazmat.2020.122383_bib0110) 2007; 148 Martín-Lara (10.1016/j.jhazmat.2020.122383_bib0400) 2016; 148 Demirbas (10.1016/j.jhazmat.2020.122383_bib0140) 2008; 154 Mason (10.1016/j.jhazmat.2020.122383_bib0405) 1983; 390 Walton (10.1016/j.jhazmat.2020.122383_bib0665) 2007; 129 Saadi (10.1016/j.jhazmat.2020.122383_bib0515) 2015; 32 Zhang (10.1016/j.jhazmat.2020.122383_bib0710) 2017; 129 Marczewksi (10.1016/j.jhazmat.2020.122383_bib0395) 1983; 14 Reynel-Avila (10.1016/j.jhazmat.2020.122383_bib0485) 2016; 224 Pirngruber (10.1016/j.jhazmat.2020.122383_bib0455) 2013; 69 Tran (10.1016/j.jhazmat.2020.122383_bib0620) 2017; 120 Inglezakis (10.1016/j.jhazmat.2020.122383_bib0270) 2018; 272 Thommes (10.1016/j.jhazmat.2020.122383_bib0605) 2015; 87 Wynnyk (10.1016/j.jhazmat.2020.122383_bib0685) 2017; 23 Langmuir (10.1016/j.jhazmat.2020.122383_bib0355) 1916; 38 Schwarzenbach (10.1016/j.jhazmat.2020.122383_bib0535) 2003 Chen (10.1016/j.jhazmat.2020.122383_bib0115) 2015; 6 Samarghandi (10.1016/j.jhazmat.2020.122383_bib0520) 2009; 6 Senichev (10.1016/j.jhazmat.2020.122383_bib0540) 2014; 1 Carballa (10.1016/j.jhazmat.2020.122383_bib0100) 2008; 42 Al-Asheh (10.1016/j.jhazmat.2020.122383_bib0015) 2000; 41 Astakhov (10.1016/j.jhazmat.2020.122383_bib0050) 1971; 20 Kong (10.1016/j.jhazmat.2020.122383_bib0320) 2019; 375 Padilla-Ortega (10.1016/j.jhazmat.2020.122383_bib0440) 2013; 225 Ibrahim (10.1016/j.jhazmat.2020.122383_bib0265) 2019 Bronner (10.1016/j.jhazmat.2020.122383_bib0095) 2011; 45 Almalike (10.1016/j.jhazmat.2020.122383_bib0045) 2017; 4 Al-Ghouti (10.1016/j.jhazmat.2020.122383_bib0025) 2019; 16 Jarnoiec (10.1016/j.jhazmat.2020.122383_bib0285) 1984; 15 Vijayarachavan (10.1016/j.jhazmat.2020.122383_bib0645) 2006; 133 Mane (10.1016/j.jhazmat.2020.122383_bib0390) 2007; 73 Horsfall (10.1016/j.jhazmat.2020.122383_bib0250) 2005; 52 Carter (10.1016/j.jhazmat.2020.122383_bib0105) 1995; 29 Allen (10.1016/j.jhazmat.2020.122383_bib0040) 2004; 280 Dubinin (10.1016/j.jhazmat.2020.122383_bib0155) 1960; 60 Pérez-Marín (10.1016/j.jhazmat.2020.122383_bib0450) 2007; 139 Al-Ghouti (10.1016/j.jhazmat.2020.122383_bib0035) 2017; 308 Keller (10.1016/j.jhazmat.2020.122383_bib0300) 2005 Bering (10.1016/j.jhazmat.2020.122383_bib0085) 1971; 20 Foo (10.1016/j.jhazmat.2020.122383_bib0180) 2010; 156 Han (10.1016/j.jhazmat.2020.122383_bib0225) 2009; 145 Ross (10.1016/j.jhazmat.2020.122383_bib0500) 1964; 146 Rudzinski (10.1016/j.jhazmat.2020.122383_bib0505) 1992 Theivarasu (10.1016/j.jhazmat.2020.122383_bib0600) 2011; 8 Kundu (10.1016/j.jhazmat.2020.122383_bib0350) 2006; 122 Qi (10.1016/j.jhazmat.2020.122383_bib0475) 2017; 200 Delle Site (10.1016/j.jhazmat.2020.122383_bib0135) 2001; 30 Dada (10.1016/j.jhazmat.2020.122383_bib0120) 2017; 3 Giles (10.1016/j.jhazmat.2020.122383_bib0200) 1974; 47 Koopal (10.1016/j.jhazmat.2020.122383_bib0325) 1994; 166 Ringot (10.1016/j.jhazmat.2020.122383_bib0490) 2007; 98 Liu (10.1016/j.jhazmat.2020.122383_bib0375) 2019 Podder (10.1016/j.jhazmat.2020.122383_bib0460) 2016; 23 Ayawei (10.1016/j.jhazmat.2020.122383_bib0060) 2017; 2017 Harter (10.1016/j.jhazmat.2020.122383_bib0230) 1977; 41 Kumar (10.1016/j.jhazmat.2020.122383_bib0330) 2006; 136 Srivastava (10.1016/j.jhazmat.2020.122383_bib0575) 2006; 41 Ho (10.1016/j.jhazmat.2020.122383_bib0240) 2002; 141 Hamdaoui (10.1016/j.jhazmat.2020.122383_bib0220) 2007; 147 Al-Ghouti (10.1016/j.jhazmat.2020.122383_bib0030) 2003; 69 Mahmoud (10.1016/j.jhazmat.2020.122383_bib0385) 2012; 1 Dang (10.1016/j.jhazmat.2020.122383_bib0130) 2020; 383 Ghodbane (10.1016/j.jhazmat.2020.122383_bib0190) 2008; 152 Lowell (10.1016/j.jhazmat.2020.122383_bib0380) 2004 Nebaghe (10.1016/j.jhazmat.2020.122383_bib0420) 2016; 430 Wynnyk (10.1016/j.jhazmat.2020.122383_bib0690) 2019; 64 Uddin (10.1016/j.jhazmat.2020.122383_bib0625) 2017; 308 Hu (10.1016/j.jhazmat.2020.122383_bib0255) 2019; 277 El Nemr (10.1016/j.jhazmat.2020.122383_bib0160) 2010; 36 Flores (10.1016/j.jhazmat.2020.122383_bib0175) 2014 Von Gemmingen (10.1016/j.jhazmat.2020.122383_bib0660) 2005; 60 Sultan (10.1016/j.jhazmat.2020.122383_bib0585) 2018; 121 Khalfaoui (10.1016/j.jhazmat.2020.122383_bib0305) 2003; 263 Monroy-Figueroa (10.1016/j.jhazmat.2020.122383_bib0410) 2014; 12 Shanavas (10.1016/j.jhazmat.2020.122383_bib0555) 2011; 27 Singh (10.1016/j.jhazmat.2020.122383_bib0565) 2017; 1 Wang (10.1016/j.jhazmat.2020.122383_bib0670) 2020; 247 Kumar (10.1016/j.jhazmat.2020.122383_bib0340) 2008; 151 Vijayaraghavan (10.1016/j.jhazmat.2020.122383_bib0655) 2016; 51 Aharoni (10.1016/j.jhazmat.2020.122383_bib0010) 1977; 73 Savran (10.1016/j.jhazmat.2020.122383_bib0525) 2017; 11 Tóth (10.1016/j.jhazmat.2020.122383_bib0610) 1981; 79 Sims (10.1016/j.jhazmat.2020.122383_bib0560) 2019; 11 Israel (10.1016/j.jhazmat.2020.122383_bib0275) 2004; 4 Swenson (10.1016/j.jhazmat.2020.122383_bib0590) 2019; 35 Do (10.1016/j.jhazmat.2020.122383_bib0145) 1998; 2 Gholitabar (10.1016/j.jhazmat.2020.122383_bib0195) 2017; 22 Srivastava (10.1016/j.jhazmat.2020.122383_bib0580) 2008; 312 Tóth (10.1016/j.jhazmat.2020.122383_bib0615) 1994; 163 Dai (10.1016/j.jhazmat.2020.122383_bib0125) 2018; 211 Geszke-Moritz (10.1016/j.jhazmat.2020.122383_bib0185) 2016; 368 Jin (10.1016/j.jhazmat.2020.122383_bib0295) 2017; 185 |
References_xml | – volume: 308 start-page: 463 year: 2017 end-page: 475 ident: bib0035 article-title: Mechanistic insights into the remediation of bromide ions from desalinated water using roasted date pits publication-title: Chem. Eng. J. – volume: 16 year: 2019 ident: bib0025 article-title: Optimizing textile dye removal by activated carbon prepared from olive stones publication-title: Environ. Technol. Innov. – volume: 51 start-page: 2725 year: 2016 end-page: 2733 ident: bib0655 article-title: Mono- and multi-component biosorption of lead(II), cadmium(II), copper(II) and nickel(II) ions onto coco-peat biomass publication-title: Sep. Sci. Technol. – volume: 205 start-page: 121 year: 1998 end-page: 130 ident: bib0150 article-title: Adsorption hysteresis in porous solids publication-title: J. Colloid Interface Sci. – volume: 14 year: 1983 ident: bib0395 article-title: ChemInform Abstract: a new isotherm equation for single-solute adsorption from dilute solutions on energetically heterogeneous solids publication-title: Chem. Inf. – volume: 25 start-page: 5467 year: 2013 end-page: 5469 ident: bib0640 article-title: Investigation of Langmuir, Freundlich and temkin adsorption isotherm of tramadol by multi-wall carbon nanotube publication-title: Asian J. Chem. – volume: 73 start-page: 269 year: 2007 end-page: 278 ident: bib0390 article-title: Use of bagasse fly ash as an adsorbent for the removal of brilliant green dye from aqueous solution publication-title: Dye. Pigment. – volume: 35 start-page: 1142 year: 2001 end-page: 1148 ident: bib0465 article-title: Sorption of Very Hydrophobic Organic Compounds (VHOCs) on Dissolved Humic Organic Matter (DOM). 2. Measurement of Sorption and Application of a Flory−Huggins Concept to Interpret the Data publication-title: Environ. Sci. Technol. – volume: 154 start-page: 787 year: 2008 end-page: 794 ident: bib0140 article-title: Error analysis of equilibrium studies for the almond shell activated carbon adsorption of Cr(VI) from aqueous solutions publication-title: J. Hazard. Mater. – volume: 1 start-page: 170 year: 2012 end-page: 199 ident: bib0385 article-title: Langmuir model application on solid-liquid adsorption using agricultural wastes: environmental application review publication-title: J. Purity Util. React. Environ. – volume: 1 start-page: 117 year: 2014 end-page: 149 ident: bib0540 article-title: Simple solvent characteristics publication-title: Handbk. Solvents – volume: 60 start-page: 235 year: 1960 end-page: 241 ident: bib0155 article-title: The potential theory of adsorption of gases and vapors for adsorbents with energetically nonuniform surfaces publication-title: Chem. Rev. – volume: 145 start-page: 496 year: 2009 end-page: 504 ident: bib0225 article-title: Study of equilibrium, kinetic and thermodynamic parameters about methylene blue adsorption onto natural zeolite publication-title: Chem. Eng. J. – volume: 39 start-page: 695 year: 2004 end-page: 704 ident: bib0680 article-title: Adsorption of acid dyes on chitosan—equilibrium isotherm analyses publication-title: Process. Biochem. – volume: 17 year: 2020 ident: bib0020 article-title: Water reuse: brackish water desalination using Prosopis juliflora publication-title: Environ. Technol. Innov. – volume: 12 start-page: 2867 year: 2014 end-page: 2880 ident: bib0410 article-title: Chemical modification of Byrsonima crassifolia with citric acid for the competitive sorption of heavy metals from water publication-title: Int. J. Environ. Sci. Technol. – start-page: 167 year: 2014 end-page: 233 ident: bib0175 article-title: Coalification, gasification, and gas storage publication-title: Coal Coalbed Gas – volume: 27 start-page: 245 year: 2011 end-page: 252 ident: bib0555 article-title: Comparison of Langmuir and Harkins-Jura adsorption isotherms for the determination of surface area of solids publication-title: Orient. J. Chem. – volume: 158 start-page: 73 year: 2008 end-page: 87 ident: bib0165 article-title: Least-squares regression of adsorption equilibrium data: comparing the options publication-title: J. Hazard. Mater. – volume: 52 start-page: 174 year: 2005 end-page: 181 ident: bib0250 article-title: Equilibrium sorption study of Al3+, Co2+ and Ag2+ in aqueous solutions by fluted pumpkin (Telfairia occidentalis HOOK) waste biomass publication-title: Acta Chim. Slov. – volume: 1 start-page: 10 year: 2015 end-page: 17 ident: bib0650 article-title: Biosorption of lanthanide (praseodymium) using Ulva lactuca: mechanistic study and application of two, three, four and five parameter isotherm models publication-title: J. Environ. Biotechnol. – volume: 133 start-page: 304 year: 2006 end-page: 308 ident: bib0645 article-title: Biosorption of nickel(II) ions onto Sargassum wightii: application of two-parameter and three-parameter isotherm models publication-title: J. Hazard. Mater. – volume: 36 start-page: 403 year: 2010 end-page: 425 ident: bib0160 article-title: Modeling of adsorption isotherms of Methylene Blue onto rice husk activated carbon publication-title: Egypt. J. Aquat. Res. – volume: 26 start-page: 5475 year: 2010 end-page: 5483 ident: bib0080 article-title: Evaluation of the BET method for determining surface areas of MOFs and zeolites that contain ultra-micropores publication-title: Langmuir – volume: 7 year: 2012 ident: bib0280 article-title: Selective sorption of dissolved organic carbon compounds by temperate soils publication-title: PLoS One – volume: 32 start-page: 787 year: 2015 end-page: 799 ident: bib0515 article-title: Monolayer and multilayer adsorption isotherm models for sorption from aqueous media publication-title: Korean J. Chem. Eng. – volume: 35 start-page: 5409 year: 2019 end-page: 5426 ident: bib0590 article-title: Langmuir’s theory of adsorption: a centennial review publication-title: Langmuir – volume: 64 start-page: 3156 year: 2019 end-page: 3163 ident: bib0690 article-title: Sour gas and water adsorption on common high-pressure desiccant materials: zeolite 3A, zeolite 4A, and silica gel publication-title: J. Chem. Eng. Data – volume: 5 start-page: 349 year: 2014 end-page: 356 ident: bib0235 article-title: Carbon dioxide adsorption on zeolites and activated carbon by pressure swing adsorption in a fixed bed publication-title: Int. J. Energy Environ. Eng. – volume: 129 start-page: 8552 year: 2007 end-page: 8556 ident: bib0665 article-title: Applicability of the BET method for determining surface areas of microporous metal−Organic frameworks publication-title: J. Am. Chem. Soc. – volume: 247 year: 2020 ident: bib0670 article-title: Gaseous adsorption of hexamethyldisiloxane on carbons: isotherms, isosteric heats and kinetics publication-title: Chemosphere – volume: 2013 start-page: 1 year: 2013 end-page: 6 ident: bib0370 article-title: Novel silica-based hybrid adsorbents: lead(II) adsorption isotherms publication-title: Sci. World J. – volume: 121 start-page: 441 year: 2018 end-page: 450 ident: bib0585 article-title: Optimization of adsorption isotherm types for desiccant air-conditioning applications publication-title: Renew. Energy – volume: 41 start-page: 1077 year: 1977 ident: bib0230 article-title: Applications and misapplications of the langmuir equation to soil adsorption Phenomena1 publication-title: Soil Sci. Soc. Am. J. – volume: 156 start-page: 2 year: 2010 end-page: 10 ident: bib0180 article-title: Insights into the modeling of adsorption isotherm systems publication-title: Chem. Eng. J. – volume: 37 start-page: 3243 year: 2003 end-page: 3249 ident: bib0205 article-title: Environmental exposure assessment of fluoroquinolone antibacterial agents from sewage to soil publication-title: Environ. Sci. Technol. – volume: 122 start-page: 93 year: 2006 end-page: 106 ident: bib0350 article-title: Arsenic adsorption onto iron oxide-coated cement (IOCC): regression analysis of equilibrium data with several isotherm models and their optimization publication-title: Chem. Eng. J. – volume: 11 start-page: 410 year: 2019 ident: bib0560 article-title: The role of physisorption and chemisorption in the oscillatory adsorption of organosilanes on aluminium oxide publication-title: Polymers – volume: 38 start-page: 2221 year: 1916 end-page: 2295 ident: bib0355 article-title: The Constitution and fundamental properties of solids and liquids. Part I. Solids publication-title: J. Am. Chem. Soc. – volume: 390 start-page: 47 year: 1983 end-page: 72 ident: bib0405 article-title: A model of adsorption-desorption hysteresis in which hysteresis is primarily developed by the interconnections in a network of pores publication-title: Proc. R. Soc. A Math. Phys. Eng. Sci. – start-page: 275 year: 2003 end-page: 321 ident: bib0535 article-title: sorption III: sorption processes involving inorganic surfaces publication-title: Environmental Organic Chemistry – volume: 4 start-page: 9 year: 2017 end-page: 20 ident: bib0045 article-title: Equations adsorption isotherms for biuret on soils, paper and cortex plant application of the Freundlich, Langmuir, Temkin, Elovich, flory-huggins, Halsey, and harkins-jura publication-title: Int. J. Adv. Res. Chem. Sci. – start-page: 275 year: 2003 end-page: 321 ident: bib0530 article-title: Sorption I: General introduction and sorption processes involving organic matter publication-title: Environmental Organic Chemistry – volume: vol. 2 year: 1967 ident: bib0170 publication-title: In the Solid-Gas Interface – volume: 219 start-page: 137 year: 2013 end-page: 148 ident: bib0570 article-title: Incorporation of selectivity factor in modeling binary component adsorption isotherms for heavy metals-biomass system publication-title: Chem. Eng. J. – volume: 312 start-page: 172 year: 2008 end-page: 184 ident: bib0580 article-title: Removal of cadmium(II) and zinc(II) metal ions from binary aqueous solution by rice husk ash publication-title: Colloids Surf. A Physicochem. Eng. Asp. – volume: 42 start-page: 287 year: 2008 end-page: 295 ident: bib0100 article-title: Determination of the solid–water distribution coefficient (Kd) for pharmaceuticals, estrogens and musk fragrances in digested sludge publication-title: Water Res. – volume: 40 start-page: 1361 year: 1918 end-page: 1403 ident: bib0360 article-title: The adsorption of gases on plane surfaces of glass, Mica and platinum publication-title: J. Am. Chem. Soc. – volume: 147 start-page: 401 year: 2007 end-page: 411 ident: bib0220 article-title: Modeling of adsorption isotherms of phenol and chlorophenols onto granular activated carbonPart II. Models with more than two parameters publication-title: J. Hazard. Mater. – volume: 141 start-page: 1 year: 2002 end-page: 33 ident: bib0240 publication-title: Water Air Soil Pollut. – volume: 15 year: 1984 ident: bib0285 article-title: ChemInform Abstract: physical adsorption of gases on energetically heterogeneous solids. II. Theoretical extension of A generalized Langmuir equation and its applications for analyzing adsorption data publication-title: Chem. Inf. – volume: 146 year: 1964 ident: bib0500 article-title: On physical adsorption publication-title: Science – volume: 277 start-page: 646 year: 2019 end-page: 648 ident: bib0255 article-title: Application of Dubinin–radushkevich isotherm model at the solid/solution interface: a theoretical analysis publication-title: J. Mol. Liq. – volume: 166 start-page: 51 year: 1994 end-page: 60 ident: bib0325 article-title: Analytical isotherm equations for multicomponent adsorption to heterogeneous surfaces publication-title: J. Colloid Interface Sci. – volume: 148 start-page: 72 year: 2016 end-page: 82 ident: bib0400 article-title: Binary biosorption of copper and lead onto pine-cone shell in batch reactors and in fixed bed columns publication-title: Int. J. Miner. Process. – volume: 1 start-page: 113 year: 1995 end-page: 132 ident: bib0445 article-title: Optimum isotherm equation and thermodynamic interpretation for aqueous 1,1,2-trichloroethene adsorption isotherms on three adsorbents publication-title: Adsorption – volume: 151 start-page: 794 year: 2008 end-page: 804 ident: bib0340 article-title: Isotherms and thermodynamics by linear and non-linear regression analysis for the sorption of methylene blue onto activated carbon: comparison of various error functions publication-title: J. Hazard. Mater. – volume: 225 start-page: 535 year: 2013 end-page: 546 ident: bib0440 article-title: Binary adsorption of heavy metals from aqueous solution onto natural clays publication-title: Chem. Eng. J. – volume: 2 start-page: 1 year: 1998 end-page: 916 ident: bib0145 article-title: Adsorption analysis: equilibria and kinetics publication-title: Ser. Chem. Eng. – volume: 60 start-page: 5198 year: 2005 end-page: 5205 ident: bib0660 article-title: The Fermi–Dirac concept for isotherms of adsorbents with heterogeneous surfaces publication-title: Chem. Eng. Sci. – volume: 30 start-page: 187 year: 2001 end-page: 439 ident: bib0135 article-title: Factors Affecting Sorption of Organic Compounds in Natural Sorbent/Water Systems and Sorption Coefficients for Selected Pollutants. A Review publication-title: J. Phys. Chem. Ref. Data – volume: 194 start-page: 154 year: 1997 end-page: 165 ident: bib0310 article-title: Equilibrium adsorption studies of some aromatic pollutants from dilute aqueous solutions on activated carbon at different temperatures publication-title: J. Colloid Interface Sci. – volume: 20 start-page: 17 year: 1971 end-page: 22 ident: bib0085 article-title: Development of concepts of the volume filling of micropores in the adsorption of gases and vapors by microporous adsorbents publication-title: Bull. Acad. Sci. USSR Div. Chem. Sci. – volume: 69 start-page: 989 year: 2013 end-page: 1003 ident: bib0455 article-title: Post-combustion CO2Capture by vacuum swing adsorption using zeolites – a feasibility study publication-title: Oil Gas Sci. Technol. – volume: 269 start-page: 310 year: 2004 end-page: 314 ident: bib0215 article-title: Determination of adsorptive properties of clay/water system: methylene blue sorption publication-title: J. Colloid Interface Sci. – volume: 136 start-page: 197 year: 2006 end-page: 202 ident: bib0330 article-title: Comparative analysis of linear and non-linear method of estimating the sorption isotherm parameters for malachite green onto activated carbon publication-title: J. Hazard. Mater. – volume: 9 start-page: 243 year: 2013 end-page: 254 ident: bib0550 article-title: A new adsorption isotherm model of aqueous solutions on granular activated carbon publication-title: World J. Modell. Simul. – volume: 6 start-page: 14 year: 2015 end-page: 22 ident: bib0115 article-title: Modeling of experimental adsorption isotherm data publication-title: Information – volume: 6 start-page: 285 year: 2009 end-page: 294 ident: bib0520 article-title: Two-parameter isotherms of methyl orange sorption by pinecone derived activated carbon publication-title: J. Environ. Health Sci. Eng. – volume: 280 start-page: 322 year: 2004 end-page: 333 ident: bib0040 article-title: Adsorption isotherm models for basic dye adsorption by peat in single and binary component systems publication-title: J. Colloid Interface Sci. – volume: 99 start-page: 5411 year: 2008 end-page: 5417 ident: bib0435 article-title: Effect of temperatures and pH on methyl violet biosorption by Mansonia wood sawdust publication-title: Bioresour. Technol. – volume: 308 start-page: 438 year: 2017 end-page: 462 ident: bib0625 article-title: A review on the adsorption of heavy metals by clay minerals, with special focus on the past decade publication-title: Chem. Eng. J. – volume: 143 start-page: 688 year: 2018 end-page: 700 ident: bib0070 article-title: Improved model for the isosteric heat of adsorption and impacts on the performance of heat pump cycles publication-title: Appl. Therm. Eng. – volume: 110 year: 2020 ident: bib0415 article-title: Experimental and comparative theoretical study of thermal conductivity of MWCNTs-kapok seed oil-based nanofluid publication-title: Int. Commun. Heat Mass Transf. – volume: 513 start-page: 99 year: 2018 end-page: 104 ident: bib0075 article-title: Re-evaluation of the century-old Langmuir isotherm for modeling adsorption phenomena in solution publication-title: Chem. Phys. – volume: 23 start-page: 149 year: 2017 end-page: 162 ident: bib0685 article-title: High-pressure sour gas adsorption on zeolite 4A publication-title: Adsorption – volume: 383 year: 2020 ident: bib0130 article-title: Isotherms, thermodynamics and kinetics of methane-shale adsorption pair under supercritical condition: implications for understanding the nature of shale gas adsorption process publication-title: Chem. Eng. J. – volume: 8 start-page: S363 year: 2011 end-page: S371 ident: bib0600 article-title: Removal of malachite green from aqueous solution by activated carbon developed from cocoa (Theobroma Cacao) shell - a kinetic and equilibrium studies publication-title: E-J. Chem. – volume: 120 start-page: 88 year: 2017 end-page: 116 ident: bib0620 article-title: Mistakes and inconsistencies regarding adsorption of contaminants from aqueous solutions: a critical review publication-title: Water Res. – volume: 288 year: 2019 ident: bib0630 article-title: Synthesis, and characterization of metal-organic frameworks -177 for static and dynamic adsorption behavior of CO2 and CH4 publication-title: Microporous Mesoporous Mater. – volume: 21 year: 2017 ident: bib0695 article-title: An adsorption isotherm model for adsorption performance of silver-loaded activated carbon publication-title: Therm. Sci. – volume: 163 start-page: 299 year: 1994 end-page: 302 ident: bib0615 article-title: Thermodynamical correctness of Gas/Solid adsorption isotherm equations publication-title: J. Colloid Interface Sci. – volume: 152 start-page: 976 year: 2008 end-page: 985 ident: bib0065 article-title: Insights into isotherm making in the sorptive removal of fluoride from drinking water publication-title: J. Hazard. Mater. – volume: 41 start-page: 659 year: 2000 end-page: 665 ident: bib0015 article-title: Predictions of binary sorption isotherms for the sorption of heavy metals by pine bark using single isotherm data publication-title: Chemosphere – volume: 53 start-page: 2193 year: 2013 end-page: 2203 ident: bib0510 article-title: Determination of axial dispersion and overall mass transfer coefficients for Ni (II) adsorption on nanostructured γ-alumina in a fixed bed column: experimental and modeling studies publication-title: Desalin. Water Treat. – volume: 45 start-page: 1307 year: 2011 end-page: 1312 ident: bib0095 article-title: Sorption of organic chemicals to soil organic matter: influence of soil variability and pH dependence publication-title: Environ. Sci. Technol. – volume: 211 start-page: 235 year: 2018 end-page: 253 ident: bib0125 article-title: Utilizations of agricultural waste as adsorbent for the removal of contaminants: a review publication-title: Chemosphere – volume: 40 start-page: 1855 year: 2006 end-page: 1861 ident: bib0700 article-title: Adsorption of polycyclic aromatic hydrocarbons by carbon nanomaterials publication-title: Environ. Sci. Technol. – volume: 209 start-page: 491 year: 2019 end-page: 502 ident: bib0425 article-title: Separation of lignin from beech wood hydrolysate using polymeric resins and zeolites – determination and application of adsorption isotherms publication-title: Sep. Purif. Technol. – volume: 87 start-page: 9 year: 2015 end-page: 10 ident: bib0605 article-title: Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report) publication-title: Pure Appl. Chem. – volume: 4 start-page: 809 year: 2004 end-page: 819 ident: bib0275 article-title: Biosorption of zinc from aqueous solution using coconut (Cocos nucifera L) coir dust publication-title: Arch. Appl. Sci. Res. – start-page: 3 year: 2019 end-page: 20 ident: bib0375 article-title: Characterizing Pore Size Distributions of Shale. Petrophysical Characterization And Fluids Transport In Unconventional Reservoirs – volume: 20 start-page: 13 year: 1971 end-page: 16 ident: bib0050 article-title: Development of the concept of volume filling of micropores in the adsorption of gases and vapors by microporous adsorbents publication-title: Bull. Acad. Sci. USSR Div. Chem. Sci. – volume: 47 start-page: 755 year: 1974 end-page: 765 ident: bib0200 article-title: A general treatment and classification of the solute adsorption isotherm. I. Theoretical publication-title: J. Colloid Interface Sci. – volume: 375 start-page: 112 year: 2019 end-page: 122 ident: bib0320 article-title: A new adsorption model based on generalized van der Waals partition function for the description of all types of adsorption isotherms publication-title: Chem. Eng. J. – start-page: 1 year: 1992 end-page: 624 ident: bib0505 article-title: Adsorption of Gases on Heterogeneuos Sufaces – volume: 129 start-page: 564 year: 2017 end-page: 572 ident: bib0710 article-title: Air adsorption on the gas-liquid interface in vapor condensation across horizontal tube publication-title: Appl. Therm. Eng. – volume: 104 start-page: 42 year: 2015 end-page: 52 ident: bib0545 article-title: Adsorption equilibrium of carbon dioxide on ammonia-modified activated carbon publication-title: Chem. Eng. Res. Des. – volume: 73 start-page: 456 year: 1977 ident: bib0010 article-title: Kinetics of activated chemisorption. Part 2.—theoretical models publication-title: J. Chem. Soc. Faraday Trans. 1: Phys. Chem. Condensed Phases – volume: 10 start-page: 1 year: 2018 end-page: 22 ident: bib0480 article-title: Adsorption of chromium using blue green algae-modeling and application of various isotherms publication-title: Int. J. Chem. Technol. – volume: 224 start-page: 1041 year: 2016 end-page: 1054 ident: bib0485 article-title: A survey of multi-component sorption models for the competitive removal of heavy metal ions using bush mango and flamboyant biomasses publication-title: J. Mol. Liq. – start-page: 961 year: 1934 end-page: 973 ident: bib0705 article-title: Adsorption site energy distribution publication-title: Acta Physico-Chimica – volume: 3 start-page: 189 year: 1997 end-page: 195 ident: bib0260 article-title: Theoretical basis for the Dubinin-Radushkevitch (D-R) adsorption isotherm equation publication-title: Adsorption – volume: 185 start-page: 518 year: 2017 end-page: 528 ident: bib0295 article-title: Quantification of the limitation of Langmuir model used in adsorption research on sediments via site energy heterogeneity publication-title: Chemosphere – volume: 7 start-page: 609 year: 2017 ident: bib0495 article-title: Kinetics study of gas pollutant adsorption and thermal desorption on silica gel publication-title: Appl. Sci. – volume: 38 start-page: 4075 year: 2004 end-page: 4084 ident: bib0595 article-title: A rapid method to measure the solid–water distribution coefficient (Kd) for pharmaceuticals and musk fragrances in sewage sludge publication-title: Water Res. – volume: 73 start-page: 2720 year: 1969 end-page: 2727 ident: bib0245 article-title: Physical adsorption isotherms extending from ultrahigh vacuum to vapor pressure publication-title: J. Phys. Chem. – volume: 149 start-page: 115 year: 2007 end-page: 125 ident: bib0430 article-title: Batch sorption dynamics and equilibrium for the removal of cadmium ions from aqueous phase using wheat bran publication-title: J. Hazard. Mater. – volume: 20 start-page: 228 year: 1974 end-page: 238 ident: bib0675 article-title: Pore and solid diffusion models for fixed-bed adsorbers publication-title: AIChE J. – volume: 200 start-page: 304 year: 2017 end-page: 311 ident: bib0475 article-title: Sorption of Cu by humic acid from the decomposition of rice straw in the absence and presence of clay minerals publication-title: J. Environ. Manage. – volume: 79 start-page: 85 year: 1981 end-page: 95 ident: bib0610 article-title: A uniform interpretation of gas/solid adsorption publication-title: J. Colloid Interface Sci. – volume: 294 year: 2020 ident: bib0635 article-title: Synthesis and characterization of mesoporous MOF UMCM-1 for CO2/CH4 adsorption; an experimental, isotherm modeling and thermodynamic study publication-title: Microporous Mesoporous Mater. – start-page: 1 year: 2005 end-page: 402 ident: bib0300 article-title: Adsorption isotherms publication-title: Gas Adsorption Equilibria: Experimental Methods and Adsorptive Isotherms – volume: 263 start-page: 350 year: 2003 end-page: 356 ident: bib0305 article-title: New theoretical expressions for the five adsorption type isotherms classified by BET based on statistical physics treatment publication-title: J. Colloid Interface Sci. – volume: 148 start-page: 761 year: 2007 end-page: 767 ident: bib0110 article-title: A radiotracer study of the adsorption behavior of aqueous Ba2+ ions on nanoparticles of zero-valent iron publication-title: J. Hazard. Mater. – volume: 138 start-page: 35 year: 2008 end-page: 46 ident: bib0365 article-title: Adsorption of 2-picoline onto bagasse fly ash from aqueous solution publication-title: Chem.Eng. J. – volume: 69 start-page: 229 year: 2003 end-page: 238 ident: bib0030 article-title: The removal of dyes from textile wastewater: a study of the physical characteristics and adsorption mechanisms of diatomaceous earth publication-title: J. Environ. Manage. – volume: 146 start-page: 362 year: 2007 end-page: 371 ident: bib0210 article-title: Lead removal from aqueous solution by natural and pretreated clinoptilolite: adsorption equilibrium and kinetics publication-title: J. Hazard. Mater. – volume: 228 year: 2019 ident: bib0055 article-title: Adsorption of organic pollutants by natural and modified clays: a comprehensive review publication-title: Sep. Purif. Technol. – start-page: 5 year: 2004 end-page: 10 ident: bib0380 article-title: Gas Adsorption. Characterization of Porous Solids and Powders: Surface Area, Pore Size And Density – volume: 23 start-page: 327 year: 2016 end-page: 372 ident: bib0460 article-title: Studies on the removal of As(III) and As(V) through their adsorption onto granular activated carbon/MnFe2O4 composite: isotherm studies and error analysis publication-title: Compos. Interfaces – volume: 3 year: 2017 ident: bib0120 article-title: Kinetics, mechanism, isotherm and thermodynamic studies of liquid phase adsorption of Pb2+ onto wood activated carbon supported zerovalent iron (WAC-ZVI) nanocomposite publication-title: Cogent Chem. – volume: 272 start-page: 166 year: 2018 end-page: 176 ident: bib0270 article-title: Insights into the S-shaped sorption isotherms and their dimensionless forms publication-title: Microporous Mesoporous Mater. – volume: 17 start-page: 13 year: 2010 end-page: 23 ident: bib0315 article-title: A generalized equation for adsorption isotherms for multi-component organic pollutants in dilute aqueous solution publication-title: Environ. Technol. – volume: 2017 start-page: 1 year: 2017 end-page: 11 ident: bib0060 article-title: Modelling and interpretation of adsorption isotherms publication-title: J. Chem. – volume: 24 start-page: 6420 year: 2008 end-page: 6424 ident: bib0090 article-title: Revisiting the determination of langmuir parameters-application to tetrahydrothiophene adsorption onto activated carbon publication-title: Langmuir – volume: 146 start-page: 90 year: 2009 end-page: 97 ident: bib0470 article-title: Sorption of distillery spent wash onto fly ash: kinetics and mass transfer studies publication-title: Chem. Eng. J. – volume: 368 start-page: 348 year: 2016 end-page: 359 ident: bib0185 article-title: APTES-modified mesoporous silicas as the carriers for poorly water-soluble drug. Modeling of diflunisal adsorption and release publication-title: Appl. Surf. Sci. – volume: 139 start-page: 122 year: 2007 end-page: 131 ident: bib0450 article-title: Removal of cadmium from aqueous solutions by adsorption onto orange waste publication-title: J. Hazard. Mater. – volume: 41 start-page: 2685 year: 2006 end-page: 2710 ident: bib0575 article-title: Modelling individual and competitive adsorption of cadmium(II) and zinc(II) metal ions from aqueous solution onto bagasse fly ash publication-title: Sep. Sci. Technol. – volume: 72 start-page: 130 year: 2007 end-page: 133 ident: bib0335 article-title: Sorption isotherm for safranin onto rice husk: comparison of linear and non-linear methods publication-title: Dye. Pigment. – volume: 22 start-page: 14 year: 2017 end-page: 24 ident: bib0195 article-title: Kinetic and multi-parameter isotherm studies of picric acid removal from aqueous solutions by carboxylated multi-walled carbon nanotubes in the presence and absence of ultrasound publication-title: Carbon Lett. – volume: 152 start-page: 148 year: 2008 end-page: 158 ident: bib0190 article-title: Kinetic and equilibrium study for the sorption of cadmium(II) ions from aqueous phase by eucalyptus bark publication-title: J. Hazard. Mater. – volume: 430 start-page: 188 year: 2016 end-page: 194 ident: bib0420 article-title: Comparison of linear and non-linear method for determination of optimum equilibrium isotherm for adsorption of copper(II) onto treated Martil sand publication-title: Fluid Phase Equilib. – year: 2019 ident: bib0265 article-title: Experimental Study of Adsorption on Activated Carbon for CO2 Capture – volume: 11 start-page: 18 year: 2017 end-page: 30 ident: bib0525 article-title: Adsorption Isotherm Models for Dye Removal by Paliurus spinachristi Mill. Frutis and Seeds in a Single Component System publication-title: IOSR J. Environ. Sci. Toxicol. Food Technol. – volume: 115 start-page: 997 year: 1984 end-page: 1012 ident: bib0290 article-title: Physical adsorption of gases on energetically heterogeneous solids I. GeneralizedLangmuir equation and its energy distribution publication-title: Monatshefte für Chemie – Chem. Monthly – volume: 1 year: 2017 ident: bib0565 article-title: Adsorption phenomenon and its application in removal of lead from waste water: a review publication-title: Int. J. Hydrol. – volume: 29 start-page: 1773 year: 1995 end-page: 1780 ident: bib0105 article-title: Site energy distribution analysis of preloaded adsorbents publication-title: Environ. Sci. Technol. – start-page: 1 year: 1997 end-page: 808 ident: bib0005 article-title: Physical Chemistry of Surfaces – volume: 13 start-page: 5753 year: 2011 ident: bib0345 article-title: A site energy distribution function from Toth isotherm for adsorption of gases on heterogeneous surfaces publication-title: Phys. Chem. Chem. Phys. – volume: 98 start-page: 1812 year: 2007 end-page: 1821 ident: bib0490 article-title: In vitro biosorption of ochratoxin A on the yeast industry by-products: comparison of isotherm models publication-title: Bioresour. Technol. – volume: 35 start-page: 5409 issue: 16 year: 2019 ident: 10.1016/j.jhazmat.2020.122383_bib0590 article-title: Langmuir’s theory of adsorption: a centennial review publication-title: Langmuir doi: 10.1021/acs.langmuir.9b00154 – volume: 163 start-page: 299 issue: 2 year: 1994 ident: 10.1016/j.jhazmat.2020.122383_bib0615 article-title: Thermodynamical correctness of Gas/Solid adsorption isotherm equations publication-title: J. Colloid Interface Sci. doi: 10.1006/jcis.1994.1107 – volume: 148 start-page: 761 issue: 3 year: 2007 ident: 10.1016/j.jhazmat.2020.122383_bib0110 article-title: A radiotracer study of the adsorption behavior of aqueous Ba2+ ions on nanoparticles of zero-valent iron publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2007.06.122 – volume: 166 start-page: 51 issue: 1 year: 1994 ident: 10.1016/j.jhazmat.2020.122383_bib0325 article-title: Analytical isotherm equations for multicomponent adsorption to heterogeneous surfaces publication-title: J. Colloid Interface Sci. doi: 10.1006/jcis.1994.1270 – volume: 6 start-page: 285 issue: 4 year: 2009 ident: 10.1016/j.jhazmat.2020.122383_bib0520 article-title: Two-parameter isotherms of methyl orange sorption by pinecone derived activated carbon publication-title: J. Environ. Health Sci. Eng. – volume: 7 issue: 11 year: 2012 ident: 10.1016/j.jhazmat.2020.122383_bib0280 article-title: Selective sorption of dissolved organic carbon compounds by temperate soils publication-title: PLoS One doi: 10.1371/journal.pone.0050434 – volume: 121 start-page: 441 year: 2018 ident: 10.1016/j.jhazmat.2020.122383_bib0585 article-title: Optimization of adsorption isotherm types for desiccant air-conditioning applications publication-title: Renew. Energy doi: 10.1016/j.renene.2018.01.045 – volume: 122 start-page: 93 issue: 1-2 year: 2006 ident: 10.1016/j.jhazmat.2020.122383_bib0350 article-title: Arsenic adsorption onto iron oxide-coated cement (IOCC): regression analysis of equilibrium data with several isotherm models and their optimization publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2006.06.002 – volume: 154 start-page: 787 issue: 1-3 year: 2008 ident: 10.1016/j.jhazmat.2020.122383_bib0140 article-title: Error analysis of equilibrium studies for the almond shell activated carbon adsorption of Cr(VI) from aqueous solutions publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2007.10.094 – volume: 25 start-page: 5467 issue: 10 year: 2013 ident: 10.1016/j.jhazmat.2020.122383_bib0640 article-title: Investigation of Langmuir, Freundlich and temkin adsorption isotherm of tramadol by multi-wall carbon nanotube publication-title: Asian J. Chem. doi: 10.14233/ajchem.2013.14786 – volume: 277 start-page: 646 year: 2019 ident: 10.1016/j.jhazmat.2020.122383_bib0255 article-title: Application of Dubinin–radushkevich isotherm model at the solid/solution interface: a theoretical analysis publication-title: J. Mol. Liq. doi: 10.1016/j.molliq.2019.01.005 – volume: 11 start-page: 18 issue: 04 year: 2017 ident: 10.1016/j.jhazmat.2020.122383_bib0525 article-title: Adsorption Isotherm Models for Dye Removal by Paliurus spinachristi Mill. Frutis and Seeds in a Single Component System publication-title: IOSR J. Environ. Sci. Toxicol. Food Technol. doi: 10.9790/2402-1104021830 – volume: 146 start-page: 362 issue: 1-2 year: 2007 ident: 10.1016/j.jhazmat.2020.122383_bib0210 article-title: Lead removal from aqueous solution by natural and pretreated clinoptilolite: adsorption equilibrium and kinetics publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2006.12.034 – volume: 151 start-page: 794 issue: 2-3 year: 2008 ident: 10.1016/j.jhazmat.2020.122383_bib0340 article-title: Isotherms and thermodynamics by linear and non-linear regression analysis for the sorption of methylene blue onto activated carbon: comparison of various error functions publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2007.06.056 – start-page: 1 year: 1992 ident: 10.1016/j.jhazmat.2020.122383_bib0505 – volume: 141 start-page: 1 issue: 1/4 year: 2002 ident: 10.1016/j.jhazmat.2020.122383_bib0240 publication-title: Water Air Soil Pollut. doi: 10.1023/A:1021304828010 – volume: 129 start-page: 8552 issue: 27 year: 2007 ident: 10.1016/j.jhazmat.2020.122383_bib0665 article-title: Applicability of the BET method for determining surface areas of microporous metal−Organic frameworks publication-title: J. Am. Chem. Soc. doi: 10.1021/ja071174k – volume: 3 issue: 1 year: 2017 ident: 10.1016/j.jhazmat.2020.122383_bib0120 article-title: Kinetics, mechanism, isotherm and thermodynamic studies of liquid phase adsorption of Pb2+ onto wood activated carbon supported zerovalent iron (WAC-ZVI) nanocomposite publication-title: Cogent Chem. doi: 10.1080/23312009.2017.1351653 – volume: 53 start-page: 2193 issue: 8 year: 2013 ident: 10.1016/j.jhazmat.2020.122383_bib0510 article-title: Determination of axial dispersion and overall mass transfer coefficients for Ni (II) adsorption on nanostructured γ-alumina in a fixed bed column: experimental and modeling studies publication-title: Desalin. Water Treat. doi: 10.1080/19443994.2013.862869 – volume: 20 start-page: 228 issue: 2 year: 1974 ident: 10.1016/j.jhazmat.2020.122383_bib0675 article-title: Pore and solid diffusion models for fixed-bed adsorbers publication-title: AIChE J. doi: 10.1002/aic.690200204 – volume: 9 start-page: 243 issue: 4 year: 2013 ident: 10.1016/j.jhazmat.2020.122383_bib0550 article-title: A new adsorption isotherm model of aqueous solutions on granular activated carbon publication-title: World J. Modell. Simul. – volume: 52 start-page: 174 year: 2005 ident: 10.1016/j.jhazmat.2020.122383_bib0250 article-title: Equilibrium sorption study of Al3+, Co2+ and Ag2+ in aqueous solutions by fluted pumpkin (Telfairia occidentalis HOOK) waste biomass publication-title: Acta Chim. Slov. – volume: 145 start-page: 496 issue: 3 year: 2009 ident: 10.1016/j.jhazmat.2020.122383_bib0225 article-title: Study of equilibrium, kinetic and thermodynamic parameters about methylene blue adsorption onto natural zeolite publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2008.05.003 – volume: 2013 start-page: 1 year: 2013 ident: 10.1016/j.jhazmat.2020.122383_bib0370 article-title: Novel silica-based hybrid adsorbents: lead(II) adsorption isotherms publication-title: Sci. World J. doi: 10.1155/2013/897159 – volume: 73 start-page: 456 issue: 0 year: 1977 ident: 10.1016/j.jhazmat.2020.122383_bib0010 article-title: Kinetics of activated chemisorption. Part 2.—theoretical models publication-title: J. Chem. Soc. Faraday Trans. 1: Phys. Chem. Condensed Phases doi: 10.1039/f19777300456 – volume: 139 start-page: 122 issue: 1 year: 2007 ident: 10.1016/j.jhazmat.2020.122383_bib0450 article-title: Removal of cadmium from aqueous solutions by adsorption onto orange waste publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2006.06.008 – volume: 41 start-page: 2685 issue: 12 year: 2006 ident: 10.1016/j.jhazmat.2020.122383_bib0575 article-title: Modelling individual and competitive adsorption of cadmium(II) and zinc(II) metal ions from aqueous solution onto bagasse fly ash publication-title: Sep. Sci. Technol. doi: 10.1080/01496390600725687 – volume: 225 start-page: 535 year: 2013 ident: 10.1016/j.jhazmat.2020.122383_bib0440 article-title: Binary adsorption of heavy metals from aqueous solution onto natural clays publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2013.04.011 – volume: 1 start-page: 117 year: 2014 ident: 10.1016/j.jhazmat.2020.122383_bib0540 article-title: Simple solvent characteristics publication-title: Handbk. Solvents doi: 10.1016/B978-1-895198-64-5.50006-4 – volume: 146 issue: 3650 year: 1964 ident: 10.1016/j.jhazmat.2020.122383_bib0500 article-title: On physical adsorption publication-title: Science – volume: 98 start-page: 1812 issue: 9 year: 2007 ident: 10.1016/j.jhazmat.2020.122383_bib0490 article-title: In vitro biosorption of ochratoxin A on the yeast industry by-products: comparison of isotherm models publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2006.06.015 – volume: 22 start-page: 14 year: 2017 ident: 10.1016/j.jhazmat.2020.122383_bib0195 article-title: Kinetic and multi-parameter isotherm studies of picric acid removal from aqueous solutions by carboxylated multi-walled carbon nanotubes in the presence and absence of ultrasound publication-title: Carbon Lett. – volume: 1 start-page: 170 issue: 4 year: 2012 ident: 10.1016/j.jhazmat.2020.122383_bib0385 article-title: Langmuir model application on solid-liquid adsorption using agricultural wastes: environmental application review publication-title: J. Purity Util. React. Environ. – volume: 200 start-page: 304 year: 2017 ident: 10.1016/j.jhazmat.2020.122383_bib0475 article-title: Sorption of Cu by humic acid from the decomposition of rice straw in the absence and presence of clay minerals publication-title: J. Environ. Manage. doi: 10.1016/j.jenvman.2017.05.087 – volume: 194 start-page: 154 issue: 1 year: 1997 ident: 10.1016/j.jhazmat.2020.122383_bib0310 article-title: Equilibrium adsorption studies of some aromatic pollutants from dilute aqueous solutions on activated carbon at different temperatures publication-title: J. Colloid Interface Sci. doi: 10.1006/jcis.1997.5041 – volume: 17 start-page: 13 issue: 1 year: 2010 ident: 10.1016/j.jhazmat.2020.122383_bib0315 article-title: A generalized equation for adsorption isotherms for multi-component organic pollutants in dilute aqueous solution publication-title: Environ. Technol. doi: 10.1080/09593331708616356 – volume: 45 start-page: 1307 issue: 4 year: 2011 ident: 10.1016/j.jhazmat.2020.122383_bib0095 article-title: Sorption of organic chemicals to soil organic matter: influence of soil variability and pH dependence publication-title: Environ. Sci. Technol. doi: 10.1021/es102576e – volume: 42 start-page: 287 issue: 1-2 year: 2008 ident: 10.1016/j.jhazmat.2020.122383_bib0100 article-title: Determination of the solid–water distribution coefficient (Kd) for pharmaceuticals, estrogens and musk fragrances in digested sludge publication-title: Water Res. doi: 10.1016/j.watres.2007.07.012 – volume: 6 start-page: 14 issue: 1 year: 2015 ident: 10.1016/j.jhazmat.2020.122383_bib0115 article-title: Modeling of experimental adsorption isotherm data publication-title: Information doi: 10.3390/info6010014 – volume: vol. 2 year: 1967 ident: 10.1016/j.jhazmat.2020.122383_bib0170 – volume: 15 issue: 47 year: 1984 ident: 10.1016/j.jhazmat.2020.122383_bib0285 article-title: ChemInform Abstract: physical adsorption of gases on energetically heterogeneous solids. II. Theoretical extension of A generalized Langmuir equation and its applications for analyzing adsorption data publication-title: Chem. Inf. – volume: 7 start-page: 609 issue: 6 year: 2017 ident: 10.1016/j.jhazmat.2020.122383_bib0495 article-title: Kinetics study of gas pollutant adsorption and thermal desorption on silica gel publication-title: Appl. Sci. doi: 10.3390/app7060609 – volume: 110 year: 2020 ident: 10.1016/j.jhazmat.2020.122383_bib0415 article-title: Experimental and comparative theoretical study of thermal conductivity of MWCNTs-kapok seed oil-based nanofluid publication-title: Int. Commun. Heat Mass Transf. doi: 10.1016/j.icheatmasstransfer.2019.104402 – start-page: 1 year: 2005 ident: 10.1016/j.jhazmat.2020.122383_bib0300 article-title: Adsorption isotherms – volume: 69 start-page: 989 issue: 6 year: 2013 ident: 10.1016/j.jhazmat.2020.122383_bib0455 article-title: Post-combustion CO2Capture by vacuum swing adsorption using zeolites – a feasibility study publication-title: Oil Gas Sci. Technol. doi: 10.2516/ogst/2012067 – volume: 23 start-page: 327 issue: 4 year: 2016 ident: 10.1016/j.jhazmat.2020.122383_bib0460 article-title: Studies on the removal of As(III) and As(V) through their adsorption onto granular activated carbon/MnFe2O4 composite: isotherm studies and error analysis publication-title: Compos. Interfaces doi: 10.1080/09276440.2016.1137715 – volume: 146 start-page: 90 issue: 1 year: 2009 ident: 10.1016/j.jhazmat.2020.122383_bib0470 article-title: Sorption of distillery spent wash onto fly ash: kinetics and mass transfer studies publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2008.05.021 – volume: 30 start-page: 187 issue: 1 year: 2001 ident: 10.1016/j.jhazmat.2020.122383_bib0135 article-title: Factors Affecting Sorption of Organic Compounds in Natural Sorbent/Water Systems and Sorption Coefficients for Selected Pollutants. A Review publication-title: J. Phys. Chem. Ref. Data doi: 10.1063/1.1347984 – year: 2019 ident: 10.1016/j.jhazmat.2020.122383_bib0265 – volume: 73 start-page: 269 issue: 3 year: 2007 ident: 10.1016/j.jhazmat.2020.122383_bib0390 article-title: Use of bagasse fly ash as an adsorbent for the removal of brilliant green dye from aqueous solution publication-title: Dye. Pigment. doi: 10.1016/j.dyepig.2005.12.006 – volume: 41 start-page: 659 issue: 5 year: 2000 ident: 10.1016/j.jhazmat.2020.122383_bib0015 article-title: Predictions of binary sorption isotherms for the sorption of heavy metals by pine bark using single isotherm data publication-title: Chemosphere doi: 10.1016/S0045-6535(99)00497-X – volume: 60 start-page: 235 issue: 2 year: 1960 ident: 10.1016/j.jhazmat.2020.122383_bib0155 article-title: The potential theory of adsorption of gases and vapors for adsorbents with energetically nonuniform surfaces publication-title: Chem. Rev. doi: 10.1021/cr60204a006 – volume: 73 start-page: 2720 issue: 8 year: 1969 ident: 10.1016/j.jhazmat.2020.122383_bib0245 article-title: Physical adsorption isotherms extending from ultrahigh vacuum to vapor pressure publication-title: J. Phys. Chem. doi: 10.1021/j100842a045 – volume: 35 start-page: 1142 issue: 6 year: 2001 ident: 10.1016/j.jhazmat.2020.122383_bib0465 article-title: Sorption of Very Hydrophobic Organic Compounds (VHOCs) on Dissolved Humic Organic Matter (DOM). 2. Measurement of Sorption and Application of a Flory−Huggins Concept to Interpret the Data publication-title: Environ. Sci. Technol. doi: 10.1021/es0017615 – volume: 60 start-page: 5198 issue: 19 year: 2005 ident: 10.1016/j.jhazmat.2020.122383_bib0660 article-title: The Fermi–Dirac concept for isotherms of adsorbents with heterogeneous surfaces publication-title: Chem. Eng. Sci. doi: 10.1016/j.ces.2005.03.063 – volume: 247 year: 2020 ident: 10.1016/j.jhazmat.2020.122383_bib0670 article-title: Gaseous adsorption of hexamethyldisiloxane on carbons: isotherms, isosteric heats and kinetics publication-title: Chemosphere doi: 10.1016/j.chemosphere.2020.125862 – volume: 138 start-page: 35 issue: 1–3 year: 2008 ident: 10.1016/j.jhazmat.2020.122383_bib0365 article-title: Adsorption of 2-picoline onto bagasse fly ash from aqueous solution publication-title: Chem.Eng. J. doi: 10.1016/j.cej.2007.05.043 – volume: 27 start-page: 245 issue: 1 year: 2011 ident: 10.1016/j.jhazmat.2020.122383_bib0555 article-title: Comparison of Langmuir and Harkins-Jura adsorption isotherms for the determination of surface area of solids publication-title: Orient. J. Chem. – volume: 36 start-page: 403 issue: 3 year: 2010 ident: 10.1016/j.jhazmat.2020.122383_bib0160 article-title: Modeling of adsorption isotherms of Methylene Blue onto rice husk activated carbon publication-title: Egypt. J. Aquat. Res. – start-page: 961 year: 1934 ident: 10.1016/j.jhazmat.2020.122383_bib0705 article-title: Adsorption site energy distribution publication-title: Acta Physico-Chimica – volume: 375 start-page: 112 year: 2019 ident: 10.1016/j.jhazmat.2020.122383_bib0320 article-title: A new adsorption model based on generalized van der Waals partition function for the description of all types of adsorption isotherms publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2019.122112 – volume: 288 year: 2019 ident: 10.1016/j.jhazmat.2020.122383_bib0630 article-title: Synthesis, and characterization of metal-organic frameworks -177 for static and dynamic adsorption behavior of CO2 and CH4 publication-title: Microporous Mesoporous Mater. doi: 10.1016/j.micromeso.2019.109569 – volume: 149 start-page: 115 issue: 1 year: 2007 ident: 10.1016/j.jhazmat.2020.122383_bib0430 article-title: Batch sorption dynamics and equilibrium for the removal of cadmium ions from aqueous phase using wheat bran publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2007.03.055 – volume: 41 start-page: 1077 issue: 6 year: 1977 ident: 10.1016/j.jhazmat.2020.122383_bib0230 article-title: Applications and misapplications of the langmuir equation to soil adsorption Phenomena1 publication-title: Soil Sci. Soc. Am. J. doi: 10.2136/sssaj1977.03615995004100060012x – volume: 1 issue: 2 year: 2017 ident: 10.1016/j.jhazmat.2020.122383_bib0565 article-title: Adsorption phenomenon and its application in removal of lead from waste water: a review publication-title: Int. J. Hydrol. – volume: 383 year: 2020 ident: 10.1016/j.jhazmat.2020.122383_bib0130 article-title: Isotherms, thermodynamics and kinetics of methane-shale adsorption pair under supercritical condition: implications for understanding the nature of shale gas adsorption process publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2019.123191 – volume: 4 start-page: 809 issue: 2 year: 2004 ident: 10.1016/j.jhazmat.2020.122383_bib0275 article-title: Biosorption of zinc from aqueous solution using coconut (Cocos nucifera L) coir dust publication-title: Arch. Appl. Sci. Res. – volume: 158 start-page: 73 issue: 1 year: 2008 ident: 10.1016/j.jhazmat.2020.122383_bib0165 article-title: Least-squares regression of adsorption equilibrium data: comparing the options publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2008.01.052 – volume: 87 start-page: 9 year: 2015 ident: 10.1016/j.jhazmat.2020.122383_bib0605 article-title: Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report) publication-title: Pure Appl. Chem. doi: 10.1515/pac-2014-1117 – volume: 129 start-page: 564 year: 2017 ident: 10.1016/j.jhazmat.2020.122383_bib0710 article-title: Air adsorption on the gas-liquid interface in vapor condensation across horizontal tube publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2017.09.106 – volume: 430 start-page: 188 year: 2016 ident: 10.1016/j.jhazmat.2020.122383_bib0420 article-title: Comparison of linear and non-linear method for determination of optimum equilibrium isotherm for adsorption of copper(II) onto treated Martil sand publication-title: Fluid Phase Equilib. doi: 10.1016/j.fluid.2016.10.003 – volume: 308 start-page: 463 year: 2017 ident: 10.1016/j.jhazmat.2020.122383_bib0035 article-title: Mechanistic insights into the remediation of bromide ions from desalinated water using roasted date pits publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2016.09.091 – volume: 272 start-page: 166 year: 2018 ident: 10.1016/j.jhazmat.2020.122383_bib0270 article-title: Insights into the S-shaped sorption isotherms and their dimensionless forms publication-title: Microporous Mesoporous Mater. doi: 10.1016/j.micromeso.2018.06.026 – volume: 224 start-page: 1041 year: 2016 ident: 10.1016/j.jhazmat.2020.122383_bib0485 article-title: A survey of multi-component sorption models for the competitive removal of heavy metal ions using bush mango and flamboyant biomasses publication-title: J. Mol. Liq. doi: 10.1016/j.molliq.2016.10.061 – volume: 12 start-page: 2867 issue: 9 year: 2014 ident: 10.1016/j.jhazmat.2020.122383_bib0410 article-title: Chemical modification of Byrsonima crassifolia with citric acid for the competitive sorption of heavy metals from water publication-title: Int. J. Environ. Sci. Technol. doi: 10.1007/s13762-014-0685-x – volume: 2017 start-page: 1 year: 2017 ident: 10.1016/j.jhazmat.2020.122383_bib0060 article-title: Modelling and interpretation of adsorption isotherms publication-title: J. Chem. doi: 10.1155/2017/3039817 – volume: 205 start-page: 121 year: 1998 ident: 10.1016/j.jhazmat.2020.122383_bib0150 article-title: Adsorption hysteresis in porous solids publication-title: J. Colloid Interface Sci. doi: 10.1006/jcis.1998.5639 – start-page: 275 year: 2003 ident: 10.1016/j.jhazmat.2020.122383_bib0530 article-title: Sorption I: General introduction and sorption processes involving organic matter – volume: 156 start-page: 2 issue: 1 year: 2010 ident: 10.1016/j.jhazmat.2020.122383_bib0180 article-title: Insights into the modeling of adsorption isotherm systems publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2009.09.013 – volume: 32 start-page: 787 issue: 5 year: 2015 ident: 10.1016/j.jhazmat.2020.122383_bib0515 article-title: Monolayer and multilayer adsorption isotherm models for sorption from aqueous media publication-title: Korean J. Chem. Eng. doi: 10.1007/s11814-015-0053-7 – volume: 219 start-page: 137 year: 2013 ident: 10.1016/j.jhazmat.2020.122383_bib0570 article-title: Incorporation of selectivity factor in modeling binary component adsorption isotherms for heavy metals-biomass system publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2012.12.077 – volume: 40 start-page: 1855 issue: 6 year: 2006 ident: 10.1016/j.jhazmat.2020.122383_bib0700 article-title: Adsorption of polycyclic aromatic hydrocarbons by carbon nanomaterials publication-title: Environ. Sci. Technol. doi: 10.1021/es052208w – volume: 99 start-page: 5411 issue: 13 year: 2008 ident: 10.1016/j.jhazmat.2020.122383_bib0435 article-title: Effect of temperatures and pH on methyl violet biosorption by Mansonia wood sawdust publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2007.11.018 – volume: 513 start-page: 99 year: 2018 ident: 10.1016/j.jhazmat.2020.122383_bib0075 article-title: Re-evaluation of the century-old Langmuir isotherm for modeling adsorption phenomena in solution publication-title: Chem. Phys. doi: 10.1016/j.chemphys.2018.06.022 – volume: 104 start-page: 42 year: 2015 ident: 10.1016/j.jhazmat.2020.122383_bib0545 article-title: Adsorption equilibrium of carbon dioxide on ammonia-modified activated carbon publication-title: Chem. Eng. Res. Des. doi: 10.1016/j.cherd.2015.07.018 – volume: 368 start-page: 348 year: 2016 ident: 10.1016/j.jhazmat.2020.122383_bib0185 article-title: APTES-modified mesoporous silicas as the carriers for poorly water-soluble drug. Modeling of diflunisal adsorption and release publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2016.02.004 – volume: 72 start-page: 130 issue: 1 year: 2007 ident: 10.1016/j.jhazmat.2020.122383_bib0335 article-title: Sorption isotherm for safranin onto rice husk: comparison of linear and non-linear methods publication-title: Dye. Pigment. doi: 10.1016/j.dyepig.2005.07.020 – start-page: 167 year: 2014 ident: 10.1016/j.jhazmat.2020.122383_bib0175 article-title: Coalification, gasification, and gas storage publication-title: Coal Coalbed Gas doi: 10.1016/B978-0-12-396972-9.00004-5 – start-page: 3 year: 2019 ident: 10.1016/j.jhazmat.2020.122383_bib0375 – start-page: 5 year: 2004 ident: 10.1016/j.jhazmat.2020.122383_bib0380 – volume: 148 start-page: 72 year: 2016 ident: 10.1016/j.jhazmat.2020.122383_bib0400 article-title: Binary biosorption of copper and lead onto pine-cone shell in batch reactors and in fixed bed columns publication-title: Int. J. Miner. Process. doi: 10.1016/j.minpro.2016.01.017 – volume: 14 issue: 45 year: 1983 ident: 10.1016/j.jhazmat.2020.122383_bib0395 article-title: ChemInform Abstract: a new isotherm equation for single-solute adsorption from dilute solutions on energetically heterogeneous solids publication-title: Chem. Inf. – volume: 152 start-page: 148 issue: 1 year: 2008 ident: 10.1016/j.jhazmat.2020.122383_bib0190 article-title: Kinetic and equilibrium study for the sorption of cadmium(II) ions from aqueous phase by eucalyptus bark publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2007.06.079 – volume: 37 start-page: 3243 issue: 15 year: 2003 ident: 10.1016/j.jhazmat.2020.122383_bib0205 article-title: Environmental exposure assessment of fluoroquinolone antibacterial agents from sewage to soil publication-title: Environ. Sci. Technol. doi: 10.1021/es0264448 – volume: 3 start-page: 189 issue: 3 year: 1997 ident: 10.1016/j.jhazmat.2020.122383_bib0260 article-title: Theoretical basis for the Dubinin-Radushkevitch (D-R) adsorption isotherm equation publication-title: Adsorption doi: 10.1007/BF01650130 – volume: 38 start-page: 2221 issue: 11 year: 1916 ident: 10.1016/j.jhazmat.2020.122383_bib0355 article-title: The Constitution and fundamental properties of solids and liquids. Part I. Solids publication-title: J. Am. Chem. Soc. doi: 10.1021/ja02268a002 – volume: 26 start-page: 5475 issue: 8 year: 2010 ident: 10.1016/j.jhazmat.2020.122383_bib0080 article-title: Evaluation of the BET method for determining surface areas of MOFs and zeolites that contain ultra-micropores publication-title: Langmuir doi: 10.1021/la100449z – volume: 17 year: 2020 ident: 10.1016/j.jhazmat.2020.122383_bib0020 article-title: Water reuse: brackish water desalination using Prosopis juliflora publication-title: Environ. Technol. Innov. doi: 10.1016/j.eti.2020.100614 – volume: 4 start-page: 9 issue: 5 year: 2017 ident: 10.1016/j.jhazmat.2020.122383_bib0045 article-title: Equations adsorption isotherms for biuret on soils, paper and cortex plant application of the Freundlich, Langmuir, Temkin, Elovich, flory-huggins, Halsey, and harkins-jura publication-title: Int. J. Adv. Res. Chem. Sci. – volume: 8 start-page: S363 issue: s1 year: 2011 ident: 10.1016/j.jhazmat.2020.122383_bib0600 article-title: Removal of malachite green from aqueous solution by activated carbon developed from cocoa (Theobroma Cacao) shell - a kinetic and equilibrium studies publication-title: E-J. Chem. doi: 10.1155/2011/714808 – volume: 308 start-page: 438 year: 2017 ident: 10.1016/j.jhazmat.2020.122383_bib0625 article-title: A review on the adsorption of heavy metals by clay minerals, with special focus on the past decade publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2016.09.029 – volume: 29 start-page: 1773 issue: 7 year: 1995 ident: 10.1016/j.jhazmat.2020.122383_bib0105 article-title: Site energy distribution analysis of preloaded adsorbents publication-title: Environ. Sci. Technol. doi: 10.1021/es00007a013 – volume: 390 start-page: 47 issue: 1798 year: 1983 ident: 10.1016/j.jhazmat.2020.122383_bib0405 article-title: A model of adsorption-desorption hysteresis in which hysteresis is primarily developed by the interconnections in a network of pores publication-title: Proc. R. Soc. A Math. Phys. Eng. Sci. – volume: 143 start-page: 688 year: 2018 ident: 10.1016/j.jhazmat.2020.122383_bib0070 article-title: Improved model for the isosteric heat of adsorption and impacts on the performance of heat pump cycles publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2018.07.131 – volume: 21 year: 2017 ident: 10.1016/j.jhazmat.2020.122383_bib0695 article-title: An adsorption isotherm model for adsorption performance of silver-loaded activated carbon publication-title: Therm. Sci. doi: 10.2298/TSCI151202048Y – volume: 263 start-page: 350 issue: 2 year: 2003 ident: 10.1016/j.jhazmat.2020.122383_bib0305 article-title: New theoretical expressions for the five adsorption type isotherms classified by BET based on statistical physics treatment publication-title: J. Colloid Interface Sci. doi: 10.1016/S0021-9797(03)00139-5 – volume: 280 start-page: 322 issue: 2 year: 2004 ident: 10.1016/j.jhazmat.2020.122383_bib0040 article-title: Adsorption isotherm models for basic dye adsorption by peat in single and binary component systems publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2004.08.078 – volume: 2 start-page: 1 year: 1998 ident: 10.1016/j.jhazmat.2020.122383_bib0145 article-title: Adsorption analysis: equilibria and kinetics publication-title: Ser. Chem. Eng. doi: 10.1142/9781860943829_0001 – volume: 185 start-page: 518 year: 2017 ident: 10.1016/j.jhazmat.2020.122383_bib0295 article-title: Quantification of the limitation of Langmuir model used in adsorption research on sediments via site energy heterogeneity publication-title: Chemosphere doi: 10.1016/j.chemosphere.2017.07.051 – volume: 40 start-page: 1361 issue: 9 year: 1918 ident: 10.1016/j.jhazmat.2020.122383_bib0360 article-title: The adsorption of gases on plane surfaces of glass, Mica and platinum publication-title: J. Am. Chem. Soc. doi: 10.1021/ja02242a004 – volume: 209 start-page: 491 year: 2019 ident: 10.1016/j.jhazmat.2020.122383_bib0425 article-title: Separation of lignin from beech wood hydrolysate using polymeric resins and zeolites – determination and application of adsorption isotherms publication-title: Sep. Purif. Technol. doi: 10.1016/j.seppur.2018.07.077 – volume: 39 start-page: 695 issue: 6 year: 2004 ident: 10.1016/j.jhazmat.2020.122383_bib0680 article-title: Adsorption of acid dyes on chitosan—equilibrium isotherm analyses publication-title: Process. Biochem. doi: 10.1016/S0032-9592(03)00152-3 – volume: 147 start-page: 401 issue: 1-2 year: 2007 ident: 10.1016/j.jhazmat.2020.122383_bib0220 article-title: Modeling of adsorption isotherms of phenol and chlorophenols onto granular activated carbonPart II. Models with more than two parameters publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2007.01.023 – volume: 23 start-page: 149 issue: 1 year: 2017 ident: 10.1016/j.jhazmat.2020.122383_bib0685 article-title: High-pressure sour gas adsorption on zeolite 4A publication-title: Adsorption doi: 10.1007/s10450-016-9841-6 – volume: 24 start-page: 6420 issue: 13 year: 2008 ident: 10.1016/j.jhazmat.2020.122383_bib0090 article-title: Revisiting the determination of langmuir parameters-application to tetrahydrothiophene adsorption onto activated carbon publication-title: Langmuir doi: 10.1021/la800725s – volume: 228 year: 2019 ident: 10.1016/j.jhazmat.2020.122383_bib0055 article-title: Adsorption of organic pollutants by natural and modified clays: a comprehensive review publication-title: Sep. Purif. Technol. doi: 10.1016/j.seppur.2019.115719 – volume: 64 start-page: 3156 issue: 7 year: 2019 ident: 10.1016/j.jhazmat.2020.122383_bib0690 article-title: Sour gas and water adsorption on common high-pressure desiccant materials: zeolite 3A, zeolite 4A, and silica gel publication-title: J. Chem. Eng. Data doi: 10.1021/acs.jced.9b00233 – volume: 47 start-page: 755 issue: 3 year: 1974 ident: 10.1016/j.jhazmat.2020.122383_bib0200 article-title: A general treatment and classification of the solute adsorption isotherm. I. Theoretical publication-title: J. Colloid Interface Sci. doi: 10.1016/0021-9797(74)90252-5 – volume: 269 start-page: 310 issue: 2 year: 2004 ident: 10.1016/j.jhazmat.2020.122383_bib0215 article-title: Determination of adsorptive properties of clay/water system: methylene blue sorption publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2003.09.004 – volume: 5 start-page: 349 issue: 4 year: 2014 ident: 10.1016/j.jhazmat.2020.122383_bib0235 article-title: Carbon dioxide adsorption on zeolites and activated carbon by pressure swing adsorption in a fixed bed publication-title: Int. J. Energy Environ. Eng. doi: 10.1007/s40095-014-0131-3 – volume: 120 start-page: 88 year: 2017 ident: 10.1016/j.jhazmat.2020.122383_bib0620 article-title: Mistakes and inconsistencies regarding adsorption of contaminants from aqueous solutions: a critical review publication-title: Water Res. doi: 10.1016/j.watres.2017.04.014 – volume: 211 start-page: 235 year: 2018 ident: 10.1016/j.jhazmat.2020.122383_bib0125 article-title: Utilizations of agricultural waste as adsorbent for the removal of contaminants: a review publication-title: Chemosphere doi: 10.1016/j.chemosphere.2018.06.179 – volume: 136 start-page: 197 issue: 2 year: 2006 ident: 10.1016/j.jhazmat.2020.122383_bib0330 article-title: Comparative analysis of linear and non-linear method of estimating the sorption isotherm parameters for malachite green onto activated carbon publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2005.09.018 – volume: 79 start-page: 85 issue: 1 year: 1981 ident: 10.1016/j.jhazmat.2020.122383_bib0610 article-title: A uniform interpretation of gas/solid adsorption publication-title: J. Colloid Interface Sci. doi: 10.1016/0021-9797(81)90050-3 – volume: 312 start-page: 172 issue: 2-3 year: 2008 ident: 10.1016/j.jhazmat.2020.122383_bib0580 article-title: Removal of cadmium(II) and zinc(II) metal ions from binary aqueous solution by rice husk ash publication-title: Colloids Surf. A Physicochem. Eng. Asp. doi: 10.1016/j.colsurfa.2007.06.048 – volume: 133 start-page: 304 issue: 1-3 year: 2006 ident: 10.1016/j.jhazmat.2020.122383_bib0645 article-title: Biosorption of nickel(II) ions onto Sargassum wightii: application of two-parameter and three-parameter isotherm models publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2005.10.016 – start-page: 1 year: 1997 ident: 10.1016/j.jhazmat.2020.122383_bib0005 – volume: 152 start-page: 976 issue: 3 year: 2008 ident: 10.1016/j.jhazmat.2020.122383_bib0065 article-title: Insights into isotherm making in the sorptive removal of fluoride from drinking water publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2007.07.072 – start-page: 275 year: 2003 ident: 10.1016/j.jhazmat.2020.122383_bib0535 article-title: sorption III: sorption processes involving inorganic surfaces – volume: 20 start-page: 13 issue: 1 year: 1971 ident: 10.1016/j.jhazmat.2020.122383_bib0050 article-title: Development of the concept of volume filling of micropores in the adsorption of gases and vapors by microporous adsorbents publication-title: Bull. Acad. Sci. USSR Div. Chem. Sci. doi: 10.1007/BF00849309 – volume: 20 start-page: 17 issue: 1 year: 1971 ident: 10.1016/j.jhazmat.2020.122383_bib0085 article-title: Development of concepts of the volume filling of micropores in the adsorption of gases and vapors by microporous adsorbents publication-title: Bull. Acad. Sci. USSR Div. Chem. Sci. doi: 10.1007/BF00849310 – volume: 16 year: 2019 ident: 10.1016/j.jhazmat.2020.122383_bib0025 article-title: Optimizing textile dye removal by activated carbon prepared from olive stones publication-title: Environ. Technol. Innov. doi: 10.1016/j.eti.2019.100488 – volume: 38 start-page: 4075 issue: 19 year: 2004 ident: 10.1016/j.jhazmat.2020.122383_bib0595 article-title: A rapid method to measure the solid–water distribution coefficient (Kd) for pharmaceuticals and musk fragrances in sewage sludge publication-title: Water Res. doi: 10.1016/j.watres.2004.07.015 – volume: 69 start-page: 229 issue: 3 year: 2003 ident: 10.1016/j.jhazmat.2020.122383_bib0030 article-title: The removal of dyes from textile wastewater: a study of the physical characteristics and adsorption mechanisms of diatomaceous earth publication-title: J. Environ. Manage. doi: 10.1016/j.jenvman.2003.09.005 – volume: 51 start-page: 2725 issue: 17 year: 2016 ident: 10.1016/j.jhazmat.2020.122383_bib0655 article-title: Mono- and multi-component biosorption of lead(II), cadmium(II), copper(II) and nickel(II) ions onto coco-peat biomass publication-title: Sep. Sci. Technol. doi: 10.1080/01496395.2016.1212889 – volume: 11 start-page: 410 issue: 3 year: 2019 ident: 10.1016/j.jhazmat.2020.122383_bib0560 article-title: The role of physisorption and chemisorption in the oscillatory adsorption of organosilanes on aluminium oxide publication-title: Polymers doi: 10.3390/polym11030410 – volume: 294 year: 2020 ident: 10.1016/j.jhazmat.2020.122383_bib0635 article-title: Synthesis and characterization of mesoporous MOF UMCM-1 for CO2/CH4 adsorption; an experimental, isotherm modeling and thermodynamic study publication-title: Microporous Mesoporous Mater. doi: 10.1016/j.micromeso.2019.109844 – volume: 1 start-page: 113 issue: 2 year: 1995 ident: 10.1016/j.jhazmat.2020.122383_bib0445 article-title: Optimum isotherm equation and thermodynamic interpretation for aqueous 1,1,2-trichloroethene adsorption isotherms on three adsorbents publication-title: Adsorption doi: 10.1007/BF00705000 – volume: 10 start-page: 1 issue: 1 year: 2018 ident: 10.1016/j.jhazmat.2020.122383_bib0480 article-title: Adsorption of chromium using blue green algae-modeling and application of various isotherms publication-title: Int. J. Chem. Technol. doi: 10.3923/ijct.2018.1.22 – volume: 115 start-page: 997 issue: 8-9 year: 1984 ident: 10.1016/j.jhazmat.2020.122383_bib0290 article-title: Physical adsorption of gases on energetically heterogeneous solids I. GeneralizedLangmuir equation and its energy distribution publication-title: Monatshefte für Chemie – Chem. Monthly doi: 10.1007/BF00798768 – volume: 13 start-page: 5753 issue: 13 year: 2011 ident: 10.1016/j.jhazmat.2020.122383_bib0345 article-title: A site energy distribution function from Toth isotherm for adsorption of gases on heterogeneous surfaces publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/c0cp00902d – volume: 1 start-page: 10 issue: 1 year: 2015 ident: 10.1016/j.jhazmat.2020.122383_bib0650 article-title: Biosorption of lanthanide (praseodymium) using Ulva lactuca: mechanistic study and application of two, three, four and five parameter isotherm models publication-title: J. Environ. Biotechnol. |
SSID | ssj0001754 |
Score | 2.7363126 |
SecondaryResourceType | review_article |
Snippet | [Display omitted]
•Adsorption data modelling is an essential way of predicting adsorption mechanisms.•It discusses the guidelines of using... Adsorption process is considered as one of the most used separation and purification processes, in which adsorption occurs by the formation of the physical or... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 122383 |
SubjectTerms | adsorbents adsorption Adsorption isotherm interpretation Adsorption isotherm models Adsorption mechanisms chemical bonding guidelines Linear and nonlinear isotherm models prediction purification methods regression analysis sorption isotherms temperature |
Title | Guidelines for the use and interpretation of adsorption isotherm models: A review |
URI | https://dx.doi.org/10.1016/j.jhazmat.2020.122383 https://www.ncbi.nlm.nih.gov/pubmed/32369889 https://www.proquest.com/docview/2399253605 https://www.proquest.com/docview/2431839579 |
Volume | 393 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LTxsxEB6lcKGHClKg4SVX6nXzWM--uEUICI8iVS1SbpbX9opE7QaxiZB66G9nZh_QHCASN-_KXlnj2ZlvNPONAb6Rh7B-aCxbv76HGNDI-dIbWNQ-IQ4bGSY4f78JR7d4OQ7GLThpuDBcVlnb_sqml9a6ftOrpdm7n0x6PzmpR-4WfRrIaDBmBjtGrOXdfy9lHuQeqxZSnAGg2S8snt60O73TfwkYUpjoc58Fcl_yNf_0Gv4s_dDZJnyqAaQYVnvcgpbL2_Dxv7aCbfhwrR8_w4_zBbew4rJ2QchUENITi8IJnVsxWSo1FLNMaFvMHkrzISZFycr6I8pbcopjMRQVwWUbbs9Of52MvPoCBc9giHNPkpqgzhJDUWCALs6MRjMwVqNNHVIsE2TWarJ5qXZJEtlEZlFsUhk7QkKxlHIH1vJZ7r6AiJNIa9uXmOk-ogzTjL5nnHYmSE0mTQewEZsydXdxvuTit2rKyKaqlrZiaatK2h3oPi-7r9prrFoQN2eilvREkQtYtfRrc4aK_iFOjOjczRaFYn6vH0iK7N6Yg2z9OKnZgd1KAZ53LH0ZJnGc7L1_c_uwwU9lIXBwAGvzh4U7JLgzT49KfT6C9eHF1ejmCflX_5g |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VcgAOCEppl6crwTH7sCcvJA4VULbtthJqK-3NOLaj7gqyq2ZXFRz4U_xBZvJo6aFUQuotSuLIGtvffJN5AbwhDeFkZB2jXz9ADOnKSxUMHBpJjMPFlhOcDw6j4QnujcPxCvxuc2E4rLLB_hrTK7Ru7vQaafbmk0nviJ16pG5R0oWKB-MmsnLf_zgnu618v_uRFvmtlDufjj8Mg6a1QGAxwkWgSIBo8tSSfRSiT3Jr0A6sM-gyj8Tyw9w5Q2iQGZ-msUtVHic2U4knjpAo_gtKuH8XCS64bUL312VcCenjumYVuxxoepdpQ71pd3pqfhITJbtUcmEH0pfqOoV4HeGtFN_OI3jYMFaxXQvlMaz4Yg0e_FXHcA3ujMz5E_jyeck1sziOXhAVFkQtxbL0whROTK7ENopZLowrZ2cVXolJWaWBfRdVW57yndgWdUbNOpzcilifwmoxK_wmiCSNjXF9hbnpI6ooy-l71htvw8zmynYAW7Fp25Qz564a33QbtzbVjbQ1S1vX0u5A92LYvK7ncdOApF0TfWVjatI5Nw3datdQ06FlT4wp_GxZak4olqEiU_If7yDDLXtRO7BRb4CLGSupojRJ0mf_P7nXcG94fDDSo93D_edwn59UUcjhC1hdnC39S-Jai-xVtbcFfL3tw_QHiEc9BQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Guidelines+for+the+use+and+interpretation+of+adsorption+isotherm+models%3A+A+review&rft.jtitle=Journal+of+hazardous+materials&rft.au=Al-Ghouti%2C+Mohammad+A&rft.au=Da%27ana%2C+Dana+A&rft.date=2020-07-05&rft.issn=0304-3894&rft.volume=393+p.122383-&rft_id=info:doi/10.1016%2Fj.jhazmat.2020.122383&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0304-3894&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0304-3894&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0304-3894&client=summon |