Smart biomimetic metal organic frameworks based on ROS-ferroptosis-glycolysis regulation for enhanced tumor chemo-immunotherapy

Antitumor immunotherapy is limited by low tumor immunogenicity and immunosuppressive microenvironment (TIME), which could be improved by “ROS-ferroptosis-glycolysis regulation” strategy. Herein, a cancer cell membrane coated metal organic framework (MOF) loading with glucose oxidase (GOx) and doxoru...

Full description

Saved in:
Bibliographic Details
Published inJournal of controlled release Vol. 334; pp. 21 - 33
Main Authors Yang, Jie, Ma, Siyu, Xu, Rui, Wei, Yawen, Zhang, Jun, Zuo, Tiantian, Wang, Zhihua, Deng, Huizi, Yang, Ning, Shen, Qi
Format Journal Article
LanguageEnglish
Published Netherlands Elsevier B.V 10.06.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Antitumor immunotherapy is limited by low tumor immunogenicity and immunosuppressive microenvironment (TIME), which could be improved by “ROS-ferroptosis-glycolysis regulation” strategy. Herein, a cancer cell membrane coated metal organic framework (MOF) loading with glucose oxidase (GOx) and doxorubicin (DOX) was constructed (denoted as mFe(SS)/DG). Benefiting from the homotypic targeting of cancer cell membrane, the nanoplatform effectively accumulated in tumors. mFe(SS)/DG based on coordination between Fe3+ and disulfide-bearing ligand scavenged GSH and downregulated glutathione peroxide 4 (GPX4) to trigger ferroptosis. GOx catalyzed glucose to generate abundant H2O2 for enhancing Fenton reaction, resulting in excessive ROS in tumors. The ROS burst simultaneously promoted ferroptosis and inhibited glycolysis. Ferroptosis combined with DOX induced immunogenic cell death (ICD) and released tumor antigens to initiate antitumor immunity. Glycolysis repression remodeled TIME by decreasing lactate to solidify and boost the antitumor immunity. The smart biomimetic nanoplatform integrates tumor metabolism and immunity based on ROS-ferroptosis-glycolysis regulation, providing a potential anti-tumor strategy. [Display omitted]
AbstractList Antitumor immunotherapy is limited by low tumor immunogenicity and immunosuppressive microenvironment (TIME), which could be improved by “ROS-ferroptosis-glycolysis regulation” strategy. Herein, a cancer cell membrane coated metal organic framework (MOF) loading with glucose oxidase (GOx) and doxorubicin (DOX) was constructed (denoted as mFe(SS)/DG). Benefiting from the homotypic targeting of cancer cell membrane, the nanoplatform effectively accumulated in tumors. mFe(SS)/DG based on coordination between Fe³⁺ and disulfide-bearing ligand scavenged GSH and downregulated glutathione peroxide 4 (GPX4) to trigger ferroptosis. GOx catalyzed glucose to generate abundant H₂O₂ for enhancing Fenton reaction, resulting in excessive ROS in tumors. The ROS burst simultaneously promoted ferroptosis and inhibited glycolysis. Ferroptosis combined with DOX induced immunogenic cell death (ICD) and released tumor antigens to initiate antitumor immunity. Glycolysis repression remodeled TIME by decreasing lactate to solidify and boost the antitumor immunity. The smart biomimetic nanoplatform integrates tumor metabolism and immunity based on ROS-ferroptosis-glycolysis regulation, providing a potential anti-tumor strategy.
Antitumor immunotherapy is limited by low tumor immunogenicity and immunosuppressive microenvironment (TIME), which could be improved by "ROS-ferroptosis-glycolysis regulation" strategy. Herein, a cancer cell membrane coated metal organic framework (MOF) loading with glucose oxidase (GOx) and doxorubicin (DOX) was constructed (denoted as mFe(SS)/DG). Benefiting from the homotypic targeting of cancer cell membrane, the nanoplatform effectively accumulated in tumors. mFe(SS)/DG based on coordination between Fe and disulfide-bearing ligand scavenged GSH and downregulated glutathione peroxide 4 (GPX4) to trigger ferroptosis. GOx catalyzed glucose to generate abundant H O for enhancing Fenton reaction, resulting in excessive ROS in tumors. The ROS burst simultaneously promoted ferroptosis and inhibited glycolysis. Ferroptosis combined with DOX induced immunogenic cell death (ICD) and released tumor antigens to initiate antitumor immunity. Glycolysis repression remodeled TIME by decreasing lactate to solidify and boost the antitumor immunity. The smart biomimetic nanoplatform integrates tumor metabolism and immunity based on ROS-ferroptosis-glycolysis regulation, providing a potential anti-tumor strategy.
Antitumor immunotherapy is limited by low tumor immunogenicity and immunosuppressive microenvironment (TIME), which could be improved by "ROS-ferroptosis-glycolysis regulation" strategy. Herein, a cancer cell membrane coated metal organic framework (MOF) loading with glucose oxidase (GOx) and doxorubicin (DOX) was constructed (denoted as mFe(SS)/DG). Benefiting from the homotypic targeting of cancer cell membrane, the nanoplatform effectively accumulated in tumors. mFe(SS)/DG based on coordination between Fe3+ and disulfide-bearing ligand scavenged GSH and downregulated glutathione peroxide 4 (GPX4) to trigger ferroptosis. GOx catalyzed glucose to generate abundant H2O2 for enhancing Fenton reaction, resulting in excessive ROS in tumors. The ROS burst simultaneously promoted ferroptosis and inhibited glycolysis. Ferroptosis combined with DOX induced immunogenic cell death (ICD) and released tumor antigens to initiate antitumor immunity. Glycolysis repression remodeled TIME by decreasing lactate to solidify and boost the antitumor immunity. The smart biomimetic nanoplatform integrates tumor metabolism and immunity based on ROS-ferroptosis-glycolysis regulation, providing a potential anti-tumor strategy.Antitumor immunotherapy is limited by low tumor immunogenicity and immunosuppressive microenvironment (TIME), which could be improved by "ROS-ferroptosis-glycolysis regulation" strategy. Herein, a cancer cell membrane coated metal organic framework (MOF) loading with glucose oxidase (GOx) and doxorubicin (DOX) was constructed (denoted as mFe(SS)/DG). Benefiting from the homotypic targeting of cancer cell membrane, the nanoplatform effectively accumulated in tumors. mFe(SS)/DG based on coordination between Fe3+ and disulfide-bearing ligand scavenged GSH and downregulated glutathione peroxide 4 (GPX4) to trigger ferroptosis. GOx catalyzed glucose to generate abundant H2O2 for enhancing Fenton reaction, resulting in excessive ROS in tumors. The ROS burst simultaneously promoted ferroptosis and inhibited glycolysis. Ferroptosis combined with DOX induced immunogenic cell death (ICD) and released tumor antigens to initiate antitumor immunity. Glycolysis repression remodeled TIME by decreasing lactate to solidify and boost the antitumor immunity. The smart biomimetic nanoplatform integrates tumor metabolism and immunity based on ROS-ferroptosis-glycolysis regulation, providing a potential anti-tumor strategy.
Antitumor immunotherapy is limited by low tumor immunogenicity and immunosuppressive microenvironment (TIME), which could be improved by “ROS-ferroptosis-glycolysis regulation” strategy. Herein, a cancer cell membrane coated metal organic framework (MOF) loading with glucose oxidase (GOx) and doxorubicin (DOX) was constructed (denoted as mFe(SS)/DG). Benefiting from the homotypic targeting of cancer cell membrane, the nanoplatform effectively accumulated in tumors. mFe(SS)/DG based on coordination between Fe3+ and disulfide-bearing ligand scavenged GSH and downregulated glutathione peroxide 4 (GPX4) to trigger ferroptosis. GOx catalyzed glucose to generate abundant H2O2 for enhancing Fenton reaction, resulting in excessive ROS in tumors. The ROS burst simultaneously promoted ferroptosis and inhibited glycolysis. Ferroptosis combined with DOX induced immunogenic cell death (ICD) and released tumor antigens to initiate antitumor immunity. Glycolysis repression remodeled TIME by decreasing lactate to solidify and boost the antitumor immunity. The smart biomimetic nanoplatform integrates tumor metabolism and immunity based on ROS-ferroptosis-glycolysis regulation, providing a potential anti-tumor strategy. [Display omitted]
Author Xu, Rui
Wei, Yawen
Wang, Zhihua
Yang, Jie
Deng, Huizi
Ma, Siyu
Zhang, Jun
Zuo, Tiantian
Yang, Ning
Shen, Qi
Author_xml – sequence: 1
  givenname: Jie
  surname: Yang
  fullname: Yang, Jie
– sequence: 2
  givenname: Siyu
  surname: Ma
  fullname: Ma, Siyu
– sequence: 3
  givenname: Rui
  surname: Xu
  fullname: Xu, Rui
– sequence: 4
  givenname: Yawen
  surname: Wei
  fullname: Wei, Yawen
– sequence: 5
  givenname: Jun
  surname: Zhang
  fullname: Zhang, Jun
– sequence: 6
  givenname: Tiantian
  surname: Zuo
  fullname: Zuo, Tiantian
– sequence: 7
  givenname: Zhihua
  surname: Wang
  fullname: Wang, Zhihua
– sequence: 8
  givenname: Huizi
  surname: Deng
  fullname: Deng, Huizi
– sequence: 9
  givenname: Ning
  surname: Yang
  fullname: Yang, Ning
– sequence: 10
  givenname: Qi
  surname: Shen
  fullname: Shen, Qi
  email: qshen@sjtu.edu.cn
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33872626$$D View this record in MEDLINE/PubMed
BookMark eNqNkcFu1DAURS1URKeFTwBlySbBju0kFguEKihIlSpRWFu28zLjIbYH2ymaFb9eDzOwYFM2fn7SOW9x7wU688EDQi8Jbggm3ZttszXBR5ibFrekwazBhD5BKzL0tGZC8DO0KtxQ046Lc3SR0hZjzCnrn6FzSoe-7dpuhX7dORVzpW1w1kG2piqvmqsQ18qXbYrKwc8Qv6dKqwRjFXz15fauniDGsMsh2VSv570J8758qwjrZVbZFmoKsQK_Ud4UKy-urGYDLtTWucWHvIGodvvn6Omk5gQvTvMSffv44evVp_rm9vrz1fub2rCO5ZoqTHvMeGvGgWAKIwjFTa9HrSYxKix0S7XhBAZNelYAzEEYYYrWYkU0vUSvj3d3MfxYIGXpbDIwz8pDWJJsOSeC9bij_4ES3g2cElHQVyd00Q5GuYu2xLmXf_ItAD8CJoaUIkx_EYLloUe5lace5aFHiZksPRbv7T-esfl3rjkqOz9qvzvaUBK9txBlMhYORdgIJssx2EcuPACbjb-Y
CitedBy_id crossref_primary_10_1007_s40820_024_01399_0
crossref_primary_10_1155_2022_7449941
crossref_primary_10_1039_D2BM00595F
crossref_primary_10_3892_etm_2023_12317
crossref_primary_10_1016_j_mtbio_2023_100780
crossref_primary_10_1016_j_ijbiomac_2022_11_152
crossref_primary_10_1021_acsanm_4c01358
crossref_primary_10_1021_acs_jmedchem_4c01680
crossref_primary_10_1039_D3NJ05245A
crossref_primary_10_1039_D3DT02543H
crossref_primary_10_1016_j_cej_2024_149518
crossref_primary_10_3389_fonc_2023_1179947
crossref_primary_10_3389_fonc_2023_1183405
crossref_primary_10_1016_j_nantod_2024_102411
crossref_primary_10_1186_s12951_022_01375_z
crossref_primary_10_3390_ma16196572
crossref_primary_10_1080_1061186X_2024_2349112
crossref_primary_10_1002_EXP_20210106
crossref_primary_10_1016_j_actbio_2022_07_055
crossref_primary_10_26599_NR_2025_94907298
crossref_primary_10_1016_j_nano_2023_102678
crossref_primary_10_3892_etm_2022_11430
crossref_primary_10_1002_mba2_96
crossref_primary_10_1002_smll_202207077
crossref_primary_10_1016_j_colsurfb_2025_114586
crossref_primary_10_1021_acsapm_2c00556
crossref_primary_10_1016_j_ejmech_2022_114801
crossref_primary_10_1016_j_mtbio_2022_100532
crossref_primary_10_1016_j_mtbio_2025_101521
crossref_primary_10_1186_s12951_024_02921_7
crossref_primary_10_3389_fimmu_2022_973601
crossref_primary_10_1002_wnan_2010
crossref_primary_10_3390_pharmaceutics13060853
crossref_primary_10_1021_acsami_2c00574
crossref_primary_10_1039_D1TB01031J
crossref_primary_10_1002_advs_202204932
crossref_primary_10_1002_smtd_202300230
crossref_primary_10_1016_j_jconrel_2024_06_020
crossref_primary_10_1186_s40164_023_00427_w
crossref_primary_10_1186_s12951_021_01074_1
crossref_primary_10_1016_j_actbio_2023_05_018
crossref_primary_10_3390_nano13111779
crossref_primary_10_1007_s40843_024_3176_5
crossref_primary_10_1016_j_jconrel_2022_05_003
crossref_primary_10_1002_advs_202100997
crossref_primary_10_1016_j_cej_2023_142372
crossref_primary_10_2147_IJN_S463144
crossref_primary_10_1039_D3BM02133E
crossref_primary_10_1016_j_cej_2023_143730
crossref_primary_10_3389_fphar_2024_1490139
crossref_primary_10_1016_j_critrevonc_2022_103772
crossref_primary_10_1016_j_ijbiomac_2024_133942
crossref_primary_10_1016_j_jconrel_2021_12_016
crossref_primary_10_1021_acsnano_3c07885
crossref_primary_10_1016_j_cej_2022_140688
crossref_primary_10_1002_smtd_202201406
crossref_primary_10_1016_j_mattod_2023_06_001
crossref_primary_10_1002_chem_202401713
crossref_primary_10_3389_fphar_2021_735965
crossref_primary_10_1002_adfm_202401272
crossref_primary_10_1021_acsabm_2c00199
crossref_primary_10_1186_s12951_024_02968_6
crossref_primary_10_1002_mabi_202300093
crossref_primary_10_1016_j_matdes_2022_111068
crossref_primary_10_1007_s42247_024_00939_z
crossref_primary_10_3390_antiox11050853
crossref_primary_10_3389_fchem_2021_768248
crossref_primary_10_1002_smtd_202201412
crossref_primary_10_1016_j_actbio_2024_04_032
crossref_primary_10_1016_j_bbcan_2023_188890
crossref_primary_10_1002_adfm_202309727
crossref_primary_10_1039_D4MA00345D
crossref_primary_10_1016_j_cej_2022_140455
crossref_primary_10_3390_antiox13091109
crossref_primary_10_1002_advs_202306580
crossref_primary_10_1016_j_nantod_2023_102033
crossref_primary_10_3389_fchem_2022_1090795
crossref_primary_10_3892_ol_2021_13042
crossref_primary_10_1007_s11427_022_2340_4
crossref_primary_10_2147_IJGM_S354682
crossref_primary_10_2174_0118715206278427231215111526
crossref_primary_10_3389_fimmu_2024_1447817
crossref_primary_10_1021_jacs_1c11507
crossref_primary_10_1007_s12598_024_02779_6
crossref_primary_10_1016_j_actbio_2023_10_037
crossref_primary_10_2217_nnm_2023_0270
crossref_primary_10_1186_s12951_023_01998_w
crossref_primary_10_1002_adfm_202308589
crossref_primary_10_1016_j_cej_2024_152397
crossref_primary_10_1016_j_jcis_2023_12_042
crossref_primary_10_1016_j_ijbiomac_2024_129391
crossref_primary_10_1016_j_mattod_2022_03_013
crossref_primary_10_1002_adma_202416481
crossref_primary_10_1007_s11064_023_03963_3
crossref_primary_10_1016_j_cej_2023_147466
crossref_primary_10_3390_nano14131081
crossref_primary_10_1021_acsnano_1c06777
crossref_primary_10_2139_ssrn_3966264
crossref_primary_10_1002_adfm_202300575
crossref_primary_10_1002_adfm_202215022
crossref_primary_10_3390_ijms25010075
crossref_primary_10_3390_vaccines11091440
crossref_primary_10_1002_smll_202401650
crossref_primary_10_3892_or_2021_8159
crossref_primary_10_1007_s13346_023_01500_x
crossref_primary_10_1016_j_media_2023_103040
crossref_primary_10_1039_D1BM00721A
crossref_primary_10_3389_fchem_2022_868630
crossref_primary_10_1016_j_cpt_2022_10_002
crossref_primary_10_1016_j_jconrel_2024_06_059
crossref_primary_10_1002_adhm_202303533
crossref_primary_10_1039_D1CC05157A
crossref_primary_10_3390_ijms24054685
crossref_primary_10_1002_adfm_202205013
crossref_primary_10_1016_j_cej_2023_147464
crossref_primary_10_1080_17425247_2024_2379937
crossref_primary_10_1016_j_mtbio_2024_101134
crossref_primary_10_1016_j_actbio_2024_11_004
crossref_primary_10_1016_j_carbpol_2023_121424
crossref_primary_10_1039_D3MA00389B
crossref_primary_10_1016_j_ccr_2023_215330
crossref_primary_10_1186_s12967_023_04425_8
crossref_primary_10_1039_D1CS01011E
crossref_primary_10_1039_D4MD00261J
crossref_primary_10_1016_j_biomaterials_2023_122157
crossref_primary_10_1039_D3TB01325A
crossref_primary_10_1186_s40104_024_01045_0
crossref_primary_10_1038_s41551_024_01221_7
crossref_primary_10_1002_adfm_202111784
Cites_doi 10.1038/cdd.2015.158
10.1016/j.bbrc.2019.01.090
10.1146/annurev-immunol-032712-100008
10.1038/nri2545
10.1021/acsnano.8b05042
10.1016/j.trecan.2020.02.003
10.1038/s41573-018-0006-z
10.1126/science.1229568
10.4161/21624011.2014.968434
10.1158/0008-5472.CAN-13-1265
10.1111/imcb.12170
10.1016/j.ccell.2017.02.008
10.1002/jcb.21187
10.1038/nrc3038
10.1021/acsnano.8b09786
10.1126/science.1160809
10.1016/j.freeradbiomed.2017.09.008
10.1016/j.apcatb.2016.01.015
10.1038/nchembio.1416
10.1021/nl500618u
10.1016/j.freeradbiomed.2018.09.043
10.1016/S0014-5793(99)00696-1
10.1038/nrc3380
10.1016/j.yjmcc.2016.01.009
10.1111/jcmm.14511
10.1038/emboj.2011.497
10.1016/j.biomaterials.2013.01.084
10.1016/j.canlet.2018.03.046
10.1038/nature00858
10.1016/j.immuni.2013.07.012
10.1016/j.cell.2012.05.009
10.1016/j.cell.2013.12.010
10.1038/s41577-020-0406-2
10.1038/s41467-017-01050-0
10.1038/s41571-018-0142-8
10.3389/fimmu.2018.00353
10.1186/s12885-017-3418-y
10.1111/jcmm.14356
10.1002/smll.201903895
10.1021/acsnano.8b06399
10.1038/s41467-017-00424-8
10.1039/D0CS00883D
10.1182/blood-2006-07-035972
10.1007/s00018-016-2194-1
10.1038/nchembio.2261
10.1002/anie.201902612
10.1021/acsnano.6b04695
10.1021/mp300274g
10.1002/anie.201610682
10.1111/imr.12172
10.1172/JCI83871
10.1158/0008-5472.CAN-17-1307
ContentType Journal Article
Copyright 2021 Elsevier B.V.
Copyright © 2021 Elsevier B.V. All rights reserved.
Copyright_xml – notice: 2021 Elsevier B.V.
– notice: Copyright © 2021 Elsevier B.V. All rights reserved.
DBID AAYXX
CITATION
NPM
7X8
7S9
L.6
DOI 10.1016/j.jconrel.2021.04.013
DatabaseName CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA
PubMed
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Pharmacy, Therapeutics, & Pharmacology
EISSN 1873-4995
EndPage 33
ExternalDocumentID 33872626
10_1016_j_jconrel_2021_04_013
S0168365921001796
Genre Journal Article
GroupedDBID ---
--K
--M
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
53G
5GY
5VS
7-5
71M
8P~
9JM
AABNK
AABXZ
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AATCM
AAXUO
ABFNM
ABFRF
ABJNI
ABMAC
ABOCM
ABYKQ
ABZDS
ACDAQ
ACGFO
ACGFS
ACIUM
ACRLP
ADBBV
ADEZE
AEBSH
AEFWE
AEKER
AENEX
AEZYN
AFKWA
AFRZQ
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AIEXJ
AIKHN
AITUG
AJOXV
ALCLG
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLXMC
C45
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HMT
IHE
J1W
KOM
M34
M41
MO0
N9A
O-L
O9-
OAUVE
OGGZJ
OVD
OZT
P-8
P-9
P2P
PC.
Q38
RNS
ROL
RPZ
SCC
SDF
SDG
SDP
SES
SPC
SPCBC
SSM
SSP
SSZ
T5K
TEORI
~G-
.GJ
29K
3O-
AAHBH
AAQXK
AATTM
AAXKI
AAYOK
AAYWO
AAYXX
ABWVN
ABXDB
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AHHHB
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
D-I
EJD
FEDTE
FGOYB
G-2
HVGLF
HZ~
R2-
RIG
SEW
SPT
SSH
WUQ
EFKBS
NPM
7X8
7S9
L.6
ID FETCH-LOGICAL-c464t-3a0370452cd8103ede9a5c7bdbaf9da09b23bc51e8b17403e05e9c9ca0320a1b3
IEDL.DBID .~1
ISSN 0168-3659
1873-4995
IngestDate Fri Jul 11 10:25:51 EDT 2025
Fri Jul 11 00:00:21 EDT 2025
Mon Jul 21 06:09:45 EDT 2025
Thu Apr 24 22:53:05 EDT 2025
Tue Jul 01 04:10:02 EDT 2025
Fri Feb 23 02:44:34 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Glycolysis
Ferroptosis
Immunosuppressive microenvironment (TIME)
Metal organic framework (MOF)
Immunogenic cell death (ICD)
Reactive oxygen species (ROS)
Language English
License Copyright © 2021 Elsevier B.V. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c464t-3a0370452cd8103ede9a5c7bdbaf9da09b23bc51e8b17403e05e9c9ca0320a1b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 33872626
PQID 2515685319
PQPubID 23479
PageCount 13
ParticipantIDs proquest_miscellaneous_2551947063
proquest_miscellaneous_2515685319
pubmed_primary_33872626
crossref_primary_10_1016_j_jconrel_2021_04_013
crossref_citationtrail_10_1016_j_jconrel_2021_04_013
elsevier_sciencedirect_doi_10_1016_j_jconrel_2021_04_013
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-06-10
PublicationDateYYYYMMDD 2021-06-10
PublicationDate_xml – month: 06
  year: 2021
  text: 2021-06-10
  day: 10
PublicationDecade 2020
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
PublicationTitle Journal of controlled release
PublicationTitleAlternate J Control Release
PublicationYear 2021
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Feng, Xie, Wang, Gai, He, Yang, Yang, Lin (bb0150) 2018; 12
Yang, SriRamaratnam, Welsch, Shimada, Skouta, Viswanathan, Cheah, Clemons, Shamji, Clish, Brown, Girotti, Cornish, Schreiber, Stockwell (bb0160) 2014; 156
Certo, Tsai, Pucino, Ho, Mauro (bb0055) 2021; 21
Lu, Wang, Ding, Wang, Lu, Wang, He, Piao, Chi, Luo, Ge (bb0100) 2018; 425
Barbi, Pardoll, Pan (bb0215) 2014; 259
Wang, Li, Qiao, Hu, Liao, Chen, Wu, Wu, Zhao, Liu, Chen, Ma, Kim, Sun, Davis, Chen, Tian, Hyeon, Ling (bb0175) 2018; 12
Chen, Mellman (bb0015) 2013; 39
Bolobajev, Trapido, Goi (bb0125) 2016; 187
Wen, Liu, Kang, Zhou, Tang (bb0075) 2019; 510
Kroemer, Galluzzi, Kepp, Zitvogel (bb0080) 2013; 31
Reed, Pellecchia (bb0165) 2012; 149
Koppenol, Bounds, Dang (bb0050) 2011; 11
Anderson, Stromnes, Greenberg (bb0030) 2017; 31
Remant Bahadur, Thapa, Xu (bb0135) 2012; 9
Fan, Lu, Huang, Liu, Yang, Wang, Yu, Liu, Hu, He, Qu, Wang, Chen (bb0115) 2017; 56
Guo, Gu, Jiang, Ahmed, Zhang, Gu (bb0090) 2016; 91
He, Huang, Wang, Li, Liu, Zhou, Wang, Zhang, Wang, Jacobson, Zhu, Yu, Dai, Chen (bb0105) 2019; 58
Ma, Mattarollo, Adjemian, Yang, Aymeric, Hannani, Portela, Duret, Teng, Kepp, Wang, Sistigu, Schultze, Stoll, Galluzzi, Zitvogel, Smyth, Kroemer (bb0085) 2014; 74
Zhou, Wang, Chen, Wang, Hua, Cai (bb0040) 2019; 23
Green, Ferguson, Zitvogel, Kroemer (bb0045) 2009; 9
Cheng, Meng, Deng, Klok, Zhong (bb0140) 2013; 34
Wang, Wang, Chen, Li, Li, Lin (bb0120) 2019; 15
Ma, Chen, Wilkins, Wang, Swerdlow, Chen (bb0095) 2017; 113
Chen, Zhao, Luo, Zheng, Tian, Gong, Gao, Pan, Liu, Ma, Cui, Ma, Cai (bb0200) 2016; 10
Garg, Krysko, Verfaillie, Kaczmarek, Ferreira, Marysael, Rubio, Firczuk, Mathieu, Roebroek, Annaert, Golab, de Witte, Vandenabeele, Agostinis (bb0205) 2012; 31
Papa, Drummena, Wintera, Kooija (bb0170) 1999; 453
Yang, Xu, Chao, Xu, Sun, Wu, Peng, Liu (bb0245) 2017; 8
Xie, Hou, Song, Yu, Huang, Sun, Kang, Tang (bb0065) 2016; 23
D’Herde, Krysko (bb0070) 2017; 13
Fang, Hu, Luk, Gao, Copp, Tai, O’Connor, Zhang (bb0195) 2014; 14
Hirschhorn, Stockwell (bb0155) 2019; 133
Leone, Rees, Kain (bb0220) 2018; 96
Webb, Gao, Goldsmith, Irvine, Saleh, Lee, Lendermon, Bheemreddy, Zhang, Brennan, Johnson, Steinle, Wilson, Morales-Tirado (bb0240) 2017; 17
Scaffidi, Misteli, Bianchi (bb0210) 2002; 418
Dixon, Stockwell (bb0130) 2014; 10
Caronni, Simoncello, Stafetta, Guarnaccia, Ruiz-Moreno, Opitz, Galli, Proux-Gillardeaux, Benvenuti (bb0230) 2018; 78
Huo, Wang, Chen, Shi (bb0145) 2017; 8
Riley, June, Langer, Mitchell (bb0010) 2019; 18
Krysko, Garg, Kaczmarek, Krysko, Agostinis, Vandenabeele (bb0035) 2012; 12
Cao, Yan (bb0020) 2020; 6
Cao, Dixon (bb0060) 2016; 73
Matthew, Lewis, Craig (bb0185) 2009; 324
Adkins, Fucikova, Garg, Agostinis, Spisek (bb0225) 2014; 3
Fischer, Hoffmann, Voelkl, Meidenbauer, Ammer, Edinger, Gottfried, Schwarz, Rothe, Hoves, Renner, Timischl, Mackensen, Kunz-Schughart, Andreesen, Krause, Kreutz (bb0235) 2007; 109
Xu, Ding, Ji, Ao, Liu, Yu, Wang (bb0180) 2019; 23
Soumaya, Farhat, Amel (bb0260) 2018; 9
Zhang, Xi, Machuki, Luo, Yang, Li, Cai, Yang, Zhang, Tian, Guo, Yu, Gao (bb0250) 2019; 13
O’Donnell, Teng, Smyth (bb0025) 2019; 16
Mendes, Figueira, Leite, Gales, Almeida (bb0110) 2020; 49
Fukumura, Jain (bb0255) 2007; 101
Yang (bb0005) 2015; 125
Rodriguez, Harada, Christian, Pantano, Tsai, Discher (bb0190) 2013; 339
Riley (10.1016/j.jconrel.2021.04.013_bb0010) 2019; 18
Wen (10.1016/j.jconrel.2021.04.013_bb0075) 2019; 510
Chen (10.1016/j.jconrel.2021.04.013_bb0200) 2016; 10
Reed (10.1016/j.jconrel.2021.04.013_bb0165) 2012; 149
Cao (10.1016/j.jconrel.2021.04.013_bb0060) 2016; 73
Barbi (10.1016/j.jconrel.2021.04.013_bb0215) 2014; 259
Yang (10.1016/j.jconrel.2021.04.013_bb0245) 2017; 8
Ma (10.1016/j.jconrel.2021.04.013_bb0085) 2014; 74
Anderson (10.1016/j.jconrel.2021.04.013_bb0030) 2017; 31
O’Donnell (10.1016/j.jconrel.2021.04.013_bb0025) 2019; 16
Huo (10.1016/j.jconrel.2021.04.013_bb0145) 2017; 8
Fang (10.1016/j.jconrel.2021.04.013_bb0195) 2014; 14
Kroemer (10.1016/j.jconrel.2021.04.013_bb0080) 2013; 31
Ma (10.1016/j.jconrel.2021.04.013_bb0095) 2017; 113
Bolobajev (10.1016/j.jconrel.2021.04.013_bb0125) 2016; 187
D’Herde (10.1016/j.jconrel.2021.04.013_bb0070) 2017; 13
Caronni (10.1016/j.jconrel.2021.04.013_bb0230) 2018; 78
Leone (10.1016/j.jconrel.2021.04.013_bb0220) 2018; 96
Yang (10.1016/j.jconrel.2021.04.013_bb0160) 2014; 156
Green (10.1016/j.jconrel.2021.04.013_bb0045) 2009; 9
Papa (10.1016/j.jconrel.2021.04.013_bb0170) 1999; 453
Xie (10.1016/j.jconrel.2021.04.013_bb0065) 2016; 23
Zhou (10.1016/j.jconrel.2021.04.013_bb0040) 2019; 23
Soumaya (10.1016/j.jconrel.2021.04.013_bb0260) 2018; 9
Guo (10.1016/j.jconrel.2021.04.013_bb0090) 2016; 91
Koppenol (10.1016/j.jconrel.2021.04.013_bb0050) 2011; 11
Fan (10.1016/j.jconrel.2021.04.013_bb0115) 2017; 56
Krysko (10.1016/j.jconrel.2021.04.013_bb0035) 2012; 12
Scaffidi (10.1016/j.jconrel.2021.04.013_bb0210) 2002; 418
Cao (10.1016/j.jconrel.2021.04.013_bb0020) 2020; 6
Hirschhorn (10.1016/j.jconrel.2021.04.013_bb0155) 2019; 133
Zhang (10.1016/j.jconrel.2021.04.013_bb0250) 2019; 13
Dixon (10.1016/j.jconrel.2021.04.013_bb0130) 2014; 10
Wang (10.1016/j.jconrel.2021.04.013_bb0175) 2018; 12
Remant Bahadur (10.1016/j.jconrel.2021.04.013_bb0135) 2012; 9
Rodriguez (10.1016/j.jconrel.2021.04.013_bb0190) 2013; 339
Yang (10.1016/j.jconrel.2021.04.013_bb0005) 2015; 125
Xu (10.1016/j.jconrel.2021.04.013_bb0180) 2019; 23
Chen (10.1016/j.jconrel.2021.04.013_bb0015) 2013; 39
Wang (10.1016/j.jconrel.2021.04.013_bb0120) 2019; 15
He (10.1016/j.jconrel.2021.04.013_bb0105) 2019; 58
Cheng (10.1016/j.jconrel.2021.04.013_bb0140) 2013; 34
Feng (10.1016/j.jconrel.2021.04.013_bb0150) 2018; 12
Certo (10.1016/j.jconrel.2021.04.013_bb0055) 2021; 21
Garg (10.1016/j.jconrel.2021.04.013_bb0205) 2012; 31
Webb (10.1016/j.jconrel.2021.04.013_bb0240) 2017; 17
Adkins (10.1016/j.jconrel.2021.04.013_bb0225) 2014; 3
Matthew (10.1016/j.jconrel.2021.04.013_bb0185) 2009; 324
Fukumura (10.1016/j.jconrel.2021.04.013_bb0255) 2007; 101
Lu (10.1016/j.jconrel.2021.04.013_bb0100) 2018; 425
Fischer (10.1016/j.jconrel.2021.04.013_bb0235) 2007; 109
Mendes (10.1016/j.jconrel.2021.04.013_bb0110) 2020; 49
References_xml – volume: 339
  start-page: 971
  year: 2013
  end-page: 975
  ident: bb0190
  article-title: Minimal “Self” peptides that inhibit phagocytic clearance and enhance delivery of nanoparticles
  publication-title: Science
– volume: 109
  start-page: 3812
  year: 2007
  end-page: 3819
  ident: bb0235
  article-title: Inhibitory effect of tumor cell-derived lactic acid on human T cells
  publication-title: Blood
– volume: 56
  start-page: 1229
  year: 2017
  end-page: 1233
  ident: bb0115
  article-title: Glucose-responsive sequential generation of hydrogen peroxide and nitric oxide for synergistic Cancer starving-like/gas therapy
  publication-title: Angew. Chem. Int. Ed. Eng.
– volume: 324
  start-page: 1029
  year: 2009
  end-page: 1033
  ident: bb0185
  article-title: Understanding the Warburg effect: the metabolic requirements of cell proliferation
  publication-title: Science
– volume: 73
  start-page: 2195
  year: 2016
  end-page: 2209
  ident: bb0060
  article-title: Mechanisms of ferroptosis
  publication-title: Cell. Mol. Life Sci.
– volume: 187
  start-page: 75
  year: 2016
  end-page: 82
  ident: bb0125
  article-title: Interaction of tannic acid with ferric iron to assist 2,4,6-trichlorophenol catalytic decomposition and reuse of ferric sludge as a source of iron catalyst in Fenton-based treatment
  publication-title: Appl. Catal. B Environ.
– volume: 8
  start-page: 1
  year: 2017
  ident: bb0145
  article-title: Tumor-selective catalytic nanomedicine by nanocatalyst delivery
  publication-title: Nat. Commun.
– volume: 12
  start-page: 11000
  year: 2018
  end-page: 11012
  ident: bb0150
  article-title: Magnetic targeting, tumor microenvironment-responsive intelligent nanocatalysts for enhanced tumor ablation
  publication-title: ACS Nano
– volume: 453
  start-page: 278
  year: 1999
  end-page: 282
  ident: bb0170
  article-title: Ratio-fluorescence microscopy of lipid oxidation in living cells using C11-BODIPY581/591
  publication-title: FEBS Lett.
– volume: 259
  start-page: 115
  year: 2014
  end-page: 139
  ident: bb0215
  article-title: Treg functional stability and its responsiveness to the microenvironment
  publication-title: Immunol. Rev.
– volume: 14
  start-page: 2181
  year: 2014
  end-page: 2188
  ident: bb0195
  article-title: Cancer cell membrane-coated nanoparticles for anticancer vaccination and drug delivery
  publication-title: Nano Lett.
– volume: 17
  start-page: 434
  year: 2017
  ident: bb0240
  article-title: Inhibition of MMP-2 and MMP-9 decreases cellular migration, and angiogenesis in in vitro models of retinoblastoma
  publication-title: BMC Cancer
– volume: 13
  start-page: 4
  year: 2017
  end-page: 5
  ident: bb0070
  article-title: Ferroptosis: oxidized Pes trigger death
  publication-title: Nat. Chem. Biol.
– volume: 10
  start-page: 10049
  year: 2016
  end-page: 10057
  ident: bb0200
  article-title: Cancer cell membrane-biomimetic nanoparticles for homologous-targeting dual-modal imaging and Photothermal therapy
  publication-title: ACS Nano
– volume: 31
  start-page: 51
  year: 2013
  end-page: 72
  ident: bb0080
  article-title: Immunogenic cell death in cancer therapy
  publication-title: Annu. Rev. Immunol.
– volume: 12
  start-page: 860
  year: 2012
  end-page: 875
  ident: bb0035
  article-title: Immunogenic cell death and DAMPs in cancer therapy
  publication-title: Nat. Rev. Cancer
– volume: 23
  start-page: 4900
  year: 2019
  end-page: 4912
  ident: bb0180
  article-title: Molecular mechanisms of ferroptosis and its role in cancer therapy
  publication-title: J. Cell. Mol. Med.
– volume: 125
  start-page: 3335
  year: 2015
  end-page: 3337
  ident: bb0005
  article-title: Cancer immunotherapy: harnessing the immune system to battle cancer
  publication-title: J. Clin. Invest.
– volume: 16
  start-page: 151
  year: 2019
  end-page: 167
  ident: bb0025
  article-title: Cancer immunoediting and resistance to T cell-based immunotherapy
  publication-title: Nat. Rev. Clin. Oncol.
– volume: 91
  start-page: 179
  year: 2016
  end-page: 187
  ident: bb0090
  article-title: Inhibition of pyruvate kinase M2 by reactive oxygen species contributes to the development of pulmonary arterial hypertension
  publication-title: J. Mol. Cell. Cardiol.
– volume: 78
  start-page: 1685
  year: 2018
  end-page: 1699
  ident: bb0230
  article-title: Downregulation of membrane trafficking proteins and lactate conditioning determine loss of dendritic cell function in Lung Cancer
  publication-title: Cancer Res.
– volume: 6
  start-page: 580
  year: 2020
  end-page: 592
  ident: bb0020
  article-title: Cancer epigenetics, tumor immunity, and immunotherapy
  publication-title: Trends Cancer
– volume: 49
  start-page: 9121
  year: 2020
  end-page: 9153
  ident: bb0110
  article-title: Metal-organic frameworks: a future toolbox for biomedicine?
  publication-title: Chem. Soc. Rev.
– volume: 12
  start-page: 12380
  year: 2018
  end-page: 12392
  ident: bb0175
  article-title: Arginine-rich manganese silicate nanobubbles as a ferroptosis-inducing agent for tumor-targeted theranostics
  publication-title: ACS Nano
– volume: 34
  start-page: 3647
  year: 2013
  end-page: 3657
  ident: bb0140
  article-title: Dual and multi-stimuli responsive polymeric nanoparticles for programmed site-specific drug delivery
  publication-title: Biomaterials
– volume: 133
  start-page: 130
  year: 2019
  end-page: 143
  ident: bb0155
  article-title: The development of the concept of ferroptosis
  publication-title: Free Radic. Biol. Med.
– volume: 425
  start-page: 31
  year: 2018
  end-page: 42
  ident: bb0100
  article-title: RIP1 and RIP3 contribute to shikonin-induced glycolysis suppression in glioma cells via increase of intracellular hydrogen peroxide
  publication-title: Cancer Lett.
– volume: 31
  start-page: 311
  year: 2017
  end-page: 325
  ident: bb0030
  article-title: Obstacles posed by the tumor microenvironment to T cell activity: a case for synergistic therapies
  publication-title: Cancer Cell
– volume: 15
  year: 2019
  ident: bb0120
  article-title: Recent advances in glucose-oxidase-based nanocomposites for tumor therapy
  publication-title: Small
– volume: 9
  start-page: 353
  year: 2018
  ident: bb0260
  article-title: Targeting tumor metabolism: a new challenge to improve immunotherapy
  publication-title: Front. Immunol.
– volume: 418
  start-page: 191
  year: 2002
  end-page: 195
  ident: bb0210
  article-title: Release of chromatin protein HMGB1 by necrotic cells triggers inflammation
  publication-title: Nature
– volume: 96
  start-page: 683
  year: 2018
  end-page: 693
  ident: bb0220
  article-title: Dendritic cells and routing cargo into exosomes
  publication-title: Immunol. Cell Biol.
– volume: 58
  start-page: 8752
  year: 2019
  end-page: 8756
  ident: bb0105
  article-title: A catalase-like metal-organic framework nanohybrid for O
  publication-title: Angew. Chem. Int. Ed. Eng.
– volume: 9
  start-page: 353
  year: 2009
  end-page: 363
  ident: bb0045
  article-title: Immunogenic and tolerogenic cell death
  publication-title: Nat. Rev. Immunol.
– volume: 11
  start-page: 325
  year: 2011
  end-page: 337
  ident: bb0050
  article-title: Otto Warburg’s contributions to current concepts of cancer metabolism
  publication-title: Nat. Rev. Cancer
– volume: 31
  start-page: 1062
  year: 2012
  end-page: 1079
  ident: bb0205
  article-title: A novel pathway combining calreticulin exposure and ATP secretion in immunogenic cancer cell death
  publication-title: EMBO J.
– volume: 13
  start-page: 5306
  year: 2019
  end-page: 5325
  ident: bb0250
  article-title: Gold cube-in-cube based oxygen nanogenerator: a theranostic nanoplatform for modulating tumor microenvironment for precise chemo-phototherapy and multimodal imaging
  publication-title: ACS Nano
– volume: 10
  start-page: 9
  year: 2014
  end-page: 17
  ident: bb0130
  article-title: The role of iron and reactive oxygen species in cell death
  publication-title: Nat. Chem. Biol.
– volume: 23
  start-page: 4854
  year: 2019
  end-page: 4865
  ident: bb0040
  article-title: Immunogenic cell death in cancer therapy: present and emerging inducers
  publication-title: J. Cell. Mol. Med.
– volume: 149
  start-page: 963
  year: 2012
  end-page: 965
  ident: bb0165
  article-title: Ironing out cell death mechanisms
  publication-title: Cell
– volume: 9
  start-page: 2719
  year: 2012
  end-page: 2729
  ident: bb0135
  article-title: pH and redox dual responsive nanoparticle for nuclear targeted drug delivery
  publication-title: Mol. Pharm.
– volume: 18
  start-page: 175
  year: 2019
  end-page: 196
  ident: bb0010
  article-title: Delivery technologies for cancer immunotherapy
  publication-title: Nat. Rev. Drug Discov.
– volume: 39
  start-page: 1
  year: 2013
  end-page: 10
  ident: bb0015
  article-title: Oncology meets immunology: the cancer-immunity cycle
  publication-title: Immunity
– volume: 8
  start-page: 902
  year: 2017
  ident: bb0245
  article-title: Hollow MnO
  publication-title: Nat. Commun.
– volume: 156
  start-page: 317
  year: 2014
  end-page: 331
  ident: bb0160
  article-title: Regulation of ferroptotic cancer cell death by GPX4
  publication-title: Cell
– volume: 21
  start-page: 151
  year: 2021
  end-page: 161
  ident: bb0055
  article-title: Lactate modulation of immune responses in inflammatory versus tumour microenvironments
  publication-title: Nat. Rev. Immunol.
– volume: 101
  start-page: 937
  year: 2007
  end-page: 949
  ident: bb0255
  article-title: Tumor microenvironment abnormalities: causes, consequences, and strategies to normalize
  publication-title: J. Cell. Biochem.
– volume: 3
  year: 2014
  ident: bb0225
  article-title: Physical modalities inducing immunogenic tumor cell death for cancer immunotherapy
  publication-title: Oncoimmunology
– volume: 74
  start-page: 436
  year: 2014
  end-page: 445
  ident: bb0085
  article-title: CCL2/CCR2-dependent recruitment of functional antigen-presenting cells into tumors upon chemotherapy
  publication-title: Cancer Res.
– volume: 113
  start-page: 36
  year: 2017
  end-page: 47
  ident: bb0095
  article-title: Pharmacologic ascorbate induces neuroblastoma cell death by hydrogen peroxide mediated DNA damage and reduction in cancer cell glycolysis
  publication-title: Free Radic. Biol. Med.
– volume: 510
  start-page: 278
  year: 2019
  end-page: 283
  ident: bb0075
  article-title: The release and activity of HMGB1 in ferroptosis
  publication-title: Biochem. Biophys. Res. Commun.
– volume: 23
  start-page: 369
  year: 2016
  end-page: 379
  ident: bb0065
  article-title: Ferroptosis: process and function
  publication-title: Cell Death Differ.
– volume: 23
  start-page: 369
  issue: 3
  year: 2016
  ident: 10.1016/j.jconrel.2021.04.013_bb0065
  article-title: Ferroptosis: process and function
  publication-title: Cell Death Differ.
  doi: 10.1038/cdd.2015.158
– volume: 510
  start-page: 278
  year: 2019
  ident: 10.1016/j.jconrel.2021.04.013_bb0075
  article-title: The release and activity of HMGB1 in ferroptosis
  publication-title: Biochem. Biophys. Res. Commun.
  doi: 10.1016/j.bbrc.2019.01.090
– volume: 31
  start-page: 51
  year: 2013
  ident: 10.1016/j.jconrel.2021.04.013_bb0080
  article-title: Immunogenic cell death in cancer therapy
  publication-title: Annu. Rev. Immunol.
  doi: 10.1146/annurev-immunol-032712-100008
– volume: 9
  start-page: 353
  issue: 5
  year: 2009
  ident: 10.1016/j.jconrel.2021.04.013_bb0045
  article-title: Immunogenic and tolerogenic cell death
  publication-title: Nat. Rev. Immunol.
  doi: 10.1038/nri2545
– volume: 12
  start-page: 11000
  issue: 11
  year: 2018
  ident: 10.1016/j.jconrel.2021.04.013_bb0150
  article-title: Magnetic targeting, tumor microenvironment-responsive intelligent nanocatalysts for enhanced tumor ablation
  publication-title: ACS Nano
  doi: 10.1021/acsnano.8b05042
– volume: 6
  start-page: 580
  issue: 7
  year: 2020
  ident: 10.1016/j.jconrel.2021.04.013_bb0020
  article-title: Cancer epigenetics, tumor immunity, and immunotherapy
  publication-title: Trends Cancer
  doi: 10.1016/j.trecan.2020.02.003
– volume: 18
  start-page: 175
  issue: 3
  year: 2019
  ident: 10.1016/j.jconrel.2021.04.013_bb0010
  article-title: Delivery technologies for cancer immunotherapy
  publication-title: Nat. Rev. Drug Discov.
  doi: 10.1038/s41573-018-0006-z
– volume: 339
  start-page: 971
  issue: 6122
  year: 2013
  ident: 10.1016/j.jconrel.2021.04.013_bb0190
  article-title: Minimal “Self” peptides that inhibit phagocytic clearance and enhance delivery of nanoparticles
  publication-title: Science
  doi: 10.1126/science.1229568
– volume: 3
  issue: 12
  year: 2014
  ident: 10.1016/j.jconrel.2021.04.013_bb0225
  article-title: Physical modalities inducing immunogenic tumor cell death for cancer immunotherapy
  publication-title: Oncoimmunology
  doi: 10.4161/21624011.2014.968434
– volume: 74
  start-page: 436
  issue: 2
  year: 2014
  ident: 10.1016/j.jconrel.2021.04.013_bb0085
  article-title: CCL2/CCR2-dependent recruitment of functional antigen-presenting cells into tumors upon chemotherapy
  publication-title: Cancer Res.
  doi: 10.1158/0008-5472.CAN-13-1265
– volume: 96
  start-page: 683
  year: 2018
  ident: 10.1016/j.jconrel.2021.04.013_bb0220
  article-title: Dendritic cells and routing cargo into exosomes
  publication-title: Immunol. Cell Biol.
  doi: 10.1111/imcb.12170
– volume: 31
  start-page: 311
  issue: 3
  year: 2017
  ident: 10.1016/j.jconrel.2021.04.013_bb0030
  article-title: Obstacles posed by the tumor microenvironment to T cell activity: a case for synergistic therapies
  publication-title: Cancer Cell
  doi: 10.1016/j.ccell.2017.02.008
– volume: 101
  start-page: 937
  issue: 4
  year: 2007
  ident: 10.1016/j.jconrel.2021.04.013_bb0255
  article-title: Tumor microenvironment abnormalities: causes, consequences, and strategies to normalize
  publication-title: J. Cell. Biochem.
  doi: 10.1002/jcb.21187
– volume: 11
  start-page: 325
  issue: 5
  year: 2011
  ident: 10.1016/j.jconrel.2021.04.013_bb0050
  article-title: Otto Warburg’s contributions to current concepts of cancer metabolism
  publication-title: Nat. Rev. Cancer
  doi: 10.1038/nrc3038
– volume: 13
  start-page: 5306
  issue: 5
  year: 2019
  ident: 10.1016/j.jconrel.2021.04.013_bb0250
  article-title: Gold cube-in-cube based oxygen nanogenerator: a theranostic nanoplatform for modulating tumor microenvironment for precise chemo-phototherapy and multimodal imaging
  publication-title: ACS Nano
  doi: 10.1021/acsnano.8b09786
– volume: 324
  start-page: 1029
  year: 2009
  ident: 10.1016/j.jconrel.2021.04.013_bb0185
  article-title: Understanding the Warburg effect: the metabolic requirements of cell proliferation
  publication-title: Science
  doi: 10.1126/science.1160809
– volume: 113
  start-page: 36
  year: 2017
  ident: 10.1016/j.jconrel.2021.04.013_bb0095
  article-title: Pharmacologic ascorbate induces neuroblastoma cell death by hydrogen peroxide mediated DNA damage and reduction in cancer cell glycolysis
  publication-title: Free Radic. Biol. Med.
  doi: 10.1016/j.freeradbiomed.2017.09.008
– volume: 187
  start-page: 75
  year: 2016
  ident: 10.1016/j.jconrel.2021.04.013_bb0125
  article-title: Interaction of tannic acid with ferric iron to assist 2,4,6-trichlorophenol catalytic decomposition and reuse of ferric sludge as a source of iron catalyst in Fenton-based treatment
  publication-title: Appl. Catal. B Environ.
  doi: 10.1016/j.apcatb.2016.01.015
– volume: 10
  start-page: 9
  issue: 1
  year: 2014
  ident: 10.1016/j.jconrel.2021.04.013_bb0130
  article-title: The role of iron and reactive oxygen species in cell death
  publication-title: Nat. Chem. Biol.
  doi: 10.1038/nchembio.1416
– volume: 14
  start-page: 2181
  issue: 4
  year: 2014
  ident: 10.1016/j.jconrel.2021.04.013_bb0195
  article-title: Cancer cell membrane-coated nanoparticles for anticancer vaccination and drug delivery
  publication-title: Nano Lett.
  doi: 10.1021/nl500618u
– volume: 133
  start-page: 130
  year: 2019
  ident: 10.1016/j.jconrel.2021.04.013_bb0155
  article-title: The development of the concept of ferroptosis
  publication-title: Free Radic. Biol. Med.
  doi: 10.1016/j.freeradbiomed.2018.09.043
– volume: 453
  start-page: 278
  issue: 3
  year: 1999
  ident: 10.1016/j.jconrel.2021.04.013_bb0170
  article-title: Ratio-fluorescence microscopy of lipid oxidation in living cells using C11-BODIPY581/591
  publication-title: FEBS Lett.
  doi: 10.1016/S0014-5793(99)00696-1
– volume: 12
  start-page: 860
  issue: 12
  year: 2012
  ident: 10.1016/j.jconrel.2021.04.013_bb0035
  article-title: Immunogenic cell death and DAMPs in cancer therapy
  publication-title: Nat. Rev. Cancer
  doi: 10.1038/nrc3380
– volume: 91
  start-page: 179
  year: 2016
  ident: 10.1016/j.jconrel.2021.04.013_bb0090
  article-title: Inhibition of pyruvate kinase M2 by reactive oxygen species contributes to the development of pulmonary arterial hypertension
  publication-title: J. Mol. Cell. Cardiol.
  doi: 10.1016/j.yjmcc.2016.01.009
– volume: 23
  start-page: 4900
  issue: 8
  year: 2019
  ident: 10.1016/j.jconrel.2021.04.013_bb0180
  article-title: Molecular mechanisms of ferroptosis and its role in cancer therapy
  publication-title: J. Cell. Mol. Med.
  doi: 10.1111/jcmm.14511
– volume: 31
  start-page: 1062
  issue: 5
  year: 2012
  ident: 10.1016/j.jconrel.2021.04.013_bb0205
  article-title: A novel pathway combining calreticulin exposure and ATP secretion in immunogenic cancer cell death
  publication-title: EMBO J.
  doi: 10.1038/emboj.2011.497
– volume: 34
  start-page: 3647
  issue: 14
  year: 2013
  ident: 10.1016/j.jconrel.2021.04.013_bb0140
  article-title: Dual and multi-stimuli responsive polymeric nanoparticles for programmed site-specific drug delivery
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2013.01.084
– volume: 425
  start-page: 31
  year: 2018
  ident: 10.1016/j.jconrel.2021.04.013_bb0100
  article-title: RIP1 and RIP3 contribute to shikonin-induced glycolysis suppression in glioma cells via increase of intracellular hydrogen peroxide
  publication-title: Cancer Lett.
  doi: 10.1016/j.canlet.2018.03.046
– volume: 418
  start-page: 191
  issue: 6894
  year: 2002
  ident: 10.1016/j.jconrel.2021.04.013_bb0210
  article-title: Release of chromatin protein HMGB1 by necrotic cells triggers inflammation
  publication-title: Nature
  doi: 10.1038/nature00858
– volume: 39
  start-page: 1
  issue: 1
  year: 2013
  ident: 10.1016/j.jconrel.2021.04.013_bb0015
  article-title: Oncology meets immunology: the cancer-immunity cycle
  publication-title: Immunity
  doi: 10.1016/j.immuni.2013.07.012
– volume: 149
  start-page: 963
  issue: 5
  year: 2012
  ident: 10.1016/j.jconrel.2021.04.013_bb0165
  article-title: Ironing out cell death mechanisms
  publication-title: Cell
  doi: 10.1016/j.cell.2012.05.009
– volume: 156
  start-page: 317
  issue: 1–2
  year: 2014
  ident: 10.1016/j.jconrel.2021.04.013_bb0160
  article-title: Regulation of ferroptotic cancer cell death by GPX4
  publication-title: Cell
  doi: 10.1016/j.cell.2013.12.010
– volume: 21
  start-page: 151
  issue: 3
  year: 2021
  ident: 10.1016/j.jconrel.2021.04.013_bb0055
  article-title: Lactate modulation of immune responses in inflammatory versus tumour microenvironments
  publication-title: Nat. Rev. Immunol.
  doi: 10.1038/s41577-020-0406-2
– volume: 8
  start-page: 902
  issue: 1
  year: 2017
  ident: 10.1016/j.jconrel.2021.04.013_bb0245
  article-title: Hollow MnO2 as a tumor-microenvironment-responsive biodegradable nano-platform for combination therapy favoring antitumor immune responses
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-017-01050-0
– volume: 16
  start-page: 151
  issue: 3
  year: 2019
  ident: 10.1016/j.jconrel.2021.04.013_bb0025
  article-title: Cancer immunoediting and resistance to T cell-based immunotherapy
  publication-title: Nat. Rev. Clin. Oncol.
  doi: 10.1038/s41571-018-0142-8
– volume: 9
  start-page: 353
  year: 2018
  ident: 10.1016/j.jconrel.2021.04.013_bb0260
  article-title: Targeting tumor metabolism: a new challenge to improve immunotherapy
  publication-title: Front. Immunol.
  doi: 10.3389/fimmu.2018.00353
– volume: 17
  start-page: 434
  issue: 1
  year: 2017
  ident: 10.1016/j.jconrel.2021.04.013_bb0240
  article-title: Inhibition of MMP-2 and MMP-9 decreases cellular migration, and angiogenesis in in vitro models of retinoblastoma
  publication-title: BMC Cancer
  doi: 10.1186/s12885-017-3418-y
– volume: 23
  start-page: 4854
  issue: 8
  year: 2019
  ident: 10.1016/j.jconrel.2021.04.013_bb0040
  article-title: Immunogenic cell death in cancer therapy: present and emerging inducers
  publication-title: J. Cell. Mol. Med.
  doi: 10.1111/jcmm.14356
– volume: 15
  issue: 51
  year: 2019
  ident: 10.1016/j.jconrel.2021.04.013_bb0120
  article-title: Recent advances in glucose-oxidase-based nanocomposites for tumor therapy
  publication-title: Small
  doi: 10.1002/smll.201903895
– volume: 12
  start-page: 12380
  issue: 12
  year: 2018
  ident: 10.1016/j.jconrel.2021.04.013_bb0175
  article-title: Arginine-rich manganese silicate nanobubbles as a ferroptosis-inducing agent for tumor-targeted theranostics
  publication-title: ACS Nano
  doi: 10.1021/acsnano.8b06399
– volume: 8
  start-page: 1
  year: 2017
  ident: 10.1016/j.jconrel.2021.04.013_bb0145
  article-title: Tumor-selective catalytic nanomedicine by nanocatalyst delivery
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-017-00424-8
– volume: 49
  start-page: 9121
  issue: 24
  year: 2020
  ident: 10.1016/j.jconrel.2021.04.013_bb0110
  article-title: Metal-organic frameworks: a future toolbox for biomedicine?
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/D0CS00883D
– volume: 109
  start-page: 3812
  issue: 9
  year: 2007
  ident: 10.1016/j.jconrel.2021.04.013_bb0235
  article-title: Inhibitory effect of tumor cell-derived lactic acid on human T cells
  publication-title: Blood
  doi: 10.1182/blood-2006-07-035972
– volume: 73
  start-page: 2195
  issue: 11−12
  year: 2016
  ident: 10.1016/j.jconrel.2021.04.013_bb0060
  article-title: Mechanisms of ferroptosis
  publication-title: Cell. Mol. Life Sci.
  doi: 10.1007/s00018-016-2194-1
– volume: 13
  start-page: 4
  year: 2017
  ident: 10.1016/j.jconrel.2021.04.013_bb0070
  article-title: Ferroptosis: oxidized Pes trigger death
  publication-title: Nat. Chem. Biol.
  doi: 10.1038/nchembio.2261
– volume: 58
  start-page: 8752
  issue: 26
  year: 2019
  ident: 10.1016/j.jconrel.2021.04.013_bb0105
  article-title: A catalase-like metal-organic framework nanohybrid for O2 -evolving synergistic chemoradiotherapy
  publication-title: Angew. Chem. Int. Ed. Eng.
  doi: 10.1002/anie.201902612
– volume: 10
  start-page: 10049
  issue: 11
  year: 2016
  ident: 10.1016/j.jconrel.2021.04.013_bb0200
  article-title: Cancer cell membrane-biomimetic nanoparticles for homologous-targeting dual-modal imaging and Photothermal therapy
  publication-title: ACS Nano
  doi: 10.1021/acsnano.6b04695
– volume: 9
  start-page: 2719
  issue: 9
  year: 2012
  ident: 10.1016/j.jconrel.2021.04.013_bb0135
  article-title: pH and redox dual responsive nanoparticle for nuclear targeted drug delivery
  publication-title: Mol. Pharm.
  doi: 10.1021/mp300274g
– volume: 56
  start-page: 1229
  issue: 5
  year: 2017
  ident: 10.1016/j.jconrel.2021.04.013_bb0115
  article-title: Glucose-responsive sequential generation of hydrogen peroxide and nitric oxide for synergistic Cancer starving-like/gas therapy
  publication-title: Angew. Chem. Int. Ed. Eng.
  doi: 10.1002/anie.201610682
– volume: 259
  start-page: 115
  issue: 1
  year: 2014
  ident: 10.1016/j.jconrel.2021.04.013_bb0215
  article-title: Treg functional stability and its responsiveness to the microenvironment
  publication-title: Immunol. Rev.
  doi: 10.1111/imr.12172
– volume: 125
  start-page: 3335
  issue: 9
  year: 2015
  ident: 10.1016/j.jconrel.2021.04.013_bb0005
  article-title: Cancer immunotherapy: harnessing the immune system to battle cancer
  publication-title: J. Clin. Invest.
  doi: 10.1172/JCI83871
– volume: 78
  start-page: 1685
  issue: 7
  year: 2018
  ident: 10.1016/j.jconrel.2021.04.013_bb0230
  article-title: Downregulation of membrane trafficking proteins and lactate conditioning determine loss of dendritic cell function in Lung Cancer
  publication-title: Cancer Res.
  doi: 10.1158/0008-5472.CAN-17-1307
SSID ssj0005347
Score 2.6489394
Snippet Antitumor immunotherapy is limited by low tumor immunogenicity and immunosuppressive microenvironment (TIME), which could be improved by...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 21
SubjectTerms biomimetics
cell membranes
coordination polymers
doxorubicin
Ferroptosis
glucose
glucose oxidase
glutathione
Glycolysis
Immunogenic cell death (ICD)
immunogenicity
immunosuppression
Immunosuppressive microenvironment (TIME)
immunotherapy
lactic acid
ligands
Metal organic framework (MOF)
neoplasm cells
neoplasms
Reactive oxygen species (ROS)
Title Smart biomimetic metal organic frameworks based on ROS-ferroptosis-glycolysis regulation for enhanced tumor chemo-immunotherapy
URI https://dx.doi.org/10.1016/j.jconrel.2021.04.013
https://www.ncbi.nlm.nih.gov/pubmed/33872626
https://www.proquest.com/docview/2515685319
https://www.proquest.com/docview/2551947063
Volume 334
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEBYhvfRS-kqyfQQVSk7Rrr2SbPkYQsO2pWnoJpCbkGQ58ZK1F9t72Ev71zvjR7Y9pIFeDDaSkTVjzSc03zeEfBRSRdJxwyIbpUxkjjMlvGBZJk0IId8lBgnO386j2ZX4ci2vd8jpwIXBtMp-7e_W9Ha17p9M-tmcrPJ8MgewojieCqKMUJyg7LYQMXr5-OcfaR5cdJTpSDFsvWXxTBbjBew5K48nENOwVTwN-UPx6SH82cahs-fkWQ8g6Uk3xhdkxxcvydFFp0C9OaaXW0JVfUyP6MVWm3rzivyaL-HrKJLu8yXyFylc4XVdcSdHsyFXq6YY31JaFvTH9znLfFWVq6as85rd3G3gdahkQquukj3YlgL4pb64bRMKaLNewi34w7JkOTJQep7X5jW5Ovt0eTpjfQ0G5kQkGsZNwGOUXXepCgPuU58Y6WKbWpMlqQkSO-XWydArC3sbaBBIn7jEGSzMbkLL98huURb-gFAL8MoKZ9FWIg2FkWk2jRKHW0LwlnhExDDz2vUC5Vgn404PmWgL3RtMo8F0IDQYbETG991WnULHYx3UYFb9l6tpiCKPdf0wuIGG3xDPVkzhy3WtASbKSOGC9q82AJdFDKBwRPY7H7ofMecqnsLm8s3_D-4teYp3mMcWBu_IblOt_XtATI09bH-JQ_Lk5PPX2flvtzkZyg
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZKOcAFtTyXUjAS6qneTdZ2HseqarVAWyp2K_Vm2Y5TsuomqyR72Av8dWby6MKhVOISKYkdOZ6x5xt5vhlCPgkZBdJyzQITJEyklrNIOMHSVGofTL6NNRKczy-CyZX4ci2vt8hxz4XBsMpu72_39Ga37p6MutkcLbNsNAWwEnE8FcQ0QmEcPCKPBSxfLGMw_PlHnAcXLWc6iBg239B4RvPhHJzO0uERxNhvUp76_D4DdR8AbQzR6Q551iFIetQOcpdsufw5ObhsU1CvD-lsw6iqDukBvdwkp16_IL-mC_g9iqz7bIEERgpX-Fxb3cnStA_WqigauIQWOf3-bcpSV5bFsi6qrGI3t2v4HKYyoWVbyh6ESwH9Upf_aCIKaL1awC0oxKJgGVJQOqLX-iW5Oj2ZHU9YV4SBWRGImnHt8RDzrtsk8j3uEhdraUOTGJ3GifZiM-bGSt9FBpwbaOBJF9vYaqzMrn3DX5HtvMjdG0IN4CsjrEFhicQXWibpOIgt-oSgLuGAiH7mle0ylGOhjFvVh6LNVScwhQJTnlAgsAEZ3nVbtik6HuoQ9WJVf-maAjPyUNePvRooWId4uKJzV6wqBThRBhHuaP9qA3hZhIAKB-R1q0N3I-Y8CsfgXb79_8F9IE8ms_Mzdfb54useeYpvMKjN996R7bpcuX2AT7V53yyP3_WmG1g
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Smart+biomimetic+metal+organic+frameworks+based+on+ROS-ferroptosis-glycolysis+regulation+for+enhanced+tumor+chemo-immunotherapy&rft.jtitle=Journal+of+controlled+release&rft.au=Yang%2C+Jie&rft.au=Ma%2C+Siyu&rft.au=Xu%2C+Rui&rft.au=Wei%2C+Yawen&rft.date=2021-06-10&rft.issn=0168-3659&rft.volume=334&rft.spage=21&rft.epage=33&rft_id=info:doi/10.1016%2Fj.jconrel.2021.04.013&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_jconrel_2021_04_013
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0168-3659&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0168-3659&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0168-3659&client=summon