Mechanisms of Immune Evasion in Multiple Myeloma: Open Questions and Therapeutic Opportunities

Multiple myeloma (MM) is the second most common hematologic malignancy, characterized by a multi-step evolutionary path, which starts with an early asymptomatic stage, defined as monoclonal gammopathy of undetermined significance (MGUS) evolving to overt disease in 1% of cases per year, often throug...

Full description

Saved in:
Bibliographic Details
Published inCancers Vol. 13; no. 13; p. 3213
Main Authors Botta, Cirino, Mendicino, Francesco, Martino, Enrica Antonia, Vigna, Ernesto, Ronchetti, Domenica, Correale, Pierpaolo, Morabito, Fortunato, Neri, Antonino, Gentile, Massimo
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 28.06.2021
MDPI
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Multiple myeloma (MM) is the second most common hematologic malignancy, characterized by a multi-step evolutionary path, which starts with an early asymptomatic stage, defined as monoclonal gammopathy of undetermined significance (MGUS) evolving to overt disease in 1% of cases per year, often through an intermediate phase known as “smoldering” MM (sMM). Interestingly, while many genomic alterations (translocation, deletions, mutations) are usually found at early stages, they are not sufficient (alone) to determine disease evolution. The latter, indeed, relies on significant “epigenetic” alterations of different normal cell populations within the bone marrow (BM) niche, including the “evasion” from immune-system control. Additionally, MM cells could “educate” the BM immune microenvironment (BM-IM) towards a pro-inflammatory and immunosuppressive phenotype, which ultimately leads to disease evolution, drug resistance, and patients’ worse outcome. Indeed, it is not a case that the most important drugs for the treatment of MM include immunomodulatory agents (thalidomide, lenalidomide, and pomalidomide) and monoclonal antibodies (daratumumab, isatuximab, and elotuzumab). On these bases, in this review, we describe the most recent advances in the comprehension of the role of the different cells composing the BM-IM, and we discuss the potential molecular targets, which could represent new opportunities to improve current treatment strategies for MM patients.
AbstractList Multiple myeloma (MM) is the second most common hematologic malignancy, characterized by a multi-step evolutionary path, which starts with an early asymptomatic stage, defined as monoclonal gammopathy of undetermined significance (MGUS) evolving to overt disease in 1% of cases per year, often through an intermediate phase known as "smoldering" MM (sMM). Interestingly, while many genomic alterations (translocation, deletions, mutations) are usually found at early stages, they are not sufficient (alone) to determine disease evolution. The latter, indeed, relies on significant "epigenetic" alterations of different normal cell populations within the bone marrow (BM) niche, including the "evasion" from immune-system control. Additionally, MM cells could "educate" the BM immune microenvironment (BM-IM) towards a pro-inflammatory and immunosuppressive phenotype, which ultimately leads to disease evolution, drug resistance, and patients' worse outcome. Indeed, it is not a case that the most important drugs for the treatment of MM include immunomodulatory agents (thalidomide, lenalidomide, and pomalidomide) and monoclonal antibodies (daratumumab, isatuximab, and elotuzumab). On these bases, in this review, we describe the most recent advances in the comprehension of the role of the different cells composing the BM-IM, and we discuss the potential molecular targets, which could represent new opportunities to improve current treatment strategies for MM patients.Multiple myeloma (MM) is the second most common hematologic malignancy, characterized by a multi-step evolutionary path, which starts with an early asymptomatic stage, defined as monoclonal gammopathy of undetermined significance (MGUS) evolving to overt disease in 1% of cases per year, often through an intermediate phase known as "smoldering" MM (sMM). Interestingly, while many genomic alterations (translocation, deletions, mutations) are usually found at early stages, they are not sufficient (alone) to determine disease evolution. The latter, indeed, relies on significant "epigenetic" alterations of different normal cell populations within the bone marrow (BM) niche, including the "evasion" from immune-system control. Additionally, MM cells could "educate" the BM immune microenvironment (BM-IM) towards a pro-inflammatory and immunosuppressive phenotype, which ultimately leads to disease evolution, drug resistance, and patients' worse outcome. Indeed, it is not a case that the most important drugs for the treatment of MM include immunomodulatory agents (thalidomide, lenalidomide, and pomalidomide) and monoclonal antibodies (daratumumab, isatuximab, and elotuzumab). On these bases, in this review, we describe the most recent advances in the comprehension of the role of the different cells composing the BM-IM, and we discuss the potential molecular targets, which could represent new opportunities to improve current treatment strategies for MM patients.
Multiple myeloma (MM) is the second most common hematologic malignancy, characterized by a multi-step evolutionary path, which starts with an early asymptomatic stage, defined as monoclonal gammopathy of undetermined significance (MGUS) evolving to overt disease in 1% of cases per year, often through an intermediate phase known as “smoldering” MM (sMM). Interestingly, while many genomic alterations (translocation, deletions, mutations) are usually found at early stages, they are not sufficient (alone) to determine disease evolution. The latter, indeed, relies on significant “epigenetic” alterations of different normal cell populations within the bone marrow (BM) niche, including the “evasion” from immune-system control. Additionally, MM cells could “educate” the BM immune microenvironment (BM-IM) towards a pro-inflammatory and immunosuppressive phenotype, which ultimately leads to disease evolution, drug resistance, and patients’ worse outcome. Indeed, it is not a case that the most important drugs for the treatment of MM include immunomodulatory agents (thalidomide, lenalidomide, and pomalidomide) and monoclonal antibodies (daratumumab, isatuximab, and elotuzumab). On these bases, in this review, we describe the most recent advances in the comprehension of the role of the different cells composing the BM-IM, and we discuss the potential molecular targets, which could represent new opportunities to improve current treatment strategies for MM patients.
Simple SummaryThe growing interest in immunotherapy for the treatment of multiple myeloma demands a deep knowledge of the complex interactions between malignant and immune cells within the bone marrow. Indeed, understanding the cellular and molecular mechanisms underlying this network should represent the basis for the design of novel patient-oriented biological therapeutic approaches. Here, we describe the role of the main immune components of the myeloma niche along disease evolution and their implication in impairing/improving the response to anti-cancer treatments. Additionally, we provided an overview of the potential weakness of this pro-tumor interplay, evidencing novel therapeutic opportunities, which deserve future clinical investigations.AbstractMultiple myeloma (MM) is the second most common hematologic malignancy, characterized by a multi-step evolutionary path, which starts with an early asymptomatic stage, defined as monoclonal gammopathy of undetermined significance (MGUS) evolving to overt disease in 1% of cases per year, often through an intermediate phase known as “smoldering” MM (sMM). Interestingly, while many genomic alterations (translocation, deletions, mutations) are usually found at early stages, they are not sufficient (alone) to determine disease evolution. The latter, indeed, relies on significant “epigenetic” alterations of different normal cell populations within the bone marrow (BM) niche, including the “evasion” from immune-system control. Additionally, MM cells could “educate” the BM immune microenvironment (BM-IM) towards a pro-inflammatory and immunosuppressive phenotype, which ultimately leads to disease evolution, drug resistance, and patients’ worse outcome. Indeed, it is not a case that the most important drugs for the treatment of MM include immunomodulatory agents (thalidomide, lenalidomide, and pomalidomide) and monoclonal antibodies (daratumumab, isatuximab, and elotuzumab). On these bases, in this review, we describe the most recent advances in the comprehension of the role of the different cells composing the BM-IM, and we discuss the potential molecular targets, which could represent new opportunities to improve current treatment strategies for MM patients.
Author Vigna, Ernesto
Neri, Antonino
Botta, Cirino
Ronchetti, Domenica
Mendicino, Francesco
Morabito, Fortunato
Correale, Pierpaolo
Martino, Enrica Antonia
Gentile, Massimo
AuthorAffiliation 1 Hematology Unit, Annunziata Hospital of Cosenza, 87100 Cosenza, Italy; f.mendicino@aocs.it (F.M.); enricaantoniamartino@libero.it (E.A.M.); ernesto.vigna@aocs.it (E.V.)
6 Biothecnology Research Unit, AO of Cosenza, 87100 Cosenza, Italy
5 Hematology and Bone Marrow Transplant Unit, Hemato-Oncology Department, Augusta Victoria Hospital, East Jerusalem 91191, Israel; fmorabito@avh.org
7 Hematology, Fondazione IRCCS Cà Granda, Ospedale Maggiore Policlinico, 20122 Milano, Italy
2 Unit of Hematology, Department of Health Promotion, Maternal-Infant, Internal and Specialized Medicine of Excellence G. D’Alessandro, University of Palermo, 90127 Palermo, Italy
3 Department of Oncology and Hemato-Oncology, University of Milan, 20122 Milan, Italy; domenica.ronchetti@unimi.it (D.R.); antonino.neri@unimi.it (A.N.)
4 Medical Oncology Unit, Grand Metropolitan Hospital “Bianchi-Melacrino-Morelli”, 89124 Reggio Calabria, Italy; pierpaolo.correale@ospedalerc.it
AuthorAffiliation_xml – name: 5 Hematology and Bone Marrow Transplant Unit, Hemato-Oncology Department, Augusta Victoria Hospital, East Jerusalem 91191, Israel; fmorabito@avh.org
– name: 1 Hematology Unit, Annunziata Hospital of Cosenza, 87100 Cosenza, Italy; f.mendicino@aocs.it (F.M.); enricaantoniamartino@libero.it (E.A.M.); ernesto.vigna@aocs.it (E.V.)
– name: 6 Biothecnology Research Unit, AO of Cosenza, 87100 Cosenza, Italy
– name: 7 Hematology, Fondazione IRCCS Cà Granda, Ospedale Maggiore Policlinico, 20122 Milano, Italy
– name: 3 Department of Oncology and Hemato-Oncology, University of Milan, 20122 Milan, Italy; domenica.ronchetti@unimi.it (D.R.); antonino.neri@unimi.it (A.N.)
– name: 2 Unit of Hematology, Department of Health Promotion, Maternal-Infant, Internal and Specialized Medicine of Excellence G. D’Alessandro, University of Palermo, 90127 Palermo, Italy
– name: 4 Medical Oncology Unit, Grand Metropolitan Hospital “Bianchi-Melacrino-Morelli”, 89124 Reggio Calabria, Italy; pierpaolo.correale@ospedalerc.it
Author_xml – sequence: 1
  givenname: Cirino
  orcidid: 0000-0002-1522-4504
  surname: Botta
  fullname: Botta, Cirino
– sequence: 2
  givenname: Francesco
  orcidid: 0000-0001-6339-632X
  surname: Mendicino
  fullname: Mendicino, Francesco
– sequence: 3
  givenname: Enrica Antonia
  surname: Martino
  fullname: Martino, Enrica Antonia
– sequence: 4
  givenname: Ernesto
  surname: Vigna
  fullname: Vigna, Ernesto
– sequence: 5
  givenname: Domenica
  orcidid: 0000-0002-4824-3445
  surname: Ronchetti
  fullname: Ronchetti, Domenica
– sequence: 6
  givenname: Pierpaolo
  surname: Correale
  fullname: Correale, Pierpaolo
– sequence: 7
  givenname: Fortunato
  surname: Morabito
  fullname: Morabito, Fortunato
– sequence: 8
  givenname: Antonino
  surname: Neri
  fullname: Neri, Antonino
– sequence: 9
  givenname: Massimo
  orcidid: 0000-0002-5256-0726
  surname: Gentile
  fullname: Gentile, Massimo
BookMark eNp1kc1r3DAQxUVIaT6ac6-CXnrZRl-W5R4KJSRNIEsopNeKWXnUVbAlV7ID-e-rJSG0C52LBub3HvM0J-QwpoiEvOfsk5QdO3cQHebCJZdScHlAjgVrxUrrTh3-1R-Rs1IeWC0peavbt-RIKsEkb9gx-blGt4UYylho8vRmHJeI9PIRSkiRhkjXyzCHaUC6fsIhjfCZ3k0Y6fcFy1yRQiH29H6LGSZc5uDqeEp5XmKYA5Z35I2HoeDZy3tKflxd3l9cr27vvt1cfL1dOaXVvJKgNtKA6U3vfGO041z04BvPYSN1q2XbCu90753rWWNqWK0RO_RV0Dno5Cn58uw7LZsRe4dxzjDYKYcR8pNNEOy_kxi29ld6tEZoo5SpBh9fDHL6vctmx1AcDgNETEuxolFGcdVwVtEPe-hDWnKs8XZUJwwzjajU-TPlciolo39dhjO7O5_dO19VNHsKF2bYfXLdOAz_1f0BChejPQ
CitedBy_id crossref_primary_10_3390_hematolrep15010004
crossref_primary_10_1186_s13045_022_01234_2
crossref_primary_10_3390_ijms23062919
crossref_primary_10_3390_ijms24108852
crossref_primary_10_1016_j_clml_2024_08_004
crossref_primary_10_3389_fgene_2021_778715
crossref_primary_10_3389_fonc_2024_1370854
crossref_primary_10_2169_internalmedicine_9097_21
crossref_primary_10_3389_fimmu_2025_1464940
crossref_primary_10_3390_jcm11092513
crossref_primary_10_1016_j_ejmech_2025_117240
crossref_primary_10_1158_1078_0432_CCR_22_1594
crossref_primary_10_1182_bloodadvances_2021005198
crossref_primary_10_3390_jcm10163717
crossref_primary_10_3389_fimmu_2024_1346211
crossref_primary_10_1371_journal_pcbi_1012444
crossref_primary_10_3389_fonc_2022_1014904
crossref_primary_10_3390_biom13111629
crossref_primary_10_1007_s12185_023_03579_x
crossref_primary_10_1097_HS9_0000000000000898
crossref_primary_10_1053_j_seminhematol_2024_10_001
crossref_primary_10_1002_hon_3041
Cites_doi 10.1182/blood-2008-11-191197
10.1038/cmi.2017.35
10.1182/blood.2020006540
10.1126/science.aba7365
10.1182/blood.2019004537
10.7150/jca.53209
10.1038/s41408-017-0019-6
10.3390/cancers13071571
10.1182/hematology.2020000111
10.4161/onci.26663
10.3390/ijms20143548
10.1172/JCI129205
10.1016/j.redox.2020.101611
10.1038/s41590-021-00931-3
10.3324/haematol.11897
10.1038/leu.2015.191
10.1016/j.ctrv.2018.10.005
10.1080/2162402X.2020.1859263
10.1038/leu.2015.228
10.1038/s41467-021-21177-5
10.3389/fimmu.2020.01731
10.1182/blood-2015-01-623975
10.1158/1535-7163.MCT-18-1146
10.3390/cancers12020323
10.3390/cancers13061353
10.1007/s00277-012-1652-6
10.3390/cancers13020226
10.1016/j.leukres.2015.06.003
10.1158/2326-6066.CIR-20-0555
10.1182/blood-2012-08-448548
10.3390/cancers12061554
10.1111/nyas.12485
10.1158/1078-0432.CCR-12-3325
10.1158/2159-8290.CD-20-1575
10.1007/s00262-021-02901-y
10.1007/s00262-015-1711-7
10.1111/ctr.13359
10.1158/1541-7786.MCR-19-0487
10.1182/bloodadvances.2019001410
10.1182/blood-2013-10-530964
10.1038/bcj.2016.118
10.3389/fonc.2021.643490
10.3324/haematol.2019.241513
10.1080/17474086.2020.1744432
10.4049/jimmunol.1400271
10.4049/jimmunol.1203373
10.1038/s41598-020-58859-x
10.3324/haematol.2019.235135
10.1182/blood-2015-12-687749
10.1038/bcj.2017.24
10.1158/2643-3230.BCD-21-0047
10.1038/s41375-020-0947-1
10.1182/blood-2009-05-220285
10.1158/1078-0432.CCR-18-1597
10.1002/ijc.26181
10.1182/blood-2011-08-376236
10.1158/1078-0432.CCR-19-3673
10.1080/17474086.2020.1733405
10.3389/fonc.2014.00348
10.1200/JCO.20.00437
10.1136/jitc-2020-000576
10.1182/bloodadvances.2016003905
10.1182/blood-2006-03-012542
10.2174/1568009617666170330154756
10.3390/cancers13061454
10.1038/s41467-018-07305-8
10.3390/cells10020303
10.3390/cancers13102452
10.18632/oncotarget.4398
10.3390/cancers12123615
10.1038/cddis.2016.211
10.3324/haematol.2014.105866
10.1038/s41568-021-00335-3
10.1186/s13045-019-0714-9
10.1016/S2352-3026(19)30109-7
10.3390/cancers12020305
10.1016/j.canlet.2015.10.040
10.1038/leu.2017.336
10.1158/1078-0432.CCR-16-3192
10.1182/blood-2018-01-825240
10.1080/14737140.2020.1828071
10.1038/s41598-020-73624-w
10.1517/14712598.2013.799130
10.1038/s43018-020-0053-3
10.1038/s41591-021-01245-5
10.1097/CJI.0b013e31825943aa
10.3390/cancers13040625
10.3389/fonc.2020.599098
ContentType Journal Article
Copyright 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2021 by the authors. 2021
Copyright_xml – notice: 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2021 by the authors. 2021
DBID AAYXX
CITATION
3V.
7T5
7TO
7XB
8FE
8FH
8FK
8G5
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
GNUQQ
GUQSH
H94
HCIFZ
LK8
M2O
M7P
MBDVC
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
DOI 10.3390/cancers13133213
DatabaseName CrossRef
ProQuest Central (Corporate)
Immunology Abstracts
Oncogenes and Growth Factors Abstracts
ProQuest Central (purchase pre-March 2016)
ProQuest SciTech Collection
ProQuest Natural Science Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Research Library
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Biological Science Collection
ProQuest Central (New) (NC LIVE)
ProQuest Natural Science Collection
ProQuest One Community College
ProQuest Central
ProQuest Central Student
ProQuest Research Library
AIDS and Cancer Research Abstracts
SciTech Premium Collection
Biological Sciences
ProQuest Research Library
ProQuest Biological Science Database (NC LIVE)
Research Library (Corporate)
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
Publicly Available Content Database
Research Library Prep
ProQuest Central Student
Oncogenes and Growth Factors Abstracts
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
Research Library (Alumni Edition)
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
Natural Science Collection
ProQuest Central Korea
Biological Science Collection
AIDS and Cancer Research Abstracts
ProQuest Research Library
ProQuest Central (New)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest One Academic Eastern Edition
Biological Science Database
ProQuest SciTech Collection
ProQuest One Academic UKI Edition
Immunology Abstracts
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
CrossRef
Publicly Available Content Database
Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 2072-6694
ExternalDocumentID PMC8268448
10_3390_cancers13133213
GroupedDBID ---
53G
5VS
8FE
8FH
8G5
AADQD
AAFWJ
AAYXX
ABDBF
ABUWG
ACUHS
ADBBV
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
CCPQU
CITATION
DIK
DWQXO
E3Z
EBD
ESX
GNUQQ
GUQSH
GX1
HCIFZ
HYE
IAO
IHR
ITC
KQ8
LK8
M2O
M48
M7P
MODMG
M~E
OK1
P6G
PGMZT
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
RPM
TUS
3V.
7T5
7TO
7XB
8FK
H94
MBDVC
PKEHL
PQEST
PQGLB
PQUKI
PRINS
Q9U
7X8
5PM
ID FETCH-LOGICAL-c464t-3a4b38a8d8dcf586c112daf5f1ab36763772fc6dfccd05821366ee9efd8d9ca93
IEDL.DBID M48
ISSN 2072-6694
IngestDate Thu Aug 21 13:59:07 EDT 2025
Fri Jul 11 06:55:37 EDT 2025
Fri Jul 25 09:34:58 EDT 2025
Tue Jul 01 01:27:54 EDT 2025
Thu Apr 24 22:58:27 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 13
Language English
License https://creativecommons.org/licenses/by/4.0
Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c464t-3a4b38a8d8dcf586c112daf5f1ab36763772fc6dfccd05821366ee9efd8d9ca93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
ORCID 0000-0001-6339-632X
0000-0002-1522-4504
0000-0002-5256-0726
0000-0002-4824-3445
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.3390/cancers13133213
PMID 34203150
PQID 2549280852
PQPubID 2032421
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_8268448
proquest_miscellaneous_2548414510
proquest_journals_2549280852
crossref_primary_10_3390_cancers13133213
crossref_citationtrail_10_3390_cancers13133213
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20210628
PublicationDateYYYYMMDD 2021-06-28
PublicationDate_xml – month: 6
  year: 2021
  text: 20210628
  day: 28
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Cancers
PublicationYear 2021
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Suyani (ref_42) 2013; 92
Dietrich (ref_81) 2021; 27
Naicker (ref_46) 2021; 10
Andersen (ref_40) 2015; 39
Cusi (ref_1) 2015; 64
Ramachandran (ref_27) 2013; 190
Sarvaria (ref_72) 2017; 14
Zhang (ref_73) 2017; 7
Phan (ref_56) 2020; 4
Wu (ref_38) 2020; 11
Soriani (ref_69) 2013; 2
Prabhala (ref_19) 2016; 30
ref_17
Camiolo (ref_48) 2020; 36
Bahlis (ref_55) 2007; 109
Quarona (ref_61) 2015; 1335
Botta (ref_10) 2021; 11
Nakamura (ref_4) 2020; 136
Botta (ref_11) 2017; 1
Wudhikarn (ref_79) 2020; 2020
Foglietta (ref_57) 2014; 99
Leone (ref_12) 2013; 19
Panchabhai (ref_41) 2016; 30
Fionda (ref_67) 2018; 70
Maples (ref_87) 2020; 20
Calcinotto (ref_20) 2018; 9
Koduru (ref_52) 2012; 119
ref_25
Perez (ref_16) 2020; 136
Leone (ref_51) 2015; 126
ref_66
ref_21
Lozano (ref_65) 2020; 26
Bustoros (ref_9) 2020; 38
Gorgun (ref_26) 2013; 121
Botta (ref_3) 2012; 35
Rossi (ref_18) 2021; 35
ref_28
Romano (ref_31) 2020; 10
Soriani (ref_68) 2014; 193
Botta (ref_14) 2018; 32
Zheng (ref_35) 2009; 114
Pitari (ref_13) 2015; 6
Botta (ref_22) 2017; 17
Zou (ref_75) 2021; 12
Rossi (ref_24) 2013; 13
Minnie (ref_64) 2020; 130
Chung (ref_53) 2009; 114
Atanackovic (ref_58) 2008; 93
Magidey (ref_34) 2019; 17
ref_71
Feng (ref_59) 2017; 23
Cuce (ref_49) 2019; 12
Gentile (ref_70) 2021; 106
Romano (ref_32) 2017; 7
Kellermayer (ref_77) 2021; 22
ref_36
ref_78
Correale (ref_50) 2012; 130
ref_30
Alameda (ref_76) 2020; 105
Oriol (ref_63) 2020; 13
Botta (ref_15) 2014; 4
Samur (ref_80) 2021; 12
ref_39
Kakiuchi (ref_6) 2021; 21
Oshi (ref_37) 2020; 10
ref_82
Zavidij (ref_43) 2020; 1
Moreno (ref_45) 2019; 25
Works (ref_86) 2019; 18
Botta (ref_2) 2016; 7
Acar (ref_33) 2018; 32
ref_47
ref_88
Murray (ref_54) 2014; 123
ref_85
Usmani (ref_83) 2019; 6
ref_84
Mougiakakos (ref_44) 2021; 9
Ramachandran (ref_29) 2016; 371
Hradska (ref_62) 2020; 13
Krejcik (ref_74) 2016; 128
ref_8
Minnie (ref_60) 2018; 132
ref_5
Botta (ref_7) 2016; 6
Leone (ref_23) 2020; 10
References_xml – volume: 114
  start-page: 555
  year: 2009
  ident: ref_53
  article-title: Indoleamine 2,3-dioxygenase-expressing mature human monocyte-derived dendritic cells expand potent autologous regulatory T cells
  publication-title: Blood
  doi: 10.1182/blood-2008-11-191197
– volume: 14
  start-page: 662
  year: 2017
  ident: ref_72
  article-title: B cell regulation in cancer and anti-tumor immunity
  publication-title: Cell Mol. Immunol.
  doi: 10.1038/cmi.2017.35
– volume: 136
  start-page: 2731
  year: 2020
  ident: ref_4
  article-title: Cancer immunoediting and immune dysregulation in multiple myeloma
  publication-title: Blood
  doi: 10.1182/blood.2020006540
– ident: ref_85
  doi: 10.1126/science.aba7365
– volume: 136
  start-page: 199
  year: 2020
  ident: ref_16
  article-title: Immunogenomic identification and characterization of granulocytic myeloid-derived suppressor cells in multiple myeloma
  publication-title: Blood
  doi: 10.1182/blood.2019004537
– volume: 12
  start-page: 2633
  year: 2021
  ident: ref_75
  article-title: Real-world data combined with studies on Regulatory B Cells for newly diagnosed Multiple Myeloma from a tertiary referral Hospital in South-Western China
  publication-title: J. Cancer
  doi: 10.7150/jca.53209
– volume: 7
  start-page: 649
  year: 2017
  ident: ref_32
  article-title: The NLR and LMR ratio in newly diagnosed MM patients treated upfront with novel agents
  publication-title: Blood Cancer J.
  doi: 10.1038/s41408-017-0019-6
– ident: ref_71
  doi: 10.3390/cancers13071571
– volume: 2020
  start-page: 272
  year: 2020
  ident: ref_79
  article-title: Future of CAR T cells in multiple myeloma
  publication-title: Hematology Am. Soc. Hematol. Educ. Program.
  doi: 10.1182/hematology.2020000111
– volume: 2
  start-page: e26663
  year: 2013
  ident: ref_69
  article-title: Chemotherapy-elicited upregulation of NKG2D and DNAM-1 ligands as a therapeutic target in multiple myeloma
  publication-title: Oncoimmunology
  doi: 10.4161/onci.26663
– ident: ref_30
  doi: 10.3390/ijms20143548
– volume: 130
  start-page: 1565
  year: 2020
  ident: ref_64
  article-title: Immunotherapy of multiple myeloma
  publication-title: J. Clin. Investig.
  doi: 10.1172/JCI129205
– volume: 36
  start-page: 101611
  year: 2020
  ident: ref_48
  article-title: Iron regulates myeloma cell/macrophage interaction and drives resistance to bortezomib
  publication-title: Redox. Biol.
  doi: 10.1016/j.redox.2020.101611
– volume: 22
  start-page: 769
  year: 2021
  ident: ref_77
  article-title: The multiple myeloma microenvironment is defined by an inflammatory stromal cell landscape
  publication-title: Nat Immunol.
  doi: 10.1038/s41590-021-00931-3
– volume: 93
  start-page: 423
  year: 2008
  ident: ref_58
  article-title: CD4+CD25+FOXP3+ T regulatory cells reconstitute and accumulate in the bone marrow of patients with multiple myeloma following allogeneic stem cell transplantation
  publication-title: Haematologica
  doi: 10.3324/haematol.11897
– volume: 30
  start-page: 951
  year: 2016
  ident: ref_41
  article-title: Tumor-associated macrophages and extracellular matrix metalloproteinase inducer in prognosis of multiple myeloma
  publication-title: Leukemia
  doi: 10.1038/leu.2015.191
– volume: 70
  start-page: 255
  year: 2018
  ident: ref_67
  article-title: Translating the anti-myeloma activity of Natural Killer cells into clinical application
  publication-title: Cancer Treat. Rev.
  doi: 10.1016/j.ctrv.2018.10.005
– volume: 10
  start-page: 1859263
  year: 2021
  ident: ref_46
  article-title: Cyclophosphamide alters the tumor cell secretome to potentiate the anti-myeloma activity of daratumumab through augmentation of macrophage-mediated antibody dependent cellular phagocytosis
  publication-title: Oncoimmunology
  doi: 10.1080/2162402X.2020.1859263
– volume: 30
  start-page: 379
  year: 2016
  ident: ref_19
  article-title: Targeting IL-17A in multiple myeloma: A potential novel therapeutic approach in myeloma
  publication-title: Leukemia
  doi: 10.1038/leu.2015.228
– volume: 12
  start-page: 868
  year: 2021
  ident: ref_80
  article-title: Biallelic loss of BCMA as a resistance mechanism to CAR T cell therapy in a patient with multiple myeloma
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-021-21177-5
– volume: 11
  start-page: 1731
  year: 2020
  ident: ref_38
  article-title: Redefining Tumor-Associated Macrophage Subpopulations and Functions in the Tumor Microenvironment
  publication-title: Front. Immunol.
  doi: 10.3389/fimmu.2020.01731
– volume: 126
  start-page: 1443
  year: 2015
  ident: ref_51
  article-title: Dendritic cells accumulate in the bone marrow of myeloma patients where they protect tumor plasma cells from CD8+ T-cell killing
  publication-title: Blood
  doi: 10.1182/blood-2015-01-623975
– volume: 18
  start-page: 2246
  year: 2019
  ident: ref_86
  article-title: Anti-B-cell Maturation Antigen Chimeric Antigen Receptor T cell Function against Multiple Myeloma Is Enhanced in the Presence of Lenalidomide
  publication-title: Mol. Cancer Ther.
  doi: 10.1158/1535-7163.MCT-18-1146
– ident: ref_78
  doi: 10.3390/cancers12020323
– ident: ref_25
  doi: 10.3390/cancers13061353
– volume: 92
  start-page: 669
  year: 2013
  ident: ref_42
  article-title: Tumor-associated macrophages as a prognostic parameter in multiple myeloma
  publication-title: Ann. Hematol.
  doi: 10.1007/s00277-012-1652-6
– ident: ref_17
  doi: 10.3390/cancers13020226
– volume: 39
  start-page: 971
  year: 2015
  ident: ref_40
  article-title: The novel biomarker of alternative macrophage activation, soluble mannose receptor (sMR/sCD206): Implications in multiple myeloma
  publication-title: Leuk. Res.
  doi: 10.1016/j.leukres.2015.06.003
– volume: 9
  start-page: 265
  year: 2021
  ident: ref_44
  article-title: The IKZF1-IRF4/IRF5 Axis Controls Polarization of Myeloma-Associated Macrophages
  publication-title: Cancer Immunol. Res.
  doi: 10.1158/2326-6066.CIR-20-0555
– volume: 121
  start-page: 2975
  year: 2013
  ident: ref_26
  article-title: Tumor-promoting immune-suppressive myeloid-derived suppressor cells in the multiple myeloma microenvironment in humans
  publication-title: Blood
  doi: 10.1182/blood-2012-08-448548
– ident: ref_8
  doi: 10.3390/cancers12061554
– volume: 1335
  start-page: 10
  year: 2015
  ident: ref_61
  article-title: Unraveling the contribution of ectoenzymes to myeloma life and survival in the bone marrow niche
  publication-title: Ann. N. Y. Acad. Sci.
  doi: 10.1111/nyas.12485
– volume: 19
  start-page: 2096
  year: 2013
  ident: ref_12
  article-title: Targeting miR-21 inhibits in vitro and in vivo multiple myeloma cell growth
  publication-title: Clin. Cancer Res.
  doi: 10.1158/1078-0432.CCR-12-3325
– ident: ref_5
  doi: 10.1158/2159-8290.CD-20-1575
– ident: ref_66
  doi: 10.1007/s00262-021-02901-y
– volume: 64
  start-page: 1159
  year: 2015
  ident: ref_1
  article-title: Phase I trial of thymidylate synthase poly-epitope peptide (TSPP) vaccine in advanced cancer patients
  publication-title: Cancer Immunol. Immunother.
  doi: 10.1007/s00262-015-1711-7
– volume: 32
  start-page: e13359
  year: 2018
  ident: ref_33
  article-title: Can Neutrophil-to-Lymphocyte Ratio, Monocyte-to-Lymphocyte Ratio, and Platelet-to-Lymphocyte Ratio at Day +100 be used as a prognostic marker in Multiple Myeloma patients with autologous transplantation?
  publication-title: Clin. Transplant.
  doi: 10.1111/ctr.13359
– volume: 17
  start-page: 2331
  year: 2019
  ident: ref_34
  article-title: Proinflammatory Macrophages Promote Multiple Myeloma Resistance to Bortezomib Therapy
  publication-title: Mol. Cancer Res.
  doi: 10.1158/1541-7786.MCR-19-0487
– volume: 4
  start-page: 3572
  year: 2020
  ident: ref_56
  article-title: Immunomodulatory drugs suppress Th1-inducing ability of dendritic cells but enhance Th2-mediated allergic responses
  publication-title: Blood Adv.
  doi: 10.1182/bloodadvances.2019001410
– volume: 123
  start-page: 3770
  year: 2014
  ident: ref_54
  article-title: CD28-mediated pro-survival signaling induces chemotherapeutic resistance in multiple myeloma
  publication-title: Blood
  doi: 10.1182/blood-2013-10-530964
– volume: 6
  start-page: e511
  year: 2016
  ident: ref_7
  article-title: A gene expression inflammatory signature specifically predicts multiple myeloma evolution and patients survival
  publication-title: Blood Cancer J.
  doi: 10.1038/bcj.2016.118
– volume: 11
  start-page: 1073
  year: 2021
  ident: ref_10
  article-title: Treatment of lenalidomide exposed or refractory multiple myeloma: Network meta-analysis of lenalidomide-sparing regimens
  publication-title: Front. Oncol.
  doi: 10.3389/fonc.2021.643490
– volume: 106
  start-page: 291
  year: 2021
  ident: ref_70
  article-title: Elotuzumab, lenalidomide, and dexamethasone as salvage therapy for patients with multiple myeloma: Italian, multicenter, retrospective clinical experience with 300 cases outside of controlled clinical trials
  publication-title: Haematologica
  doi: 10.3324/haematol.2019.241513
– volume: 13
  start-page: 435
  year: 2020
  ident: ref_63
  article-title: A critical evaluation of pembrolizumab in addition to lenalidomide and dexamethasone for the treatment of multiple myeloma
  publication-title: Expert Rev. Hematol.
  doi: 10.1080/17474086.2020.1744432
– volume: 193
  start-page: 950
  year: 2014
  ident: ref_68
  article-title: Reactive oxygen species- and DNA damage response-dependent NK cell activating ligand upregulation occurs at transcriptional levels and requires the transcriptional factor E2F1
  publication-title: J. Immunol.
  doi: 10.4049/jimmunol.1400271
– volume: 190
  start-page: 3815
  year: 2013
  ident: ref_27
  article-title: Myeloid-derived suppressor cells regulate growth of multiple myeloma by inhibiting T cells in bone marrow
  publication-title: J. Immunol.
  doi: 10.4049/jimmunol.1203373
– volume: 10
  start-page: 1983
  year: 2020
  ident: ref_31
  article-title: High-density neutrophils in MGUS and multiple myeloma are dysfunctional and immune-suppressive due to increased STAT3 downstream signaling
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-020-58859-x
– volume: 105
  start-page: e470
  year: 2020
  ident: ref_76
  article-title: Characterization of freshly isolated bone marrow mesenchymal stromal cells from healthy donors and patients with multiple myeloma: Transcriptional modulation of the microenvironment
  publication-title: Haematologica
  doi: 10.3324/haematol.2019.235135
– volume: 128
  start-page: 384
  year: 2016
  ident: ref_74
  article-title: Daratumumab depletes CD38+ immune regulatory cells, promotes T-cell expansion, and skews T-cell repertoire in multiple myeloma
  publication-title: Blood
  doi: 10.1182/blood-2015-12-687749
– volume: 7
  start-page: e547
  year: 2017
  ident: ref_73
  article-title: Regulatory B cell-myeloma cell interaction confers immunosuppression and promotes their survival in the bone marrow milieu
  publication-title: Blood Cancer J.
  doi: 10.1038/bcj.2017.24
– ident: ref_88
  doi: 10.1158/2643-3230.BCD-21-0047
– volume: 35
  start-page: 823
  year: 2021
  ident: ref_18
  article-title: miR-21 antagonism abrogates Th17 tumor promoting functions in multiple myeloma
  publication-title: Leukemia
  doi: 10.1038/s41375-020-0947-1
– volume: 114
  start-page: 3625
  year: 2009
  ident: ref_35
  article-title: Macrophages are an abundant component of myeloma microenvironment and protect myeloma cells from chemotherapy drug-induced apoptosis
  publication-title: Blood
  doi: 10.1182/blood-2009-05-220285
– volume: 25
  start-page: 3176
  year: 2019
  ident: ref_45
  article-title: The Mechanism of Action of the Anti-CD38 Monoclonal Antibody Isatuximab in Multiple Myeloma
  publication-title: Clin. Cancer Res.
  doi: 10.1158/1078-0432.CCR-18-1597
– volume: 130
  start-page: 1577
  year: 2012
  ident: ref_50
  article-title: Cetuximab +/- chemotherapy enhances dendritic cell-mediated phagocytosis of colon cancer cells and ignites a highly efficient colon cancer antigen-specific cytotoxic T-cell response in vitro
  publication-title: Int. J. Cancer
  doi: 10.1002/ijc.26181
– volume: 119
  start-page: 2302
  year: 2012
  ident: ref_52
  article-title: Dendritic cell-mediated activation-induced cytidine deaminase (AID)-dependent induction of genomic instability in human myeloma
  publication-title: Blood
  doi: 10.1182/blood-2011-08-376236
– volume: 26
  start-page: 4688
  year: 2020
  ident: ref_65
  article-title: Nectin-2 Expression on Malignant Plasma Cells Is Associated with Better Response to TIGIT Blockade in Multiple Myeloma
  publication-title: Clin. Cancer Res.
  doi: 10.1158/1078-0432.CCR-19-3673
– volume: 13
  start-page: 375
  year: 2020
  ident: ref_62
  article-title: Identifying and treating candidates for checkpoint inhibitor therapies in multiple myeloma and lymphoma
  publication-title: Expert Rev. Hematol.
  doi: 10.1080/17474086.2020.1733405
– volume: 4
  start-page: 348
  year: 2014
  ident: ref_15
  article-title: Myeloid-derived suppressor cells in multiple myeloma: Pre-clinical research and translational opportunities
  publication-title: Front. Oncol.
  doi: 10.3389/fonc.2014.00348
– volume: 38
  start-page: 2380
  year: 2020
  ident: ref_9
  article-title: Genomic Profiling of Smoldering Multiple Myeloma Identifies Patients at a High Risk of Disease Progression
  publication-title: J. Clin. Oncol.
  doi: 10.1200/JCO.20.00437
– ident: ref_21
  doi: 10.1136/jitc-2020-000576
– volume: 1
  start-page: 455
  year: 2017
  ident: ref_11
  article-title: Network meta-analysis of randomized trials in multiple myeloma: Efficacy and safety in relapsed/refractory patients
  publication-title: Blood Adv.
  doi: 10.1182/bloodadvances.2016003905
– volume: 109
  start-page: 5002
  year: 2007
  ident: ref_55
  article-title: CD28-mediated regulation of multiple myeloma cell proliferation and survival
  publication-title: Blood
  doi: 10.1182/blood-2006-03-012542
– volume: 17
  start-page: 819
  year: 2017
  ident: ref_22
  article-title: Immunomodulatory Activity of MicroRNAs: Potential Implications for Multiple Myeloma Treatment
  publication-title: Curr. Cancer Drug Targets
  doi: 10.2174/1568009617666170330154756
– ident: ref_39
  doi: 10.3390/cancers13061454
– volume: 9
  start-page: 4832
  year: 2018
  ident: ref_20
  article-title: Microbiota-driven interleukin-17-producing cells and eosinophils synergize to accelerate multiple myeloma progression
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-07305-8
– ident: ref_36
  doi: 10.3390/cells10020303
– ident: ref_82
  doi: 10.3390/cancers13102452
– volume: 6
  start-page: 27343
  year: 2015
  ident: ref_13
  article-title: Inhibition of miR-21 restores RANKL/OPG ratio in multiple myeloma-derived bone marrow stromal cells and impairs the resorbing activity of mature osteoclasts
  publication-title: Oncotarget
  doi: 10.18632/oncotarget.4398
– ident: ref_84
  doi: 10.3390/cancers12123615
– volume: 7
  start-page: e2299
  year: 2016
  ident: ref_2
  article-title: The route to solve the interplay between inflammation, angiogenesis and anti-cancer immune response
  publication-title: Cell Death Dis.
  doi: 10.1038/cddis.2016.211
– volume: 99
  start-page: 1605
  year: 2014
  ident: ref_57
  article-title: The bone marrow of myeloma patients is steadily inhabited by a normal-sized pool of functional regulatory T cells irrespectiveof the disease status
  publication-title: Haematologica
  doi: 10.3324/haematol.2014.105866
– volume: 21
  start-page: 239
  year: 2021
  ident: ref_6
  article-title: Clonal expansion in non-cancer tissues
  publication-title: Nat. Rev. Cancer
  doi: 10.1038/s41568-021-00335-3
– volume: 12
  start-page: 32
  year: 2019
  ident: ref_49
  article-title: Trabectedin triggers direct and NK-mediated cytotoxicity in multiple myeloma
  publication-title: J. Hematol. Oncol.
  doi: 10.1186/s13045-019-0714-9
– volume: 6
  start-page: e448
  year: 2019
  ident: ref_83
  article-title: Pembrolizumab plus lenalidomide and dexamethasone for patients with treatment-naive multiple myeloma (KEYNOTE-185): A randomised, open-label, phase 3 trial
  publication-title: Lancet Haematol.
  doi: 10.1016/S2352-3026(19)30109-7
– ident: ref_47
  doi: 10.3390/cancers12020305
– volume: 371
  start-page: 117
  year: 2016
  ident: ref_29
  article-title: Bone marrow PMN-MDSCs and neutrophils are functionally similar in protection of multiple myeloma from chemotherapy
  publication-title: Cancer Lett.
  doi: 10.1016/j.canlet.2015.10.040
– volume: 32
  start-page: 1003
  year: 2018
  ident: ref_14
  article-title: MiR-29b antagonizes the pro-inflammatory tumor-promoting activity of multiple myeloma-educated dendritic cells
  publication-title: Leukemia
  doi: 10.1038/leu.2017.336
– volume: 23
  start-page: 4290
  year: 2017
  ident: ref_59
  article-title: Targeting CD38 Suppresses Induction and Function of T Regulatory Cells to Mitigate Immunosuppression in Multiple Myeloma
  publication-title: Clin. Cancer Res.
  doi: 10.1158/1078-0432.CCR-16-3192
– volume: 132
  start-page: 1675
  year: 2018
  ident: ref_60
  article-title: Myeloma escape after stem cell transplantation is a consequence of T-cell exhaustion and is prevented by TIGIT blockade
  publication-title: Blood
  doi: 10.1182/blood-2018-01-825240
– volume: 20
  start-page: 1021
  year: 2020
  ident: ref_87
  article-title: Current developments in the combination therapy of relapsed/refractory multiple myeloma
  publication-title: Expert Rev. Anticancer Ther.
  doi: 10.1080/14737140.2020.1828071
– volume: 10
  start-page: 16554
  year: 2020
  ident: ref_37
  article-title: M1 Macrophage and M1/M2 ratio defined by transcriptomic signatures resemble only part of their conventional clinical characteristics in breast cancer
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-020-73624-w
– volume: 13
  start-page: S83
  year: 2013
  ident: ref_24
  article-title: Immunologic microenvironment and personalized treatment in multiple myeloma
  publication-title: Expert Opin. Biol. Ther.
  doi: 10.1517/14712598.2013.799130
– volume: 1
  start-page: 493
  year: 2020
  ident: ref_43
  article-title: Single-cell RNA sequencing reveals compromised immune microenvironment in precursor stages of multiple myeloma
  publication-title: Nat. Cancer
  doi: 10.1038/s43018-020-0053-3
– volume: 27
  start-page: 616
  year: 2021
  ident: ref_81
  article-title: Homozygous BCMA gene deletion in response to anti-BCMA CAR T cells in a patient with multiple myeloma
  publication-title: Nat. Med.
  doi: 10.1038/s41591-021-01245-5
– volume: 35
  start-page: 440
  year: 2012
  ident: ref_3
  article-title: Immune-modulating effects of the newest cetuximab-based chemoimmunotherapy regimen in advanced colorectal cancer patients
  publication-title: J. Immunother.
  doi: 10.1097/CJI.0b013e31825943aa
– ident: ref_28
  doi: 10.3390/cancers13040625
– volume: 10
  start-page: 599098
  year: 2020
  ident: ref_23
  article-title: Actors on the Scene: Immune Cells in the Myeloma Niche
  publication-title: Front. Oncol.
  doi: 10.3389/fonc.2020.599098
SSID ssj0000331767
Score 2.3719149
SecondaryResourceType review_article
Snippet Multiple myeloma (MM) is the second most common hematologic malignancy, characterized by a multi-step evolutionary path, which starts with an early...
Simple SummaryThe growing interest in immunotherapy for the treatment of multiple myeloma demands a deep knowledge of the complex interactions between...
SourceID pubmedcentral
proquest
crossref
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
StartPage 3213
SubjectTerms Adaptive immunity
Angiogenesis
Antigens
Apoptosis
Benign monoclonal gammopathy
Bone marrow
Cancer therapies
Dendritic cells
Disease
Disease resistance
Drug resistance
Drugs
Epigenetics
Evolution
Immune evasion
Immune system
Immunomodulation
Immunosuppressive agents
Immunotherapy
Inflammation
Lymphocytes
Malignancy
Medical prognosis
Microbiota
Microenvironments
Molecular modelling
Monoclonal antibodies
Multiple myeloma
Neutrophils
Patients
Phenotypes
Review
Thalidomide
Tumors
SummonAdditionalLinks – databaseName: ProQuest Central (New) (NC LIVE)
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3dS8MwED90gvgifuL8IoIPvtS1TZumvojKRIWKiIM9WdJ84EBbtduD_725LtucoM9JCFySu99d7n4HcBwq31jDr70k5NKLWBhYPSikZyw6F-hBp002YXbPbnrRXT_uu4Bb7dIqJzqxUdSqkhgj76AjE3ILEMLz9w8Pu0bh76probEIS1YFc96Cpcvu_cPjNMriU2sfWTLm9LEb-x2JwvysA2qdszCg8-ZohjHnMyR_mJzrNVh1WJFcjA93HRZ0uQHLmfsN34TnTGPd7qB-q0llyC2WemhisTFGwMigJJnLFiTZl36t3sQZwfwR0gQ58boRUSryNKvAssMIx0dlQ7O6Bb3r7tPVjef6JXgyYtHQoyIqKBdccSVNzJm0WEoJE5tAFEjMRi2SNpIpI6XysUCWMqZ1qo1dkEqR0m1olVWpd4D4ihmlRZEgW09AdVHEMoh5kiY64FLQNpxOxJZLRyaOPS1ec-tUoJzzX3Juw8l0wfuYR-PvqfuTc8jdg6rz2fG34Wg6bJ8C_m-IUlejZg6PsPOw34Zk7vymWyKZ9vxIOXhpSLU50t5EfPf_zfdgJcSkFp95Id-H1vBzpA8sKhkWh-7qfQNh9ucp
  priority: 102
  providerName: ProQuest
Title Mechanisms of Immune Evasion in Multiple Myeloma: Open Questions and Therapeutic Opportunities
URI https://www.proquest.com/docview/2549280852
https://www.proquest.com/docview/2548414510
https://pubmed.ncbi.nlm.nih.gov/PMC8268448
Volume 13
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bS9xAFD5UBfGl2FZxvSxT6IMv0WQmmUwKIrZorRARcWGfDJO54MKarXuB-u89J5vd7RYFn2cmCWcu5zuZc74P4Bu3oUfH74KUKxPEkkd4DmoTeETnmiLorM4mzK_lZSe-6ibdhRxQY8DRq6Ed6Ul1hv2jv0_Pp7jhTyjixJD92JB9hqNIYLzFScF2Dd1SSnIGeYP162NZoKusFWV5mPJAyiyeUv289oxlL7WAnsuJk_94ootN-NhASHY2nfNP8MFVn2E9by7Jv8B97qictzd6HLGBZ7-pAsQxhMz0Y4z1KpY3SYQsf3b9waP-ziithNX_PmkVMl1ZdrcozMJmMtCkqtlXt6BzcX738zJoZBQCE8t4HAgdl0JpZZU1PlHSIMSy2ic-0iXxtQkE2N5I642xIdXNCimdy5zHAZnRmdiG1WpQuR1goZXeOl2mROITCVeWiYkSlWapi5TRogVHM7MVpuEYJ6mLfoGxBtm5-M_OLTicD_gzpdd4u-v-bB6K2TIpKLzlCmEjb8HXeTPuELr20JUbTOo-KiZB4rAF6dL8zV9JHNvLLVXvoebaVsSGE6vd93_nHmxwynsJZcDVPqyOhxN3gMBlXLZh7cf59c1tG1Z-daN2vTxfAHJK8dI
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3da9swED9KCtteyj5Z2m7TYIO9eLUlW1YGo-yjJVnrMEYKfZon64MFWrutE0b_qf2NvXPsZBlsb32WjPDpdPc76e53AK-4DT06fhekXJkgljxCO6hN4BGda4qgB002YTaWw5P4y2lyugG_u1oYSqvsbGJjqG1l6I58jwIZrhAg8P2Ly4C6RtHratdCY6EWR-76F4Zs9fvRZ9zf15wfHkw-DYO2q0BgYhnPAqHjQiitrLLGJ0oaRBxW-8RHuiD6MoF40xtpvTE2pDJSIaVzA-fxg4HRRL6EJn8zFjLkPdj8eDD--m15qxMK9McyXXAI4Y-Ge4Y276qOBAaDPBLr7m-FadczMv9wcYf3YavFpuzDQpkewIYrH8KdrH19fwTfM0d1wtP6vGaVZyMqLXEMsTjduLFpybI2O5Fl1-6sOtfvGOWrsOZSldSb6dKyyariC4cJ_s_Lhtb1MZzciiSfQK-sSvcUWGilt04XKbEDRcIVRWKiRKWD1EXKaNGHt53YctOSl1MPjbMcgxiSc_6XnPvwZvnBxYK3499Td7t9yNsDXOcrdevDy-UwHj16T9Glq-bNHBVTp-OwD-na_i2XJPLu9ZFy-rMh8VZEsxOr7f8v_gLuDifZcX48Gh_twD1OCTWhDLjahd7sau6eISKaFc9bNWTw47Y1_way6SXp
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3da9RAEB_KFYov4iderbqCgi_xkt1ksyeI2I-jZ81RpIU-GTf7gQdtUps7pP9a_7rO5JI7T9C3Pu-GJTOz87UzvwF4w23o0fC7IOXKBLHkEepBbQKP3rmmCHrYVBNmE3l4Gn85S8424KbrhaGyyk4nNoraVoZy5AMKZLhCB4EPfFsWcbw_-nT5K6AJUvTS2o3TWIjIkbv-jeFb_XG8j7x-y_no4GTvMGgnDAQmlvEsEDouhNLKKmt8oqRB78Nqn_hIFwRlJtD39EZab4wNqaVUSOnc0Hn8YGg0ATGh-t9MKSrqwebuweT42zLDEwq0zTJd4AnhT4cDQ4y8qiOBgSGPxLopXPm369WZf5i70QO43_qp7PNCsB7ChisfwVbWvsQ_hu-Zo57haX1Rs8qzMbWZOIZ-OWXf2LRkWVupyLJrd15d6A-MaldYk2AlUWe6tOxk1f2FyxQKzMsG4vUJnN4JJZ9Cr6xK9wxYaKW3ThcpIQVFwhVFYqJEpcPURcpo0Yf3Hdly0wKZ0zyN8xwDGqJz_hed-_Bu-cHlAsPj31t3Oj7k7WWu85Xo9eH1chmvIb2t6NJV82aPimnqcdiHdI1_yyMJyHt9pZz-bAC9FUHuxGr7_4e_gi2U-PzreHL0HO5xqq0JZcDVDvRmV3P3Ap2jWfGylUIGP-5a8G8By9oqHg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mechanisms+of+Immune+Evasion+in+Multiple+Myeloma%3A+Open+Questions+and+Therapeutic+Opportunities&rft.jtitle=Cancers&rft.au=Botta%2C+Cirino&rft.au=Mendicino%2C+Francesco&rft.au=Martino%2C+Enrica+Antonia&rft.au=Vigna%2C+Ernesto&rft.date=2021-06-28&rft.issn=2072-6694&rft.eissn=2072-6694&rft.volume=13&rft.issue=13&rft.spage=3213&rft_id=info:doi/10.3390%2Fcancers13133213&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_cancers13133213
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2072-6694&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2072-6694&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2072-6694&client=summon