Smart biomimetic metal organic frameworks based on ROS-ferroptosis-glycolysis regulation for enhanced tumor chemo-immunotherapy
Antitumor immunotherapy is limited by low tumor immunogenicity and immunosuppressive microenvironment (TIME), which could be improved by “ROS-ferroptosis-glycolysis regulation” strategy. Herein, a cancer cell membrane coated metal organic framework (MOF) loading with glucose oxidase (GOx) and doxoru...
Saved in:
Published in | Journal of controlled release Vol. 334; pp. 21 - 33 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Netherlands
Elsevier B.V
10.06.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Antitumor immunotherapy is limited by low tumor immunogenicity and immunosuppressive microenvironment (TIME), which could be improved by “ROS-ferroptosis-glycolysis regulation” strategy. Herein, a cancer cell membrane coated metal organic framework (MOF) loading with glucose oxidase (GOx) and doxorubicin (DOX) was constructed (denoted as mFe(SS)/DG). Benefiting from the homotypic targeting of cancer cell membrane, the nanoplatform effectively accumulated in tumors. mFe(SS)/DG based on coordination between Fe3+ and disulfide-bearing ligand scavenged GSH and downregulated glutathione peroxide 4 (GPX4) to trigger ferroptosis. GOx catalyzed glucose to generate abundant H2O2 for enhancing Fenton reaction, resulting in excessive ROS in tumors. The ROS burst simultaneously promoted ferroptosis and inhibited glycolysis. Ferroptosis combined with DOX induced immunogenic cell death (ICD) and released tumor antigens to initiate antitumor immunity. Glycolysis repression remodeled TIME by decreasing lactate to solidify and boost the antitumor immunity. The smart biomimetic nanoplatform integrates tumor metabolism and immunity based on ROS-ferroptosis-glycolysis regulation, providing a potential anti-tumor strategy.
[Display omitted] |
---|---|
AbstractList | Antitumor immunotherapy is limited by low tumor immunogenicity and immunosuppressive microenvironment (TIME), which could be improved by “ROS-ferroptosis-glycolysis regulation” strategy. Herein, a cancer cell membrane coated metal organic framework (MOF) loading with glucose oxidase (GOx) and doxorubicin (DOX) was constructed (denoted as mFe(SS)/DG). Benefiting from the homotypic targeting of cancer cell membrane, the nanoplatform effectively accumulated in tumors. mFe(SS)/DG based on coordination between Fe³⁺ and disulfide-bearing ligand scavenged GSH and downregulated glutathione peroxide 4 (GPX4) to trigger ferroptosis. GOx catalyzed glucose to generate abundant H₂O₂ for enhancing Fenton reaction, resulting in excessive ROS in tumors. The ROS burst simultaneously promoted ferroptosis and inhibited glycolysis. Ferroptosis combined with DOX induced immunogenic cell death (ICD) and released tumor antigens to initiate antitumor immunity. Glycolysis repression remodeled TIME by decreasing lactate to solidify and boost the antitumor immunity. The smart biomimetic nanoplatform integrates tumor metabolism and immunity based on ROS-ferroptosis-glycolysis regulation, providing a potential anti-tumor strategy. Antitumor immunotherapy is limited by low tumor immunogenicity and immunosuppressive microenvironment (TIME), which could be improved by "ROS-ferroptosis-glycolysis regulation" strategy. Herein, a cancer cell membrane coated metal organic framework (MOF) loading with glucose oxidase (GOx) and doxorubicin (DOX) was constructed (denoted as mFe(SS)/DG). Benefiting from the homotypic targeting of cancer cell membrane, the nanoplatform effectively accumulated in tumors. mFe(SS)/DG based on coordination between Fe and disulfide-bearing ligand scavenged GSH and downregulated glutathione peroxide 4 (GPX4) to trigger ferroptosis. GOx catalyzed glucose to generate abundant H O for enhancing Fenton reaction, resulting in excessive ROS in tumors. The ROS burst simultaneously promoted ferroptosis and inhibited glycolysis. Ferroptosis combined with DOX induced immunogenic cell death (ICD) and released tumor antigens to initiate antitumor immunity. Glycolysis repression remodeled TIME by decreasing lactate to solidify and boost the antitumor immunity. The smart biomimetic nanoplatform integrates tumor metabolism and immunity based on ROS-ferroptosis-glycolysis regulation, providing a potential anti-tumor strategy. Antitumor immunotherapy is limited by low tumor immunogenicity and immunosuppressive microenvironment (TIME), which could be improved by "ROS-ferroptosis-glycolysis regulation" strategy. Herein, a cancer cell membrane coated metal organic framework (MOF) loading with glucose oxidase (GOx) and doxorubicin (DOX) was constructed (denoted as mFe(SS)/DG). Benefiting from the homotypic targeting of cancer cell membrane, the nanoplatform effectively accumulated in tumors. mFe(SS)/DG based on coordination between Fe3+ and disulfide-bearing ligand scavenged GSH and downregulated glutathione peroxide 4 (GPX4) to trigger ferroptosis. GOx catalyzed glucose to generate abundant H2O2 for enhancing Fenton reaction, resulting in excessive ROS in tumors. The ROS burst simultaneously promoted ferroptosis and inhibited glycolysis. Ferroptosis combined with DOX induced immunogenic cell death (ICD) and released tumor antigens to initiate antitumor immunity. Glycolysis repression remodeled TIME by decreasing lactate to solidify and boost the antitumor immunity. The smart biomimetic nanoplatform integrates tumor metabolism and immunity based on ROS-ferroptosis-glycolysis regulation, providing a potential anti-tumor strategy.Antitumor immunotherapy is limited by low tumor immunogenicity and immunosuppressive microenvironment (TIME), which could be improved by "ROS-ferroptosis-glycolysis regulation" strategy. Herein, a cancer cell membrane coated metal organic framework (MOF) loading with glucose oxidase (GOx) and doxorubicin (DOX) was constructed (denoted as mFe(SS)/DG). Benefiting from the homotypic targeting of cancer cell membrane, the nanoplatform effectively accumulated in tumors. mFe(SS)/DG based on coordination between Fe3+ and disulfide-bearing ligand scavenged GSH and downregulated glutathione peroxide 4 (GPX4) to trigger ferroptosis. GOx catalyzed glucose to generate abundant H2O2 for enhancing Fenton reaction, resulting in excessive ROS in tumors. The ROS burst simultaneously promoted ferroptosis and inhibited glycolysis. Ferroptosis combined with DOX induced immunogenic cell death (ICD) and released tumor antigens to initiate antitumor immunity. Glycolysis repression remodeled TIME by decreasing lactate to solidify and boost the antitumor immunity. The smart biomimetic nanoplatform integrates tumor metabolism and immunity based on ROS-ferroptosis-glycolysis regulation, providing a potential anti-tumor strategy. Antitumor immunotherapy is limited by low tumor immunogenicity and immunosuppressive microenvironment (TIME), which could be improved by “ROS-ferroptosis-glycolysis regulation” strategy. Herein, a cancer cell membrane coated metal organic framework (MOF) loading with glucose oxidase (GOx) and doxorubicin (DOX) was constructed (denoted as mFe(SS)/DG). Benefiting from the homotypic targeting of cancer cell membrane, the nanoplatform effectively accumulated in tumors. mFe(SS)/DG based on coordination between Fe3+ and disulfide-bearing ligand scavenged GSH and downregulated glutathione peroxide 4 (GPX4) to trigger ferroptosis. GOx catalyzed glucose to generate abundant H2O2 for enhancing Fenton reaction, resulting in excessive ROS in tumors. The ROS burst simultaneously promoted ferroptosis and inhibited glycolysis. Ferroptosis combined with DOX induced immunogenic cell death (ICD) and released tumor antigens to initiate antitumor immunity. Glycolysis repression remodeled TIME by decreasing lactate to solidify and boost the antitumor immunity. The smart biomimetic nanoplatform integrates tumor metabolism and immunity based on ROS-ferroptosis-glycolysis regulation, providing a potential anti-tumor strategy. [Display omitted] |
Author | Xu, Rui Wei, Yawen Wang, Zhihua Yang, Jie Deng, Huizi Ma, Siyu Zhang, Jun Zuo, Tiantian Yang, Ning Shen, Qi |
Author_xml | – sequence: 1 givenname: Jie surname: Yang fullname: Yang, Jie – sequence: 2 givenname: Siyu surname: Ma fullname: Ma, Siyu – sequence: 3 givenname: Rui surname: Xu fullname: Xu, Rui – sequence: 4 givenname: Yawen surname: Wei fullname: Wei, Yawen – sequence: 5 givenname: Jun surname: Zhang fullname: Zhang, Jun – sequence: 6 givenname: Tiantian surname: Zuo fullname: Zuo, Tiantian – sequence: 7 givenname: Zhihua surname: Wang fullname: Wang, Zhihua – sequence: 8 givenname: Huizi surname: Deng fullname: Deng, Huizi – sequence: 9 givenname: Ning surname: Yang fullname: Yang, Ning – sequence: 10 givenname: Qi surname: Shen fullname: Shen, Qi email: qshen@sjtu.edu.cn |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33872626$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkcFu1DAURS1URKeFTwBlySbBju0kFguEKihIlSpRWFu28zLjIbYH2ymaFb9eDzOwYFM2fn7SOW9x7wU688EDQi8Jbggm3ZttszXBR5ibFrekwazBhD5BKzL0tGZC8DO0KtxQ046Lc3SR0hZjzCnrn6FzSoe-7dpuhX7dORVzpW1w1kG2piqvmqsQ18qXbYrKwc8Qv6dKqwRjFXz15fauniDGsMsh2VSv570J8758qwjrZVbZFmoKsQK_Ud4UKy-urGYDLtTWucWHvIGodvvn6Omk5gQvTvMSffv44evVp_rm9vrz1fub2rCO5ZoqTHvMeGvGgWAKIwjFTa9HrSYxKix0S7XhBAZNelYAzEEYYYrWYkU0vUSvj3d3MfxYIGXpbDIwz8pDWJJsOSeC9bij_4ES3g2cElHQVyd00Q5GuYu2xLmXf_ItAD8CJoaUIkx_EYLloUe5lace5aFHiZksPRbv7T-esfl3rjkqOz9qvzvaUBK9txBlMhYORdgIJssx2EcuPACbjb-Y |
CitedBy_id | crossref_primary_10_1007_s40820_024_01399_0 crossref_primary_10_1155_2022_7449941 crossref_primary_10_1039_D2BM00595F crossref_primary_10_3892_etm_2023_12317 crossref_primary_10_1016_j_mtbio_2023_100780 crossref_primary_10_1016_j_ijbiomac_2022_11_152 crossref_primary_10_1021_acsanm_4c01358 crossref_primary_10_1021_acs_jmedchem_4c01680 crossref_primary_10_1039_D3NJ05245A crossref_primary_10_1039_D3DT02543H crossref_primary_10_1016_j_cej_2024_149518 crossref_primary_10_3389_fonc_2023_1179947 crossref_primary_10_3389_fonc_2023_1183405 crossref_primary_10_1016_j_nantod_2024_102411 crossref_primary_10_1186_s12951_022_01375_z crossref_primary_10_3390_ma16196572 crossref_primary_10_1080_1061186X_2024_2349112 crossref_primary_10_1002_EXP_20210106 crossref_primary_10_1016_j_actbio_2022_07_055 crossref_primary_10_26599_NR_2025_94907298 crossref_primary_10_1016_j_nano_2023_102678 crossref_primary_10_3892_etm_2022_11430 crossref_primary_10_1002_mba2_96 crossref_primary_10_1002_smll_202207077 crossref_primary_10_1016_j_colsurfb_2025_114586 crossref_primary_10_1021_acsapm_2c00556 crossref_primary_10_1016_j_ejmech_2022_114801 crossref_primary_10_1016_j_mtbio_2022_100532 crossref_primary_10_1016_j_mtbio_2025_101521 crossref_primary_10_1186_s12951_024_02921_7 crossref_primary_10_3389_fimmu_2022_973601 crossref_primary_10_1002_wnan_2010 crossref_primary_10_3390_pharmaceutics13060853 crossref_primary_10_1021_acsami_2c00574 crossref_primary_10_1039_D1TB01031J crossref_primary_10_1002_advs_202204932 crossref_primary_10_1002_smtd_202300230 crossref_primary_10_1016_j_jconrel_2024_06_020 crossref_primary_10_1186_s40164_023_00427_w crossref_primary_10_1186_s12951_021_01074_1 crossref_primary_10_1016_j_actbio_2023_05_018 crossref_primary_10_3390_nano13111779 crossref_primary_10_1007_s40843_024_3176_5 crossref_primary_10_1016_j_jconrel_2022_05_003 crossref_primary_10_1002_advs_202100997 crossref_primary_10_1016_j_cej_2023_142372 crossref_primary_10_2147_IJN_S463144 crossref_primary_10_1039_D3BM02133E crossref_primary_10_1016_j_cej_2023_143730 crossref_primary_10_3389_fphar_2024_1490139 crossref_primary_10_1016_j_critrevonc_2022_103772 crossref_primary_10_1016_j_ijbiomac_2024_133942 crossref_primary_10_1016_j_jconrel_2021_12_016 crossref_primary_10_1021_acsnano_3c07885 crossref_primary_10_1016_j_cej_2022_140688 crossref_primary_10_1002_smtd_202201406 crossref_primary_10_1016_j_mattod_2023_06_001 crossref_primary_10_1002_chem_202401713 crossref_primary_10_3389_fphar_2021_735965 crossref_primary_10_1002_adfm_202401272 crossref_primary_10_1021_acsabm_2c00199 crossref_primary_10_1186_s12951_024_02968_6 crossref_primary_10_1002_mabi_202300093 crossref_primary_10_1016_j_matdes_2022_111068 crossref_primary_10_1007_s42247_024_00939_z crossref_primary_10_3390_antiox11050853 crossref_primary_10_3389_fchem_2021_768248 crossref_primary_10_1002_smtd_202201412 crossref_primary_10_1016_j_actbio_2024_04_032 crossref_primary_10_1016_j_bbcan_2023_188890 crossref_primary_10_1002_adfm_202309727 crossref_primary_10_1039_D4MA00345D crossref_primary_10_1016_j_cej_2022_140455 crossref_primary_10_3390_antiox13091109 crossref_primary_10_1002_advs_202306580 crossref_primary_10_1016_j_nantod_2023_102033 crossref_primary_10_3389_fchem_2022_1090795 crossref_primary_10_3892_ol_2021_13042 crossref_primary_10_1007_s11427_022_2340_4 crossref_primary_10_2147_IJGM_S354682 crossref_primary_10_2174_0118715206278427231215111526 crossref_primary_10_3389_fimmu_2024_1447817 crossref_primary_10_1021_jacs_1c11507 crossref_primary_10_1007_s12598_024_02779_6 crossref_primary_10_1016_j_actbio_2023_10_037 crossref_primary_10_2217_nnm_2023_0270 crossref_primary_10_1186_s12951_023_01998_w crossref_primary_10_1002_adfm_202308589 crossref_primary_10_1016_j_cej_2024_152397 crossref_primary_10_1016_j_jcis_2023_12_042 crossref_primary_10_1016_j_ijbiomac_2024_129391 crossref_primary_10_1016_j_mattod_2022_03_013 crossref_primary_10_1002_adma_202416481 crossref_primary_10_1007_s11064_023_03963_3 crossref_primary_10_1016_j_cej_2023_147466 crossref_primary_10_3390_nano14131081 crossref_primary_10_1021_acsnano_1c06777 crossref_primary_10_2139_ssrn_3966264 crossref_primary_10_1002_adfm_202300575 crossref_primary_10_1002_adfm_202215022 crossref_primary_10_3390_ijms25010075 crossref_primary_10_3390_vaccines11091440 crossref_primary_10_1002_smll_202401650 crossref_primary_10_3892_or_2021_8159 crossref_primary_10_1007_s13346_023_01500_x crossref_primary_10_1016_j_media_2023_103040 crossref_primary_10_1039_D1BM00721A crossref_primary_10_3389_fchem_2022_868630 crossref_primary_10_1016_j_cpt_2022_10_002 crossref_primary_10_1016_j_jconrel_2024_06_059 crossref_primary_10_1002_adhm_202303533 crossref_primary_10_1039_D1CC05157A crossref_primary_10_3390_ijms24054685 crossref_primary_10_1002_adfm_202205013 crossref_primary_10_1016_j_cej_2023_147464 crossref_primary_10_1080_17425247_2024_2379937 crossref_primary_10_1016_j_mtbio_2024_101134 crossref_primary_10_1016_j_actbio_2024_11_004 crossref_primary_10_1016_j_carbpol_2023_121424 crossref_primary_10_1039_D3MA00389B crossref_primary_10_1016_j_ccr_2023_215330 crossref_primary_10_1186_s12967_023_04425_8 crossref_primary_10_1039_D1CS01011E crossref_primary_10_1039_D4MD00261J crossref_primary_10_1016_j_biomaterials_2023_122157 crossref_primary_10_1039_D3TB01325A crossref_primary_10_1186_s40104_024_01045_0 crossref_primary_10_1038_s41551_024_01221_7 crossref_primary_10_1002_adfm_202111784 |
Cites_doi | 10.1038/cdd.2015.158 10.1016/j.bbrc.2019.01.090 10.1146/annurev-immunol-032712-100008 10.1038/nri2545 10.1021/acsnano.8b05042 10.1016/j.trecan.2020.02.003 10.1038/s41573-018-0006-z 10.1126/science.1229568 10.4161/21624011.2014.968434 10.1158/0008-5472.CAN-13-1265 10.1111/imcb.12170 10.1016/j.ccell.2017.02.008 10.1002/jcb.21187 10.1038/nrc3038 10.1021/acsnano.8b09786 10.1126/science.1160809 10.1016/j.freeradbiomed.2017.09.008 10.1016/j.apcatb.2016.01.015 10.1038/nchembio.1416 10.1021/nl500618u 10.1016/j.freeradbiomed.2018.09.043 10.1016/S0014-5793(99)00696-1 10.1038/nrc3380 10.1016/j.yjmcc.2016.01.009 10.1111/jcmm.14511 10.1038/emboj.2011.497 10.1016/j.biomaterials.2013.01.084 10.1016/j.canlet.2018.03.046 10.1038/nature00858 10.1016/j.immuni.2013.07.012 10.1016/j.cell.2012.05.009 10.1016/j.cell.2013.12.010 10.1038/s41577-020-0406-2 10.1038/s41467-017-01050-0 10.1038/s41571-018-0142-8 10.3389/fimmu.2018.00353 10.1186/s12885-017-3418-y 10.1111/jcmm.14356 10.1002/smll.201903895 10.1021/acsnano.8b06399 10.1038/s41467-017-00424-8 10.1039/D0CS00883D 10.1182/blood-2006-07-035972 10.1007/s00018-016-2194-1 10.1038/nchembio.2261 10.1002/anie.201902612 10.1021/acsnano.6b04695 10.1021/mp300274g 10.1002/anie.201610682 10.1111/imr.12172 10.1172/JCI83871 10.1158/0008-5472.CAN-17-1307 |
ContentType | Journal Article |
Copyright | 2021 Elsevier B.V. Copyright © 2021 Elsevier B.V. All rights reserved. |
Copyright_xml | – notice: 2021 Elsevier B.V. – notice: Copyright © 2021 Elsevier B.V. All rights reserved. |
DBID | AAYXX CITATION NPM 7X8 7S9 L.6 |
DOI | 10.1016/j.jconrel.2021.04.013 |
DatabaseName | CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA PubMed MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Pharmacy, Therapeutics, & Pharmacology |
EISSN | 1873-4995 |
EndPage | 33 |
ExternalDocumentID | 33872626 10_1016_j_jconrel_2021_04_013 S0168365921001796 |
Genre | Journal Article |
GroupedDBID | --- --K --M .~1 0R~ 1B1 1RT 1~. 1~5 4.4 457 4G. 53G 5GY 5VS 7-5 71M 8P~ 9JM AABNK AABXZ AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AATCM AAXUO ABFNM ABFRF ABJNI ABMAC ABOCM ABYKQ ABZDS ACDAQ ACGFO ACGFS ACIUM ACRLP ADBBV ADEZE AEBSH AEFWE AEKER AENEX AEZYN AFKWA AFRZQ AFTJW AFXIZ AGHFR AGUBO AGYEJ AIEXJ AIKHN AITUG AJOXV ALCLG ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLXMC C45 CS3 DU5 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA HMT IHE J1W KOM M34 M41 MO0 N9A O-L O9- OAUVE OGGZJ OVD OZT P-8 P-9 P2P PC. Q38 RNS ROL RPZ SCC SDF SDG SDP SES SPC SPCBC SSM SSP SSZ T5K TEORI ~G- .GJ 29K 3O- AAHBH AAQXK AATTM AAXKI AAYOK AAYWO AAYXX ABWVN ABXDB ACNNM ACRPL ACVFH ADCNI ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AHHHB AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION D-I EJD FEDTE FGOYB G-2 HVGLF HZ~ R2- RIG SEW SPT SSH WUQ EFKBS NPM 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-c464t-3a0370452cd8103ede9a5c7bdbaf9da09b23bc51e8b17403e05e9c9ca0320a1b3 |
IEDL.DBID | .~1 |
ISSN | 0168-3659 1873-4995 |
IngestDate | Fri Jul 11 10:25:51 EDT 2025 Fri Jul 11 00:00:21 EDT 2025 Mon Jul 21 06:09:45 EDT 2025 Thu Apr 24 22:53:05 EDT 2025 Tue Jul 01 04:10:02 EDT 2025 Fri Feb 23 02:44:34 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Glycolysis Ferroptosis Immunosuppressive microenvironment (TIME) Metal organic framework (MOF) Immunogenic cell death (ICD) Reactive oxygen species (ROS) |
Language | English |
License | Copyright © 2021 Elsevier B.V. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c464t-3a0370452cd8103ede9a5c7bdbaf9da09b23bc51e8b17403e05e9c9ca0320a1b3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 33872626 |
PQID | 2515685319 |
PQPubID | 23479 |
PageCount | 13 |
ParticipantIDs | proquest_miscellaneous_2551947063 proquest_miscellaneous_2515685319 pubmed_primary_33872626 crossref_primary_10_1016_j_jconrel_2021_04_013 crossref_citationtrail_10_1016_j_jconrel_2021_04_013 elsevier_sciencedirect_doi_10_1016_j_jconrel_2021_04_013 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-06-10 |
PublicationDateYYYYMMDD | 2021-06-10 |
PublicationDate_xml | – month: 06 year: 2021 text: 2021-06-10 day: 10 |
PublicationDecade | 2020 |
PublicationPlace | Netherlands |
PublicationPlace_xml | – name: Netherlands |
PublicationTitle | Journal of controlled release |
PublicationTitleAlternate | J Control Release |
PublicationYear | 2021 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Feng, Xie, Wang, Gai, He, Yang, Yang, Lin (bb0150) 2018; 12 Yang, SriRamaratnam, Welsch, Shimada, Skouta, Viswanathan, Cheah, Clemons, Shamji, Clish, Brown, Girotti, Cornish, Schreiber, Stockwell (bb0160) 2014; 156 Certo, Tsai, Pucino, Ho, Mauro (bb0055) 2021; 21 Lu, Wang, Ding, Wang, Lu, Wang, He, Piao, Chi, Luo, Ge (bb0100) 2018; 425 Barbi, Pardoll, Pan (bb0215) 2014; 259 Wang, Li, Qiao, Hu, Liao, Chen, Wu, Wu, Zhao, Liu, Chen, Ma, Kim, Sun, Davis, Chen, Tian, Hyeon, Ling (bb0175) 2018; 12 Chen, Mellman (bb0015) 2013; 39 Bolobajev, Trapido, Goi (bb0125) 2016; 187 Wen, Liu, Kang, Zhou, Tang (bb0075) 2019; 510 Kroemer, Galluzzi, Kepp, Zitvogel (bb0080) 2013; 31 Reed, Pellecchia (bb0165) 2012; 149 Koppenol, Bounds, Dang (bb0050) 2011; 11 Anderson, Stromnes, Greenberg (bb0030) 2017; 31 Remant Bahadur, Thapa, Xu (bb0135) 2012; 9 Fan, Lu, Huang, Liu, Yang, Wang, Yu, Liu, Hu, He, Qu, Wang, Chen (bb0115) 2017; 56 Guo, Gu, Jiang, Ahmed, Zhang, Gu (bb0090) 2016; 91 He, Huang, Wang, Li, Liu, Zhou, Wang, Zhang, Wang, Jacobson, Zhu, Yu, Dai, Chen (bb0105) 2019; 58 Ma, Mattarollo, Adjemian, Yang, Aymeric, Hannani, Portela, Duret, Teng, Kepp, Wang, Sistigu, Schultze, Stoll, Galluzzi, Zitvogel, Smyth, Kroemer (bb0085) 2014; 74 Zhou, Wang, Chen, Wang, Hua, Cai (bb0040) 2019; 23 Green, Ferguson, Zitvogel, Kroemer (bb0045) 2009; 9 Cheng, Meng, Deng, Klok, Zhong (bb0140) 2013; 34 Wang, Wang, Chen, Li, Li, Lin (bb0120) 2019; 15 Ma, Chen, Wilkins, Wang, Swerdlow, Chen (bb0095) 2017; 113 Chen, Zhao, Luo, Zheng, Tian, Gong, Gao, Pan, Liu, Ma, Cui, Ma, Cai (bb0200) 2016; 10 Garg, Krysko, Verfaillie, Kaczmarek, Ferreira, Marysael, Rubio, Firczuk, Mathieu, Roebroek, Annaert, Golab, de Witte, Vandenabeele, Agostinis (bb0205) 2012; 31 Papa, Drummena, Wintera, Kooija (bb0170) 1999; 453 Yang, Xu, Chao, Xu, Sun, Wu, Peng, Liu (bb0245) 2017; 8 Xie, Hou, Song, Yu, Huang, Sun, Kang, Tang (bb0065) 2016; 23 D’Herde, Krysko (bb0070) 2017; 13 Fang, Hu, Luk, Gao, Copp, Tai, O’Connor, Zhang (bb0195) 2014; 14 Hirschhorn, Stockwell (bb0155) 2019; 133 Leone, Rees, Kain (bb0220) 2018; 96 Webb, Gao, Goldsmith, Irvine, Saleh, Lee, Lendermon, Bheemreddy, Zhang, Brennan, Johnson, Steinle, Wilson, Morales-Tirado (bb0240) 2017; 17 Scaffidi, Misteli, Bianchi (bb0210) 2002; 418 Dixon, Stockwell (bb0130) 2014; 10 Caronni, Simoncello, Stafetta, Guarnaccia, Ruiz-Moreno, Opitz, Galli, Proux-Gillardeaux, Benvenuti (bb0230) 2018; 78 Huo, Wang, Chen, Shi (bb0145) 2017; 8 Riley, June, Langer, Mitchell (bb0010) 2019; 18 Krysko, Garg, Kaczmarek, Krysko, Agostinis, Vandenabeele (bb0035) 2012; 12 Cao, Yan (bb0020) 2020; 6 Cao, Dixon (bb0060) 2016; 73 Matthew, Lewis, Craig (bb0185) 2009; 324 Adkins, Fucikova, Garg, Agostinis, Spisek (bb0225) 2014; 3 Fischer, Hoffmann, Voelkl, Meidenbauer, Ammer, Edinger, Gottfried, Schwarz, Rothe, Hoves, Renner, Timischl, Mackensen, Kunz-Schughart, Andreesen, Krause, Kreutz (bb0235) 2007; 109 Xu, Ding, Ji, Ao, Liu, Yu, Wang (bb0180) 2019; 23 Soumaya, Farhat, Amel (bb0260) 2018; 9 Zhang, Xi, Machuki, Luo, Yang, Li, Cai, Yang, Zhang, Tian, Guo, Yu, Gao (bb0250) 2019; 13 O’Donnell, Teng, Smyth (bb0025) 2019; 16 Mendes, Figueira, Leite, Gales, Almeida (bb0110) 2020; 49 Fukumura, Jain (bb0255) 2007; 101 Yang (bb0005) 2015; 125 Rodriguez, Harada, Christian, Pantano, Tsai, Discher (bb0190) 2013; 339 Riley (10.1016/j.jconrel.2021.04.013_bb0010) 2019; 18 Wen (10.1016/j.jconrel.2021.04.013_bb0075) 2019; 510 Chen (10.1016/j.jconrel.2021.04.013_bb0200) 2016; 10 Reed (10.1016/j.jconrel.2021.04.013_bb0165) 2012; 149 Cao (10.1016/j.jconrel.2021.04.013_bb0060) 2016; 73 Barbi (10.1016/j.jconrel.2021.04.013_bb0215) 2014; 259 Yang (10.1016/j.jconrel.2021.04.013_bb0245) 2017; 8 Ma (10.1016/j.jconrel.2021.04.013_bb0085) 2014; 74 Anderson (10.1016/j.jconrel.2021.04.013_bb0030) 2017; 31 O’Donnell (10.1016/j.jconrel.2021.04.013_bb0025) 2019; 16 Huo (10.1016/j.jconrel.2021.04.013_bb0145) 2017; 8 Fang (10.1016/j.jconrel.2021.04.013_bb0195) 2014; 14 Kroemer (10.1016/j.jconrel.2021.04.013_bb0080) 2013; 31 Ma (10.1016/j.jconrel.2021.04.013_bb0095) 2017; 113 Bolobajev (10.1016/j.jconrel.2021.04.013_bb0125) 2016; 187 D’Herde (10.1016/j.jconrel.2021.04.013_bb0070) 2017; 13 Caronni (10.1016/j.jconrel.2021.04.013_bb0230) 2018; 78 Leone (10.1016/j.jconrel.2021.04.013_bb0220) 2018; 96 Yang (10.1016/j.jconrel.2021.04.013_bb0160) 2014; 156 Green (10.1016/j.jconrel.2021.04.013_bb0045) 2009; 9 Papa (10.1016/j.jconrel.2021.04.013_bb0170) 1999; 453 Xie (10.1016/j.jconrel.2021.04.013_bb0065) 2016; 23 Zhou (10.1016/j.jconrel.2021.04.013_bb0040) 2019; 23 Soumaya (10.1016/j.jconrel.2021.04.013_bb0260) 2018; 9 Guo (10.1016/j.jconrel.2021.04.013_bb0090) 2016; 91 Koppenol (10.1016/j.jconrel.2021.04.013_bb0050) 2011; 11 Fan (10.1016/j.jconrel.2021.04.013_bb0115) 2017; 56 Krysko (10.1016/j.jconrel.2021.04.013_bb0035) 2012; 12 Scaffidi (10.1016/j.jconrel.2021.04.013_bb0210) 2002; 418 Cao (10.1016/j.jconrel.2021.04.013_bb0020) 2020; 6 Hirschhorn (10.1016/j.jconrel.2021.04.013_bb0155) 2019; 133 Zhang (10.1016/j.jconrel.2021.04.013_bb0250) 2019; 13 Dixon (10.1016/j.jconrel.2021.04.013_bb0130) 2014; 10 Wang (10.1016/j.jconrel.2021.04.013_bb0175) 2018; 12 Remant Bahadur (10.1016/j.jconrel.2021.04.013_bb0135) 2012; 9 Rodriguez (10.1016/j.jconrel.2021.04.013_bb0190) 2013; 339 Yang (10.1016/j.jconrel.2021.04.013_bb0005) 2015; 125 Xu (10.1016/j.jconrel.2021.04.013_bb0180) 2019; 23 Chen (10.1016/j.jconrel.2021.04.013_bb0015) 2013; 39 Wang (10.1016/j.jconrel.2021.04.013_bb0120) 2019; 15 He (10.1016/j.jconrel.2021.04.013_bb0105) 2019; 58 Cheng (10.1016/j.jconrel.2021.04.013_bb0140) 2013; 34 Feng (10.1016/j.jconrel.2021.04.013_bb0150) 2018; 12 Certo (10.1016/j.jconrel.2021.04.013_bb0055) 2021; 21 Garg (10.1016/j.jconrel.2021.04.013_bb0205) 2012; 31 Webb (10.1016/j.jconrel.2021.04.013_bb0240) 2017; 17 Adkins (10.1016/j.jconrel.2021.04.013_bb0225) 2014; 3 Matthew (10.1016/j.jconrel.2021.04.013_bb0185) 2009; 324 Fukumura (10.1016/j.jconrel.2021.04.013_bb0255) 2007; 101 Lu (10.1016/j.jconrel.2021.04.013_bb0100) 2018; 425 Fischer (10.1016/j.jconrel.2021.04.013_bb0235) 2007; 109 Mendes (10.1016/j.jconrel.2021.04.013_bb0110) 2020; 49 |
References_xml | – volume: 339 start-page: 971 year: 2013 end-page: 975 ident: bb0190 article-title: Minimal “Self” peptides that inhibit phagocytic clearance and enhance delivery of nanoparticles publication-title: Science – volume: 109 start-page: 3812 year: 2007 end-page: 3819 ident: bb0235 article-title: Inhibitory effect of tumor cell-derived lactic acid on human T cells publication-title: Blood – volume: 56 start-page: 1229 year: 2017 end-page: 1233 ident: bb0115 article-title: Glucose-responsive sequential generation of hydrogen peroxide and nitric oxide for synergistic Cancer starving-like/gas therapy publication-title: Angew. Chem. Int. Ed. Eng. – volume: 324 start-page: 1029 year: 2009 end-page: 1033 ident: bb0185 article-title: Understanding the Warburg effect: the metabolic requirements of cell proliferation publication-title: Science – volume: 73 start-page: 2195 year: 2016 end-page: 2209 ident: bb0060 article-title: Mechanisms of ferroptosis publication-title: Cell. Mol. Life Sci. – volume: 187 start-page: 75 year: 2016 end-page: 82 ident: bb0125 article-title: Interaction of tannic acid with ferric iron to assist 2,4,6-trichlorophenol catalytic decomposition and reuse of ferric sludge as a source of iron catalyst in Fenton-based treatment publication-title: Appl. Catal. B Environ. – volume: 8 start-page: 1 year: 2017 ident: bb0145 article-title: Tumor-selective catalytic nanomedicine by nanocatalyst delivery publication-title: Nat. Commun. – volume: 12 start-page: 11000 year: 2018 end-page: 11012 ident: bb0150 article-title: Magnetic targeting, tumor microenvironment-responsive intelligent nanocatalysts for enhanced tumor ablation publication-title: ACS Nano – volume: 453 start-page: 278 year: 1999 end-page: 282 ident: bb0170 article-title: Ratio-fluorescence microscopy of lipid oxidation in living cells using C11-BODIPY581/591 publication-title: FEBS Lett. – volume: 259 start-page: 115 year: 2014 end-page: 139 ident: bb0215 article-title: Treg functional stability and its responsiveness to the microenvironment publication-title: Immunol. Rev. – volume: 14 start-page: 2181 year: 2014 end-page: 2188 ident: bb0195 article-title: Cancer cell membrane-coated nanoparticles for anticancer vaccination and drug delivery publication-title: Nano Lett. – volume: 17 start-page: 434 year: 2017 ident: bb0240 article-title: Inhibition of MMP-2 and MMP-9 decreases cellular migration, and angiogenesis in in vitro models of retinoblastoma publication-title: BMC Cancer – volume: 13 start-page: 4 year: 2017 end-page: 5 ident: bb0070 article-title: Ferroptosis: oxidized Pes trigger death publication-title: Nat. Chem. Biol. – volume: 10 start-page: 10049 year: 2016 end-page: 10057 ident: bb0200 article-title: Cancer cell membrane-biomimetic nanoparticles for homologous-targeting dual-modal imaging and Photothermal therapy publication-title: ACS Nano – volume: 31 start-page: 51 year: 2013 end-page: 72 ident: bb0080 article-title: Immunogenic cell death in cancer therapy publication-title: Annu. Rev. Immunol. – volume: 12 start-page: 860 year: 2012 end-page: 875 ident: bb0035 article-title: Immunogenic cell death and DAMPs in cancer therapy publication-title: Nat. Rev. Cancer – volume: 23 start-page: 4900 year: 2019 end-page: 4912 ident: bb0180 article-title: Molecular mechanisms of ferroptosis and its role in cancer therapy publication-title: J. Cell. Mol. Med. – volume: 125 start-page: 3335 year: 2015 end-page: 3337 ident: bb0005 article-title: Cancer immunotherapy: harnessing the immune system to battle cancer publication-title: J. Clin. Invest. – volume: 16 start-page: 151 year: 2019 end-page: 167 ident: bb0025 article-title: Cancer immunoediting and resistance to T cell-based immunotherapy publication-title: Nat. Rev. Clin. Oncol. – volume: 91 start-page: 179 year: 2016 end-page: 187 ident: bb0090 article-title: Inhibition of pyruvate kinase M2 by reactive oxygen species contributes to the development of pulmonary arterial hypertension publication-title: J. Mol. Cell. Cardiol. – volume: 78 start-page: 1685 year: 2018 end-page: 1699 ident: bb0230 article-title: Downregulation of membrane trafficking proteins and lactate conditioning determine loss of dendritic cell function in Lung Cancer publication-title: Cancer Res. – volume: 6 start-page: 580 year: 2020 end-page: 592 ident: bb0020 article-title: Cancer epigenetics, tumor immunity, and immunotherapy publication-title: Trends Cancer – volume: 49 start-page: 9121 year: 2020 end-page: 9153 ident: bb0110 article-title: Metal-organic frameworks: a future toolbox for biomedicine? publication-title: Chem. Soc. Rev. – volume: 12 start-page: 12380 year: 2018 end-page: 12392 ident: bb0175 article-title: Arginine-rich manganese silicate nanobubbles as a ferroptosis-inducing agent for tumor-targeted theranostics publication-title: ACS Nano – volume: 34 start-page: 3647 year: 2013 end-page: 3657 ident: bb0140 article-title: Dual and multi-stimuli responsive polymeric nanoparticles for programmed site-specific drug delivery publication-title: Biomaterials – volume: 133 start-page: 130 year: 2019 end-page: 143 ident: bb0155 article-title: The development of the concept of ferroptosis publication-title: Free Radic. Biol. Med. – volume: 425 start-page: 31 year: 2018 end-page: 42 ident: bb0100 article-title: RIP1 and RIP3 contribute to shikonin-induced glycolysis suppression in glioma cells via increase of intracellular hydrogen peroxide publication-title: Cancer Lett. – volume: 31 start-page: 311 year: 2017 end-page: 325 ident: bb0030 article-title: Obstacles posed by the tumor microenvironment to T cell activity: a case for synergistic therapies publication-title: Cancer Cell – volume: 15 year: 2019 ident: bb0120 article-title: Recent advances in glucose-oxidase-based nanocomposites for tumor therapy publication-title: Small – volume: 9 start-page: 353 year: 2018 ident: bb0260 article-title: Targeting tumor metabolism: a new challenge to improve immunotherapy publication-title: Front. Immunol. – volume: 418 start-page: 191 year: 2002 end-page: 195 ident: bb0210 article-title: Release of chromatin protein HMGB1 by necrotic cells triggers inflammation publication-title: Nature – volume: 96 start-page: 683 year: 2018 end-page: 693 ident: bb0220 article-title: Dendritic cells and routing cargo into exosomes publication-title: Immunol. Cell Biol. – volume: 58 start-page: 8752 year: 2019 end-page: 8756 ident: bb0105 article-title: A catalase-like metal-organic framework nanohybrid for O publication-title: Angew. Chem. Int. Ed. Eng. – volume: 9 start-page: 353 year: 2009 end-page: 363 ident: bb0045 article-title: Immunogenic and tolerogenic cell death publication-title: Nat. Rev. Immunol. – volume: 11 start-page: 325 year: 2011 end-page: 337 ident: bb0050 article-title: Otto Warburg’s contributions to current concepts of cancer metabolism publication-title: Nat. Rev. Cancer – volume: 31 start-page: 1062 year: 2012 end-page: 1079 ident: bb0205 article-title: A novel pathway combining calreticulin exposure and ATP secretion in immunogenic cancer cell death publication-title: EMBO J. – volume: 13 start-page: 5306 year: 2019 end-page: 5325 ident: bb0250 article-title: Gold cube-in-cube based oxygen nanogenerator: a theranostic nanoplatform for modulating tumor microenvironment for precise chemo-phototherapy and multimodal imaging publication-title: ACS Nano – volume: 10 start-page: 9 year: 2014 end-page: 17 ident: bb0130 article-title: The role of iron and reactive oxygen species in cell death publication-title: Nat. Chem. Biol. – volume: 23 start-page: 4854 year: 2019 end-page: 4865 ident: bb0040 article-title: Immunogenic cell death in cancer therapy: present and emerging inducers publication-title: J. Cell. Mol. Med. – volume: 149 start-page: 963 year: 2012 end-page: 965 ident: bb0165 article-title: Ironing out cell death mechanisms publication-title: Cell – volume: 9 start-page: 2719 year: 2012 end-page: 2729 ident: bb0135 article-title: pH and redox dual responsive nanoparticle for nuclear targeted drug delivery publication-title: Mol. Pharm. – volume: 18 start-page: 175 year: 2019 end-page: 196 ident: bb0010 article-title: Delivery technologies for cancer immunotherapy publication-title: Nat. Rev. Drug Discov. – volume: 39 start-page: 1 year: 2013 end-page: 10 ident: bb0015 article-title: Oncology meets immunology: the cancer-immunity cycle publication-title: Immunity – volume: 8 start-page: 902 year: 2017 ident: bb0245 article-title: Hollow MnO publication-title: Nat. Commun. – volume: 156 start-page: 317 year: 2014 end-page: 331 ident: bb0160 article-title: Regulation of ferroptotic cancer cell death by GPX4 publication-title: Cell – volume: 21 start-page: 151 year: 2021 end-page: 161 ident: bb0055 article-title: Lactate modulation of immune responses in inflammatory versus tumour microenvironments publication-title: Nat. Rev. Immunol. – volume: 101 start-page: 937 year: 2007 end-page: 949 ident: bb0255 article-title: Tumor microenvironment abnormalities: causes, consequences, and strategies to normalize publication-title: J. Cell. Biochem. – volume: 3 year: 2014 ident: bb0225 article-title: Physical modalities inducing immunogenic tumor cell death for cancer immunotherapy publication-title: Oncoimmunology – volume: 74 start-page: 436 year: 2014 end-page: 445 ident: bb0085 article-title: CCL2/CCR2-dependent recruitment of functional antigen-presenting cells into tumors upon chemotherapy publication-title: Cancer Res. – volume: 113 start-page: 36 year: 2017 end-page: 47 ident: bb0095 article-title: Pharmacologic ascorbate induces neuroblastoma cell death by hydrogen peroxide mediated DNA damage and reduction in cancer cell glycolysis publication-title: Free Radic. Biol. Med. – volume: 510 start-page: 278 year: 2019 end-page: 283 ident: bb0075 article-title: The release and activity of HMGB1 in ferroptosis publication-title: Biochem. Biophys. Res. Commun. – volume: 23 start-page: 369 year: 2016 end-page: 379 ident: bb0065 article-title: Ferroptosis: process and function publication-title: Cell Death Differ. – volume: 23 start-page: 369 issue: 3 year: 2016 ident: 10.1016/j.jconrel.2021.04.013_bb0065 article-title: Ferroptosis: process and function publication-title: Cell Death Differ. doi: 10.1038/cdd.2015.158 – volume: 510 start-page: 278 year: 2019 ident: 10.1016/j.jconrel.2021.04.013_bb0075 article-title: The release and activity of HMGB1 in ferroptosis publication-title: Biochem. Biophys. Res. Commun. doi: 10.1016/j.bbrc.2019.01.090 – volume: 31 start-page: 51 year: 2013 ident: 10.1016/j.jconrel.2021.04.013_bb0080 article-title: Immunogenic cell death in cancer therapy publication-title: Annu. Rev. Immunol. doi: 10.1146/annurev-immunol-032712-100008 – volume: 9 start-page: 353 issue: 5 year: 2009 ident: 10.1016/j.jconrel.2021.04.013_bb0045 article-title: Immunogenic and tolerogenic cell death publication-title: Nat. Rev. Immunol. doi: 10.1038/nri2545 – volume: 12 start-page: 11000 issue: 11 year: 2018 ident: 10.1016/j.jconrel.2021.04.013_bb0150 article-title: Magnetic targeting, tumor microenvironment-responsive intelligent nanocatalysts for enhanced tumor ablation publication-title: ACS Nano doi: 10.1021/acsnano.8b05042 – volume: 6 start-page: 580 issue: 7 year: 2020 ident: 10.1016/j.jconrel.2021.04.013_bb0020 article-title: Cancer epigenetics, tumor immunity, and immunotherapy publication-title: Trends Cancer doi: 10.1016/j.trecan.2020.02.003 – volume: 18 start-page: 175 issue: 3 year: 2019 ident: 10.1016/j.jconrel.2021.04.013_bb0010 article-title: Delivery technologies for cancer immunotherapy publication-title: Nat. Rev. Drug Discov. doi: 10.1038/s41573-018-0006-z – volume: 339 start-page: 971 issue: 6122 year: 2013 ident: 10.1016/j.jconrel.2021.04.013_bb0190 article-title: Minimal “Self” peptides that inhibit phagocytic clearance and enhance delivery of nanoparticles publication-title: Science doi: 10.1126/science.1229568 – volume: 3 issue: 12 year: 2014 ident: 10.1016/j.jconrel.2021.04.013_bb0225 article-title: Physical modalities inducing immunogenic tumor cell death for cancer immunotherapy publication-title: Oncoimmunology doi: 10.4161/21624011.2014.968434 – volume: 74 start-page: 436 issue: 2 year: 2014 ident: 10.1016/j.jconrel.2021.04.013_bb0085 article-title: CCL2/CCR2-dependent recruitment of functional antigen-presenting cells into tumors upon chemotherapy publication-title: Cancer Res. doi: 10.1158/0008-5472.CAN-13-1265 – volume: 96 start-page: 683 year: 2018 ident: 10.1016/j.jconrel.2021.04.013_bb0220 article-title: Dendritic cells and routing cargo into exosomes publication-title: Immunol. Cell Biol. doi: 10.1111/imcb.12170 – volume: 31 start-page: 311 issue: 3 year: 2017 ident: 10.1016/j.jconrel.2021.04.013_bb0030 article-title: Obstacles posed by the tumor microenvironment to T cell activity: a case for synergistic therapies publication-title: Cancer Cell doi: 10.1016/j.ccell.2017.02.008 – volume: 101 start-page: 937 issue: 4 year: 2007 ident: 10.1016/j.jconrel.2021.04.013_bb0255 article-title: Tumor microenvironment abnormalities: causes, consequences, and strategies to normalize publication-title: J. Cell. Biochem. doi: 10.1002/jcb.21187 – volume: 11 start-page: 325 issue: 5 year: 2011 ident: 10.1016/j.jconrel.2021.04.013_bb0050 article-title: Otto Warburg’s contributions to current concepts of cancer metabolism publication-title: Nat. Rev. Cancer doi: 10.1038/nrc3038 – volume: 13 start-page: 5306 issue: 5 year: 2019 ident: 10.1016/j.jconrel.2021.04.013_bb0250 article-title: Gold cube-in-cube based oxygen nanogenerator: a theranostic nanoplatform for modulating tumor microenvironment for precise chemo-phototherapy and multimodal imaging publication-title: ACS Nano doi: 10.1021/acsnano.8b09786 – volume: 324 start-page: 1029 year: 2009 ident: 10.1016/j.jconrel.2021.04.013_bb0185 article-title: Understanding the Warburg effect: the metabolic requirements of cell proliferation publication-title: Science doi: 10.1126/science.1160809 – volume: 113 start-page: 36 year: 2017 ident: 10.1016/j.jconrel.2021.04.013_bb0095 article-title: Pharmacologic ascorbate induces neuroblastoma cell death by hydrogen peroxide mediated DNA damage and reduction in cancer cell glycolysis publication-title: Free Radic. Biol. Med. doi: 10.1016/j.freeradbiomed.2017.09.008 – volume: 187 start-page: 75 year: 2016 ident: 10.1016/j.jconrel.2021.04.013_bb0125 article-title: Interaction of tannic acid with ferric iron to assist 2,4,6-trichlorophenol catalytic decomposition and reuse of ferric sludge as a source of iron catalyst in Fenton-based treatment publication-title: Appl. Catal. B Environ. doi: 10.1016/j.apcatb.2016.01.015 – volume: 10 start-page: 9 issue: 1 year: 2014 ident: 10.1016/j.jconrel.2021.04.013_bb0130 article-title: The role of iron and reactive oxygen species in cell death publication-title: Nat. Chem. Biol. doi: 10.1038/nchembio.1416 – volume: 14 start-page: 2181 issue: 4 year: 2014 ident: 10.1016/j.jconrel.2021.04.013_bb0195 article-title: Cancer cell membrane-coated nanoparticles for anticancer vaccination and drug delivery publication-title: Nano Lett. doi: 10.1021/nl500618u – volume: 133 start-page: 130 year: 2019 ident: 10.1016/j.jconrel.2021.04.013_bb0155 article-title: The development of the concept of ferroptosis publication-title: Free Radic. Biol. Med. doi: 10.1016/j.freeradbiomed.2018.09.043 – volume: 453 start-page: 278 issue: 3 year: 1999 ident: 10.1016/j.jconrel.2021.04.013_bb0170 article-title: Ratio-fluorescence microscopy of lipid oxidation in living cells using C11-BODIPY581/591 publication-title: FEBS Lett. doi: 10.1016/S0014-5793(99)00696-1 – volume: 12 start-page: 860 issue: 12 year: 2012 ident: 10.1016/j.jconrel.2021.04.013_bb0035 article-title: Immunogenic cell death and DAMPs in cancer therapy publication-title: Nat. Rev. Cancer doi: 10.1038/nrc3380 – volume: 91 start-page: 179 year: 2016 ident: 10.1016/j.jconrel.2021.04.013_bb0090 article-title: Inhibition of pyruvate kinase M2 by reactive oxygen species contributes to the development of pulmonary arterial hypertension publication-title: J. Mol. Cell. Cardiol. doi: 10.1016/j.yjmcc.2016.01.009 – volume: 23 start-page: 4900 issue: 8 year: 2019 ident: 10.1016/j.jconrel.2021.04.013_bb0180 article-title: Molecular mechanisms of ferroptosis and its role in cancer therapy publication-title: J. Cell. Mol. Med. doi: 10.1111/jcmm.14511 – volume: 31 start-page: 1062 issue: 5 year: 2012 ident: 10.1016/j.jconrel.2021.04.013_bb0205 article-title: A novel pathway combining calreticulin exposure and ATP secretion in immunogenic cancer cell death publication-title: EMBO J. doi: 10.1038/emboj.2011.497 – volume: 34 start-page: 3647 issue: 14 year: 2013 ident: 10.1016/j.jconrel.2021.04.013_bb0140 article-title: Dual and multi-stimuli responsive polymeric nanoparticles for programmed site-specific drug delivery publication-title: Biomaterials doi: 10.1016/j.biomaterials.2013.01.084 – volume: 425 start-page: 31 year: 2018 ident: 10.1016/j.jconrel.2021.04.013_bb0100 article-title: RIP1 and RIP3 contribute to shikonin-induced glycolysis suppression in glioma cells via increase of intracellular hydrogen peroxide publication-title: Cancer Lett. doi: 10.1016/j.canlet.2018.03.046 – volume: 418 start-page: 191 issue: 6894 year: 2002 ident: 10.1016/j.jconrel.2021.04.013_bb0210 article-title: Release of chromatin protein HMGB1 by necrotic cells triggers inflammation publication-title: Nature doi: 10.1038/nature00858 – volume: 39 start-page: 1 issue: 1 year: 2013 ident: 10.1016/j.jconrel.2021.04.013_bb0015 article-title: Oncology meets immunology: the cancer-immunity cycle publication-title: Immunity doi: 10.1016/j.immuni.2013.07.012 – volume: 149 start-page: 963 issue: 5 year: 2012 ident: 10.1016/j.jconrel.2021.04.013_bb0165 article-title: Ironing out cell death mechanisms publication-title: Cell doi: 10.1016/j.cell.2012.05.009 – volume: 156 start-page: 317 issue: 1–2 year: 2014 ident: 10.1016/j.jconrel.2021.04.013_bb0160 article-title: Regulation of ferroptotic cancer cell death by GPX4 publication-title: Cell doi: 10.1016/j.cell.2013.12.010 – volume: 21 start-page: 151 issue: 3 year: 2021 ident: 10.1016/j.jconrel.2021.04.013_bb0055 article-title: Lactate modulation of immune responses in inflammatory versus tumour microenvironments publication-title: Nat. Rev. Immunol. doi: 10.1038/s41577-020-0406-2 – volume: 8 start-page: 902 issue: 1 year: 2017 ident: 10.1016/j.jconrel.2021.04.013_bb0245 article-title: Hollow MnO2 as a tumor-microenvironment-responsive biodegradable nano-platform for combination therapy favoring antitumor immune responses publication-title: Nat. Commun. doi: 10.1038/s41467-017-01050-0 – volume: 16 start-page: 151 issue: 3 year: 2019 ident: 10.1016/j.jconrel.2021.04.013_bb0025 article-title: Cancer immunoediting and resistance to T cell-based immunotherapy publication-title: Nat. Rev. Clin. Oncol. doi: 10.1038/s41571-018-0142-8 – volume: 9 start-page: 353 year: 2018 ident: 10.1016/j.jconrel.2021.04.013_bb0260 article-title: Targeting tumor metabolism: a new challenge to improve immunotherapy publication-title: Front. Immunol. doi: 10.3389/fimmu.2018.00353 – volume: 17 start-page: 434 issue: 1 year: 2017 ident: 10.1016/j.jconrel.2021.04.013_bb0240 article-title: Inhibition of MMP-2 and MMP-9 decreases cellular migration, and angiogenesis in in vitro models of retinoblastoma publication-title: BMC Cancer doi: 10.1186/s12885-017-3418-y – volume: 23 start-page: 4854 issue: 8 year: 2019 ident: 10.1016/j.jconrel.2021.04.013_bb0040 article-title: Immunogenic cell death in cancer therapy: present and emerging inducers publication-title: J. Cell. Mol. Med. doi: 10.1111/jcmm.14356 – volume: 15 issue: 51 year: 2019 ident: 10.1016/j.jconrel.2021.04.013_bb0120 article-title: Recent advances in glucose-oxidase-based nanocomposites for tumor therapy publication-title: Small doi: 10.1002/smll.201903895 – volume: 12 start-page: 12380 issue: 12 year: 2018 ident: 10.1016/j.jconrel.2021.04.013_bb0175 article-title: Arginine-rich manganese silicate nanobubbles as a ferroptosis-inducing agent for tumor-targeted theranostics publication-title: ACS Nano doi: 10.1021/acsnano.8b06399 – volume: 8 start-page: 1 year: 2017 ident: 10.1016/j.jconrel.2021.04.013_bb0145 article-title: Tumor-selective catalytic nanomedicine by nanocatalyst delivery publication-title: Nat. Commun. doi: 10.1038/s41467-017-00424-8 – volume: 49 start-page: 9121 issue: 24 year: 2020 ident: 10.1016/j.jconrel.2021.04.013_bb0110 article-title: Metal-organic frameworks: a future toolbox for biomedicine? publication-title: Chem. Soc. Rev. doi: 10.1039/D0CS00883D – volume: 109 start-page: 3812 issue: 9 year: 2007 ident: 10.1016/j.jconrel.2021.04.013_bb0235 article-title: Inhibitory effect of tumor cell-derived lactic acid on human T cells publication-title: Blood doi: 10.1182/blood-2006-07-035972 – volume: 73 start-page: 2195 issue: 11−12 year: 2016 ident: 10.1016/j.jconrel.2021.04.013_bb0060 article-title: Mechanisms of ferroptosis publication-title: Cell. Mol. Life Sci. doi: 10.1007/s00018-016-2194-1 – volume: 13 start-page: 4 year: 2017 ident: 10.1016/j.jconrel.2021.04.013_bb0070 article-title: Ferroptosis: oxidized Pes trigger death publication-title: Nat. Chem. Biol. doi: 10.1038/nchembio.2261 – volume: 58 start-page: 8752 issue: 26 year: 2019 ident: 10.1016/j.jconrel.2021.04.013_bb0105 article-title: A catalase-like metal-organic framework nanohybrid for O2 -evolving synergistic chemoradiotherapy publication-title: Angew. Chem. Int. Ed. Eng. doi: 10.1002/anie.201902612 – volume: 10 start-page: 10049 issue: 11 year: 2016 ident: 10.1016/j.jconrel.2021.04.013_bb0200 article-title: Cancer cell membrane-biomimetic nanoparticles for homologous-targeting dual-modal imaging and Photothermal therapy publication-title: ACS Nano doi: 10.1021/acsnano.6b04695 – volume: 9 start-page: 2719 issue: 9 year: 2012 ident: 10.1016/j.jconrel.2021.04.013_bb0135 article-title: pH and redox dual responsive nanoparticle for nuclear targeted drug delivery publication-title: Mol. Pharm. doi: 10.1021/mp300274g – volume: 56 start-page: 1229 issue: 5 year: 2017 ident: 10.1016/j.jconrel.2021.04.013_bb0115 article-title: Glucose-responsive sequential generation of hydrogen peroxide and nitric oxide for synergistic Cancer starving-like/gas therapy publication-title: Angew. Chem. Int. Ed. Eng. doi: 10.1002/anie.201610682 – volume: 259 start-page: 115 issue: 1 year: 2014 ident: 10.1016/j.jconrel.2021.04.013_bb0215 article-title: Treg functional stability and its responsiveness to the microenvironment publication-title: Immunol. Rev. doi: 10.1111/imr.12172 – volume: 125 start-page: 3335 issue: 9 year: 2015 ident: 10.1016/j.jconrel.2021.04.013_bb0005 article-title: Cancer immunotherapy: harnessing the immune system to battle cancer publication-title: J. Clin. Invest. doi: 10.1172/JCI83871 – volume: 78 start-page: 1685 issue: 7 year: 2018 ident: 10.1016/j.jconrel.2021.04.013_bb0230 article-title: Downregulation of membrane trafficking proteins and lactate conditioning determine loss of dendritic cell function in Lung Cancer publication-title: Cancer Res. doi: 10.1158/0008-5472.CAN-17-1307 |
SSID | ssj0005347 |
Score | 2.6489394 |
Snippet | Antitumor immunotherapy is limited by low tumor immunogenicity and immunosuppressive microenvironment (TIME), which could be improved by... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 21 |
SubjectTerms | biomimetics cell membranes coordination polymers doxorubicin Ferroptosis glucose glucose oxidase glutathione Glycolysis Immunogenic cell death (ICD) immunogenicity immunosuppression Immunosuppressive microenvironment (TIME) immunotherapy lactic acid ligands Metal organic framework (MOF) neoplasm cells neoplasms Reactive oxygen species (ROS) |
Title | Smart biomimetic metal organic frameworks based on ROS-ferroptosis-glycolysis regulation for enhanced tumor chemo-immunotherapy |
URI | https://dx.doi.org/10.1016/j.jconrel.2021.04.013 https://www.ncbi.nlm.nih.gov/pubmed/33872626 https://www.proquest.com/docview/2515685319 https://www.proquest.com/docview/2551947063 |
Volume | 334 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEBYhvfRS-kqyfQQVSk7Rrr2SbPkYQsO2pWnoJpCbkGQ58ZK1F9t72Ev71zvjR7Y9pIFeDDaSkTVjzSc03zeEfBRSRdJxwyIbpUxkjjMlvGBZJk0IId8lBgnO386j2ZX4ci2vd8jpwIXBtMp-7e_W9Ha17p9M-tmcrPJ8MgewojieCqKMUJyg7LYQMXr5-OcfaR5cdJTpSDFsvWXxTBbjBew5K48nENOwVTwN-UPx6SH82cahs-fkWQ8g6Uk3xhdkxxcvydFFp0C9OaaXW0JVfUyP6MVWm3rzivyaL-HrKJLu8yXyFylc4XVdcSdHsyFXq6YY31JaFvTH9znLfFWVq6as85rd3G3gdahkQquukj3YlgL4pb64bRMKaLNewi34w7JkOTJQep7X5jW5Ovt0eTpjfQ0G5kQkGsZNwGOUXXepCgPuU58Y6WKbWpMlqQkSO-XWydArC3sbaBBIn7jEGSzMbkLL98huURb-gFAL8MoKZ9FWIg2FkWk2jRKHW0LwlnhExDDz2vUC5Vgn404PmWgL3RtMo8F0IDQYbETG991WnULHYx3UYFb9l6tpiCKPdf0wuIGG3xDPVkzhy3WtASbKSOGC9q82AJdFDKBwRPY7H7ofMecqnsLm8s3_D-4teYp3mMcWBu_IblOt_XtATI09bH-JQ_Lk5PPX2flvtzkZyg |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZKOcAFtTyXUjAS6qneTdZ2HseqarVAWyp2K_Vm2Y5TsuomqyR72Av8dWby6MKhVOISKYkdOZ6x5xt5vhlCPgkZBdJyzQITJEyklrNIOMHSVGofTL6NNRKczy-CyZX4ci2vt8hxz4XBsMpu72_39Ga37p6MutkcLbNsNAWwEnE8FcQ0QmEcPCKPBSxfLGMw_PlHnAcXLWc6iBg239B4RvPhHJzO0uERxNhvUp76_D4DdR8AbQzR6Q551iFIetQOcpdsufw5ObhsU1CvD-lsw6iqDukBvdwkp16_IL-mC_g9iqz7bIEERgpX-Fxb3cnStA_WqigauIQWOf3-bcpSV5bFsi6qrGI3t2v4HKYyoWVbyh6ESwH9Upf_aCIKaL1awC0oxKJgGVJQOqLX-iW5Oj2ZHU9YV4SBWRGImnHt8RDzrtsk8j3uEhdraUOTGJ3GifZiM-bGSt9FBpwbaOBJF9vYaqzMrn3DX5HtvMjdG0IN4CsjrEFhicQXWibpOIgt-oSgLuGAiH7mle0ylGOhjFvVh6LNVScwhQJTnlAgsAEZ3nVbtik6HuoQ9WJVf-maAjPyUNePvRooWId4uKJzV6wqBThRBhHuaP9qA3hZhIAKB-R1q0N3I-Y8CsfgXb79_8F9IE8ms_Mzdfb54useeYpvMKjN996R7bpcuX2AT7V53yyP3_WmG1g |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Smart+biomimetic+metal+organic+frameworks+based+on+ROS-ferroptosis-glycolysis+regulation+for+enhanced+tumor+chemo-immunotherapy&rft.jtitle=Journal+of+controlled+release&rft.au=Yang%2C+Jie&rft.au=Ma%2C+Siyu&rft.au=Xu%2C+Rui&rft.au=Wei%2C+Yawen&rft.date=2021-06-10&rft.issn=0168-3659&rft.volume=334&rft.spage=21&rft.epage=33&rft_id=info:doi/10.1016%2Fj.jconrel.2021.04.013&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_jconrel_2021_04_013 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0168-3659&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0168-3659&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0168-3659&client=summon |