Evolution of Genetic Variability and the Advantage of Sex and Recombination in Changing Environments

The role of recombination and sexual reproduction in enhancing adaptation and population persistence in temporally varying environments is investigated on the basis of a quantitative-genetic multilocus model. Populations are finite, subject to density-dependent regulation with a finite growth rate,...

Full description

Saved in:
Bibliographic Details
Published inGenetics (Austin) Vol. 153; no. 2; pp. 1055 - 1069
Main Author Burger, Reinhard
Format Journal Article
LanguageEnglish
Published United States Genetics Soc America 01.10.1999
Subjects
Online AccessGet full text
ISSN0016-6731
1943-2631
1943-2631
DOI10.1093/genetics/153.2.1055

Cover

Loading…
Abstract The role of recombination and sexual reproduction in enhancing adaptation and population persistence in temporally varying environments is investigated on the basis of a quantitative-genetic multilocus model. Populations are finite, subject to density-dependent regulation with a finite growth rate, diploid, and either asexual or randomly mating and sexual with or without recombination. A quantitative trait is determined by a finite number of loci at which mutation generates genetic variability. The trait is under stabilizing selection with an optimum that either changes at a constant rate in one direction, exhibits periodic cycling, or fluctuates randomly. It is shown by Monte Carlo simulations that if the directional-selection component prevails, then freely recombining populations gain a substantial evolutionary advantage over nonrecombining and asexual populations that goes far beyond that recognized in previous studies. The reason is that in such populations, the genetic variance can increase substantially and thus enhance the rate of adaptation. In nonrecombining and asexual populations, no or much less increase of variance occurs. It is explored by simulation and mathematical analysis when, why, and by how much genetic variance increases in response to environmental change. In particular, it is elucidated how this change in genetic variance depends on the reproductive system, the population size, and the selective regime, and what the consequences for population persistence are.
AbstractList The role of recombination and sexual reproduction in enhancing adaptation and population persistence in temporally varying environments is investigated on the basis of a quantitative-genetic multilocus model. Populations are finite, subject to density-dependent regulation with a finite growth rate, diploid, and either asexual or randomly mating and sexual with or without recombination. A quantitative trait is determined by a finite number of loci at which mutation generates genetic variability. The trait is under stabilizing selection with an optimum that either changes at a constant rate in one direction, exhibits periodic cycling, or fluctuates randomly. It is shown by Monte Carlo simulations that if the directional-selection component prevails, then freely recombining populations gain a substantial evolutionary advantage over nonrecombining and asexual populations that goes far beyond that recognized in previous studies. The reason is that in such populations, the genetic variance can increase substantially and thus enhance the rate of adaptation. In nonrecombining and asexual populations, no or much less increase of variance occurs. It is explored by simulation and mathematical analysis when, why, and by how much genetic variance increases in response to environmental change. In particular, it is elucidated how this change in genetic variance depends on the reproductive system, the population size, and the selective regime, and what the consequences for population persistence are.
The role of recombination and sexual reproduction in enhancing adaptation and population persistence in temporally varying environments is investigated on the basis of a quantitative-genetic multilocus model. Populations are finite, subject to density-dependent regulation with a finite growth rate, diploid, and either asexual or randomly mating and sexual with or without recombination. A quantitative trait is determined by a finite number of loci at which mutation generates genetic variability. The trait is under stabilizing selection with an optimum that either changes at a constant rate in one direction, exhibits periodic cycling, or fluctuates randomly. It is shown by Monte Carlo simulations that if the directional-selection component prevails, then freely recombining populations gain a substantial evolutionary advantage over nonrecombining and asexual populations that goes far beyond that recognized in previous studies. The reason is that in such populations, the genetic variance can increase substantially and thus enhance the rate of adaptation. In nonrecombining and asexual populations, no or much less increase of variance occurs. It is explored by simulation and mathematical analysis when, why, and by how much genetic variance increases in response to environmental change. In particular, it is elucidated how this change in genetic variance depends on the reproductive system, the population size, and the selective regime, and what the consequences for population persistence are.The role of recombination and sexual reproduction in enhancing adaptation and population persistence in temporally varying environments is investigated on the basis of a quantitative-genetic multilocus model. Populations are finite, subject to density-dependent regulation with a finite growth rate, diploid, and either asexual or randomly mating and sexual with or without recombination. A quantitative trait is determined by a finite number of loci at which mutation generates genetic variability. The trait is under stabilizing selection with an optimum that either changes at a constant rate in one direction, exhibits periodic cycling, or fluctuates randomly. It is shown by Monte Carlo simulations that if the directional-selection component prevails, then freely recombining populations gain a substantial evolutionary advantage over nonrecombining and asexual populations that goes far beyond that recognized in previous studies. The reason is that in such populations, the genetic variance can increase substantially and thus enhance the rate of adaptation. In nonrecombining and asexual populations, no or much less increase of variance occurs. It is explored by simulation and mathematical analysis when, why, and by how much genetic variance increases in response to environmental change. In particular, it is elucidated how this change in genetic variance depends on the reproductive system, the population size, and the selective regime, and what the consequences for population persistence are.
Author Burger, Reinhard
AuthorAffiliation Institut für Mathematik, Universität Wien, A-1090 Wien, Austria and International Institute of Applied Systems Analysis, A-2361 Laxenburg, Austria. reinhard.buerger@univie.ac.at
AuthorAffiliation_xml – name: Institut für Mathematik, Universität Wien, A-1090 Wien, Austria and International Institute of Applied Systems Analysis, A-2361 Laxenburg, Austria. reinhard.buerger@univie.ac.at
Author_xml – sequence: 1
  fullname: Burger, Reinhard
BackLink https://www.ncbi.nlm.nih.gov/pubmed/10511578$$D View this record in MEDLINE/PubMed
BookMark eNqFkUtr3DAUhUVJaSZJf0GheNWsJpEsS7I3hTBM00Ag0Ee24tqSbRVZSiXNTPPvq5nJq120qwu63zn3oHOEDpx3GqF3BJ8R3NDzQTudTBfPCaNnZX5j7BWakaai85JTcoBmGBM-54KSQ3QU4w-MMW9Y_QYdZpYQJuoZUsu1t6tkvCt8X1zuLYtbCAZaY026L8CpIo26uFBrcAkGvQW_6l-7xRfd-ak1DnYOxhWLEdxg3FAs3doE7ybtUjxBr3uwUb99mMfo-6flt8Xn-fXN5dXi4nreVbxKOXWlGBMEU6z6jpUUM8V7hhUHEIyTGkCzlkAlaCtoX_bAa4GpaIEooXVNj9HHve_dqp206vLtAFbeBTNBuJcejPxz48woB7-WpOJY8DIbfHgwCP7nSsckJxM7bS047VdRClyXTJT1f0EiKOWENxl8_zLSU5bHBjLQ7IEu-BiD7mVn0u47c0JjMyi3bcvHtmVuW5ZbPcta-pf22f5fqtO9ajTDuDFByziBtTkgkZvN5gX5GwIvv6w
CitedBy_id crossref_primary_10_1093_molbev_msl189
crossref_primary_10_1007_s00285_018_1258_2
crossref_primary_10_1093_bioinformatics_btw701
crossref_primary_10_1093_molbev_msi233
crossref_primary_10_1073_pnas_2009003117
crossref_primary_10_3390_computation11050101
crossref_primary_10_1111_j_1365_294X_2010_04599_x
crossref_primary_10_1534_genetics_118_301644
crossref_primary_10_1111_j_1420_9101_2004_00858_x
crossref_primary_10_1086_728405
crossref_primary_10_1098_rstb_2005_1667
crossref_primary_10_1111_j_0014_3820_2006_tb01192_x
crossref_primary_10_1016_j_mbs_2007_05_013
crossref_primary_10_1111_jeb_13786
crossref_primary_10_1111_evo_12465
crossref_primary_10_1093_genetics_161_2_897
crossref_primary_10_1111_brv_12451
crossref_primary_10_1046_j_1365_294x_2001_01216_x
crossref_primary_10_1093_evlett_qrad001
crossref_primary_10_1103_PhysRevE_103_062413
crossref_primary_10_1534_genetics_109_106195
crossref_primary_10_1093_genetics_166_2_1053
crossref_primary_10_1111_j_1420_9101_2008_01522_x
crossref_primary_10_1111_jeb_14088
crossref_primary_10_1534_genetics_113_155135
crossref_primary_10_1098_rspb_2008_0685
crossref_primary_10_1086_731402
crossref_primary_10_1556_Select_1_2000_1_3_22
crossref_primary_10_1007_s11692_012_9218_z
crossref_primary_10_1038_s41598_022_12320_3
crossref_primary_10_1002_ecy_3174
crossref_primary_10_1111_evo_14136
crossref_primary_10_1196_annals_1438_011
crossref_primary_10_1086_719654
crossref_primary_10_1111_1365_2435_14467
crossref_primary_10_1093_biolinnean_bly110
crossref_primary_10_1046_j_1420_9101_2000_00211_x
crossref_primary_10_1111_j_0014_3820_2004_tb01640_x
crossref_primary_10_1139_cjb_2020_0077
crossref_primary_10_1371_journal_pone_0272134
crossref_primary_10_1111_mec_13958
crossref_primary_10_1016_S0025_5564_03_00097_X
crossref_primary_10_1534_genetics_108_099820
crossref_primary_10_1016_j_tpb_2024_09_001
crossref_primary_10_1007_s00285_007_0083_9
crossref_primary_10_1554_05_038
crossref_primary_10_1016_j_margen_2013_12_007
crossref_primary_10_1073_pnas_1219381110
crossref_primary_10_1111_j_0014_3820_2004_tb00450_x
crossref_primary_10_1111_evo_13610
crossref_primary_10_1186_1472_6785_5_5
crossref_primary_10_1017_apr_2017_4
crossref_primary_10_1086_491800
crossref_primary_10_1098_rspb_2013_1181
crossref_primary_10_1007_s00227_022_04077_0
crossref_primary_10_1890_08_0139_1
crossref_primary_10_1146_annurev_ecolsys_011121_021241
crossref_primary_10_1111_eva_13524
crossref_primary_10_1016_j_meegid_2011_04_015
crossref_primary_10_1134_S0006350913020206
crossref_primary_10_1146_annurev_genom_083115_022316
crossref_primary_10_1016_j_tree_2011_01_009
crossref_primary_10_1093_bioinformatics_btaa267
crossref_primary_10_1111_oik_01582
crossref_primary_10_1534_genetics_115_178574
crossref_primary_10_7554_eLife_66697
crossref_primary_10_1007_s11295_017_1224_y
crossref_primary_10_1111_evo_12532
crossref_primary_10_1016_j_tree_2022_08_008
crossref_primary_10_1111_j_1420_9101_2004_00745_x
crossref_primary_10_1534_genetics_166_2_1053
crossref_primary_10_1554_06_029_1
crossref_primary_10_1554_03_651
crossref_primary_10_1002_ece3_2894
crossref_primary_10_1093_molbev_msr082
crossref_primary_10_1016_j_tpb_2023_04_002
crossref_primary_10_1111_j_1469_1795_2006_00084_x
crossref_primary_10_1098_rstb_2009_0320
crossref_primary_10_1016_j_jtbi_2005_08_044
crossref_primary_10_1086_605958
crossref_primary_10_1111_1462_2920_14965
crossref_primary_10_1534_genetics_109_109009
crossref_primary_10_1111_evo_12716
crossref_primary_10_1038_nature05049
crossref_primary_10_1111_eva_12413
crossref_primary_10_1111_j_0014_3820_2005_tb01774_x
crossref_primary_10_1093_biolinnean_blx105
crossref_primary_10_1016_j_physa_2007_03_017
crossref_primary_10_1093_evolut_qpae144
crossref_primary_10_1890_03_4111
crossref_primary_10_1016_j_ecoinf_2011_12_001
crossref_primary_10_1016_j_tree_2011_04_002
crossref_primary_10_1098_rspb_2002_2182
crossref_primary_10_1515_REVNEURO_2001_12_3_217
crossref_primary_10_1134_S0006297917120045
crossref_primary_10_1111_j_1365_2486_2009_02062_x
crossref_primary_10_1111_eva_12127
crossref_primary_10_1534_genetics_167_1_523
crossref_primary_10_1098_rstb_2023_0322
crossref_primary_10_1111_evo_12320
crossref_primary_10_1111_evo_13374
crossref_primary_10_1534_genetics_104_032367
crossref_primary_10_1534_genetics_109_104174
crossref_primary_10_1016_S1471_4922_01_02199_7
crossref_primary_10_1111_j_1558_5646_2012_01610_x
crossref_primary_10_1086_693006
crossref_primary_10_1007_s00442_020_04735_4
crossref_primary_10_1111_jeb_12000
crossref_primary_10_1111_j_1558_5646_2010_00979_x
crossref_primary_10_1554_03_419
crossref_primary_10_1111_evo_13260
crossref_primary_10_1038_nrg700
crossref_primary_10_1016_j_virol_2006_09_030
crossref_primary_10_1111_fwb_14193
crossref_primary_10_1016_j_virol_2006_02_028
Cites_doi 10.1006/jtbi.1993.1101
10.1016/0040-5809(84)90017-0
10.1093/genetics/86.2.485
10.1017/S0016672300026951
10.1017/S0016672300031372
10.1093/genetics/66.1.165
10.1111/j.1558-5646.1976.tb00911.x
10.1137/0136014
10.4319/lo.1991.36.7.1301
10.1023/A:1017043111100
10.1093/genetics/150.2.523
10.1017/S0016672300023958
10.1111/j.1558-5646.1986.tb00561.x
10.1017/S0016672300023156
10.1111/j.1558-5646.1987.tb05799.x
10.1016/0040-5809(90)90002-D
10.1093/genetics/121.1.175
10.1017/S0016672300027282
10.1111/j.1558-5646.1996.tb04504.x
10.1017/S0016672300014221
10.1093/oxfordjournals.jhered.a111187
10.1111/j.1469-185X.1943.tb00287.x
10.1007/BF00163878
10.1007/978-3-0348-8882-0_12
10.1093/genetics/138.3.913
10.1139/g89-135
10.1086/283047
10.1071/BI9600030
10.1111/j.1558-5646.1989.tb02624.x
10.1017/S0016672300028378
10.1093/oxfordjournals.jhered.a111355
10.1017/S0016672300034042
10.1111/j.1558-5646.1989.tb02625.x
10.1093/genetics/138.3.901
10.1017/S0016672300016037
10.1073/pnas.54.3.731
10.1007/BF00160336
10.1007/s000360050052
10.1017/S0016672300034054
ContentType Journal Article
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
8FD
FR3
P64
RC3
7X8
5PM
DOI 10.1093/genetics/153.2.1055
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Technology Research Database
Engineering Research Database
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Genetics Abstracts
Engineering Research Database
Technology Research Database
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitleList MEDLINE

CrossRef
MEDLINE - Academic
Genetics Abstracts
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1943-2631
EndPage 1069
ExternalDocumentID PMC1460762
10511578
10_1093_genetics_153_2_1055
www153_2_1055
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID -
08R
186
29H
2WC
34G
39C
4
53G
55
5GY
5RE
5VS
85S
9M8
AAPBV
AAUTI
ABFLS
ABPPZ
ABPTK
ABSGY
ABUFD
ACGOD
ACNCT
ACPRK
ACPVT
ADACO
ADBBV
AENEX
AFDAS
AFFDN
AFFNX
AFMIJ
AFRAH
AGCAB
AHMBA
AJYGW
ALMA_UNASSIGNED_HOLDINGS
BAWUL
BKOMP
C1A
CJ0
CS3
D0L
DIK
DU5
DZ
E3Z
EBS
EJD
EMB
F5P
FH7
FRP
GJ
GX1
H13
HYE
H~9
INIJC
KM
KQ8
L7B
MV1
MVM
MYA
NHB
O0-
OHT
OK1
OWPYF
QN7
R0Z
RHF
RHI
RPM
RXW
SJN
SV3
TAE
TAF
TGS
TN5
TWZ
U5U
UHB
UKR
UNMZH
UPT
UQL
VQA
WH7
WOQ
X
X7M
XHC
YYQ
YZZ
Z
ZGI
ZXP
ZY4
---
--Z
-DZ
-~X
.-4
.55
.GJ
0R~
18M
5WD
AABZA
AACZT
AAPXW
AARHZ
AAUAY
AAVAP
AAYXX
ABDFA
ABDNZ
ABEJV
ABGNP
ABMNT
ABNHQ
ABPTD
ABVGC
ABXVV
ABXZS
ACFRR
ACIHN
ACIPB
ACUTJ
ADGKP
ADIPN
ADQBN
ADVEK
ADXHL
AEAQA
AFFZL
AFGWE
AGORE
AHMMS
AJEEA
AJNCP
ALIPV
ALXQX
AOIJS
APEBS
ATGXG
BCRHZ
BEYMZ
BTFSW
CITATION
EMOBN
F8P
F9R
FD6
FLUFQ
FOEOM
JXSIZ
KBUDW
KOP
KSI
KSN
NOMLY
OBOKY
OCZFY
OJZSN
OPAEJ
ROX
TR2
W8F
WHG
XSW
YHG
YKV
YSK
YYP
ZCA
~KM
2KS
36B
3V.
7X2
7X7
88A
88E
88I
8AO
8C1
8FE
8FH
8FI
8FJ
8G5
8R4
8R5
A8Z
AAYOK
ABJNI
ABTAH
ABUWG
ACYGS
AEUYN
AFKRA
AGMDO
ATCPS
AZQEC
BBNVY
BENPR
BES
BHPHI
BKNYI
BPHCQ
BVXVI
CCPQU
CGR
CUY
CVF
DWQXO
EBD
ECM
EIF
FYUFA
GNUQQ
GUQSH
HCIFZ
HMCUK
K9-
LK8
M0K
M0L
M0R
M1P
M2O
M2P
M7P
NPM
OMK
PQQKQ
PROAC
PSQYO
Q2X
QF4
QM4
QM9
QO4
TH9
UKHRP
VXZ
XOL
YIF
YIN
8FD
FR3
P64
RC3
7X8
5PM
ID FETCH-LOGICAL-c464t-264d5571030dfc52305d6f50d6aa75618aae5b1a473b73f2fa687037ba1d7ee83
ISSN 0016-6731
1943-2631
IngestDate Thu Aug 21 18:12:38 EDT 2025
Thu Jul 10 18:17:30 EDT 2025
Fri Jul 11 10:23:03 EDT 2025
Wed Feb 19 01:33:18 EST 2025
Tue Jul 01 00:32:57 EDT 2025
Thu Apr 24 23:06:11 EDT 2025
Tue Nov 10 19:21:12 EST 2020
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
License https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c464t-264d5571030dfc52305d6f50d6aa75618aae5b1a473b73f2fa687037ba1d7ee83
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
OpenAccessLink https://academic.oup.com/genetics/article-pdf/153/2/1055/35126188/genetics1055.pdf
PMID 10511578
PQID 17336169
PQPubID 23462
PageCount 15
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_1460762
proquest_miscellaneous_70825728
proquest_miscellaneous_17336169
pubmed_primary_10511578
crossref_citationtrail_10_1093_genetics_153_2_1055
crossref_primary_10_1093_genetics_153_2_1055
highwire_smallpub1_www153_2_1055
ProviderPackageCode RHF
RHI
CITATION
AAYXX
PublicationCentury 1900
PublicationDate 1999-10-01
PublicationDateYYYYMMDD 1999-10-01
PublicationDate_xml – month: 10
  year: 1999
  text: 1999-10-01
  day: 01
PublicationDecade 1990
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Genetics (Austin)
PublicationTitleAlternate Genetics
PublicationYear 1999
Publisher Genetics Soc America
Publisher_xml – name: Genetics Soc America
References Fleming (2022010404225892600_R22) 1979; 36
Turelli (2022010404225892600_R47) 1994; 138
Houle (2022010404225892600_R23) 1989; 43
Lande (2022010404225892600_R28) 1975; 26
Lynch (2022010404225892600_R37) 1991; 36
Charlesworth (2022010404225892600_R18) 1993; 61
Bürger (2022010404225892600_R12) 1994; 32
Turelli (2022010404225892600_R44) 1984; 25
Barton (2022010404225892600_R3) 1987; 49
Kondrashov (2022010404225892600_R26) 1996; 68
Williams (2022010404225892600_R49) 1975
Lynch (2022010404225892600_R35) 1993
Turelli (2022010404225892600_R45) 1988
Lande (2022010404225892600_R30) 1977; 86
Barton (2022010404225892600_R1) 1986; 47
Endler (2022010404225892600_R21) 1986
Bulmer (2022010404225892600_R7) 1989; 31
Maynard Smith (2022010404225892600_R39) 1978
Souza (2022010404225892600_R43) 1997; 10
Crow (2022010404225892600_R19) 1992; 83
Keightley (2022010404225892600_R24) 1988; 52
Kondrashov (2022010404225892600_R27) 1996; 68
Lynch (2022010404225892600_R36) 1998
Bürger (2022010404225892600_R8) 1989; 121
Slatkin (2022010404225892600_R42) 1976; 110
Barton (2022010404225892600_R2) 1989; 54
Bürger (2022010404225892600_R15) 1997
Bürger (2022010404225892600_R13) 1994; 138
Lande (2022010404225892600_R31) 1996; 50
Bürger (2022010404225892600_R14) 1995; 49
Turner (2022010404225892600_R48) 1998; 150
Bürger (2022010404225892600_R11) 1998; 102/103
Mather (2022010404225892600_R38) 1943; 18
Maynard Smith (2022010404225892600_R40) 1988; 51
Bull (2022010404225892600_R4) 1987; 41
Michod (2022010404225892600_R41) 1988
Latter (2022010404225892600_R32) 1960; 13
Lynch (2022010404225892600_R34) 1986; 40
Crow (2022010404225892600_R20) 1964
Bürger (2022010404225892600_R10) 1993; 162
Bürger (2022010404225892600_R16) 1989; 43
Turelli (2022010404225892600_R46) 1990; 38
Bulmer (2022010404225892600_R5) 1972; 19
Charlesworth (2022010404225892600_R17) 1993; 84
Lande (2022010404225892600_R29) 1976; 30
Kimura (2022010404225892600_R25) 1965; 54
Bürger (2022010404225892600_R9) 1991; 30
Bulmer (2022010404225892600_R6) 1980
Latter (2022010404225892600_R33) 1970; 66
1765739 - J Math Biol. 1991;30(2):199-213
7851785 - Genetics. 1994 Nov;138(3):913-41
1624761 - J Hered. 1992 May-Jun;83(3):169-73
407132 - Genetics. 1977 Jun;86(2 Pt. 1):485-98
8182355 - J Math Biol. 1994;32(3):193-218
5217452 - Proc Natl Acad Sci U S A. 1965 Sep;54(3):731-6
3744046 - Genet Res. 1986 Jun;47(3):209-16
8409356 - J Hered. 1993 Sep-Oct;84(5):345-50
3181758 - Genet Res. 1988 Aug;52(1):33-43
3596236 - Genet Res. 1987 Apr;49(2):157-73
8412235 - J Theor Biol. 1993 Jun 21;162(4):487-513
1225762 - Genet Res. 1975 Dec;26(3):221-35
2806907 - Genet Res. 1989 Aug;54(1):59-77
8365658 - Genet Res. 1993 Jun;61(3):205-24
7851784 - Genetics. 1994 Nov;138(3):901-12
6729751 - Theor Popul Biol. 1984 Apr;25(2):138-93
9342851 - EXS. 1997;83:209-39
3366381 - Genet Res. 1988 Feb;51(1):59-63
References_xml – start-page: 601
  volume-title: Proceedings of the Second International Conference on Quantitative Genetics
  year: 1988
  ident: 2022010404225892600_R45
  article-title: Population genetic models for polygenic variation and evolution
– volume: 162
  start-page: 487
  year: 1993
  ident: 2022010404225892600_R10
  article-title: Predictions for the dynamics of a polygenic character under directional selection
  publication-title: J. Theor. Biol.
  doi: 10.1006/jtbi.1993.1101
– volume-title: The Evolution of Sex
  year: 1978
  ident: 2022010404225892600_R39
– volume: 25
  start-page: 138
  year: 1984
  ident: 2022010404225892600_R44
  article-title: Heritable genetic variation via mutation-selection balance: Lerch’s zeta meets the abdominal bristle
  publication-title: Theor. Popul. Biol.
  doi: 10.1016/0040-5809(84)90017-0
– volume: 86
  start-page: 485
  year: 1977
  ident: 2022010404225892600_R30
  article-title: The influence of the mating system on the maintenance of genetic variability in polygenic character
  publication-title: Genetics
  doi: 10.1093/genetics/86.2.485
– volume: 49
  start-page: 157
  year: 1987
  ident: 2022010404225892600_R3
  article-title: Adaptive landscapes, genetic distance and the evolution of quantitative characters
  publication-title: Genet. Res.
  doi: 10.1017/S0016672300026951
– volume: 61
  start-page: 205
  year: 1993
  ident: 2022010404225892600_R18
  article-title: Directional selection and the evolution of sex and recombination
  publication-title: Genet. Res.
  doi: 10.1017/S0016672300031372
– volume: 66
  start-page: 165
  year: 1970
  ident: 2022010404225892600_R33
  article-title: Selection in finite populations with multiple alleles. II. Centripetal selection, mutation, and isoallelic variation
  publication-title: Genetics
  doi: 10.1093/genetics/66.1.165
– volume: 30
  start-page: 314
  year: 1976
  ident: 2022010404225892600_R29
  article-title: Natural selection and random genetic drift in phenotypic evolution
  publication-title: Evolution
  doi: 10.1111/j.1558-5646.1976.tb00911.x
– volume: 36
  start-page: 148
  year: 1979
  ident: 2022010404225892600_R22
  article-title: Equilibrium distributions of continuous polygenic traits
  publication-title: SIAM J. Appl. Math.
  doi: 10.1137/0136014
– volume: 36
  start-page: 1301
  year: 1991
  ident: 2022010404225892600_R37
  article-title: Adaptive and demographic responses of plankton populations to environmental change
  publication-title: Limnol. Oceanogr.
  doi: 10.4319/lo.1991.36.7.1301
– volume: 102/103
  start-page: 279
  year: 1998
  ident: 2022010404225892600_R11
  article-title: Mathematical properties of mutation-selection models
  publication-title: Genetica
  doi: 10.1023/A:1017043111100
– volume: 150
  start-page: 523
  year: 1998
  ident: 2022010404225892600_R48
  article-title: Sex and the evolution of intrahost competition in RNA virus ϕ6
  publication-title: Genetics
  doi: 10.1093/genetics/150.2.523
– volume: 51
  start-page: 59
  year: 1988
  ident: 2022010404225892600_R40
  article-title: Selection for recombination in a polygenic model—the mechanism
  publication-title: Genet. Res.
  doi: 10.1017/S0016672300023958
– volume-title: Genetics and Analysis of Quantitative Traits
  year: 1998
  ident: 2022010404225892600_R36
– volume: 40
  start-page: 915
  year: 1986
  ident: 2022010404225892600_R34
  article-title: Phenotypic evolution by neutral mutation
  publication-title: Evolution
  doi: 10.1111/j.1558-5646.1986.tb00561.x
– volume: 47
  start-page: 209
  year: 1986
  ident: 2022010404225892600_R1
  article-title: The maintenance of polygenic variation through a balance between mutation and stabilizing selection
  publication-title: Genet. Res.
  doi: 10.1017/S0016672300023156
– volume-title: Natural Selection in the Wild
  year: 1986
  ident: 2022010404225892600_R21
– volume: 41
  start-page: 303
  year: 1987
  ident: 2022010404225892600_R4
  article-title: Evolution of phenotypic variance
  publication-title: Evolution
  doi: 10.1111/j.1558-5646.1987.tb05799.x
– volume-title: The Evolution of Sex
  year: 1988
  ident: 2022010404225892600_R41
– volume: 38
  start-page: 1
  year: 1990
  ident: 2022010404225892600_R46
  article-title: Dynamics of polygenic characters under selection
  publication-title: Theor. Popul. Biol.
  doi: 10.1016/0040-5809(90)90002-D
– volume-title: The Mathematical Theory of Quantitative Genetics
  year: 1980
  ident: 2022010404225892600_R6
– volume: 121
  start-page: 175
  year: 1989
  ident: 2022010404225892600_R8
  article-title: Linkage and the maintenance of heritable variation by mutation-selection balance
  publication-title: Genetics
  doi: 10.1093/genetics/121.1.175
– volume: 52
  start-page: 33
  year: 1988
  ident: 2022010404225892600_R24
  article-title: Quantitative genetic variation maintained by mutation-stabilizing selection balance in finite populations
  publication-title: Genet. Res.
  doi: 10.1017/S0016672300027282
– volume: 50
  start-page: 434
  year: 1996
  ident: 2022010404225892600_R31
  article-title: The role of genetic variation in adaptation and population persistence in a changing environment
  publication-title: Evolution
  doi: 10.1111/j.1558-5646.1996.tb04504.x
– start-page: 234
  volume-title: Biotic Interactions and Global Change
  year: 1993
  ident: 2022010404225892600_R35
  article-title: Evolution and extinction in response to environmental change
– volume: 19
  start-page: 17
  year: 1972
  ident: 2022010404225892600_R5
  article-title: The genetic variability of polygenic characters under optimising selection, mutation and drift
  publication-title: Genet. Res.
  doi: 10.1017/S0016672300014221
– volume: 83
  start-page: 169
  year: 1992
  ident: 2022010404225892600_R19
  article-title: An advantage of sexual reproduction in a rapidly changing environment
  publication-title: J. Hered.
  doi: 10.1093/oxfordjournals.jhered.a111187
– volume: 18
  start-page: 32
  year: 1943
  ident: 2022010404225892600_R38
  article-title: Polygenic inheritance and natural selection
  publication-title: Biol. Rev.
  doi: 10.1111/j.1469-185X.1943.tb00287.x
– volume: 32
  start-page: 193
  year: 1994
  ident: 2022010404225892600_R12
  article-title: Mutation load and mutation-selection-balance in quantitative genetic traits
  publication-title: J. Math. Biol.
  doi: 10.1007/BF00163878
– start-page: 209
  volume-title: Environmental Stress, Adaptation and Evolution
  year: 1997
  ident: 2022010404225892600_R15
  article-title: Adaptation and extinction in changing environments
  doi: 10.1007/978-3-0348-8882-0_12
– volume: 138
  start-page: 913
  year: 1994
  ident: 2022010404225892600_R47
  article-title: Genetic and statistical analyses of strong selection on polygenic traits: what, me normal?
  publication-title: Genetics
  doi: 10.1093/genetics/138.3.913
– volume: 49
  start-page: 151
  year: 1995
  ident: 2022010404225892600_R14
  article-title: Evolution and extinction in a changing environment: a quantitative-genetic analysis
  publication-title: Evolution
– volume-title: Sex and Evolution
  year: 1975
  ident: 2022010404225892600_R49
– volume: 31
  start-page: 761
  year: 1989
  ident: 2022010404225892600_R7
  article-title: Maintenance of genetic variability by mutation-selection balance: a child’s guide through the jungle
  publication-title: Genome
  doi: 10.1139/g89-135
– volume: 110
  start-page: 31
  year: 1976
  ident: 2022010404225892600_R42
  article-title: Niche width in a fluctuating environment-density independent model
  publication-title: Am. Nat.
  doi: 10.1086/283047
– volume: 13
  start-page: 30
  year: 1960
  ident: 2022010404225892600_R32
  article-title: Natural selection for an intermediate optimum
  publication-title: Aust. J. Biol. Sci.
  doi: 10.1071/BI9600030
– volume: 43
  start-page: 1748
  year: 1989
  ident: 2022010404225892600_R16
  article-title: How much heritable variation can be maintained in finite populations by mutation-selection balance?
  publication-title: Evolution
  doi: 10.1111/j.1558-5646.1989.tb02624.x
– volume: 54
  start-page: 59
  year: 1989
  ident: 2022010404225892600_R2
  article-title: Divergence of a polygenic system subject to stabilizing selection, mutation and drift
  publication-title: Genet. Res.
  doi: 10.1017/S0016672300028378
– volume: 84
  start-page: 345
  year: 1993
  ident: 2022010404225892600_R17
  article-title: The evolution of sex and recombination in a varying environment
  publication-title: J. Hered.
  doi: 10.1093/oxfordjournals.jhered.a111355
– volume: 68
  start-page: 157
  year: 1996
  ident: 2022010404225892600_R26
  article-title: High genetic variability under the balance between symmetric mutation and fluctuating stabilizing selection
  publication-title: Genet. Res.
  doi: 10.1017/S0016672300034042
– volume: 43
  start-page: 1767
  year: 1989
  ident: 2022010404225892600_R23
  article-title: The maintenance of polygenic variation in finite populations
  publication-title: Evolution
  doi: 10.1111/j.1558-5646.1989.tb02625.x
– volume: 138
  start-page: 901
  year: 1994
  ident: 2022010404225892600_R13
  article-title: On the distribution of the mean and variance of a quantitative trait under mutation-selection-drift balance
  publication-title: Genetics
  doi: 10.1093/genetics/138.3.901
– volume: 26
  start-page: 221
  year: 1975
  ident: 2022010404225892600_R28
  article-title: The maintenance of genetic variation by mutation in a polygenic character with linked loci
  publication-title: Genet. Res.
  doi: 10.1017/S0016672300016037
– start-page: 495
  volume-title: Proceedings of the XI International Congress of Genetics
  year: 1964
  ident: 2022010404225892600_R20
  article-title: The theory of genetic loads
– volume: 54
  start-page: 731
  year: 1965
  ident: 2022010404225892600_R25
  article-title: A stochastic model concerning the maintenance of genetic variability in quantitative characters
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.54.3.731
– volume: 30
  start-page: 199
  year: 1991
  ident: 2022010404225892600_R9
  article-title: Moments, cumulants, and polygenic dynamics
  publication-title: J. Math. Biol.
  doi: 10.1007/BF00160336
– volume: 10
  start-page: 743
  year: 1997
  ident: 2022010404225892600_R43
  article-title: Long-term experimental evolution in Escherichia coli. V. Effects of recombination with immigrant genotypes on the rate of bacterial evolution
  publication-title: J. Evol. Biol.
  doi: 10.1007/s000360050052
– volume: 68
  start-page: 165
  year: 1996
  ident: 2022010404225892600_R27
  article-title: Evolution of amphimixis and recombination under fluctuating selection in one and many traits
  publication-title: Genet. Res.
  doi: 10.1017/S0016672300034054
– reference: 3366381 - Genet Res. 1988 Feb;51(1):59-63
– reference: 8365658 - Genet Res. 1993 Jun;61(3):205-24
– reference: 5217452 - Proc Natl Acad Sci U S A. 1965 Sep;54(3):731-6
– reference: 3744046 - Genet Res. 1986 Jun;47(3):209-16
– reference: 7851784 - Genetics. 1994 Nov;138(3):901-12
– reference: 1225762 - Genet Res. 1975 Dec;26(3):221-35
– reference: 3181758 - Genet Res. 1988 Aug;52(1):33-43
– reference: 1624761 - J Hered. 1992 May-Jun;83(3):169-73
– reference: 3596236 - Genet Res. 1987 Apr;49(2):157-73
– reference: 2806907 - Genet Res. 1989 Aug;54(1):59-77
– reference: 1765739 - J Math Biol. 1991;30(2):199-213
– reference: 7851785 - Genetics. 1994 Nov;138(3):913-41
– reference: 6729751 - Theor Popul Biol. 1984 Apr;25(2):138-93
– reference: 8412235 - J Theor Biol. 1993 Jun 21;162(4):487-513
– reference: 8409356 - J Hered. 1993 Sep-Oct;84(5):345-50
– reference: 9342851 - EXS. 1997;83:209-39
– reference: 407132 - Genetics. 1977 Jun;86(2 Pt. 1):485-98
– reference: 8182355 - J Math Biol. 1994;32(3):193-218
SSID ssj0006958
Score 1.9925524
Snippet The role of recombination and sexual reproduction in enhancing adaptation and population persistence in temporally varying environments is investigated on the...
SourceID pubmedcentral
proquest
pubmed
crossref
highwire
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1055
SubjectTerms Animals
Biological Evolution
Environment
Female
Gene Frequency
Genetic Variation
Male
Models, Genetic
Models, Statistical
Mutation
Phenotype
Recombination, Genetic
Selection, Genetic
Title Evolution of Genetic Variability and the Advantage of Sex and Recombination in Changing Environments
URI http://www.genetics.org/cgi/content/abstract/153/2/1055
https://www.ncbi.nlm.nih.gov/pubmed/10511578
https://www.proquest.com/docview/17336169
https://www.proquest.com/docview/70825728
https://pubmed.ncbi.nlm.nih.gov/PMC1460762
Volume 153
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELdgCIkXxDfl0w-8QbraTuzkEaaxCQmeNqlvkRM7YlKbTjRbGX89d_FHk6lDwEsUxRfb9e96uTvfnQl5xyxL64o3CZdGJiAli6RihiUC1Fcriqa2DBOcv36Tx6fpl3k2D2eV--ySrprWv3bmlfwPqvAMcMUs2X9ANnYKD-Ae8IUrIAzXv8L48NJ3jyofUGFC4vtLsH5d8e2rGB7Z7_R32jkI1vaniyoHy3MJhrEO8Y59EjC6DobZb0Pt9cgN0Ttq0UnSOxWiQY977p8OMMt6G4hofIJdESPTooxkEhMC2EhGuoq-nhn4QOLhAZs7RbErU-V_-xodBJmY8ul1eljR82WPD7Rg5Z98-2WK8YKh6Ta5w8EcQAF8NN-G8sgi819cN_NQXaoQ-2H8_e3oWCfW9zdWRkKB6F3GxvWY2YEScvKA3PfWA_3oWOEhuWXbR-SuO0_06jExkSHoqqF-UnTAEBRwp8AQNDIEEgJD9A0jhqBnLQ0MQYcM8YScfj48OThO_DEaSZ3KtMMYRpNlCs-TM02NuwCZkU02M1JrBepzrrXNKqZTJSolGt5oCUJcqEozo6zNxVOy165a-5xQsNVTLXKtKsNS6AFenM3gVuJmcC7FhPCwnmXta8zjUSeL0sU6iDLgUQIeJS8Rjwn5EF86dyVW_kxOA1DleqkXC8CFlZvNZkjyNgBYgrTELTDd2tUFdIPVP5ksbqZQ6DNRPJ-QZw7wwZwc00yIGrFCJMBK7eOW9ux7X7G9XyHJX9zY50tyb_tffEX2uh8X9jVou131pmf13xAyqiU
linkProvider Geneva Foundation for Medical Education and Research
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Evolution+of+genetic+variability+and+the+advantage+of+sex+and+recombination+in+changing+environments&rft.jtitle=Genetics+%28Austin%29&rft.au=B%C3%BCrger%2C+R&rft.date=1999-10-01&rft.issn=0016-6731&rft.volume=153&rft.issue=2&rft.spage=1055&rft_id=info:doi/10.1093%2Fgenetics%2F153.2.1055&rft_id=info%3Apmid%2F10511578&rft.externalDocID=10511578
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0016-6731&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0016-6731&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0016-6731&client=summon