Evolution of Genetic Variability and the Advantage of Sex and Recombination in Changing Environments
The role of recombination and sexual reproduction in enhancing adaptation and population persistence in temporally varying environments is investigated on the basis of a quantitative-genetic multilocus model. Populations are finite, subject to density-dependent regulation with a finite growth rate,...
Saved in:
Published in | Genetics (Austin) Vol. 153; no. 2; pp. 1055 - 1069 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
United States
Genetics Soc America
01.10.1999
|
Subjects | |
Online Access | Get full text |
ISSN | 0016-6731 1943-2631 1943-2631 |
DOI | 10.1093/genetics/153.2.1055 |
Cover
Loading…
Abstract | The role of recombination and sexual reproduction in enhancing adaptation and population persistence in temporally varying environments is investigated on the basis of a quantitative-genetic multilocus model. Populations are finite, subject to density-dependent regulation with a finite growth rate, diploid, and either asexual or randomly mating and sexual with or without recombination. A quantitative trait is determined by a finite number of loci at which mutation generates genetic variability. The trait is under stabilizing selection with an optimum that either changes at a constant rate in one direction, exhibits periodic cycling, or fluctuates randomly. It is shown by Monte Carlo simulations that if the directional-selection component prevails, then freely recombining populations gain a substantial evolutionary advantage over nonrecombining and asexual populations that goes far beyond that recognized in previous studies. The reason is that in such populations, the genetic variance can increase substantially and thus enhance the rate of adaptation. In nonrecombining and asexual populations, no or much less increase of variance occurs. It is explored by simulation and mathematical analysis when, why, and by how much genetic variance increases in response to environmental change. In particular, it is elucidated how this change in genetic variance depends on the reproductive system, the population size, and the selective regime, and what the consequences for population persistence are. |
---|---|
AbstractList | The role of recombination and sexual reproduction in enhancing adaptation and population persistence in temporally varying environments is investigated on the basis of a quantitative-genetic multilocus model. Populations are finite, subject to density-dependent regulation with a finite growth rate, diploid, and either asexual or randomly mating and sexual with or without recombination. A quantitative trait is determined by a finite number of loci at which mutation generates genetic variability. The trait is under stabilizing selection with an optimum that either changes at a constant rate in one direction, exhibits periodic cycling, or fluctuates randomly. It is shown by Monte Carlo simulations that if the directional-selection component prevails, then freely recombining populations gain a substantial evolutionary advantage over nonrecombining and asexual populations that goes far beyond that recognized in previous studies. The reason is that in such populations, the genetic variance can increase substantially and thus enhance the rate of adaptation. In nonrecombining and asexual populations, no or much less increase of variance occurs. It is explored by simulation and mathematical analysis when, why, and by how much genetic variance increases in response to environmental change. In particular, it is elucidated how this change in genetic variance depends on the reproductive system, the population size, and the selective regime, and what the consequences for population persistence are. The role of recombination and sexual reproduction in enhancing adaptation and population persistence in temporally varying environments is investigated on the basis of a quantitative-genetic multilocus model. Populations are finite, subject to density-dependent regulation with a finite growth rate, diploid, and either asexual or randomly mating and sexual with or without recombination. A quantitative trait is determined by a finite number of loci at which mutation generates genetic variability. The trait is under stabilizing selection with an optimum that either changes at a constant rate in one direction, exhibits periodic cycling, or fluctuates randomly. It is shown by Monte Carlo simulations that if the directional-selection component prevails, then freely recombining populations gain a substantial evolutionary advantage over nonrecombining and asexual populations that goes far beyond that recognized in previous studies. The reason is that in such populations, the genetic variance can increase substantially and thus enhance the rate of adaptation. In nonrecombining and asexual populations, no or much less increase of variance occurs. It is explored by simulation and mathematical analysis when, why, and by how much genetic variance increases in response to environmental change. In particular, it is elucidated how this change in genetic variance depends on the reproductive system, the population size, and the selective regime, and what the consequences for population persistence are.The role of recombination and sexual reproduction in enhancing adaptation and population persistence in temporally varying environments is investigated on the basis of a quantitative-genetic multilocus model. Populations are finite, subject to density-dependent regulation with a finite growth rate, diploid, and either asexual or randomly mating and sexual with or without recombination. A quantitative trait is determined by a finite number of loci at which mutation generates genetic variability. The trait is under stabilizing selection with an optimum that either changes at a constant rate in one direction, exhibits periodic cycling, or fluctuates randomly. It is shown by Monte Carlo simulations that if the directional-selection component prevails, then freely recombining populations gain a substantial evolutionary advantage over nonrecombining and asexual populations that goes far beyond that recognized in previous studies. The reason is that in such populations, the genetic variance can increase substantially and thus enhance the rate of adaptation. In nonrecombining and asexual populations, no or much less increase of variance occurs. It is explored by simulation and mathematical analysis when, why, and by how much genetic variance increases in response to environmental change. In particular, it is elucidated how this change in genetic variance depends on the reproductive system, the population size, and the selective regime, and what the consequences for population persistence are. |
Author | Burger, Reinhard |
AuthorAffiliation | Institut für Mathematik, Universität Wien, A-1090 Wien, Austria and International Institute of Applied Systems Analysis, A-2361 Laxenburg, Austria. reinhard.buerger@univie.ac.at |
AuthorAffiliation_xml | – name: Institut für Mathematik, Universität Wien, A-1090 Wien, Austria and International Institute of Applied Systems Analysis, A-2361 Laxenburg, Austria. reinhard.buerger@univie.ac.at |
Author_xml | – sequence: 1 fullname: Burger, Reinhard |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/10511578$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkUtr3DAUhUVJaSZJf0GheNWsJpEsS7I3hTBM00Ag0Ee24tqSbRVZSiXNTPPvq5nJq120qwu63zn3oHOEDpx3GqF3BJ8R3NDzQTudTBfPCaNnZX5j7BWakaai85JTcoBmGBM-54KSQ3QU4w-MMW9Y_QYdZpYQJuoZUsu1t6tkvCt8X1zuLYtbCAZaY026L8CpIo26uFBrcAkGvQW_6l-7xRfd-ak1DnYOxhWLEdxg3FAs3doE7ybtUjxBr3uwUb99mMfo-6flt8Xn-fXN5dXi4nreVbxKOXWlGBMEU6z6jpUUM8V7hhUHEIyTGkCzlkAlaCtoX_bAa4GpaIEooXVNj9HHve_dqp206vLtAFbeBTNBuJcejPxz48woB7-WpOJY8DIbfHgwCP7nSsckJxM7bS047VdRClyXTJT1f0EiKOWENxl8_zLSU5bHBjLQ7IEu-BiD7mVn0u47c0JjMyi3bcvHtmVuW5ZbPcta-pf22f5fqtO9ajTDuDFByziBtTkgkZvN5gX5GwIvv6w |
CitedBy_id | crossref_primary_10_1093_molbev_msl189 crossref_primary_10_1007_s00285_018_1258_2 crossref_primary_10_1093_bioinformatics_btw701 crossref_primary_10_1093_molbev_msi233 crossref_primary_10_1073_pnas_2009003117 crossref_primary_10_3390_computation11050101 crossref_primary_10_1111_j_1365_294X_2010_04599_x crossref_primary_10_1534_genetics_118_301644 crossref_primary_10_1111_j_1420_9101_2004_00858_x crossref_primary_10_1086_728405 crossref_primary_10_1098_rstb_2005_1667 crossref_primary_10_1111_j_0014_3820_2006_tb01192_x crossref_primary_10_1016_j_mbs_2007_05_013 crossref_primary_10_1111_jeb_13786 crossref_primary_10_1111_evo_12465 crossref_primary_10_1093_genetics_161_2_897 crossref_primary_10_1111_brv_12451 crossref_primary_10_1046_j_1365_294x_2001_01216_x crossref_primary_10_1093_evlett_qrad001 crossref_primary_10_1103_PhysRevE_103_062413 crossref_primary_10_1534_genetics_109_106195 crossref_primary_10_1093_genetics_166_2_1053 crossref_primary_10_1111_j_1420_9101_2008_01522_x crossref_primary_10_1111_jeb_14088 crossref_primary_10_1534_genetics_113_155135 crossref_primary_10_1098_rspb_2008_0685 crossref_primary_10_1086_731402 crossref_primary_10_1556_Select_1_2000_1_3_22 crossref_primary_10_1007_s11692_012_9218_z crossref_primary_10_1038_s41598_022_12320_3 crossref_primary_10_1002_ecy_3174 crossref_primary_10_1111_evo_14136 crossref_primary_10_1196_annals_1438_011 crossref_primary_10_1086_719654 crossref_primary_10_1111_1365_2435_14467 crossref_primary_10_1093_biolinnean_bly110 crossref_primary_10_1046_j_1420_9101_2000_00211_x crossref_primary_10_1111_j_0014_3820_2004_tb01640_x crossref_primary_10_1139_cjb_2020_0077 crossref_primary_10_1371_journal_pone_0272134 crossref_primary_10_1111_mec_13958 crossref_primary_10_1016_S0025_5564_03_00097_X crossref_primary_10_1534_genetics_108_099820 crossref_primary_10_1016_j_tpb_2024_09_001 crossref_primary_10_1007_s00285_007_0083_9 crossref_primary_10_1554_05_038 crossref_primary_10_1016_j_margen_2013_12_007 crossref_primary_10_1073_pnas_1219381110 crossref_primary_10_1111_j_0014_3820_2004_tb00450_x crossref_primary_10_1111_evo_13610 crossref_primary_10_1186_1472_6785_5_5 crossref_primary_10_1017_apr_2017_4 crossref_primary_10_1086_491800 crossref_primary_10_1098_rspb_2013_1181 crossref_primary_10_1007_s00227_022_04077_0 crossref_primary_10_1890_08_0139_1 crossref_primary_10_1146_annurev_ecolsys_011121_021241 crossref_primary_10_1111_eva_13524 crossref_primary_10_1016_j_meegid_2011_04_015 crossref_primary_10_1134_S0006350913020206 crossref_primary_10_1146_annurev_genom_083115_022316 crossref_primary_10_1016_j_tree_2011_01_009 crossref_primary_10_1093_bioinformatics_btaa267 crossref_primary_10_1111_oik_01582 crossref_primary_10_1534_genetics_115_178574 crossref_primary_10_7554_eLife_66697 crossref_primary_10_1007_s11295_017_1224_y crossref_primary_10_1111_evo_12532 crossref_primary_10_1016_j_tree_2022_08_008 crossref_primary_10_1111_j_1420_9101_2004_00745_x crossref_primary_10_1534_genetics_166_2_1053 crossref_primary_10_1554_06_029_1 crossref_primary_10_1554_03_651 crossref_primary_10_1002_ece3_2894 crossref_primary_10_1093_molbev_msr082 crossref_primary_10_1016_j_tpb_2023_04_002 crossref_primary_10_1111_j_1469_1795_2006_00084_x crossref_primary_10_1098_rstb_2009_0320 crossref_primary_10_1016_j_jtbi_2005_08_044 crossref_primary_10_1086_605958 crossref_primary_10_1111_1462_2920_14965 crossref_primary_10_1534_genetics_109_109009 crossref_primary_10_1111_evo_12716 crossref_primary_10_1038_nature05049 crossref_primary_10_1111_eva_12413 crossref_primary_10_1111_j_0014_3820_2005_tb01774_x crossref_primary_10_1093_biolinnean_blx105 crossref_primary_10_1016_j_physa_2007_03_017 crossref_primary_10_1093_evolut_qpae144 crossref_primary_10_1890_03_4111 crossref_primary_10_1016_j_ecoinf_2011_12_001 crossref_primary_10_1016_j_tree_2011_04_002 crossref_primary_10_1098_rspb_2002_2182 crossref_primary_10_1515_REVNEURO_2001_12_3_217 crossref_primary_10_1134_S0006297917120045 crossref_primary_10_1111_j_1365_2486_2009_02062_x crossref_primary_10_1111_eva_12127 crossref_primary_10_1534_genetics_167_1_523 crossref_primary_10_1098_rstb_2023_0322 crossref_primary_10_1111_evo_12320 crossref_primary_10_1111_evo_13374 crossref_primary_10_1534_genetics_104_032367 crossref_primary_10_1534_genetics_109_104174 crossref_primary_10_1016_S1471_4922_01_02199_7 crossref_primary_10_1111_j_1558_5646_2012_01610_x crossref_primary_10_1086_693006 crossref_primary_10_1007_s00442_020_04735_4 crossref_primary_10_1111_jeb_12000 crossref_primary_10_1111_j_1558_5646_2010_00979_x crossref_primary_10_1554_03_419 crossref_primary_10_1111_evo_13260 crossref_primary_10_1038_nrg700 crossref_primary_10_1016_j_virol_2006_09_030 crossref_primary_10_1111_fwb_14193 crossref_primary_10_1016_j_virol_2006_02_028 |
Cites_doi | 10.1006/jtbi.1993.1101 10.1016/0040-5809(84)90017-0 10.1093/genetics/86.2.485 10.1017/S0016672300026951 10.1017/S0016672300031372 10.1093/genetics/66.1.165 10.1111/j.1558-5646.1976.tb00911.x 10.1137/0136014 10.4319/lo.1991.36.7.1301 10.1023/A:1017043111100 10.1093/genetics/150.2.523 10.1017/S0016672300023958 10.1111/j.1558-5646.1986.tb00561.x 10.1017/S0016672300023156 10.1111/j.1558-5646.1987.tb05799.x 10.1016/0040-5809(90)90002-D 10.1093/genetics/121.1.175 10.1017/S0016672300027282 10.1111/j.1558-5646.1996.tb04504.x 10.1017/S0016672300014221 10.1093/oxfordjournals.jhered.a111187 10.1111/j.1469-185X.1943.tb00287.x 10.1007/BF00163878 10.1007/978-3-0348-8882-0_12 10.1093/genetics/138.3.913 10.1139/g89-135 10.1086/283047 10.1071/BI9600030 10.1111/j.1558-5646.1989.tb02624.x 10.1017/S0016672300028378 10.1093/oxfordjournals.jhered.a111355 10.1017/S0016672300034042 10.1111/j.1558-5646.1989.tb02625.x 10.1093/genetics/138.3.901 10.1017/S0016672300016037 10.1073/pnas.54.3.731 10.1007/BF00160336 10.1007/s000360050052 10.1017/S0016672300034054 |
ContentType | Journal Article |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 8FD FR3 P64 RC3 7X8 5PM |
DOI | 10.1093/genetics/153.2.1055 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Technology Research Database Engineering Research Database Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Genetics Abstracts Engineering Research Database Technology Research Database Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitleList | MEDLINE CrossRef MEDLINE - Academic Genetics Abstracts |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1943-2631 |
EndPage | 1069 |
ExternalDocumentID | PMC1460762 10511578 10_1093_genetics_153_2_1055 www153_2_1055 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | - 08R 186 29H 2WC 34G 39C 4 53G 55 5GY 5RE 5VS 85S 9M8 AAPBV AAUTI ABFLS ABPPZ ABPTK ABSGY ABUFD ACGOD ACNCT ACPRK ACPVT ADACO ADBBV AENEX AFDAS AFFDN AFFNX AFMIJ AFRAH AGCAB AHMBA AJYGW ALMA_UNASSIGNED_HOLDINGS BAWUL BKOMP C1A CJ0 CS3 D0L DIK DU5 DZ E3Z EBS EJD EMB F5P FH7 FRP GJ GX1 H13 HYE H~9 INIJC KM KQ8 L7B MV1 MVM MYA NHB O0- OHT OK1 OWPYF QN7 R0Z RHF RHI RPM RXW SJN SV3 TAE TAF TGS TN5 TWZ U5U UHB UKR UNMZH UPT UQL VQA WH7 WOQ X X7M XHC YYQ YZZ Z ZGI ZXP ZY4 --- --Z -DZ -~X .-4 .55 .GJ 0R~ 18M 5WD AABZA AACZT AAPXW AARHZ AAUAY AAVAP AAYXX ABDFA ABDNZ ABEJV ABGNP ABMNT ABNHQ ABPTD ABVGC ABXVV ABXZS ACFRR ACIHN ACIPB ACUTJ ADGKP ADIPN ADQBN ADVEK ADXHL AEAQA AFFZL AFGWE AGORE AHMMS AJEEA AJNCP ALIPV ALXQX AOIJS APEBS ATGXG BCRHZ BEYMZ BTFSW CITATION EMOBN F8P F9R FD6 FLUFQ FOEOM JXSIZ KBUDW KOP KSI KSN NOMLY OBOKY OCZFY OJZSN OPAEJ ROX TR2 W8F WHG XSW YHG YKV YSK YYP ZCA ~KM 2KS 36B 3V. 7X2 7X7 88A 88E 88I 8AO 8C1 8FE 8FH 8FI 8FJ 8G5 8R4 8R5 A8Z AAYOK ABJNI ABTAH ABUWG ACYGS AEUYN AFKRA AGMDO ATCPS AZQEC BBNVY BENPR BES BHPHI BKNYI BPHCQ BVXVI CCPQU CGR CUY CVF DWQXO EBD ECM EIF FYUFA GNUQQ GUQSH HCIFZ HMCUK K9- LK8 M0K M0L M0R M1P M2O M2P M7P NPM OMK PQQKQ PROAC PSQYO Q2X QF4 QM4 QM9 QO4 TH9 UKHRP VXZ XOL YIF YIN 8FD FR3 P64 RC3 7X8 5PM |
ID | FETCH-LOGICAL-c464t-264d5571030dfc52305d6f50d6aa75618aae5b1a473b73f2fa687037ba1d7ee83 |
ISSN | 0016-6731 1943-2631 |
IngestDate | Thu Aug 21 18:12:38 EDT 2025 Thu Jul 10 18:17:30 EDT 2025 Fri Jul 11 10:23:03 EDT 2025 Wed Feb 19 01:33:18 EST 2025 Tue Jul 01 00:32:57 EDT 2025 Thu Apr 24 23:06:11 EDT 2025 Tue Nov 10 19:21:12 EST 2020 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Language | English |
License | https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c464t-264d5571030dfc52305d6f50d6aa75618aae5b1a473b73f2fa687037ba1d7ee83 |
Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 ObjectType-Article-1 ObjectType-Feature-2 |
OpenAccessLink | https://academic.oup.com/genetics/article-pdf/153/2/1055/35126188/genetics1055.pdf |
PMID | 10511578 |
PQID | 17336169 |
PQPubID | 23462 |
PageCount | 15 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_1460762 proquest_miscellaneous_70825728 proquest_miscellaneous_17336169 pubmed_primary_10511578 crossref_citationtrail_10_1093_genetics_153_2_1055 crossref_primary_10_1093_genetics_153_2_1055 highwire_smallpub1_www153_2_1055 |
ProviderPackageCode | RHF RHI CITATION AAYXX |
PublicationCentury | 1900 |
PublicationDate | 1999-10-01 |
PublicationDateYYYYMMDD | 1999-10-01 |
PublicationDate_xml | – month: 10 year: 1999 text: 1999-10-01 day: 01 |
PublicationDecade | 1990 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Genetics (Austin) |
PublicationTitleAlternate | Genetics |
PublicationYear | 1999 |
Publisher | Genetics Soc America |
Publisher_xml | – name: Genetics Soc America |
References | Fleming (2022010404225892600_R22) 1979; 36 Turelli (2022010404225892600_R47) 1994; 138 Houle (2022010404225892600_R23) 1989; 43 Lande (2022010404225892600_R28) 1975; 26 Lynch (2022010404225892600_R37) 1991; 36 Charlesworth (2022010404225892600_R18) 1993; 61 Bürger (2022010404225892600_R12) 1994; 32 Turelli (2022010404225892600_R44) 1984; 25 Barton (2022010404225892600_R3) 1987; 49 Kondrashov (2022010404225892600_R26) 1996; 68 Williams (2022010404225892600_R49) 1975 Lynch (2022010404225892600_R35) 1993 Turelli (2022010404225892600_R45) 1988 Lande (2022010404225892600_R30) 1977; 86 Barton (2022010404225892600_R1) 1986; 47 Endler (2022010404225892600_R21) 1986 Bulmer (2022010404225892600_R7) 1989; 31 Maynard Smith (2022010404225892600_R39) 1978 Souza (2022010404225892600_R43) 1997; 10 Crow (2022010404225892600_R19) 1992; 83 Keightley (2022010404225892600_R24) 1988; 52 Kondrashov (2022010404225892600_R27) 1996; 68 Lynch (2022010404225892600_R36) 1998 Bürger (2022010404225892600_R8) 1989; 121 Slatkin (2022010404225892600_R42) 1976; 110 Barton (2022010404225892600_R2) 1989; 54 Bürger (2022010404225892600_R15) 1997 Bürger (2022010404225892600_R13) 1994; 138 Lande (2022010404225892600_R31) 1996; 50 Bürger (2022010404225892600_R14) 1995; 49 Turner (2022010404225892600_R48) 1998; 150 Bürger (2022010404225892600_R11) 1998; 102/103 Mather (2022010404225892600_R38) 1943; 18 Maynard Smith (2022010404225892600_R40) 1988; 51 Bull (2022010404225892600_R4) 1987; 41 Michod (2022010404225892600_R41) 1988 Latter (2022010404225892600_R32) 1960; 13 Lynch (2022010404225892600_R34) 1986; 40 Crow (2022010404225892600_R20) 1964 Bürger (2022010404225892600_R10) 1993; 162 Bürger (2022010404225892600_R16) 1989; 43 Turelli (2022010404225892600_R46) 1990; 38 Bulmer (2022010404225892600_R5) 1972; 19 Charlesworth (2022010404225892600_R17) 1993; 84 Lande (2022010404225892600_R29) 1976; 30 Kimura (2022010404225892600_R25) 1965; 54 Bürger (2022010404225892600_R9) 1991; 30 Bulmer (2022010404225892600_R6) 1980 Latter (2022010404225892600_R33) 1970; 66 1765739 - J Math Biol. 1991;30(2):199-213 7851785 - Genetics. 1994 Nov;138(3):913-41 1624761 - J Hered. 1992 May-Jun;83(3):169-73 407132 - Genetics. 1977 Jun;86(2 Pt. 1):485-98 8182355 - J Math Biol. 1994;32(3):193-218 5217452 - Proc Natl Acad Sci U S A. 1965 Sep;54(3):731-6 3744046 - Genet Res. 1986 Jun;47(3):209-16 8409356 - J Hered. 1993 Sep-Oct;84(5):345-50 3181758 - Genet Res. 1988 Aug;52(1):33-43 3596236 - Genet Res. 1987 Apr;49(2):157-73 8412235 - J Theor Biol. 1993 Jun 21;162(4):487-513 1225762 - Genet Res. 1975 Dec;26(3):221-35 2806907 - Genet Res. 1989 Aug;54(1):59-77 8365658 - Genet Res. 1993 Jun;61(3):205-24 7851784 - Genetics. 1994 Nov;138(3):901-12 6729751 - Theor Popul Biol. 1984 Apr;25(2):138-93 9342851 - EXS. 1997;83:209-39 3366381 - Genet Res. 1988 Feb;51(1):59-63 |
References_xml | – start-page: 601 volume-title: Proceedings of the Second International Conference on Quantitative Genetics year: 1988 ident: 2022010404225892600_R45 article-title: Population genetic models for polygenic variation and evolution – volume: 162 start-page: 487 year: 1993 ident: 2022010404225892600_R10 article-title: Predictions for the dynamics of a polygenic character under directional selection publication-title: J. Theor. Biol. doi: 10.1006/jtbi.1993.1101 – volume-title: The Evolution of Sex year: 1978 ident: 2022010404225892600_R39 – volume: 25 start-page: 138 year: 1984 ident: 2022010404225892600_R44 article-title: Heritable genetic variation via mutation-selection balance: Lerch’s zeta meets the abdominal bristle publication-title: Theor. Popul. Biol. doi: 10.1016/0040-5809(84)90017-0 – volume: 86 start-page: 485 year: 1977 ident: 2022010404225892600_R30 article-title: The influence of the mating system on the maintenance of genetic variability in polygenic character publication-title: Genetics doi: 10.1093/genetics/86.2.485 – volume: 49 start-page: 157 year: 1987 ident: 2022010404225892600_R3 article-title: Adaptive landscapes, genetic distance and the evolution of quantitative characters publication-title: Genet. Res. doi: 10.1017/S0016672300026951 – volume: 61 start-page: 205 year: 1993 ident: 2022010404225892600_R18 article-title: Directional selection and the evolution of sex and recombination publication-title: Genet. Res. doi: 10.1017/S0016672300031372 – volume: 66 start-page: 165 year: 1970 ident: 2022010404225892600_R33 article-title: Selection in finite populations with multiple alleles. II. Centripetal selection, mutation, and isoallelic variation publication-title: Genetics doi: 10.1093/genetics/66.1.165 – volume: 30 start-page: 314 year: 1976 ident: 2022010404225892600_R29 article-title: Natural selection and random genetic drift in phenotypic evolution publication-title: Evolution doi: 10.1111/j.1558-5646.1976.tb00911.x – volume: 36 start-page: 148 year: 1979 ident: 2022010404225892600_R22 article-title: Equilibrium distributions of continuous polygenic traits publication-title: SIAM J. Appl. Math. doi: 10.1137/0136014 – volume: 36 start-page: 1301 year: 1991 ident: 2022010404225892600_R37 article-title: Adaptive and demographic responses of plankton populations to environmental change publication-title: Limnol. Oceanogr. doi: 10.4319/lo.1991.36.7.1301 – volume: 102/103 start-page: 279 year: 1998 ident: 2022010404225892600_R11 article-title: Mathematical properties of mutation-selection models publication-title: Genetica doi: 10.1023/A:1017043111100 – volume: 150 start-page: 523 year: 1998 ident: 2022010404225892600_R48 article-title: Sex and the evolution of intrahost competition in RNA virus ϕ6 publication-title: Genetics doi: 10.1093/genetics/150.2.523 – volume: 51 start-page: 59 year: 1988 ident: 2022010404225892600_R40 article-title: Selection for recombination in a polygenic model—the mechanism publication-title: Genet. Res. doi: 10.1017/S0016672300023958 – volume-title: Genetics and Analysis of Quantitative Traits year: 1998 ident: 2022010404225892600_R36 – volume: 40 start-page: 915 year: 1986 ident: 2022010404225892600_R34 article-title: Phenotypic evolution by neutral mutation publication-title: Evolution doi: 10.1111/j.1558-5646.1986.tb00561.x – volume: 47 start-page: 209 year: 1986 ident: 2022010404225892600_R1 article-title: The maintenance of polygenic variation through a balance between mutation and stabilizing selection publication-title: Genet. Res. doi: 10.1017/S0016672300023156 – volume-title: Natural Selection in the Wild year: 1986 ident: 2022010404225892600_R21 – volume: 41 start-page: 303 year: 1987 ident: 2022010404225892600_R4 article-title: Evolution of phenotypic variance publication-title: Evolution doi: 10.1111/j.1558-5646.1987.tb05799.x – volume-title: The Evolution of Sex year: 1988 ident: 2022010404225892600_R41 – volume: 38 start-page: 1 year: 1990 ident: 2022010404225892600_R46 article-title: Dynamics of polygenic characters under selection publication-title: Theor. Popul. Biol. doi: 10.1016/0040-5809(90)90002-D – volume-title: The Mathematical Theory of Quantitative Genetics year: 1980 ident: 2022010404225892600_R6 – volume: 121 start-page: 175 year: 1989 ident: 2022010404225892600_R8 article-title: Linkage and the maintenance of heritable variation by mutation-selection balance publication-title: Genetics doi: 10.1093/genetics/121.1.175 – volume: 52 start-page: 33 year: 1988 ident: 2022010404225892600_R24 article-title: Quantitative genetic variation maintained by mutation-stabilizing selection balance in finite populations publication-title: Genet. Res. doi: 10.1017/S0016672300027282 – volume: 50 start-page: 434 year: 1996 ident: 2022010404225892600_R31 article-title: The role of genetic variation in adaptation and population persistence in a changing environment publication-title: Evolution doi: 10.1111/j.1558-5646.1996.tb04504.x – start-page: 234 volume-title: Biotic Interactions and Global Change year: 1993 ident: 2022010404225892600_R35 article-title: Evolution and extinction in response to environmental change – volume: 19 start-page: 17 year: 1972 ident: 2022010404225892600_R5 article-title: The genetic variability of polygenic characters under optimising selection, mutation and drift publication-title: Genet. Res. doi: 10.1017/S0016672300014221 – volume: 83 start-page: 169 year: 1992 ident: 2022010404225892600_R19 article-title: An advantage of sexual reproduction in a rapidly changing environment publication-title: J. Hered. doi: 10.1093/oxfordjournals.jhered.a111187 – volume: 18 start-page: 32 year: 1943 ident: 2022010404225892600_R38 article-title: Polygenic inheritance and natural selection publication-title: Biol. Rev. doi: 10.1111/j.1469-185X.1943.tb00287.x – volume: 32 start-page: 193 year: 1994 ident: 2022010404225892600_R12 article-title: Mutation load and mutation-selection-balance in quantitative genetic traits publication-title: J. Math. Biol. doi: 10.1007/BF00163878 – start-page: 209 volume-title: Environmental Stress, Adaptation and Evolution year: 1997 ident: 2022010404225892600_R15 article-title: Adaptation and extinction in changing environments doi: 10.1007/978-3-0348-8882-0_12 – volume: 138 start-page: 913 year: 1994 ident: 2022010404225892600_R47 article-title: Genetic and statistical analyses of strong selection on polygenic traits: what, me normal? publication-title: Genetics doi: 10.1093/genetics/138.3.913 – volume: 49 start-page: 151 year: 1995 ident: 2022010404225892600_R14 article-title: Evolution and extinction in a changing environment: a quantitative-genetic analysis publication-title: Evolution – volume-title: Sex and Evolution year: 1975 ident: 2022010404225892600_R49 – volume: 31 start-page: 761 year: 1989 ident: 2022010404225892600_R7 article-title: Maintenance of genetic variability by mutation-selection balance: a child’s guide through the jungle publication-title: Genome doi: 10.1139/g89-135 – volume: 110 start-page: 31 year: 1976 ident: 2022010404225892600_R42 article-title: Niche width in a fluctuating environment-density independent model publication-title: Am. Nat. doi: 10.1086/283047 – volume: 13 start-page: 30 year: 1960 ident: 2022010404225892600_R32 article-title: Natural selection for an intermediate optimum publication-title: Aust. J. Biol. Sci. doi: 10.1071/BI9600030 – volume: 43 start-page: 1748 year: 1989 ident: 2022010404225892600_R16 article-title: How much heritable variation can be maintained in finite populations by mutation-selection balance? publication-title: Evolution doi: 10.1111/j.1558-5646.1989.tb02624.x – volume: 54 start-page: 59 year: 1989 ident: 2022010404225892600_R2 article-title: Divergence of a polygenic system subject to stabilizing selection, mutation and drift publication-title: Genet. Res. doi: 10.1017/S0016672300028378 – volume: 84 start-page: 345 year: 1993 ident: 2022010404225892600_R17 article-title: The evolution of sex and recombination in a varying environment publication-title: J. Hered. doi: 10.1093/oxfordjournals.jhered.a111355 – volume: 68 start-page: 157 year: 1996 ident: 2022010404225892600_R26 article-title: High genetic variability under the balance between symmetric mutation and fluctuating stabilizing selection publication-title: Genet. Res. doi: 10.1017/S0016672300034042 – volume: 43 start-page: 1767 year: 1989 ident: 2022010404225892600_R23 article-title: The maintenance of polygenic variation in finite populations publication-title: Evolution doi: 10.1111/j.1558-5646.1989.tb02625.x – volume: 138 start-page: 901 year: 1994 ident: 2022010404225892600_R13 article-title: On the distribution of the mean and variance of a quantitative trait under mutation-selection-drift balance publication-title: Genetics doi: 10.1093/genetics/138.3.901 – volume: 26 start-page: 221 year: 1975 ident: 2022010404225892600_R28 article-title: The maintenance of genetic variation by mutation in a polygenic character with linked loci publication-title: Genet. Res. doi: 10.1017/S0016672300016037 – start-page: 495 volume-title: Proceedings of the XI International Congress of Genetics year: 1964 ident: 2022010404225892600_R20 article-title: The theory of genetic loads – volume: 54 start-page: 731 year: 1965 ident: 2022010404225892600_R25 article-title: A stochastic model concerning the maintenance of genetic variability in quantitative characters publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.54.3.731 – volume: 30 start-page: 199 year: 1991 ident: 2022010404225892600_R9 article-title: Moments, cumulants, and polygenic dynamics publication-title: J. Math. Biol. doi: 10.1007/BF00160336 – volume: 10 start-page: 743 year: 1997 ident: 2022010404225892600_R43 article-title: Long-term experimental evolution in Escherichia coli. V. Effects of recombination with immigrant genotypes on the rate of bacterial evolution publication-title: J. Evol. Biol. doi: 10.1007/s000360050052 – volume: 68 start-page: 165 year: 1996 ident: 2022010404225892600_R27 article-title: Evolution of amphimixis and recombination under fluctuating selection in one and many traits publication-title: Genet. Res. doi: 10.1017/S0016672300034054 – reference: 3366381 - Genet Res. 1988 Feb;51(1):59-63 – reference: 8365658 - Genet Res. 1993 Jun;61(3):205-24 – reference: 5217452 - Proc Natl Acad Sci U S A. 1965 Sep;54(3):731-6 – reference: 3744046 - Genet Res. 1986 Jun;47(3):209-16 – reference: 7851784 - Genetics. 1994 Nov;138(3):901-12 – reference: 1225762 - Genet Res. 1975 Dec;26(3):221-35 – reference: 3181758 - Genet Res. 1988 Aug;52(1):33-43 – reference: 1624761 - J Hered. 1992 May-Jun;83(3):169-73 – reference: 3596236 - Genet Res. 1987 Apr;49(2):157-73 – reference: 2806907 - Genet Res. 1989 Aug;54(1):59-77 – reference: 1765739 - J Math Biol. 1991;30(2):199-213 – reference: 7851785 - Genetics. 1994 Nov;138(3):913-41 – reference: 6729751 - Theor Popul Biol. 1984 Apr;25(2):138-93 – reference: 8412235 - J Theor Biol. 1993 Jun 21;162(4):487-513 – reference: 8409356 - J Hered. 1993 Sep-Oct;84(5):345-50 – reference: 9342851 - EXS. 1997;83:209-39 – reference: 407132 - Genetics. 1977 Jun;86(2 Pt. 1):485-98 – reference: 8182355 - J Math Biol. 1994;32(3):193-218 |
SSID | ssj0006958 |
Score | 1.9925524 |
Snippet | The role of recombination and sexual reproduction in enhancing adaptation and population persistence in temporally varying environments is investigated on the... |
SourceID | pubmedcentral proquest pubmed crossref highwire |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1055 |
SubjectTerms | Animals Biological Evolution Environment Female Gene Frequency Genetic Variation Male Models, Genetic Models, Statistical Mutation Phenotype Recombination, Genetic Selection, Genetic |
Title | Evolution of Genetic Variability and the Advantage of Sex and Recombination in Changing Environments |
URI | http://www.genetics.org/cgi/content/abstract/153/2/1055 https://www.ncbi.nlm.nih.gov/pubmed/10511578 https://www.proquest.com/docview/17336169 https://www.proquest.com/docview/70825728 https://pubmed.ncbi.nlm.nih.gov/PMC1460762 |
Volume | 153 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELdgCIkXxDfl0w-8QbraTuzkEaaxCQmeNqlvkRM7YlKbTjRbGX89d_FHk6lDwEsUxRfb9e96uTvfnQl5xyxL64o3CZdGJiAli6RihiUC1Fcriqa2DBOcv36Tx6fpl3k2D2eV--ySrprWv3bmlfwPqvAMcMUs2X9ANnYKD-Ae8IUrIAzXv8L48NJ3jyofUGFC4vtLsH5d8e2rGB7Z7_R32jkI1vaniyoHy3MJhrEO8Y59EjC6DobZb0Pt9cgN0Ttq0UnSOxWiQY977p8OMMt6G4hofIJdESPTooxkEhMC2EhGuoq-nhn4QOLhAZs7RbErU-V_-xodBJmY8ul1eljR82WPD7Rg5Z98-2WK8YKh6Ta5w8EcQAF8NN-G8sgi819cN_NQXaoQ-2H8_e3oWCfW9zdWRkKB6F3GxvWY2YEScvKA3PfWA_3oWOEhuWXbR-SuO0_06jExkSHoqqF-UnTAEBRwp8AQNDIEEgJD9A0jhqBnLQ0MQYcM8YScfj48OThO_DEaSZ3KtMMYRpNlCs-TM02NuwCZkU02M1JrBepzrrXNKqZTJSolGt5oCUJcqEozo6zNxVOy165a-5xQsNVTLXKtKsNS6AFenM3gVuJmcC7FhPCwnmXta8zjUSeL0sU6iDLgUQIeJS8Rjwn5EF86dyVW_kxOA1DleqkXC8CFlZvNZkjyNgBYgrTELTDd2tUFdIPVP5ksbqZQ6DNRPJ-QZw7wwZwc00yIGrFCJMBK7eOW9ux7X7G9XyHJX9zY50tyb_tffEX2uh8X9jVou131pmf13xAyqiU |
linkProvider | Geneva Foundation for Medical Education and Research |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Evolution+of+genetic+variability+and+the+advantage+of+sex+and+recombination+in+changing+environments&rft.jtitle=Genetics+%28Austin%29&rft.au=B%C3%BCrger%2C+R&rft.date=1999-10-01&rft.issn=0016-6731&rft.volume=153&rft.issue=2&rft.spage=1055&rft_id=info:doi/10.1093%2Fgenetics%2F153.2.1055&rft_id=info%3Apmid%2F10511578&rft.externalDocID=10511578 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0016-6731&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0016-6731&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0016-6731&client=summon |