Comparison of the common spatial interpolation methods used to analyze potentially toxic elements surrounding mining regions
The appropriate spatial interpolation methods must be selected to analyze the spatial distributions of Potentially Toxic Elements (PTEs), which is a precondition for evaluating PTE pollution. The accuracy and effect of different spatial interpolation methods, which include inverse distance weighting...
Saved in:
Published in | Journal of environmental management Vol. 212; pp. 23 - 31 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
England
Elsevier Ltd
15.04.2018
|
Subjects | |
Online Access | Get full text |
ISSN | 0301-4797 1095-8630 1095-8630 |
DOI | 10.1016/j.jenvman.2018.01.074 |
Cover
Loading…
Abstract | The appropriate spatial interpolation methods must be selected to analyze the spatial distributions of Potentially Toxic Elements (PTEs), which is a precondition for evaluating PTE pollution. The accuracy and effect of different spatial interpolation methods, which include inverse distance weighting interpolation (IDW) (power = 1, 2, 3), radial basis function interpolation (RBF) (basis function: thin-plate spline (TPS), spline with tension (ST), completely regularized spline (CRS), multiquadric (MQ) and inverse multiquadric (IMQ)) and ordinary kriging interpolation (OK) (semivariogram model: spherical, exponential, gaussian and linear), were compared using 166 unevenly distributed soil PTE samples (As, Pb, Cu and Zn) in the Suxian District, Chenzhou City, Hunan Province as the study subject. The reasons for the accuracy differences of the interpolation methods and the uncertainties of the interpolation results are discussed, then several suggestions for improving the interpolation accuracy are proposed, and the direction of pollution control is determined. The results of this study are as follows: (i) RBF-ST and OK (exponential) are the optimal interpolation methods for As and Cu, and the optimal interpolation method for Pb and Zn is RBF-IMQ. (ii) The interpolation uncertainty is positively correlated with the PTE concentration, and higher uncertainties are primarily distributed around mines, which is related to the strong spatial variability of PTE concentrations caused by human interference. (iii) The interpolation accuracy can be improved by increasing the sample size around the mines, introducing auxiliary variables in the case of incomplete sampling and adopting the partition prediction method. (iv) It is necessary to strengthen the prevention and control of As and Pb pollution, particularly in the central and northern areas. The results of this study can provide an effective reference for the optimization of interpolation methods and parameters for unevenly distributed soil PTE data in mining areas.
•IDW, RBF, OK were compared for Potentially Poxic Plements (PTEs) in mining areas.•The optimal interpolation methods for As, Pb and Zn were RBF, whereas Cu was OK.•Interpolation uncertainty is positively correlated with PTEs concentration.•Prevention of As, Pb pollution in central and northern areas should be enhanced.•The results can provide references to optimize spatial interpolation methods. |
---|---|
AbstractList | The appropriate spatial interpolation methods must be selected to analyze the spatial distributions of Potentially Toxic Elements (PTEs), which is a precondition for evaluating PTE pollution. The accuracy and effect of different spatial interpolation methods, which include inverse distance weighting interpolation (IDW) (power = 1, 2, 3), radial basis function interpolation (RBF) (basis function: thin-plate spline (TPS), spline with tension (ST), completely regularized spline (CRS), multiquadric (MQ) and inverse multiquadric (IMQ)) and ordinary kriging interpolation (OK) (semivariogram model: spherical, exponential, gaussian and linear), were compared using 166 unevenly distributed soil PTE samples (As, Pb, Cu and Zn) in the Suxian District, Chenzhou City, Hunan Province as the study subject. The reasons for the accuracy differences of the interpolation methods and the uncertainties of the interpolation results are discussed, then several suggestions for improving the interpolation accuracy are proposed, and the direction of pollution control is determined. The results of this study are as follows: (i) RBF-ST and OK (exponential) are the optimal interpolation methods for As and Cu, and the optimal interpolation method for Pb and Zn is RBF-IMQ. (ii) The interpolation uncertainty is positively correlated with the PTE concentration, and higher uncertainties are primarily distributed around mines, which is related to the strong spatial variability of PTE concentrations caused by human interference. (iii) The interpolation accuracy can be improved by increasing the sample size around the mines, introducing auxiliary variables in the case of incomplete sampling and adopting the partition prediction method. (iv) It is necessary to strengthen the prevention and control of As and Pb pollution, particularly in the central and northern areas. The results of this study can provide an effective reference for the optimization of interpolation methods and parameters for unevenly distributed soil PTE data in mining areas. The appropriate spatial interpolation methods must be selected to analyze the spatial distributions of Potentially Toxic Elements (PTEs), which is a precondition for evaluating PTE pollution. The accuracy and effect of different spatial interpolation methods, which include inverse distance weighting interpolation (IDW) (power = 1, 2, 3), radial basis function interpolation (RBF) (basis function: thin-plate spline (TPS), spline with tension (ST), completely regularized spline (CRS), multiquadric (MQ) and inverse multiquadric (IMQ)) and ordinary kriging interpolation (OK) (semivariogram model: spherical, exponential, gaussian and linear), were compared using 166 unevenly distributed soil PTE samples (As, Pb, Cu and Zn) in the Suxian District, Chenzhou City, Hunan Province as the study subject. The reasons for the accuracy differences of the interpolation methods and the uncertainties of the interpolation results are discussed, then several suggestions for improving the interpolation accuracy are proposed, and the direction of pollution control is determined. The results of this study are as follows: (i) RBF-ST and OK (exponential) are the optimal interpolation methods for As and Cu, and the optimal interpolation method for Pb and Zn is RBF-IMQ. (ii) The interpolation uncertainty is positively correlated with the PTE concentration, and higher uncertainties are primarily distributed around mines, which is related to the strong spatial variability of PTE concentrations caused by human interference. (iii) The interpolation accuracy can be improved by increasing the sample size around the mines, introducing auxiliary variables in the case of incomplete sampling and adopting the partition prediction method. (iv) It is necessary to strengthen the prevention and control of As and Pb pollution, particularly in the central and northern areas. The results of this study can provide an effective reference for the optimization of interpolation methods and parameters for unevenly distributed soil PTE data in mining areas. •IDW, RBF, OK were compared for Potentially Poxic Plements (PTEs) in mining areas.•The optimal interpolation methods for As, Pb and Zn were RBF, whereas Cu was OK.•Interpolation uncertainty is positively correlated with PTEs concentration.•Prevention of As, Pb pollution in central and northern areas should be enhanced.•The results can provide references to optimize spatial interpolation methods. The appropriate spatial interpolation methods must be selected to analyze the spatial distributions of Potentially Toxic Elements (PTEs), which is a precondition for evaluating PTE pollution. The accuracy and effect of different spatial interpolation methods, which include inverse distance weighting interpolation (IDW) (power = 1, 2, 3), radial basis function interpolation (RBF) (basis function: thin-plate spline (TPS), spline with tension (ST), completely regularized spline (CRS), multiquadric (MQ) and inverse multiquadric (IMQ)) and ordinary kriging interpolation (OK) (semivariogram model: spherical, exponential, gaussian and linear), were compared using 166 unevenly distributed soil PTE samples (As, Pb, Cu and Zn) in the Suxian District, Chenzhou City, Hunan Province as the study subject. The reasons for the accuracy differences of the interpolation methods and the uncertainties of the interpolation results are discussed, then several suggestions for improving the interpolation accuracy are proposed, and the direction of pollution control is determined. The results of this study are as follows: (i) RBF-ST and OK (exponential) are the optimal interpolation methods for As and Cu, and the optimal interpolation method for Pb and Zn is RBF-IMQ. (ii) The interpolation uncertainty is positively correlated with the PTE concentration, and higher uncertainties are primarily distributed around mines, which is related to the strong spatial variability of PTE concentrations caused by human interference. (iii) The interpolation accuracy can be improved by increasing the sample size around the mines, introducing auxiliary variables in the case of incomplete sampling and adopting the partition prediction method. (iv) It is necessary to strengthen the prevention and control of As and Pb pollution, particularly in the central and northern areas. The results of this study can provide an effective reference for the optimization of interpolation methods and parameters for unevenly distributed soil PTE data in mining areas.The appropriate spatial interpolation methods must be selected to analyze the spatial distributions of Potentially Toxic Elements (PTEs), which is a precondition for evaluating PTE pollution. The accuracy and effect of different spatial interpolation methods, which include inverse distance weighting interpolation (IDW) (power = 1, 2, 3), radial basis function interpolation (RBF) (basis function: thin-plate spline (TPS), spline with tension (ST), completely regularized spline (CRS), multiquadric (MQ) and inverse multiquadric (IMQ)) and ordinary kriging interpolation (OK) (semivariogram model: spherical, exponential, gaussian and linear), were compared using 166 unevenly distributed soil PTE samples (As, Pb, Cu and Zn) in the Suxian District, Chenzhou City, Hunan Province as the study subject. The reasons for the accuracy differences of the interpolation methods and the uncertainties of the interpolation results are discussed, then several suggestions for improving the interpolation accuracy are proposed, and the direction of pollution control is determined. The results of this study are as follows: (i) RBF-ST and OK (exponential) are the optimal interpolation methods for As and Cu, and the optimal interpolation method for Pb and Zn is RBF-IMQ. (ii) The interpolation uncertainty is positively correlated with the PTE concentration, and higher uncertainties are primarily distributed around mines, which is related to the strong spatial variability of PTE concentrations caused by human interference. (iii) The interpolation accuracy can be improved by increasing the sample size around the mines, introducing auxiliary variables in the case of incomplete sampling and adopting the partition prediction method. (iv) It is necessary to strengthen the prevention and control of As and Pb pollution, particularly in the central and northern areas. The results of this study can provide an effective reference for the optimization of interpolation methods and parameters for unevenly distributed soil PTE data in mining areas. |
Author | Ding, Qian Zhuang, Dafang Wang, Yong |
Author_xml | – sequence: 1 givenname: Qian surname: Ding fullname: Ding, Qian organization: State Key Laboratory of Resources and Environmental Information System, Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China – sequence: 2 givenname: Yong orcidid: 0000-0003-0266-8787 surname: Wang fullname: Wang, Yong email: wangy@igsnrr.ac.cn organization: State Key Laboratory of Resources and Environmental Information System, Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China – sequence: 3 givenname: Dafang surname: Zhuang fullname: Zhuang, Dafang organization: State Key Laboratory of Resources and Environmental Information System, Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29427938$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkUtv1DAUhS3Uik4LPwHkJZsEvxInYoHQiJdUqZuythznpvUotoPtVAzix-NhBhZs2tXVPfrOWZxzic588IDQK0pqSmj7dlfvwD847WtGaFcTWhMpnqENJX1TdS0nZ2hDOKGVkL28QJcp7QghnFH5HF2wXjDZ826Dfm2DW3S0KXgcJpzvAZvgXPnSorPVM7Y-Q1zCXL6iOsj3YUx4TTDiHLD2et7_BLyEDP7Az_si_7AGwwyuSAmnNcaw-tH6O-ysP5wIdyUsvUDnk54TvDzdK_Tt08fb7Zfq-ubz1-2H68qIVuSKdwKgbZmApmv12AwCjNaTmSSTHKaJT2YwLR16MQ1SctLrweixHXpjRKcHya_Qm2PuEsP3FVJWziYD86w9hDUpRkQjeyYFfQJKKJGMdX1BX5_QdXAwqiVap-Ne_S23AM0RMDGkFGH6h1CiDiOqnTqNqA4jKkJVGbH43v3nMzb_qT9HbedH3e-PbiiNPliIKhkL3sBoI5isxmAfSfgNPbjAKQ |
CitedBy_id | crossref_primary_10_2166_nh_2020_146 crossref_primary_10_1007_s13131_021_1789_z crossref_primary_10_3390_w14030459 crossref_primary_10_1007_s10489_024_05913_0 crossref_primary_10_1007_s10653_022_01231_x crossref_primary_10_3389_feart_2024_1343731 crossref_primary_10_1007_s10653_019_00328_0 crossref_primary_10_3390_math8122173 crossref_primary_10_1016_j_envpol_2024_125169 crossref_primary_10_1007_s10596_019_09913_9 crossref_primary_10_1007_s13201_023_02051_9 crossref_primary_10_1016_j_ecoenv_2022_114436 crossref_primary_10_1002_vzj2_20025 crossref_primary_10_1016_j_wasman_2022_05_014 crossref_primary_10_1016_j_scitotenv_2022_153948 crossref_primary_10_1038_s41598_021_89172_w crossref_primary_10_1016_j_catena_2023_107658 crossref_primary_10_1007_s10653_021_01136_1 crossref_primary_10_1007_s12517_022_10210_6 crossref_primary_10_3390_ijerph20043163 crossref_primary_10_3390_su10082749 crossref_primary_10_1016_j_scitotenv_2023_169498 crossref_primary_10_61186_jsaeh_11_2_117 crossref_primary_10_1007_s00267_023_01847_4 crossref_primary_10_1007_s12517_022_11135_w crossref_primary_10_1007_s10653_020_00673_5 crossref_primary_10_3390_agronomy14112469 crossref_primary_10_3390_rs14020253 crossref_primary_10_1007_s11356_023_27943_w crossref_primary_10_1016_j_atmosenv_2022_119015 crossref_primary_10_3390_rs14122842 crossref_primary_10_1002_ldr_4117 crossref_primary_10_1016_j_chemosphere_2022_136789 crossref_primary_10_1515_geo_2022_0667 crossref_primary_10_1016_j_jenvman_2023_119838 crossref_primary_10_1016_j_catena_2020_104573 crossref_primary_10_1016_j_envres_2022_114208 crossref_primary_10_1007_s12665_021_09710_7 crossref_primary_10_3390_su11071832 |
Cites_doi | 10.1016/j.atmosenv.2014.09.059 10.1016/j.envpol.2016.07.048 10.1016/j.gexplo.2015.02.005 10.1016/j.trd.2014.07.010 10.1016/j.gexplo.2014.06.007 10.1016/j.jclepro.2014.03.060 10.1016/j.ecolind.2015.05.032 10.1016/j.agee.2009.01.001 10.1016/j.marpolbul.2014.07.041 10.1007/s10661-015-4725-x 10.15244/pjoes/64379 10.1016/j.geoderma.2010.08.007 10.1016/j.marpolbul.2014.07.048 10.1007/s12665-010-0784-z 10.1016/j.still.2015.05.013 10.1016/j.compag.2005.07.003 10.1016/j.scitotenv.2016.11.001 10.3390/ijerph10105163 10.1016/S1003-6326(15)63853-5 10.1007/BF00889887 10.1016/j.gexplo.2011.01.004 10.1016/j.gexplo.2010.07.008 10.1016/j.scitotenv.2016.10.088 10.1016/j.envpol.2016.07.031 10.1006/enrs.1999.3966 10.1007/s11356-016-7995-0 10.1016/j.eswa.2010.07.085 10.1111/j.2517-6161.1974.tb00994.x |
ContentType | Journal Article |
Copyright | 2018 Elsevier Ltd Copyright © 2018 Elsevier Ltd. All rights reserved. |
Copyright_xml | – notice: 2018 Elsevier Ltd – notice: Copyright © 2018 Elsevier Ltd. All rights reserved. |
DBID | AAYXX CITATION NPM 7X8 7S9 L.6 |
DOI | 10.1016/j.jenvman.2018.01.074 |
DatabaseName | CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA PubMed MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Economics Environmental Sciences |
EISSN | 1095-8630 |
EndPage | 31 |
ExternalDocumentID | 29427938 10_1016_j_jenvman_2018_01_074 S0301479718300902 |
Genre | Journal Article |
GeographicLocations | China |
GeographicLocations_xml | – name: China |
GroupedDBID | --- --K --M -~X .~1 0R~ 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JM 9JN 9JO AABNK AACTN AAEDT AAEDW AAFJI AAHCO AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARJD AAXUO ABFRF ABFYP ABJNI ABLST ABMAC ABMMH ABYKQ ACDAQ ACGFO ACGFS ACPRK ACRLP ADBBV ADEZE AEBSH AEFWE AEKER AENEX AFKWA AFRAH AFTJW AFXIZ AGHFR AGUBO AGYEJ AHEUO AHHHB AHIDL AIEXJ AIKHN AITUG AJBFU AJOXV AKIFW AKYCK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOMHK AVARZ AXJTR BELTK BKOJK BKOMP BLECG BLXMC CS3 DM4 DU5 EBS EFBJH EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA HMC IHE J1W JARJE KCYFY KOM LG5 LY8 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PQQKQ PRBVW Q38 RIG ROL RPZ RXW SCC SDF SDG SDP SES SPC SPCBC SSB SSJ SSO SSR SSZ T5K TAE TWZ WH7 XSW Y6R YK3 ZCA ZU3 ~02 ~G- ~KM 29K 3EH 53G AAHBH AAQXK AATTM AAXKI AAYJJ AAYWO AAYXX ABEFU ABWVN ABXDB ACRPL ACVFH ADCNI ADFGL ADMUD ADNMO ADXHL AEGFY AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AI. AIDBO AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CAG CITATION COF D-I FEDTE FGOYB G-2 HVGLF HZ~ R2- SEN SEW SSH UHS UQL VH1 WUQ XPP YV5 ZMT ZY4 NPM 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-c464t-384ee6624e586ad5b4ecaafcf7273eff3fcbc61b94fb77309abcad6b9cc48ab73 |
IEDL.DBID | .~1 |
ISSN | 0301-4797 1095-8630 |
IngestDate | Fri Jul 11 04:03:40 EDT 2025 Fri Jul 11 12:04:12 EDT 2025 Thu Apr 03 06:59:21 EDT 2025 Tue Jul 01 02:39:40 EDT 2025 Thu Apr 24 23:06:52 EDT 2025 Fri Feb 23 02:29:28 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Mining area Radial basis function interpolation Ordinary kriging interpolation Uncertainty Potentially Toxic Element Inverse distance weighting interpolation |
Language | English |
License | Copyright © 2018 Elsevier Ltd. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c464t-384ee6624e586ad5b4ecaafcf7273eff3fcbc61b94fb77309abcad6b9cc48ab73 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0003-0266-8787 |
PMID | 29427938 |
PQID | 2001072289 |
PQPubID | 23479 |
PageCount | 9 |
ParticipantIDs | proquest_miscellaneous_2045792741 proquest_miscellaneous_2001072289 pubmed_primary_29427938 crossref_primary_10_1016_j_jenvman_2018_01_074 crossref_citationtrail_10_1016_j_jenvman_2018_01_074 elsevier_sciencedirect_doi_10_1016_j_jenvman_2018_01_074 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-04-15 |
PublicationDateYYYYMMDD | 2018-04-15 |
PublicationDate_xml | – month: 04 year: 2018 text: 2018-04-15 day: 15 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Journal of environmental management |
PublicationTitleAlternate | J Environ Manage |
PublicationYear | 2018 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Wang, Ding, Zhuang (bib33) 2015; 58 Zhang, Li, Shi, Wan (bib37) 2014; 30 Achiba, Gabteni, Lakhdar, Laing, Verloo, Jedidi, Gallali (bib1) 2009; 130 Li, Zhang, Yang, Yuan, Zhou (bib15) 2011; 41 Stone (bib29) 1974; 36 Capra, Coppola, Odierna, Grilli, Vacca, Buondonno (bib8) 2014; 145 Ji, Wang, Zhuang, Song, Shen, Wang, Li (bib13) 2014; 32 Sundaramanickam, Shanmugam, Cholan, Kumaresan, Madeswaran, Balasubramanian (bib30) 2016; 218 Wu, Wu, Luo, Zhang, Teng, DeGloria (bib34) 2011; 63 Liu, Jiang, Sun, Zhou, Wang, Qian, Lu (bib17) 2013; 3 Isaaks, Srivastava (bib12) 1989 Arslan, Turan (bib3) 2015; 187 Mielke, Gonzales, Smith, Mielke (bib22) 1999; 81 Li, Liu, Zhou, Wang, Liu, Zhu, Zhang, Sun (bib16) 2017; 26 Nezhad, Tabatabaii, Gholami (bib23) 2015; 152 Burak, Fontes, Santos, Monteiro, Martins, Becquer (bib6) 2010; 160 Zhong, Zhou, Li, Zhao (bib38) 2007; 44 Liu, Chen, Sun, Zhang, Wang, Yu, Shen (bib21) 2014; 86 Zhang, Guo, Zhao, He, Wang, Zhu, Yan, Liu, Sun, Zhao, Qian (bib36) 2016; 218 Liu, Wang, Zhang, Wang (bib20) 2011; 3 Acosta, Faz, Martínez-Martínez, Zornoza, Carmona, Kabas (bib2) 2011; 109 Nickel, Hertel, Pesch, Schroder, Steinnes, Uggerud (bib24) 2014; 99 Dragovic, Gajic, Dragovic, Dordevic, Dordevic, Mihailovic, Onjia (bib11) 2014; 84 Ding, Cheng, Wang, Zhuang (bib10) 2017; 578 Wang, Shi, Li, Wang (bib32) 2003; 25 Solgi, ParmaH (bib27) 2015; 25 Song, Jiang, Wang, Chen, Huang, Zhuang (bib28) 2013; 10 Yan, Mahmood, Peng, Fu, Chen, Wang, Li, Chen, Liu (bib35) 2015; 153 Broomhead, Lowe (bib5) 1988; 2 Liu, Niu, Zhang, Zhao, Guo (bib18) 2014; 12 Robinson, Metternicht (bib26) 2006; 50 Wang, Liu, Zhang, Yu, Shen, Feng (bib31) 2014; 87 Bini, Sartori, Wahsha, Fontana (bib4) 2011; 109 Cressie (bib9) 1990; 22 Qu, Xiao, Zheng, Zhang, Xu (bib25) 2017; 24 Kazemi, Hosseini (bib14) 2011; 38 Liu, Wang, Wang (bib19) 2010; 11 Cao, Lu, Wang, Huo (bib7) 2017; 580 Dragovic (10.1016/j.jenvman.2018.01.074_bib11) 2014; 84 Liu (10.1016/j.jenvman.2018.01.074_bib20) 2011; 3 Acosta (10.1016/j.jenvman.2018.01.074_bib2) 2011; 109 Wang (10.1016/j.jenvman.2018.01.074_bib33) 2015; 58 Nezhad (10.1016/j.jenvman.2018.01.074_bib23) 2015; 152 Burak (10.1016/j.jenvman.2018.01.074_bib6) 2010; 160 Wang (10.1016/j.jenvman.2018.01.074_bib32) 2003; 25 Li (10.1016/j.jenvman.2018.01.074_bib15) 2011; 41 Liu (10.1016/j.jenvman.2018.01.074_bib17) 2013; 3 Broomhead (10.1016/j.jenvman.2018.01.074_bib5) 1988; 2 Zhang (10.1016/j.jenvman.2018.01.074_bib37) 2014; 30 Isaaks (10.1016/j.jenvman.2018.01.074_bib12) 1989 Zhang (10.1016/j.jenvman.2018.01.074_bib36) 2016; 218 Bini (10.1016/j.jenvman.2018.01.074_bib4) 2011; 109 Stone (10.1016/j.jenvman.2018.01.074_bib29) 1974; 36 Cressie (10.1016/j.jenvman.2018.01.074_bib9) 1990; 22 Li (10.1016/j.jenvman.2018.01.074_bib16) 2017; 26 Song (10.1016/j.jenvman.2018.01.074_bib28) 2013; 10 Arslan (10.1016/j.jenvman.2018.01.074_bib3) 2015; 187 Ding (10.1016/j.jenvman.2018.01.074_bib10) 2017; 578 Yan (10.1016/j.jenvman.2018.01.074_bib35) 2015; 153 Nickel (10.1016/j.jenvman.2018.01.074_bib24) 2014; 99 Liu (10.1016/j.jenvman.2018.01.074_bib21) 2014; 86 Qu (10.1016/j.jenvman.2018.01.074_bib25) 2017; 24 Sundaramanickam (10.1016/j.jenvman.2018.01.074_bib30) 2016; 218 Capra (10.1016/j.jenvman.2018.01.074_bib8) 2014; 145 Achiba (10.1016/j.jenvman.2018.01.074_bib1) 2009; 130 Cao (10.1016/j.jenvman.2018.01.074_bib7) 2017; 580 Liu (10.1016/j.jenvman.2018.01.074_bib18) 2014; 12 Liu (10.1016/j.jenvman.2018.01.074_bib19) 2010; 11 Robinson (10.1016/j.jenvman.2018.01.074_bib26) 2006; 50 Kazemi (10.1016/j.jenvman.2018.01.074_bib14) 2011; 38 Wang (10.1016/j.jenvman.2018.01.074_bib31) 2014; 87 Mielke (10.1016/j.jenvman.2018.01.074_bib22) 1999; 81 Wu (10.1016/j.jenvman.2018.01.074_bib34) 2011; 63 Zhong (10.1016/j.jenvman.2018.01.074_bib38) 2007; 44 Ji (10.1016/j.jenvman.2018.01.074_bib13) 2014; 32 Solgi (10.1016/j.jenvman.2018.01.074_bib27) 2015; 25 |
References_xml | – volume: 145 start-page: 169 year: 2014 end-page: 180 ident: bib8 article-title: Occurrence and distribution of key potentially toxic elements (PTEs) in agricultural soils: a paradigmatic case study in an area affected by illegal landfills publication-title: J. Geochem. Explor. – volume: 26 start-page: 181 year: 2017 end-page: 188 ident: bib16 article-title: Distribution and ecological risk assessment of heavy metals in sediments in Chinese collapsed lakes publication-title: Pol. J. Environ. Stud. – volume: 3 start-page: 41 year: 2011 end-page: 45 ident: bib20 article-title: Comparative study of several interpolation methods on spatial analysis publication-title: Geomatics World – volume: 50 start-page: 97 year: 2006 end-page: 108 ident: bib26 article-title: Testing the performance of spatial interpolation techniques for mapping soil properties publication-title: Comput. Electron. Agric. – volume: 3 start-page: 382 year: 2013 end-page: 390 ident: bib17 article-title: Comparision of the spatial interpolation methods for the tuber density of two scirpus species: main flood of siberian cranes at the stopover site publication-title: Chin. J. Zool. – volume: 63 start-page: 1093 year: 2011 end-page: 1103 ident: bib34 article-title: Spatial interpolation of severely skewed data with several peak values by the approach integrating kriging and triangular irregular network interpolation publication-title: Environ. Earth Sci. – volume: 22 start-page: 239 year: 1990 end-page: 252 ident: bib9 article-title: The origins of kriging publication-title: Math. Geol. – volume: 99 start-page: 85 year: 2014 end-page: 93 ident: bib24 article-title: Modelling and mapping spatio-temporal trends of heavy metal accumulation in moss and natural surface soil monitored 1990-2010 throughout Norway by multivariate generalized linear models and geostatistics publication-title: Atmos. Environ. – volume: 30 start-page: 96 year: 2014 end-page: 100 ident: bib37 article-title: The research on the spatial interpolation of heavy metals in soil by using an improved neural networks publication-title: Environ. Monit. China – volume: 58 start-page: 37 year: 2015 end-page: 46 ident: bib33 article-title: An eco-city evaluation method based on spatial analysis technology: A case study of Jiangsu Province, China publication-title: Ecol. Indic. – volume: 160 start-page: 131 year: 2010 end-page: 142 ident: bib6 article-title: Geochemistry and spatial distribution of heavy metals in Oxisols in a mineralized region of the Brazilian Central Plateau publication-title: Geoderma – volume: 2 start-page: 321 year: 1988 end-page: 355 ident: bib5 article-title: Multivariable functional interpolation and adaptive networks publication-title: Complex Syst. – volume: 38 start-page: 1632 year: 2011 end-page: 1649 ident: bib14 article-title: Comparison of spatial interpolation methods for estimating heavy metals in sediments of Caspian Sea publication-title: Expert Syst. Appl. – volume: 86 start-page: 68 year: 2014 end-page: 75 ident: bib21 article-title: Uncertainty analysis of total phosphorus spatial-temporal variations in the Yangtze River Estuary using different interpolation methods publication-title: Mar. Pollut. Bull. – volume: 44 start-page: 33 year: 2007 end-page: 40 ident: bib38 article-title: Spatial variability of soil heavy metals contamination in the Yangtze river delta-A case study of Taicang city in Jiangsu Province publication-title: Acta Pedol. Sin. – volume: 25 start-page: 5 year: 2003 end-page: 7 ident: bib32 article-title: Land data mining based on tension spline interpolation function publication-title: Comput. Eng. Appl. – volume: 109 start-page: 125 year: 2011 end-page: 133 ident: bib4 article-title: Background levels of trace elements and soil geochemistry at regional level in NE Italy publication-title: J. Geochem. Explor. – volume: 87 start-page: 364 year: 2014 end-page: 373 ident: bib31 article-title: Spatial variation, environmental assessment and source identification of heavy metals in sediments of the Yangtze River Estuary publication-title: Mar. Pollut. Bull. – volume: 41 start-page: 222 year: 2011 end-page: 227 ident: bib15 article-title: Comparison of typical interpolation methods for pollution evaluation of soil heavy metals in Yicheng District, Hefei publication-title: J. Jilin Univ. Earth Sci. Ed. – volume: 84 start-page: 550 year: 2014 end-page: 562 ident: bib11 article-title: Assessment of the impact of geographical factors on the spatial distribution of heavy metals in soils around the steel production facility in Smederevo (Serbia) publication-title: J. Clean. Prod. – volume: 580 start-page: 430 year: 2017 end-page: 439 ident: bib7 article-title: Modeling and mapping of cadmium in soils based on qualitative and quantitative auxiliary variables in a cadmium contaminated area publication-title: Sci. Total Environ. – volume: 12 start-page: 4712 year: 2014 end-page: 4719 ident: bib18 article-title: Spatial distribution prediction of surface soil Pb in a battery contaminated site publication-title: Environ. Sci. – volume: 81 start-page: 117 year: 1999 end-page: 129 ident: bib22 article-title: The urban environment and children's health: soils as an integrator of lead, zinc, and cadmium in New Orleans, Louisiana, U.S.A. publication-title: Environ. Res. – volume: 153 start-page: 120 year: 2015 end-page: 130 ident: bib35 article-title: The spatial distribution pattern of heavy metals and risk assessment of moso bamboo forest soil around lead-zinc mine in Southeastern China publication-title: Soil Till. Res. – volume: 130 start-page: 156 year: 2009 end-page: 163 ident: bib1 article-title: Effects of 5-year application of municipal solid waste compost on the distribution and mobility of heavy metals in a Tunisian calcareous soil publication-title: Agric. Ecosyst. Environ. – volume: 218 start-page: 513 year: 2016 end-page: 522 ident: bib36 article-title: Effects of biochars on the availability of heavy metals to ryegrass in an alkaline contaminated soil publication-title: Environ. Pollut. – volume: 109 start-page: 8 year: 2011 end-page: 17 ident: bib2 article-title: Multivariate statistical and GIS-based approach to evaluate heavy metals behavior in mine sites for future reclamation publication-title: J. Geochem. Explor. – volume: 152 start-page: 91 year: 2015 end-page: 109 ident: bib23 article-title: Geochemical assessment of steel smelter-impacted urban soils, Ahvaz, Iran publication-title: J. Geochem. Explor. – volume: 10 start-page: 5163 year: 2013 end-page: 5177 ident: bib28 article-title: Study on Association between Spatial Distribution of Metal Mines and Disease Mortality: A Case Study in Suxian District, South China publication-title: Int. J. Environ. Res. Public Health – volume: 11 start-page: 879 year: 2010 end-page: 884 ident: bib19 article-title: Impact of inverse distance weighted interpolation factors on interpolation error publication-title: Sciencepaper Online – volume: 25 start-page: 2380 year: 2015 end-page: 2387 ident: bib27 article-title: Analysis and assessment of nickel and chromium pollution in soils around Baghejar Chromite Mine of Sabzevar Ophiolite Belt, Northeastern Iran publication-title: Trans. Nonferrous Met. Soc. China – volume: 36 start-page: 111 year: 1974 end-page: 147 ident: bib29 article-title: Cross-validatory choice and assessment of statistical predictions publication-title: J. Roy. Stat. Soc. B – start-page: 561 year: 1989 ident: bib12 article-title: Applied Geostatistics – volume: 578 start-page: 577 year: 2017 end-page: 585 ident: bib10 article-title: Effects of natural factors on the spatial distribution of heavy metals in soils surrounding mining regions publication-title: Sci. Total Environ. – volume: 24 start-page: 2578 year: 2017 end-page: 2588 ident: bib25 article-title: Comparison of four methods for spatial interpolation of estimated atmospheric nitrogen deposition in South China publication-title: Environ. Sci. Pollut. Res. – volume: 218 start-page: 186 year: 2016 end-page: 195 ident: bib30 article-title: Spatial variability of heavy metals in estuarine, mangrove and coastal ecosystems along Parangipettai, Southeast coast of India publication-title: Environ. Pollut. – volume: 187 start-page: 516 year: 2015 ident: bib3 article-title: Estimation of spatial distribution of heavy metals in groundwater using interpolation methods and multivariate statistical techniques; its suitability for drinking and irrigation purposes in the Middle Black Sea Region of Turkey publication-title: Environ. Monit. Assess. – volume: 32 start-page: 86 year: 2014 end-page: 96 ident: bib13 article-title: Spatial and temporal distribution of expressway and its relationships to land cover and population: a case study of Beijing, China publication-title: Transport. Res. D Tre. – volume: 99 start-page: 85 year: 2014 ident: 10.1016/j.jenvman.2018.01.074_bib24 article-title: Modelling and mapping spatio-temporal trends of heavy metal accumulation in moss and natural surface soil monitored 1990-2010 throughout Norway by multivariate generalized linear models and geostatistics publication-title: Atmos. Environ. doi: 10.1016/j.atmosenv.2014.09.059 – volume: 218 start-page: 186 year: 2016 ident: 10.1016/j.jenvman.2018.01.074_bib30 article-title: Spatial variability of heavy metals in estuarine, mangrove and coastal ecosystems along Parangipettai, Southeast coast of India publication-title: Environ. Pollut. doi: 10.1016/j.envpol.2016.07.048 – volume: 25 start-page: 5 year: 2003 ident: 10.1016/j.jenvman.2018.01.074_bib32 article-title: Land data mining based on tension spline interpolation function publication-title: Comput. Eng. Appl. – volume: 152 start-page: 91 year: 2015 ident: 10.1016/j.jenvman.2018.01.074_bib23 article-title: Geochemical assessment of steel smelter-impacted urban soils, Ahvaz, Iran publication-title: J. Geochem. Explor. doi: 10.1016/j.gexplo.2015.02.005 – volume: 32 start-page: 86 year: 2014 ident: 10.1016/j.jenvman.2018.01.074_bib13 article-title: Spatial and temporal distribution of expressway and its relationships to land cover and population: a case study of Beijing, China publication-title: Transport. Res. D Tre. doi: 10.1016/j.trd.2014.07.010 – volume: 145 start-page: 169 year: 2014 ident: 10.1016/j.jenvman.2018.01.074_bib8 article-title: Occurrence and distribution of key potentially toxic elements (PTEs) in agricultural soils: a paradigmatic case study in an area affected by illegal landfills publication-title: J. Geochem. Explor. doi: 10.1016/j.gexplo.2014.06.007 – volume: 84 start-page: 550 issue: 1 year: 2014 ident: 10.1016/j.jenvman.2018.01.074_bib11 article-title: Assessment of the impact of geographical factors on the spatial distribution of heavy metals in soils around the steel production facility in Smederevo (Serbia) publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2014.03.060 – volume: 58 start-page: 37 year: 2015 ident: 10.1016/j.jenvman.2018.01.074_bib33 article-title: An eco-city evaluation method based on spatial analysis technology: A case study of Jiangsu Province, China publication-title: Ecol. Indic. doi: 10.1016/j.ecolind.2015.05.032 – volume: 41 start-page: 222 issue: 1 year: 2011 ident: 10.1016/j.jenvman.2018.01.074_bib15 article-title: Comparison of typical interpolation methods for pollution evaluation of soil heavy metals in Yicheng District, Hefei publication-title: J. Jilin Univ. Earth Sci. Ed. – volume: 3 start-page: 41 year: 2011 ident: 10.1016/j.jenvman.2018.01.074_bib20 article-title: Comparative study of several interpolation methods on spatial analysis publication-title: Geomatics World – volume: 130 start-page: 156 year: 2009 ident: 10.1016/j.jenvman.2018.01.074_bib1 article-title: Effects of 5-year application of municipal solid waste compost on the distribution and mobility of heavy metals in a Tunisian calcareous soil publication-title: Agric. Ecosyst. Environ. doi: 10.1016/j.agee.2009.01.001 – volume: 86 start-page: 68 year: 2014 ident: 10.1016/j.jenvman.2018.01.074_bib21 article-title: Uncertainty analysis of total phosphorus spatial-temporal variations in the Yangtze River Estuary using different interpolation methods publication-title: Mar. Pollut. Bull. doi: 10.1016/j.marpolbul.2014.07.041 – volume: 12 start-page: 4712 year: 2014 ident: 10.1016/j.jenvman.2018.01.074_bib18 article-title: Spatial distribution prediction of surface soil Pb in a battery contaminated site publication-title: Environ. Sci. – volume: 187 start-page: 516 year: 2015 ident: 10.1016/j.jenvman.2018.01.074_bib3 article-title: Estimation of spatial distribution of heavy metals in groundwater using interpolation methods and multivariate statistical techniques; its suitability for drinking and irrigation purposes in the Middle Black Sea Region of Turkey publication-title: Environ. Monit. Assess. doi: 10.1007/s10661-015-4725-x – volume: 26 start-page: 181 issue: 1 year: 2017 ident: 10.1016/j.jenvman.2018.01.074_bib16 article-title: Distribution and ecological risk assessment of heavy metals in sediments in Chinese collapsed lakes publication-title: Pol. J. Environ. Stud. doi: 10.15244/pjoes/64379 – volume: 160 start-page: 131 year: 2010 ident: 10.1016/j.jenvman.2018.01.074_bib6 article-title: Geochemistry and spatial distribution of heavy metals in Oxisols in a mineralized region of the Brazilian Central Plateau publication-title: Geoderma doi: 10.1016/j.geoderma.2010.08.007 – volume: 2 start-page: 321 year: 1988 ident: 10.1016/j.jenvman.2018.01.074_bib5 article-title: Multivariable functional interpolation and adaptive networks publication-title: Complex Syst. – volume: 11 start-page: 879 year: 2010 ident: 10.1016/j.jenvman.2018.01.074_bib19 article-title: Impact of inverse distance weighted interpolation factors on interpolation error publication-title: Sciencepaper Online – volume: 87 start-page: 364 year: 2014 ident: 10.1016/j.jenvman.2018.01.074_bib31 article-title: Spatial variation, environmental assessment and source identification of heavy metals in sediments of the Yangtze River Estuary publication-title: Mar. Pollut. Bull. doi: 10.1016/j.marpolbul.2014.07.048 – volume: 63 start-page: 1093 year: 2011 ident: 10.1016/j.jenvman.2018.01.074_bib34 article-title: Spatial interpolation of severely skewed data with several peak values by the approach integrating kriging and triangular irregular network interpolation publication-title: Environ. Earth Sci. doi: 10.1007/s12665-010-0784-z – volume: 153 start-page: 120 year: 2015 ident: 10.1016/j.jenvman.2018.01.074_bib35 article-title: The spatial distribution pattern of heavy metals and risk assessment of moso bamboo forest soil around lead-zinc mine in Southeastern China publication-title: Soil Till. Res. doi: 10.1016/j.still.2015.05.013 – volume: 50 start-page: 97 issue: 2 year: 2006 ident: 10.1016/j.jenvman.2018.01.074_bib26 article-title: Testing the performance of spatial interpolation techniques for mapping soil properties publication-title: Comput. Electron. Agric. doi: 10.1016/j.compag.2005.07.003 – volume: 578 start-page: 577 year: 2017 ident: 10.1016/j.jenvman.2018.01.074_bib10 article-title: Effects of natural factors on the spatial distribution of heavy metals in soils surrounding mining regions publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2016.11.001 – volume: 10 start-page: 5163 issue: 10 year: 2013 ident: 10.1016/j.jenvman.2018.01.074_bib28 article-title: Study on Association between Spatial Distribution of Metal Mines and Disease Mortality: A Case Study in Suxian District, South China publication-title: Int. J. Environ. Res. Public Health doi: 10.3390/ijerph10105163 – volume: 25 start-page: 2380 issue: 7 year: 2015 ident: 10.1016/j.jenvman.2018.01.074_bib27 article-title: Analysis and assessment of nickel and chromium pollution in soils around Baghejar Chromite Mine of Sabzevar Ophiolite Belt, Northeastern Iran publication-title: Trans. Nonferrous Met. Soc. China doi: 10.1016/S1003-6326(15)63853-5 – volume: 22 start-page: 239 year: 1990 ident: 10.1016/j.jenvman.2018.01.074_bib9 article-title: The origins of kriging publication-title: Math. Geol. doi: 10.1007/BF00889887 – volume: 109 start-page: 8 year: 2011 ident: 10.1016/j.jenvman.2018.01.074_bib2 article-title: Multivariate statistical and GIS-based approach to evaluate heavy metals behavior in mine sites for future reclamation publication-title: J. Geochem. Explor. doi: 10.1016/j.gexplo.2011.01.004 – volume: 109 start-page: 125 year: 2011 ident: 10.1016/j.jenvman.2018.01.074_bib4 article-title: Background levels of trace elements and soil geochemistry at regional level in NE Italy publication-title: J. Geochem. Explor. doi: 10.1016/j.gexplo.2010.07.008 – volume: 30 start-page: 96 year: 2014 ident: 10.1016/j.jenvman.2018.01.074_bib37 article-title: The research on the spatial interpolation of heavy metals in soil by using an improved neural networks publication-title: Environ. Monit. China – volume: 580 start-page: 430 year: 2017 ident: 10.1016/j.jenvman.2018.01.074_bib7 article-title: Modeling and mapping of cadmium in soils based on qualitative and quantitative auxiliary variables in a cadmium contaminated area publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2016.10.088 – volume: 218 start-page: 513 year: 2016 ident: 10.1016/j.jenvman.2018.01.074_bib36 article-title: Effects of biochars on the availability of heavy metals to ryegrass in an alkaline contaminated soil publication-title: Environ. Pollut. doi: 10.1016/j.envpol.2016.07.031 – volume: 81 start-page: 117 year: 1999 ident: 10.1016/j.jenvman.2018.01.074_bib22 article-title: The urban environment and children's health: soils as an integrator of lead, zinc, and cadmium in New Orleans, Louisiana, U.S.A. publication-title: Environ. Res. doi: 10.1006/enrs.1999.3966 – start-page: 561 year: 1989 ident: 10.1016/j.jenvman.2018.01.074_bib12 – volume: 24 start-page: 2578 year: 2017 ident: 10.1016/j.jenvman.2018.01.074_bib25 article-title: Comparison of four methods for spatial interpolation of estimated atmospheric nitrogen deposition in South China publication-title: Environ. Sci. Pollut. Res. doi: 10.1007/s11356-016-7995-0 – volume: 38 start-page: 1632 issue: 3 year: 2011 ident: 10.1016/j.jenvman.2018.01.074_bib14 article-title: Comparison of spatial interpolation methods for estimating heavy metals in sediments of Caspian Sea publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2010.07.085 – volume: 44 start-page: 33 year: 2007 ident: 10.1016/j.jenvman.2018.01.074_bib38 article-title: Spatial variability of soil heavy metals contamination in the Yangtze river delta-A case study of Taicang city in Jiangsu Province publication-title: Acta Pedol. Sin. – volume: 3 start-page: 382 year: 2013 ident: 10.1016/j.jenvman.2018.01.074_bib17 article-title: Comparision of the spatial interpolation methods for the tuber density of two scirpus species: main flood of siberian cranes at the stopover site publication-title: Chin. J. Zool. – volume: 36 start-page: 111 year: 1974 ident: 10.1016/j.jenvman.2018.01.074_bib29 article-title: Cross-validatory choice and assessment of statistical predictions publication-title: J. Roy. Stat. Soc. B doi: 10.1111/j.2517-6161.1974.tb00994.x |
SSID | ssj0003217 |
Score | 2.4210343 |
Snippet | The appropriate spatial interpolation methods must be selected to analyze the spatial distributions of Potentially Toxic Elements (PTEs), which is a... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 23 |
SubjectTerms | anthropogenic activities arsenic China copper correlation Inverse distance weighting interpolation kriging lead mining Mining area Ordinary kriging interpolation pollution Potentially Toxic Element prediction Radial basis function interpolation soil toxic substances Uncertainty zinc |
Title | Comparison of the common spatial interpolation methods used to analyze potentially toxic elements surrounding mining regions |
URI | https://dx.doi.org/10.1016/j.jenvman.2018.01.074 https://www.ncbi.nlm.nih.gov/pubmed/29427938 https://www.proquest.com/docview/2001072289 https://www.proquest.com/docview/2045792741 |
Volume | 212 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaqcoALgkJheVRG4prdOJk48bFatVpA9AKVerNsx5Z2tU1WmywChPjtzOSxKw6lErfEGkuOZzwex9_Mx9h7dLtBlSpENggZgQV8giyPMmcSITPlbQf5_3wlF9fw8Sa7OWLzMReGYJWD7-99eueth5bZMJuzzXI5-9KdBnKFzjWNCV1IGeyQk5VPfx9gHmnSse6SMP1Fyg9ZPLPVdOWrb7eGyqCKoqvemcNd-9Nd8We3D10-YY-HAJKf92N8yo58dcIejvnFzQk7vTjkrqHgsHibZ-zXfM85yOvAMfLj-NVohrwhWDXKLnvSrR4ex3ty6YbvGl_ytuaG6pf89HxTtwQxMuv1D2z-vnTc9xj0hje77ZZ4mnA_5Lcd9QQn5ge07Ofs-vLi63wRDeQLkQMJbZQW4L2UCfiskKbMLHhnTHCBAh4fQhqcdVJYBQHVmcbKWGdKaZVzUBibp6fsuKor_5Lx3BWxtC6WpZfgQlZ4LwIEl5fCijgtJwzGKdduqExOBBlrPULQVnrQlCZN6Vho1NSETffdNn1pjvs6FKM-9V82pnH7uK_ru1H_GtcfXaqYyte7hmg88QSd4Ln1XzJo_ooKBU3Yi9549iNOFCToI4tX_z-41-wRvdEdl8jesON2u_NvMVRq7Vm3Fs7Yg_MPnxZXfwB-SBoY |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6V7aFcEBQKy9NIXNPNw3aSY7VqtaXtXmil3izbsaVdbZPVJosA8eOZyWMrDqUSt8gZS47n6XhmPoAvaHZ9XuQ-MD6SATccn7hIA2F1HEmRO9Om_F_N5eyGf70Vt3swHWphKK2yt_2dTW-tdT8y6Xdzsl4sJt_a00Cao3FNQsoufAL71J1KjGD_5PxiNt8Z5CRugXeJnn4kpfeFPJPl8dKV3-80dUKNsraBZ8ofclEPhaCtKzp7Ds_6GJKddMt8AXuuPISDocS4PoSj0_vyNSTs9bd-Cb-nO9hBVnmGwR_DD0dJZDVlViPtosPd6jLkWIcvXbNt7QrWVExTC5Nfjq2rhrKM9Gr1E4d_LCxzXRp6zertZkNQTegS2V2LPsEI_AGF-xXcnJ1eT2dBj78QWC55EyQZd07KmDuRSV0Iw53V2ltPMY_zPvHWWBmZnHvkaBLm2lhdSJNbyzNt0uQIRmVVujfAUpuF0thQFk5y60XmXOS5t2kRmShMijHwYcuV7ZuTE0bGSg1ZaEvVc0oRp1QYKeTUGI5309Zdd47HJmQDP9VfYqbQgzw29fPAf4UqSPcqunTVtiYkTzxEx3h0_RcNakBOvYLG8LoTnt2K45zHaCazt_-_uE9wMLu-ulSX5_OLd_CU3tCVVyTew6jZbN0HjJwa87HXjD8I-xzJ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Comparison+of+the+common+spatial+interpolation+methods+used+to+analyze+potentially+toxic+elements+surrounding+mining+regions&rft.jtitle=Journal+of+environmental+management&rft.au=Ding%2C+Qian&rft.au=Wang%2C+Yong&rft.au=Zhuang%2C+Dafang&rft.date=2018-04-15&rft.issn=1095-8630&rft.eissn=1095-8630&rft.volume=212&rft.spage=23&rft_id=info:doi/10.1016%2Fj.jenvman.2018.01.074&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0301-4797&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0301-4797&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0301-4797&client=summon |