Influence of water matrix on the degradation of organic micropollutants by ozone based processes: A review on oxidant scavenging mechanism
The prevalence of organic micropollutants (OMPs) in aquatic environment has expedited scientific and regulatory efforts to retrofit existing wastewater treatment plants (WWTPs). The current strategy involves WWTPs upgrading with post-ozonation i.e., ozone (O3) and/or peroxone process (O3 +H2O2). Sti...
Saved in:
Published in | Journal of hazardous materials Vol. 429; p. 128189 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Netherlands
Elsevier B.V
05.05.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The prevalence of organic micropollutants (OMPs) in aquatic environment has expedited scientific and regulatory efforts to retrofit existing wastewater treatment plants (WWTPs). The current strategy involves WWTPs upgrading with post-ozonation i.e., ozone (O3) and/or peroxone process (O3 +H2O2). Still, ozone-based degradation of OMPs faces several challenges. For example, the degradation mechanism and kinetics of OMPs could largely be affected by water matrix compounds which include inorganic ions and natural organic matter (NOM). pH also plays a decisive role in determining the reactivity of the oxidants (O3, H2O2, andHO•), stability and speciation of matrix constituents and OMPs and thus susceptibility of OMPs to the reactions with oxidants. There have been reviews discussing the impact of matrix components on the degradation of OMPs by advanced oxidation processes (AOPs). Nevertheless, a review focusing on scavenging mechanisms, formation of secondary oxidants and their scavenging effects with a particular focus on ozonation and peroxone process is lacking. Therefore, in order to broaden the knowledge on this subject, the database ‘Web of Science’ was searched for the studies related to the ‘matrix effect on the degradation of organic micropollutants by ozone based processes’ over the time period of 2004–2021. The relevant literature was thoroughly reviewed and following conclusions were made: i) chloride has inhibitory effects if it exits at higher concentrations or as free chlorine i.e. HOCl/ClO−. ii) The inhibitory effects of chloride, bromide, HOBr/OBr− and HOCl/ClO− are dominant in neutral and alkaline conditions and may result in the formation of secondary oxidants (e.g., chlorine atoms or free bromine), which in turn contribute to pollutant degradation or form undesired oxidation by-products such as BrO3–, ClO3– and halogenated organic products. ii) NOM may induce inhibitory or synergetic effects depending on the type, chemical properties and concentration of NOM. Therefore, more efforts are required to understand the importance of pH variation as well as the effects of water matrix on the reactivity of oxidants and subsequent degradation of OMPs.
[Display omitted]
•pH plays a deceive role in determining the reactivity of oxidants and speciation of MPs.•NOM may have promoting or inhibitory effects depending on the aromaticity of its structure.•Peroxone process has negligible effect on reducing the inhibitory effects of matrix components. |
---|---|
AbstractList | The prevalence of organic micropollutants (OMPs) in aquatic environment has expedited scientific and regulatory efforts to retrofit existing wastewater treatment plants (WWTPs). The current strategy involves WWTPs upgrading with post-ozonation i.e., ozone (O3) and/or peroxone process (O3 +H2O2). Still, ozone-based degradation of OMPs faces several challenges. For example, the degradation mechanism and kinetics of OMPs could largely be affected by water matrix compounds which include inorganic ions and natural organic matter (NOM). pH also plays a decisive role in determining the reactivity of the oxidants (O3, H2O2, andHO•), stability and speciation of matrix constituents and OMPs and thus susceptibility of OMPs to the reactions with oxidants. There have been reviews discussing the impact of matrix components on the degradation of OMPs by advanced oxidation processes (AOPs). Nevertheless, a review focusing on scavenging mechanisms, formation of secondary oxidants and their scavenging effects with a particular focus on ozonation and peroxone process is lacking. Therefore, in order to broaden the knowledge on this subject, the database 'Web of Science' was searched for the studies related to the 'matrix effect on the degradation of organic micropollutants by ozone based processes' over the time period of 2004-2021. The relevant literature was thoroughly reviewed and following conclusions were made: i) chloride has inhibitory effects if it exits at higher concentrations or as free chlorine i.e. HOCl/ClO-. ii) The inhibitory effects of chloride, bromide, HOBr/OBr- and HOCl/ClO- are dominant in neutral and alkaline conditions and may result in the formation of secondary oxidants (e.g., chlorine atoms or free bromine), which in turn contribute to pollutant degradation or form undesired oxidation by-products such as BrO3-, ClO3- and halogenated organic products. ii) NOM may induce inhibitory or synergetic effects depending on the type, chemical properties and concentration of NOM. Therefore, more efforts are required to understand the importance of pH variation as well as the effects of water matrix on the reactivity of oxidants and subsequent degradation of OMPs.The prevalence of organic micropollutants (OMPs) in aquatic environment has expedited scientific and regulatory efforts to retrofit existing wastewater treatment plants (WWTPs). The current strategy involves WWTPs upgrading with post-ozonation i.e., ozone (O3) and/or peroxone process (O3 +H2O2). Still, ozone-based degradation of OMPs faces several challenges. For example, the degradation mechanism and kinetics of OMPs could largely be affected by water matrix compounds which include inorganic ions and natural organic matter (NOM). pH also plays a decisive role in determining the reactivity of the oxidants (O3, H2O2, andHO•), stability and speciation of matrix constituents and OMPs and thus susceptibility of OMPs to the reactions with oxidants. There have been reviews discussing the impact of matrix components on the degradation of OMPs by advanced oxidation processes (AOPs). Nevertheless, a review focusing on scavenging mechanisms, formation of secondary oxidants and their scavenging effects with a particular focus on ozonation and peroxone process is lacking. Therefore, in order to broaden the knowledge on this subject, the database 'Web of Science' was searched for the studies related to the 'matrix effect on the degradation of organic micropollutants by ozone based processes' over the time period of 2004-2021. The relevant literature was thoroughly reviewed and following conclusions were made: i) chloride has inhibitory effects if it exits at higher concentrations or as free chlorine i.e. HOCl/ClO-. ii) The inhibitory effects of chloride, bromide, HOBr/OBr- and HOCl/ClO- are dominant in neutral and alkaline conditions and may result in the formation of secondary oxidants (e.g., chlorine atoms or free bromine), which in turn contribute to pollutant degradation or form undesired oxidation by-products such as BrO3-, ClO3- and halogenated organic products. ii) NOM may induce inhibitory or synergetic effects depending on the type, chemical properties and concentration of NOM. Therefore, more efforts are required to understand the importance of pH variation as well as the effects of water matrix on the reactivity of oxidants and subsequent degradation of OMPs. The prevalence of organic micropollutants (OMPs) in aquatic environment has expedited scientific and regulatory efforts to retrofit existing wastewater treatment plants (WWTPs). The current strategy involves WWTPs upgrading with post-ozonation i.e., ozone (O ) and/or peroxone process (O +H O ). Still, ozone-based degradation of OMPs faces several challenges. For example, the degradation mechanism and kinetics of OMPs could largely be affected by water matrix compounds which include inorganic ions and natural organic matter (NOM). pH also plays a decisive role in determining the reactivity of the oxidants (O , H O , andHO ), stability and speciation of matrix constituents and OMPs and thus susceptibility of OMPs to the reactions with oxidants. There have been reviews discussing the impact of matrix components on the degradation of OMPs by advanced oxidation processes (AOPs). Nevertheless, a review focusing on scavenging mechanisms, formation of secondary oxidants and their scavenging effects with a particular focus on ozonation and peroxone process is lacking. Therefore, in order to broaden the knowledge on this subject, the database 'Web of Science' was searched for the studies related to the 'matrix effect on the degradation of organic micropollutants by ozone based processes' over the time period of 2004-2021. The relevant literature was thoroughly reviewed and following conclusions were made: i) chloride has inhibitory effects if it exits at higher concentrations or as free chlorine i.e. HOCl/ClO . ii) The inhibitory effects of chloride, bromide, HOBr/OBr and HOCl/ClO are dominant in neutral and alkaline conditions and may result in the formation of secondary oxidants (e.g., chlorine atoms or free bromine), which in turn contribute to pollutant degradation or form undesired oxidation by-products such as BrO , ClO and halogenated organic products. ii) NOM may induce inhibitory or synergetic effects depending on the type, chemical properties and concentration of NOM. Therefore, more efforts are required to understand the importance of pH variation as well as the effects of water matrix on the reactivity of oxidants and subsequent degradation of OMPs. The prevalence of organic micropollutants (OMPs) in aquatic environment has expedited scientific and regulatory efforts to retrofit existing wastewater treatment plants (WWTPs). The current strategy involves WWTPs upgrading with post-ozonation i.e., ozone (O₃) and/or peroxone process (O₃ +H₂O₂). Still, ozone-based degradation of OMPs faces several challenges. For example, the degradation mechanism and kinetics of OMPs could largely be affected by water matrix compounds which include inorganic ions and natural organic matter (NOM). pH also plays a decisive role in determining the reactivity of the oxidants (O₃, H₂O₂, andHO•), stability and speciation of matrix constituents and OMPs and thus susceptibility of OMPs to the reactions with oxidants. There have been reviews discussing the impact of matrix components on the degradation of OMPs by advanced oxidation processes (AOPs). Nevertheless, a review focusing on scavenging mechanisms, formation of secondary oxidants and their scavenging effects with a particular focus on ozonation and peroxone process is lacking. Therefore, in order to broaden the knowledge on this subject, the database ‘Web of Science’ was searched for the studies related to the ‘matrix effect on the degradation of organic micropollutants by ozone based processes’ over the time period of 2004–2021. The relevant literature was thoroughly reviewed and following conclusions were made: i) chloride has inhibitory effects if it exits at higher concentrations or as free chlorine i.e. HOCl/ClO−. ii) The inhibitory effects of chloride, bromide, HOBr/OBr− and HOCl/ClO− are dominant in neutral and alkaline conditions and may result in the formation of secondary oxidants (e.g., chlorine atoms or free bromine), which in turn contribute to pollutant degradation or form undesired oxidation by-products such as BrO3–, ClO3– and halogenated organic products. ii) NOM may induce inhibitory or synergetic effects depending on the type, chemical properties and concentration of NOM. Therefore, more efforts are required to understand the importance of pH variation as well as the effects of water matrix on the reactivity of oxidants and subsequent degradation of OMPs. The prevalence of organic micropollutants (OMPs) in aquatic environment has expedited scientific and regulatory efforts to retrofit existing wastewater treatment plants (WWTPs). The current strategy involves WWTPs upgrading with post-ozonation i.e., ozone (O3) and/or peroxone process (O3 +H2O2). Still, ozone-based degradation of OMPs faces several challenges. For example, the degradation mechanism and kinetics of OMPs could largely be affected by water matrix compounds which include inorganic ions and natural organic matter (NOM). pH also plays a decisive role in determining the reactivity of the oxidants (O3, H2O2, andHO•), stability and speciation of matrix constituents and OMPs and thus susceptibility of OMPs to the reactions with oxidants. There have been reviews discussing the impact of matrix components on the degradation of OMPs by advanced oxidation processes (AOPs). Nevertheless, a review focusing on scavenging mechanisms, formation of secondary oxidants and their scavenging effects with a particular focus on ozonation and peroxone process is lacking. Therefore, in order to broaden the knowledge on this subject, the database ‘Web of Science’ was searched for the studies related to the ‘matrix effect on the degradation of organic micropollutants by ozone based processes’ over the time period of 2004–2021. The relevant literature was thoroughly reviewed and following conclusions were made: i) chloride has inhibitory effects if it exits at higher concentrations or as free chlorine i.e. HOCl/ClO−. ii) The inhibitory effects of chloride, bromide, HOBr/OBr− and HOCl/ClO− are dominant in neutral and alkaline conditions and may result in the formation of secondary oxidants (e.g., chlorine atoms or free bromine), which in turn contribute to pollutant degradation or form undesired oxidation by-products such as BrO3–, ClO3– and halogenated organic products. ii) NOM may induce inhibitory or synergetic effects depending on the type, chemical properties and concentration of NOM. Therefore, more efforts are required to understand the importance of pH variation as well as the effects of water matrix on the reactivity of oxidants and subsequent degradation of OMPs. [Display omitted] •pH plays a deceive role in determining the reactivity of oxidants and speciation of MPs.•NOM may have promoting or inhibitory effects depending on the aromaticity of its structure.•Peroxone process has negligible effect on reducing the inhibitory effects of matrix components. |
ArticleNumber | 128189 |
Author | Tuerk, Jochen Asghar, Anam Schmidt, Torsten C. Lutze, Holger V. |
Author_xml | – sequence: 1 givenname: Anam surname: Asghar fullname: Asghar, Anam email: anam.asghar@uni-due.de organization: Instrumental Analytical Chemistry, Faculty of Chemistry, University of Duisburg-Essen, Universitätsstr. 5, Essen, Germany – sequence: 2 givenname: Holger V. surname: Lutze fullname: Lutze, Holger V. organization: Department of Civil and Environmental Engineering Sciences, Technische Universität Darmstadt, Karolinenpl. 5, 64289 Darmstadt, Germany – sequence: 3 givenname: Jochen surname: Tuerk fullname: Tuerk, Jochen organization: Institut für Energie, und Umwelttechnik e. V. (IUTA, Institute of Energy and Environmental Technology), Bliersheimer Str. 58-60, 47229 Duisburg, Germany – sequence: 4 givenname: Torsten C. surname: Schmidt fullname: Schmidt, Torsten C. organization: Instrumental Analytical Chemistry, Faculty of Chemistry, University of Duisburg-Essen, Universitätsstr. 5, Essen, Germany |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35077976$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkUtP3DAUhS1EBcPjJ1B52U0GO3acpF1UCLUFCakbWFuOfTPjUWJPbYfXT-BX18MMGzaw8kPfOffqnCO077wDhM4omVNCxflqvlqq51GleUlKOqdlQ5t2D81oU7OCMSb20YwwwgvWtPwQHcW4IoTQuuIH6JBVpK7bWszQy7XrhwmcBux7_KASBJxNg33E3uG0BGxgEZRRyeZ3RnxYKGc1Hq0Ofu2HYUrKpYi7J-yf84q4UxEMXgevIUaI3_EFDnBv4WFj6B-tyTiOWt2DW1i3wCPoZXaM4wn60qshwunuPEZ3v3_dXl4VN3__XF9e3BSaC56KUjMuVCO4qEjPatUp2nGm8icV-Vp1renapm41gZ5rwUraAW81NT1UUDWGHaNvW9-8478JYpKjjRqGQTnwU5SlYIJzIarmE2hZthkmLKNfd-jUjWDkOthRhSf5FnUGfmyBnFuMAXqpbXqNNQVlB0mJ3BQrV3JXrNwUK7fFZnX1Tv024CPdz60OcqK5hSCjtpu6jQ2gkzTefuDwHxthwkU |
CitedBy_id | crossref_primary_10_1016_j_envres_2024_119889 crossref_primary_10_1016_j_jwpe_2024_106536 crossref_primary_10_1021_acsestwater_3c00724 crossref_primary_10_1016_j_jece_2024_114352 crossref_primary_10_1016_j_jhazmat_2022_129743 crossref_primary_10_1021_acs_est_4c02659 crossref_primary_10_1016_j_chemosphere_2024_141425 crossref_primary_10_1016_j_cej_2023_145508 crossref_primary_10_3390_antibiotics12050932 crossref_primary_10_1021_acs_est_3c00827 crossref_primary_10_1016_j_scitotenv_2022_155273 crossref_primary_10_1021_acsestwater_3c00809 crossref_primary_10_3390_toxics10120765 crossref_primary_10_1016_j_memsci_2024_122962 crossref_primary_10_1016_j_cej_2025_159638 crossref_primary_10_1016_j_seppur_2025_131847 crossref_primary_10_1016_j_cclet_2023_108714 crossref_primary_10_1016_j_envpol_2023_121930 crossref_primary_10_1016_j_chemosphere_2023_140888 crossref_primary_10_1016_j_seppur_2024_129276 crossref_primary_10_1016_j_cej_2022_141027 crossref_primary_10_1016_j_jwpe_2024_104945 crossref_primary_10_1016_j_scenv_2025_100237 crossref_primary_10_1016_j_seppur_2023_125311 crossref_primary_10_1021_acs_est_2c01017 crossref_primary_10_1016_j_jhazmat_2023_133182 crossref_primary_10_1016_j_cej_2022_139597 crossref_primary_10_1016_j_chemosphere_2024_141390 crossref_primary_10_1007_s11814_023_1405_3 crossref_primary_10_1016_j_apcatb_2023_123325 crossref_primary_10_1016_j_jece_2023_109659 crossref_primary_10_1021_acs_est_3c00190 crossref_primary_10_1021_acsestwater_3c00086 crossref_primary_10_2139_ssrn_4167605 crossref_primary_10_1016_j_psep_2022_11_075 crossref_primary_10_1016_j_seppur_2024_129420 crossref_primary_10_1016_j_envpol_2023_122736 crossref_primary_10_3390_w14203198 crossref_primary_10_1016_j_cej_2023_147472 crossref_primary_10_1007_s10311_024_01772_w crossref_primary_10_3390_catal12050552 crossref_primary_10_1016_j_chemosphere_2022_135470 crossref_primary_10_1016_j_chemosphere_2023_140919 crossref_primary_10_1016_j_coche_2023_100945 crossref_primary_10_1016_j_scitotenv_2023_169073 crossref_primary_10_1002_adfm_202314144 crossref_primary_10_1016_j_envres_2023_116597 crossref_primary_10_1016_j_watres_2023_120387 crossref_primary_10_1039_D3DT01350B crossref_primary_10_3390_catal13020358 crossref_primary_10_1016_j_watres_2024_122720 crossref_primary_10_1016_j_cej_2023_145600 crossref_primary_10_1016_j_jwpe_2023_103721 crossref_primary_10_1016_j_jwpe_2023_104732 crossref_primary_10_1016_j_jece_2023_111501 crossref_primary_10_3390_separations9120444 crossref_primary_10_1016_j_scitotenv_2023_164218 crossref_primary_10_1016_j_apcatb_2024_124827 crossref_primary_10_1016_j_cclet_2024_110613 crossref_primary_10_1021_acs_est_4c06804 crossref_primary_10_1016_j_watres_2025_123530 crossref_primary_10_1016_j_dwt_2024_100823 crossref_primary_10_1016_j_seppur_2023_124048 crossref_primary_10_1016_j_cej_2022_140232 crossref_primary_10_1016_j_jclepro_2023_136354 crossref_primary_10_3390_w14162476 crossref_primary_10_1007_s11270_025_07843_0 crossref_primary_10_1016_j_jhazmat_2024_133957 crossref_primary_10_1016_j_chemosphere_2023_138112 crossref_primary_10_1016_j_jece_2025_116205 crossref_primary_10_1016_j_ces_2024_121094 crossref_primary_10_1016_j_wri_2023_100208 crossref_primary_10_1021_acs_iecr_2c02596 crossref_primary_10_1016_j_apcatb_2022_121935 crossref_primary_10_1016_j_jenvman_2024_121343 crossref_primary_10_1002_adfm_202405741 crossref_primary_10_1007_s11356_024_35803_4 crossref_primary_10_1016_j_watres_2023_120992 crossref_primary_10_1016_j_mcat_2023_113616 crossref_primary_10_1039_D2CP00914E crossref_primary_10_1016_j_gsd_2024_101222 crossref_primary_10_1039_D4EN00859F crossref_primary_10_1016_j_xcrp_2024_102269 crossref_primary_10_1016_j_jhydrol_2024_132176 crossref_primary_10_1016_j_eti_2023_103473 crossref_primary_10_1016_j_seppur_2023_126077 crossref_primary_10_1016_j_cej_2023_147058 crossref_primary_10_1021_acs_est_4c13344 crossref_primary_10_1016_j_chemosphere_2023_139750 |
Cites_doi | 10.1016/S0043-1354(01)00253-6 10.1016/j.apcatb.2006.03.016 10.1021/es00056a009 10.1063/1.555805 10.1061/(ASCE)0733-9372(1998)124:5(456) 10.1021/acs.accounts.8b00612 10.1021/es990724e 10.1016/j.cej.2015.08.001 10.1016/S0043-1354(02)00458-X 10.1002/j.1551-8833.1995.tb06304.x 10.1016/j.chemosphere.2020.127513 10.1080/10643380600580011 10.1039/C5RA26775G 10.1016/j.scitotenv.2010.09.026 10.1002/ceat.201200311 10.2166/wst.2000.0588 10.1021/es025896h 10.1016/B978-0-12-819594-9.00001-2 10.1007/s11783-015-0772-3 10.1002/aic.690170129 10.1016/j.watres.2014.11.029 10.1016/j.cplett.2008.06.048 10.1016/j.jece.2019.103105 10.1016/j.chemosphere.2017.10.089 10.1007/s00027-003-0674-5 10.1080/01919512.2018.1448705 10.1021/acs.est.8b00996 10.1021/es903065f 10.1016/j.cej.2013.02.087 10.1039/C5EW00061K 10.1016/j.scitotenv.2013.03.072 10.1021/acs.iecr.6b01446 10.1016/j.cej.2011.02.001 10.1021/es500907n 10.1016/j.cej.2015.01.019 10.1016/j.chemosphere.2017.05.136 10.1080/01919512.2012.640154 10.1016/j.jhazmat.2007.05.034 10.1016/j.watres.2017.02.026 10.1080/01919512.2011.548200 10.1021/jp984769y 10.1016/0043-1354(83)90270-1 10.1080/01919510600718825 10.1039/C5RA19359A 10.1016/0043-1354(81)90074-9 10.1021/es4036094 10.1080/01919512.2011.581117 10.1016/j.scitotenv.2013.06.012 10.1021/j100495a019 10.1016/j.watres.2006.07.032 10.1002/jctb.2609 10.1016/j.cej.2010.03.009 10.1080/01919510802144085 10.1021/es1010225 10.1080/09593330.2017.1335351 10.1016/S0043-1354(02)00570-5 10.1002/tox.20018 10.1016/j.envpol.2019.05.092 10.1007/s00216-012-5986-7 10.1016/j.watres.2013.08.024 10.1021/acs.est.8b02219 10.1016/j.watres.2015.09.007 10.1080/01919512.2014.956862 10.1016/j.watres.2008.04.002 10.5012/bkcs.2011.32.8.3039 10.1002/j.1551-8833.2000.tb08945.x 10.1016/j.watres.2009.11.045 10.2166/wqrj.2020.011 10.1016/j.jhazmat.2018.10.013 10.1016/S0160-4120(03)00099-0 10.1016/j.jhazmat.2015.02.075 10.1021/es00101a003 10.1002/j.1551-8833.1990.tb06967.x 10.1016/j.chemosphere.2014.06.082 10.1016/j.scitotenv.2008.07.010 10.1016/0043-1354(83)90099-4 10.1016/j.scitotenv.2013.12.065 10.1021/es1018288 10.1021/es010044n 10.1016/j.scitotenv.2015.09.048 10.1016/j.memsci.2019.117672 10.1016/j.watres.2018.03.042 10.1016/j.emcon.2016.12.004 10.1016/S1001-0742(12)60280-0 10.1021/es9014629 10.1016/j.marpolbul.2006.01.007 10.1007/s00128-017-2254-8 10.1016/j.watres.2017.05.018 10.1021/es0352146 10.1016/0043-1354(96)00071-1 10.1016/j.watres.2014.01.001 10.1016/j.watres.2011.04.038 10.1016/j.watres.2012.11.002 10.1016/S1010-6030(99)00155-0 10.1016/j.watres.2019.115316 10.1021/es900825f 10.1021/acs.iecr.0c02770 10.1016/j.ceja.2020.100031 10.1016/j.jhazmat.2009.07.048 10.1016/S0045-6535(00)00278-2 10.1016/j.chemphys.2019.01.011 10.1016/j.cej.2012.07.127 10.1016/j.memsci.2006.11.052 10.1016/j.watres.2006.09.008 10.1021/es0626638 10.1002/(SICI)1097-4660(199902)74:2<162::AID-JCTB987>3.0.CO;2-E 10.1002/j.1551-8833.1986.tb05716.x 10.1080/01919512.2013.820641 10.1016/j.watres.2014.10.006 10.1021/es048396s 10.1039/C3EM00479A 10.1016/j.watres.2019.06.054 10.1016/j.chemosphere.2009.05.035 10.1021/jp020239x 10.1021/jz300929x 10.1016/j.watres.2014.02.025 10.1021/acs.est.8b00576 10.1016/j.chemosphere.2019.04.105 10.1016/j.watres.2020.116105 10.1016/j.emcon.2020.06.002 10.1016/j.jhazmat.2020.123591 10.1016/0043-1354(95)00302-9 10.1016/S0043-1354(02)00583-3 10.1016/S0043-1354(02)00457-8 10.1016/j.chemosphere.2015.10.023 10.1016/j.seppur.2015.09.052 10.1080/01919519908547239 10.1016/j.scitotenv.2013.05.034 10.1021/es00111a004 10.1016/j.cej.2016.11.113 10.1134/S0036024408120133 10.1016/0045-6535(86)90570-9 10.1021/es00153a006 10.1021/j100879a005 10.1134/S0036024412030193 10.1016/S0043-1354(97)00287-X 10.1021/es001502f 10.1016/S0043-1354(99)00338-3 10.1021/ja01262a072 10.1016/j.chemosphere.2011.08.022 10.1021/ie50552a051 10.1016/j.watres.2010.03.034 10.1016/0043-1354(71)90049-2 10.1016/j.watres.2003.09.028 10.1021/ja01590a003 10.1021/acs.est.8b00586 10.1134/S0036024406040121 10.1016/j.ijheh.2011.08.002 10.1016/j.chemosphere.2018.08.148 10.1016/j.watres.2007.01.020 10.1016/j.jhazmat.2005.03.004 10.1039/f19888403319 10.1016/j.jiec.2013.11.010 10.1021/acs.est.8b01662 10.1016/S0043-1354(96)00368-5 10.1016/j.seppur.2019.116468 10.2166/wst.1988.0253 10.1016/j.watres.2008.06.008 10.1016/j.chemosphere.2018.04.015 10.1080/01919519608547338 10.1080/01919519208552479 10.1016/j.chemosphere.2015.11.022 10.1016/j.scitotenv.2018.11.265 10.1016/j.cej.2017.02.071 10.1039/C6EM00584E 10.1080/01919510490885334 10.1016/j.watres.2013.02.045 10.1021/es400781r 10.1021/es503496u 10.1016/j.chemosphere.2020.126596 10.1016/j.chemosphere.2010.03.032 10.1021/es00142a012 10.1016/j.watres.2015.01.030 10.1021/acs.est.5b02634 10.1016/j.cej.2019.01.080 10.1016/j.watres.2007.03.011 10.3184/007967401103165253 10.1021/acs.est.9b04105 10.1016/j.chemosphere.2004.04.056 10.1016/0043-1354(85)90368-9 10.3390/molecules26092701 10.1016/j.jhazmat.2004.04.009 |
ContentType | Journal Article |
Copyright | 2022 Elsevier B.V. Copyright © 2022 Elsevier B.V. All rights reserved. |
Copyright_xml | – notice: 2022 Elsevier B.V. – notice: Copyright © 2022 Elsevier B.V. All rights reserved. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 |
DOI | 10.1016/j.jhazmat.2021.128189 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE AGRICOLA |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Law |
EISSN | 1873-3336 |
ExternalDocumentID | 35077976 10_1016_j_jhazmat_2021_128189 S0304389421031599 |
Genre | Research Support, Non-U.S. Gov't Journal Article Review |
GroupedDBID | --- --K --M -~X ..I .DC .~1 0R~ 1B1 1RT 1~. 1~5 4.4 457 4G. 53G 5GY 5VS 7-5 71M 8P~ 9JM 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABFNM ABFRF ABFYP ABJNI ABLST ABMAC ABNUV ABYKQ ACDAQ ACGFO ACGFS ACRLP ADBBV ADEWK ADEZE AEBSH AEFWE AEKER AENEX AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHEUO AHHHB AHPOS AIEXJ AIKHN AITUG AJOXV AKIFW AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLECG BLXMC CS3 DU5 EBS EFJIC EFLBG ENUVR EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W KCYFY KOM LX7 LY9 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 ROL RPZ SDF SDG SDP SES SPC SPCBC SSG SSJ SSZ T5K XPP ZMT ~02 ~G- .HR 29K AAHBH AAQXK AATTM AAXKI AAYWO AAYXX ABWVN ABXDB ACRPL ACVFH ADCNI ADMUD ADNMO ADXHL AEGFY AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AI. AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BBWZM BNPGV CITATION D-I EJD FEDTE FGOYB G-2 HLY HMC HVGLF HZ~ NDZJH R2- RIG SCE SEN SEW SSH T9H TAE VH1 WUQ CGR CUY CVF ECM EIF NPM 7X8 7S9 EFKBS L.6 |
ID | FETCH-LOGICAL-c464t-2c346a864650f37aba1b43a34616a1b5b9db9879c0ef4c6321be49c1dfe5e58d3 |
IEDL.DBID | .~1 |
ISSN | 0304-3894 1873-3336 |
IngestDate | Tue Aug 05 11:09:18 EDT 2025 Fri Jul 11 12:21:19 EDT 2025 Thu Apr 03 07:04:14 EDT 2025 Tue Jul 01 01:05:37 EDT 2025 Thu Apr 24 23:08:48 EDT 2025 Fri Feb 23 02:40:27 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | C6H5O HO CLT HO2 H2O2 STP DOC OCl PEs PFCs MIB TOD Amox BrO3 ClO3 DBAN AW C6H5OH TBBPA MWWTPs RO DBPs SMX FLU EDCs LNCM TnBP SFD INDO Organic micropollutants OFL IBP THM ACMP OFX 2,4-DCP pCBA SW WWTPs Scavenging Natural organic matter ANTX ATD PCPs PAC BEZ PAH DZP ATR EfOM KPF PCBs TAM MTN TCPP Cl PRM BFN E1 Wastewater treatment plants E2 EE2 NO3 EC SPCM OMPs DCF GAC AMX NOM Bromide BPA EW TCB CAP MLs ROX FA PCM MET O3 DTZ H3O2 CO32 DMA CBZ Pharm HCO3 HCTZ BAC Phen Ozone BIS NDMA PhACs BZF T&Os HOCl UWW PH HA API IPD Nap OTC |
Language | English |
License | Copyright © 2022 Elsevier B.V. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c464t-2c346a864650f37aba1b43a34616a1b5b9db9879c0ef4c6321be49c1dfe5e58d3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 |
PMID | 35077976 |
PQID | 2622964403 |
PQPubID | 23479 |
ParticipantIDs | proquest_miscellaneous_2636446658 proquest_miscellaneous_2622964403 pubmed_primary_35077976 crossref_citationtrail_10_1016_j_jhazmat_2021_128189 crossref_primary_10_1016_j_jhazmat_2021_128189 elsevier_sciencedirect_doi_10_1016_j_jhazmat_2021_128189 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-05-05 |
PublicationDateYYYYMMDD | 2022-05-05 |
PublicationDate_xml | – month: 05 year: 2022 text: 2022-05-05 day: 05 |
PublicationDecade | 2020 |
PublicationPlace | Netherlands |
PublicationPlace_xml | – name: Netherlands |
PublicationTitle | Journal of hazardous materials |
PublicationTitleAlternate | J Hazard Mater |
PublicationYear | 2022 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Altmann, Ruhl, Zietzschmann, Jekel (bib4) 2014; 55 Wert, Rosario-Ortiz, Drury, Snyder (bib184) 2007; 41 Kang, Jackson, Dasgupta, Anderson (bib79) 2008; 405 Lee, von Gunten (bib96) 2010; 44 Mártire, Gonzalez (bib115) 2001; 26 Hollender, Zimmermann, Koepke, Krauss, Mcardell, Ort, Singer, Von Gunten, Siegrist (bib67) 2009; 43 Kowal, Balsaa, Werres, Schmidt (bib89) 2012; 403 Oh, Jang, Hwang, Kang (bib127) 2007; 289 Yuan, Ramjaun, Wang, Liu (bib199) 2012; 209 Yazici, E.Y., Deveci, H., 2010. Factors Affecting Decomposition of Hydrogen Peroxide. Proc. XIIth Int. Miner. Process. Symp. 609–616. Ebele, Abou-Elwafa Abdallah, Harrad (bib35) 2017; 3 Luo, Guo, Ngo, Nghiem, Hai, Zhang, Liang, Wang (bib106) 2014; 473–474 Cruz-Alcalde, Esplugas, Sans (bib28) 2020; 237 Rosenfeldt, Linden, Canonica, von Gunten (bib147) 2006; 40 Croué, Koudjonou, Legube (bib27) 1996; 18 Song, Donoheo, Minear, Westerhoff, Ozenkin, Amy (bib162) 1996; 30 . Klaning, Wolff (bib85) 1985; 89 Xie, Ma, Liu, Zou, Yue, Li, Wiesner, Fang (bib191) 2015; 69 Yoon, Hwang, Kwon, Jung, Hwang, Kang (bib197) 2014; 20 Wu, Yang, Du, Ouyang, Wang (bib188) 2021 Bautista, Mohedano, Casas, Zazo, Rodriguez (bib13) 2008; 83 Von Gunten (bib179) 2003; 37 Katsoyiannis, Canonica, von Gunten (bib81) 2011; 45 Weeks, Rabani (bib183) 1996; 70 European Commission, 2018. Proposal for a Directive on the quality of water intended for human consumption. Magazinovic, Nicholson, Mulcahy, Davey (bib111) 2004; 57 Zoumpouli, Siqueira Souza, Petrie, Féris, Kasprzyk-Hordern, Wenk (bib203) 2020 Hahn, Hoffmann, Odergaard, H (bib59) 2002 Qiang, Adams, Surampalli (bib138) 2004; 26 Hofmann, Andrews (bib65) 2006 Shon, Vigneswaran, Snyder (bib156) 2006; 36 Pocostales, Sein, Knolle, von Sonntag, Schmidt (bib135) 2010; 44 Antoniou, Hey, Rodríguez Vega, Spiliotopoulou, Fick, Tysklind, la Cour Jansen, Andersen (bib7) 2013; 456–457 Garcia-Ac, Broséus, Vincent, Barbeau, Prévost, Sauvé (bib49) 2010; 79 Miao, Cao, Xu, Ren, Zhao, Huang, Ruan (bib118) 2015; 119 Fang, Fu, Shang (bib40) 2014; 48 Grebel, Pignatello, Mitch (bib55) 2010; 44 Nicoll, Smith (bib124) 1955; 47 0332, 02/03/2018. Buxton, Elliot (bib21) 1985 Molnar, Agbaba, Dalmacija, Tubić, Krčmar, Maletić, TomaŠević (bib121) 2013; 222 Vogna, Marotta, Napolitano, Andreozzi, D’Ischia (bib176) 2004; 38 Levanov, Isaikina, Gasanova, Uzhel, Lunin (bib99) 2019; 229 Uyguner, C.S., Bekbolet, M., Swietlik, J., 2007. Natural organic matter: Definitions and characterization. Chapter 5. In: Advances in Control Disinfection By-Products in Drinking Water Systems. 253–277. Arnold (bib8) 2014; 16 Sánchez-Polo, Abdel daiem, Ocampo-Pérez, Rivera-Utrilla, Mota (bib149) 2013; 463–464 Carbajo, Petre, Rosal, Herrera, Letón, García-Calvo, Fernández-Alba, Perdigón-Melón (bib25) 2015; 292 Ratpukdi, Siripattanakul, Khan (bib141) 2010; 44 Lutze, Bircher, Rapp, Kerlin, Bakkour, Geisler, Von Sonntag, Schmidt (bib108) 2015; 49 Buffle, Galli, Von Gunten (bib18) 2004; 38 Lee, Lee, Zoh (bib93) 2021; 403 Yuan, Lacorte, Cristale, Dantas, Sans, Esplugas, Qiang (bib200) 2015; 156 Alum, Yoon, Westerhoff, Abbaszadegan (bib5) 2004; 19 Haag, Hoigne (bib60) 1983; 17 Lee, Gerrity, Lee, Bogeat, Salhi, Gamage, Trenholm, Wert, Snyder, Von Gunten (bib95) 2013; 47 Farhataziz, A.B., 1977. Selected Specific Rates of Reactions of Transients From Water in Aqueous Solution. III. Hydroxyl Radical and Perhydroxyl Radical and Their Radical Ions. Natural Bureau of Standards, United States. Jung, Hong, Kwon, Kang (bib76) 2017; 312 Pinkernell, Von Gunten (bib133) 2001 Levanov, Kuskov, Antipenko, Lunin (bib101) 2006; 80 Knoop, Hohrenk, Lutze, Schmidt (bib86) 2018; 52 Xiong, Graham (bib192) 1992; 14 Farzaneh, Loganathan, Saththasivam, McKay (bib43) 2020; 6 Levanov, Kuskov, Antipenko, Lunin (bib100) 2008; 82 Lutze, Kerlin, Schmidt (bib109) 2015; 72 De Asim, Chaudhuri, Bhattacharjee (bib32) 1999; 74 Benner, Salhi, Ternes, von Gunten (bib16) 2008; 42 Lu, Lin, Gan (bib105) 2020; 183 Lutze, Bakkour, Kerlin, von Sonntag, Schmidt (bib107) 2014; 53 Saylor, Kupferle (bib150) 2019; 7 Atinault, De Waele, Schmidhammer, Fattahi, Mostafavi (bib10) 2008; 460 Goel, Hozalski, Bouwer (bib53) 1995; 87 Stiff (bib165) 1971 Fernando (bib45) 2005 Andreozzi, Canterino, Marotta, Paxeus (bib6) 2005; 122 Huber, Göbel, Joss, Hermann, Löffler, McArdell, Ried, Siegrist, Ternes, Von Gunten (bib72) 2005; 39 WHO (bib187) 2011 Eggen, Hollender, Joss, Schärer, Stamm (bib36) 2014; 48 Rao, Anderson, Redder, Jackson (bib140) 2010; 44 Yong, Lin (bib195) 2016; 6 Kosaka, Yamada, Matsui, Shishida (bib88) 2000; 42 Hewes, Davison (bib63) 1971; 17 Taube (bib167) 1942; 64 Yu, Wang, Wang, Wang, Zhang, Yang (bib198) 2020; 252 Gunten (bib57) 2003; 37 Hoigné, Bader, Haag, Staehelin (bib66) 1985; 19 Von Gunten, Oliveras (bib180) 1997; 31 Jung, Hong, Yoon, Kwon, Kang (bib77) 2014; 36 Ternes, Stüber, Herrmann, McDowell, Ried, Kampmann, Teiser (bib169) 2003; 37 Fijołek, Nawrocki (bib46) 2018; 212 Real, Acero, Benitez, Roldán, Fernández (bib142) 2010; 160 Rizzo, Malato, Antakyali, Beretsou, Đolić, Gernjak, Heath, Ivancev-Tumbas, Karaolia, Lado Ribeiro, Mascolo, McArdell, Schaar, Silva, Fatta-Kassinos (bib145) 2019; 655 Rekhate, Srivastava (bib143) 2020; 3 Son, Saleh Ahammad, Rahman, Noh, Lee (bib161) 2011; 32 Lalezary, Pirbazari, McGuire (bib91) 1986; 78 Qu, Feng, Wang, Huang, Lu, Wang, Wang (bib139) 2015 Vanzetto, Thomé (bib175) 2019; 252 O’Shea, Dionysiou (bib126) 2012 Huang, Liu, Wang, Zuo, Xie, Gao (bib69) 2019; 522 Dantas, Contreras, Sans, Esplugas (bib31) 2008; 150 Richardson, Burton, Helz, Rhoderick (bib144) 1981; 15 Gonçalves, Gagnon (bib54) 2018; 40 Agency, U.S.E.P, Water, O, 2018. 2018 Edition of the Drinking Water Standards and Health Advisories Tables. Ho, Newcombe, Croué (bib64) 2002; 36 Kilpatrick, Herrick, Kilpatrick (bib83) 1956; 78 Gunten, Hoigné (bib56) 1994; 28 Tubić, Agbaba, Dalmacija, Perović, Klašnja, Rončević, Ivančev-Tumbas (bib172) 2011; 33 Pinkernell, Von Gunten (bib132) 2001; 35 Chiron, Minero, Vione (bib26) 2007; 41 Gurol, Singer (bib58) 1982; 16 Javier Rivas, Sagasti, Encinas, Gimeno (bib75) 2011; 86 Marron, Mitch, Gunten, Von, Sedlak (bib114) 2019; 52 Buffle, Schumacher, Meylan, Jekel, Von Gunten (bib19) 2006; 28 Ozekin, Westerhoff, Amy, Siddiquu, M (bib129) 1998; 124 Shu, Bolton, Belosevic, Gamal El Din (bib157) 2013; 47 Elovitz, von Gunten (bib37) 1999; 21 Fang, Zhao, Fan, Shang, Fu, Zhang (bib41) 2017; 183 Haag, Holgné (bib61) 1983; 17 Zwiener, Frimmel (bib204) 2000; 34 Lado Ribeiro, Moreira, Li Puma, Silva (bib90) 2019; 363 Mathon, Coquery, Liu, Penru, Guillon, Esperanza, Miège, Choubert (bib117) 2021 Nöthe, Fahlenkamp, Von Sonntag (bib125) 2009; 43 Itzel, Baetz, Hohrenk, Gehrmann, Antakyali, Schmidt, Tuerk (bib73) 2020; 170 Staehelln, Hoigne (bib163) 1985; 19 Fischbacher, Löppenberg, Von Sonntag, Schmidt (bib48) 2015; 49 Kang, Kim, Zoh (bib80) 2018; 204 Vandersmissen, De Smedt, Vinckier (bib174) 2008; 30 Sharpless, Seibold, Linden (bib155) 2003; 65 Beltrán, Aguinaco, García-Araya (bib12) 2012; 34 Kim, Lee, Kim, Jang (bib84) 2020; 259 Sgroi, Roccaro, Oelker, Snyder (bib151) 2016; 144 Dantas, Canterino, Marotta, Sans, Esplugas, Andreozzi (bib30) 2007; 41 Huang, Chen, Peng (bib70) 2004 Ngo, H.H., Vo, P.H.N., Guo, W., Chen, Z., Liu, Y., Varhani, S., 2020. Sustainable management and treatment technologies for micropollutants in wastewater, in: Current Developments in Biotechnology and Bioengineering Emerging Organic Micro-Pollutants. Mosteo, Miguel, Martin-Muniesa, Ormad, Ovelleiro (bib122) 2009; 172 Prieto-Rodríguez, Oller, Klamerth, Agüera, Rodríguez, Malato (bib136) 2013; 47 Trehy, Yost, Miles (bib170) 1986; 20 Wu, Englehardt (bib190) 2015; 73 Miklos, Remy, Jekel, Linden, Drewes, Hübner (bib119) 2018; 139 Levanov, Antipenko, Lunin (bib97) 2012; 86 Sharma, Yang, Cizmas, McDonald, Luque, Sayes, Yuan, Dionysiou (bib154) 2017; 317 Volk, LeChevallier (bib177) 2000; 92 Skoumal, Cabot, Centellas, Arias, Rodríguez, Garrido, Brillas (bib159) 2006; 66 Mack, Bolton (bib110) 1999; 128 Encinas, Rivas, Beltrán, Oropesa (bib38) 2013; 36 Kalmaz, Trieff (bib78) 1986; 15 Qi, Mao, Lv, Sun, Wang, Yang, Xie (bib137) 2016; 144 De Vera, Stalter, Gernjak, Weinberg, Keller, Farré (bib33) 2015; 87 Yang, Dong, Jiang, Liu, Li (bib193) 2019; 363 Carbajo, Petre, Rosal, Berná, Letón, García-Calvo, Perdigón-Melón (bib24) 2016; 283 Khanzada, Farid, Kharraz, Choi, Tang, Nghiem, Jang, An (bib82) 2020; 598 Margot, Kienle, Magnet, Weil, Rossi, de Alencastro, Abegglen, Thonney, Chèvre, Schärer, Barry (bib113) 2013; 461–462 Bader, Hoigné (bib11) 1983; 17 Bourgin, Borowska, Helbing, Hollender, Kaiser, Kienle, McArdell, Simon, von Gunten (bib17) 2017; 122 Deblonde, Cossu-Leguille, Hartemann (bib34) 2011 Zhang, Zhou, Sun, Meng, Luo, Zhou, Crittenden (bib202) 2018; 52 Trojanowicz, Bobrowski, Szreder, Bojanowska-Czajka (bib171) 2018 Stasinakis, Gatidou (bib164) 2010 Benitez, Acero, Real, Roldan, Casas (bib14) 2011; 85 Czapski (bib29) 1999; 103 Acero, Stemmler, Von Gunten (bib2) 2000; 34 Siddiqui (bib158) 1996; 30 Rosal, Rodríguez, Perdigón-Melón, Mezcua, Hernando, Letón, García-Calvo, Agüera, Fernández-Alba (bib146) 2008; 42 Orellana-García, Álvarez, López-Ramón, Rivera-Utrilla, Sánchez-Polo (bib128) 2015; 267 Liu, Wen, Ni, Wang, Wang, Yu, Huang, Ma (bib103) 2022 Wang, Yu, Han, Sha, Li, An, Liu, Yang (bib182) 2013; 25 Wu, Zhou, Li, Zhang, Du, Hu (bib189) 2019; 162 Yong, Lin (bib196) 2013; 35 Glaze, Schep, Chauncey, Ruth, Zarnoch, Aieta, Tate, McGuire (bib51) 1990; 82 Soltermann, Abegglen, Tschui, Stahel, von Gunten (bib160) 2017; 116 Zhang, Parker (bib201) 2018; 52 Loos, Carvalho, António, Comero, Locoro, Tavazzi, Paracchini, Ghiani, Lettieri, Blaha, Jarosova, Voorspoels, Servaes, Haglund, Fick, Lindberg, Schwesig, Gawlik (bib104) 2013; 47 Hou, Ling, Dionysiou, Wang, Huang, Guo, Li, Fang (bib68) 2018; 52 Fijołek, Swietlik, Frankowski (bib47) 2021; 26 Pal, Gin, Lin, Reinhard (bib130) 2010; 408 Benitez, Acero, Real, Roldan, Casas (bib15) 2011; 168 Westerhoff, Song, Amy, Minear (bib185) 1998; 32 Acero, Haderlein, Schmidt, Suter, Von Gunten (bib1) 2001; 35 Gomes, Gando-Ferreira, Quinta-Ferreira, Martins (bib52) 2018; 39 Gilbert, Stell, Peet, Radford (bib50) Eggen (10.1016/j.jhazmat.2021.128189_bib36) 2014; 48 Loos (10.1016/j.jhazmat.2021.128189_bib104) 2013; 47 Fernando (10.1016/j.jhazmat.2021.128189_bib45) 2005 Qi (10.1016/j.jhazmat.2021.128189_bib137) 2016; 144 Carbajo (10.1016/j.jhazmat.2021.128189_bib25) 2015; 292 Margot (10.1016/j.jhazmat.2021.128189_bib113) 2013; 461–462 Gurol (10.1016/j.jhazmat.2021.128189_bib58) 1982; 16 Klaning (10.1016/j.jhazmat.2021.128189_bib85) 1985; 89 Staehelln (10.1016/j.jhazmat.2021.128189_bib163) 1985; 19 Grebel (10.1016/j.jhazmat.2021.128189_bib55) 2010; 44 Bautista (10.1016/j.jhazmat.2021.128189_bib13) 2008; 83 Beltrán (10.1016/j.jhazmat.2021.128189_bib12) 2012; 34 Feng (10.1016/j.jhazmat.2021.128189_bib44) 2016; 541 Kim (10.1016/j.jhazmat.2021.128189_bib84) 2020; 259 De Vera (10.1016/j.jhazmat.2021.128189_bib33) 2015; 87 Levanov (10.1016/j.jhazmat.2021.128189_bib100) 2008; 82 Siddiqui (10.1016/j.jhazmat.2021.128189_bib158) 1996; 30 Acero (10.1016/j.jhazmat.2021.128189_bib2) 2000; 34 Von Gunten (10.1016/j.jhazmat.2021.128189_bib178) 2018; 52 Wert (10.1016/j.jhazmat.2021.128189_bib184) 2007; 41 Jung (10.1016/j.jhazmat.2021.128189_bib77) 2014; 36 Miklos (10.1016/j.jhazmat.2021.128189_bib119) 2018; 139 Zhang (10.1016/j.jhazmat.2021.128189_bib202) 2018; 52 Sadrnourmohammadi (10.1016/j.jhazmat.2021.128189_bib148) 2020; 55 Hou (10.1016/j.jhazmat.2021.128189_bib68) 2018; 52 Lado Ribeiro (10.1016/j.jhazmat.2021.128189_bib90) 2019; 363 Luo (10.1016/j.jhazmat.2021.128189_bib106) 2014; 473–474 Taube (10.1016/j.jhazmat.2021.128189_bib167) 1942; 64 Kalmaz (10.1016/j.jhazmat.2021.128189_bib78) 1986; 15 Huber (10.1016/j.jhazmat.2021.128189_bib72) 2005; 39 Kilpatrick (10.1016/j.jhazmat.2021.128189_bib83) 1956; 78 Shah (10.1016/j.jhazmat.2021.128189_bib153) 2015; 1 Fang (10.1016/j.jhazmat.2021.128189_bib40) 2014; 48 Goel (10.1016/j.jhazmat.2021.128189_bib53) 1995; 87 Wang (10.1016/j.jhazmat.2021.128189_bib182) 2013; 25 De Asim (10.1016/j.jhazmat.2021.128189_bib32) 1999; 74 Encinas (10.1016/j.jhazmat.2021.128189_bib38) 2013; 36 Stasinakis (10.1016/j.jhazmat.2021.128189_bib164) 2010 Levanov (10.1016/j.jhazmat.2021.128189_bib99) 2019; 229 Vanzetto (10.1016/j.jhazmat.2021.128189_bib175) 2019; 252 Lutze (10.1016/j.jhazmat.2021.128189_bib108) 2015; 49 Song (10.1016/j.jhazmat.2021.128189_bib162) 1996; 30 Von Sonntag (10.1016/j.jhazmat.2021.128189_bib181) 2012 Shu (10.1016/j.jhazmat.2021.128189_bib157) 2013; 47 Ozekin (10.1016/j.jhazmat.2021.128189_bib129) 1998; 124 Fijołek (10.1016/j.jhazmat.2021.128189_bib47) 2021; 26 Yoon (10.1016/j.jhazmat.2021.128189_bib197) 2014; 20 Stylianou (10.1016/j.jhazmat.2021.128189_bib166) 2016; 55 Latifoglu (10.1016/j.jhazmat.2021.128189_bib92) 2003; 37 Lu (10.1016/j.jhazmat.2021.128189_bib105) 2020; 183 Benitez (10.1016/j.jhazmat.2021.128189_bib14) 2011; 85 Benitez (10.1016/j.jhazmat.2021.128189_bib15) 2011; 168 Elovitz (10.1016/j.jhazmat.2021.128189_bib37) 1999; 21 Czapski (10.1016/j.jhazmat.2021.128189_bib29) 1999; 103 Yu (10.1016/j.jhazmat.2021.128189_bib198) 2020; 252 10.1016/j.jhazmat.2021.128189_bib194 Buffle (10.1016/j.jhazmat.2021.128189_bib18) 2004; 38 Huber (10.1016/j.jhazmat.2021.128189_bib71) 2003; 37 Trehy (10.1016/j.jhazmat.2021.128189_bib170) 1986; 20 Trojanowicz (10.1016/j.jhazmat.2021.128189_bib171) 2018 Yong (10.1016/j.jhazmat.2021.128189_bib196) 2013; 35 10.1016/j.jhazmat.2021.128189_bib42 Nicoll (10.1016/j.jhazmat.2021.128189_bib124) 1955; 47 Yuan (10.1016/j.jhazmat.2021.128189_bib199) 2012; 209 Orellana-García (10.1016/j.jhazmat.2021.128189_bib128) 2015; 267 Farzaneh (10.1016/j.jhazmat.2021.128189_bib43) 2020; 6 Haag (10.1016/j.jhazmat.2021.128189_bib61) 1983; 17 Stiff (10.1016/j.jhazmat.2021.128189_bib165) 1971 Hollender (10.1016/j.jhazmat.2021.128189_bib67) 2009; 43 Poskrebyshev (10.1016/j.jhazmat.2021.128189_bib134) 2002; 106 Rao (10.1016/j.jhazmat.2021.128189_bib140) 2010; 44 10.1016/j.jhazmat.2021.128189_bib39 Saylor (10.1016/j.jhazmat.2021.128189_bib150) 2019; 7 Mizuno (10.1016/j.jhazmat.2021.128189_bib120) 2011; 33 Dantas (10.1016/j.jhazmat.2021.128189_bib30) 2007; 41 Hofmann (10.1016/j.jhazmat.2021.128189_bib65) 2006 Fang (10.1016/j.jhazmat.2021.128189_bib41) 2017; 183 Terashima (10.1016/j.jhazmat.2021.128189_bib168) 1988; 20 Perrins (10.1016/j.jhazmat.2021.128189_bib131) 2006; 52 Vandersmissen (10.1016/j.jhazmat.2021.128189_bib174) 2008; 30 Yuan (10.1016/j.jhazmat.2021.128189_bib200) 2015; 156 10.1016/j.jhazmat.2021.128189_bib3 Lee (10.1016/j.jhazmat.2021.128189_bib96) 2010; 44 Qu (10.1016/j.jhazmat.2021.128189_bib139) 2015 Sánchez-Polo (10.1016/j.jhazmat.2021.128189_bib149) 2013; 463–464 Gonçalves (10.1016/j.jhazmat.2021.128189_bib54) 2018; 40 Shon (10.1016/j.jhazmat.2021.128189_bib156) 2006; 36 Yang (10.1016/j.jhazmat.2021.128189_bib193) 2019; 363 Buthiyappan (10.1016/j.jhazmat.2021.128189_bib20) 2016; 6 Molnar (10.1016/j.jhazmat.2021.128189_bib121) 2013; 222 Hewes (10.1016/j.jhazmat.2021.128189_bib63) 1971; 17 Son (10.1016/j.jhazmat.2021.128189_bib161) 2011; 32 Atinault (10.1016/j.jhazmat.2021.128189_bib10) 2008; 460 Huang (10.1016/j.jhazmat.2021.128189_bib70) 2004 Von Gunten (10.1016/j.jhazmat.2021.128189_bib179) 2003; 37 Ratpukdi (10.1016/j.jhazmat.2021.128189_bib141) 2010; 44 Zhang (10.1016/j.jhazmat.2021.128189_bib201) 2018; 52 Pal (10.1016/j.jhazmat.2021.128189_bib130) 2010; 408 Miao (10.1016/j.jhazmat.2021.128189_bib118) 2015; 119 Jung (10.1016/j.jhazmat.2021.128189_bib76) 2017; 312 Von Gunten (10.1016/j.jhazmat.2021.128189_bib180) 1997; 31 Xie (10.1016/j.jhazmat.2021.128189_bib191) 2015; 69 Gunten (10.1016/j.jhazmat.2021.128189_bib57) 2003; 37 Javier Rivas (10.1016/j.jhazmat.2021.128189_bib75) 2011; 86 Koppe (10.1016/j.jhazmat.2021.128189_bib87) 2008; 11–12 Oh (10.1016/j.jhazmat.2021.128189_bib127) 2007; 289 Buxton (10.1016/j.jhazmat.2021.128189_bib22) 1988; 17 Zoumpouli (10.1016/j.jhazmat.2021.128189_bib203) 2020 Kosaka (10.1016/j.jhazmat.2021.128189_bib88) 2000; 42 Fischbacher (10.1016/j.jhazmat.2021.128189_bib48) 2015; 49 Haag (10.1016/j.jhazmat.2021.128189_bib60) 1983; 17 Liu (10.1016/j.jhazmat.2021.128189_bib103) 2022 Sgroi (10.1016/j.jhazmat.2021.128189_bib151) 2016; 144 Mosteo (10.1016/j.jhazmat.2021.128189_bib122) 2009; 172 Hahn (10.1016/j.jhazmat.2021.128189_bib59) 2002 Dantas (10.1016/j.jhazmat.2021.128189_bib31) 2008; 150 Nöthe (10.1016/j.jhazmat.2021.128189_bib125) 2009; 43 Hoigné (10.1016/j.jhazmat.2021.128189_bib66) 1985; 19 Sgroi (10.1016/j.jhazmat.2021.128189_bib152) 2018; 191 Arslan-Alaton (10.1016/j.jhazmat.2021.128189_bib9) 2004; 112 Westlund (10.1016/j.jhazmat.2021.128189_bib186) 2018; 100 Wu (10.1016/j.jhazmat.2021.128189_bib189) 2019; 162 Fijołek (10.1016/j.jhazmat.2021.128189_bib46) 2018; 212 Maruthamuthu (10.1016/j.jhazmat.2021.128189_bib116) 1978; 82 Pinkernell (10.1016/j.jhazmat.2021.128189_bib133) 2001 Marron (10.1016/j.jhazmat.2021.128189_bib114) 2019; 52 Liao (10.1016/j.jhazmat.2021.128189_bib102) 2001; 44 Buffle (10.1016/j.jhazmat.2021.128189_bib19) 2006; 28 Wu (10.1016/j.jhazmat.2021.128189_bib188) 2021 Levanov (10.1016/j.jhazmat.2021.128189_bib101) 2006; 80 Sharpless (10.1016/j.jhazmat.2021.128189_bib155) 2003; 65 Pocostales (10.1016/j.jhazmat.2021.128189_bib135) 2010; 44 Lutze (10.1016/j.jhazmat.2021.128189_bib107) 2014; 53 Levanov (10.1016/j.jhazmat.2021.128189_bib98) 2020; 59 Weeks (10.1016/j.jhazmat.2021.128189_bib183) 1996; 70 Levanov (10.1016/j.jhazmat.2021.128189_bib97) 2012; 86 O’Shea (10.1016/j.jhazmat.2021.128189_bib126) 2012 Gunten (10.1016/j.jhazmat.2021.128189_bib56) 1994; 28 Kowal (10.1016/j.jhazmat.2021.128189_bib89) 2012; 403 Rosal (10.1016/j.jhazmat.2021.128189_bib146) 2008; 42 10.1016/j.jhazmat.2021.128189_bib173 Gilbert (10.1016/j.jhazmat.2021.128189_bib50) 1988; 1 Ho (10.1016/j.jhazmat.2021.128189_bib64) 2002; 36 Javier Benitez (10.1016/j.jhazmat.2021.128189_bib74) 2009; 77 Glaze (10.1016/j.jhazmat.2021.128189_bib51) 1990; 82 Lee (10.1016/j.jhazmat.2021.128189_bib93) 2021; 403 Mártire (10.1016/j.jhazmat.2021.128189_bib115) 2001; 26 Soltermann (10.1016/j.jhazmat.2021.128189_bib160) 2017; 116 Tubić (10.1016/j.jhazmat.2021.128189_bib172) 2011; 33 Carbajo (10.1016/j.jhazmat.2021.128189_bib24) 2016; 283 Sharma (10.1016/j.jhazmat.2021.128189_bib154) 2017; 317 Garcia-Ac (10.1016/j.jhazmat.2021.128189_bib49) 2010; 79 Knoop (10.1016/j.jhazmat.2021.128189_bib86) 2018; 52 Rekhate (10.1016/j.jhazmat.2021.128189_bib143) 2020; 3 Mack (10.1016/j.jhazmat.2021.128189_bib110) 1999; 128 Altmann (10.1016/j.jhazmat.2021.128189_bib4) 2014; 55 Kang (10.1016/j.jhazmat.2021.128189_bib80) 2018; 204 Qiang (10.1016/j.jhazmat.2021.128189_bib138) 2004; 26 Buxton (10.1016/j.jhazmat.2021.128189_bib21) 1985 Lutze (10.1016/j.jhazmat.2021.128189_bib109) 2015; 72 Rosenfeldt (10.1016/j.jhazmat.2021.128189_bib147) 2006; 40 Huang (10.1016/j.jhazmat.2021.128189_bib69) 2019; 522 Westerhoff (10.1016/j.jhazmat.2021.128189_bib185) 1998; 32 Kang (10.1016/j.jhazmat.2021.128189_bib79) 2008; 405 Prieto-Rodríguez (10.1016/j.jhazmat.2021.128189_bib136) 2013; 47 Gomes (10.1016/j.jhazmat.2021.128189_bib52) 2018; 39 Zwiener (10.1016/j.jhazmat.2021.128189_bib204) 2000; 34 Lalezary (10.1016/j.jhazmat.2021.128189_bib91) 1986; 78 Real (10.1016/j.jhazmat.2021.128189_bib142) 2010; 160 Itzel (10.1016/j.jhazmat.2021.128189_bib73) 2020; 170 Xiong (10.1016/j.jhazmat.2021.128189_bib192) 1992; 14 Antoniou (10.1016/j.jhazmat.2021.128189_bib7) 2013; 456–457 Ebele (10.1016/j.jhazmat.2021.128189_bib35) 2017; 3 WHO (10.1016/j.jhazmat.2021.128189_bib187) 2011 Cruz-Alcalde (10.1016/j.jhazmat.2021.128189_bib28) 2020; 237 Malik (10.1016/j.jhazmat.2021.128189_bib112) 2020 10.1016/j.jhazmat.2021.128189_bib123 Yong (10.1016/j.jhazmat.2021.128189_bib195) 2016; 6 Benner (10.1016/j.jhazmat.2021.128189_bib16) 2008; 42 Katsoyiannis (10.1016/j.jhazmat.2021.128189_bib81) 2011; 45 Wu (10.1016/j.jhazmat.2021.128189_bib190) 2015; 73 Mathon (10.1016/j.jhazmat.2021.128189_bib117) 2021 Pinkernell (10.1016/j.jhazmat.2021.128189_bib132) 2001; 35 Arnold (10.1016/j.jhazmat.2021.128189_bib8) 2014; 16 Acero (10.1016/j.jhazmat.2021.128189_bib1) 2001; 35 Bourgin (10.1016/j.jhazmat.2021.128189_bib17) 2017; 122 Canonica (10.1016/j.jhazmat.2021.128189_bib23) 2019; 53 Croué (10.1016/j.jhazmat.2021.128189_bib27) |
References_xml | – volume: 156 start-page: 1028 year: 2015 end-page: 1034 ident: bib200 article-title: Removal of organophosphate esters from municipal secondary effluent by ozone and UV/H publication-title: Sep. Purif. Technol. – volume: 30 start-page: 2160 year: 1996 end-page: 2170 ident: bib158 article-title: Chlorine-ozone interactions: formation of chlorate publication-title: Water Res. – volume: 267 start-page: 182 year: 2015 end-page: 190 ident: bib128 article-title: Effect of HO publication-title: Chem. Eng. J. – year: 2004 ident: bib70 article-title: Effect of NOM characteristics on brominated organics formation by ozonation publication-title: Environ. Int. – volume: 38 start-page: 414 year: 2004 end-page: 422 ident: bib176 article-title: Advanced oxidation of the pharmaceutical drug diclofenac with UV/H publication-title: Water Res. – volume: 42 start-page: 353 year: 2000 end-page: 361 ident: bib88 article-title: The effects of the co-existing compounds on the decomposition of micropollutants using the ozone/hydrogen peroxide process publication-title: Water Sci. Technol. – year: 2011 ident: bib187 publication-title: Guidelines for Drinking-Water Quality – volume: 6 start-page: 25222 year: 2016 end-page: 25241 ident: bib20 article-title: Development of an advanced chemical oxidation wastewater treatment system for the batik industry in Malaysia publication-title: RSC Adv. – volume: 79 start-page: 1056 year: 2010 end-page: 1063 ident: bib49 article-title: Oxidation kinetics of cyclophosphamide and methotrexate by ozone in drinking water publication-title: Chemosphere – volume: 9 start-page: 962 year: 2015 end-page: 969 ident: bib62 article-title: Effect of effluent organic matter on ozonation of bezafibrate publication-title: Front. Environ. Sci. Eng. – volume: 119 start-page: 326 year: 2015 end-page: 333 ident: bib118 article-title: Degradation of phenazone in aqueous solution with ozone:influencing factors and degradation pathways publication-title: Chemosphere – volume: 92 start-page: 64 year: 2000 end-page: 76 ident: bib177 article-title: Assessing biodegradable organic matter publication-title: Am. Water Work Assoc. J. – volume: 34 start-page: 3 year: 2012 end-page: 15 ident: bib12 article-title: Application of ozone involving advanced oxidation processes to remove some pharmaceutical compounds from urban wastewaters publication-title: Ozone Sci. Eng. – volume: 162 start-page: 43 year: 2019 end-page: 52 ident: bib189 article-title: Underestimated risk from ozonation of wastewater containing bromide: both organic byproducts and bromate contributed to the toxicity increase publication-title: Water Res. – volume: 456–457 start-page: 42 year: 2013 end-page: 49 ident: bib7 article-title: Required ozone doses for removing pharmaceuticals from wastewater effluents publication-title: Sci. Total Environ. – volume: 44 start-page: 1193 year: 2001 end-page: 1200 ident: bib102 article-title: Hydroxyl radical scavenging role of chloride and bicarbonate ions in the H publication-title: Chemosphere – volume: 57 start-page: 329 year: 2004 end-page: 335 ident: bib111 article-title: Bromide levels in natural waters: Its relationship to levels of both chloride and total dissolved solids and the implications for water treatment publication-title: Chemosphere – volume: 6 start-page: 225 year: 2020 end-page: 234 ident: bib43 article-title: Ozone and ozone/hydrogen peroxide treatment to remove gemfibrozil and ibuprofen from treated sewage effluent: Factors influencing bromate formation publication-title: Emerg. Contam. – volume: 408 start-page: 6062 year: 2010 end-page: 6069 ident: bib130 article-title: Impacts of emerging organic contaminants on freshwater resources: review of recent occurrences, sources, fate and effects publication-title: Sci. Total Environ. – volume: 78 start-page: 62 year: 1986 end-page: 69 ident: bib91 article-title: Oxidation of five earthy-musty taste and odor compounds publication-title: Am. Water Work. Assoc. J. – volume: 70 start-page: 2100 year: 1996 end-page: 2106 ident: bib183 article-title: The Pulse Radiolysis of Deaerated Aqueous Carbonate Solutions. I. Transient Optical Spectrum and Mechanism. II. pK for OH Radicals publication-title: J. Phys. Chem. – volume: 522 start-page: 220 year: 2019 end-page: 227 ident: bib69 article-title: The competitive formation mechanism of N-nitrosodimethylamine and formaldehyde dimethylhydrazone from 1,1-dimethylhydrazine during ozonation in air: a combined theoretical and experimental study publication-title: Chem. Phys. – reference: Agency, U.S.E.P, Water, O, 2018. 2018 Edition of the Drinking Water Standards and Health Advisories Tables. – volume: 41 start-page: 3127 year: 2007 end-page: 3133 ident: bib26 article-title: Occurrence of 2,4-dichlorophenol and of 2,4-dichloro-6-nitrophenol in the Rhône river delta (Southern France) publication-title: Environ. Sci. Technol. – volume: 35 start-page: 472 year: 2013 end-page: 481 ident: bib196 article-title: Kinetics of natural organic matter as the initiator, promoter, and inhibitor, and their influences on the removal of ibuprofen in ozonation publication-title: Ozone Sci. Eng. – volume: 26 start-page: 201 year: 2001 end-page: 218 ident: bib115 article-title: Aqueous phase kinetic studies involving intermediates of environmental interest: phosphate radicals and their reactions with substituted benzenes publication-title: Prog. React. Kinet. Mech. – year: 2012 ident: bib181 article-title: Chemistry of Ozone in Water and Wastewater Treatment: From Basic Principles to Applications – start-page: 278 year: 2022 ident: bib103 article-title: Inhibition of bromate formation in the ozone/peroxymonosulfate process by ammonia, ammonia-chlorine and chlorine-ammonia pretreatment: comparisons with ozone alone publication-title: Sep. Purif. Technol. – volume: 317 start-page: 777 year: 2017 end-page: 792 ident: bib154 article-title: Impact of metal ions, metal oxides, and nanoparticles on the formation of disinfection byproducts during chlorination publication-title: Chem. Eng. J. – volume: 72 start-page: 349 year: 2015 end-page: 360 ident: bib109 article-title: Sulfate radical-based water treatment in presence of chloride: Formation of chlorate, inter-conversion of sulfate radicals into hydroxyl radicals and influence of bicarbonate publication-title: Water Res. – volume: 41 start-page: 1481 year: 2007 end-page: 1490 ident: bib184 article-title: Formation of oxidation byproducts from ozonation of wastewater publication-title: Water Res – volume: 40 start-page: 3695 year: 2006 end-page: 3704 ident: bib147 article-title: Comparison of the efficiency of publication-title: Water Res. – volume: 52 start-page: 7380 year: 2018 end-page: 7389 ident: bib202 article-title: Impact of chloride ions on UV/H publication-title: Environ. Sci. Technol. – volume: 34 start-page: 591 year: 2000 end-page: 597 ident: bib2 article-title: Degradation kinetics of atrazine and its degradation products with ozone and OH radicals: A predictive tool for drinking water treatment publication-title: Environ. Sci. Technol. – volume: 82 start-page: 79 year: 1990 end-page: 84 ident: bib51 article-title: Evaluating oxidants for the removal of model taste and odor compounds from a municipal water supply publication-title: J. Am. Water Work. Assoc. – volume: 74 start-page: 162 year: 1999 end-page: 168 ident: bib32 article-title: A kinetic study of the oxidation of phenol, o-chlorophenol and catechol by hydrogen peroxide between 298 K and 333 K: the effect of pH, temperature and ratio of oxidant to substrate publication-title: J. Chem. Technol. Biotechnol. – volume: 229 start-page: 68 year: 2019 end-page: 76 ident: bib99 article-title: Kinetics of chlorate formation during ozonation of aqueous chloride solutions publication-title: Chemosphere – volume: 1 start-page: 3319 year: 1988 end-page: 3330 ident: bib50 article-title: Generation and reactions of the chlorine atom in aqueous solution publication-title: J. Chem. Soc. Faraday Transit. – volume: 44 start-page: 2961 year: 2010 end-page: 2967 ident: bib140 article-title: Perchlorate formation by ozone oxidation of aqueous chlorine/oxy-chlorine species: role of Cl publication-title: Environ. Sci. Technol. – volume: 38 start-page: 5187 year: 2004 end-page: 5195 ident: bib18 article-title: Enhanced bromate control during ozonation: the chlorine-ammonia process publication-title: Environ. Sci. Technol. – volume: 19 start-page: 465 year: 2017 end-page: 476 ident: bib94 article-title: A computer-based prediction platform for the reaction of ozone with organic compounds in aqueous solution: kinetics and mechanisms publication-title: Environ. Sci. Process. Impacts – volume: 3 start-page: 1 year: 2017 end-page: 16 ident: bib35 article-title: Pharmaceuticals and personal care products (PPCPs) in the freshwater aquatic environment publication-title: Emerg. Contam. – year: 2018 ident: bib171 article-title: Gamma-ray, x-ray and electron beam based processes publication-title: Advanced Oxidation Processes for Wastewater Treatment: Emerging Green Chemical Technology – volume: 49 start-page: 11714 year: 2015 end-page: 11720 ident: bib48 article-title: A new reaction pathway for bromite to bromate in the ozonation of bromide publication-title: Environ. Sci. Technol. – volume: 52 start-page: 9579 year: 2018 end-page: 9594 ident: bib201 article-title: Halogen radical oxidants in natural and engineered aquatic systems publication-title: Environ. Sci. Technol. – volume: 30 start-page: 1161 year: 1996 end-page: 1168 ident: bib162 article-title: Empirical modelling of bromate formation during ozonation of bromide-containing water publication-title: Water Res. – volume: 52 start-page: 5062 year: 2018 end-page: 5075 ident: bib178 article-title: Oxidation processes in water treatment: are we on track? publication-title: Environ. Sci. Technol. – year: 2001 ident: bib133 article-title: Bromate minimization during ozonation: mechanistic considerations publication-title: Environ. Sci. Technol. – volume: 6 start-page: 18587 year: 2016 end-page: 18595 ident: bib195 article-title: Effects of pH value and temperature on the initiation, promotion, inhibition and direct reaction rate constants of natural organic matter in ozonation publication-title: RSC Adv. – volume: 52 start-page: 12583 year: 2018 end-page: 12591 ident: bib86 article-title: Ozonation of tamoxifen and toremifene: reaction kinetics and transformation products publication-title: Environ. Sci. Technol. – start-page: 262 year: 2021 ident: bib117 article-title: Ozonation of 47 organic micropollutants in secondary treated municipal effluents: Direct and indirect kinetic reaction rates and modelling publication-title: Chemosphere – volume: 122 start-page: 243 year: 2005 end-page: 250 ident: bib6 article-title: Antibiotic removal from wastewaters: the ozonation of amoxicillin publication-title: J. Hazard. Mater. – volume: 43 start-page: 5990 year: 2009 end-page: 5995 ident: bib125 article-title: Ozonation of wastewater: rate of ozone consumption and hydroxyl radical yield publication-title: Environ. Sci. Technol. – volume: 82 start-page: 2045 year: 2008 end-page: 2050 ident: bib100 article-title: The solubility of ozone and kinetics of its chemical reactions in aqueous solutions of sodium chloride publication-title: Russ. J. Phys. Chem. A. – volume: 47 start-page: 1521 year: 2013 end-page: 1528 ident: bib136 article-title: Application of solar AOPs and ozonation for elimination of micropollutants in municipal wastewater treatment plant effluents publication-title: Water Res. – volume: 150 start-page: 790 year: 2008 end-page: 794 ident: bib31 article-title: Sulfamethoxazole abatement by means of ozonation publication-title: J. Hazard. Mater. – volume: 17 start-page: 185 year: 1983 end-page: 194 ident: bib11 article-title: Rate Constants of Reactions of Ozone with Organic and Inorganic Compounds in Water -II. Dissociating Organic Compounds publication-title: Water Res – volume: 83 start-page: 1163 year: 2008 end-page: 1169 ident: bib13 article-title: An overview of the application of Fenton oxidation to industrial wastewaters treatment publication-title: J. Chem. Technol. Biotechnol. – volume: 37 start-page: 1016 year: 2003 end-page: 1024 ident: bib71 article-title: Oxidation of pharmaceuticals during ozonation and advanced oxidation processes publication-title: Environ. Sci. Technol. – volume: 363 start-page: 155 year: 2019 end-page: 173 ident: bib90 article-title: Impact of water matrix on the removal of micropollutants by advanced oxidation technologies publication-title: Chem. Eng. J. – volume: 66 start-page: 228 year: 2006 end-page: 240 ident: bib159 article-title: Mineralization of paracetamol by ozonation catalyzed with Fe publication-title: Appl. Catal. B Environ. – volume: 80 start-page: 557 year: 2006 end-page: 561 ident: bib101 article-title: The oxidation of chlorine ions under the joint action of ozone and permanganate ions publication-title: Russ. J. Phys. Chem. A – volume: 19 start-page: 1206 year: 1985 end-page: 1213 ident: bib163 article-title: Decomposition of ozone in water in the presence of organic solutes acting as promoters and inhibitors of radical chain reactions publication-title: Environ. Sci. Technol. – reference: Ngo, H.H., Vo, P.H.N., Guo, W., Chen, Z., Liu, Y., Varhani, S., 2020. Sustainable management and treatment technologies for micropollutants in wastewater, in: Current Developments in Biotechnology and Bioengineering Emerging Organic Micro-Pollutants. – volume: 36 start-page: 515 year: 2014 end-page: 525 ident: bib77 article-title: Formation of bromate and chlorate during ozonation and electrolysis in seawater for ballast water treatment publication-title: Ozone Sci. Eng. – volume: 655 start-page: 986 year: 2019 end-page: 1008 ident: bib145 article-title: Consolidated vs new advanced treatment methods for the removal of contaminants of emerging concern from urban wastewater publication-title: Sci. Total Environ. – volume: 82 start-page: 710 year: 1978 end-page: 713 ident: bib116 article-title: Phosphate radicals. Spectra, acid-base equilibria, and reactions with inorganic compounds publication-title: J. Phys. Chem. – volume: 259 start-page: 1 year: 2020 end-page: 7 ident: bib84 article-title: Enhancement of ozonation of seawater-based wastewater containing pharmaceutical compounds by total residual oxidants: Salinity, ammonia, and organic matter publication-title: Chemosphere – volume: 86 start-page: 1058 year: 2011 end-page: 1066 ident: bib75 article-title: Contaminants abatement by ozone in secondary effluents. Evaluation of second-order rate constants publication-title: J. Chem. Technol. Biotechnol. – volume: 460 start-page: 461 year: 2008 end-page: 465 ident: bib10 article-title: Scavenging of publication-title: Chem. Phys. Lett. – volume: 37 start-page: 1443 year: 2003 end-page: 1467 ident: bib57 article-title: Ozonation of drinking water: Part I. Oxidation kinetics and product formation publication-title: Water Res. – volume: 17 start-page: 1397 year: 1983 end-page: 1983 ident: bib60 article-title: Ozonation of Water Containing Chlorine or Chloramines publication-title: Water Res – volume: 28 start-page: 1234 year: 1994 end-page: 1242 ident: bib56 article-title: Reactions, Bromate formation during ozonation of bromide-containing waters: Interaction of ozone and hydroxyl radical publication-title: Environ. Sci. Technol. – volume: 183 start-page: 582 year: 2017 end-page: 588 ident: bib41 article-title: Bromate formation from the oxidation of bromide in the UV/chlorine process with low pressure and medium pressure UV lamps publication-title: Chemosphere – volume: 59 start-page: 14278 year: 2020 end-page: 14287 ident: bib98 article-title: Mechanism and kinetic model of chlorate and perchlorate formation during ozonation of aqueous chloride solutions publication-title: Ind. Eng. Chem. Res. – volume: 183 year: 2020 ident: bib105 article-title: Enhanced ozonation of ciprofloxacin in the presence of bromide: Kinetics, products, pathways, and toxicity publication-title: Water Res. – volume: 112 start-page: 105 year: 2004 end-page: 113 ident: bib9 article-title: Pre-treatment of penicillin formulation effluent by advanced oxidation processes publication-title: J. Hazard. Mater. – year: 2005 ident: bib45 article-title: Ozone Reaction Kinetics for Water and Wastewater systems – volume: 48 start-page: 1859 year: 2014 end-page: 1868 ident: bib40 article-title: The roles of reactive species in micropollutant degradation in the UV/free chlorine system publication-title: Environ. Sci. Technol. – volume: 36 start-page: 327 year: 2006 end-page: 374 ident: bib156 article-title: Effluent organic matter (EfoM) in wastewater: constititents, effects, and treatment publication-title: Crit. Rev. Environ. Sci. Technol. – volume: 15 start-page: 1067 year: 1981 end-page: 1074 ident: bib144 article-title: Residual oxidant decay and bromate formation in chlorinated and ozonated sea-water publication-title: Water Res. – volume: 17 start-page: 513 year: 1988 end-page: 886 ident: bib22 article-title: Critical review of rate constants for reactions of hydrated electrons, hydrogen atoms and hydroxyl radicals (⋅OH/⋅O− in aqueous solution publication-title: J. Phys. Chem. Ref. Data – volume: 44 start-page: 6822 year: 2010 end-page: 6828 ident: bib55 article-title: Effect of halide ions and carbonates on organic contaminant degradation by hydroxyl radical-based advanced oxidation processes in saline waters publication-title: Environ. Sci. Technol. – volume: 144 start-page: 1618 year: 2016 end-page: 1623 ident: bib151 article-title: N-nitrosodimethylamine (NDMA) formation during ozonation of wastewater and water treatment polymers publication-title: Chemosphere – volume: 21 start-page: 239 year: 1999 end-page: 260 ident: bib37 article-title: Hydroxyl radical/Ozone ratios during ozonation processes. I. The Rct Concept publication-title: Ozone Sci. Eng. – volume: 52 start-page: 1023 year: 2006 end-page: 1033 ident: bib131 article-title: Ozonation of seawater from different locations: Formation and decay of total residual oxidant—implications for ballast water treatment publication-title: Mar. Pollut. Bull. – volume: 473–474 start-page: 619 year: 2014 end-page: 641 ident: bib106 article-title: A review on the occurrence of micropollutants in the aquatic environment and their fate and removal during wastewater treatment publication-title: Sci. Total Environ. – volume: 289 start-page: 178 year: 2007 end-page: 186 ident: bib127 article-title: Role of ozone for reducing fouling due to pharmaceuticals in MF (microfiltration) process publication-title: J. Memb. Sci. – volume: 47 start-page: 6475 year: 2013 end-page: 6487 ident: bib104 article-title: EU-wide monitoring survey on emerging polar organic contaminants in wastewater treatment plant effluents publication-title: Water Res. – volume: 47 start-page: 5872 year: 2013 end-page: 5881 ident: bib95 article-title: Prediction of micropollutant elimination during ozonation of municipal wastewater effluents: use of kinetic and water specific information publication-title: Environ. Sci. Technol. – volume: 44 start-page: 8248 year: 2010 end-page: 8253 ident: bib135 article-title: Degradation of Ozone-Refractory Organic Phosphates in Wastewater byOzone and Ozone/Hydrogen Peroxide (Peroxone): The Role of Ozone Consumption byDissolved Organic Matter publication-title: Environ. Sci. Technol. – volume: 16 start-page: 832 year: 2014 end-page: 838 ident: bib8 article-title: One electron oxidation potential as a predictor of rate constants of N-containing compounds with carbonate radical and triplet excited state organic matter publication-title: Environ. Sci. Process. Impacts – volume: 69 start-page: 223 year: 2015 end-page: 233 ident: bib191 article-title: Removal of 2-MIB and geosmin using UV/persulfate: Contributions of hydroxyl and sulfate radicals publication-title: Water Res. – volume: 168 start-page: 1149 year: 2011 end-page: 1156 ident: bib15 article-title: Comparison of different chemical oxidation treatments for the removal of selected pharmaceuticals in water matrices publication-title: Chem. Eng. J. – volume: 37 start-page: 1879 year: 2003 end-page: 1889 ident: bib92 article-title: The effect of humic acids on nitrobenzene oxidation by ozonation and O publication-title: Water Res – volume: 26 start-page: 525 year: 2004 end-page: 537 ident: bib138 article-title: Determination of ozonation rate constants for lincomycin and spectinomycin publication-title: Ozone Sci. Eng. – volume: 85 start-page: 1430 year: 2011 end-page: 1437 ident: bib14 article-title: Bromination of selected pharmaceuticals in water matrices publication-title: Chemosphere – volume: 37 start-page: 1976 year: 2003 end-page: 1982 ident: bib169 article-title: Ozonation: a tool for removal of pharmaceuticals, contrast media and musk fragrances from wastewater? publication-title: Water Res. – volume: 17 start-page: 261 year: 1983 end-page: 267 ident: bib61 article-title: Ozonation of bromide-containing waters: kinetics of formation of hypobromous acid and brómate publication-title: Environ. Sci. Technol. – start-page: 27 year: 1985 ident: bib21 article-title: Rate constant for reaction of hydroxyl radicals with bicarbonate ions publication-title: Radiat. Phys. Chem. – reference: . – volume: 252 year: 2020 ident: bib198 article-title: Implications of bromate depression from H publication-title: Chemosphere – volume: 403 year: 2021 ident: bib93 article-title: Benzophenone-3 degradation via UV/H publication-title: J. Hazard. Mater. – reference: 0332, 02/03/2018. – volume: 87 start-page: 49 year: 2015 end-page: 58 ident: bib33 article-title: Towards reducing DBP formation potential of drinking water by favouring direct ozone over hydroxyl radical reactions during ozonation publication-title: Water Res. – volume: 73 start-page: 362 year: 2015 end-page: 372 ident: bib190 article-title: Peroxone mineralization of chemical oxygen demand for direct potable water reuse: kinetics and process control publication-title: Water Res – volume: 64 start-page: 2468 year: 1942 end-page: 2474 ident: bib167 article-title: Reactions in solutions containing O publication-title: J. Am. Chem. Soc. – volume: 292 start-page: 34 year: 2015 end-page: 43 ident: bib25 article-title: Continuous ozonation treatment of ofloxacin: Transformation products, water matrix effect and aquatic toxicity publication-title: J. Hazard. Mater. – volume: 204 start-page: 148 year: 2018 end-page: 155 ident: bib80 article-title: Effect of nitrate, carbonate/bicarbonate, humic acid, and H2O2 on the kinetics and degradation mechanism of Bisphenol-A during UV photolysis publication-title: Chemosphere – volume: 44 start-page: 3531 year: 2010 end-page: 3543 ident: bib141 article-title: Mineralization and biodegradability enhancement of natural organic matter by ozone-VUV in comparison with ozone, VUV, ozone-UV, and UV: Effects of pH and ozone dose publication-title: Water Res. – reference: Uyguner, C.S., Bekbolet, M., Swietlik, J., 2007. Natural organic matter: Definitions and characterization. Chapter 5. In: Advances in Control Disinfection By-Products in Drinking Water Systems. 253–277. – volume: 25 start-page: 2169 year: 2013 end-page: 2176 ident: bib182 article-title: Advanced oxidation of bromide-containing drinking water: A balance between bromate and trihalomethane formation control publication-title: J. Environ. Sci. (China) – year: 2006 ident: bib65 article-title: Impact of H publication-title: Water Res. – volume: 42 start-page: 3719 year: 2008 end-page: 3728 ident: bib146 article-title: Removal of pharmaceuticals and kinetics of mineralization by O publication-title: Water Res – volume: 37 start-page: 1469 year: 2003 end-page: 1487 ident: bib179 article-title: Ozonation of drinking water: Part II. Disinfection and by-product formation in presence of bromide, iodide or chlorine publication-title: Water Res. – volume: 3 year: 2020 ident: bib143 article-title: Recent advances in ozone-based advanced oxidation processes for treatment of wastewater- a review publication-title: Chem. Eng. J. Adv. – volume: 20 start-page: 2801 year: 2014 end-page: 2805 ident: bib197 article-title: Application of O publication-title: J. Ind. Eng. Chem. – volume: 40 start-page: 399 year: 2018 end-page: 414 ident: bib54 article-title: Seawater ozonation: effects of seawater parameters on oxidant loading rates, residual toxicity, and total residual oxidants/by-products reduction during storage time publication-title: Ozone Sci. Eng. – volume: 237 year: 2020 ident: bib28 article-title: Characterization and fate of EfOM during ozonation applied for effective abatement of recalcitrant micropollutants publication-title: Sep. Purif. Technol. – volume: 39 start-page: 4290 year: 2005 end-page: 4299 ident: bib72 article-title: Oxidation of pharmaceuticals during ozonation of municipal wastewater effluents: a pilot study publication-title: Environ. Sci. Technol. – volume: 32 start-page: 3039 year: 2011 end-page: 3044 ident: bib161 article-title: Effect of nitrite and nitrate as the source of OH radical in the O publication-title: Bull. Korean Chem. Soc. – volume: 16 start-page: 377 year: 1982 end-page: 383 ident: bib58 article-title: Kinetics of ozone decomposition: a dynamic approach publication-title: Environ. Sci. Technol. – volume: 106 start-page: 11488 year: 2002 end-page: 11491 ident: bib134 article-title: Temperature dependence of the acid dissociation constant of the hydroxyl radical publication-title: J. Phys. Chem. A – volume: 41 start-page: 2525 year: 2007 end-page: 2532 ident: bib30 article-title: Bezafibrate removal by means of ozonation: Primary intermediates, kinetics, and toxicity assessment publication-title: Water Res. – volume: 32 start-page: 1687 year: 1998 end-page: 1699 ident: bib185 article-title: Numerical Kinetic Models For Bromide oxidation to bromine and bromate publication-title: Water Res – volume: 116 start-page: 76 year: 2017 end-page: 85 ident: bib160 article-title: Options and limitations for bromate control during ozonation of wastewater publication-title: Water Res. – volume: 160 start-page: 72 year: 2010 end-page: 78 ident: bib142 article-title: Oxidation of hydrochlorothiazide by UV radiation, hydroxyl radicals and ozone: Kinetics and elimination from water systems publication-title: Chem. Eng. J. – volume: 45 start-page: 3811 year: 2011 end-page: 3822 ident: bib81 article-title: Efficiency and energy requirements for the transformation of organic micropollutants by ozone, O publication-title: Water Res. – volume: 86 start-page: 519 year: 2012 end-page: 522 ident: bib97 article-title: Primary stage of the reaction between ozone and chloride ions in aqueous solution: Oxidation of chloride ions with ozone through the mechanism of oxygen atom transfer publication-title: Russ. J. Phys. Chem. A. – volume: 209 start-page: 38 year: 2012 end-page: 45 ident: bib199 article-title: Concentration profiles of chlorine radicals and their significances in publication-title: Chem. Eng. J. – volume: 31 start-page: 900 year: 1997 end-page: 906 ident: bib180 article-title: Kinetics of the reaction between hydrogen peroxide and hypobromous acid: Implication on water treatment and natural systems publication-title: Water Res – volume: 598 year: 2020 ident: bib82 article-title: Removal of organic micropollutants using advanced membrane-based water and wastewater treatment: a review publication-title: J. Memb. Sci. – volume: 33 start-page: 121 year: 2011 end-page: 135 ident: bib120 article-title: O publication-title: Ozone Sci. Eng. – volume: 47 start-page: 2881 year: 2013 end-page: 2889 ident: bib157 article-title: Photodegradation of emerging micropollutants using the medium-pressure UV/H publication-title: Water Res. – volume: 35 start-page: 2525 year: 2001 end-page: 2531 ident: bib132 article-title: Bromate minimization during ozonation: mechanistic considerations publication-title: Environ. Sci. Technol. – volume: 20 start-page: 275 year: 1988 end-page: 281 ident: bib168 article-title: Reduction of musty odor substances in drinking water - a pilot plant study publication-title: Water Sci. Technol. – volume: 47 start-page: 2548 year: 1955 end-page: 2554 ident: bib124 article-title: Stability of dilute alkaline solutions of hydrogen peroxide publication-title: Ind. Eng. Chem. – volume: 172 start-page: 661 year: 2009 end-page: 666 ident: bib122 article-title: Evaluation of trihalomethane formation potential in function of oxidation processes used during the drinking water production process publication-title: J. Hazard. Mater. – volume: 1 start-page: 465 year: 2015 end-page: 480 ident: bib153 article-title: Formation of disinfection by-products during ballast water treatment with ozone, chlorine, and peracetic acid: influence of water quality parameters publication-title: Environ. Sci. Water Res. Technol. – volume: 403 start-page: 1707 year: 2012 end-page: 1717 ident: bib89 article-title: Reduction of matrix effects and improvement of sensitivity during determination of two chloridazon degradation products in aqueous matrices by using UPLC-ESI-MS/MS publication-title: Anal. Bioanal. Chem. – volume: 122 start-page: 234 year: 2017 end-page: 245 ident: bib17 article-title: Effect of operational and water quality parameters on conventional ozonation and the advanced oxidation process O publication-title: Water Res. – volume: 87 start-page: 90 year: 1995 end-page: 105 ident: bib53 article-title: Biodegradation ofNOM: effect of NOM source and ozone dose publication-title: J. - Am. Water Works Assoc. – volume: 52 start-page: 6317 year: 2018 end-page: 6325 ident: bib68 article-title: Chlorate formation mechanism in the presence of sulfate radical, chloride, bromide and natural organic matter publication-title: Environ. Sci. Technol. – volume: 30 start-page: 300 year: 2008 end-page: 309 ident: bib174 article-title: The impact of traces of hydrogen peroxide and phosphate on the ozone decomposition rate in “pure water publication-title: Ozone Sci. Eng. – volume: 43 start-page: 7862 year: 2009 end-page: 7869 ident: bib67 article-title: Elimination of organic micropollutants in a municipal wastewater treatment plant upgraded with a full-scale post-ozonation followed by sand filtration publication-title: Environ. Sci. Technol. – volume: 35 start-page: 4252 year: 2001 end-page: 4259 ident: bib1 article-title: MTBE oxidation by conventional ozonation and the combination ozone/hydrogen peroxide: efficiency of the processes and bromate formation publication-title: Environ. Sci. Technol. – volume: 89 start-page: 243 year: 1985 end-page: 245 ident: bib85 article-title: Laser flash photolysis of HClO, ClO publication-title: Phys. Chem. Chem. Phys. – volume: 34 start-page: 1881 year: 2000 end-page: 1885 ident: bib204 article-title: Oxidative treatment of pharmaceuticals in water publication-title: Water Res. – volume: 312 start-page: 30 year: 2017 end-page: 38 ident: bib76 article-title: A kinetic study of ozone decay and bromine formation in saltwater ozonation: effect of O publication-title: Chem. Eng. J. – volume: 100 start-page: 112 year: 2018 end-page: 119 ident: bib186 article-title: Endocrine Activities of Pesticides During Ozonation of Waters publication-title: Bull. Environ. Contam. Toxicol. – reference: European Commission, 2018. Proposal for a Directive on the quality of water intended for human consumption. – volume: 77 start-page: 53 year: 2009 end-page: 59 ident: bib74 article-title: Ozonation of pharmaceutical compounds: Rate constants and elimination in various water matrices publication-title: Chemosphere – volume: 363 start-page: 428 year: 2019 end-page: 438 ident: bib193 article-title: Quantitatively assessing the role played by carbonate radicals in bromate formation by ozonation publication-title: J. Hazard. Mater. – start-page: 171 year: 1971 end-page: 176 ident: bib165 article-title: Copper/bicarbonate equilibria in solutions of biocarbonate ion at concentrations similar to those found in natural water publication-title: Water Res. – start-page: 35 year: 2020 ident: bib112 article-title: Hybrid ozonation process for industrial wastewater treatment: Principles and applications: a review publication-title: J. Water Process Eng. – volume: 55 start-page: 7587 year: 2016 end-page: 7597 ident: bib166 article-title: Ozone mass transfer studies in a hydrophobized ceramic membrane contactor: experiments and analysis publication-title: Ind. Eng. Chem. Res. – volume: 139 start-page: 118 year: 2018 end-page: 131 ident: bib119 article-title: Evaluation of advanced oxidation processes for water and wastewater treatment – a critical review publication-title: Water Res – volume: 65 start-page: 359 year: 2003 end-page: 366 ident: bib155 article-title: Nitrate photosensitized degradation of atrazine during UV water treatment publication-title: Aquat. Sci. – reference: Farhataziz, A.B., 1977. Selected Specific Rates of Reactions of Transients From Water in Aqueous Solution. III. Hydroxyl Radical and Perhydroxyl Radical and Their Radical Ions. Natural Bureau of Standards, United States. – volume: 252 start-page: 74 year: 2019 end-page: 83 ident: bib175 article-title: Bibliometric study of the toxicology of nanoescale zero valent iron used in soil remediation publication-title: Environ. Pollut. – volume: 283 start-page: 740 year: 2016 end-page: 749 ident: bib24 article-title: Ozonation as pre-treatment of activated sludge process of a wastewater containing benzalkonium chloride and NiO nanoparticles publication-title: Chem. Eng. J. – volume: 144 start-page: 2436 year: 2016 end-page: 2442 ident: bib137 article-title: Pathway fraction of bromate formation during O publication-title: Chemosphere – volume: 14 start-page: 263 year: 1992 end-page: 268 ident: bib192 article-title: Removal of atrazine through ozonation in the presence of humic substances publication-title: Ozone Sci. Eng. – start-page: 10 year: 2015 ident: bib139 article-title: Rapid removal of tetrabromobisphenol a by ozonation in water: Oxidation products, reaction pathways and toxicity assessment publication-title: PLoS One – start-page: 418 year: 2021 ident: bib188 article-title: The promotions on radical formation and micropollutant degradation by the synergies between ozone and chemical reagents (synergistic ozonation): a review publication-title: J. Hazard. Mater. – volume: 461–462 start-page: 480 year: 2013 end-page: 498 ident: bib113 article-title: Treatment of micropollutants in municipal wastewater: ozone or powdered activated carbon? publication-title: Sci. Total Environ. – volume: 36 start-page: 511 year: 2002 end-page: 518 ident: bib64 article-title: Influence of the character of NOM on the ozonation of MIB and geosmin publication-title: Water Res – volume: 26 start-page: 1 year: 2021 end-page: 14 ident: bib47 article-title: The role of sulphate and phosphate ions in the recovery of benzoic acid self-enhanced ozonation in water containing bromides publication-title: molecul – volume: 405 start-page: 301 year: 2008 end-page: 309 ident: bib79 article-title: Perchlorate production by ozone oxidation of chloride in aqueous and dry systems publication-title: Sci. Total Environ. – volume: 39 start-page: 1658 year: 2018 end-page: 1669 ident: bib52 article-title: Removal of sulfamethoxazole and diclofenac from water: strategies involving O publication-title: Environ. Technol. – volume: 28 start-page: 247 year: 2006 end-page: 259 ident: bib19 article-title: Ozonation and advanced oxidation of wastewater: Effect of O publication-title: Ozone Sci. Eng. – volume: 36 start-page: 492 year: 2013 end-page: 499 ident: bib38 article-title: Combination of black-light photo-catalysis and ozonation for emerging contaminants degradation in secondary effluents publication-title: Chem. Eng. Technol. – volume: 212 start-page: 802 year: 2018 end-page: 810 ident: bib46 article-title: Phosphate helps to recover from scavenging effect of chloride in self-enhanced ozonation publication-title: Chemosphere – volume: 18 start-page: 1 year: 1996 end-page: 18 ident: bib27 article-title: Parameters affecting the formation of bromate ion during ozonation publication-title: Ozone Sci. Eng. J. Int. Ozone Assoc. – volume: 541 start-page: 167 year: 2016 end-page: 175 ident: bib44 article-title: Fast removal of the antibiotic flumequine from aqueous solution by ozonation: Influencing factors, reaction pathways, and toxicity evaluation publication-title: Sci. Total Environ. – volume: 55 start-page: 155 year: 2020 end-page: 166 ident: bib148 article-title: Ozonation of natural organic matter and aquatic humic substances: the effects of ozone on the structural characteristics and subsequent trihalomethane formation potential publication-title: Water Qual. Res. J. Can. – volume: 463–464 start-page: 423 year: 2013 end-page: 431 ident: bib149 article-title: Comparative study of the photodegradation of bisphenol A by HO publication-title: Sci. Total Environ. – volume: 103 start-page: 3447 year: 1999 end-page: 3450 ident: bib29 article-title: Acidity of the carbonate radical publication-title: J. Phys. Chem. A – volume: 128 start-page: 1 year: 1999 end-page: 13 ident: bib110 article-title: Photochemistry of nitrite and nitrate in aqueous solution: a review publication-title: J. Photochem. Photobiol. A Chem. – volume: 48 start-page: 7683 year: 2014 end-page: 7689 ident: bib36 article-title: Reducing the discharge of micropollutants in the aquatic environment: The benefits of upgrading wastewater treatment plants publication-title: Environ. Sci. Technol. – volume: 53 start-page: 11783 year: 2019 end-page: 11791 ident: bib23 article-title: Inhibitory effect of dissolved organic matter on the transformation of selected anilines and sulfonamide antibiotics induced by the sulfate radical publication-title: Environ. Sci. Technol. – volume: 19 start-page: 257 year: 2004 end-page: 264 ident: bib5 article-title: Oxidation of bisphenol A, 17β-estradiol, and 17α-ethynyl estradiol and byproduct estrogenicity publication-title: Environ. Toxicol. – volume: 124 start-page: 456 year: 1998 end-page: 462 ident: bib129 article-title: Molecular ozone and radical pathways of bromate formation during ozonation publication-title: J. Environ. Eng. – start-page: 9 year: 2020 end-page: 12 ident: bib203 article-title: Simultaneous ozonation of 90 organic micropollutants including illicit drugs and their metabolites in different water matrices publication-title: Environ. Sci. Water Res. Technol. – volume: 78 start-page: 1784 year: 1956 end-page: 1789 ident: bib83 article-title: The decomposition of ozone in aqueous solution publication-title: J. Am. Chem. Soc. – year: 2012 ident: bib126 article-title: Advanced oxidation processes for water treatment publication-title: J. Phys. Chem. Lett. – volume: 17 start-page: 141 year: 1971 end-page: 147 ident: bib63 article-title: Kinetics of ozone decomposition and reaction with organics in water publication-title: AIChE J. – volume: 44 start-page: 555 year: 2010 end-page: 566 ident: bib96 article-title: Oxidative transformation of micropollutants during municipal wastewater treatment: comparison of kinetic aspects of selective (chlorine, chlorine dioxide, ferrateVI, and ozone) and non-selective oxidants (hydroxyl radical) publication-title: Water Res. – start-page: 442 year: 2011 end-page: 448 ident: bib34 article-title: Emerging Pollutants in wastewater: a review of the literature publication-title: Int. J. Hyg. Environ. Health – volume: 15 start-page: 183 year: 1986 end-page: 194 ident: bib78 article-title: Kinetics of ozone decomposition and oxidation of a model organic compound in water publication-title: Chemosphere – volume: 20 start-page: 1117 year: 1986 end-page: 1122 ident: bib170 article-title: Chlorination byproducts of amino acids in natural waters publication-title: Environ. Sci. Technol. – volume: 191 start-page: 685 year: 2018 end-page: 703 ident: bib152 article-title: N-Nitrosodimethylamine (NDMA) and its precursors in water and wastewater: A review on formation and removal publication-title: Chemosphere – volume: 11–12 start-page: 159 year: 2008 end-page: 189 ident: bib87 article-title: Municipal wastewater and sewage sludge publication-title: Biotechnol. Second. Complet. Revis. Ed. – volume: 7 year: 2019 ident: bib150 article-title: The impact of chloride or bromide ions on the advanced oxidation of atrazine by combined electrolysis and ozonation publication-title: J. Environ. Chem. Eng. – volume: 55 start-page: 185 year: 2014 end-page: 193 ident: bib4 article-title: Direct comparison of ozonation and adsorption onto powdered activated carbon for micropollutant removal in advanced wastewater treatment publication-title: Water Res. – volume: 52 start-page: 615 year: 2019 end-page: 622 ident: bib114 article-title: A tale of two treatments: the multiple barrier approach to removing chemical contaminants during potable water reuse publication-title: Acc. Chem. Res. – start-page: 300 year: 2010 ident: bib164 article-title: Micropollutants and aquatic environment publication-title: Treatment of Micropollutants in Water and Wastewater – volume: 19 start-page: 993 year: 1985 end-page: 1004 ident: bib66 article-title: Rate constants of reactions of ozone with organic and inorganic compounds in water-III. Inorganic compounds and radicals publication-title: Water Res. – volume: 42 start-page: 3003 year: 2008 end-page: 3012 ident: bib16 article-title: Ozonation of reverse osmosis concentrate: Kinetics and efficiency of beta blocker oxidation publication-title: Water Res. – volume: 53 start-page: 370 year: 2014 end-page: 377 ident: bib107 article-title: Formation of bromate in sulfate radical based oxidation: Mechanistic aspects and suppression bydissolved organic matter publication-title: Water Res. – volume: 49 start-page: 1673 year: 2015 end-page: 1680 ident: bib108 article-title: Degradation of chlorotriazine pesticides by sulfate radicals and the influence of organic matter publication-title: Environ. Sci. Technol. – volume: 222 start-page: 435 year: 2013 end-page: 443 ident: bib121 article-title: The effects of matrices and ozone dose on changes in the characteristics of natural organic matter publication-title: Chem. Eng. J. – volume: 33 start-page: 267 year: 2011 end-page: 278 ident: bib172 article-title: Removal of natural organic matter from groundwater using advanced oxidation processes at a pilot scale drinking water treatment plant in the central banat region (Serbia) publication-title: Ozone Sci. Eng. – volume: 170 year: 2020 ident: bib73 article-title: Evaluation of a biological post-treatment after full-scale ozonation at a municipal wastewater treatment plant publication-title: Water Res. – reference: Yazici, E.Y., Deveci, H., 2010. Factors Affecting Decomposition of Hydrogen Peroxide. Proc. XIIth Int. Miner. Process. Symp. 609–616. – year: 2002 ident: bib59 article-title: Chemical Water and Wastewater Treatment VII – volume: 36 start-page: 511 year: 2002 ident: 10.1016/j.jhazmat.2021.128189_bib64 article-title: Influence of the character of NOM on the ozonation of MIB and geosmin publication-title: Water Res doi: 10.1016/S0043-1354(01)00253-6 – volume: 66 start-page: 228 year: 2006 ident: 10.1016/j.jhazmat.2021.128189_bib159 article-title: Mineralization of paracetamol by ozonation catalyzed with Fe2+, Cu2+ and UVA light publication-title: Appl. Catal. B Environ. doi: 10.1016/j.apcatb.2006.03.016 – year: 2005 ident: 10.1016/j.jhazmat.2021.128189_bib45 – volume: 28 start-page: 1234 year: 1994 ident: 10.1016/j.jhazmat.2021.128189_bib56 article-title: Reactions, Bromate formation during ozonation of bromide-containing waters: Interaction of ozone and hydroxyl radical publication-title: Environ. Sci. Technol. doi: 10.1021/es00056a009 – volume: 11–12 start-page: 159 year: 2008 ident: 10.1016/j.jhazmat.2021.128189_bib87 article-title: Municipal wastewater and sewage sludge publication-title: Biotechnol. Second. Complet. Revis. Ed. – volume: 17 start-page: 513 year: 1988 ident: 10.1016/j.jhazmat.2021.128189_bib22 article-title: Critical review of rate constants for reactions of hydrated electrons, hydrogen atoms and hydroxyl radicals (⋅OH/⋅O− in aqueous solution publication-title: J. Phys. Chem. Ref. Data doi: 10.1063/1.555805 – volume: 124 start-page: 456 year: 1998 ident: 10.1016/j.jhazmat.2021.128189_bib129 article-title: Molecular ozone and radical pathways of bromate formation during ozonation publication-title: J. Environ. Eng. doi: 10.1061/(ASCE)0733-9372(1998)124:5(456) – volume: 52 start-page: 615 year: 2019 ident: 10.1016/j.jhazmat.2021.128189_bib114 article-title: A tale of two treatments: the multiple barrier approach to removing chemical contaminants during potable water reuse publication-title: Acc. Chem. Res. doi: 10.1021/acs.accounts.8b00612 – volume: 34 start-page: 591 year: 2000 ident: 10.1016/j.jhazmat.2021.128189_bib2 article-title: Degradation kinetics of atrazine and its degradation products with ozone and OH radicals: A predictive tool for drinking water treatment publication-title: Environ. Sci. Technol. doi: 10.1021/es990724e – volume: 283 start-page: 740 year: 2016 ident: 10.1016/j.jhazmat.2021.128189_bib24 article-title: Ozonation as pre-treatment of activated sludge process of a wastewater containing benzalkonium chloride and NiO nanoparticles publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2015.08.001 – volume: 37 start-page: 1469 year: 2003 ident: 10.1016/j.jhazmat.2021.128189_bib179 article-title: Ozonation of drinking water: Part II. Disinfection and by-product formation in presence of bromide, iodide or chlorine publication-title: Water Res. doi: 10.1016/S0043-1354(02)00458-X – volume: 87 start-page: 90 year: 1995 ident: 10.1016/j.jhazmat.2021.128189_bib53 article-title: Biodegradation ofNOM: effect of NOM source and ozone dose publication-title: J. - Am. Water Works Assoc. doi: 10.1002/j.1551-8833.1995.tb06304.x – volume: 259 start-page: 1 year: 2020 ident: 10.1016/j.jhazmat.2021.128189_bib84 article-title: Enhancement of ozonation of seawater-based wastewater containing pharmaceutical compounds by total residual oxidants: Salinity, ammonia, and organic matter publication-title: Chemosphere doi: 10.1016/j.chemosphere.2020.127513 – volume: 36 start-page: 327 year: 2006 ident: 10.1016/j.jhazmat.2021.128189_bib156 article-title: Effluent organic matter (EfoM) in wastewater: constititents, effects, and treatment publication-title: Crit. Rev. Environ. Sci. Technol. doi: 10.1080/10643380600580011 – volume: 6 start-page: 25222 year: 2016 ident: 10.1016/j.jhazmat.2021.128189_bib20 article-title: Development of an advanced chemical oxidation wastewater treatment system for the batik industry in Malaysia publication-title: RSC Adv. doi: 10.1039/C5RA26775G – volume: 408 start-page: 6062 year: 2010 ident: 10.1016/j.jhazmat.2021.128189_bib130 article-title: Impacts of emerging organic contaminants on freshwater resources: review of recent occurrences, sources, fate and effects publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2010.09.026 – volume: 36 start-page: 492 year: 2013 ident: 10.1016/j.jhazmat.2021.128189_bib38 article-title: Combination of black-light photo-catalysis and ozonation for emerging contaminants degradation in secondary effluents publication-title: Chem. Eng. Technol. doi: 10.1002/ceat.201200311 – volume: 42 start-page: 353 year: 2000 ident: 10.1016/j.jhazmat.2021.128189_bib88 article-title: The effects of the co-existing compounds on the decomposition of micropollutants using the ozone/hydrogen peroxide process publication-title: Water Sci. Technol. doi: 10.2166/wst.2000.0588 – volume: 37 start-page: 1016 year: 2003 ident: 10.1016/j.jhazmat.2021.128189_bib71 article-title: Oxidation of pharmaceuticals during ozonation and advanced oxidation processes publication-title: Environ. Sci. Technol. doi: 10.1021/es025896h – ident: 10.1016/j.jhazmat.2021.128189_bib123 doi: 10.1016/B978-0-12-819594-9.00001-2 – volume: 9 start-page: 962 year: 2015 ident: 10.1016/j.jhazmat.2021.128189_bib62 article-title: Effect of effluent organic matter on ozonation of bezafibrate publication-title: Front. Environ. Sci. Eng. doi: 10.1007/s11783-015-0772-3 – volume: 17 start-page: 141 year: 1971 ident: 10.1016/j.jhazmat.2021.128189_bib63 article-title: Kinetics of ozone decomposition and reaction with organics in water publication-title: AIChE J. doi: 10.1002/aic.690170129 – ident: 10.1016/j.jhazmat.2021.128189_bib42 – volume: 83 start-page: 1163 year: 2008 ident: 10.1016/j.jhazmat.2021.128189_bib13 article-title: An overview of the application of Fenton oxidation to industrial wastewaters treatment publication-title: J. Chem. Technol. Biotechnol. – volume: 69 start-page: 223 year: 2015 ident: 10.1016/j.jhazmat.2021.128189_bib191 article-title: Removal of 2-MIB and geosmin using UV/persulfate: Contributions of hydroxyl and sulfate radicals publication-title: Water Res. doi: 10.1016/j.watres.2014.11.029 – ident: 10.1016/j.jhazmat.2021.128189_bib3 – volume: 460 start-page: 461 year: 2008 ident: 10.1016/j.jhazmat.2021.128189_bib10 article-title: Scavenging of es- and OH• radicals in concentrated HCl and NaCl aqueous solutions publication-title: Chem. Phys. Lett. doi: 10.1016/j.cplett.2008.06.048 – volume: 7 year: 2019 ident: 10.1016/j.jhazmat.2021.128189_bib150 article-title: The impact of chloride or bromide ions on the advanced oxidation of atrazine by combined electrolysis and ozonation publication-title: J. Environ. Chem. Eng. doi: 10.1016/j.jece.2019.103105 – volume: 191 start-page: 685 year: 2018 ident: 10.1016/j.jhazmat.2021.128189_bib152 article-title: N-Nitrosodimethylamine (NDMA) and its precursors in water and wastewater: A review on formation and removal publication-title: Chemosphere doi: 10.1016/j.chemosphere.2017.10.089 – volume: 65 start-page: 359 year: 2003 ident: 10.1016/j.jhazmat.2021.128189_bib155 article-title: Nitrate photosensitized degradation of atrazine during UV water treatment publication-title: Aquat. Sci. doi: 10.1007/s00027-003-0674-5 – volume: 40 start-page: 399 year: 2018 ident: 10.1016/j.jhazmat.2021.128189_bib54 article-title: Seawater ozonation: effects of seawater parameters on oxidant loading rates, residual toxicity, and total residual oxidants/by-products reduction during storage time publication-title: Ozone Sci. Eng. doi: 10.1080/01919512.2018.1448705 – volume: 52 start-page: 12583 year: 2018 ident: 10.1016/j.jhazmat.2021.128189_bib86 article-title: Ozonation of tamoxifen and toremifene: reaction kinetics and transformation products publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.8b00996 – volume: 44 start-page: 2961 year: 2010 ident: 10.1016/j.jhazmat.2021.128189_bib140 article-title: Perchlorate formation by ozone oxidation of aqueous chlorine/oxy-chlorine species: role of ClxOy radicals publication-title: Environ. Sci. Technol. doi: 10.1021/es903065f – volume: 222 start-page: 435 year: 2013 ident: 10.1016/j.jhazmat.2021.128189_bib121 article-title: The effects of matrices and ozone dose on changes in the characteristics of natural organic matter publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2013.02.087 – volume: 1 start-page: 465 year: 2015 ident: 10.1016/j.jhazmat.2021.128189_bib153 article-title: Formation of disinfection by-products during ballast water treatment with ozone, chlorine, and peracetic acid: influence of water quality parameters publication-title: Environ. Sci. Water Res. Technol. doi: 10.1039/C5EW00061K – volume: 456–457 start-page: 42 year: 2013 ident: 10.1016/j.jhazmat.2021.128189_bib7 article-title: Required ozone doses for removing pharmaceuticals from wastewater effluents publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2013.03.072 – volume: 55 start-page: 7587 issue: 28 year: 2016 ident: 10.1016/j.jhazmat.2021.128189_bib166 article-title: Ozone mass transfer studies in a hydrophobized ceramic membrane contactor: experiments and analysis publication-title: Ind. Eng. Chem. Res. doi: 10.1021/acs.iecr.6b01446 – volume: 168 start-page: 1149 year: 2011 ident: 10.1016/j.jhazmat.2021.128189_bib15 article-title: Comparison of different chemical oxidation treatments for the removal of selected pharmaceuticals in water matrices publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2011.02.001 – volume: 48 start-page: 7683 year: 2014 ident: 10.1016/j.jhazmat.2021.128189_bib36 article-title: Reducing the discharge of micropollutants in the aquatic environment: The benefits of upgrading wastewater treatment plants publication-title: Environ. Sci. Technol. doi: 10.1021/es500907n – volume: 267 start-page: 182 year: 2015 ident: 10.1016/j.jhazmat.2021.128189_bib128 article-title: Effect of HO•, SO4•−, CO3•−/HCO3• radicals on the photodegradation of the herbicide amitrole by UV radiation in aqueous solution publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2015.01.019 – volume: 183 start-page: 582 year: 2017 ident: 10.1016/j.jhazmat.2021.128189_bib41 article-title: Bromate formation from the oxidation of bromide in the UV/chlorine process with low pressure and medium pressure UV lamps publication-title: Chemosphere doi: 10.1016/j.chemosphere.2017.05.136 – volume: 34 start-page: 3 year: 2012 ident: 10.1016/j.jhazmat.2021.128189_bib12 article-title: Application of ozone involving advanced oxidation processes to remove some pharmaceutical compounds from urban wastewaters publication-title: Ozone Sci. Eng. doi: 10.1080/01919512.2012.640154 – volume: 150 start-page: 790 year: 2008 ident: 10.1016/j.jhazmat.2021.128189_bib31 article-title: Sulfamethoxazole abatement by means of ozonation publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2007.05.034 – volume: 116 start-page: 76 year: 2017 ident: 10.1016/j.jhazmat.2021.128189_bib160 article-title: Options and limitations for bromate control during ozonation of wastewater publication-title: Water Res. doi: 10.1016/j.watres.2017.02.026 – start-page: 300 year: 2010 ident: 10.1016/j.jhazmat.2021.128189_bib164 article-title: Micropollutants and aquatic environment – volume: 33 start-page: 121 year: 2011 ident: 10.1016/j.jhazmat.2021.128189_bib120 article-title: O3/H2O2 process for both removal of odorous algal-derived compounds and control of bromate ion formation publication-title: Ozone Sci. Eng. doi: 10.1080/01919512.2011.548200 – volume: 103 start-page: 3447 year: 1999 ident: 10.1016/j.jhazmat.2021.128189_bib29 article-title: Acidity of the carbonate radical publication-title: J. Phys. Chem. A doi: 10.1021/jp984769y – volume: 17 start-page: 1397 year: 1983 ident: 10.1016/j.jhazmat.2021.128189_bib60 article-title: Ozonation of Water Containing Chlorine or Chloramines publication-title: Water Res doi: 10.1016/0043-1354(83)90270-1 – volume: 28 start-page: 247 year: 2006 ident: 10.1016/j.jhazmat.2021.128189_bib19 article-title: Ozonation and advanced oxidation of wastewater: Effect of O3 dose, pH, DOM and HO•-scavengers on ozone decomposition and HO• generation publication-title: Ozone Sci. Eng. doi: 10.1080/01919510600718825 – volume: 6 start-page: 18587 year: 2016 ident: 10.1016/j.jhazmat.2021.128189_bib195 article-title: Effects of pH value and temperature on the initiation, promotion, inhibition and direct reaction rate constants of natural organic matter in ozonation publication-title: RSC Adv. doi: 10.1039/C5RA19359A – ident: 10.1016/j.jhazmat.2021.128189_bib173 – volume: 15 start-page: 1067 year: 1981 ident: 10.1016/j.jhazmat.2021.128189_bib144 article-title: Residual oxidant decay and bromate formation in chlorinated and ozonated sea-water publication-title: Water Res. doi: 10.1016/0043-1354(81)90074-9 – volume: 48 start-page: 1859 year: 2014 ident: 10.1016/j.jhazmat.2021.128189_bib40 article-title: The roles of reactive species in micropollutant degradation in the UV/free chlorine system publication-title: Environ. Sci. Technol. doi: 10.1021/es4036094 – volume: 33 start-page: 267 year: 2011 ident: 10.1016/j.jhazmat.2021.128189_bib172 article-title: Removal of natural organic matter from groundwater using advanced oxidation processes at a pilot scale drinking water treatment plant in the central banat region (Serbia) publication-title: Ozone Sci. Eng. doi: 10.1080/01919512.2011.581117 – volume: 463–464 start-page: 423 year: 2013 ident: 10.1016/j.jhazmat.2021.128189_bib149 article-title: Comparative study of the photodegradation of bisphenol A by HO•, SO4•−, CO3•−/HCO3• radicals in aqueous phase publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2013.06.012 – volume: 82 start-page: 710 year: 1978 ident: 10.1016/j.jhazmat.2021.128189_bib116 article-title: Phosphate radicals. Spectra, acid-base equilibria, and reactions with inorganic compounds publication-title: J. Phys. Chem. doi: 10.1021/j100495a019 – year: 2006 ident: 10.1016/j.jhazmat.2021.128189_bib65 article-title: Impact of H2O2 and (bi)carbonate alkalinity on ammonia’s inhibition of bromate formation publication-title: Water Res. doi: 10.1016/j.watres.2006.07.032 – volume: 86 start-page: 1058 year: 2011 ident: 10.1016/j.jhazmat.2021.128189_bib75 article-title: Contaminants abatement by ozone in secondary effluents. Evaluation of second-order rate constants publication-title: J. Chem. Technol. Biotechnol. doi: 10.1002/jctb.2609 – volume: 160 start-page: 72 year: 2010 ident: 10.1016/j.jhazmat.2021.128189_bib142 article-title: Oxidation of hydrochlorothiazide by UV radiation, hydroxyl radicals and ozone: Kinetics and elimination from water systems publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2010.03.009 – volume: 30 start-page: 300 year: 2008 ident: 10.1016/j.jhazmat.2021.128189_bib174 article-title: The impact of traces of hydrogen peroxide and phosphate on the ozone decomposition rate in “pure water publication-title: Ozone Sci. Eng. doi: 10.1080/01919510802144085 – volume: 44 start-page: 6822 year: 2010 ident: 10.1016/j.jhazmat.2021.128189_bib55 article-title: Effect of halide ions and carbonates on organic contaminant degradation by hydroxyl radical-based advanced oxidation processes in saline waters publication-title: Environ. Sci. Technol. doi: 10.1021/es1010225 – volume: 39 start-page: 1658 year: 2018 ident: 10.1016/j.jhazmat.2021.128189_bib52 article-title: Removal of sulfamethoxazole and diclofenac from water: strategies involving O3 and H2O2 publication-title: Environ. Technol. doi: 10.1080/09593330.2017.1335351 – volume: 37 start-page: 1976 year: 2003 ident: 10.1016/j.jhazmat.2021.128189_bib169 article-title: Ozonation: a tool for removal of pharmaceuticals, contrast media and musk fragrances from wastewater? publication-title: Water Res. doi: 10.1016/S0043-1354(02)00570-5 – volume: 19 start-page: 257 year: 2004 ident: 10.1016/j.jhazmat.2021.128189_bib5 article-title: Oxidation of bisphenol A, 17β-estradiol, and 17α-ethynyl estradiol and byproduct estrogenicity publication-title: Environ. Toxicol. doi: 10.1002/tox.20018 – volume: 252 start-page: 74 year: 2019 ident: 10.1016/j.jhazmat.2021.128189_bib175 article-title: Bibliometric study of the toxicology of nanoescale zero valent iron used in soil remediation publication-title: Environ. Pollut. doi: 10.1016/j.envpol.2019.05.092 – volume: 403 start-page: 1707 year: 2012 ident: 10.1016/j.jhazmat.2021.128189_bib89 article-title: Reduction of matrix effects and improvement of sensitivity during determination of two chloridazon degradation products in aqueous matrices by using UPLC-ESI-MS/MS publication-title: Anal. Bioanal. Chem. doi: 10.1007/s00216-012-5986-7 – volume: 47 start-page: 6475 year: 2013 ident: 10.1016/j.jhazmat.2021.128189_bib104 article-title: EU-wide monitoring survey on emerging polar organic contaminants in wastewater treatment plant effluents publication-title: Water Res. doi: 10.1016/j.watres.2013.08.024 – volume: 52 start-page: 9579 year: 2018 ident: 10.1016/j.jhazmat.2021.128189_bib201 article-title: Halogen radical oxidants in natural and engineered aquatic systems publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.8b02219 – volume: 87 start-page: 49 year: 2015 ident: 10.1016/j.jhazmat.2021.128189_bib33 article-title: Towards reducing DBP formation potential of drinking water by favouring direct ozone over hydroxyl radical reactions during ozonation publication-title: Water Res. doi: 10.1016/j.watres.2015.09.007 – volume: 36 start-page: 515 year: 2014 ident: 10.1016/j.jhazmat.2021.128189_bib77 article-title: Formation of bromate and chlorate during ozonation and electrolysis in seawater for ballast water treatment publication-title: Ozone Sci. Eng. doi: 10.1080/01919512.2014.956862 – start-page: 27 year: 1985 ident: 10.1016/j.jhazmat.2021.128189_bib21 article-title: Rate constant for reaction of hydroxyl radicals with bicarbonate ions publication-title: Radiat. Phys. Chem. – volume: 42 start-page: 3003 year: 2008 ident: 10.1016/j.jhazmat.2021.128189_bib16 article-title: Ozonation of reverse osmosis concentrate: Kinetics and efficiency of beta blocker oxidation publication-title: Water Res. doi: 10.1016/j.watres.2008.04.002 – volume: 32 start-page: 3039 year: 2011 ident: 10.1016/j.jhazmat.2021.128189_bib161 article-title: Effect of nitrite and nitrate as the source of OH radical in the O3/UV process with or without benzene publication-title: Bull. Korean Chem. Soc. doi: 10.5012/bkcs.2011.32.8.3039 – volume: 92 start-page: 64 year: 2000 ident: 10.1016/j.jhazmat.2021.128189_bib177 article-title: Assessing biodegradable organic matter publication-title: Am. Water Work Assoc. J. doi: 10.1002/j.1551-8833.2000.tb08945.x – volume: 44 start-page: 555 year: 2010 ident: 10.1016/j.jhazmat.2021.128189_bib96 article-title: Oxidative transformation of micropollutants during municipal wastewater treatment: comparison of kinetic aspects of selective (chlorine, chlorine dioxide, ferrateVI, and ozone) and non-selective oxidants (hydroxyl radical) publication-title: Water Res. doi: 10.1016/j.watres.2009.11.045 – volume: 55 start-page: 155 year: 2020 ident: 10.1016/j.jhazmat.2021.128189_bib148 article-title: Ozonation of natural organic matter and aquatic humic substances: the effects of ozone on the structural characteristics and subsequent trihalomethane formation potential publication-title: Water Qual. Res. J. Can. doi: 10.2166/wqrj.2020.011 – volume: 363 start-page: 428 year: 2019 ident: 10.1016/j.jhazmat.2021.128189_bib193 article-title: Quantitatively assessing the role played by carbonate radicals in bromate formation by ozonation publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2018.10.013 – year: 2004 ident: 10.1016/j.jhazmat.2021.128189_bib70 article-title: Effect of NOM characteristics on brominated organics formation by ozonation publication-title: Environ. Int. doi: 10.1016/S0160-4120(03)00099-0 – ident: 10.1016/j.jhazmat.2021.128189_bib39 – volume: 292 start-page: 34 year: 2015 ident: 10.1016/j.jhazmat.2021.128189_bib25 article-title: Continuous ozonation treatment of ofloxacin: Transformation products, water matrix effect and aquatic toxicity publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2015.02.075 – volume: 16 start-page: 377 year: 1982 ident: 10.1016/j.jhazmat.2021.128189_bib58 article-title: Kinetics of ozone decomposition: a dynamic approach publication-title: Environ. Sci. Technol. doi: 10.1021/es00101a003 – volume: 82 start-page: 79 year: 1990 ident: 10.1016/j.jhazmat.2021.128189_bib51 article-title: Evaluating oxidants for the removal of model taste and odor compounds from a municipal water supply publication-title: J. Am. Water Work. Assoc. doi: 10.1002/j.1551-8833.1990.tb06967.x – volume: 119 start-page: 326 year: 2015 ident: 10.1016/j.jhazmat.2021.128189_bib118 article-title: Degradation of phenazone in aqueous solution with ozone:influencing factors and degradation pathways publication-title: Chemosphere doi: 10.1016/j.chemosphere.2014.06.082 – volume: 405 start-page: 301 year: 2008 ident: 10.1016/j.jhazmat.2021.128189_bib79 article-title: Perchlorate production by ozone oxidation of chloride in aqueous and dry systems publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2008.07.010 – volume: 17 start-page: 185 year: 1983 ident: 10.1016/j.jhazmat.2021.128189_bib11 article-title: Rate Constants of Reactions of Ozone with Organic and Inorganic Compounds in Water -II. Dissociating Organic Compounds publication-title: Water Res doi: 10.1016/0043-1354(83)90099-4 – volume: 473–474 start-page: 619 year: 2014 ident: 10.1016/j.jhazmat.2021.128189_bib106 article-title: A review on the occurrence of micropollutants in the aquatic environment and their fate and removal during wastewater treatment publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2013.12.065 – volume: 44 start-page: 8248 year: 2010 ident: 10.1016/j.jhazmat.2021.128189_bib135 article-title: Degradation of Ozone-Refractory Organic Phosphates in Wastewater byOzone and Ozone/Hydrogen Peroxide (Peroxone): The Role of Ozone Consumption byDissolved Organic Matter publication-title: Environ. Sci. Technol. doi: 10.1021/es1018288 – volume: 35 start-page: 4252 year: 2001 ident: 10.1016/j.jhazmat.2021.128189_bib1 article-title: MTBE oxidation by conventional ozonation and the combination ozone/hydrogen peroxide: efficiency of the processes and bromate formation publication-title: Environ. Sci. Technol. doi: 10.1021/es010044n – volume: 541 start-page: 167 year: 2016 ident: 10.1016/j.jhazmat.2021.128189_bib44 article-title: Fast removal of the antibiotic flumequine from aqueous solution by ozonation: Influencing factors, reaction pathways, and toxicity evaluation publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2015.09.048 – volume: 598 year: 2020 ident: 10.1016/j.jhazmat.2021.128189_bib82 article-title: Removal of organic micropollutants using advanced membrane-based water and wastewater treatment: a review publication-title: J. Memb. Sci. doi: 10.1016/j.memsci.2019.117672 – volume: 139 start-page: 118 year: 2018 ident: 10.1016/j.jhazmat.2021.128189_bib119 article-title: Evaluation of advanced oxidation processes for water and wastewater treatment – a critical review publication-title: Water Res doi: 10.1016/j.watres.2018.03.042 – volume: 3 start-page: 1 year: 2017 ident: 10.1016/j.jhazmat.2021.128189_bib35 article-title: Pharmaceuticals and personal care products (PPCPs) in the freshwater aquatic environment publication-title: Emerg. Contam. doi: 10.1016/j.emcon.2016.12.004 – volume: 25 start-page: 2169 year: 2013 ident: 10.1016/j.jhazmat.2021.128189_bib182 article-title: Advanced oxidation of bromide-containing drinking water: A balance between bromate and trihalomethane formation control publication-title: J. Environ. Sci. (China) doi: 10.1016/S1001-0742(12)60280-0 – volume: 43 start-page: 7862 year: 2009 ident: 10.1016/j.jhazmat.2021.128189_bib67 article-title: Elimination of organic micropollutants in a municipal wastewater treatment plant upgraded with a full-scale post-ozonation followed by sand filtration publication-title: Environ. Sci. Technol. doi: 10.1021/es9014629 – volume: 52 start-page: 1023 year: 2006 ident: 10.1016/j.jhazmat.2021.128189_bib131 article-title: Ozonation of seawater from different locations: Formation and decay of total residual oxidant—implications for ballast water treatment publication-title: Mar. Pollut. Bull. doi: 10.1016/j.marpolbul.2006.01.007 – volume: 100 start-page: 112 year: 2018 ident: 10.1016/j.jhazmat.2021.128189_bib186 article-title: Endocrine Activities of Pesticides During Ozonation of Waters publication-title: Bull. Environ. Contam. Toxicol. doi: 10.1007/s00128-017-2254-8 – volume: 122 start-page: 234 year: 2017 ident: 10.1016/j.jhazmat.2021.128189_bib17 article-title: Effect of operational and water quality parameters on conventional ozonation and the advanced oxidation process O3/H2O2: kinetics of micropollutant abatement, transformation product and bromate formation in a surface water publication-title: Water Res. doi: 10.1016/j.watres.2017.05.018 – volume: 38 start-page: 5187 year: 2004 ident: 10.1016/j.jhazmat.2021.128189_bib18 article-title: Enhanced bromate control during ozonation: the chlorine-ammonia process publication-title: Environ. Sci. Technol. doi: 10.1021/es0352146 – volume: 30 start-page: 2160 year: 1996 ident: 10.1016/j.jhazmat.2021.128189_bib158 article-title: Chlorine-ozone interactions: formation of chlorate publication-title: Water Res. doi: 10.1016/0043-1354(96)00071-1 – start-page: 278 year: 2022 ident: 10.1016/j.jhazmat.2021.128189_bib103 article-title: Inhibition of bromate formation in the ozone/peroxymonosulfate process by ammonia, ammonia-chlorine and chlorine-ammonia pretreatment: comparisons with ozone alone publication-title: Sep. Purif. Technol. – volume: 53 start-page: 370 year: 2014 ident: 10.1016/j.jhazmat.2021.128189_bib107 article-title: Formation of bromate in sulfate radical based oxidation: Mechanistic aspects and suppression bydissolved organic matter publication-title: Water Res. doi: 10.1016/j.watres.2014.01.001 – volume: 45 start-page: 3811 year: 2011 ident: 10.1016/j.jhazmat.2021.128189_bib81 article-title: Efficiency and energy requirements for the transformation of organic micropollutants by ozone, O3/H2O2 and UV/H2O2 publication-title: Water Res. doi: 10.1016/j.watres.2011.04.038 – volume: 47 start-page: 1521 year: 2013 ident: 10.1016/j.jhazmat.2021.128189_bib136 article-title: Application of solar AOPs and ozonation for elimination of micropollutants in municipal wastewater treatment plant effluents publication-title: Water Res. doi: 10.1016/j.watres.2012.11.002 – volume: 128 start-page: 1 year: 1999 ident: 10.1016/j.jhazmat.2021.128189_bib110 article-title: Photochemistry of nitrite and nitrate in aqueous solution: a review publication-title: J. Photochem. Photobiol. A Chem. doi: 10.1016/S1010-6030(99)00155-0 – volume: 170 year: 2020 ident: 10.1016/j.jhazmat.2021.128189_bib73 article-title: Evaluation of a biological post-treatment after full-scale ozonation at a municipal wastewater treatment plant publication-title: Water Res. doi: 10.1016/j.watres.2019.115316 – volume: 43 start-page: 5990 year: 2009 ident: 10.1016/j.jhazmat.2021.128189_bib125 article-title: Ozonation of wastewater: rate of ozone consumption and hydroxyl radical yield publication-title: Environ. Sci. Technol. doi: 10.1021/es900825f – volume: 59 start-page: 14278 year: 2020 ident: 10.1016/j.jhazmat.2021.128189_bib98 article-title: Mechanism and kinetic model of chlorate and perchlorate formation during ozonation of aqueous chloride solutions publication-title: Ind. Eng. Chem. Res. doi: 10.1021/acs.iecr.0c02770 – volume: 3 year: 2020 ident: 10.1016/j.jhazmat.2021.128189_bib143 article-title: Recent advances in ozone-based advanced oxidation processes for treatment of wastewater- a review publication-title: Chem. Eng. J. Adv. doi: 10.1016/j.ceja.2020.100031 – volume: 172 start-page: 661 year: 2009 ident: 10.1016/j.jhazmat.2021.128189_bib122 article-title: Evaluation of trihalomethane formation potential in function of oxidation processes used during the drinking water production process publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2009.07.048 – volume: 44 start-page: 1193 year: 2001 ident: 10.1016/j.jhazmat.2021.128189_bib102 article-title: Hydroxyl radical scavenging role of chloride and bicarbonate ions in the H2O2/UV process publication-title: Chemosphere doi: 10.1016/S0045-6535(00)00278-2 – year: 2018 ident: 10.1016/j.jhazmat.2021.128189_bib171 article-title: Gamma-ray, x-ray and electron beam based processes – volume: 522 start-page: 220 year: 2019 ident: 10.1016/j.jhazmat.2021.128189_bib69 article-title: The competitive formation mechanism of N-nitrosodimethylamine and formaldehyde dimethylhydrazone from 1,1-dimethylhydrazine during ozonation in air: a combined theoretical and experimental study publication-title: Chem. Phys. doi: 10.1016/j.chemphys.2019.01.011 – volume: 209 start-page: 38 year: 2012 ident: 10.1016/j.jhazmat.2021.128189_bib199 article-title: Concentration profiles of chlorine radicals and their significances in •OH-induced dye degradation: Kinetic modeling and reaction pathways publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2012.07.127 – volume: 289 start-page: 178 year: 2007 ident: 10.1016/j.jhazmat.2021.128189_bib127 article-title: Role of ozone for reducing fouling due to pharmaceuticals in MF (microfiltration) process publication-title: J. Memb. Sci. doi: 10.1016/j.memsci.2006.11.052 – volume: 40 start-page: 3695 year: 2006 ident: 10.1016/j.jhazmat.2021.128189_bib147 article-title: Comparison of the efficiency of •OH radical formation during ozonation and the advanced oxidation processes O3/H2O2 and UV/H2O2 publication-title: Water Res. doi: 10.1016/j.watres.2006.09.008 – volume: 41 start-page: 3127 year: 2007 ident: 10.1016/j.jhazmat.2021.128189_bib26 article-title: Occurrence of 2,4-dichlorophenol and of 2,4-dichloro-6-nitrophenol in the Rhône river delta (Southern France) publication-title: Environ. Sci. Technol. doi: 10.1021/es0626638 – volume: 74 start-page: 162 year: 1999 ident: 10.1016/j.jhazmat.2021.128189_bib32 article-title: A kinetic study of the oxidation of phenol, o-chlorophenol and catechol by hydrogen peroxide between 298 K and 333 K: the effect of pH, temperature and ratio of oxidant to substrate publication-title: J. Chem. Technol. Biotechnol. doi: 10.1002/(SICI)1097-4660(199902)74:2<162::AID-JCTB987>3.0.CO;2-E – volume: 78 start-page: 62 year: 1986 ident: 10.1016/j.jhazmat.2021.128189_bib91 article-title: Oxidation of five earthy-musty taste and odor compounds publication-title: Am. Water Work. Assoc. J. doi: 10.1002/j.1551-8833.1986.tb05716.x – volume: 35 start-page: 472 year: 2013 ident: 10.1016/j.jhazmat.2021.128189_bib196 article-title: Kinetics of natural organic matter as the initiator, promoter, and inhibitor, and their influences on the removal of ibuprofen in ozonation publication-title: Ozone Sci. Eng. doi: 10.1080/01919512.2013.820641 – start-page: 9 year: 2020 ident: 10.1016/j.jhazmat.2021.128189_bib203 article-title: Simultaneous ozonation of 90 organic micropollutants including illicit drugs and their metabolites in different water matrices publication-title: Environ. Sci. Water Res. Technol. – volume: 72 start-page: 349 year: 2015 ident: 10.1016/j.jhazmat.2021.128189_bib109 article-title: Sulfate radical-based water treatment in presence of chloride: Formation of chlorate, inter-conversion of sulfate radicals into hydroxyl radicals and influence of bicarbonate publication-title: Water Res. doi: 10.1016/j.watres.2014.10.006 – volume: 39 start-page: 4290 year: 2005 ident: 10.1016/j.jhazmat.2021.128189_bib72 article-title: Oxidation of pharmaceuticals during ozonation of municipal wastewater effluents: a pilot study publication-title: Environ. Sci. Technol. doi: 10.1021/es048396s – volume: 16 start-page: 832 year: 2014 ident: 10.1016/j.jhazmat.2021.128189_bib8 article-title: One electron oxidation potential as a predictor of rate constants of N-containing compounds with carbonate radical and triplet excited state organic matter publication-title: Environ. Sci. Process. Impacts doi: 10.1039/C3EM00479A – volume: 162 start-page: 43 year: 2019 ident: 10.1016/j.jhazmat.2021.128189_bib189 article-title: Underestimated risk from ozonation of wastewater containing bromide: both organic byproducts and bromate contributed to the toxicity increase publication-title: Water Res. doi: 10.1016/j.watres.2019.06.054 – volume: 77 start-page: 53 year: 2009 ident: 10.1016/j.jhazmat.2021.128189_bib74 article-title: Ozonation of pharmaceutical compounds: Rate constants and elimination in various water matrices publication-title: Chemosphere doi: 10.1016/j.chemosphere.2009.05.035 – volume: 106 start-page: 11488 year: 2002 ident: 10.1016/j.jhazmat.2021.128189_bib134 article-title: Temperature dependence of the acid dissociation constant of the hydroxyl radical publication-title: J. Phys. Chem. A doi: 10.1021/jp020239x – year: 2012 ident: 10.1016/j.jhazmat.2021.128189_bib126 article-title: Advanced oxidation processes for water treatment publication-title: J. Phys. Chem. Lett. doi: 10.1021/jz300929x – volume: 55 start-page: 185 year: 2014 ident: 10.1016/j.jhazmat.2021.128189_bib4 article-title: Direct comparison of ozonation and adsorption onto powdered activated carbon for micropollutant removal in advanced wastewater treatment publication-title: Water Res. doi: 10.1016/j.watres.2014.02.025 – volume: 52 start-page: 6317 year: 2018 ident: 10.1016/j.jhazmat.2021.128189_bib68 article-title: Chlorate formation mechanism in the presence of sulfate radical, chloride, bromide and natural organic matter publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.8b00576 – volume: 229 start-page: 68 year: 2019 ident: 10.1016/j.jhazmat.2021.128189_bib99 article-title: Kinetics of chlorate formation during ozonation of aqueous chloride solutions publication-title: Chemosphere doi: 10.1016/j.chemosphere.2019.04.105 – volume: 183 year: 2020 ident: 10.1016/j.jhazmat.2021.128189_bib105 article-title: Enhanced ozonation of ciprofloxacin in the presence of bromide: Kinetics, products, pathways, and toxicity publication-title: Water Res. doi: 10.1016/j.watres.2020.116105 – volume: 6 start-page: 225 year: 2020 ident: 10.1016/j.jhazmat.2021.128189_bib43 article-title: Ozone and ozone/hydrogen peroxide treatment to remove gemfibrozil and ibuprofen from treated sewage effluent: Factors influencing bromate formation publication-title: Emerg. Contam. doi: 10.1016/j.emcon.2020.06.002 – volume: 403 year: 2021 ident: 10.1016/j.jhazmat.2021.128189_bib93 article-title: Benzophenone-3 degradation via UV/H2O2 and UV/persulfate reactions publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2020.123591 – volume: 30 start-page: 1161 year: 1996 ident: 10.1016/j.jhazmat.2021.128189_bib162 article-title: Empirical modelling of bromate formation during ozonation of bromide-containing water publication-title: Water Res. doi: 10.1016/0043-1354(95)00302-9 – volume: 37 start-page: 1879 year: 2003 ident: 10.1016/j.jhazmat.2021.128189_bib92 article-title: The effect of humic acids on nitrobenzene oxidation by ozonation and O3/UV processes publication-title: Water Res doi: 10.1016/S0043-1354(02)00583-3 – volume: 37 start-page: 1443 year: 2003 ident: 10.1016/j.jhazmat.2021.128189_bib57 article-title: Ozonation of drinking water: Part I. Oxidation kinetics and product formation publication-title: Water Res. doi: 10.1016/S0043-1354(02)00457-8 – volume: 144 start-page: 1618 year: 2016 ident: 10.1016/j.jhazmat.2021.128189_bib151 article-title: N-nitrosodimethylamine (NDMA) formation during ozonation of wastewater and water treatment polymers publication-title: Chemosphere doi: 10.1016/j.chemosphere.2015.10.023 – volume: 156 start-page: 1028 year: 2015 ident: 10.1016/j.jhazmat.2021.128189_bib200 article-title: Removal of organophosphate esters from municipal secondary effluent by ozone and UV/H2O2 treatments publication-title: Sep. Purif. Technol. doi: 10.1016/j.seppur.2015.09.052 – volume: 21 start-page: 239 year: 1999 ident: 10.1016/j.jhazmat.2021.128189_bib37 article-title: Hydroxyl radical/Ozone ratios during ozonation processes. I. The Rct Concept publication-title: Ozone Sci. Eng. doi: 10.1080/01919519908547239 – volume: 461–462 start-page: 480 year: 2013 ident: 10.1016/j.jhazmat.2021.128189_bib113 article-title: Treatment of micropollutants in municipal wastewater: ozone or powdered activated carbon? publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2013.05.034 – volume: 17 start-page: 261 year: 1983 ident: 10.1016/j.jhazmat.2021.128189_bib61 article-title: Ozonation of bromide-containing waters: kinetics of formation of hypobromous acid and brómate publication-title: Environ. Sci. Technol. doi: 10.1021/es00111a004 – volume: 312 start-page: 30 year: 2017 ident: 10.1016/j.jhazmat.2021.128189_bib76 article-title: A kinetic study of ozone decay and bromine formation in saltwater ozonation: effect of O3 dose, salinity, pH, and temperature publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2016.11.113 – volume: 82 start-page: 2045 year: 2008 ident: 10.1016/j.jhazmat.2021.128189_bib100 article-title: The solubility of ozone and kinetics of its chemical reactions in aqueous solutions of sodium chloride publication-title: Russ. J. Phys. Chem. A. doi: 10.1134/S0036024408120133 – year: 2011 ident: 10.1016/j.jhazmat.2021.128189_bib187 – start-page: 262 year: 2021 ident: 10.1016/j.jhazmat.2021.128189_bib117 article-title: Ozonation of 47 organic micropollutants in secondary treated municipal effluents: Direct and indirect kinetic reaction rates and modelling publication-title: Chemosphere – volume: 15 start-page: 183 year: 1986 ident: 10.1016/j.jhazmat.2021.128189_bib78 article-title: Kinetics of ozone decomposition and oxidation of a model organic compound in water publication-title: Chemosphere doi: 10.1016/0045-6535(86)90570-9 – volume: 20 start-page: 1117 year: 1986 ident: 10.1016/j.jhazmat.2021.128189_bib170 article-title: Chlorination byproducts of amino acids in natural waters publication-title: Environ. Sci. Technol. doi: 10.1021/es00153a006 – volume: 70 start-page: 2100 year: 1996 ident: 10.1016/j.jhazmat.2021.128189_bib183 article-title: The Pulse Radiolysis of Deaerated Aqueous Carbonate Solutions. I. Transient Optical Spectrum and Mechanism. II. pK for OH Radicals1 publication-title: J. Phys. Chem. doi: 10.1021/j100879a005 – volume: 86 start-page: 519 year: 2012 ident: 10.1016/j.jhazmat.2021.128189_bib97 article-title: Primary stage of the reaction between ozone and chloride ions in aqueous solution: Oxidation of chloride ions with ozone through the mechanism of oxygen atom transfer publication-title: Russ. J. Phys. Chem. A. doi: 10.1134/S0036024412030193 – volume: 32 start-page: 1687 year: 1998 ident: 10.1016/j.jhazmat.2021.128189_bib185 article-title: Numerical Kinetic Models For Bromide oxidation to bromine and bromate publication-title: Water Res doi: 10.1016/S0043-1354(97)00287-X – volume: 35 start-page: 2525 year: 2001 ident: 10.1016/j.jhazmat.2021.128189_bib132 article-title: Bromate minimization during ozonation: mechanistic considerations publication-title: Environ. Sci. Technol. doi: 10.1021/es001502f – volume: 34 start-page: 1881 year: 2000 ident: 10.1016/j.jhazmat.2021.128189_bib204 article-title: Oxidative treatment of pharmaceuticals in water publication-title: Water Res. doi: 10.1016/S0043-1354(99)00338-3 – volume: 64 start-page: 2468 year: 1942 ident: 10.1016/j.jhazmat.2021.128189_bib167 article-title: Reactions in solutions containing O3, H2O2, H+ and Br-. The specific rate of the reaction O3 + Br- ⟶ publication-title: J. Am. Chem. Soc. doi: 10.1021/ja01262a072 – volume: 85 start-page: 1430 year: 2011 ident: 10.1016/j.jhazmat.2021.128189_bib14 article-title: Bromination of selected pharmaceuticals in water matrices publication-title: Chemosphere doi: 10.1016/j.chemosphere.2011.08.022 – year: 2012 ident: 10.1016/j.jhazmat.2021.128189_bib181 – volume: 47 start-page: 2548 year: 1955 ident: 10.1016/j.jhazmat.2021.128189_bib124 article-title: Stability of dilute alkaline solutions of hydrogen peroxide publication-title: Ind. Eng. Chem. doi: 10.1021/ie50552a051 – volume: 44 start-page: 3531 year: 2010 ident: 10.1016/j.jhazmat.2021.128189_bib141 article-title: Mineralization and biodegradability enhancement of natural organic matter by ozone-VUV in comparison with ozone, VUV, ozone-UV, and UV: Effects of pH and ozone dose publication-title: Water Res. doi: 10.1016/j.watres.2010.03.034 – start-page: 171 year: 1971 ident: 10.1016/j.jhazmat.2021.128189_bib165 article-title: Copper/bicarbonate equilibria in solutions of biocarbonate ion at concentrations similar to those found in natural water publication-title: Water Res. doi: 10.1016/0043-1354(71)90049-2 – volume: 38 start-page: 414 year: 2004 ident: 10.1016/j.jhazmat.2021.128189_bib176 article-title: Advanced oxidation of the pharmaceutical drug diclofenac with UV/H2O2 and ozone publication-title: Water Res. doi: 10.1016/j.watres.2003.09.028 – volume: 78 start-page: 1784 year: 1956 ident: 10.1016/j.jhazmat.2021.128189_bib83 article-title: The decomposition of ozone in aqueous solution publication-title: J. Am. Chem. Soc. doi: 10.1021/ja01590a003 – volume: 52 start-page: 5062 year: 2018 ident: 10.1016/j.jhazmat.2021.128189_bib178 article-title: Oxidation processes in water treatment: are we on track? publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.8b00586 – start-page: 35 year: 2020 ident: 10.1016/j.jhazmat.2021.128189_bib112 article-title: Hybrid ozonation process for industrial wastewater treatment: Principles and applications: a review publication-title: J. Water Process Eng. – volume: 80 start-page: 557 year: 2006 ident: 10.1016/j.jhazmat.2021.128189_bib101 article-title: The oxidation of chlorine ions under the joint action of ozone and permanganate ions publication-title: Russ. J. Phys. Chem. A doi: 10.1134/S0036024406040121 – start-page: 442 year: 2011 ident: 10.1016/j.jhazmat.2021.128189_bib34 article-title: Emerging Pollutants in wastewater: a review of the literature publication-title: Int. J. Hyg. Environ. Health doi: 10.1016/j.ijheh.2011.08.002 – volume: 212 start-page: 802 year: 2018 ident: 10.1016/j.jhazmat.2021.128189_bib46 article-title: Phosphate helps to recover from scavenging effect of chloride in self-enhanced ozonation publication-title: Chemosphere doi: 10.1016/j.chemosphere.2018.08.148 – volume: 41 start-page: 1481 year: 2007 ident: 10.1016/j.jhazmat.2021.128189_bib184 article-title: Formation of oxidation byproducts from ozonation of wastewater publication-title: Water Res doi: 10.1016/j.watres.2007.01.020 – volume: 122 start-page: 243 year: 2005 ident: 10.1016/j.jhazmat.2021.128189_bib6 article-title: Antibiotic removal from wastewaters: the ozonation of amoxicillin publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2005.03.004 – volume: 1 start-page: 3319 issue: 84 year: 1988 ident: 10.1016/j.jhazmat.2021.128189_bib50 article-title: Generation and reactions of the chlorine atom in aqueous solution publication-title: J. Chem. Soc. Faraday Transit. doi: 10.1039/f19888403319 – volume: 20 start-page: 2801 year: 2014 ident: 10.1016/j.jhazmat.2021.128189_bib197 article-title: Application of O3 and O3/H2O2 as post-treatment processes for color removal in swine wastewater from a membrane filtration system publication-title: J. Ind. Eng. Chem. doi: 10.1016/j.jiec.2013.11.010 – volume: 52 start-page: 7380 year: 2018 ident: 10.1016/j.jhazmat.2021.128189_bib202 article-title: Impact of chloride ions on UV/H2O2 and UV/persulfate advanced oxidation processes publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.8b01662 – volume: 31 start-page: 900 year: 1997 ident: 10.1016/j.jhazmat.2021.128189_bib180 article-title: Kinetics of the reaction between hydrogen peroxide and hypobromous acid: Implication on water treatment and natural systems publication-title: Water Res doi: 10.1016/S0043-1354(96)00368-5 – volume: 237 year: 2020 ident: 10.1016/j.jhazmat.2021.128189_bib28 article-title: Characterization and fate of EfOM during ozonation applied for effective abatement of recalcitrant micropollutants publication-title: Sep. Purif. Technol. doi: 10.1016/j.seppur.2019.116468 – start-page: 10 year: 2015 ident: 10.1016/j.jhazmat.2021.128189_bib139 article-title: Rapid removal of tetrabromobisphenol a by ozonation in water: Oxidation products, reaction pathways and toxicity assessment publication-title: PLoS One – volume: 20 start-page: 275 year: 1988 ident: 10.1016/j.jhazmat.2021.128189_bib168 article-title: Reduction of musty odor substances in drinking water - a pilot plant study publication-title: Water Sci. Technol. doi: 10.2166/wst.1988.0253 – volume: 42 start-page: 3719 year: 2008 ident: 10.1016/j.jhazmat.2021.128189_bib146 article-title: Removal of pharmaceuticals and kinetics of mineralization by O3/H2O2 in a biotreated municipal wastewater publication-title: Water Res doi: 10.1016/j.watres.2008.06.008 – volume: 204 start-page: 148 year: 2018 ident: 10.1016/j.jhazmat.2021.128189_bib80 article-title: Effect of nitrate, carbonate/bicarbonate, humic acid, and H2O2 on the kinetics and degradation mechanism of Bisphenol-A during UV photolysis publication-title: Chemosphere doi: 10.1016/j.chemosphere.2018.04.015 – volume: 18 start-page: 1 year: 1996 ident: 10.1016/j.jhazmat.2021.128189_bib27 article-title: Parameters affecting the formation of bromate ion during ozonation publication-title: Ozone Sci. Eng. J. Int. Ozone Assoc. doi: 10.1080/01919519608547338 – volume: 14 start-page: 263 year: 1992 ident: 10.1016/j.jhazmat.2021.128189_bib192 article-title: Removal of atrazine through ozonation in the presence of humic substances publication-title: Ozone Sci. Eng. doi: 10.1080/01919519208552479 – volume: 144 start-page: 2436 year: 2016 ident: 10.1016/j.jhazmat.2021.128189_bib137 article-title: Pathway fraction of bromate formation during O3 and O3/H2O2 processes in drinking water treatment publication-title: Chemosphere doi: 10.1016/j.chemosphere.2015.11.022 – volume: 655 start-page: 986 year: 2019 ident: 10.1016/j.jhazmat.2021.128189_bib145 article-title: Consolidated vs new advanced treatment methods for the removal of contaminants of emerging concern from urban wastewater publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2018.11.265 – volume: 317 start-page: 777 year: 2017 ident: 10.1016/j.jhazmat.2021.128189_bib154 article-title: Impact of metal ions, metal oxides, and nanoparticles on the formation of disinfection byproducts during chlorination publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2017.02.071 – volume: 19 start-page: 465 year: 2017 ident: 10.1016/j.jhazmat.2021.128189_bib94 article-title: A computer-based prediction platform for the reaction of ozone with organic compounds in aqueous solution: kinetics and mechanisms publication-title: Environ. Sci. Process. Impacts doi: 10.1039/C6EM00584E – volume: 26 start-page: 525 year: 2004 ident: 10.1016/j.jhazmat.2021.128189_bib138 article-title: Determination of ozonation rate constants for lincomycin and spectinomycin publication-title: Ozone Sci. Eng. doi: 10.1080/01919510490885334 – volume: 47 start-page: 2881 year: 2013 ident: 10.1016/j.jhazmat.2021.128189_bib157 article-title: Photodegradation of emerging micropollutants using the medium-pressure UV/H2O2 advanced oxidation process publication-title: Water Res. doi: 10.1016/j.watres.2013.02.045 – volume: 47 start-page: 5872 year: 2013 ident: 10.1016/j.jhazmat.2021.128189_bib95 article-title: Prediction of micropollutant elimination during ozonation of municipal wastewater effluents: use of kinetic and water specific information publication-title: Environ. Sci. Technol. doi: 10.1021/es400781r – volume: 49 start-page: 1673 year: 2015 ident: 10.1016/j.jhazmat.2021.128189_bib108 article-title: Degradation of chlorotriazine pesticides by sulfate radicals and the influence of organic matter publication-title: Environ. Sci. Technol. doi: 10.1021/es503496u – volume: 252 year: 2020 ident: 10.1016/j.jhazmat.2021.128189_bib198 article-title: Implications of bromate depression from H2O2 addition during ozonation of different bromide-bearing source waters publication-title: Chemosphere doi: 10.1016/j.chemosphere.2020.126596 – year: 2001 ident: 10.1016/j.jhazmat.2021.128189_bib133 article-title: Bromate minimization during ozonation: mechanistic considerations publication-title: Environ. Sci. Technol. doi: 10.1021/es001502f – volume: 79 start-page: 1056 year: 2010 ident: 10.1016/j.jhazmat.2021.128189_bib49 article-title: Oxidation kinetics of cyclophosphamide and methotrexate by ozone in drinking water publication-title: Chemosphere doi: 10.1016/j.chemosphere.2010.03.032 – volume: 19 start-page: 1206 year: 1985 ident: 10.1016/j.jhazmat.2021.128189_bib163 article-title: Decomposition of ozone in water in the presence of organic solutes acting as promoters and inhibitors of radical chain reactions publication-title: Environ. Sci. Technol. doi: 10.1021/es00142a012 – volume: 73 start-page: 362 year: 2015 ident: 10.1016/j.jhazmat.2021.128189_bib190 article-title: Peroxone mineralization of chemical oxygen demand for direct potable water reuse: kinetics and process control publication-title: Water Res doi: 10.1016/j.watres.2015.01.030 – year: 2002 ident: 10.1016/j.jhazmat.2021.128189_bib59 – volume: 49 start-page: 11714 year: 2015 ident: 10.1016/j.jhazmat.2021.128189_bib48 article-title: A new reaction pathway for bromite to bromate in the ozonation of bromide publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.5b02634 – volume: 363 start-page: 155 year: 2019 ident: 10.1016/j.jhazmat.2021.128189_bib90 article-title: Impact of water matrix on the removal of micropollutants by advanced oxidation technologies publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2019.01.080 – volume: 41 start-page: 2525 year: 2007 ident: 10.1016/j.jhazmat.2021.128189_bib30 article-title: Bezafibrate removal by means of ozonation: Primary intermediates, kinetics, and toxicity assessment publication-title: Water Res. doi: 10.1016/j.watres.2007.03.011 – volume: 26 start-page: 201 year: 2001 ident: 10.1016/j.jhazmat.2021.128189_bib115 article-title: Aqueous phase kinetic studies involving intermediates of environmental interest: phosphate radicals and their reactions with substituted benzenes publication-title: Prog. React. Kinet. Mech. doi: 10.3184/007967401103165253 – volume: 53 start-page: 11783 year: 2019 ident: 10.1016/j.jhazmat.2021.128189_bib23 article-title: Inhibitory effect of dissolved organic matter on the transformation of selected anilines and sulfonamide antibiotics induced by the sulfate radical publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.9b04105 – ident: 10.1016/j.jhazmat.2021.128189_bib194 – start-page: 418 year: 2021 ident: 10.1016/j.jhazmat.2021.128189_bib188 article-title: The promotions on radical formation and micropollutant degradation by the synergies between ozone and chemical reagents (synergistic ozonation): a review publication-title: J. Hazard. Mater. – volume: 57 start-page: 329 year: 2004 ident: 10.1016/j.jhazmat.2021.128189_bib111 article-title: Bromide levels in natural waters: Its relationship to levels of both chloride and total dissolved solids and the implications for water treatment publication-title: Chemosphere doi: 10.1016/j.chemosphere.2004.04.056 – volume: 19 start-page: 993 year: 1985 ident: 10.1016/j.jhazmat.2021.128189_bib66 article-title: Rate constants of reactions of ozone with organic and inorganic compounds in water-III. Inorganic compounds and radicals publication-title: Water Res. doi: 10.1016/0043-1354(85)90368-9 – volume: 89 start-page: 243 year: 1985 ident: 10.1016/j.jhazmat.2021.128189_bib85 article-title: Laser flash photolysis of HClO, ClO–, HBrO and BrO– in aqueous solution. Reactions of Cl– and Br– atoms publication-title: Phys. Chem. Chem. Phys. – volume: 26 start-page: 1 year: 2021 ident: 10.1016/j.jhazmat.2021.128189_bib47 article-title: The role of sulphate and phosphate ions in the recovery of benzoic acid self-enhanced ozonation in water containing bromides publication-title: molecul doi: 10.3390/molecules26092701 – volume: 112 start-page: 105 year: 2004 ident: 10.1016/j.jhazmat.2021.128189_bib9 article-title: Pre-treatment of penicillin formulation effluent by advanced oxidation processes publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2004.04.009 |
SSID | ssj0001754 |
Score | 2.6252654 |
SecondaryResourceType | review_article |
Snippet | The prevalence of organic micropollutants (OMPs) in aquatic environment has expedited scientific and regulatory efforts to retrofit existing wastewater... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 128189 |
SubjectTerms | aquatic environment Bromide bromine chlorides chlorine Hydrogen Peroxide - chemistry Natural organic matter organic matter Organic micropollutants Oxidants oxidation Oxidation-Reduction ozonation Ozone Ozone - chemistry pollutants Scavenging Waste Water - chemistry wastewater treatment Wastewater treatment plants Water Water Pollutants, Chemical - chemistry Water Purification |
Title | Influence of water matrix on the degradation of organic micropollutants by ozone based processes: A review on oxidant scavenging mechanism |
URI | https://dx.doi.org/10.1016/j.jhazmat.2021.128189 https://www.ncbi.nlm.nih.gov/pubmed/35077976 https://www.proquest.com/docview/2622964403 https://www.proquest.com/docview/2636446658 |
Volume | 429 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZKucChouW1BSojcc1uE4-dmNuqotry6AUq9WbZjiN2xSarZquWHvgB_Gpm4qQtElCJW2SNo5HH9nzWPD7G3ogqR08AkBSusglUGhIbQp5o50FaqaXvWuZ_OlazE3h_Kk832MFQC0Nplf3dH-_07rbuRyb9ak5W8_nkMwX10N1C1jEVaCriA8hpl49_3KR5oHuMLaQoAoDSN1U8k8V48dVeITDEZ2KWjimmRGzvf_ZPf8OfnR86fMS2egDJp1HHbbYR6h328FZbwR1276O9eMx-Hg38I7yp-AViyjO-pIb8l7ypOeI-XlKjiMipRCKR4MnzJeXorYgCmRiGW-6-8-aqqQMnj1fyVSwtCO1bPuWx8oV-2FzOSxTnrSeCeqI-4stAZcXzdvmEnRy--3IwS3rmhcSDgnWSeQHKFgoQv1Uit86mDoTFwVThp3S6dLrItd8PFXglstQF0D4tqyCDLErxlG3WqNhzxosOwegKYaUH71NX5tKBtRSexbdMOWIwrLfxfVtyYsf4Zob8s4XpzWTITCaaacTG19NWsS_HXROKwZjmtw1m0HfcNfX1YHyDh48iKrYOzXlrMpVR2Br2xb9khKKguSxG7FncOdcaC0TjuApq9_-Ve8EeZFSRQTmY8iXbXJ-dh1eIk9ZurzsIe-z-9OjD7PgXruMTwQ |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwED9t3QPwgMb4KjAwEq9pl8ROYt6qaVPLur6wSXuzbMfRWtGkWjpt7E_gr-YuTgqTgEm8RZYvsnz23c-6jx_Ap7hI0RNwHmSm0AEvJA-0c2kgjeVCCyls0zL_dJaMz_mXC3GxBYddLQylVba239v0xlq3I8N2N4er-Xz4lYJ66G551DAVSLkNO9SdSvRgZzQ5Gc82Bhk9pO8iRUEAFPhVyDNcDBaX-g6xIb4Uo3BAYSUifP-zi_obBG1c0fEuPG0xJBv5ZT6DLVfuwZPfOgvuwfZU3zyHH5OOgoRVBbtBWHnFltST_5ZVJUPox3LqFeFplWiK53iybElpeitiQSaS4ZqZ76y6q0rHyOnlbOWrC1z9mY2YL36hH1a38xyns9oSRz2xH7Glo8rieb18AefHR2eH46AlXwgsT_g6iGzME50lHCFcEafa6NDwWONgmOCnMDI3MkulPXAFt0kchcZxacO8cMKJLI9fQq_Ehb0GljUgRhaILC23NjR5KgzXmiK0-JzJ-8C7_Va27UxOBBnfVJeCtlCtmhSpSXk19WGwEVv51hwPCWSdMtW9M6bQfTwk-rFTvsL7R0EVXbrqulZRElHkmh_E_5oTJxQ3F1kfXvmTs1lxjIAcdyF58_-L-wCPxmenUzWdzE7ewuOICjQoJVO8g9766trtI2xam_fttfgJD8wWcg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Influence+of+water+matrix+on+the+degradation+of+organic+micropollutants+by+ozone+based+processes%3A+A+review+on+oxidant+scavenging+mechanism&rft.jtitle=Journal+of+hazardous+materials&rft.au=Asghar%2C+Anam&rft.au=Lutze%2C+Holger+V&rft.au=Tuerk%2C+Jochen&rft.au=Schmidt%2C+Torsten+C&rft.date=2022-05-05&rft.issn=1873-3336&rft.eissn=1873-3336&rft.volume=429&rft.spage=128189&rft_id=info:doi/10.1016%2Fj.jhazmat.2021.128189&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0304-3894&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0304-3894&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0304-3894&client=summon |