Comparison of the common spatial interpolation methods used to analyze potentially toxic elements surrounding mining regions

The appropriate spatial interpolation methods must be selected to analyze the spatial distributions of Potentially Toxic Elements (PTEs), which is a precondition for evaluating PTE pollution. The accuracy and effect of different spatial interpolation methods, which include inverse distance weighting...

Full description

Saved in:
Bibliographic Details
Published inJournal of environmental management Vol. 212; pp. 23 - 31
Main Authors Ding, Qian, Wang, Yong, Zhuang, Dafang
Format Journal Article
LanguageEnglish
Published England Elsevier Ltd 15.04.2018
Subjects
Online AccessGet full text
ISSN0301-4797
1095-8630
1095-8630
DOI10.1016/j.jenvman.2018.01.074

Cover

Loading…
Abstract The appropriate spatial interpolation methods must be selected to analyze the spatial distributions of Potentially Toxic Elements (PTEs), which is a precondition for evaluating PTE pollution. The accuracy and effect of different spatial interpolation methods, which include inverse distance weighting interpolation (IDW) (power = 1, 2, 3), radial basis function interpolation (RBF) (basis function: thin-plate spline (TPS), spline with tension (ST), completely regularized spline (CRS), multiquadric (MQ) and inverse multiquadric (IMQ)) and ordinary kriging interpolation (OK) (semivariogram model: spherical, exponential, gaussian and linear), were compared using 166 unevenly distributed soil PTE samples (As, Pb, Cu and Zn) in the Suxian District, Chenzhou City, Hunan Province as the study subject. The reasons for the accuracy differences of the interpolation methods and the uncertainties of the interpolation results are discussed, then several suggestions for improving the interpolation accuracy are proposed, and the direction of pollution control is determined. The results of this study are as follows: (i) RBF-ST and OK (exponential) are the optimal interpolation methods for As and Cu, and the optimal interpolation method for Pb and Zn is RBF-IMQ. (ii) The interpolation uncertainty is positively correlated with the PTE concentration, and higher uncertainties are primarily distributed around mines, which is related to the strong spatial variability of PTE concentrations caused by human interference. (iii) The interpolation accuracy can be improved by increasing the sample size around the mines, introducing auxiliary variables in the case of incomplete sampling and adopting the partition prediction method. (iv) It is necessary to strengthen the prevention and control of As and Pb pollution, particularly in the central and northern areas. The results of this study can provide an effective reference for the optimization of interpolation methods and parameters for unevenly distributed soil PTE data in mining areas. •IDW, RBF, OK were compared for Potentially Poxic Plements (PTEs) in mining areas.•The optimal interpolation methods for As, Pb and Zn were RBF, whereas Cu was OK.•Interpolation uncertainty is positively correlated with PTEs concentration.•Prevention of As, Pb pollution in central and northern areas should be enhanced.•The results can provide references to optimize spatial interpolation methods.
AbstractList The appropriate spatial interpolation methods must be selected to analyze the spatial distributions of Potentially Toxic Elements (PTEs), which is a precondition for evaluating PTE pollution. The accuracy and effect of different spatial interpolation methods, which include inverse distance weighting interpolation (IDW) (power = 1, 2, 3), radial basis function interpolation (RBF) (basis function: thin-plate spline (TPS), spline with tension (ST), completely regularized spline (CRS), multiquadric (MQ) and inverse multiquadric (IMQ)) and ordinary kriging interpolation (OK) (semivariogram model: spherical, exponential, gaussian and linear), were compared using 166 unevenly distributed soil PTE samples (As, Pb, Cu and Zn) in the Suxian District, Chenzhou City, Hunan Province as the study subject. The reasons for the accuracy differences of the interpolation methods and the uncertainties of the interpolation results are discussed, then several suggestions for improving the interpolation accuracy are proposed, and the direction of pollution control is determined. The results of this study are as follows: (i) RBF-ST and OK (exponential) are the optimal interpolation methods for As and Cu, and the optimal interpolation method for Pb and Zn is RBF-IMQ. (ii) The interpolation uncertainty is positively correlated with the PTE concentration, and higher uncertainties are primarily distributed around mines, which is related to the strong spatial variability of PTE concentrations caused by human interference. (iii) The interpolation accuracy can be improved by increasing the sample size around the mines, introducing auxiliary variables in the case of incomplete sampling and adopting the partition prediction method. (iv) It is necessary to strengthen the prevention and control of As and Pb pollution, particularly in the central and northern areas. The results of this study can provide an effective reference for the optimization of interpolation methods and parameters for unevenly distributed soil PTE data in mining areas.
The appropriate spatial interpolation methods must be selected to analyze the spatial distributions of Potentially Toxic Elements (PTEs), which is a precondition for evaluating PTE pollution. The accuracy and effect of different spatial interpolation methods, which include inverse distance weighting interpolation (IDW) (power = 1, 2, 3), radial basis function interpolation (RBF) (basis function: thin-plate spline (TPS), spline with tension (ST), completely regularized spline (CRS), multiquadric (MQ) and inverse multiquadric (IMQ)) and ordinary kriging interpolation (OK) (semivariogram model: spherical, exponential, gaussian and linear), were compared using 166 unevenly distributed soil PTE samples (As, Pb, Cu and Zn) in the Suxian District, Chenzhou City, Hunan Province as the study subject. The reasons for the accuracy differences of the interpolation methods and the uncertainties of the interpolation results are discussed, then several suggestions for improving the interpolation accuracy are proposed, and the direction of pollution control is determined. The results of this study are as follows: (i) RBF-ST and OK (exponential) are the optimal interpolation methods for As and Cu, and the optimal interpolation method for Pb and Zn is RBF-IMQ. (ii) The interpolation uncertainty is positively correlated with the PTE concentration, and higher uncertainties are primarily distributed around mines, which is related to the strong spatial variability of PTE concentrations caused by human interference. (iii) The interpolation accuracy can be improved by increasing the sample size around the mines, introducing auxiliary variables in the case of incomplete sampling and adopting the partition prediction method. (iv) It is necessary to strengthen the prevention and control of As and Pb pollution, particularly in the central and northern areas. The results of this study can provide an effective reference for the optimization of interpolation methods and parameters for unevenly distributed soil PTE data in mining areas. •IDW, RBF, OK were compared for Potentially Poxic Plements (PTEs) in mining areas.•The optimal interpolation methods for As, Pb and Zn were RBF, whereas Cu was OK.•Interpolation uncertainty is positively correlated with PTEs concentration.•Prevention of As, Pb pollution in central and northern areas should be enhanced.•The results can provide references to optimize spatial interpolation methods.
The appropriate spatial interpolation methods must be selected to analyze the spatial distributions of Potentially Toxic Elements (PTEs), which is a precondition for evaluating PTE pollution. The accuracy and effect of different spatial interpolation methods, which include inverse distance weighting interpolation (IDW) (power = 1, 2, 3), radial basis function interpolation (RBF) (basis function: thin-plate spline (TPS), spline with tension (ST), completely regularized spline (CRS), multiquadric (MQ) and inverse multiquadric (IMQ)) and ordinary kriging interpolation (OK) (semivariogram model: spherical, exponential, gaussian and linear), were compared using 166 unevenly distributed soil PTE samples (As, Pb, Cu and Zn) in the Suxian District, Chenzhou City, Hunan Province as the study subject. The reasons for the accuracy differences of the interpolation methods and the uncertainties of the interpolation results are discussed, then several suggestions for improving the interpolation accuracy are proposed, and the direction of pollution control is determined. The results of this study are as follows: (i) RBF-ST and OK (exponential) are the optimal interpolation methods for As and Cu, and the optimal interpolation method for Pb and Zn is RBF-IMQ. (ii) The interpolation uncertainty is positively correlated with the PTE concentration, and higher uncertainties are primarily distributed around mines, which is related to the strong spatial variability of PTE concentrations caused by human interference. (iii) The interpolation accuracy can be improved by increasing the sample size around the mines, introducing auxiliary variables in the case of incomplete sampling and adopting the partition prediction method. (iv) It is necessary to strengthen the prevention and control of As and Pb pollution, particularly in the central and northern areas. The results of this study can provide an effective reference for the optimization of interpolation methods and parameters for unevenly distributed soil PTE data in mining areas.The appropriate spatial interpolation methods must be selected to analyze the spatial distributions of Potentially Toxic Elements (PTEs), which is a precondition for evaluating PTE pollution. The accuracy and effect of different spatial interpolation methods, which include inverse distance weighting interpolation (IDW) (power = 1, 2, 3), radial basis function interpolation (RBF) (basis function: thin-plate spline (TPS), spline with tension (ST), completely regularized spline (CRS), multiquadric (MQ) and inverse multiquadric (IMQ)) and ordinary kriging interpolation (OK) (semivariogram model: spherical, exponential, gaussian and linear), were compared using 166 unevenly distributed soil PTE samples (As, Pb, Cu and Zn) in the Suxian District, Chenzhou City, Hunan Province as the study subject. The reasons for the accuracy differences of the interpolation methods and the uncertainties of the interpolation results are discussed, then several suggestions for improving the interpolation accuracy are proposed, and the direction of pollution control is determined. The results of this study are as follows: (i) RBF-ST and OK (exponential) are the optimal interpolation methods for As and Cu, and the optimal interpolation method for Pb and Zn is RBF-IMQ. (ii) The interpolation uncertainty is positively correlated with the PTE concentration, and higher uncertainties are primarily distributed around mines, which is related to the strong spatial variability of PTE concentrations caused by human interference. (iii) The interpolation accuracy can be improved by increasing the sample size around the mines, introducing auxiliary variables in the case of incomplete sampling and adopting the partition prediction method. (iv) It is necessary to strengthen the prevention and control of As and Pb pollution, particularly in the central and northern areas. The results of this study can provide an effective reference for the optimization of interpolation methods and parameters for unevenly distributed soil PTE data in mining areas.
Author Ding, Qian
Zhuang, Dafang
Wang, Yong
Author_xml – sequence: 1
  givenname: Qian
  surname: Ding
  fullname: Ding, Qian
  organization: State Key Laboratory of Resources and Environmental Information System, Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
– sequence: 2
  givenname: Yong
  orcidid: 0000-0003-0266-8787
  surname: Wang
  fullname: Wang, Yong
  email: wangy@igsnrr.ac.cn
  organization: State Key Laboratory of Resources and Environmental Information System, Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
– sequence: 3
  givenname: Dafang
  surname: Zhuang
  fullname: Zhuang, Dafang
  organization: State Key Laboratory of Resources and Environmental Information System, Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29427938$$D View this record in MEDLINE/PubMed
BookMark eNqNkUtv1DAUhS3Uik4LPwHkJZsEvxInYoHQiJdUqZuythznpvUotoPtVAzix-NhBhZs2tXVPfrOWZxzic588IDQK0pqSmj7dlfvwD847WtGaFcTWhMpnqENJX1TdS0nZ2hDOKGVkL28QJcp7QghnFH5HF2wXjDZ826Dfm2DW3S0KXgcJpzvAZvgXPnSorPVM7Y-Q1zCXL6iOsj3YUx4TTDiHLD2et7_BLyEDP7Az_si_7AGwwyuSAmnNcaw-tH6O-ysP5wIdyUsvUDnk54TvDzdK_Tt08fb7Zfq-ubz1-2H68qIVuSKdwKgbZmApmv12AwCjNaTmSSTHKaJT2YwLR16MQ1SctLrweixHXpjRKcHya_Qm2PuEsP3FVJWziYD86w9hDUpRkQjeyYFfQJKKJGMdX1BX5_QdXAwqiVap-Ne_S23AM0RMDGkFGH6h1CiDiOqnTqNqA4jKkJVGbH43v3nMzb_qT9HbedH3e-PbiiNPliIKhkL3sBoI5isxmAfSfgNPbjAKQ
CitedBy_id crossref_primary_10_2166_nh_2020_146
crossref_primary_10_1007_s13131_021_1789_z
crossref_primary_10_3390_w14030459
crossref_primary_10_1007_s10489_024_05913_0
crossref_primary_10_1007_s10653_022_01231_x
crossref_primary_10_3389_feart_2024_1343731
crossref_primary_10_1007_s10653_019_00328_0
crossref_primary_10_3390_math8122173
crossref_primary_10_1016_j_envpol_2024_125169
crossref_primary_10_1007_s10596_019_09913_9
crossref_primary_10_1007_s13201_023_02051_9
crossref_primary_10_1016_j_ecoenv_2022_114436
crossref_primary_10_1002_vzj2_20025
crossref_primary_10_1016_j_wasman_2022_05_014
crossref_primary_10_1016_j_scitotenv_2022_153948
crossref_primary_10_1038_s41598_021_89172_w
crossref_primary_10_1016_j_catena_2023_107658
crossref_primary_10_1007_s10653_021_01136_1
crossref_primary_10_1007_s12517_022_10210_6
crossref_primary_10_3390_ijerph20043163
crossref_primary_10_3390_su10082749
crossref_primary_10_1016_j_scitotenv_2023_169498
crossref_primary_10_61186_jsaeh_11_2_117
crossref_primary_10_1007_s00267_023_01847_4
crossref_primary_10_1007_s12517_022_11135_w
crossref_primary_10_1007_s10653_020_00673_5
crossref_primary_10_3390_agronomy14112469
crossref_primary_10_3390_rs14020253
crossref_primary_10_1007_s11356_023_27943_w
crossref_primary_10_1016_j_atmosenv_2022_119015
crossref_primary_10_3390_rs14122842
crossref_primary_10_1002_ldr_4117
crossref_primary_10_1016_j_chemosphere_2022_136789
crossref_primary_10_1515_geo_2022_0667
crossref_primary_10_1016_j_jenvman_2023_119838
crossref_primary_10_1016_j_catena_2020_104573
crossref_primary_10_1016_j_envres_2022_114208
crossref_primary_10_1007_s12665_021_09710_7
crossref_primary_10_3390_su11071832
Cites_doi 10.1016/j.atmosenv.2014.09.059
10.1016/j.envpol.2016.07.048
10.1016/j.gexplo.2015.02.005
10.1016/j.trd.2014.07.010
10.1016/j.gexplo.2014.06.007
10.1016/j.jclepro.2014.03.060
10.1016/j.ecolind.2015.05.032
10.1016/j.agee.2009.01.001
10.1016/j.marpolbul.2014.07.041
10.1007/s10661-015-4725-x
10.15244/pjoes/64379
10.1016/j.geoderma.2010.08.007
10.1016/j.marpolbul.2014.07.048
10.1007/s12665-010-0784-z
10.1016/j.still.2015.05.013
10.1016/j.compag.2005.07.003
10.1016/j.scitotenv.2016.11.001
10.3390/ijerph10105163
10.1016/S1003-6326(15)63853-5
10.1007/BF00889887
10.1016/j.gexplo.2011.01.004
10.1016/j.gexplo.2010.07.008
10.1016/j.scitotenv.2016.10.088
10.1016/j.envpol.2016.07.031
10.1006/enrs.1999.3966
10.1007/s11356-016-7995-0
10.1016/j.eswa.2010.07.085
10.1111/j.2517-6161.1974.tb00994.x
ContentType Journal Article
Copyright 2018 Elsevier Ltd
Copyright © 2018 Elsevier Ltd. All rights reserved.
Copyright_xml – notice: 2018 Elsevier Ltd
– notice: Copyright © 2018 Elsevier Ltd. All rights reserved.
DBID AAYXX
CITATION
NPM
7X8
7S9
L.6
DOI 10.1016/j.jenvman.2018.01.074
DatabaseName CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA

PubMed
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Economics
Environmental Sciences
EISSN 1095-8630
EndPage 31
ExternalDocumentID 29427938
10_1016_j_jenvman_2018_01_074
S0301479718300902
Genre Journal Article
GeographicLocations China
GeographicLocations_xml – name: China
GroupedDBID ---
--K
--M
-~X
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JM
9JN
9JO
AABNK
AACTN
AAEDT
AAEDW
AAFJI
AAHCO
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARJD
AAXUO
ABFRF
ABFYP
ABJNI
ABLST
ABMAC
ABMMH
ABYKQ
ACDAQ
ACGFO
ACGFS
ACPRK
ACRLP
ADBBV
ADEZE
AEBSH
AEFWE
AEKER
AENEX
AFKWA
AFRAH
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHEUO
AHHHB
AHIDL
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKIFW
AKYCK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOMHK
AVARZ
AXJTR
BELTK
BKOJK
BKOMP
BLECG
BLXMC
CS3
DM4
DU5
EBS
EFBJH
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HMC
IHE
J1W
JARJE
KCYFY
KOM
LG5
LY8
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
PRBVW
Q38
RIG
ROL
RPZ
RXW
SCC
SDF
SDG
SDP
SES
SPC
SPCBC
SSB
SSJ
SSO
SSR
SSZ
T5K
TAE
TWZ
WH7
XSW
Y6R
YK3
ZCA
ZU3
~02
~G-
~KM
29K
3EH
53G
AAHBH
AAQXK
AATTM
AAXKI
AAYJJ
AAYWO
AAYXX
ABEFU
ABWVN
ABXDB
ACRPL
ACVFH
ADCNI
ADFGL
ADMUD
ADNMO
ADXHL
AEGFY
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AI.
AIDBO
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CAG
CITATION
COF
D-I
FEDTE
FGOYB
G-2
HVGLF
HZ~
R2-
SEN
SEW
SSH
UHS
UQL
VH1
WUQ
XPP
YV5
ZMT
ZY4
NPM
7X8
7S9
L.6
ID FETCH-LOGICAL-c464t-384ee6624e586ad5b4ecaafcf7273eff3fcbc61b94fb77309abcad6b9cc48ab73
IEDL.DBID .~1
ISSN 0301-4797
1095-8630
IngestDate Fri Jul 11 04:03:40 EDT 2025
Fri Jul 11 12:04:12 EDT 2025
Thu Apr 03 06:59:21 EDT 2025
Tue Jul 01 02:39:40 EDT 2025
Thu Apr 24 23:06:52 EDT 2025
Fri Feb 23 02:29:28 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Mining area
Radial basis function interpolation
Ordinary kriging interpolation
Uncertainty
Potentially Toxic Element
Inverse distance weighting interpolation
Language English
License Copyright © 2018 Elsevier Ltd. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c464t-384ee6624e586ad5b4ecaafcf7273eff3fcbc61b94fb77309abcad6b9cc48ab73
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-0266-8787
PMID 29427938
PQID 2001072289
PQPubID 23479
PageCount 9
ParticipantIDs proquest_miscellaneous_2045792741
proquest_miscellaneous_2001072289
pubmed_primary_29427938
crossref_primary_10_1016_j_jenvman_2018_01_074
crossref_citationtrail_10_1016_j_jenvman_2018_01_074
elsevier_sciencedirect_doi_10_1016_j_jenvman_2018_01_074
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-04-15
PublicationDateYYYYMMDD 2018-04-15
PublicationDate_xml – month: 04
  year: 2018
  text: 2018-04-15
  day: 15
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Journal of environmental management
PublicationTitleAlternate J Environ Manage
PublicationYear 2018
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Wang, Ding, Zhuang (bib33) 2015; 58
Zhang, Li, Shi, Wan (bib37) 2014; 30
Achiba, Gabteni, Lakhdar, Laing, Verloo, Jedidi, Gallali (bib1) 2009; 130
Li, Zhang, Yang, Yuan, Zhou (bib15) 2011; 41
Stone (bib29) 1974; 36
Capra, Coppola, Odierna, Grilli, Vacca, Buondonno (bib8) 2014; 145
Ji, Wang, Zhuang, Song, Shen, Wang, Li (bib13) 2014; 32
Sundaramanickam, Shanmugam, Cholan, Kumaresan, Madeswaran, Balasubramanian (bib30) 2016; 218
Wu, Wu, Luo, Zhang, Teng, DeGloria (bib34) 2011; 63
Liu, Jiang, Sun, Zhou, Wang, Qian, Lu (bib17) 2013; 3
Isaaks, Srivastava (bib12) 1989
Arslan, Turan (bib3) 2015; 187
Mielke, Gonzales, Smith, Mielke (bib22) 1999; 81
Li, Liu, Zhou, Wang, Liu, Zhu, Zhang, Sun (bib16) 2017; 26
Nezhad, Tabatabaii, Gholami (bib23) 2015; 152
Burak, Fontes, Santos, Monteiro, Martins, Becquer (bib6) 2010; 160
Zhong, Zhou, Li, Zhao (bib38) 2007; 44
Liu, Chen, Sun, Zhang, Wang, Yu, Shen (bib21) 2014; 86
Zhang, Guo, Zhao, He, Wang, Zhu, Yan, Liu, Sun, Zhao, Qian (bib36) 2016; 218
Liu, Wang, Zhang, Wang (bib20) 2011; 3
Acosta, Faz, Martínez-Martínez, Zornoza, Carmona, Kabas (bib2) 2011; 109
Nickel, Hertel, Pesch, Schroder, Steinnes, Uggerud (bib24) 2014; 99
Dragovic, Gajic, Dragovic, Dordevic, Dordevic, Mihailovic, Onjia (bib11) 2014; 84
Ding, Cheng, Wang, Zhuang (bib10) 2017; 578
Wang, Shi, Li, Wang (bib32) 2003; 25
Solgi, ParmaH (bib27) 2015; 25
Song, Jiang, Wang, Chen, Huang, Zhuang (bib28) 2013; 10
Yan, Mahmood, Peng, Fu, Chen, Wang, Li, Chen, Liu (bib35) 2015; 153
Broomhead, Lowe (bib5) 1988; 2
Liu, Niu, Zhang, Zhao, Guo (bib18) 2014; 12
Robinson, Metternicht (bib26) 2006; 50
Wang, Liu, Zhang, Yu, Shen, Feng (bib31) 2014; 87
Bini, Sartori, Wahsha, Fontana (bib4) 2011; 109
Cressie (bib9) 1990; 22
Qu, Xiao, Zheng, Zhang, Xu (bib25) 2017; 24
Kazemi, Hosseini (bib14) 2011; 38
Liu, Wang, Wang (bib19) 2010; 11
Cao, Lu, Wang, Huo (bib7) 2017; 580
Dragovic (10.1016/j.jenvman.2018.01.074_bib11) 2014; 84
Liu (10.1016/j.jenvman.2018.01.074_bib20) 2011; 3
Acosta (10.1016/j.jenvman.2018.01.074_bib2) 2011; 109
Wang (10.1016/j.jenvman.2018.01.074_bib33) 2015; 58
Nezhad (10.1016/j.jenvman.2018.01.074_bib23) 2015; 152
Burak (10.1016/j.jenvman.2018.01.074_bib6) 2010; 160
Wang (10.1016/j.jenvman.2018.01.074_bib32) 2003; 25
Li (10.1016/j.jenvman.2018.01.074_bib15) 2011; 41
Liu (10.1016/j.jenvman.2018.01.074_bib17) 2013; 3
Broomhead (10.1016/j.jenvman.2018.01.074_bib5) 1988; 2
Zhang (10.1016/j.jenvman.2018.01.074_bib37) 2014; 30
Isaaks (10.1016/j.jenvman.2018.01.074_bib12) 1989
Zhang (10.1016/j.jenvman.2018.01.074_bib36) 2016; 218
Bini (10.1016/j.jenvman.2018.01.074_bib4) 2011; 109
Stone (10.1016/j.jenvman.2018.01.074_bib29) 1974; 36
Cressie (10.1016/j.jenvman.2018.01.074_bib9) 1990; 22
Li (10.1016/j.jenvman.2018.01.074_bib16) 2017; 26
Song (10.1016/j.jenvman.2018.01.074_bib28) 2013; 10
Arslan (10.1016/j.jenvman.2018.01.074_bib3) 2015; 187
Ding (10.1016/j.jenvman.2018.01.074_bib10) 2017; 578
Yan (10.1016/j.jenvman.2018.01.074_bib35) 2015; 153
Nickel (10.1016/j.jenvman.2018.01.074_bib24) 2014; 99
Liu (10.1016/j.jenvman.2018.01.074_bib21) 2014; 86
Qu (10.1016/j.jenvman.2018.01.074_bib25) 2017; 24
Sundaramanickam (10.1016/j.jenvman.2018.01.074_bib30) 2016; 218
Capra (10.1016/j.jenvman.2018.01.074_bib8) 2014; 145
Achiba (10.1016/j.jenvman.2018.01.074_bib1) 2009; 130
Cao (10.1016/j.jenvman.2018.01.074_bib7) 2017; 580
Liu (10.1016/j.jenvman.2018.01.074_bib18) 2014; 12
Liu (10.1016/j.jenvman.2018.01.074_bib19) 2010; 11
Robinson (10.1016/j.jenvman.2018.01.074_bib26) 2006; 50
Kazemi (10.1016/j.jenvman.2018.01.074_bib14) 2011; 38
Wang (10.1016/j.jenvman.2018.01.074_bib31) 2014; 87
Mielke (10.1016/j.jenvman.2018.01.074_bib22) 1999; 81
Wu (10.1016/j.jenvman.2018.01.074_bib34) 2011; 63
Zhong (10.1016/j.jenvman.2018.01.074_bib38) 2007; 44
Ji (10.1016/j.jenvman.2018.01.074_bib13) 2014; 32
Solgi (10.1016/j.jenvman.2018.01.074_bib27) 2015; 25
References_xml – volume: 145
  start-page: 169
  year: 2014
  end-page: 180
  ident: bib8
  article-title: Occurrence and distribution of key potentially toxic elements (PTEs) in agricultural soils: a paradigmatic case study in an area affected by illegal landfills
  publication-title: J. Geochem. Explor.
– volume: 26
  start-page: 181
  year: 2017
  end-page: 188
  ident: bib16
  article-title: Distribution and ecological risk assessment of heavy metals in sediments in Chinese collapsed lakes
  publication-title: Pol. J. Environ. Stud.
– volume: 3
  start-page: 41
  year: 2011
  end-page: 45
  ident: bib20
  article-title: Comparative study of several interpolation methods on spatial analysis
  publication-title: Geomatics World
– volume: 50
  start-page: 97
  year: 2006
  end-page: 108
  ident: bib26
  article-title: Testing the performance of spatial interpolation techniques for mapping soil properties
  publication-title: Comput. Electron. Agric.
– volume: 3
  start-page: 382
  year: 2013
  end-page: 390
  ident: bib17
  article-title: Comparision of the spatial interpolation methods for the tuber density of two scirpus species: main flood of siberian cranes at the stopover site
  publication-title: Chin. J. Zool.
– volume: 63
  start-page: 1093
  year: 2011
  end-page: 1103
  ident: bib34
  article-title: Spatial interpolation of severely skewed data with several peak values by the approach integrating kriging and triangular irregular network interpolation
  publication-title: Environ. Earth Sci.
– volume: 22
  start-page: 239
  year: 1990
  end-page: 252
  ident: bib9
  article-title: The origins of kriging
  publication-title: Math. Geol.
– volume: 99
  start-page: 85
  year: 2014
  end-page: 93
  ident: bib24
  article-title: Modelling and mapping spatio-temporal trends of heavy metal accumulation in moss and natural surface soil monitored 1990-2010 throughout Norway by multivariate generalized linear models and geostatistics
  publication-title: Atmos. Environ.
– volume: 30
  start-page: 96
  year: 2014
  end-page: 100
  ident: bib37
  article-title: The research on the spatial interpolation of heavy metals in soil by using an improved neural networks
  publication-title: Environ. Monit. China
– volume: 58
  start-page: 37
  year: 2015
  end-page: 46
  ident: bib33
  article-title: An eco-city evaluation method based on spatial analysis technology: A case study of Jiangsu Province, China
  publication-title: Ecol. Indic.
– volume: 160
  start-page: 131
  year: 2010
  end-page: 142
  ident: bib6
  article-title: Geochemistry and spatial distribution of heavy metals in Oxisols in a mineralized region of the Brazilian Central Plateau
  publication-title: Geoderma
– volume: 2
  start-page: 321
  year: 1988
  end-page: 355
  ident: bib5
  article-title: Multivariable functional interpolation and adaptive networks
  publication-title: Complex Syst.
– volume: 38
  start-page: 1632
  year: 2011
  end-page: 1649
  ident: bib14
  article-title: Comparison of spatial interpolation methods for estimating heavy metals in sediments of Caspian Sea
  publication-title: Expert Syst. Appl.
– volume: 86
  start-page: 68
  year: 2014
  end-page: 75
  ident: bib21
  article-title: Uncertainty analysis of total phosphorus spatial-temporal variations in the Yangtze River Estuary using different interpolation methods
  publication-title: Mar. Pollut. Bull.
– volume: 44
  start-page: 33
  year: 2007
  end-page: 40
  ident: bib38
  article-title: Spatial variability of soil heavy metals contamination in the Yangtze river delta-A case study of Taicang city in Jiangsu Province
  publication-title: Acta Pedol. Sin.
– volume: 25
  start-page: 5
  year: 2003
  end-page: 7
  ident: bib32
  article-title: Land data mining based on tension spline interpolation function
  publication-title: Comput. Eng. Appl.
– volume: 109
  start-page: 125
  year: 2011
  end-page: 133
  ident: bib4
  article-title: Background levels of trace elements and soil geochemistry at regional level in NE Italy
  publication-title: J. Geochem. Explor.
– volume: 87
  start-page: 364
  year: 2014
  end-page: 373
  ident: bib31
  article-title: Spatial variation, environmental assessment and source identification of heavy metals in sediments of the Yangtze River Estuary
  publication-title: Mar. Pollut. Bull.
– volume: 41
  start-page: 222
  year: 2011
  end-page: 227
  ident: bib15
  article-title: Comparison of typical interpolation methods for pollution evaluation of soil heavy metals in Yicheng District, Hefei
  publication-title: J. Jilin Univ. Earth Sci. Ed.
– volume: 84
  start-page: 550
  year: 2014
  end-page: 562
  ident: bib11
  article-title: Assessment of the impact of geographical factors on the spatial distribution of heavy metals in soils around the steel production facility in Smederevo (Serbia)
  publication-title: J. Clean. Prod.
– volume: 580
  start-page: 430
  year: 2017
  end-page: 439
  ident: bib7
  article-title: Modeling and mapping of cadmium in soils based on qualitative and quantitative auxiliary variables in a cadmium contaminated area
  publication-title: Sci. Total Environ.
– volume: 12
  start-page: 4712
  year: 2014
  end-page: 4719
  ident: bib18
  article-title: Spatial distribution prediction of surface soil Pb in a battery contaminated site
  publication-title: Environ. Sci.
– volume: 81
  start-page: 117
  year: 1999
  end-page: 129
  ident: bib22
  article-title: The urban environment and children's health: soils as an integrator of lead, zinc, and cadmium in New Orleans, Louisiana, U.S.A.
  publication-title: Environ. Res.
– volume: 153
  start-page: 120
  year: 2015
  end-page: 130
  ident: bib35
  article-title: The spatial distribution pattern of heavy metals and risk assessment of moso bamboo forest soil around lead-zinc mine in Southeastern China
  publication-title: Soil Till. Res.
– volume: 130
  start-page: 156
  year: 2009
  end-page: 163
  ident: bib1
  article-title: Effects of 5-year application of municipal solid waste compost on the distribution and mobility of heavy metals in a Tunisian calcareous soil
  publication-title: Agric. Ecosyst. Environ.
– volume: 218
  start-page: 513
  year: 2016
  end-page: 522
  ident: bib36
  article-title: Effects of biochars on the availability of heavy metals to ryegrass in an alkaline contaminated soil
  publication-title: Environ. Pollut.
– volume: 109
  start-page: 8
  year: 2011
  end-page: 17
  ident: bib2
  article-title: Multivariate statistical and GIS-based approach to evaluate heavy metals behavior in mine sites for future reclamation
  publication-title: J. Geochem. Explor.
– volume: 152
  start-page: 91
  year: 2015
  end-page: 109
  ident: bib23
  article-title: Geochemical assessment of steel smelter-impacted urban soils, Ahvaz, Iran
  publication-title: J. Geochem. Explor.
– volume: 10
  start-page: 5163
  year: 2013
  end-page: 5177
  ident: bib28
  article-title: Study on Association between Spatial Distribution of Metal Mines and Disease Mortality: A Case Study in Suxian District, South China
  publication-title: Int. J. Environ. Res. Public Health
– volume: 11
  start-page: 879
  year: 2010
  end-page: 884
  ident: bib19
  article-title: Impact of inverse distance weighted interpolation factors on interpolation error
  publication-title: Sciencepaper Online
– volume: 25
  start-page: 2380
  year: 2015
  end-page: 2387
  ident: bib27
  article-title: Analysis and assessment of nickel and chromium pollution in soils around Baghejar Chromite Mine of Sabzevar Ophiolite Belt, Northeastern Iran
  publication-title: Trans. Nonferrous Met. Soc. China
– volume: 36
  start-page: 111
  year: 1974
  end-page: 147
  ident: bib29
  article-title: Cross-validatory choice and assessment of statistical predictions
  publication-title: J. Roy. Stat. Soc. B
– start-page: 561
  year: 1989
  ident: bib12
  article-title: Applied Geostatistics
– volume: 578
  start-page: 577
  year: 2017
  end-page: 585
  ident: bib10
  article-title: Effects of natural factors on the spatial distribution of heavy metals in soils surrounding mining regions
  publication-title: Sci. Total Environ.
– volume: 24
  start-page: 2578
  year: 2017
  end-page: 2588
  ident: bib25
  article-title: Comparison of four methods for spatial interpolation of estimated atmospheric nitrogen deposition in South China
  publication-title: Environ. Sci. Pollut. Res.
– volume: 218
  start-page: 186
  year: 2016
  end-page: 195
  ident: bib30
  article-title: Spatial variability of heavy metals in estuarine, mangrove and coastal ecosystems along Parangipettai, Southeast coast of India
  publication-title: Environ. Pollut.
– volume: 187
  start-page: 516
  year: 2015
  ident: bib3
  article-title: Estimation of spatial distribution of heavy metals in groundwater using interpolation methods and multivariate statistical techniques; its suitability for drinking and irrigation purposes in the Middle Black Sea Region of Turkey
  publication-title: Environ. Monit. Assess.
– volume: 32
  start-page: 86
  year: 2014
  end-page: 96
  ident: bib13
  article-title: Spatial and temporal distribution of expressway and its relationships to land cover and population: a case study of Beijing, China
  publication-title: Transport. Res. D Tre.
– volume: 99
  start-page: 85
  year: 2014
  ident: 10.1016/j.jenvman.2018.01.074_bib24
  article-title: Modelling and mapping spatio-temporal trends of heavy metal accumulation in moss and natural surface soil monitored 1990-2010 throughout Norway by multivariate generalized linear models and geostatistics
  publication-title: Atmos. Environ.
  doi: 10.1016/j.atmosenv.2014.09.059
– volume: 218
  start-page: 186
  year: 2016
  ident: 10.1016/j.jenvman.2018.01.074_bib30
  article-title: Spatial variability of heavy metals in estuarine, mangrove and coastal ecosystems along Parangipettai, Southeast coast of India
  publication-title: Environ. Pollut.
  doi: 10.1016/j.envpol.2016.07.048
– volume: 25
  start-page: 5
  year: 2003
  ident: 10.1016/j.jenvman.2018.01.074_bib32
  article-title: Land data mining based on tension spline interpolation function
  publication-title: Comput. Eng. Appl.
– volume: 152
  start-page: 91
  year: 2015
  ident: 10.1016/j.jenvman.2018.01.074_bib23
  article-title: Geochemical assessment of steel smelter-impacted urban soils, Ahvaz, Iran
  publication-title: J. Geochem. Explor.
  doi: 10.1016/j.gexplo.2015.02.005
– volume: 32
  start-page: 86
  year: 2014
  ident: 10.1016/j.jenvman.2018.01.074_bib13
  article-title: Spatial and temporal distribution of expressway and its relationships to land cover and population: a case study of Beijing, China
  publication-title: Transport. Res. D Tre.
  doi: 10.1016/j.trd.2014.07.010
– volume: 145
  start-page: 169
  year: 2014
  ident: 10.1016/j.jenvman.2018.01.074_bib8
  article-title: Occurrence and distribution of key potentially toxic elements (PTEs) in agricultural soils: a paradigmatic case study in an area affected by illegal landfills
  publication-title: J. Geochem. Explor.
  doi: 10.1016/j.gexplo.2014.06.007
– volume: 84
  start-page: 550
  issue: 1
  year: 2014
  ident: 10.1016/j.jenvman.2018.01.074_bib11
  article-title: Assessment of the impact of geographical factors on the spatial distribution of heavy metals in soils around the steel production facility in Smederevo (Serbia)
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2014.03.060
– volume: 58
  start-page: 37
  year: 2015
  ident: 10.1016/j.jenvman.2018.01.074_bib33
  article-title: An eco-city evaluation method based on spatial analysis technology: A case study of Jiangsu Province, China
  publication-title: Ecol. Indic.
  doi: 10.1016/j.ecolind.2015.05.032
– volume: 41
  start-page: 222
  issue: 1
  year: 2011
  ident: 10.1016/j.jenvman.2018.01.074_bib15
  article-title: Comparison of typical interpolation methods for pollution evaluation of soil heavy metals in Yicheng District, Hefei
  publication-title: J. Jilin Univ. Earth Sci. Ed.
– volume: 3
  start-page: 41
  year: 2011
  ident: 10.1016/j.jenvman.2018.01.074_bib20
  article-title: Comparative study of several interpolation methods on spatial analysis
  publication-title: Geomatics World
– volume: 130
  start-page: 156
  year: 2009
  ident: 10.1016/j.jenvman.2018.01.074_bib1
  article-title: Effects of 5-year application of municipal solid waste compost on the distribution and mobility of heavy metals in a Tunisian calcareous soil
  publication-title: Agric. Ecosyst. Environ.
  doi: 10.1016/j.agee.2009.01.001
– volume: 86
  start-page: 68
  year: 2014
  ident: 10.1016/j.jenvman.2018.01.074_bib21
  article-title: Uncertainty analysis of total phosphorus spatial-temporal variations in the Yangtze River Estuary using different interpolation methods
  publication-title: Mar. Pollut. Bull.
  doi: 10.1016/j.marpolbul.2014.07.041
– volume: 12
  start-page: 4712
  year: 2014
  ident: 10.1016/j.jenvman.2018.01.074_bib18
  article-title: Spatial distribution prediction of surface soil Pb in a battery contaminated site
  publication-title: Environ. Sci.
– volume: 187
  start-page: 516
  year: 2015
  ident: 10.1016/j.jenvman.2018.01.074_bib3
  article-title: Estimation of spatial distribution of heavy metals in groundwater using interpolation methods and multivariate statistical techniques; its suitability for drinking and irrigation purposes in the Middle Black Sea Region of Turkey
  publication-title: Environ. Monit. Assess.
  doi: 10.1007/s10661-015-4725-x
– volume: 26
  start-page: 181
  issue: 1
  year: 2017
  ident: 10.1016/j.jenvman.2018.01.074_bib16
  article-title: Distribution and ecological risk assessment of heavy metals in sediments in Chinese collapsed lakes
  publication-title: Pol. J. Environ. Stud.
  doi: 10.15244/pjoes/64379
– volume: 160
  start-page: 131
  year: 2010
  ident: 10.1016/j.jenvman.2018.01.074_bib6
  article-title: Geochemistry and spatial distribution of heavy metals in Oxisols in a mineralized region of the Brazilian Central Plateau
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2010.08.007
– volume: 2
  start-page: 321
  year: 1988
  ident: 10.1016/j.jenvman.2018.01.074_bib5
  article-title: Multivariable functional interpolation and adaptive networks
  publication-title: Complex Syst.
– volume: 11
  start-page: 879
  year: 2010
  ident: 10.1016/j.jenvman.2018.01.074_bib19
  article-title: Impact of inverse distance weighted interpolation factors on interpolation error
  publication-title: Sciencepaper Online
– volume: 87
  start-page: 364
  year: 2014
  ident: 10.1016/j.jenvman.2018.01.074_bib31
  article-title: Spatial variation, environmental assessment and source identification of heavy metals in sediments of the Yangtze River Estuary
  publication-title: Mar. Pollut. Bull.
  doi: 10.1016/j.marpolbul.2014.07.048
– volume: 63
  start-page: 1093
  year: 2011
  ident: 10.1016/j.jenvman.2018.01.074_bib34
  article-title: Spatial interpolation of severely skewed data with several peak values by the approach integrating kriging and triangular irregular network interpolation
  publication-title: Environ. Earth Sci.
  doi: 10.1007/s12665-010-0784-z
– volume: 153
  start-page: 120
  year: 2015
  ident: 10.1016/j.jenvman.2018.01.074_bib35
  article-title: The spatial distribution pattern of heavy metals and risk assessment of moso bamboo forest soil around lead-zinc mine in Southeastern China
  publication-title: Soil Till. Res.
  doi: 10.1016/j.still.2015.05.013
– volume: 50
  start-page: 97
  issue: 2
  year: 2006
  ident: 10.1016/j.jenvman.2018.01.074_bib26
  article-title: Testing the performance of spatial interpolation techniques for mapping soil properties
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2005.07.003
– volume: 578
  start-page: 577
  year: 2017
  ident: 10.1016/j.jenvman.2018.01.074_bib10
  article-title: Effects of natural factors on the spatial distribution of heavy metals in soils surrounding mining regions
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2016.11.001
– volume: 10
  start-page: 5163
  issue: 10
  year: 2013
  ident: 10.1016/j.jenvman.2018.01.074_bib28
  article-title: Study on Association between Spatial Distribution of Metal Mines and Disease Mortality: A Case Study in Suxian District, South China
  publication-title: Int. J. Environ. Res. Public Health
  doi: 10.3390/ijerph10105163
– volume: 25
  start-page: 2380
  issue: 7
  year: 2015
  ident: 10.1016/j.jenvman.2018.01.074_bib27
  article-title: Analysis and assessment of nickel and chromium pollution in soils around Baghejar Chromite Mine of Sabzevar Ophiolite Belt, Northeastern Iran
  publication-title: Trans. Nonferrous Met. Soc. China
  doi: 10.1016/S1003-6326(15)63853-5
– volume: 22
  start-page: 239
  year: 1990
  ident: 10.1016/j.jenvman.2018.01.074_bib9
  article-title: The origins of kriging
  publication-title: Math. Geol.
  doi: 10.1007/BF00889887
– volume: 109
  start-page: 8
  year: 2011
  ident: 10.1016/j.jenvman.2018.01.074_bib2
  article-title: Multivariate statistical and GIS-based approach to evaluate heavy metals behavior in mine sites for future reclamation
  publication-title: J. Geochem. Explor.
  doi: 10.1016/j.gexplo.2011.01.004
– volume: 109
  start-page: 125
  year: 2011
  ident: 10.1016/j.jenvman.2018.01.074_bib4
  article-title: Background levels of trace elements and soil geochemistry at regional level in NE Italy
  publication-title: J. Geochem. Explor.
  doi: 10.1016/j.gexplo.2010.07.008
– volume: 30
  start-page: 96
  year: 2014
  ident: 10.1016/j.jenvman.2018.01.074_bib37
  article-title: The research on the spatial interpolation of heavy metals in soil by using an improved neural networks
  publication-title: Environ. Monit. China
– volume: 580
  start-page: 430
  year: 2017
  ident: 10.1016/j.jenvman.2018.01.074_bib7
  article-title: Modeling and mapping of cadmium in soils based on qualitative and quantitative auxiliary variables in a cadmium contaminated area
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2016.10.088
– volume: 218
  start-page: 513
  year: 2016
  ident: 10.1016/j.jenvman.2018.01.074_bib36
  article-title: Effects of biochars on the availability of heavy metals to ryegrass in an alkaline contaminated soil
  publication-title: Environ. Pollut.
  doi: 10.1016/j.envpol.2016.07.031
– volume: 81
  start-page: 117
  year: 1999
  ident: 10.1016/j.jenvman.2018.01.074_bib22
  article-title: The urban environment and children's health: soils as an integrator of lead, zinc, and cadmium in New Orleans, Louisiana, U.S.A.
  publication-title: Environ. Res.
  doi: 10.1006/enrs.1999.3966
– start-page: 561
  year: 1989
  ident: 10.1016/j.jenvman.2018.01.074_bib12
– volume: 24
  start-page: 2578
  year: 2017
  ident: 10.1016/j.jenvman.2018.01.074_bib25
  article-title: Comparison of four methods for spatial interpolation of estimated atmospheric nitrogen deposition in South China
  publication-title: Environ. Sci. Pollut. Res.
  doi: 10.1007/s11356-016-7995-0
– volume: 38
  start-page: 1632
  issue: 3
  year: 2011
  ident: 10.1016/j.jenvman.2018.01.074_bib14
  article-title: Comparison of spatial interpolation methods for estimating heavy metals in sediments of Caspian Sea
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2010.07.085
– volume: 44
  start-page: 33
  year: 2007
  ident: 10.1016/j.jenvman.2018.01.074_bib38
  article-title: Spatial variability of soil heavy metals contamination in the Yangtze river delta-A case study of Taicang city in Jiangsu Province
  publication-title: Acta Pedol. Sin.
– volume: 3
  start-page: 382
  year: 2013
  ident: 10.1016/j.jenvman.2018.01.074_bib17
  article-title: Comparision of the spatial interpolation methods for the tuber density of two scirpus species: main flood of siberian cranes at the stopover site
  publication-title: Chin. J. Zool.
– volume: 36
  start-page: 111
  year: 1974
  ident: 10.1016/j.jenvman.2018.01.074_bib29
  article-title: Cross-validatory choice and assessment of statistical predictions
  publication-title: J. Roy. Stat. Soc. B
  doi: 10.1111/j.2517-6161.1974.tb00994.x
SSID ssj0003217
Score 2.4210343
Snippet The appropriate spatial interpolation methods must be selected to analyze the spatial distributions of Potentially Toxic Elements (PTEs), which is a...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 23
SubjectTerms anthropogenic activities
arsenic
China
copper
correlation
Inverse distance weighting interpolation
kriging
lead
mining
Mining area
Ordinary kriging interpolation
pollution
Potentially Toxic Element
prediction
Radial basis function interpolation
soil
toxic substances
Uncertainty
zinc
Title Comparison of the common spatial interpolation methods used to analyze potentially toxic elements surrounding mining regions
URI https://dx.doi.org/10.1016/j.jenvman.2018.01.074
https://www.ncbi.nlm.nih.gov/pubmed/29427938
https://www.proquest.com/docview/2001072289
https://www.proquest.com/docview/2045792741
Volume 212
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaqcoALgkJheVRG4prdOJk48bFatVpA9AKVerNsx5Z2tU1WmywChPjtzOSxKw6lErfEGkuOZzwex9_Mx9h7dLtBlSpENggZgQV8giyPMmcSITPlbQf5_3wlF9fw8Sa7OWLzMReGYJWD7-99eueth5bZMJuzzXI5-9KdBnKFzjWNCV1IGeyQk5VPfx9gHmnSse6SMP1Fyg9ZPLPVdOWrb7eGyqCKoqvemcNd-9Nd8We3D10-YY-HAJKf92N8yo58dcIejvnFzQk7vTjkrqHgsHibZ-zXfM85yOvAMfLj-NVohrwhWDXKLnvSrR4ex3ty6YbvGl_ytuaG6pf89HxTtwQxMuv1D2z-vnTc9xj0hje77ZZ4mnA_5Lcd9QQn5ge07Ofs-vLi63wRDeQLkQMJbZQW4L2UCfiskKbMLHhnTHCBAh4fQhqcdVJYBQHVmcbKWGdKaZVzUBibp6fsuKor_5Lx3BWxtC6WpZfgQlZ4LwIEl5fCijgtJwzGKdduqExOBBlrPULQVnrQlCZN6Vho1NSETffdNn1pjvs6FKM-9V82pnH7uK_ru1H_GtcfXaqYyte7hmg88QSd4Ln1XzJo_ooKBU3Yi9549iNOFCToI4tX_z-41-wRvdEdl8jesON2u_NvMVRq7Vm3Fs7Yg_MPnxZXfwB-SBoY
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6V7aFcEBQKy9NIXNPNw3aSY7VqtaXtXmil3izbsaVdbZPVJosA8eOZyWMrDqUSt8gZS47n6XhmPoAvaHZ9XuQ-MD6SATccn7hIA2F1HEmRO9Om_F_N5eyGf70Vt3swHWphKK2yt_2dTW-tdT8y6Xdzsl4sJt_a00Cao3FNQsoufAL71J1KjGD_5PxiNt8Z5CRugXeJnn4kpfeFPJPl8dKV3-80dUKNsraBZ8ofclEPhaCtKzp7Ds_6GJKddMt8AXuuPISDocS4PoSj0_vyNSTs9bd-Cb-nO9hBVnmGwR_DD0dJZDVlViPtosPd6jLkWIcvXbNt7QrWVExTC5Nfjq2rhrKM9Gr1E4d_LCxzXRp6zertZkNQTegS2V2LPsEI_AGF-xXcnJ1eT2dBj78QWC55EyQZd07KmDuRSV0Iw53V2ltPMY_zPvHWWBmZnHvkaBLm2lhdSJNbyzNt0uQIRmVVujfAUpuF0thQFk5y60XmXOS5t2kRmShMijHwYcuV7ZuTE0bGSg1ZaEvVc0oRp1QYKeTUGI5309Zdd47HJmQDP9VfYqbQgzw29fPAf4UqSPcqunTVtiYkTzxEx3h0_RcNakBOvYLG8LoTnt2K45zHaCazt_-_uE9wMLu-ulSX5_OLd_CU3tCVVyTew6jZbN0HjJwa87HXjD8I-xzJ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Comparison+of+the+common+spatial+interpolation+methods+used+to+analyze+potentially+toxic+elements+surrounding+mining+regions&rft.jtitle=Journal+of+environmental+management&rft.au=Ding%2C+Qian&rft.au=Wang%2C+Yong&rft.au=Zhuang%2C+Dafang&rft.date=2018-04-15&rft.issn=1095-8630&rft.eissn=1095-8630&rft.volume=212&rft.spage=23&rft_id=info:doi/10.1016%2Fj.jenvman.2018.01.074&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0301-4797&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0301-4797&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0301-4797&client=summon